arm-smmu.c 57.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
/*
 * IOMMU API for ARM architected SMMU implementations.
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
 *
 * Copyright (C) 2013 ARM Limited
 *
 * Author: Will Deacon <will.deacon@arm.com>
 *
 * This driver currently supports:
 *	- SMMUv1 and v2 implementations
 *	- Stream-matching and stream-indexing
 *	- v7/v8 long-descriptor format
 *	- Non-secure access to the SMMU
 *	- Context fault reporting
 */

#define pr_fmt(fmt) "arm-smmu: " fmt

31
#include <linux/atomic.h>
32
#include <linux/delay.h>
33
#include <linux/dma-iommu.h>
34 35 36 37
#include <linux/dma-mapping.h>
#include <linux/err.h>
#include <linux/interrupt.h>
#include <linux/io.h>
38
#include <linux/io-64-nonatomic-hi-lo.h>
39
#include <linux/iommu.h>
40
#include <linux/iopoll.h>
41 42
#include <linux/module.h>
#include <linux/of.h>
43
#include <linux/of_address.h>
44
#include <linux/of_device.h>
45
#include <linux/of_iommu.h>
46
#include <linux/pci.h>
47 48 49 50 51 52
#include <linux/platform_device.h>
#include <linux/slab.h>
#include <linux/spinlock.h>

#include <linux/amba/bus.h>

53
#include "io-pgtable.h"
54 55 56 57 58 59

/* Maximum number of context banks per SMMU */
#define ARM_SMMU_MAX_CBS		128

/* SMMU global address space */
#define ARM_SMMU_GR0(smmu)		((smmu)->base)
60
#define ARM_SMMU_GR1(smmu)		((smmu)->base + (1 << (smmu)->pgshift))
61

62 63 64 65 66 67 68 69 70 71
/*
 * SMMU global address space with conditional offset to access secure
 * aliases of non-secure registers (e.g. nsCR0: 0x400, nsGFSR: 0x448,
 * nsGFSYNR0: 0x450)
 */
#define ARM_SMMU_GR0_NS(smmu)						\
	((smmu)->base +							\
		((smmu->options & ARM_SMMU_OPT_SECURE_CFG_ACCESS)	\
			? 0x400 : 0))

72 73 74 75 76
/*
 * Some 64-bit registers only make sense to write atomically, but in such
 * cases all the data relevant to AArch32 formats lies within the lower word,
 * therefore this actually makes more sense than it might first appear.
 */
77
#ifdef CONFIG_64BIT
78
#define smmu_write_atomic_lq		writeq_relaxed
79
#else
80
#define smmu_write_atomic_lq		writel_relaxed
81 82
#endif

83 84 85 86 87 88 89 90 91 92 93
/* Configuration registers */
#define ARM_SMMU_GR0_sCR0		0x0
#define sCR0_CLIENTPD			(1 << 0)
#define sCR0_GFRE			(1 << 1)
#define sCR0_GFIE			(1 << 2)
#define sCR0_GCFGFRE			(1 << 4)
#define sCR0_GCFGFIE			(1 << 5)
#define sCR0_USFCFG			(1 << 10)
#define sCR0_VMIDPNE			(1 << 11)
#define sCR0_PTM			(1 << 12)
#define sCR0_FB				(1 << 13)
94
#define sCR0_VMID16EN			(1 << 31)
95 96 97
#define sCR0_BSU_SHIFT			14
#define sCR0_BSU_MASK			0x3

98 99 100
/* Auxiliary Configuration register */
#define ARM_SMMU_GR0_sACR		0x10

101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118
/* Identification registers */
#define ARM_SMMU_GR0_ID0		0x20
#define ARM_SMMU_GR0_ID1		0x24
#define ARM_SMMU_GR0_ID2		0x28
#define ARM_SMMU_GR0_ID3		0x2c
#define ARM_SMMU_GR0_ID4		0x30
#define ARM_SMMU_GR0_ID5		0x34
#define ARM_SMMU_GR0_ID6		0x38
#define ARM_SMMU_GR0_ID7		0x3c
#define ARM_SMMU_GR0_sGFSR		0x48
#define ARM_SMMU_GR0_sGFSYNR0		0x50
#define ARM_SMMU_GR0_sGFSYNR1		0x54
#define ARM_SMMU_GR0_sGFSYNR2		0x58

#define ID0_S1TS			(1 << 30)
#define ID0_S2TS			(1 << 29)
#define ID0_NTS				(1 << 28)
#define ID0_SMS				(1 << 27)
119
#define ID0_ATOSNS			(1 << 26)
120 121
#define ID0_PTFS_NO_AARCH32		(1 << 25)
#define ID0_PTFS_NO_AARCH32S		(1 << 24)
122 123 124
#define ID0_CTTW			(1 << 14)
#define ID0_NUMIRPT_SHIFT		16
#define ID0_NUMIRPT_MASK		0xff
125 126
#define ID0_NUMSIDB_SHIFT		9
#define ID0_NUMSIDB_MASK		0xf
127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146
#define ID0_NUMSMRG_SHIFT		0
#define ID0_NUMSMRG_MASK		0xff

#define ID1_PAGESIZE			(1 << 31)
#define ID1_NUMPAGENDXB_SHIFT		28
#define ID1_NUMPAGENDXB_MASK		7
#define ID1_NUMS2CB_SHIFT		16
#define ID1_NUMS2CB_MASK		0xff
#define ID1_NUMCB_SHIFT			0
#define ID1_NUMCB_MASK			0xff

#define ID2_OAS_SHIFT			4
#define ID2_OAS_MASK			0xf
#define ID2_IAS_SHIFT			0
#define ID2_IAS_MASK			0xf
#define ID2_UBS_SHIFT			8
#define ID2_UBS_MASK			0xf
#define ID2_PTFS_4K			(1 << 12)
#define ID2_PTFS_16K			(1 << 13)
#define ID2_PTFS_64K			(1 << 14)
147
#define ID2_VMID16			(1 << 15)
148

149 150
#define ID7_MAJOR_SHIFT			4
#define ID7_MAJOR_MASK			0xf
151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171

/* Global TLB invalidation */
#define ARM_SMMU_GR0_TLBIVMID		0x64
#define ARM_SMMU_GR0_TLBIALLNSNH	0x68
#define ARM_SMMU_GR0_TLBIALLH		0x6c
#define ARM_SMMU_GR0_sTLBGSYNC		0x70
#define ARM_SMMU_GR0_sTLBGSTATUS	0x74
#define sTLBGSTATUS_GSACTIVE		(1 << 0)
#define TLB_LOOP_TIMEOUT		1000000	/* 1s! */

/* Stream mapping registers */
#define ARM_SMMU_GR0_SMR(n)		(0x800 + ((n) << 2))
#define SMR_VALID			(1 << 31)
#define SMR_MASK_SHIFT			16
#define SMR_ID_SHIFT			0

#define ARM_SMMU_GR0_S2CR(n)		(0xc00 + ((n) << 2))
#define S2CR_CBNDX_SHIFT		0
#define S2CR_CBNDX_MASK			0xff
#define S2CR_TYPE_SHIFT			16
#define S2CR_TYPE_MASK			0x3
172 173 174 175 176
enum arm_smmu_s2cr_type {
	S2CR_TYPE_TRANS,
	S2CR_TYPE_BYPASS,
	S2CR_TYPE_FAULT,
};
177

178
#define S2CR_PRIVCFG_SHIFT		24
179 180 181 182 183 184 185
#define S2CR_PRIVCFG_MASK		0x3
enum arm_smmu_s2cr_privcfg {
	S2CR_PRIVCFG_DEFAULT,
	S2CR_PRIVCFG_DIPAN,
	S2CR_PRIVCFG_UNPRIV,
	S2CR_PRIVCFG_PRIV,
};
186

187 188 189 190
/* Context bank attribute registers */
#define ARM_SMMU_GR1_CBAR(n)		(0x0 + ((n) << 2))
#define CBAR_VMID_SHIFT			0
#define CBAR_VMID_MASK			0xff
191 192 193
#define CBAR_S1_BPSHCFG_SHIFT		8
#define CBAR_S1_BPSHCFG_MASK		3
#define CBAR_S1_BPSHCFG_NSH		3
194 195 196 197 198 199 200 201 202 203 204 205 206 207 208
#define CBAR_S1_MEMATTR_SHIFT		12
#define CBAR_S1_MEMATTR_MASK		0xf
#define CBAR_S1_MEMATTR_WB		0xf
#define CBAR_TYPE_SHIFT			16
#define CBAR_TYPE_MASK			0x3
#define CBAR_TYPE_S2_TRANS		(0 << CBAR_TYPE_SHIFT)
#define CBAR_TYPE_S1_TRANS_S2_BYPASS	(1 << CBAR_TYPE_SHIFT)
#define CBAR_TYPE_S1_TRANS_S2_FAULT	(2 << CBAR_TYPE_SHIFT)
#define CBAR_TYPE_S1_TRANS_S2_TRANS	(3 << CBAR_TYPE_SHIFT)
#define CBAR_IRPTNDX_SHIFT		24
#define CBAR_IRPTNDX_MASK		0xff

#define ARM_SMMU_GR1_CBA2R(n)		(0x800 + ((n) << 2))
#define CBA2R_RW64_32BIT		(0 << 0)
#define CBA2R_RW64_64BIT		(1 << 0)
209 210
#define CBA2R_VMID_SHIFT		16
#define CBA2R_VMID_MASK			0xffff
211 212 213

/* Translation context bank */
#define ARM_SMMU_CB_BASE(smmu)		((smmu)->base + ((smmu)->size >> 1))
214
#define ARM_SMMU_CB(smmu, n)		((n) * (1 << (smmu)->pgshift))
215 216

#define ARM_SMMU_CB_SCTLR		0x0
217
#define ARM_SMMU_CB_ACTLR		0x4
218 219
#define ARM_SMMU_CB_RESUME		0x8
#define ARM_SMMU_CB_TTBCR2		0x10
220 221
#define ARM_SMMU_CB_TTBR0		0x20
#define ARM_SMMU_CB_TTBR1		0x28
222
#define ARM_SMMU_CB_TTBCR		0x30
223
#define ARM_SMMU_CB_CONTEXTIDR		0x34
224
#define ARM_SMMU_CB_S1_MAIR0		0x38
225
#define ARM_SMMU_CB_S1_MAIR1		0x3c
226
#define ARM_SMMU_CB_PAR			0x50
227
#define ARM_SMMU_CB_FSR			0x58
228
#define ARM_SMMU_CB_FAR			0x60
229
#define ARM_SMMU_CB_FSYNR0		0x68
230
#define ARM_SMMU_CB_S1_TLBIVA		0x600
231
#define ARM_SMMU_CB_S1_TLBIASID		0x610
232 233 234
#define ARM_SMMU_CB_S1_TLBIVAL		0x620
#define ARM_SMMU_CB_S2_TLBIIPAS2	0x630
#define ARM_SMMU_CB_S2_TLBIIPAS2L	0x638
235
#define ARM_SMMU_CB_ATS1PR		0x800
236
#define ARM_SMMU_CB_ATSR		0x8f0
237 238 239 240 241 242 243 244 245 246

#define SCTLR_S1_ASIDPNE		(1 << 12)
#define SCTLR_CFCFG			(1 << 7)
#define SCTLR_CFIE			(1 << 6)
#define SCTLR_CFRE			(1 << 5)
#define SCTLR_E				(1 << 4)
#define SCTLR_AFE			(1 << 2)
#define SCTLR_TRE			(1 << 1)
#define SCTLR_M				(1 << 0)

247 248
#define ARM_MMU500_ACTLR_CPRE		(1 << 1)

249 250
#define ARM_MMU500_ACR_CACHE_LOCK	(1 << 26)

