arm-smmu.c 57.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
/*
 * IOMMU API for ARM architected SMMU implementations.
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
 *
 * Copyright (C) 2013 ARM Limited
 *
 * Author: Will Deacon <will.deacon@arm.com>
 *
 * This driver currently supports:
 *	- SMMUv1 and v2 implementations
 *	- Stream-matching and stream-indexing
 *	- v7/v8 long-descriptor format
 *	- Non-secure access to the SMMU
 *	- Context fault reporting
 */

#define pr_fmt(fmt) "arm-smmu: " fmt

31
#include <linux/atomic.h>
32
#include <linux/delay.h>
33
#include <linux/dma-iommu.h>
34 35 36 37
#include <linux/dma-mapping.h>
#include <linux/err.h>
#include <linux/interrupt.h>
#include <linux/io.h>
38
#include <linux/io-64-nonatomic-hi-lo.h>
39
#include <linux/iommu.h>
40
#include <linux/iopoll.h>
41 42
#include <linux/module.h>
#include <linux/of.h>
43
#include <linux/of_address.h>
44
#include <linux/of_device.h>
45
#include <linux/of_iommu.h>
46
#include <linux/pci.h>
47 48 49 50 51 52
#include <linux/platform_device.h>
#include <linux/slab.h>
#include <linux/spinlock.h>

#include <linux/amba/bus.h>

53
#include "io-pgtable.h"
54 55 56 57 58 59

/* Maximum number of context banks per SMMU */
#define ARM_SMMU_MAX_CBS		128

/* SMMU global address space */
#define ARM_SMMU_GR0(smmu)		((smmu)->base)
60
#define ARM_SMMU_GR1(smmu)		((smmu)->base + (1 << (smmu)->pgshift))
61

62 63 64 65 66 67 68 69 70 71
/*
 * SMMU global address space with conditional offset to access secure
 * aliases of non-secure registers (e.g. nsCR0: 0x400, nsGFSR: 0x448,
 * nsGFSYNR0: 0x450)
 */
#define ARM_SMMU_GR0_NS(smmu)						\
	((smmu)->base +							\
		((smmu->options & ARM_SMMU_OPT_SECURE_CFG_ACCESS)	\
			? 0x400 : 0))

72 73 74 75 76
/*
 * Some 64-bit registers only make sense to write atomically, but in such
 * cases all the data relevant to AArch32 formats lies within the lower word,
 * therefore this actually makes more sense than it might first appear.
 */
77
#ifdef CONFIG_64BIT
78
#define smmu_write_atomic_lq		writeq_relaxed
79
#else
80
#define smmu_write_atomic_lq		writel_relaxed
81 82
#endif

83 84 85 86 87 88 89 90 91 92 93
/* Configuration registers */
#define ARM_SMMU_GR0_sCR0		0x0
#define sCR0_CLIENTPD			(1 << 0)
#define sCR0_GFRE			(1 << 1)
#define sCR0_GFIE			(1 << 2)
#define sCR0_GCFGFRE			(1 << 4)
#define sCR0_GCFGFIE			(1 << 5)
#define sCR0_USFCFG			(1 << 10)
#define sCR0_VMIDPNE			(1 << 11)
#define sCR0_PTM			(1 << 12)
#define sCR0_FB				(1 << 13)
94
#define sCR0_VMID16EN			(1 << 31)
95 96 97
#define sCR0_BSU_SHIFT			14
#define sCR0_BSU_MASK			0x3

98 99 100
/* Auxiliary Configuration register */
#define ARM_SMMU_GR0_sACR		0x10

101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118
/* Identification registers */
#define ARM_SMMU_GR0_ID0		0x20
#define ARM_SMMU_GR0_ID1		0x24
#define ARM_SMMU_GR0_ID2		0x28
#define ARM_SMMU_GR0_ID3		0x2c
#define ARM_SMMU_GR0_ID4		0x30
#define ARM_SMMU_GR0_ID5		0x34
#define ARM_SMMU_GR0_ID6		0x38
#define ARM_SMMU_GR0_ID7		0x3c
#define ARM_SMMU_GR0_sGFSR		0x48
#define ARM_SMMU_GR0_sGFSYNR0		0x50
#define ARM_SMMU_GR0_sGFSYNR1		0x54
#define ARM_SMMU_GR0_sGFSYNR2		0x58

#define ID0_S1TS			(1 << 30)
#define ID0_S2TS			(1 << 29)
#define ID0_NTS				(1 << 28)
#define ID0_SMS				(1 << 27)
119
#define ID0_ATOSNS			(1 << 26)
120 121
#define ID0_PTFS_NO_AARCH32		(1 << 25)
#define ID0_PTFS_NO_AARCH32S		(1 << 24)
122 123 124
#define ID0_CTTW			(1 << 14)
#define ID0_NUMIRPT_SHIFT		16
#define ID0_NUMIRPT_MASK		0xff
125 126
#define ID0_NUMSIDB_SHIFT		9
#define ID0_NUMSIDB_MASK		0xf
127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146
#define ID0_NUMSMRG_SHIFT		0
#define ID0_NUMSMRG_MASK		0xff

#define ID1_PAGESIZE			(1 << 31)
#define ID1_NUMPAGENDXB_SHIFT		28
#define ID1_NUMPAGENDXB_MASK		7
#define ID1_NUMS2CB_SHIFT		16
#define ID1_NUMS2CB_MASK		0xff
#define ID1_NUMCB_SHIFT			0
#define ID1_NUMCB_MASK			0xff

#define ID2_OAS_SHIFT			4
#define ID2_OAS_MASK			0xf
#define ID2_IAS_SHIFT			0
#define ID2_IAS_MASK			0xf
#define ID2_UBS_SHIFT			8
#define ID2_UBS_MASK			0xf
#define ID2_PTFS_4K			(1 << 12)
#define ID2_PTFS_16K			(1 << 13)
#define ID2_PTFS_64K			(1 << 14)
147
#define ID2_VMID16			(1 << 15)
148

149 150
#define ID7_MAJOR_SHIFT			4
#define ID7_MAJOR_MASK			0xf
151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171

/* Global TLB invalidation */
#define ARM_SMMU_GR0_TLBIVMID		0x64
#define ARM_SMMU_GR0_TLBIALLNSNH	0x68
#define ARM_SMMU_GR0_TLBIALLH		0x6c
#define ARM_SMMU_GR0_sTLBGSYNC		0x70
#define ARM_SMMU_GR0_sTLBGSTATUS	0x74
#define sTLBGSTATUS_GSACTIVE		(1 << 0)
#define TLB_LOOP_TIMEOUT		1000000	/* 1s! */

/* Stream mapping registers */
#define ARM_SMMU_GR0_SMR(n)		(0x800 + ((n) << 2))
#define SMR_VALID			(1 << 31)
#define SMR_MASK_SHIFT			16
#define SMR_ID_SHIFT			0

#define ARM_SMMU_GR0_S2CR(n)		(0xc00 + ((n) << 2))
#define S2CR_CBNDX_SHIFT		0
#define S2CR_CBNDX_MASK			0xff
#define S2CR_TYPE_SHIFT			16
#define S2CR_TYPE_MASK			0x3
172 173 174 175 176
enum arm_smmu_s2cr_type {
	S2CR_TYPE_TRANS,
	S2CR_TYPE_BYPASS,
	S2CR_TYPE_FAULT,
};
177

178
#define S2CR_PRIVCFG_SHIFT		24
179 180 181 182 183 184 185
#define S2CR_PRIVCFG_MASK		0x3
enum arm_smmu_s2cr_privcfg {
	S2CR_PRIVCFG_DEFAULT,
	S2CR_PRIVCFG_DIPAN,
	S2CR_PRIVCFG_UNPRIV,
	S2CR_PRIVCFG_PRIV,
};
186

187 188 189 190
/* Context bank attribute registers */
#define ARM_SMMU_GR1_CBAR(n)		(0x0 + ((n) << 2))
#define CBAR_VMID_SHIFT			0
#define CBAR_VMID_MASK			0xff
191 192 193
#define CBAR_S1_BPSHCFG_SHIFT		8
#define CBAR_S1_BPSHCFG_MASK		3
#define CBAR_S1_BPSHCFG_NSH		3
194 195 196 197 198 199 200 201 202 203 204 205 206 207 208
#define CBAR_S1_MEMATTR_SHIFT		12
#define CBAR_S1_MEMATTR_MASK		0xf
#define CBAR_S1_MEMATTR_WB		0xf
#define CBAR_TYPE_SHIFT			16
#define CBAR_TYPE_MASK			0x3
#define CBAR_TYPE_S2_TRANS		(0 << CBAR_TYPE_SHIFT)
#define CBAR_TYPE_S1_TRANS_S2_BYPASS	(1 << CBAR_TYPE_SHIFT)
#define CBAR_TYPE_S1_TRANS_S2_FAULT	(2 << CBAR_TYPE_SHIFT)
#define CBAR_TYPE_S1_TRANS_S2_TRANS	(3 << CBAR_TYPE_SHIFT)
#define CBAR_IRPTNDX_SHIFT		24
#define CBAR_IRPTNDX_MASK		0xff

#define ARM_SMMU_GR1_CBA2R(n)		(0x800 + ((n) << 2))
#define CBA2R_RW64_32BIT		(0 << 0)
#define CBA2R_RW64_64BIT		(1 << 0)
209 210
#define CBA2R_VMID_SHIFT		16
#define CBA2R_VMID_MASK			0xffff
211 212 213