251 252 253 254
#define CB_PAR_F			(1 << 0)

#define ATSR_ACTIVE			(1 << 0)

255 256 257 258
#define RESUME_RETRY			(0 << 0)
#define RESUME_TERMINATE		(1 << 0)

#define TTBCR2_SEP_SHIFT		15
259
#define TTBCR2_SEP_UPSTREAM		(0x7 << TTBCR2_SEP_SHIFT)
260

261
#define TTBRn_ASID_SHIFT		48
262 263 264 265 266 267 268 269 270 271 272 273

#define FSR_MULTI			(1 << 31)
#define FSR_SS				(1 << 30)
#define FSR_UUT				(1 << 8)
#define FSR_ASF				(1 << 7)
#define FSR_TLBLKF			(1 << 6)
#define FSR_TLBMCF			(1 << 5)
#define FSR_EF				(1 << 4)
#define FSR_PF				(1 << 3)
#define FSR_AFF				(1 << 2)
#define FSR_TF				(1 << 1)

274 275 276
#define FSR_IGN				(FSR_AFF | FSR_ASF | \
					 FSR_TLBMCF | FSR_TLBLKF)
#define FSR_FAULT			(FSR_MULTI | FSR_SS | FSR_UUT | \
277
					 FSR_EF | FSR_PF | FSR_TF | FSR_IGN)
278 279 280

#define FSYNR0_WNR			(1 << 4)

281
static int force_stage;
282
module_param(force_stage, int, S_IRUGO);
283 284
MODULE_PARM_DESC(force_stage,
	"Force SMMU mappings to be installed at a particular stage of translation. A value of '1' or '2' forces the corresponding stage. All other values are ignored (i.e. no stage is forced). Note that selecting a specific stage will disable support for nested translation.");
285 286 287 288
static bool disable_bypass;
module_param(disable_bypass, bool, S_IRUGO);
MODULE_PARM_DESC(disable_bypass,
	"Disable bypass streams such that incoming transactions from devices that are not attached to an iommu domain will report an abort back to the device and will not be allowed to pass through the SMMU.");
289

290
enum arm_smmu_arch_version {
291 292
	ARM_SMMU_V1,
	ARM_SMMU_V1_64K,
293 294 295
	ARM_SMMU_V2,
};

296 297
enum arm_smmu_implementation {
	GENERIC_SMMU,
298
	ARM_MMU500,
299
	CAVIUM_SMMUV2,
300 301
};

302
struct arm_smmu_s2cr {
303 304
	struct iommu_group		*group;
	int				count;
305 306 307 308 309 310 311 312 313
	enum arm_smmu_s2cr_type		type;
	enum arm_smmu_s2cr_privcfg	privcfg;
	u8				cbndx;
};

#define s2cr_init_val (struct arm_smmu_s2cr){				\
	.type = disable_bypass ? S2CR_TYPE_FAULT : S2CR_TYPE_BYPASS,	\
}

314 315 316
struct arm_smmu_smr {
	u16				mask;
	u16				id;
317
	bool				valid;
318 319
};

320
struct arm_smmu_master_cfg {
321
	struct arm_smmu_device		*smmu;
322
	s16				smendx[];
323
};
324
#define INVALID_SMENDX			-1
325 326
#define __fwspec_cfg(fw) ((struct arm_smmu_master_cfg *)fw->iommu_priv)
#define fwspec_smmu(fw)  (__fwspec_cfg(fw)->smmu)
327 328
#define fwspec_smendx(fw, i) \
	(i >= fw->num_ids ? INVALID_SMENDX : __fwspec_cfg(fw)->smendx[i])
329
#define for_each_cfg_sme(fw, i, idx) \
330
	for (i = 0; idx = fwspec_smendx(fw, i), i < fw->num_ids; ++i)
331 332 333 334 335 336

struct arm_smmu_device {
	struct device			*dev;

	void __iomem			*base;
	unsigned long			size;
337
	unsigned long			pgshift;
338 339 340 341 342 343

#define ARM_SMMU_FEAT_COHERENT_WALK	(1 << 0)
#define ARM_SMMU_FEAT_STREAM_MATCH	(1 << 1)
#define ARM_SMMU_FEAT_TRANS_S1		(1 << 2)
#define ARM_SMMU_FEAT_TRANS_S2		(1 << 3)
#define ARM_SMMU_FEAT_TRANS_NESTED	(1 << 4)
344
#define ARM_SMMU_FEAT_TRANS_OPS		(1 << 5)
345
#define ARM_SMMU_FEAT_VMID16		(1 << 6)
346 347 348 349 350
#define ARM_SMMU_FEAT_FMT_AARCH64_4K	(1 << 7)
#define ARM_SMMU_FEAT_FMT_AARCH64_16K	(1 << 8)
#define ARM_SMMU_FEAT_FMT_AARCH64_64K	(1 << 9)
#define ARM_SMMU_FEAT_FMT_AARCH32_L	(1 << 10)
#define ARM_SMMU_FEAT_FMT_AARCH32_S	(1 << 11)
351
	u32				features;
352 353 354

#define ARM_SMMU_OPT_SECURE_CFG_ACCESS (1 << 0)
	u32				options;
355
	enum arm_smmu_arch_version	version;
356
	enum arm_smmu_implementation	model;
357 358 359 360 361 362 363

	u32				num_context_banks;
	u32				num_s2_context_banks;
	DECLARE_BITMAP(context_map, ARM_SMMU_MAX_CBS);
	atomic_t			irptndx;

	u32				num_mapping_groups;
364 365
	u16				streamid_mask;
	u16				smr_mask_mask;
366
	struct arm_smmu_smr		*smrs;
367
	struct arm_smmu_s2cr		*s2crs;
368
	struct mutex			stream_map_mutex;
369

370 371 372
	unsigned long			va_size;
	unsigned long			ipa_size;
	unsigned long			pa_size;
373
	unsigned long			pgsize_bitmap;
374 375 376 377 378

	u32				num_global_irqs;
	u32				num_context_irqs;
	unsigned int			*irqs;

379
	u32				cavium_id_base; /* Specific to Cavium */
380 381
};

382 383 384 385 386
enum arm_smmu_context_fmt {
	ARM_SMMU_CTX_FMT_NONE,
	ARM_SMMU_CTX_FMT_AARCH64,
	ARM_SMMU_CTX_FMT_AARCH32_L,
	ARM_SMMU_CTX_FMT_AARCH32_S,
387 388 389 390 391 392
};

struct arm_smmu_cfg {
	u8				cbndx;
	u8				irptndx;
	u32				cbar;
393
	enum arm_smmu_context_fmt	fmt;
394
};
395
#define INVALID_IRPTNDX			0xff
396

397 398
#define ARM_SMMU_CB_ASID(smmu, cfg) ((u16)(smmu)->cavium_id_base + (cfg)->cbndx)
#define ARM_SMMU_CB_VMID(smmu, cfg) ((u16)(smmu)->cavium_id_base + (cfg)->cbndx + 1)
399

400 401 402 403 404 405
enum arm_smmu_domain_stage {
	ARM_SMMU_DOMAIN_S1 = 0,
	ARM_SMMU_DOMAIN_S2,
	ARM_SMMU_DOMAIN_NESTED,
};

406
struct arm_smmu_domain {
407
	struct arm_smmu_device		*smmu;
408 409
	struct io_pgtable_ops		*pgtbl_ops;
	spinlock_t			pgtbl_lock;
410
	struct arm_smmu_cfg		cfg;
411
	enum arm_smmu_domain_stage	stage;
412
	struct mutex			init_mutex; /* Protects smmu pointer */
413
	struct iommu_domain		domain;
414 415
};

416 417 418 419 420
struct arm_smmu_option_prop {
	u32 opt;
	const char *prop;
};

421 422
static atomic_t cavium_smmu_context_count = ATOMIC_INIT(0);

423 424
static bool using_legacy_binding, using_generic_binding;

425
static struct arm_smmu_option_prop arm_smmu_options[] = {
426 427 428 429
	{ ARM_SMMU_OPT_SECURE_CFG_ACCESS, "calxeda,smmu-secure-config-access" },
	{ 0, NULL},
};

430 431 432 433 434
static struct arm_smmu_domain *to_smmu_domain(struct iommu_domain *dom)
{
	return container_of(dom, struct arm_smmu_domain, domain);
}

435 436 437
static void parse_driver_options(struct arm_smmu_device *smmu)
{
	int i = 0;
438

439 440 441 442 443 444 445 446 447 448
	do {
		if (of_property_read_bool(smmu->dev->of_node,
						arm_smmu_options[i].prop)) {
			smmu->options |= arm_smmu_options[i].opt;
			dev_notice(smmu->dev, "option %s\n",
				arm_smmu_options[i].prop);
		}
	} while (arm_smmu_options[++i].opt);
}

449
static struct device_node *dev_get_dev_node(struct device *dev)
450 451 452
{
	if (dev_is_pci(dev)) {
		struct pci_bus *bus = to_pci_dev(dev)->bus;
453

454 455
		while (!pci_is_root_bus(bus))
			bus = bus->parent;
456
		return of_node_get(bus->bridge->parent->of_node);
457 458
	}

459
	return of_node_get(dev->of_node);
460 461
}

462
static int __arm_smmu_get_pci_sid(struct pci_dev *pdev, u16 alias, void *data)
463
{
464 465
	*((__be32 *)data) = cpu_to_be32(alias);
	return 0; /* Continue walking */
466 467
}

468
static int __find_legacy_master_phandle(struct device *dev, void *data)
469
{
470 471 472 473 474 475 476 477 478 479 480 481
	struct of_phandle_iterator *it = *(void **)data;
	struct device_node *np = it->node;
	int err;

	of_for_each_phandle(it, err, dev->of_node, "mmu-masters",
			    "#stream-id-cells", 0)
		if (it->node == np) {
			*(void **)data = dev;
			return 1;
		}
	it->node = np;
	return err == -ENOENT ? 0 : err;
482 483
}

484
static struct platform_driver arm_smmu_driver;
485
static struct iommu_ops arm_smmu_ops;
486

487 488
static int arm_smmu_register_legacy_master(struct device *dev,
					   struct arm_smmu_device **smmu)
489
{
490
	struct device *smmu_dev;
491 492 493
	struct device_node *np;
	struct of_phandle_iterator it;
	void *data = &it;
494
	u32 *sids;
495 496
	__be32 pci_sid;
	int err;
497

498 499 500 501 502
	np = dev_get_dev_node(dev);
	if (!np || !of_find_property(np, "#stream-id-cells", NULL)) {
		of_node_put(np);
		return -ENODEV;
	}
503

504
	it.node = np;
505 506
	err = driver_for_each_device(&arm_smmu_driver.driver, NULL, &data,
				     __find_legacy_master_phandle);
507
	smmu_dev = data;
508 509 510 511 512
	of_node_put(np);
	if (err == 0)
		return -ENODEV;
	if (err < 0)
		return err;
513

514 515 516 517 518 519 520
	if (dev_is_pci(dev)) {
		/* "mmu-masters" assumes Stream ID == Requester ID */
		pci_for_each_dma_alias(to_pci_dev(dev), __arm_smmu_get_pci_sid,
				       &pci_sid);
		it.cur = &pci_sid;
		it.cur_count = 1;
	}
521

522 523 524 525
	err = iommu_fwspec_init(dev, &smmu_dev->of_node->fwnode,
				&arm_smmu_ops);
	if (err)
		return err;
526

527 528 529
	sids = kcalloc(it.cur_count, sizeof(*sids), GFP_KERNEL);
	if (!sids)
		return -ENOMEM;
530