/* Translation context bank */
#define ARM_SMMU_CB_BASE(smmu)		((smmu)->base + ((smmu)->size >> 1))
214
#define ARM_SMMU_CB(smmu, n)		((n) * (1 << (smmu)->pgshift))
215 216

#define ARM_SMMU_CB_SCTLR		0x0
217
#define ARM_SMMU_CB_ACTLR		0x4
218 219
#define ARM_SMMU_CB_RESUME		0x8
#define ARM_SMMU_CB_TTBCR2		0x10
220 221
#define ARM_SMMU_CB_TTBR0		0x20
#define ARM_SMMU_CB_TTBR1		0x28
222
#define ARM_SMMU_CB_TTBCR		0x30
223
#define ARM_SMMU_CB_CONTEXTIDR		0x34
224
#define ARM_SMMU_CB_S1_MAIR0		0x38
225
#define ARM_SMMU_CB_S1_MAIR1		0x3c
226
#define ARM_SMMU_CB_PAR			0x50
227
#define ARM_SMMU_CB_FSR			0x58
228
#define ARM_SMMU_CB_FAR			0x60
229
#define ARM_SMMU_CB_FSYNR0		0x68
230
#define ARM_SMMU_CB_S1_TLBIVA		0x600
231
#define ARM_SMMU_CB_S1_TLBIASID		0x610
232 233 234
#define ARM_SMMU_CB_S1_TLBIVAL		0x620
#define ARM_SMMU_CB_S2_TLBIIPAS2	0x630
#define ARM_SMMU_CB_S2_TLBIIPAS2L	0x638
235
#define ARM_SMMU_CB_ATS1PR		0x800
236
#define ARM_SMMU_CB_ATSR		0x8f0
237 238 239 240 241 242 243 244 245 246

#define SCTLR_S1_ASIDPNE		(1 << 12)
#define SCTLR_CFCFG			(1 << 7)
#define SCTLR_CFIE			(1 << 6)
#define SCTLR_CFRE			(1 << 5)
#define SCTLR_E				(1 << 4)
#define SCTLR_AFE			(1 << 2)
#define SCTLR_TRE			(1 << 1)
#define SCTLR_M				(1 << 0)

247 248
#define ARM_MMU500_ACTLR_CPRE		(1 << 1)

249 250
#define ARM_MMU500_ACR_CACHE_LOCK	(1 << 26)

251 252 253 254
#define CB_PAR_F			(1 << 0)

#define ATSR_ACTIVE			(1 << 0)

255 256 257 258
#define RESUME_RETRY			(0 << 0)
#define RESUME_TERMINATE		(1 << 0)

#define TTBCR2_SEP_SHIFT		15
259
#define TTBCR2_SEP_UPSTREAM		(0x7 << TTBCR2_SEP_SHIFT)
260

261
#define TTBRn_ASID_SHIFT		48
262 263 264 265 266 267 268 269 270 271 272 273

#define FSR_MULTI			(1 << 31)
#define FSR_SS				(1 << 30)
#define FSR_UUT				(1 << 8)
#define FSR_ASF				(1 << 7)
#define FSR_TLBLKF			(1 << 6)
#define FSR_TLBMCF			(1 << 5)
#define FSR_EF				(1 << 4)
#define FSR_PF				(1 << 3)
#define FSR_AFF				(1 << 2)
#define FSR_TF				(1 << 1)

274 275 276
#define FSR_IGN				(FSR_AFF | FSR_ASF | \
					 FSR_TLBMCF | FSR_TLBLKF)
#define FSR_FAULT			(FSR_MULTI | FSR_SS | FSR_UUT | \
277
					 FSR_EF | FSR_PF | FSR_TF | FSR_IGN)
278 279 280

#define FSYNR0_WNR			(1 << 4)

281
static int force_stage;
282
module_param(force_stage, int, S_IRUGO);
283 284
MODULE_PARM_DESC(force_stage,
	"Force SMMU mappings to be installed at a particular stage of translation. A value of '1' or '2' forces the corresponding stage. All other values are ignored (i.e. no stage is forced). Note that selecting a specific stage will disable support for nested translation.");
285 286 287 288
static bool disable_bypass;
module_param(disable_bypass, bool, S_IRUGO);
MODULE_PARM_DESC(disable_bypass,
	"Disable bypass streams such that incoming transactions from devices that are not attached to an iommu domain will report an abort back to the device and will not be allowed to pass through the SMMU.");
289

290
enum arm_smmu_arch_version {
291 292
	ARM_SMMU_V1,
	ARM_SMMU_V1_64K,
293 294 295
	ARM_SMMU_V2,
};

296 297
enum arm_smmu_implementation {
	GENERIC_SMMU,
298
	ARM_MMU500,
299
	CAVIUM_SMMUV2,
300 301
};

302
struct arm_smmu_s2cr {
303 304
	struct iommu_group		*group;
	int				count;
305 306 307 308 309 310 311 312 313
	enum arm_smmu_s2cr_type		type;
	enum arm_smmu_s2cr_privcfg	privcfg;
	u8				cbndx;
};

#define s2cr_init_val (struct arm_smmu_s2cr){				\
	.type = disable_bypass ? S2CR_TYPE_FAULT : S2CR_TYPE_BYPASS,	\
}

314 315 316
struct arm_smmu_smr {
	u16				mask;
	u16				id;
317
	bool				valid;
318 319
};

320
struct arm_smmu_master_cfg {
321
	struct arm_smmu_device		*smmu;
322
	s16				smendx[];
323
};
324
#define INVALID_SMENDX			-1
325 326 327 328
#define __fwspec_cfg(fw) ((struct arm_smmu_master_cfg *)fw->iommu_priv)
#define fwspec_smmu(fw)  (__fwspec_cfg(fw)->smmu)
#define for_each_cfg_sme(fw, i, idx) \
	for (i = 0; idx = __fwspec_cfg(fw)->smendx[i], i < fw->num_ids; ++i)
329 330 331 332 333 334

struct arm_smmu_device {
	struct device			*dev;

	void __iomem			*base;
	unsigned long			size;
335
	unsigned long			pgshift;
336 337 338 339 340 341

#define ARM_SMMU_FEAT_COHERENT_WALK	(1 << 0)
#define ARM_SMMU_FEAT_STREAM_MATCH	(1 << 1)
#define ARM_SMMU_FEAT_TRANS_S1		(1 << 2)
#define ARM_SMMU_FEAT_TRANS_S2		(1 << 3)
#define ARM_SMMU_FEAT_TRANS_NESTED	(1 << 4)
342
#define ARM_SMMU_FEAT_TRANS_OPS		(1 << 5)
343
#define ARM_SMMU_FEAT_VMID16		(1 << 6)
344 345 346 347 348
#define ARM_SMMU_FEAT_FMT_AARCH64_4K	(1 << 7)
#define ARM_SMMU_FEAT_FMT_AARCH64_16K	(1 << 8)
#define ARM_SMMU_FEAT_FMT_AARCH64_64K	(1 << 9)
#define ARM_SMMU_FEAT_FMT_AARCH32_L	(1 << 10)
#define ARM_SMMU_FEAT_FMT_AARCH32_S	(1 << 11)
349
	u32				features;
350 351 352

#define ARM_SMMU_OPT_SECURE_CFG_ACCESS (1 << 0)
	u32				options;
353
	enum arm_smmu_arch_version	version;
354
	enum arm_smmu_implementation	model;
355 356 357 358 359 360 361

	u32				num_context_banks;
	u32				num_s2_context_banks;
	DECLARE_BITMAP(context_map, ARM_SMMU_MAX_CBS);
	atomic_t			irptndx;

	u32				num_mapping_groups;
362 363
	u16				streamid_mask;
	u16				smr_mask_mask;
364
	struct arm_smmu_smr		*smrs;
365
	struct arm_smmu_s2cr		*s2crs;
366
	struct mutex			stream_map_mutex;
367

368 369 370
	unsigned long			va_size;
	unsigned long			ipa_size;
	unsigned long			pa_size;
371
	unsigned long			pgsize_bitmap;
372 373 374 375 376

	u32				num_global_irqs;
	u32				num_context_irqs;
	unsigned int			*irqs;

377
	u32				cavium_id_base; /* Specific to Cavium */
378 379
};

380 381 382 383 384
enum arm_smmu_context_fmt {
	ARM_SMMU_CTX_FMT_NONE,
	ARM_SMMU_CTX_FMT_AARCH64,
	ARM_SMMU_CTX_FMT_AARCH32_L,
	ARM_SMMU_CTX_FMT_AARCH32_S,
385 386 387 388 389 390
};

struct arm_smmu_cfg {
	u8				cbndx;
	u8				irptndx;
	u32				cbar;
391
	enum arm_smmu_context_fmt	fmt;
392
};
393
#define INVALID_IRPTNDX			0xff
394

395 396
#define ARM_SMMU_CB_ASID(smmu, cfg) ((u16)(smmu)->cavium_id_base + (cfg)->cbndx)
#define ARM_SMMU_CB_VMID(smmu, cfg) ((u16)(smmu)->cavium_id_base + (cfg)->cbndx + 1)
397

398 399 400 401 402 403
enum arm_smmu_domain_stage {
	ARM_SMMU_DOMAIN_S1 = 0,
	ARM_SMMU_DOMAIN_S2,
	ARM_SMMU_DOMAIN_NESTED,
};