531 532 533 534 535
	*smmu = dev_get_drvdata(smmu_dev);
	of_phandle_iterator_args(&it, sids, it.cur_count);
	err = iommu_fwspec_add_ids(dev, sids, it.cur_count);
	kfree(sids);
	return err;
536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556
}

static int __arm_smmu_alloc_bitmap(unsigned long *map, int start, int end)
{
	int idx;

	do {
		idx = find_next_zero_bit(map, end, start);
		if (idx == end)
			return -ENOSPC;
	} while (test_and_set_bit(idx, map));

	return idx;
}

static void __arm_smmu_free_bitmap(unsigned long *map, int idx)
{
	clear_bit(idx, map);
}

/* Wait for any pending TLB invalidations to complete */
557
static void __arm_smmu_tlb_sync(struct arm_smmu_device *smmu)
558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574
{
	int count = 0;
	void __iomem *gr0_base = ARM_SMMU_GR0(smmu);

	writel_relaxed(0, gr0_base + ARM_SMMU_GR0_sTLBGSYNC);
	while (readl_relaxed(gr0_base + ARM_SMMU_GR0_sTLBGSTATUS)
	       & sTLBGSTATUS_GSACTIVE) {
		cpu_relax();
		if (++count == TLB_LOOP_TIMEOUT) {
			dev_err_ratelimited(smmu->dev,
			"TLB sync timed out -- SMMU may be deadlocked\n");
			return;
		}
		udelay(1);
	}
}

575 576 577 578 579 580 581
static void arm_smmu_tlb_sync(void *cookie)
{
	struct arm_smmu_domain *smmu_domain = cookie;
	__arm_smmu_tlb_sync(smmu_domain->smmu);
}

static void arm_smmu_tlb_inv_context(void *cookie)
582
{
583
	struct arm_smmu_domain *smmu_domain = cookie;
584 585
	struct arm_smmu_cfg *cfg = &smmu_domain->cfg;
	struct arm_smmu_device *smmu = smmu_domain->smmu;
586
	bool stage1 = cfg->cbar != CBAR_TYPE_S2_TRANS;
587
	void __iomem *base;
588 589 590

	if (stage1) {
		base = ARM_SMMU_CB_BASE(smmu) + ARM_SMMU_CB(smmu, cfg->cbndx);
591
		writel_relaxed(ARM_SMMU_CB_ASID(smmu, cfg),
592
			       base + ARM_SMMU_CB_S1_TLBIASID);
593 594
	} else {
		base = ARM_SMMU_GR0(smmu);
595
		writel_relaxed(ARM_SMMU_CB_VMID(smmu, cfg),
596
			       base + ARM_SMMU_GR0_TLBIVMID);
597 598
	}

599 600 601 602
	__arm_smmu_tlb_sync(smmu);
}

static void arm_smmu_tlb_inv_range_nosync(unsigned long iova, size_t size,
603
					  size_t granule, bool leaf, void *cookie)
604 605 606 607 608 609 610 611 612 613 614
{
	struct arm_smmu_domain *smmu_domain = cookie;
	struct arm_smmu_cfg *cfg = &smmu_domain->cfg;
	struct arm_smmu_device *smmu = smmu_domain->smmu;
	bool stage1 = cfg->cbar != CBAR_TYPE_S2_TRANS;
	void __iomem *reg;

	if (stage1) {
		reg = ARM_SMMU_CB_BASE(smmu) + ARM_SMMU_CB(smmu, cfg->cbndx);
		reg += leaf ? ARM_SMMU_CB_S1_TLBIVAL : ARM_SMMU_CB_S1_TLBIVA;

615
		if (cfg->fmt != ARM_SMMU_CTX_FMT_AARCH64) {
616
			iova &= ~12UL;
617
			iova |= ARM_SMMU_CB_ASID(smmu, cfg);
618 619 620 621
			do {
				writel_relaxed(iova, reg);
				iova += granule;
			} while (size -= granule);
622 623
		} else {
			iova >>= 12;
624
			iova |= (u64)ARM_SMMU_CB_ASID(smmu, cfg) << 48;
625 626 627 628
			do {
				writeq_relaxed(iova, reg);
				iova += granule >> 12;
			} while (size -= granule);
629 630 631 632 633
		}
	} else if (smmu->version == ARM_SMMU_V2) {
		reg = ARM_SMMU_CB_BASE(smmu) + ARM_SMMU_CB(smmu, cfg->cbndx);
		reg += leaf ? ARM_SMMU_CB_S2_TLBIIPAS2L :
			      ARM_SMMU_CB_S2_TLBIIPAS2;
634 635
		iova >>= 12;
		do {
636
			smmu_write_atomic_lq(iova, reg);
637 638
			iova += granule >> 12;
		} while (size -= granule);
639 640
	} else {
		reg = ARM_SMMU_GR0(smmu) + ARM_SMMU_GR0_TLBIVMID;
641
		writel_relaxed(ARM_SMMU_CB_VMID(smmu, cfg), reg);
642 643 644
	}
}

645
static const struct iommu_gather_ops arm_smmu_gather_ops = {
646 647 648 649 650
	.tlb_flush_all	= arm_smmu_tlb_inv_context,
	.tlb_add_flush	= arm_smmu_tlb_inv_range_nosync,
	.tlb_sync	= arm_smmu_tlb_sync,
};

651 652
static irqreturn_t arm_smmu_context_fault(int irq, void *dev)
{
653
	u32 fsr, fsynr;
654 655
	unsigned long iova;
	struct iommu_domain *domain = dev;
656
	struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
657 658
	struct arm_smmu_cfg *cfg = &smmu_domain->cfg;
	struct arm_smmu_device *smmu = smmu_domain->smmu;
659 660
	void __iomem *cb_base;

661
	cb_base = ARM_SMMU_CB_BASE(smmu) + ARM_SMMU_CB(smmu, cfg->cbndx);
662 663 664 665 666 667
	fsr = readl_relaxed(cb_base + ARM_SMMU_CB_FSR);

	if (!(fsr & FSR_FAULT))
		return IRQ_NONE;

	fsynr = readl_relaxed(cb_base + ARM_SMMU_CB_FSYNR0);
668
	iova = readq_relaxed(cb_base + ARM_SMMU_CB_FAR);
669

670 671 672
	dev_err_ratelimited(smmu->dev,
	"Unhandled context fault: fsr=0x%x, iova=0x%08lx, fsynr=0x%x, cb=%d\n",
			    fsr, iova, fsynr, cfg->cbndx);
673

674 675
	writel(fsr, cb_base + ARM_SMMU_CB_FSR);
	return IRQ_HANDLED;
676 677 678 679 680 681
}

static irqreturn_t arm_smmu_global_fault(int irq, void *dev)
{
	u32 gfsr, gfsynr0, gfsynr1, gfsynr2;
	struct arm_smmu_device *smmu = dev;
682
	void __iomem *gr0_base = ARM_SMMU_GR0_NS(smmu);
683 684 685 686 687 688

	gfsr = readl_relaxed(gr0_base + ARM_SMMU_GR0_sGFSR);
	gfsynr0 = readl_relaxed(gr0_base + ARM_SMMU_GR0_sGFSYNR0);
	gfsynr1 = readl_relaxed(gr0_base + ARM_SMMU_GR0_sGFSYNR1);
	gfsynr2 = readl_relaxed(gr0_base + ARM_SMMU_GR0_sGFSYNR2);

689 690 691
	if (!gfsr)
		return IRQ_NONE;

692 693 694 695 696 697 698
	dev_err_ratelimited(smmu->dev,
		"Unexpected global fault, this could be serious\n");
	dev_err_ratelimited(smmu->dev,
		"\tGFSR 0x%08x, GFSYNR0 0x%08x, GFSYNR1 0x%08x, GFSYNR2 0x%08x\n",
		gfsr, gfsynr0, gfsynr1, gfsynr2);

	writel(gfsr, gr0_base + ARM_SMMU_GR0_sGFSR);
699
	return IRQ_HANDLED;
700 701
}

702 703
static void arm_smmu_init_context_bank(struct arm_smmu_domain *smmu_domain,
				       struct io_pgtable_cfg *pgtbl_cfg)
704
{
705
	u32 reg, reg2;
706
	u64 reg64;
707
	bool stage1;
708 709
	struct arm_smmu_cfg *cfg = &smmu_domain->cfg;
	struct arm_smmu_device *smmu = smmu_domain->smmu;
710
	void __iomem *cb_base, *gr1_base;
711 712

	gr1_base = ARM_SMMU_GR1(smmu);
713 714
	stage1 = cfg->cbar != CBAR_TYPE_S2_TRANS;
	cb_base = ARM_SMMU_CB_BASE(smmu) + ARM_SMMU_CB(smmu, cfg->cbndx);
715

716
	if (smmu->version > ARM_SMMU_V1) {
717 718 719 720
		if (cfg->fmt == ARM_SMMU_CTX_FMT_AARCH64)
			reg = CBA2R_RW64_64BIT;
		else
			reg = CBA2R_RW64_32BIT;
721 722
		/* 16-bit VMIDs live in CBA2R */
		if (smmu->features & ARM_SMMU_FEAT_VMID16)
723
			reg |= ARM_SMMU_CB_VMID(smmu, cfg) << CBA2R_VMID_SHIFT;
724

725 726 727
		writel_relaxed(reg, gr1_base + ARM_SMMU_GR1_CBA2R(cfg->cbndx));
	}

728
	/* CBAR */
729
	reg = cfg->cbar;
730
	if (smmu->version < ARM_SMMU_V2)
731
		reg |= cfg->irptndx << CBAR_IRPTNDX_SHIFT;
732

733 734 735 736 737 738 739
	/*
	 * Use the weakest shareability/memory types, so they are
	 * overridden by the ttbcr/pte.
	 */
	if (stage1) {
		reg |= (CBAR_S1_BPSHCFG_NSH << CBAR_S1_BPSHCFG_SHIFT) |
			(CBAR_S1_MEMATTR_WB << CBAR_S1_MEMATTR_SHIFT);
740 741
	} else if (!(smmu->features & ARM_SMMU_FEAT_VMID16)) {
		/* 8-bit VMIDs live in CBAR */
742
		reg |= ARM_SMMU_CB_VMID(smmu, cfg) << CBAR_VMID_SHIFT;
743
	}
744
	writel_relaxed(reg, gr1_base + ARM_SMMU_GR1_CBAR(cfg->cbndx));
745

746 747
	/* TTBRs */
	if (stage1) {
748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763
		u16 asid = ARM_SMMU_CB_ASID(smmu, cfg);

		if (cfg->fmt == ARM_SMMU_CTX_FMT_AARCH32_S) {
			reg = pgtbl_cfg->arm_v7s_cfg.ttbr[0];
			writel_relaxed(reg, cb_base + ARM_SMMU_CB_TTBR0);
			reg = pgtbl_cfg->arm_v7s_cfg.ttbr[1];
			writel_relaxed(reg, cb_base + ARM_SMMU_CB_TTBR1);
			writel_relaxed(asid, cb_base + ARM_SMMU_CB_CONTEXTIDR);
		} else {
			reg64 = pgtbl_cfg->arm_lpae_s1_cfg.ttbr[0];
			reg64 |= (u64)asid << TTBRn_ASID_SHIFT;
			writeq_relaxed(reg64, cb_base + ARM_SMMU_CB_TTBR0);
			reg64 = pgtbl_cfg->arm_lpae_s1_cfg.ttbr[1];
			reg64 |= (u64)asid << TTBRn_ASID_SHIFT;
			writeq_relaxed(reg64, cb_base + ARM_SMMU_CB_TTBR1);
		}
764
	} else {
765
		reg64 = pgtbl_cfg->arm_lpae_s2_cfg.vttbr;
766
		writeq_relaxed(reg64, cb_base + ARM_SMMU_CB_TTBR0);
767
	}
768