404
struct arm_smmu_domain {
405
	struct arm_smmu_device		*smmu;
406 407
	struct io_pgtable_ops		*pgtbl_ops;
	spinlock_t			pgtbl_lock;
408
	struct arm_smmu_cfg		cfg;
409
	enum arm_smmu_domain_stage	stage;
410
	struct mutex			init_mutex; /* Protects smmu pointer */
411
	struct iommu_domain		domain;
412 413
};

414 415 416 417 418
struct arm_smmu_option_prop {
	u32 opt;
	const char *prop;
};

419 420
static atomic_t cavium_smmu_context_count = ATOMIC_INIT(0);

421 422
static bool using_legacy_binding, using_generic_binding;

423
static struct arm_smmu_option_prop arm_smmu_options[] = {
424 425 426 427
	{ ARM_SMMU_OPT_SECURE_CFG_ACCESS, "calxeda,smmu-secure-config-access" },
	{ 0, NULL},
};

428 429 430 431 432
static struct arm_smmu_domain *to_smmu_domain(struct iommu_domain *dom)
{
	return container_of(dom, struct arm_smmu_domain, domain);
}

433 434 435
static void parse_driver_options(struct arm_smmu_device *smmu)
{
	int i = 0;
436

437 438 439 440 441 442 443 444 445 446
	do {
		if (of_property_read_bool(smmu->dev->of_node,
						arm_smmu_options[i].prop)) {
			smmu->options |= arm_smmu_options[i].opt;
			dev_notice(smmu->dev, "option %s\n",
				arm_smmu_options[i].prop);
		}
	} while (arm_smmu_options[++i].opt);
}

447
static struct device_node *dev_get_dev_node(struct device *dev)
448 449 450
{
	if (dev_is_pci(dev)) {
		struct pci_bus *bus = to_pci_dev(dev)->bus;
451

452 453
		while (!pci_is_root_bus(bus))
			bus = bus->parent;
454
		return of_node_get(bus->bridge->parent->of_node);
455 456
	}

457
	return of_node_get(dev->of_node);
458 459
}

460
static int __arm_smmu_get_pci_sid(struct pci_dev *pdev, u16 alias, void *data)
461
{
462 463
	*((__be32 *)data) = cpu_to_be32(alias);
	return 0; /* Continue walking */
464 465
}

466
static int __find_legacy_master_phandle(struct device *dev, void *data)
467
{
468 469 470 471 472 473 474 475 476 477 478 479
	struct of_phandle_iterator *it = *(void **)data;
	struct device_node *np = it->node;
	int err;

	of_for_each_phandle(it, err, dev->of_node, "mmu-masters",
			    "#stream-id-cells", 0)
		if (it->node == np) {
			*(void **)data = dev;
			return 1;
		}
	it->node = np;
	return err == -ENOENT ? 0 : err;
480 481
}

482
static struct platform_driver arm_smmu_driver;
483
static struct iommu_ops arm_smmu_ops;
484

485 486
static int arm_smmu_register_legacy_master(struct device *dev,
					   struct arm_smmu_device **smmu)
487
{
488
	struct device *smmu_dev;
489 490 491
	struct device_node *np;
	struct of_phandle_iterator it;
	void *data = &it;
492
	u32 *sids;
493 494
	__be32 pci_sid;
	int err;
495

496 497 498 499 500
	np = dev_get_dev_node(dev);
	if (!np || !of_find_property(np, "#stream-id-cells", NULL)) {
		of_node_put(np);
		return -ENODEV;
	}
501

502
	it.node = np;
503 504
	err = driver_for_each_device(&arm_smmu_driver.driver, NULL, &data,
				     __find_legacy_master_phandle);
505
	smmu_dev = data;
506 507 508 509 510
	of_node_put(np);
	if (err == 0)
		return -ENODEV;
	if (err < 0)
		return err;
511

512 513 514 515 516 517 518
	if (dev_is_pci(dev)) {
		/* "mmu-masters" assumes Stream ID == Requester ID */
		pci_for_each_dma_alias(to_pci_dev(dev), __arm_smmu_get_pci_sid,
				       &pci_sid);
		it.cur = &pci_sid;
		it.cur_count = 1;
	}
519

520 521 522 523
	err = iommu_fwspec_init(dev, &smmu_dev->of_node->fwnode,
				&arm_smmu_ops);
	if (err)
		return err;
524

525 526 527
	sids = kcalloc(it.cur_count, sizeof(*sids), GFP_KERNEL);
	if (!sids)
		return -ENOMEM;
528

529 530 531 532 533
	*smmu = dev_get_drvdata(smmu_dev);
	of_phandle_iterator_args(&it, sids, it.cur_count);
	err = iommu_fwspec_add_ids(dev, sids, it.cur_count);
	kfree(sids);
	return err;
534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554
}

static int __arm_smmu_alloc_bitmap(unsigned long *map, int start, int end)
{
	int idx;

	do {
		idx = find_next_zero_bit(map, end, start);
		if (idx == end)
			return -ENOSPC;
	} while (test_and_set_bit(idx, map));

	return idx;
}

static void __arm_smmu_free_bitmap(unsigned long *map, int idx)
{
	clear_bit(idx, map);
}

/* Wait for any pending TLB invalidations to complete */
555
static void __arm_smmu_tlb_sync(struct arm_smmu_device *smmu)
556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572
{
	int count = 0;
	void __iomem *gr0_base = ARM_SMMU_GR0(smmu);

	writel_relaxed(0, gr0_base + ARM_SMMU_GR0_sTLBGSYNC);
	while (readl_relaxed(gr0_base + ARM_SMMU_GR0_sTLBGSTATUS)
	       & sTLBGSTATUS_GSACTIVE) {
		cpu_relax();
		if (++count == TLB_LOOP_TIMEOUT) {
			dev_err_ratelimited(smmu->dev,
			"TLB sync timed out -- SMMU may be deadlocked\n");
			return;
		}
		udelay(1);
	}
}

573 574 575 576 577 578 579
static void arm_smmu_tlb_sync(void *cookie)
{
	struct arm_smmu_domain *smmu_domain = cookie;
	__arm_smmu_tlb_sync(smmu_domain->smmu);
}

static void arm_smmu_tlb_inv_context(void *cookie)
580
{
581
	struct arm_smmu_domain *smmu_domain = cookie;
582 583
	struct arm_smmu_cfg *cfg = &smmu_domain->cfg;
	struct arm_smmu_device *smmu = smmu_domain->smmu;
584
	bool stage1 = cfg->cbar != CBAR_TYPE_S2_TRANS;
585
	void __iomem *base;
586 587 588

	if (stage1) {
		base = ARM_SMMU_CB_BASE(smmu) + ARM_SMMU_CB(smmu, cfg->cbndx);
589
		writel_relaxed(ARM_SMMU_CB_ASID(smmu, cfg),
590
			       base + ARM_SMMU_CB_S1_TLBIASID);
591 592
	} else {
		base = ARM_SMMU_GR0(smmu);
593
		writel_relaxed(ARM_SMMU_CB_VMID(smmu, cfg),
594
			       base + ARM_SMMU_GR0_TLBIVMID);
595 596
	}

597 598 599 600
	__arm_smmu_tlb_sync(smmu);
}

static void arm_smmu_tlb_inv_range_nosync(unsigned long iova, size_t size,
601
					  size_t granule, bool leaf, void *cookie)
602 603 604 605 606 607 608 609 610 611 612
{
	struct arm_smmu_domain *smmu_domain = cookie;
	struct arm_smmu_cfg *cfg = &smmu_domain->cfg;
	struct arm_smmu_device *smmu = smmu_domain->smmu;
	bool stage1 = cfg->cbar != CBAR_TYPE_S2_TRANS;
	void __iomem *reg;

	if (stage1) {
		reg = ARM_SMMU_CB_BASE(smmu) + ARM_SMMU_CB(smmu, cfg->cbndx);
		reg += leaf ? ARM_SMMU_CB_S1_TLBIVAL : ARM_SMMU_CB_S1_TLBIVA;

613
		if (cfg->fmt != ARM_SMMU_CTX_FMT_AARCH64) {
614
			iova &= ~12UL;
615
			iova |= ARM_SMMU_CB_ASID(smmu, cfg);
616 617 618 619
			do {
				writel_relaxed(iova, reg);
				iova += granule;
			} while (size -= granule);
620 621
		} else {
			iova >>= 12;
622
			iova |= (u64)ARM_SMMU_CB_ASID(smmu, cfg) << 48;
623 624 625 626
			do {
				writeq_relaxed(iova, reg);
				iova += granule >> 12;
			} while (size -= granule);
627 628 629 630 631
		}
	} else if (smmu->version == ARM_SMMU_V2) {
		reg = ARM_SMMU_CB_BASE(smmu) + ARM_SMMU_CB(smmu, cfg->cbndx);
		reg += leaf ? ARM_SMMU_CB_S2_TLBIIPAS2L :
			      ARM_SMMU_CB_S2_TLBIIPAS2;
632 633
		iova >>= 12;
		do {
634
			smmu_write_atomic_lq(iova, reg);
635 636
			iova += granule >> 12;
		} while (size -= granule);
637 638
	} else {
		reg = ARM_SMMU_GR0(smmu) + ARM_SMMU_GR0_TLBIVMID;
639
		writel_relaxed(ARM_SMMU_CB_VMID(smmu, cfg), reg);
640 641 642 643 644 645 646 647 648
	}
}

static struct iommu_gather_ops arm_smmu_gather_ops = {
	.tlb_flush_all	= arm_smmu_tlb_inv_context,
	.tlb_add_flush	= arm_smmu_tlb_inv_range_nosync,
	.tlb_sync	= arm_smmu_tlb_sync,
};

649 650
static irqreturn_t arm_smmu_context_fault(int irq, void *dev)
{
651
	u32 fsr, fsynr;
652 653
	unsigned long iova;
	struct iommu_domain *domain = dev;
654
	struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
655 656
	struct arm_smmu_cfg *cfg = &smmu_domain->cfg;
	struct arm_smmu_device *smmu = smmu_domain->smmu;
657 658
	void __iomem *cb_base;

659
	cb_base = ARM_SMMU_CB_BASE(smmu) + ARM_SMMU_CB(smmu, cfg->cbndx);
660 661 662 663 664 665
	fsr = readl_relaxed(cb_base + ARM_SMMU_CB_FSR);

	if (!(fsr & FSR_FAULT))
		return IRQ_NONE;

	fsynr = readl_relaxed(cb_base + ARM_SMMU_CB_FSYNR0);
666
	iova = readq_relaxed(cb_base + ARM_SMMU_CB_FAR);
667

668 669 670
	dev_err_ratelimited(smmu->dev,
	"Unhandled context fault: fsr=0x%x, iova=0x%08lx, fsynr=0x%x, cb=%d\n",
			    fsr, iova, fsynr, cfg->cbndx);
671

672 673
	writel(fsr, cb_base + ARM_SMMU_CB_FSR);
	return IRQ_HANDLED;
674 675 676 677 678 679
}

static irqreturn_t arm_smmu_global_fault(int irq, void *dev)
{
	u32 gfsr, gfsynr0, gfsynr1, gfsynr2;
	struct arm_smmu_device *smmu = dev;
680
	void __iomem *gr0_base = ARM_SMMU_GR0_NS(smmu);
681 682 683 684 685 686

	gfsr = readl_relaxed(gr0_base + ARM_SMMU_GR0_sGFSR);
	gfsynr0 = readl_relaxed(gr0_base + ARM_SMMU_GR0_sGFSYNR0);
	gfsynr1 = readl_relaxed(gr0_base + ARM_SMMU_GR0_sGFSYNR1);
	gfsynr2 = readl_relaxed(gr0_base + ARM_SMMU_GR0_sGFSYNR2);

687 688 689
	if (!gfsr)
		return IRQ_NONE;

690 691 692 693 694 695 696
	dev_err_ratelimited(smmu->dev,
		"Unexpected global fault, this could be serious\n");
	dev_err_ratelimited(smmu->dev,
		"\tGFSR 0x%08x, GFSYNR0 0x%08x, GFSYNR1 0x%08x, GFSYNR2 0x%08x\n",
		gfsr, gfsynr0, gfsynr1, gfsynr2);

	writel(gfsr, gr0_base + ARM_SMMU_GR0_sGFSR);
697
	return IRQ_HANDLED;
698 699
}

700 701
static void arm_smmu_init_context_bank(struct arm_smmu_domain *smmu_domain,
				       struct io_pgtable_cfg *pgtbl_cfg)
702
{
703
	u32 reg, reg2;
704
	u64 reg64;
705
	bool stage1;
706 707
	struct arm_smmu_cfg *cfg = &smmu_domain->cfg;
	struct arm_smmu_device *smmu = smmu_domain->smmu;
708
	void __iomem *cb_base, *gr1_base;
709 710

	gr1_base = ARM_SMMU_GR1(smmu);
711 712
	stage1 = cfg->cbar != CBAR_TYPE_S2_TRANS;
	cb_base = ARM_SMMU_CB_BASE(smmu) + ARM_SMMU_CB(smmu, cfg->cbndx);
713

714
	if (smmu->version > ARM_SMMU_V1) {
715 716 717 718
		if (cfg->fmt == ARM_SMMU_CTX_FMT_AARCH64)
			reg = CBA2R_RW64_64BIT;
		else
			reg = CBA2R_RW64_32BIT;
719 720
		/* 16-bit VMIDs live in CBA2R */
		if (smmu->features & ARM_SMMU_FEAT_VMID16)
721
			reg |= ARM_SMMU_CB_VMID(smmu, cfg) << CBA2R_VMID_SHIFT;
722

723 724 725
		writel_relaxed(reg, gr1_base + ARM_SMMU_GR1_CBA2R(cfg->cbndx));
	}

726
	/* CBAR */
727
	reg = cfg->cbar;
728
	if (smmu->version < ARM_SMMU_V2)
729
		reg |= cfg->irptndx << CBAR_IRPTNDX_SHIFT;
730

731 732 733 734 735 736 737
	/*
	 * Use the weakest shareability/memory types, so they are
	 * overridden by the ttbcr/pte.
	 */
	if (stage1) {
		reg |= (CBAR_S1_BPSHCFG_NSH << CBAR_S1_BPSHCFG_SHIFT) |
			(CBAR_S1_MEMATTR_WB << CBAR_S1_MEMATTR_SHIFT);
738 739
	} else if (!(smmu->features & ARM_SMMU_FEAT_VMID16)) {
		/* 8-bit VMIDs live in CBAR */
740
		reg |= ARM_SMMU_CB_VMID(smmu, cfg) << CBAR_VMID_SHIFT;
741
	}
742
	writel_relaxed(reg, gr1_base + ARM_SMMU_GR1_CBAR(cfg->cbndx));
743

744 745
	/* TTBRs */
	if (stage1) {
746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761
		u16 asid = ARM_SMMU_CB_ASID(smmu, cfg);

		if (cfg->fmt == ARM_SMMU_CTX_FMT_AARCH32_S) {
			reg = pgtbl_cfg->arm_v7s_cfg.ttbr[0];
			writel_relaxed(reg, cb_base + ARM_SMMU_CB_TTBR0);
			reg = pgtbl_cfg->arm_v7s_cfg.ttbr[1];
			writel_relaxed(reg, cb_base + ARM_SMMU_CB_TTBR1);
			writel_relaxed(asid, cb_base + ARM_SMMU_CB_CONTEXTIDR);
		} else {
			reg64 = pgtbl_cfg->arm_lpae_s1_cfg.ttbr[0];
			reg64 |= (u64)asid << TTBRn_ASID_SHIFT;
			writeq_relaxed(reg64, cb_base + ARM_SMMU_CB_TTBR0);
			reg64 = pgtbl_cfg->arm_lpae_s1_cfg.ttbr[1];
			reg64 |= (u64)asid << TTBRn_ASID_SHIFT;
			writeq_relaxed(reg64, cb_base + ARM_SMMU_CB_TTBR1);
		}
762
	} else {
763
		reg64 = pgtbl_cfg->arm_lpae_s2_cfg.vttbr;
764
		writeq_relaxed(reg64, cb_base + ARM_SMMU_CB_TTBR0);
765
	}
766

767 768
	/* TTBCR */
	if (stage1) {
769 770 771 772 773 774 775
		if (cfg->fmt == ARM_SMMU_CTX_FMT_AARCH32_S) {
			reg = pgtbl_cfg->arm_v7s_cfg.tcr;
			reg2 = 0;
		} else {
			reg = pgtbl_cfg->arm_lpae_s1_cfg.tcr;
			reg2 = pgtbl_cfg->arm_lpae_s1_cfg.tcr >> 32;
			reg2 |= TTBCR2_SEP_UPSTREAM;
776
		}
777 778
		if (smmu->version > ARM_SMMU_V1)
			writel_relaxed(reg2, cb_base + ARM_SMMU_CB_TTBCR2);
779
	} else {
780
		reg = pgtbl_cfg->arm_lpae_s2_cfg.vtcr;
781
	}
782
	writel_relaxed(reg, cb_base + ARM_SMMU_CB_TTBCR);
783

784
	/* MAIRs (stage-1 only) */
785
	if (stage1) {
786 787 788 789 790 791 792
		if (cfg->fmt == ARM_SMMU_CTX_FMT_AARCH32_S) {
			reg = pgtbl_cfg->arm_v7s_cfg.prrr;
			reg2 = pgtbl_cfg->arm_v7s_cfg.nmrr;
		} else {
			reg = pgtbl_cfg->arm_lpae_s1_cfg.mair[0];
			reg2 = pgtbl_cfg->arm_lpae_s1_cfg.mair[1];
		}
793
		writel_relaxed(reg, cb_base + ARM_SMMU_CB_S1_MAIR0);
794
		writel_relaxed(reg2, cb_base + ARM_SMMU_CB_S1_MAIR1);
795 796 797
	}

	/* SCTLR */
798
	reg = SCTLR_CFIE | SCTLR_CFRE | SCTLR_AFE | SCTLR_TRE | SCTLR_M;
799 800 801 802 803
	if (stage1)
		reg |= SCTLR_S1_ASIDPNE;
#ifdef __BIG_ENDIAN
	reg |= SCTLR_E;
#endif
804
	writel_relaxed(reg, cb_base + ARM_SMMU_CB_SCTLR);
805 806 807
}

static int arm_smmu_init_domain_context(struct iommu_domain *domain,
808
					struct arm_smmu_device *smmu)
809
{
810
	int irq, start, ret = 0;
811 812 813 814
	unsigned long ias, oas;
	struct io_pgtable_ops *pgtbl_ops;
	struct io_pgtable_cfg pgtbl_cfg;
	enum io_pgtable_fmt fmt;
815
	struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
816
	struct arm_smmu_cfg *cfg = &smmu_domain->cfg;
817