769 770
	/* TTBCR */
	if (stage1) {
771 772 773 774 775 776 777
		if (cfg->fmt == ARM_SMMU_CTX_FMT_AARCH32_S) {
			reg = pgtbl_cfg->arm_v7s_cfg.tcr;
			reg2 = 0;
		} else {
			reg = pgtbl_cfg->arm_lpae_s1_cfg.tcr;
			reg2 = pgtbl_cfg->arm_lpae_s1_cfg.tcr >> 32;
			reg2 |= TTBCR2_SEP_UPSTREAM;
778
		}
779 780
		if (smmu->version > ARM_SMMU_V1)
			writel_relaxed(reg2, cb_base + ARM_SMMU_CB_TTBCR2);
781
	} else {
782
		reg = pgtbl_cfg->arm_lpae_s2_cfg.vtcr;
783
	}
784
	writel_relaxed(reg, cb_base + ARM_SMMU_CB_TTBCR);
785

786
	/* MAIRs (stage-1 only) */
787
	if (stage1) {
788 789 790 791 792 793 794
		if (cfg->fmt == ARM_SMMU_CTX_FMT_AARCH32_S) {
			reg = pgtbl_cfg->arm_v7s_cfg.prrr;
			reg2 = pgtbl_cfg->arm_v7s_cfg.nmrr;
		} else {
			reg = pgtbl_cfg->arm_lpae_s1_cfg.mair[0];
			reg2 = pgtbl_cfg->arm_lpae_s1_cfg.mair[1];
		}
795
		writel_relaxed(reg, cb_base + ARM_SMMU_CB_S1_MAIR0);
796
		writel_relaxed(reg2, cb_base + ARM_SMMU_CB_S1_MAIR1);
797 798 799
	}

	/* SCTLR */
800
	reg = SCTLR_CFIE | SCTLR_CFRE | SCTLR_AFE | SCTLR_TRE | SCTLR_M;
801 802 803 804 805
	if (stage1)
		reg |= SCTLR_S1_ASIDPNE;
#ifdef __BIG_ENDIAN
	reg |= SCTLR_E;
#endif
806
	writel_relaxed(reg, cb_base + ARM_SMMU_CB_SCTLR);
807 808 809
}

static int arm_smmu_init_domain_context(struct iommu_domain *domain,
810
					struct arm_smmu_device *smmu)
811
{
812
	int irq, start, ret = 0;
813 814 815 816
	unsigned long ias, oas;
	struct io_pgtable_ops *pgtbl_ops;
	struct io_pgtable_cfg pgtbl_cfg;
	enum io_pgtable_fmt fmt;
817
	struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
818
	struct arm_smmu_cfg *cfg = &smmu_domain->cfg;
819

820
	mutex_lock(&smmu_domain->init_mutex);
821 822 823
	if (smmu_domain->smmu)
		goto out_unlock;

824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846
	/*
	 * Mapping the requested stage onto what we support is surprisingly
	 * complicated, mainly because the spec allows S1+S2 SMMUs without
	 * support for nested translation. That means we end up with the
	 * following table:
	 *
	 * Requested        Supported        Actual
	 *     S1               N              S1
	 *     S1             S1+S2            S1
	 *     S1               S2             S2
	 *     S1               S1             S1
	 *     N                N              N
	 *     N              S1+S2            S2
	 *     N                S2             S2
	 *     N                S1             S1
	 *
	 * Note that you can't actually request stage-2 mappings.
	 */
	if (!(smmu->features & ARM_SMMU_FEAT_TRANS_S1))
		smmu_domain->stage = ARM_SMMU_DOMAIN_S2;
	if (!(smmu->features & ARM_SMMU_FEAT_TRANS_S2))
		smmu_domain->stage = ARM_SMMU_DOMAIN_S1;

847 848 849 850 851 852 853 854 855 856
	/*
	 * Choosing a suitable context format is even more fiddly. Until we
	 * grow some way for the caller to express a preference, and/or move
	 * the decision into the io-pgtable code where it arguably belongs,
	 * just aim for the closest thing to the rest of the system, and hope
	 * that the hardware isn't esoteric enough that we can't assume AArch64
	 * support to be a superset of AArch32 support...
	 */
	if (smmu->features & ARM_SMMU_FEAT_FMT_AARCH32_L)
		cfg->fmt = ARM_SMMU_CTX_FMT_AARCH32_L;
857 858 859 860 861
	if (IS_ENABLED(CONFIG_IOMMU_IO_PGTABLE_ARMV7S) &&
	    !IS_ENABLED(CONFIG_64BIT) && !IS_ENABLED(CONFIG_ARM_LPAE) &&
	    (smmu->features & ARM_SMMU_FEAT_FMT_AARCH32_S) &&
	    (smmu_domain->stage == ARM_SMMU_DOMAIN_S1))
		cfg->fmt = ARM_SMMU_CTX_FMT_AARCH32_S;
862 863 864 865 866 867 868 869 870 871 872
	if ((IS_ENABLED(CONFIG_64BIT) || cfg->fmt == ARM_SMMU_CTX_FMT_NONE) &&
	    (smmu->features & (ARM_SMMU_FEAT_FMT_AARCH64_64K |
			       ARM_SMMU_FEAT_FMT_AARCH64_16K |
			       ARM_SMMU_FEAT_FMT_AARCH64_4K)))
		cfg->fmt = ARM_SMMU_CTX_FMT_AARCH64;

	if (cfg->fmt == ARM_SMMU_CTX_FMT_NONE) {
		ret = -EINVAL;
		goto out_unlock;
	}

873 874 875 876
	switch (smmu_domain->stage) {
	case ARM_SMMU_DOMAIN_S1:
		cfg->cbar = CBAR_TYPE_S1_TRANS_S2_BYPASS;
		start = smmu->num_s2_context_banks;
877 878
		ias = smmu->va_size;
		oas = smmu->ipa_size;
879
		if (cfg->fmt == ARM_SMMU_CTX_FMT_AARCH64) {
880
			fmt = ARM_64_LPAE_S1;
881
		} else if (cfg->fmt == ARM_SMMU_CTX_FMT_AARCH32_L) {
882
			fmt = ARM_32_LPAE_S1;
883 884
			ias = min(ias, 32UL);
			oas = min(oas, 40UL);
885 886 887 888
		} else {
			fmt = ARM_V7S;
			ias = min(ias, 32UL);
			oas = min(oas, 32UL);
889
		}
890 891
		break;
	case ARM_SMMU_DOMAIN_NESTED:
892 893 894 895
		/*
		 * We will likely want to change this if/when KVM gets
		 * involved.
		 */
896
	case ARM_SMMU_DOMAIN_S2:
897 898
		cfg->cbar = CBAR_TYPE_S2_TRANS;
		start = 0;
899 900
		ias = smmu->ipa_size;
		oas = smmu->pa_size;
901
		if (cfg->fmt == ARM_SMMU_CTX_FMT_AARCH64) {
902
			fmt = ARM_64_LPAE_S2;
903
		} else {
904
			fmt = ARM_32_LPAE_S2;
905 906 907
			ias = min(ias, 40UL);
			oas = min(oas, 40UL);
		}
908 909 910 911
		break;
	default:
		ret = -EINVAL;
		goto out_unlock;
912 913 914 915
	}

	ret = __arm_smmu_alloc_bitmap(smmu->context_map, start,
				      smmu->num_context_banks);
916
	if (ret < 0)
917
		goto out_unlock;
918

919
	cfg->cbndx = ret;
920
	if (smmu->version < ARM_SMMU_V2) {
921 922
		cfg->irptndx = atomic_inc_return(&smmu->irptndx);
		cfg->irptndx %= smmu->num_context_irqs;
923
	} else {
924
		cfg->irptndx = cfg->cbndx;
925 926
	}

927
	pgtbl_cfg = (struct io_pgtable_cfg) {
928
		.pgsize_bitmap	= smmu->pgsize_bitmap,
929 930 931
		.ias		= ias,
		.oas		= oas,
		.tlb		= &arm_smmu_gather_ops,
932
		.iommu_dev	= smmu->dev,
933 934 935 936 937 938 939 940 941
	};

	smmu_domain->smmu = smmu;
	pgtbl_ops = alloc_io_pgtable_ops(fmt, &pgtbl_cfg, smmu_domain);
	if (!pgtbl_ops) {
		ret = -ENOMEM;
		goto out_clear_smmu;
	}

942 943
	/* Update the domain's page sizes to reflect the page table format */
	domain->pgsize_bitmap = pgtbl_cfg.pgsize_bitmap;
944 945
	domain->geometry.aperture_end = (1UL << ias) - 1;
	domain->geometry.force_aperture = true;
946

947 948 949 950 951 952 953
	/* Initialise the context bank with our page table cfg */
	arm_smmu_init_context_bank(smmu_domain, &pgtbl_cfg);

	/*
	 * Request context fault interrupt. Do this last to avoid the
	 * handler seeing a half-initialised domain state.
	 */
954
	irq = smmu->irqs[smmu->num_global_irqs + cfg->irptndx];
955 956
	ret = devm_request_irq(smmu->dev, irq, arm_smmu_context_fault,
			       IRQF_SHARED, "arm-smmu-context-fault", domain);
957
	if (ret < 0) {
958
		dev_err(smmu->dev, "failed to request context IRQ %d (%u)\n",
959 960
			cfg->irptndx, irq);
		cfg->irptndx = INVALID_IRPTNDX;
961 962
	}

963 964 965 966
	mutex_unlock(&smmu_domain->init_mutex);

	/* Publish page table ops for map/unmap */
	smmu_domain->pgtbl_ops = pgtbl_ops;
967
	return 0;
968

969 970
out_clear_smmu:
	smmu_domain->smmu = NULL;
971
out_unlock:
972
	mutex_unlock(&smmu_domain->init_mutex);
973 974 975 976 977
	return ret;
}

static void arm_smmu_destroy_domain_context(struct iommu_domain *domain)
{
978
	struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
979 980
	struct arm_smmu_device *smmu = smmu_domain->smmu;
	struct arm_smmu_cfg *cfg = &smmu_domain->cfg;
981
	void __iomem *cb_base;
982 983
	int irq;

984
	if (!smmu)
985 986
		return;

987 988 989 990
	/*
	 * Disable the context bank and free the page tables before freeing
	 * it.
	 */
991
	cb_base = ARM_SMMU_CB_BASE(smmu) + ARM_SMMU_CB(smmu, cfg->cbndx);
992 993
	writel_relaxed(0, cb_base + ARM_SMMU_CB_SCTLR);

994 995
	if (cfg->irptndx != INVALID_IRPTNDX) {
		irq = smmu->irqs[smmu->num_global_irqs + cfg->irptndx];
996
		devm_free_irq(smmu->dev, irq, domain);
997 998
	}

999
	free_io_pgtable_ops(smmu_domain->pgtbl_ops);
1000
	__arm_smmu_free_bitmap(smmu->context_map, cfg->cbndx);
1001 1002
}

1003
static struct iommu_domain *arm_smmu_domain_alloc(unsigned type)
1004 1005 1006
{
	struct arm_smmu_domain *smmu_domain;

1007
	if (type != IOMMU_DOMAIN_UNMANAGED && type != IOMMU_DOMAIN_DMA)
1008
		return NULL;
1009 1010 1011 1012 1013 1014 1015
	/*
	 * Allocate the domain and initialise some of its data structures.
	 * We can't really do anything meaningful until we've added a
	 * master.
	 */
	smmu_domain = kzalloc(sizeof(*smmu_domain), GFP_KERNEL);
	if (!smmu_domain)
1016
		return NULL;
1017

1018 1019
	if (type == IOMMU_DOMAIN_DMA && (using_legacy_binding ||
	    iommu_get_dma_cookie(&smmu_domain->domain))) {
1020 1021 1022 1023
		kfree(smmu_domain);
		return NULL;
	}