818
	mutex_lock(&smmu_domain->init_mutex);
819 820 821
	if (smmu_domain->smmu)
		goto out_unlock;

822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844
	/*
	 * Mapping the requested stage onto what we support is surprisingly
	 * complicated, mainly because the spec allows S1+S2 SMMUs without
	 * support for nested translation. That means we end up with the
	 * following table:
	 *
	 * Requested        Supported        Actual
	 *     S1               N              S1
	 *     S1             S1+S2            S1
	 *     S1               S2             S2
	 *     S1               S1             S1
	 *     N                N              N
	 *     N              S1+S2            S2
	 *     N                S2             S2
	 *     N                S1             S1
	 *
	 * Note that you can't actually request stage-2 mappings.
	 */
	if (!(smmu->features & ARM_SMMU_FEAT_TRANS_S1))
		smmu_domain->stage = ARM_SMMU_DOMAIN_S2;
	if (!(smmu->features & ARM_SMMU_FEAT_TRANS_S2))
		smmu_domain->stage = ARM_SMMU_DOMAIN_S1;

845 846 847 848 849 850 851 852 853 854
	/*
	 * Choosing a suitable context format is even more fiddly. Until we
	 * grow some way for the caller to express a preference, and/or move
	 * the decision into the io-pgtable code where it arguably belongs,
	 * just aim for the closest thing to the rest of the system, and hope
	 * that the hardware isn't esoteric enough that we can't assume AArch64
	 * support to be a superset of AArch32 support...
	 */
	if (smmu->features & ARM_SMMU_FEAT_FMT_AARCH32_L)
		cfg->fmt = ARM_SMMU_CTX_FMT_AARCH32_L;
855 856 857 858 859
	if (IS_ENABLED(CONFIG_IOMMU_IO_PGTABLE_ARMV7S) &&
	    !IS_ENABLED(CONFIG_64BIT) && !IS_ENABLED(CONFIG_ARM_LPAE) &&
	    (smmu->features & ARM_SMMU_FEAT_FMT_AARCH32_S) &&
	    (smmu_domain->stage == ARM_SMMU_DOMAIN_S1))
		cfg->fmt = ARM_SMMU_CTX_FMT_AARCH32_S;
860 861 862 863 864 865 866 867 868 869 870
	if ((IS_ENABLED(CONFIG_64BIT) || cfg->fmt == ARM_SMMU_CTX_FMT_NONE) &&
	    (smmu->features & (ARM_SMMU_FEAT_FMT_AARCH64_64K |
			       ARM_SMMU_FEAT_FMT_AARCH64_16K |
			       ARM_SMMU_FEAT_FMT_AARCH64_4K)))
		cfg->fmt = ARM_SMMU_CTX_FMT_AARCH64;

	if (cfg->fmt == ARM_SMMU_CTX_FMT_NONE) {
		ret = -EINVAL;
		goto out_unlock;
	}

871 872 873 874
	switch (smmu_domain->stage) {
	case ARM_SMMU_DOMAIN_S1:
		cfg->cbar = CBAR_TYPE_S1_TRANS_S2_BYPASS;
		start = smmu->num_s2_context_banks;
875 876
		ias = smmu->va_size;
		oas = smmu->ipa_size;
877
		if (cfg->fmt == ARM_SMMU_CTX_FMT_AARCH64) {
878
			fmt = ARM_64_LPAE_S1;
879
		} else if (cfg->fmt == ARM_SMMU_CTX_FMT_AARCH32_L) {
880
			fmt = ARM_32_LPAE_S1;
881 882
			ias = min(ias, 32UL);
			oas = min(oas, 40UL);
883 884 885 886
		} else {
			fmt = ARM_V7S;
			ias = min(ias, 32UL);
			oas = min(oas, 32UL);
887
		}
888 889
		break;
	case ARM_SMMU_DOMAIN_NESTED:
890 891 892 893
		/*
		 * We will likely want to change this if/when KVM gets
		 * involved.
		 */
894
	case ARM_SMMU_DOMAIN_S2:
895 896
		cfg->cbar = CBAR_TYPE_S2_TRANS;
		start = 0;
897 898
		ias = smmu->ipa_size;
		oas = smmu->pa_size;
899
		if (cfg->fmt == ARM_SMMU_CTX_FMT_AARCH64) {
900
			fmt = ARM_64_LPAE_S2;
901
		} else {
902
			fmt = ARM_32_LPAE_S2;
903 904 905
			ias = min(ias, 40UL);
			oas = min(oas, 40UL);
		}
906 907 908 909
		break;
	default:
		ret = -EINVAL;
		goto out_unlock;
910 911 912 913
	}

	ret = __arm_smmu_alloc_bitmap(smmu->context_map, start,
				      smmu->num_context_banks);
914
	if (ret < 0)
915
		goto out_unlock;
916

917
	cfg->cbndx = ret;
918
	if (smmu->version < ARM_SMMU_V2) {
919 920
		cfg->irptndx = atomic_inc_return(&smmu->irptndx);
		cfg->irptndx %= smmu->num_context_irqs;
921
	} else {
922
		cfg->irptndx = cfg->cbndx;
923 924
	}

925
	pgtbl_cfg = (struct io_pgtable_cfg) {
926
		.pgsize_bitmap	= smmu->pgsize_bitmap,
927 928 929
		.ias		= ias,
		.oas		= oas,
		.tlb		= &arm_smmu_gather_ops,
930
		.iommu_dev	= smmu->dev,
931 932 933 934 935 936 937 938 939
	};

	smmu_domain->smmu = smmu;
	pgtbl_ops = alloc_io_pgtable_ops(fmt, &pgtbl_cfg, smmu_domain);
	if (!pgtbl_ops) {
		ret = -ENOMEM;
		goto out_clear_smmu;
	}

940 941
	/* Update the domain's page sizes to reflect the page table format */
	domain->pgsize_bitmap = pgtbl_cfg.pgsize_bitmap;
942 943
	domain->geometry.aperture_end = (1UL << ias) - 1;
	domain->geometry.force_aperture = true;
944

945 946 947 948 949 950 951
	/* Initialise the context bank with our page table cfg */
	arm_smmu_init_context_bank(smmu_domain, &pgtbl_cfg);

	/*
	 * Request context fault interrupt. Do this last to avoid the
	 * handler seeing a half-initialised domain state.
	 */
952
	irq = smmu->irqs[smmu->num_global_irqs + cfg->irptndx];
953 954
	ret = devm_request_irq(smmu->dev, irq, arm_smmu_context_fault,
			       IRQF_SHARED, "arm-smmu-context-fault", domain);
955
	if (ret < 0) {
956
		dev_err(smmu->dev, "failed to request context IRQ %d (%u)\n",
957 958
			cfg->irptndx, irq);
		cfg->irptndx = INVALID_IRPTNDX;
959 960
	}

961 962 963 964
	mutex_unlock(&smmu_domain->init_mutex);

	/* Publish page table ops for map/unmap */
	smmu_domain->pgtbl_ops = pgtbl_ops;
965
	return 0;
966

967 968
out_clear_smmu:
	smmu_domain->smmu = NULL;
969
out_unlock:
970
	mutex_unlock(&smmu_domain->init_mutex);
971 972 973 974 975
	return ret;
}

static void arm_smmu_destroy_domain_context(struct iommu_domain *domain)
{
976
	struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
977 978
	struct arm_smmu_device *smmu = smmu_domain->smmu;
	struct arm_smmu_cfg *cfg = &smmu_domain->cfg;
979
	void __iomem *cb_base;
980 981
	int irq;

982
	if (!smmu)
983 984
		return;

985 986 987 988
	/*
	 * Disable the context bank and free the page tables before freeing
	 * it.
	 */
989
	cb_base = ARM_SMMU_CB_BASE(smmu) + ARM_SMMU_CB(smmu, cfg->cbndx);
990 991
	writel_relaxed(0, cb_base + ARM_SMMU_CB_SCTLR);

992 993
	if (cfg->irptndx != INVALID_IRPTNDX) {
		irq = smmu->irqs[smmu->num_global_irqs + cfg->irptndx];
994
		devm_free_irq(smmu->dev, irq, domain);
995 996
	}

997
	free_io_pgtable_ops(smmu_domain->pgtbl_ops);
998
	__arm_smmu_free_bitmap(smmu->context_map, cfg->cbndx);
999 1000
}

1001
static struct iommu_domain *arm_smmu_domain_alloc(unsigned type)
1002 1003 1004
{
	struct arm_smmu_domain *smmu_domain;

1005
	if (type != IOMMU_DOMAIN_UNMANAGED && type != IOMMU_DOMAIN_DMA)
1006
		return NULL;
1007 1008 1009 1010 1011 1012 1013
	/*
	 * Allocate the domain and initialise some of its data structures.
	 * We can't really do anything meaningful until we've added a
	 * master.
	 */
	smmu_domain = kzalloc(sizeof(*smmu_domain), GFP_KERNEL);
	if (!smmu_domain)
1014
		return NULL;
1015