1024 1025
	mutex_init(&smmu_domain->init_mutex);
	spin_lock_init(&smmu_domain->pgtbl_lock);
1026 1027

	return &smmu_domain->domain;
1028 1029
}

1030
static void arm_smmu_domain_free(struct iommu_domain *domain)
1031
{
1032
	struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1033 1034 1035 1036 1037

	/*
	 * Free the domain resources. We assume that all devices have
	 * already been detached.
	 */
1038
	iommu_put_dma_cookie(domain);
1039 1040 1041 1042
	arm_smmu_destroy_domain_context(domain);
	kfree(smmu_domain);
}

1043 1044 1045
static void arm_smmu_write_smr(struct arm_smmu_device *smmu, int idx)
{
	struct arm_smmu_smr *smr = smmu->smrs + idx;
1046
	u32 reg = smr->id << SMR_ID_SHIFT | smr->mask << SMR_MASK_SHIFT;
1047 1048 1049 1050 1051 1052

	if (smr->valid)
		reg |= SMR_VALID;
	writel_relaxed(reg, ARM_SMMU_GR0(smmu) + ARM_SMMU_GR0_SMR(idx));
}

1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069
static void arm_smmu_write_s2cr(struct arm_smmu_device *smmu, int idx)
{
	struct arm_smmu_s2cr *s2cr = smmu->s2crs + idx;
	u32 reg = (s2cr->type & S2CR_TYPE_MASK) << S2CR_TYPE_SHIFT |
		  (s2cr->cbndx & S2CR_CBNDX_MASK) << S2CR_CBNDX_SHIFT |
		  (s2cr->privcfg & S2CR_PRIVCFG_MASK) << S2CR_PRIVCFG_SHIFT;

	writel_relaxed(reg, ARM_SMMU_GR0(smmu) + ARM_SMMU_GR0_S2CR(idx));
}

static void arm_smmu_write_sme(struct arm_smmu_device *smmu, int idx)
{
	arm_smmu_write_s2cr(smmu, idx);
	if (smmu->smrs)
		arm_smmu_write_smr(smmu, idx);
}

1070
static int arm_smmu_find_sme(struct arm_smmu_device *smmu, u16 id, u16 mask)
1071 1072
{
	struct arm_smmu_smr *smrs = smmu->smrs;
1073
	int i, free_idx = -ENOSPC;
1074

1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087
	/* Stream indexing is blissfully easy */
	if (!smrs)
		return id;

	/* Validating SMRs is... less so */
	for (i = 0; i < smmu->num_mapping_groups; ++i) {
		if (!smrs[i].valid) {
			/*
			 * Note the first free entry we come across, which
			 * we'll claim in the end if nothing else matches.
			 */
			if (free_idx < 0)
				free_idx = i;
1088 1089
			continue;
		}
1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107
		/*
		 * If the new entry is _entirely_ matched by an existing entry,
		 * then reuse that, with the guarantee that there also cannot
		 * be any subsequent conflicting entries. In normal use we'd
		 * expect simply identical entries for this case, but there's
		 * no harm in accommodating the generalisation.
		 */
		if ((mask & smrs[i].mask) == mask &&
		    !((id ^ smrs[i].id) & ~smrs[i].mask))
			return i;
		/*
		 * If the new entry has any other overlap with an existing one,
		 * though, then there always exists at least one stream ID
		 * which would cause a conflict, and we can't allow that risk.
		 */
		if (!((id ^ smrs[i].id) & ~(smrs[i].mask | mask)))
			return -EINVAL;
	}
1108

1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125
	return free_idx;
}

static bool arm_smmu_free_sme(struct arm_smmu_device *smmu, int idx)
{
	if (--smmu->s2crs[idx].count)
		return false;

	smmu->s2crs[idx] = s2cr_init_val;
	if (smmu->smrs)
		smmu->smrs[idx].valid = false;

	return true;
}

static int arm_smmu_master_alloc_smes(struct device *dev)
{
1126 1127
	struct iommu_fwspec *fwspec = dev->iommu_fwspec;
	struct arm_smmu_master_cfg *cfg = fwspec->iommu_priv;
1128 1129 1130 1131 1132 1133 1134
	struct arm_smmu_device *smmu = cfg->smmu;
	struct arm_smmu_smr *smrs = smmu->smrs;
	struct iommu_group *group;
	int i, idx, ret;

	mutex_lock(&smmu->stream_map_mutex);
	/* Figure out a viable stream map entry allocation */
1135
	for_each_cfg_sme(fwspec, i, idx) {
1136 1137 1138
		u16 sid = fwspec->ids[i];
		u16 mask = fwspec->ids[i] >> SMR_MASK_SHIFT;

1139 1140 1141
		if (idx != INVALID_SMENDX) {
			ret = -EEXIST;
			goto out_err;
1142 1143
		}

1144
		ret = arm_smmu_find_sme(smmu, sid, mask);
1145 1146 1147 1148 1149
		if (ret < 0)
			goto out_err;

		idx = ret;
		if (smrs && smmu->s2crs[idx].count == 0) {
1150 1151
			smrs[idx].id = sid;
			smrs[idx].mask = mask;
1152 1153 1154 1155
			smrs[idx].valid = true;
		}
		smmu->s2crs[idx].count++;
		cfg->smendx[i] = (s16)idx;
1156 1157
	}

1158 1159 1160 1161 1162 1163 1164 1165
	group = iommu_group_get_for_dev(dev);
	if (!group)
		group = ERR_PTR(-ENOMEM);
	if (IS_ERR(group)) {
		ret = PTR_ERR(group);
		goto out_err;
	}
	iommu_group_put(group);
1166

1167
	/* It worked! Now, poke the actual hardware */
1168
	for_each_cfg_sme(fwspec, i, idx) {
1169 1170 1171
		arm_smmu_write_sme(smmu, idx);
		smmu->s2crs[idx].group = group;
	}
1172

1173
	mutex_unlock(&smmu->stream_map_mutex);
1174 1175
	return 0;

1176
out_err:
1177
	while (i--) {
1178
		arm_smmu_free_sme(smmu, cfg->smendx[i]);
1179 1180
		cfg->smendx[i] = INVALID_SMENDX;
	}
1181 1182
	mutex_unlock(&smmu->stream_map_mutex);
	return ret;
1183 1184
}

1185
static void arm_smmu_master_free_smes(struct iommu_fwspec *fwspec)
1186
{
1187 1188
	struct arm_smmu_device *smmu = fwspec_smmu(fwspec);
	struct arm_smmu_master_cfg *cfg = fwspec->iommu_priv;
1189
	int i, idx;
1190

1191
	mutex_lock(&smmu->stream_map_mutex);
1192
	for_each_cfg_sme(fwspec, i, idx) {
1193 1194
		if (arm_smmu_free_sme(smmu, idx))
			arm_smmu_write_sme(smmu, idx);
1195
		cfg->smendx[i] = INVALID_SMENDX;
1196
	}
1197
	mutex_unlock(&smmu->stream_map_mutex);
1198 1199 1200
}

static int arm_smmu_domain_add_master(struct arm_smmu_domain *smmu_domain,
1201
				      struct iommu_fwspec *fwspec)
1202
{
1203
	struct arm_smmu_device *smmu = smmu_domain->smmu;
1204 1205 1206
	struct arm_smmu_s2cr *s2cr = smmu->s2crs;
	enum arm_smmu_s2cr_type type = S2CR_TYPE_TRANS;
	u8 cbndx = smmu_domain->cfg.cbndx;
1207
	int i, idx;
1208

1209
	for_each_cfg_sme(fwspec, i, idx) {
1210
		if (type == s2cr[idx].type && cbndx == s2cr[idx].cbndx)
1211
			continue;
1212

1213 1214 1215 1216
		s2cr[idx].type = type;
		s2cr[idx].privcfg = S2CR_PRIVCFG_UNPRIV;
		s2cr[idx].cbndx = cbndx;
		arm_smmu_write_s2cr(smmu, idx);
1217
	}
1218
	return 0;
1219 1220
}

1221 1222
static int arm_smmu_attach_dev(struct iommu_domain *domain, struct device *dev)
{
1223
	int ret;
1224 1225
	struct iommu_fwspec *fwspec = dev->iommu_fwspec;
	struct arm_smmu_device *smmu;
1226
	struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1227

1228
	if (!fwspec || fwspec->ops != &arm_smmu_ops) {
1229 1230 1231 1232
		dev_err(dev, "cannot attach to SMMU, is it on the same bus?\n");
		return -ENXIO;
	}

1233 1234 1235 1236 1237 1238 1239 1240 1241 1242
	/*
	 * FIXME: The arch/arm DMA API code tries to attach devices to its own
	 * domains between of_xlate() and add_device() - we have no way to cope
	 * with that, so until ARM gets converted to rely on groups and default
	 * domains, just say no (but more politely than by dereferencing NULL).
	 * This should be at least a WARN_ON once that's sorted.
	 */
	if (!fwspec->iommu_priv)
		return -ENODEV;

1243
	smmu = fwspec_smmu(fwspec);
1244
	/* Ensure that the domain is finalised */
1245
	ret = arm_smmu_init_domain_context(domain, smmu);
1246
	if (ret < 0)
1247 1248
		return ret;

1249
	/*
1250 1251
	 * Sanity check the domain. We don't support domains across
	 * different SMMUs.
1252
	 */
1253
	if (smmu_domain->smmu != smmu) {
1254 1255
		dev_err(dev,
			"cannot attach to SMMU %s whilst already attached to domain on SMMU %s\n",
1256
			dev_name(smmu_domain->smmu->dev), dev_name(smmu->dev));
1257
		return -EINVAL;
1258 1259 1260
	}

	/* Looks ok, so add the device to the domain */
1261
	return arm_smmu_domain_add_master(smmu_domain, fwspec);
1262 1263 1264
}

static int arm_smmu_map(struct iommu_domain *domain, unsigned long iova,
1265
			phys_addr_t paddr, size_t size, int prot)
1266
{
1267 1268
	int ret;
	unsigned long flags;
1269
	struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1270
	struct io_pgtable_ops *ops= smmu_domain->pgtbl_ops;
1271

1272
	if (!ops)
1273 1274
		return -ENODEV;

1275 1276 1277 1278
	spin_lock_irqsave(&smmu_domain->pgtbl_lock, flags);
	ret = ops->map(ops, iova, paddr, size, prot);
	spin_unlock_irqrestore(&smmu_domain->pgtbl_lock, flags);
	return ret;
1279 1280 1281 1282 1283
}

static size_t arm_smmu_unmap(struct iommu_domain *domain, unsigned long iova,
			     size_t size)
{
1284 1285
	size_t ret;
	unsigned long flags;
1286
	struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1287
	struct io_pgtable_ops *ops= smmu_domain->pgtbl_ops;
1288

1289 1290 1291 1292 1293 1294 1295
	if (!ops)
		return 0;

	spin_lock_irqsave(&smmu_domain->pgtbl_lock, flags);
	ret = ops->unmap(ops, iova, size);
	spin_unlock_irqrestore(&smmu_domain->pgtbl_lock, flags);
	return ret;
1296 1297
}

1298 1299 1300
static phys_addr_t arm_smmu_iova_to_phys_hard(struct iommu_domain *domain,
					      dma_addr_t iova)
{
1301
	struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1302 1303 1304 1305 1306 1307 1308
	struct arm_smmu_device *smmu = smmu_domain->smmu;
	struct arm_smmu_cfg *cfg = &smmu_domain->cfg;
	struct io_pgtable_ops *ops= smmu_domain->pgtbl_ops;
	struct device *dev = smmu->dev;
	void __iomem *cb_base;
	u32 tmp;
	u64 phys;
1309
	unsigned long va;
1310 1311 1312

	cb_base = ARM_SMMU_CB_BASE(smmu) + ARM_SMMU_CB(smmu, cfg->cbndx);