1016 1017
	if (type == IOMMU_DOMAIN_DMA && (using_legacy_binding ||
	    iommu_get_dma_cookie(&smmu_domain->domain))) {
1018 1019 1020 1021
		kfree(smmu_domain);
		return NULL;
	}

1022 1023
	mutex_init(&smmu_domain->init_mutex);
	spin_lock_init(&smmu_domain->pgtbl_lock);
1024 1025

	return &smmu_domain->domain;
1026 1027
}

1028
static void arm_smmu_domain_free(struct iommu_domain *domain)
1029
{
1030
	struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1031 1032 1033 1034 1035

	/*
	 * Free the domain resources. We assume that all devices have
	 * already been detached.
	 */
1036
	iommu_put_dma_cookie(domain);
1037 1038 1039 1040
	arm_smmu_destroy_domain_context(domain);
	kfree(smmu_domain);
}

1041 1042 1043
static void arm_smmu_write_smr(struct arm_smmu_device *smmu, int idx)
{
	struct arm_smmu_smr *smr = smmu->smrs + idx;
1044
	u32 reg = smr->id << SMR_ID_SHIFT | smr->mask << SMR_MASK_SHIFT;
1045 1046 1047 1048 1049 1050

	if (smr->valid)
		reg |= SMR_VALID;
	writel_relaxed(reg, ARM_SMMU_GR0(smmu) + ARM_SMMU_GR0_SMR(idx));
}

1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067
static void arm_smmu_write_s2cr(struct arm_smmu_device *smmu, int idx)
{
	struct arm_smmu_s2cr *s2cr = smmu->s2crs + idx;
	u32 reg = (s2cr->type & S2CR_TYPE_MASK) << S2CR_TYPE_SHIFT |
		  (s2cr->cbndx & S2CR_CBNDX_MASK) << S2CR_CBNDX_SHIFT |
		  (s2cr->privcfg & S2CR_PRIVCFG_MASK) << S2CR_PRIVCFG_SHIFT;

	writel_relaxed(reg, ARM_SMMU_GR0(smmu) + ARM_SMMU_GR0_S2CR(idx));
}

static void arm_smmu_write_sme(struct arm_smmu_device *smmu, int idx)
{
	arm_smmu_write_s2cr(smmu, idx);
	if (smmu->smrs)
		arm_smmu_write_smr(smmu, idx);
}

1068
static int arm_smmu_find_sme(struct arm_smmu_device *smmu, u16 id, u16 mask)
1069 1070
{
	struct arm_smmu_smr *smrs = smmu->smrs;
1071
	int i, free_idx = -ENOSPC;
1072

1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085
	/* Stream indexing is blissfully easy */
	if (!smrs)
		return id;

	/* Validating SMRs is... less so */
	for (i = 0; i < smmu->num_mapping_groups; ++i) {
		if (!smrs[i].valid) {
			/*
			 * Note the first free entry we come across, which
			 * we'll claim in the end if nothing else matches.
			 */
			if (free_idx < 0)
				free_idx = i;
1086 1087
			continue;
		}
1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105
		/*
		 * If the new entry is _entirely_ matched by an existing entry,
		 * then reuse that, with the guarantee that there also cannot
		 * be any subsequent conflicting entries. In normal use we'd
		 * expect simply identical entries for this case, but there's
		 * no harm in accommodating the generalisation.
		 */
		if ((mask & smrs[i].mask) == mask &&
		    !((id ^ smrs[i].id) & ~smrs[i].mask))
			return i;
		/*
		 * If the new entry has any other overlap with an existing one,
		 * though, then there always exists at least one stream ID
		 * which would cause a conflict, and we can't allow that risk.
		 */
		if (!((id ^ smrs[i].id) & ~(smrs[i].mask | mask)))
			return -EINVAL;
	}
1106

1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123
	return free_idx;
}

static bool arm_smmu_free_sme(struct arm_smmu_device *smmu, int idx)
{
	if (--smmu->s2crs[idx].count)
		return false;

	smmu->s2crs[idx] = s2cr_init_val;
	if (smmu->smrs)
		smmu->smrs[idx].valid = false;

	return true;
}

static int arm_smmu_master_alloc_smes(struct device *dev)
{
1124 1125
	struct iommu_fwspec *fwspec = dev->iommu_fwspec;
	struct arm_smmu_master_cfg *cfg = fwspec->iommu_priv;
1126 1127 1128 1129 1130 1131 1132
	struct arm_smmu_device *smmu = cfg->smmu;
	struct arm_smmu_smr *smrs = smmu->smrs;
	struct iommu_group *group;
	int i, idx, ret;

	mutex_lock(&smmu->stream_map_mutex);
	/* Figure out a viable stream map entry allocation */
1133
	for_each_cfg_sme(fwspec, i, idx) {
1134 1135 1136
		u16 sid = fwspec->ids[i];
		u16 mask = fwspec->ids[i] >> SMR_MASK_SHIFT;

1137 1138 1139
		if (idx != INVALID_SMENDX) {
			ret = -EEXIST;
			goto out_err;
1140 1141
		}

1142
		ret = arm_smmu_find_sme(smmu, sid, mask);
1143 1144 1145 1146 1147
		if (ret < 0)
			goto out_err;

		idx = ret;
		if (smrs && smmu->s2crs[idx].count == 0) {
1148 1149
			smrs[idx].id = sid;
			smrs[idx].mask = mask;
1150 1151 1152 1153
			smrs[idx].valid = true;
		}
		smmu->s2crs[idx].count++;
		cfg->smendx[i] = (s16)idx;
1154 1155
	}

1156 1157 1158 1159 1160 1161 1162 1163
	group = iommu_group_get_for_dev(dev);
	if (!group)
		group = ERR_PTR(-ENOMEM);
	if (IS_ERR(group)) {
		ret = PTR_ERR(group);
		goto out_err;
	}
	iommu_group_put(group);
1164

1165
	/* It worked! Now, poke the actual hardware */
1166
	for_each_cfg_sme(fwspec, i, idx) {
1167 1168 1169
		arm_smmu_write_sme(smmu, idx);
		smmu->s2crs[idx].group = group;
	}
1170

1171
	mutex_unlock(&smmu->stream_map_mutex);
1172 1173
	return 0;

1174
out_err:
1175
	while (i--) {
1176
		arm_smmu_free_sme(smmu, cfg->smendx[i]);
1177 1178
		cfg->smendx[i] = INVALID_SMENDX;
	}
1179 1180
	mutex_unlock(&smmu->stream_map_mutex);
	return ret;
1181 1182
}

1183
static void arm_smmu_master_free_smes(struct iommu_fwspec *fwspec)
1184
{
1185 1186
	struct arm_smmu_device *smmu = fwspec_smmu(fwspec);
	struct arm_smmu_master_cfg *cfg = fwspec->iommu_priv;
1187
	int i, idx;
1188

1189
	mutex_lock(&smmu->stream_map_mutex);
1190
	for_each_cfg_sme(fwspec, i, idx) {
1191 1192
		if (arm_smmu_free_sme(smmu, idx))
			arm_smmu_write_sme(smmu, idx);
1193
		cfg->smendx[i] = INVALID_SMENDX;
1194
	}
1195
	mutex_unlock(&smmu->stream_map_mutex);
1196 1197 1198
}

static int arm_smmu_domain_add_master(struct arm_smmu_domain *smmu_domain,
1199
				      struct iommu_fwspec *fwspec)
1200
{
1201
	struct arm_smmu_device *smmu = smmu_domain->smmu;
1202 1203 1204
	struct arm_smmu_s2cr *s2cr = smmu->s2crs;
	enum arm_smmu_s2cr_type type = S2CR_TYPE_TRANS;
	u8 cbndx = smmu_domain->cfg.cbndx;
1205
	int i, idx;
1206

1207
	for_each_cfg_sme(fwspec, i, idx) {
1208
		if (type == s2cr[idx].type && cbndx == s2cr[idx].cbndx)
1209
			continue;
1210

1211 1212 1213 1214
		s2cr[idx].type = type;
		s2cr[idx].privcfg = S2CR_PRIVCFG_UNPRIV;
		s2cr[idx].cbndx = cbndx;
		arm_smmu_write_s2cr(smmu, idx);
1215
	}
1216
	return 0;
1217 1218
}

1219 1220
static int arm_smmu_attach_dev(struct iommu_domain *domain, struct device *dev)
{
1221
	int ret;
1222 1223
	struct iommu_fwspec *fwspec = dev->iommu_fwspec;
	struct arm_smmu_device *smmu;
1224
	struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1225

1226
	if (!fwspec || fwspec->ops != &arm_smmu_ops) {
1227 1228 1229 1230
		dev_err(dev, "cannot attach to SMMU, is it on the same bus?\n");
		return -ENXIO;
	}

1231 1232 1233 1234 1235 1236 1237 1238 1239 1240
	/*
	 * FIXME: The arch/arm DMA API code tries to attach devices to its own
	 * domains between of_xlate() and add_device() - we have no way to cope
	 * with that, so until ARM gets converted to rely on groups and default
	 * domains, just say no (but more politely than by dereferencing NULL).
	 * This should be at least a WARN_ON once that's sorted.
	 */
	if (!fwspec->iommu_priv)
		return -ENODEV;