1313 1314 1315
	/* ATS1 registers can only be written atomically */
	va = iova & ~0xfffUL;
	if (smmu->version == ARM_SMMU_V2)
1316 1317
		smmu_write_atomic_lq(va, cb_base + ARM_SMMU_CB_ATS1PR);
	else /* Register is only 32-bit in v1 */
1318
		writel_relaxed(va, cb_base + ARM_SMMU_CB_ATS1PR);
1319 1320 1321 1322

	if (readl_poll_timeout_atomic(cb_base + ARM_SMMU_CB_ATSR, tmp,
				      !(tmp & ATSR_ACTIVE), 5, 50)) {
		dev_err(dev,
1323
			"iova to phys timed out on %pad. Falling back to software table walk.\n",
1324 1325 1326 1327
			&iova);
		return ops->iova_to_phys(ops, iova);
	}

1328
	phys = readq_relaxed(cb_base + ARM_SMMU_CB_PAR);
1329 1330 1331 1332 1333 1334 1335 1336 1337
	if (phys & CB_PAR_F) {
		dev_err(dev, "translation fault!\n");
		dev_err(dev, "PAR = 0x%llx\n", phys);
		return 0;
	}

	return (phys & GENMASK_ULL(39, 12)) | (iova & 0xfff);
}

1338
static phys_addr_t arm_smmu_iova_to_phys(struct iommu_domain *domain,
1339
					dma_addr_t iova)
1340
{
1341 1342
	phys_addr_t ret;
	unsigned long flags;
1343
	struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1344
	struct io_pgtable_ops *ops= smmu_domain->pgtbl_ops;
1345

1346
	if (!ops)
1347
		return 0;
1348

1349
	spin_lock_irqsave(&smmu_domain->pgtbl_lock, flags);
1350 1351
	if (smmu_domain->smmu->features & ARM_SMMU_FEAT_TRANS_OPS &&
			smmu_domain->stage == ARM_SMMU_DOMAIN_S1) {
1352
		ret = arm_smmu_iova_to_phys_hard(domain, iova);
1353
	} else {
1354
		ret = ops->iova_to_phys(ops, iova);
1355 1356
	}

1357
	spin_unlock_irqrestore(&smmu_domain->pgtbl_lock, flags);
1358

1359
	return ret;
1360 1361
}

1362
static bool arm_smmu_capable(enum iommu_cap cap)
1363
{
1364 1365
	switch (cap) {
	case IOMMU_CAP_CACHE_COHERENCY:
1366 1367 1368 1369 1370
		/*
		 * Return true here as the SMMU can always send out coherent
		 * requests.
		 */
		return true;
1371
	case IOMMU_CAP_INTR_REMAP:
1372
		return true; /* MSIs are just memory writes */
1373 1374
	case IOMMU_CAP_NOEXEC:
		return true;
1375
	default:
1376
		return false;
1377
	}
1378 1379
}

1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392
static int arm_smmu_match_node(struct device *dev, void *data)
{
	return dev->of_node == data;
}

static struct arm_smmu_device *arm_smmu_get_by_node(struct device_node *np)
{
	struct device *dev = driver_find_device(&arm_smmu_driver.driver, NULL,
						np, arm_smmu_match_node);
	put_device(dev);
	return dev ? dev_get_drvdata(dev) : NULL;
}

1393
static int arm_smmu_add_device(struct device *dev)
1394
{
1395
	struct arm_smmu_device *smmu;
1396
	struct arm_smmu_master_cfg *cfg;
1397
	struct iommu_fwspec *fwspec = dev->iommu_fwspec;
1398
	int i, ret;
1399

1400 1401 1402 1403 1404
	if (using_legacy_binding) {
		ret = arm_smmu_register_legacy_master(dev, &smmu);
		fwspec = dev->iommu_fwspec;
		if (ret)
			goto out_free;
1405
	} else if (fwspec && fwspec->ops == &arm_smmu_ops) {
1406 1407 1408 1409
		smmu = arm_smmu_get_by_node(to_of_node(fwspec->iommu_fwnode));
	} else {
		return -ENODEV;
	}
1410

1411
	ret = -EINVAL;
1412 1413
	for (i = 0; i < fwspec->num_ids; i++) {
		u16 sid = fwspec->ids[i];
1414
		u16 mask = fwspec->ids[i] >> SMR_MASK_SHIFT;
1415

1416
		if (sid & ~smmu->streamid_mask) {
1417
			dev_err(dev, "stream ID 0x%x out of range for SMMU (0x%x)\n",
1418 1419 1420 1421 1422 1423
				sid, smmu->streamid_mask);
			goto out_free;
		}
		if (mask & ~smmu->smr_mask_mask) {
			dev_err(dev, "SMR mask 0x%x out of range for SMMU (0x%x)\n",
				sid, smmu->smr_mask_mask);
1424 1425
			goto out_free;
		}
1426
	}
1427

1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438
	ret = -ENOMEM;
	cfg = kzalloc(offsetof(struct arm_smmu_master_cfg, smendx[i]),
		      GFP_KERNEL);
	if (!cfg)
		goto out_free;

	cfg->smmu = smmu;
	fwspec->iommu_priv = cfg;
	while (i--)
		cfg->smendx[i] = INVALID_SMENDX;

1439
	ret = arm_smmu_master_alloc_smes(dev);
1440 1441 1442 1443
	if (ret)
		goto out_free;

	return 0;
1444 1445

out_free:
1446 1447 1448
	if (fwspec)
		kfree(fwspec->iommu_priv);
	iommu_fwspec_free(dev);
1449
	return ret;
1450 1451
}

1452 1453
static void arm_smmu_remove_device(struct device *dev)
{
1454
	struct iommu_fwspec *fwspec = dev->iommu_fwspec;
1455

1456
	if (!fwspec || fwspec->ops != &arm_smmu_ops)
1457
		return;
1458

1459
	arm_smmu_master_free_smes(fwspec);
1460
	iommu_group_remove_device(dev);
1461 1462
	kfree(fwspec->iommu_priv);
	iommu_fwspec_free(dev);
1463 1464
}

1465 1466
static struct iommu_group *arm_smmu_device_group(struct device *dev)
{
1467 1468
	struct iommu_fwspec *fwspec = dev->iommu_fwspec;
	struct arm_smmu_device *smmu = fwspec_smmu(fwspec);
1469 1470 1471
	struct iommu_group *group = NULL;
	int i, idx;

1472
	for_each_cfg_sme(fwspec, i, idx) {
1473 1474 1475 1476 1477 1478 1479 1480 1481
		if (group && smmu->s2crs[idx].group &&
		    group != smmu->s2crs[idx].group)
			return ERR_PTR(-EINVAL);

		group = smmu->s2crs[idx].group;
	}

	if (group)
		return group;
1482 1483 1484 1485 1486 1487 1488 1489 1490

	if (dev_is_pci(dev))
		group = pci_device_group(dev);
	else
		group = generic_device_group(dev);

	return group;
}

1491 1492 1493
static int arm_smmu_domain_get_attr(struct iommu_domain *domain,
				    enum iommu_attr attr, void *data)
{
1494
	struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507

	switch (attr) {
	case DOMAIN_ATTR_NESTING:
		*(int *)data = (smmu_domain->stage == ARM_SMMU_DOMAIN_NESTED);
		return 0;
	default:
		return -ENODEV;
	}
}

static int arm_smmu_domain_set_attr(struct iommu_domain *domain,
				    enum iommu_attr attr, void *data)
{
1508
	int ret = 0;
1509
	struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1510

1511 1512
	mutex_lock(&smmu_domain->init_mutex);

1513 1514
	switch (attr) {
	case DOMAIN_ATTR_NESTING:
1515 1516 1517 1518 1519
		if (smmu_domain->smmu) {
			ret = -EPERM;
			goto out_unlock;
		}

1520 1521 1522 1523 1524
		if (*(int *)data)
			smmu_domain->stage = ARM_SMMU_DOMAIN_NESTED;
		else
			smmu_domain->stage = ARM_SMMU_DOMAIN_S1;

1525
		break;
1526
	default:
1527
		ret = -ENODEV;
1528
	}
1529 1530 1531 1532

out_unlock:
	mutex_unlock(&smmu_domain->init_mutex);
	return ret;
1533 1534
}

1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547
static int arm_smmu_of_xlate(struct device *dev, struct of_phandle_args *args)
{
	u32 fwid = 0;

	if (args->args_count > 0)
		fwid |= (u16)args->args[0];

	if (args->args_count > 1)
		fwid |= (u16)args->args[1] << SMR_MASK_SHIFT;

	return iommu_fwspec_add_ids(dev, &fwid, 1);
}

1548
static struct iommu_ops arm_smmu_ops = {
1549
	.capable		= arm_smmu_capable,
1550 1551
	.domain_alloc		= arm_smmu_domain_alloc,
	.domain_free		= arm_smmu_domain_free,
1552 1553 1554
	.attach_dev		= arm_smmu_attach_dev,
	.map			= arm_smmu_map,
	.unmap			= arm_smmu_unmap,
1555
	.map_sg			= default_iommu_map_sg,
1556 1557 1558
	.iova_to_phys		= arm_smmu_iova_to_phys,
	.add_device		= arm_smmu_add_device,
	.remove_device		= arm_smmu_remove_device,
1559
	.device_group		= arm_smmu_device_group,
1560 1561
	.domain_get_attr	= arm_smmu_domain_get_attr,
	.domain_set_attr	= arm_smmu_domain_set_attr,
1562
	.of_xlate		= arm_smmu_of_xlate,
1563
	.pgsize_bitmap		= -1UL, /* Restricted during device attach */
1564 1565 1566 1567 1568
};

static void arm_smmu_device_reset(struct arm_smmu_device *smmu)
{
	void __iomem *gr0_base = ARM_SMMU_GR0(smmu);
1569
	void __iomem *cb_base;
1570
	int i;
1571
	u32 reg, major;
1572

1573 1574 1575
	/* clear global FSR */
	reg = readl_relaxed(ARM_SMMU_GR0_NS(smmu) + ARM_SMMU_GR0_sGFSR);
	writel(reg, ARM_SMMU_GR0_NS(smmu) + ARM_SMMU_GR0_sGFSR);
1576

1577 1578 1579 1580
	/*
	 * Reset stream mapping groups: Initial values mark all SMRn as
	 * invalid and all S2CRn as bypass unless overridden.
	 */
1581 1582
	for (i = 0; i < smmu->num_mapping_groups; ++i)
		arm_smmu_write_sme(smmu, i);
1583

1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596
	/*
	 * Before clearing ARM_MMU500_ACTLR_CPRE, need to
	 * clear CACHE_LOCK bit of ACR first. And, CACHE_LOCK
	 * bit is only present in MMU-500r2 onwards.
	 */
	reg = readl_relaxed(gr0_base + ARM_SMMU_GR0_ID7);
	major = (reg >> ID7_MAJOR_SHIFT) & ID7_MAJOR_MASK;
	if ((smmu->model == ARM_MMU500) && (major >= 2)) {
		reg = readl_relaxed(gr0_base + ARM_SMMU_GR0_sACR);
		reg &= ~ARM_MMU500_ACR_CACHE_LOCK;
		writel_relaxed(reg, gr0_base + ARM_SMMU_GR0_sACR);
	}

1597 1598 1599 1600 1601
	/* Make sure all context banks are disabled and clear CB_FSR  */
	for (i = 0; i < smmu->num_context_banks; ++i) {
		cb_base = ARM_SMMU_CB_BASE(smmu) + ARM_SMMU_CB(smmu, i);
		writel_relaxed(0, cb_base + ARM_SMMU_CB_SCTLR);
		writel_relaxed(FSR_FAULT, cb_base + ARM_SMMU_CB_FSR);
1602 1603 1604 1605 1606 1607 1608 1609 1610
		/*
		 * Disable MMU-500's not-particularly-beneficial next-page
		 * prefetcher for the sake of errata #841119 and #826419.
		 */
		if (smmu->model == ARM_MMU500) {
			reg = readl_relaxed(cb_base + ARM_SMMU_CB_ACTLR);
			reg &= ~ARM_MMU500_ACTLR_CPRE;
			writel_relaxed(reg, cb_base + ARM_SMMU_CB_ACTLR);
		}
1611
	}
1612

1613 1614 1615 1616
	/* Invalidate the TLB, just in case */
	writel_relaxed(0, gr0_base + ARM_SMMU_GR0_TLBIALLH);
	writel_relaxed(0, gr0_base + ARM_SMMU_GR0_TLBIALLNSNH);

1617
	reg = readl_relaxed(ARM_SMMU_GR0_NS(smmu) + ARM_SMMU_GR0_sCR0);
1618

1619
	/* Enable fault reporting */
1620
	reg |= (sCR0_GFRE | sCR0_GFIE | sCR0_GCFGFRE | sCR0_GCFGFIE);
1621 1622

	/* Disable TLB broadcasting. */
1623
	reg |= (sCR0_VMIDPNE | sCR0_PTM);
1624

1625 1626 1627 1628 1629 1630
	/* Enable client access, handling unmatched streams as appropriate */
	reg &= ~sCR0_CLIENTPD;
	if (disable_bypass)
		reg |= sCR0_USFCFG;
	else
		reg &= ~sCR0_USFCFG;
1631 1632

	/* Disable forced broadcasting */
1633
	reg &= ~sCR0_FB;
1634 1635

	/* Don't upgrade barriers */
1636
	reg &= ~(sCR0_BSU_MASK << sCR0_BSU_SHIFT);
1637

1638 1639 1640
	if (smmu->features & ARM_SMMU_FEAT_VMID16)
		reg |= sCR0_VMID16EN;

1641
	/* Push the button */
1642
	__arm_smmu_tlb_sync(smmu);
1643
	writel(reg, ARM_SMMU_GR0_NS(smmu) + ARM_SMMU_GR0_sCR0);
1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669
}

static int arm_smmu_id_size_to_bits(int size)
{
	switch (size) {
	case 0:
		return 32;
	case 1:
		return 36;
	case 2:
		return 40;
	case 3:
		return 42;
	case 4:
		return 44;
	case 5:
	default:
		return 48;
	}
}

static int arm_smmu_device_cfg_probe(struct arm_smmu_device *smmu)
{
	unsigned long size;
	void __iomem *gr0_base = ARM_SMMU_GR0(smmu);
	u32 id;
1670
	bool cttw_dt, cttw_reg;
1671
	int i;
1672 1673

	dev_notice(smmu->dev, "probing hardware configuration...\n");
1674 1675
	dev_notice(smmu->dev, "SMMUv%d with:\n",
			smmu->version == ARM_SMMU_V2 ? 2 : 1);
1676 1677 1678

	/* ID0 */
	id = readl_relaxed(gr0_base + ARM_SMMU_GR0_ID0);
1679 1680 1681 1682 1683 1684 1685

	/* Restrict available stages based on module parameter */
	if (force_stage == 1)
		id &= ~(ID0_S2TS | ID0_NTS);
	else if (force_stage == 2)
		id &= ~(ID0_S1TS | ID0_NTS);

1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701
	if (id & ID0_S1TS) {
		smmu->features |= ARM_SMMU_FEAT_TRANS_S1;
		dev_notice(smmu->dev, "\tstage 1 translation\n");
	}

	if (id & ID0_S2TS) {
		smmu->features |= ARM_SMMU_FEAT_TRANS_S2;
		dev_notice(smmu->dev, "\tstage 2 translation\n");
	}

	if (id & ID0_NTS) {
		smmu->features |= ARM_SMMU_FEAT_TRANS_NESTED;
		dev_notice(smmu->dev, "\tnested translation\n");
	}

	if (!(smmu->features &
1702
		(ARM_SMMU_FEAT_TRANS_S1 | ARM_SMMU_FEAT_TRANS_S2))) {
1703 1704 1705 1706
		dev_err(smmu->dev, "\tno translation support!\n");
		return -ENODEV;
	}

1707 1708
	if ((id & ID0_S1TS) &&
		((smmu->version < ARM_SMMU_V2) || !(id & ID0_ATOSNS))) {
1709 1710 1711 1712
		smmu->features |= ARM_SMMU_FEAT_TRANS_OPS;
		dev_notice(smmu->dev, "\taddress translation ops\n");
	}

1713 1714 1715 1716 1717 1718 1719 1720 1721
	/*
	 * In order for DMA API calls to work properly, we must defer to what
	 * the DT says about coherency, regardless of what the hardware claims.
	 * Fortunately, this also opens up a workaround for systems where the
	 * ID register value has ended up configured incorrectly.
	 */
	cttw_dt = of_dma_is_coherent(smmu->dev->of_node);
	cttw_reg = !!(id & ID0_CTTW);
	if (cttw_dt)
1722
		smmu->features |= ARM_SMMU_FEAT_COHERENT_WALK;
1723 1724 1725 1726 1727 1728
	if (cttw_dt || cttw_reg)
		dev_notice(smmu->dev, "\t%scoherent table walk\n",
			   cttw_dt ? "" : "non-");
	if (cttw_dt != cttw_reg)
		dev_notice(smmu->dev,
			   "\t(IDR0.CTTW overridden by dma-coherent property)\n");
1729

1730 1731 1732
	/* Max. number of entries we have for stream matching/indexing */
	size = 1 << ((id >> ID0_NUMSIDB_SHIFT) & ID0_NUMSIDB_MASK);
	smmu->streamid_mask = size - 1;
1733
	if (id & ID0_SMS) {
1734
		u32 smr;
1735 1736

		smmu->features |= ARM_SMMU_FEAT_STREAM_MATCH;
1737 1738
		size = (id >> ID0_NUMSMRG_SHIFT) & ID0_NUMSMRG_MASK;
		if (size == 0) {
1739 1740 1741 1742 1743
			dev_err(smmu->dev,
				"stream-matching supported, but no SMRs present!\n");
			return -ENODEV;
		}

1744 1745 1746 1747 1748 1749
		/*
		 * SMR.ID bits may not be preserved if the corresponding MASK
		 * bits are set, so check each one separately. We can reject
		 * masters later if they try to claim IDs outside these masks.
		 */
		smr = smmu->streamid_mask << SMR_ID_SHIFT;
1750 1751
		writel_relaxed(smr, gr0_base + ARM_SMMU_GR0_SMR(0));
		smr = readl_relaxed(gr0_base + ARM_SMMU_GR0_SMR(0));
1752
		smmu->streamid_mask = smr >> SMR_ID_SHIFT;
1753

1754 1755 1756 1757
		smr = smmu->streamid_mask << SMR_MASK_SHIFT;
		writel_relaxed(smr, gr0_base + ARM_SMMU_GR0_SMR(0));
		smr = readl_relaxed(gr0_base + ARM_SMMU_GR0_SMR(0));
		smmu->smr_mask_mask = smr >> SMR_MASK_SHIFT;
1758

1759 1760 1761 1762 1763 1764
		/* Zero-initialised to mark as invalid */
		smmu->smrs = devm_kcalloc(smmu->dev, size, sizeof(*smmu->smrs),
					  GFP_KERNEL);
		if (!smmu->smrs)
			return -ENOMEM;

1765
		dev_notice(smmu->dev,
1766 1767
			   "\tstream matching with %lu register groups, mask 0x%x",
			   size, smmu->smr_mask_mask);
1768
	}
1769 1770 1771 1772 1773 1774 1775 1776
	/* s2cr->type == 0 means translation, so initialise explicitly */
	smmu->s2crs = devm_kmalloc_array(smmu->dev, size, sizeof(*smmu->s2crs),
					 GFP_KERNEL);
	if (!smmu->s2crs)
		return -ENOMEM;
	for (i = 0; i < size; i++)
		smmu->s2crs[i] = s2cr_init_val;

1777
	smmu->num_mapping_groups = size;
1778
	mutex_init(&smmu->stream_map_mutex);
1779

1780 1781 1782 1783 1784 1785
	if (smmu->version < ARM_SMMU_V2 || !(id & ID0_PTFS_NO_AARCH32)) {
		smmu->features |= ARM_SMMU_FEAT_FMT_AARCH32_L;
		if (!(id & ID0_PTFS_NO_AARCH32S))
			smmu->features |= ARM_SMMU_FEAT_FMT_AARCH32_S;
	}

1786 1787
	/* ID1 */
	id = readl_relaxed(gr0_base + ARM_SMMU_GR0_ID1);
1788
	smmu->pgshift = (id & ID1_PAGESIZE) ? 16 : 12;
1789

1790
	/* Check for size mismatch of SMMU address space from mapped region */
1791
	size = 1 << (((id >> ID1_NUMPAGENDXB_SHIFT) & ID1_NUMPAGENDXB_MASK) + 1);
1792
	size *= 2 << smmu->pgshift;
1793
	if (smmu->size != size)
1794 1795 1796
		dev_warn(smmu->dev,
			"SMMU address space size (0x%lx) differs from mapped region size (0x%lx)!\n",
			size, smmu->size);
1797

1798
	smmu->num_s2_context_banks = (id >> ID1_NUMS2CB_SHIFT) & ID1_NUMS2CB_MASK;
1799 1800 1801 1802 1803 1804 1805
	smmu->num_context_banks = (id >> ID1_NUMCB_SHIFT) & ID1_NUMCB_MASK;
	if (smmu->num_s2_context_banks > smmu->num_context_banks) {
		dev_err(smmu->dev, "impossible number of S2 context banks!\n");
		return -ENODEV;
	}
	dev_notice(smmu->dev, "\t%u context banks (%u stage-2 only)\n",
		   smmu->num_context_banks, smmu->num_s2_context_banks);
1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816
	/*
	 * Cavium CN88xx erratum #27704.
	 * Ensure ASID and VMID allocation is unique across all SMMUs in
	 * the system.
	 */
	if (smmu->model == CAVIUM_SMMUV2) {
		smmu->cavium_id_base =
			atomic_add_return(smmu->num_context_banks,
					  &cavium_smmu_context_count);
		smmu->cavium_id_base -= smmu->num_context_banks;
	}
1817 1818 1819 1820

	/* ID2 */
	id = readl_relaxed(gr0_base + ARM_SMMU_GR0_ID2);
	size = arm_smmu_id_size_to_bits((id >> ID2_IAS_SHIFT) & ID2_IAS_MASK);
1821
	smmu->ipa_size = size;
1822

1823
	/* The output mask is also applied for bypass */
1824
	size = arm_smmu_id_size_to_bits((id >> ID2_OAS_SHIFT) & ID2_OAS_MASK);
1825
	smmu->pa_size = size;
1826

1827 1828 1829
	if (id & ID2_VMID16)
		smmu->features |= ARM_SMMU_FEAT_VMID16;

1830 1831 1832 1833 1834 1835 1836 1837 1838
	/*
	 * What the page table walker can address actually depends on which
	 * descriptor format is in use, but since a) we don't know that yet,
	 * and b) it can vary per context bank, this will have to do...
	 */
	if (dma_set_mask_and_coherent(smmu->dev, DMA_BIT_MASK(size)))
		dev_warn(smmu->dev,
			 "failed to set DMA mask for table walker\n");