1241
	smmu = fwspec_smmu(fwspec);
1242
	/* Ensure that the domain is finalised */
1243
	ret = arm_smmu_init_domain_context(domain, smmu);
1244
	if (ret < 0)
1245 1246
		return ret;

1247
	/*
1248 1249
	 * Sanity check the domain. We don't support domains across
	 * different SMMUs.
1250
	 */
1251
	if (smmu_domain->smmu != smmu) {
1252 1253
		dev_err(dev,
			"cannot attach to SMMU %s whilst already attached to domain on SMMU %s\n",
1254
			dev_name(smmu_domain->smmu->dev), dev_name(smmu->dev));
1255
		return -EINVAL;
1256 1257 1258
	}

	/* Looks ok, so add the device to the domain */
1259
	return arm_smmu_domain_add_master(smmu_domain, fwspec);
1260 1261 1262
}

static int arm_smmu_map(struct iommu_domain *domain, unsigned long iova,
1263
			phys_addr_t paddr, size_t size, int prot)
1264
{
1265 1266
	int ret;
	unsigned long flags;
1267
	struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1268
	struct io_pgtable_ops *ops= smmu_domain->pgtbl_ops;
1269

1270
	if (!ops)
1271 1272
		return -ENODEV;

1273 1274 1275 1276
	spin_lock_irqsave(&smmu_domain->pgtbl_lock, flags);
	ret = ops->map(ops, iova, paddr, size, prot);
	spin_unlock_irqrestore(&smmu_domain->pgtbl_lock, flags);
	return ret;
1277 1278 1279 1280 1281
}

static size_t arm_smmu_unmap(struct iommu_domain *domain, unsigned long iova,
			     size_t size)
{
1282 1283
	size_t ret;
	unsigned long flags;
1284
	struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1285
	struct io_pgtable_ops *ops= smmu_domain->pgtbl_ops;
1286

1287 1288 1289 1290 1291 1292 1293
	if (!ops)
		return 0;

	spin_lock_irqsave(&smmu_domain->pgtbl_lock, flags);
	ret = ops->unmap(ops, iova, size);
	spin_unlock_irqrestore(&smmu_domain->pgtbl_lock, flags);
	return ret;
1294 1295
}

1296 1297 1298
static phys_addr_t arm_smmu_iova_to_phys_hard(struct iommu_domain *domain,
					      dma_addr_t iova)
{
1299
	struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1300 1301 1302 1303 1304 1305 1306
	struct arm_smmu_device *smmu = smmu_domain->smmu;
	struct arm_smmu_cfg *cfg = &smmu_domain->cfg;
	struct io_pgtable_ops *ops= smmu_domain->pgtbl_ops;
	struct device *dev = smmu->dev;
	void __iomem *cb_base;
	u32 tmp;
	u64 phys;
1307
	unsigned long va;
1308 1309 1310

	cb_base = ARM_SMMU_CB_BASE(smmu) + ARM_SMMU_CB(smmu, cfg->cbndx);

1311 1312 1313
	/* ATS1 registers can only be written atomically */
	va = iova & ~0xfffUL;
	if (smmu->version == ARM_SMMU_V2)
1314 1315
		smmu_write_atomic_lq(va, cb_base + ARM_SMMU_CB_ATS1PR);
	else /* Register is only 32-bit in v1 */
1316
		writel_relaxed(va, cb_base + ARM_SMMU_CB_ATS1PR);
1317 1318 1319 1320

	if (readl_poll_timeout_atomic(cb_base + ARM_SMMU_CB_ATSR, tmp,
				      !(tmp & ATSR_ACTIVE), 5, 50)) {
		dev_err(dev,
1321
			"iova to phys timed out on %pad. Falling back to software table walk.\n",
1322 1323 1324 1325
			&iova);
		return ops->iova_to_phys(ops, iova);
	}

1326
	phys = readq_relaxed(cb_base + ARM_SMMU_CB_PAR);
1327 1328 1329 1330 1331 1332 1333 1334 1335
	if (phys & CB_PAR_F) {
		dev_err(dev, "translation fault!\n");
		dev_err(dev, "PAR = 0x%llx\n", phys);
		return 0;
	}

	return (phys & GENMASK_ULL(39, 12)) | (iova & 0xfff);
}

1336
static phys_addr_t arm_smmu_iova_to_phys(struct iommu_domain *domain,
1337
					dma_addr_t iova)
1338
{
1339 1340
	phys_addr_t ret;
	unsigned long flags;
1341
	struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1342
	struct io_pgtable_ops *ops= smmu_domain->pgtbl_ops;
1343

1344
	if (!ops)
1345
		return 0;
1346

1347
	spin_lock_irqsave(&smmu_domain->pgtbl_lock, flags);
1348 1349
	if (smmu_domain->smmu->features & ARM_SMMU_FEAT_TRANS_OPS &&
			smmu_domain->stage == ARM_SMMU_DOMAIN_S1) {
1350
		ret = arm_smmu_iova_to_phys_hard(domain, iova);
1351
	} else {
1352
		ret = ops->iova_to_phys(ops, iova);
1353 1354
	}

1355
	spin_unlock_irqrestore(&smmu_domain->pgtbl_lock, flags);
1356

1357
	return ret;
1358 1359
}

1360
static bool arm_smmu_capable(enum iommu_cap cap)
1361
{
1362 1363
	switch (cap) {
	case IOMMU_CAP_CACHE_COHERENCY:
1364 1365 1366 1367 1368
		/*
		 * Return true here as the SMMU can always send out coherent
		 * requests.
		 */
		return true;
1369
	case IOMMU_CAP_INTR_REMAP:
1370
		return true; /* MSIs are just memory writes */
1371 1372
	case IOMMU_CAP_NOEXEC:
		return true;
1373
	default:
1374
		return false;
1375
	}
1376 1377
}

1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390
static int arm_smmu_match_node(struct device *dev, void *data)
{
	return dev->of_node == data;
}

static struct arm_smmu_device *arm_smmu_get_by_node(struct device_node *np)
{
	struct device *dev = driver_find_device(&arm_smmu_driver.driver, NULL,
						np, arm_smmu_match_node);
	put_device(dev);
	return dev ? dev_get_drvdata(dev) : NULL;
}

1391
static int arm_smmu_add_device(struct device *dev)
1392
{
1393
	struct arm_smmu_device *smmu;
1394
	struct arm_smmu_master_cfg *cfg;
1395
	struct iommu_fwspec *fwspec = dev->iommu_fwspec;
1396
	int i, ret;
1397

1398 1399 1400 1401 1402
	if (using_legacy_binding) {
		ret = arm_smmu_register_legacy_master(dev, &smmu);
		fwspec = dev->iommu_fwspec;
		if (ret)
			goto out_free;
1403
	} else if (fwspec && fwspec->ops == &arm_smmu_ops) {
1404 1405 1406 1407
		smmu = arm_smmu_get_by_node(to_of_node(fwspec->iommu_fwnode));
	} else {
		return -ENODEV;
	}
1408

1409
	ret = -EINVAL;
1410 1411
	for (i = 0; i < fwspec->num_ids; i++) {
		u16 sid = fwspec->ids[i];
1412
		u16 mask = fwspec->ids[i] >> SMR_MASK_SHIFT;
1413

1414
		if (sid & ~smmu->streamid_mask) {
1415
			dev_err(dev, "stream ID 0x%x out of range for SMMU (0x%x)\n",
1416 1417 1418 1419 1420 1421
				sid, smmu->streamid_mask);
			goto out_free;
		}
		if (mask & ~smmu->smr_mask_mask) {
			dev_err(dev, "SMR mask 0x%x out of range for SMMU (0x%x)\n",
				sid, smmu->smr_mask_mask);
1422 1423
			goto out_free;
		}
1424
	}
1425

1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436
	ret = -ENOMEM;
	cfg = kzalloc(offsetof(struct arm_smmu_master_cfg, smendx[i]),
		      GFP_KERNEL);
	if (!cfg)
		goto out_free;

	cfg->smmu = smmu;
	fwspec->iommu_priv = cfg;
	while (i--)
		cfg->smendx[i] = INVALID_SMENDX;

1437
	ret = arm_smmu_master_alloc_smes(dev);
1438 1439 1440 1441
	if (ret)
		goto out_free;

	return 0;
1442 1443

out_free:
1444 1445 1446
	if (fwspec)
		kfree(fwspec->iommu_priv);
	iommu_fwspec_free(dev);
1447
	return ret;
1448 1449
}

1450 1451
static void arm_smmu_remove_device(struct device *dev)
{
1452
	struct iommu_fwspec *fwspec = dev->iommu_fwspec;
1453

1454
	if (!fwspec || fwspec->ops != &arm_smmu_ops)
1455
		return;
1456

1457
	arm_smmu_master_free_smes(fwspec);
1458
	iommu_group_remove_device(dev);
1459 1460
	kfree(fwspec->iommu_priv);
	iommu_fwspec_free(dev);
1461 1462
}

1463 1464
static struct iommu_group *arm_smmu_device_group(struct device *dev)
{
1465 1466
	struct iommu_fwspec *fwspec = dev->iommu_fwspec;
	struct arm_smmu_device *smmu = fwspec_smmu(fwspec);
1467 1468 1469
	struct iommu_group *group = NULL;
	int i, idx;