1839
	if (smmu->version < ARM_SMMU_V2) {
1840
		smmu->va_size = smmu->ipa_size;
1841 1842
		if (smmu->version == ARM_SMMU_V1_64K)
			smmu->features |= ARM_SMMU_FEAT_FMT_AARCH64_64K;
1843 1844
	} else {
		size = (id >> ID2_UBS_SHIFT) & ID2_UBS_MASK;
1845 1846
		smmu->va_size = arm_smmu_id_size_to_bits(size);
		if (id & ID2_PTFS_4K)
1847
			smmu->features |= ARM_SMMU_FEAT_FMT_AARCH64_4K;
1848
		if (id & ID2_PTFS_16K)
1849
			smmu->features |= ARM_SMMU_FEAT_FMT_AARCH64_16K;
1850
		if (id & ID2_PTFS_64K)
1851
			smmu->features |= ARM_SMMU_FEAT_FMT_AARCH64_64K;
1852 1853
	}

1854 1855
	/* Now we've corralled the various formats, what'll it do? */
	if (smmu->features & ARM_SMMU_FEAT_FMT_AARCH32_S)
1856
		smmu->pgsize_bitmap |= SZ_4K | SZ_64K | SZ_1M | SZ_16M;
1857 1858
	if (smmu->features &
	    (ARM_SMMU_FEAT_FMT_AARCH32_L | ARM_SMMU_FEAT_FMT_AARCH64_4K))
1859
		smmu->pgsize_bitmap |= SZ_4K | SZ_2M | SZ_1G;
1860
	if (smmu->features & ARM_SMMU_FEAT_FMT_AARCH64_16K)
1861
		smmu->pgsize_bitmap |= SZ_16K | SZ_32M;
1862
	if (smmu->features & ARM_SMMU_FEAT_FMT_AARCH64_64K)
1863 1864 1865 1866 1867 1868 1869 1870
		smmu->pgsize_bitmap |= SZ_64K | SZ_512M;

	if (arm_smmu_ops.pgsize_bitmap == -1UL)
		arm_smmu_ops.pgsize_bitmap = smmu->pgsize_bitmap;
	else
		arm_smmu_ops.pgsize_bitmap |= smmu->pgsize_bitmap;
	dev_notice(smmu->dev, "\tSupported page sizes: 0x%08lx\n",
		   smmu->pgsize_bitmap);
1871

1872

1873 1874
	if (smmu->features & ARM_SMMU_FEAT_TRANS_S1)
		dev_notice(smmu->dev, "\tStage-1: %lu-bit VA -> %lu-bit IPA\n",
1875
			   smmu->va_size, smmu->ipa_size);
1876 1877 1878

	if (smmu->features & ARM_SMMU_FEAT_TRANS_S2)
		dev_notice(smmu->dev, "\tStage-2: %lu-bit IPA -> %lu-bit PA\n",
1879
			   smmu->ipa_size, smmu->pa_size);
1880

1881 1882 1883
	return 0;
}

1884 1885 1886 1887 1888 1889 1890 1891 1892 1893
struct arm_smmu_match_data {
	enum arm_smmu_arch_version version;
	enum arm_smmu_implementation model;
};

#define ARM_SMMU_MATCH_DATA(name, ver, imp)	\
static struct arm_smmu_match_data name = { .version = ver, .model = imp }

ARM_SMMU_MATCH_DATA(smmu_generic_v1, ARM_SMMU_V1, GENERIC_SMMU);
ARM_SMMU_MATCH_DATA(smmu_generic_v2, ARM_SMMU_V2, GENERIC_SMMU);
1894
ARM_SMMU_MATCH_DATA(arm_mmu401, ARM_SMMU_V1_64K, GENERIC_SMMU);
1895
ARM_SMMU_MATCH_DATA(arm_mmu500, ARM_SMMU_V2, ARM_MMU500);
1896
ARM_SMMU_MATCH_DATA(cavium_smmuv2, ARM_SMMU_V2, CAVIUM_SMMUV2);
1897

1898
static const struct of_device_id arm_smmu_of_match[] = {
1899 1900 1901
	{ .compatible = "arm,smmu-v1", .data = &smmu_generic_v1 },
	{ .compatible = "arm,smmu-v2", .data = &smmu_generic_v2 },
	{ .compatible = "arm,mmu-400", .data = &smmu_generic_v1 },
1902
	{ .compatible = "arm,mmu-401", .data = &arm_mmu401 },
1903
	{ .compatible = "arm,mmu-500", .data = &arm_mmu500 },
1904
	{ .compatible = "cavium,smmu-v2", .data = &cavium_smmuv2 },
1905 1906 1907 1908
	{ },
};
MODULE_DEVICE_TABLE(of, arm_smmu_of_match);

1909 1910
static int arm_smmu_device_dt_probe(struct platform_device *pdev)
{
1911
	const struct arm_smmu_match_data *data;
1912 1913 1914 1915
	struct resource *res;
	struct arm_smmu_device *smmu;
	struct device *dev = &pdev->dev;
	int num_irqs, i, err;
1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928
	bool legacy_binding;

	legacy_binding = of_find_property(dev->of_node, "mmu-masters", NULL);
	if (legacy_binding && !using_generic_binding) {
		if (!using_legacy_binding)
			pr_notice("deprecated \"mmu-masters\" DT property in use; DMA API support unavailable\n");
		using_legacy_binding = true;
	} else if (!legacy_binding && !using_legacy_binding) {
		using_generic_binding = true;
	} else {
		dev_err(dev, "not probing due to mismatched DT properties\n");
		return -ENODEV;
	}
1929 1930 1931 1932 1933 1934 1935 1936

	smmu = devm_kzalloc(dev, sizeof(*smmu), GFP_KERNEL);
	if (!smmu) {
		dev_err(dev, "failed to allocate arm_smmu_device\n");
		return -ENOMEM;
	}
	smmu->dev = dev;

1937
	data = of_device_get_match_data(dev);
1938 1939
	smmu->version = data->version;
	smmu->model = data->model;
1940

1941
	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1942 1943 1944
	smmu->base = devm_ioremap_resource(dev, res);
	if (IS_ERR(smmu->base))
		return PTR_ERR(smmu->base);
1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959
	smmu->size = resource_size(res);

	if (of_property_read_u32(dev->of_node, "#global-interrupts",
				 &smmu->num_global_irqs)) {
		dev_err(dev, "missing #global-interrupts property\n");
		return -ENODEV;
	}

	num_irqs = 0;
	while ((res = platform_get_resource(pdev, IORESOURCE_IRQ, num_irqs))) {
		num_irqs++;
		if (num_irqs > smmu->num_global_irqs)
			smmu->num_context_irqs++;
	}

1960 1961 1962 1963
	if (!smmu->num_context_irqs) {
		dev_err(dev, "found %d interrupts but expected at least %d\n",
			num_irqs, smmu->num_global_irqs + 1);
		return -ENODEV;
1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974
	}

	smmu->irqs = devm_kzalloc(dev, sizeof(*smmu->irqs) * num_irqs,
				  GFP_KERNEL);
	if (!smmu->irqs) {
		dev_err(dev, "failed to allocate %d irqs\n", num_irqs);
		return -ENOMEM;
	}

	for (i = 0; i < num_irqs; ++i) {
		int irq = platform_get_irq(pdev, i);
1975

1976 1977 1978 1979 1980 1981 1982
		if (irq < 0) {
			dev_err(dev, "failed to get irq index %d\n", i);
			return -ENODEV;
		}
		smmu->irqs[i] = irq;
	}

1983 1984 1985 1986
	err = arm_smmu_device_cfg_probe(smmu);
	if (err)
		return err;

1987 1988
	parse_driver_options(smmu);

1989
	if (smmu->version == ARM_SMMU_V2 &&
1990 1991 1992 1993
	    smmu->num_context_banks != smmu->num_context_irqs) {
		dev_err(dev,
			"found only %d context interrupt(s) but %d required\n",
			smmu->num_context_irqs, smmu->num_context_banks);
1994
		return -ENODEV;
1995 1996 1997
	}

	for (i = 0; i < smmu->num_global_irqs; ++i) {
1998 1999 2000 2001 2002
		err = devm_request_irq(smmu->dev, smmu->irqs[i],
				       arm_smmu_global_fault,
				       IRQF_SHARED,
				       "arm-smmu global fault",
				       smmu);
2003 2004 2005
		if (err) {
			dev_err(dev, "failed to request global IRQ %d (%u)\n",
				i, smmu->irqs[i]);
2006
			return err;
2007 2008 2009
		}
	}

2010
	of_iommu_set_ops(dev->of_node, &arm_smmu_ops);
2011
	platform_set_drvdata(pdev, smmu);
2012
	arm_smmu_device_reset(smmu);
2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026

	/* Oh, for a proper bus abstraction */
	if (!iommu_present(&platform_bus_type))
		bus_set_iommu(&platform_bus_type, &arm_smmu_ops);
#ifdef CONFIG_ARM_AMBA
	if (!iommu_present(&amba_bustype))
		bus_set_iommu(&amba_bustype, &arm_smmu_ops);
#endif
#ifdef CONFIG_PCI
	if (!iommu_present(&pci_bus_type)) {
		pci_request_acs();
		bus_set_iommu(&pci_bus_type, &arm_smmu_ops);
	}
#endif
2027 2028 2029 2030 2031
	return 0;
}

static int arm_smmu_device_remove(struct platform_device *pdev)
{
2032
	struct arm_smmu_device *smmu = platform_get_drvdata(pdev);
2033 2034 2035 2036

	if (!smmu)
		return -ENODEV;

2037
	if (!bitmap_empty(smmu->context_map, ARM_SMMU_MAX_CBS))
2038
		dev_err(&pdev->dev, "removing device with active domains!\n");
2039 2040

	/* Turn the thing off */
2041
	writel(sCR0_CLIENTPD, ARM_SMMU_GR0_NS(smmu) + ARM_SMMU_GR0_sCR0);
2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055
	return 0;
}

static struct platform_driver arm_smmu_driver = {
	.driver	= {
		.name		= "arm-smmu",
		.of_match_table	= of_match_ptr(arm_smmu_of_match),
	},
	.probe	= arm_smmu_device_dt_probe,
	.remove	= arm_smmu_device_remove,
};

static int __init arm_smmu_init(void)
{
2056 2057
	static bool registered;
	int ret = 0;
2058

2059 2060 2061
	if (!registered) {
		ret = platform_driver_register(&arm_smmu_driver);
		registered = !ret;
2062
	}
2063
	return ret;
2064 2065 2066 2067 2068 2069 2070
}

static void __exit arm_smmu_exit(void)
{
	return platform_driver_unregister(&arm_smmu_driver);
}

2071
subsys_initcall(arm_smmu_init);
2072 2073
module_exit(arm_smmu_exit);

2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092
static int __init arm_smmu_of_init(struct device_node *np)
{
	int ret = arm_smmu_init();

	if (ret)
		return ret;

	if (!of_platform_device_create(np, NULL, platform_bus_type.dev_root))
		return -ENODEV;

	return 0;
}
IOMMU_OF_DECLARE(arm_smmuv1, "arm,smmu-v1", arm_smmu_of_init);
IOMMU_OF_DECLARE(arm_smmuv2, "arm,smmu-v2", arm_smmu_of_init);
IOMMU_OF_DECLARE(arm_mmu400, "arm,mmu-400", arm_smmu_of_init);
IOMMU_OF_DECLARE(arm_mmu401, "arm,mmu-401", arm_smmu_of_init);
IOMMU_OF_DECLARE(arm_mmu500, "arm,mmu-500", arm_smmu_of_init);
IOMMU_OF_DECLARE(cavium_smmuv2, "cavium,smmu-v2", arm_smmu_of_init);

2093 2094 2095
MODULE_DESCRIPTION("IOMMU API for ARM architected SMMU implementations");
MODULE_AUTHOR("Will Deacon <will.deacon@arm.com>");
MODULE_LICENSE("GPL v2");