1470
	for_each_cfg_sme(fwspec, i, idx) {
1471 1472 1473 1474 1475 1476 1477 1478 1479
		if (group && smmu->s2crs[idx].group &&
		    group != smmu->s2crs[idx].group)
			return ERR_PTR(-EINVAL);

		group = smmu->s2crs[idx].group;
	}

	if (group)
		return group;
1480 1481 1482 1483 1484 1485 1486 1487 1488

	if (dev_is_pci(dev))
		group = pci_device_group(dev);
	else
		group = generic_device_group(dev);

	return group;
}

1489 1490 1491
static int arm_smmu_domain_get_attr(struct iommu_domain *domain,
				    enum iommu_attr attr, void *data)
{
1492
	struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505

	switch (attr) {
	case DOMAIN_ATTR_NESTING:
		*(int *)data = (smmu_domain->stage == ARM_SMMU_DOMAIN_NESTED);
		return 0;
	default:
		return -ENODEV;
	}
}

static int arm_smmu_domain_set_attr(struct iommu_domain *domain,
				    enum iommu_attr attr, void *data)
{
1506
	int ret = 0;
1507
	struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1508

1509 1510
	mutex_lock(&smmu_domain->init_mutex);

1511 1512
	switch (attr) {
	case DOMAIN_ATTR_NESTING:
1513 1514 1515 1516 1517
		if (smmu_domain->smmu) {
			ret = -EPERM;
			goto out_unlock;
		}

1518 1519 1520 1521 1522
		if (*(int *)data)
			smmu_domain->stage = ARM_SMMU_DOMAIN_NESTED;
		else
			smmu_domain->stage = ARM_SMMU_DOMAIN_S1;

1523
		break;
1524
	default:
1525
		ret = -ENODEV;
1526
	}
1527 1528 1529 1530

out_unlock:
	mutex_unlock(&smmu_domain->init_mutex);
	return ret;
1531 1532
}

1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545
static int arm_smmu_of_xlate(struct device *dev, struct of_phandle_args *args)
{
	u32 fwid = 0;

	if (args->args_count > 0)
		fwid |= (u16)args->args[0];

	if (args->args_count > 1)
		fwid |= (u16)args->args[1] << SMR_MASK_SHIFT;

	return iommu_fwspec_add_ids(dev, &fwid, 1);
}

1546
static struct iommu_ops arm_smmu_ops = {
1547
	.capable		= arm_smmu_capable,
1548 1549
	.domain_alloc		= arm_smmu_domain_alloc,
	.domain_free		= arm_smmu_domain_free,
1550 1551 1552
	.attach_dev		= arm_smmu_attach_dev,
	.map			= arm_smmu_map,
	.unmap			= arm_smmu_unmap,
1553
	.map_sg			= default_iommu_map_sg,
1554 1555 1556
	.iova_to_phys		= arm_smmu_iova_to_phys,
	.add_device		= arm_smmu_add_device,
	.remove_device		= arm_smmu_remove_device,
1557
	.device_group		= arm_smmu_device_group,
1558 1559
	.domain_get_attr	= arm_smmu_domain_get_attr,
	.domain_set_attr	= arm_smmu_domain_set_attr,
1560
	.of_xlate		= arm_smmu_of_xlate,
1561
	.pgsize_bitmap		= -1UL, /* Restricted during device attach */
1562 1563 1564 1565 1566
};

static void arm_smmu_device_reset(struct arm_smmu_device *smmu)
{
	void __iomem *gr0_base = ARM_SMMU_GR0(smmu);
1567
	void __iomem *cb_base;
1568
	int i;
1569
	u32 reg, major;
1570

1571 1572 1573
	/* clear global FSR */
	reg = readl_relaxed(ARM_SMMU_GR0_NS(smmu) + ARM_SMMU_GR0_sGFSR);
	writel(reg, ARM_SMMU_GR0_NS(smmu) + ARM_SMMU_GR0_sGFSR);
1574

1575 1576 1577 1578
	/*
	 * Reset stream mapping groups: Initial values mark all SMRn as
	 * invalid and all S2CRn as bypass unless overridden.
	 */
1579 1580
	for (i = 0; i < smmu->num_mapping_groups; ++i)
		arm_smmu_write_sme(smmu, i);
1581

1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594
	/*
	 * Before clearing ARM_MMU500_ACTLR_CPRE, need to
	 * clear CACHE_LOCK bit of ACR first. And, CACHE_LOCK
	 * bit is only present in MMU-500r2 onwards.
	 */
	reg = readl_relaxed(gr0_base + ARM_SMMU_GR0_ID7);
	major = (reg >> ID7_MAJOR_SHIFT) & ID7_MAJOR_MASK;
	if ((smmu->model == ARM_MMU500) && (major >= 2)) {
		reg = readl_relaxed(gr0_base + ARM_SMMU_GR0_sACR);
		reg &= ~ARM_MMU500_ACR_CACHE_LOCK;
		writel_relaxed(reg, gr0_base + ARM_SMMU_GR0_sACR);
	}

1595 1596 1597 1598 1599
	/* Make sure all context banks are disabled and clear CB_FSR  */
	for (i = 0; i < smmu->num_context_banks; ++i) {
		cb_base = ARM_SMMU_CB_BASE(smmu) + ARM_SMMU_CB(smmu, i);
		writel_relaxed(0, cb_base + ARM_SMMU_CB_SCTLR);
		writel_relaxed(FSR_FAULT, cb_base + ARM_SMMU_CB_FSR);
1600 1601 1602 1603 1604 1605 1606 1607 1608
		/*
		 * Disable MMU-500's not-particularly-beneficial next-page
		 * prefetcher for the sake of errata #841119 and #826419.
		 */
		if (smmu->model == ARM_MMU500) {
			reg = readl_relaxed(cb_base + ARM_SMMU_CB_ACTLR);
			reg &= ~ARM_MMU500_ACTLR_CPRE;
			writel_relaxed(reg, cb_base + ARM_SMMU_CB_ACTLR);
		}
1609
	}
1610

1611 1612 1613 1614
	/* Invalidate the TLB, just in case */
	writel_relaxed(0, gr0_base + ARM_SMMU_GR0_TLBIALLH);
	writel_relaxed(0, gr0_base + ARM_SMMU_GR0_TLBIALLNSNH);

1615
	reg = readl_relaxed(ARM_SMMU_GR0_NS(smmu) + ARM_SMMU_GR0_sCR0);
1616

1617
	/* Enable fault reporting */
1618
	reg |= (sCR0_GFRE | sCR0_GFIE | sCR0_GCFGFRE | sCR0_GCFGFIE);
1619 1620

	/* Disable TLB broadcasting. */
1621
	reg |= (sCR0_VMIDPNE | sCR0_PTM);
1622

1623 1624 1625 1626 1627 1628
	/* Enable client access, handling unmatched streams as appropriate */
	reg &= ~sCR0_CLIENTPD;
	if (disable_bypass)
		reg |= sCR0_USFCFG;
	else
		reg &= ~sCR0_USFCFG;
1629 1630

	/* Disable forced broadcasting */
1631
	reg &= ~sCR0_FB;
1632 1633

	/* Don't upgrade barriers */
1634
	reg &= ~(sCR0_BSU_MASK << sCR0_BSU_SHIFT);
1635

1636 1637 1638
	if (smmu->features & ARM_SMMU_FEAT_VMID16)
		reg |= sCR0_VMID16EN;

1639
	/* Push the button */
1640
	__arm_smmu_tlb_sync(smmu);
1641
	writel(reg, ARM_SMMU_GR0_NS(smmu) + ARM_SMMU_GR0_sCR0);
1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667
}

static int arm_smmu_id_size_to_bits(int size)
{
	switch (size) {
	case 0:
		return 32;
	case 1:
		return 36;
	case 2:
		return 40;
	case 3:
		return 42;
	case 4:
		return 44;
	case 5:
	default:
		return 48;
	}
}

static int arm_smmu_device_cfg_probe(struct arm_smmu_device *smmu)
{
	unsigned long size;
	void __iomem *gr0_base = ARM_SMMU_GR0(smmu);
	u32 id;
1668
	bool cttw_dt, cttw_reg;
1669
	int i;
1670 1671

	dev_notice(smmu->dev, "probing hardware configuration...\n");
1672 1673
	dev_notice(smmu->dev, "SMMUv%d with:\n",
			smmu->version == ARM_SMMU_V2 ? 2 : 1);
1674 1675 1676

	/* ID0 */
	id = readl_relaxed(gr0_base + ARM_SMMU_GR0_ID0);
1677 1678 1679 1680 1681 1682 1683

	/* Restrict available stages based on module parameter */
	if (force_stage == 1)
		id &= ~(ID0_S2TS | ID0_NTS);
	else if (force_stage == 2)
		id &= ~(ID0_S1TS | ID0_NTS);

1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699
	if (id & ID0_S1TS) {
		smmu->features |= ARM_SMMU_FEAT_TRANS_S1;
		dev_notice(smmu->dev, "\tstage 1 translation\n");
	}

	if (id & ID0_S2TS) {
		smmu->features |= ARM_SMMU_FEAT_TRANS_S2;
		dev_notice(smmu->dev, "\tstage 2 translation\n");
	}

	if (id & ID0_NTS) {
		smmu->features |= ARM_SMMU_FEAT_TRANS_NESTED;
		dev_notice(smmu->dev, "\tnested translation\n");
	}

	if (!(smmu->features &
1700
		(ARM_SMMU_FEAT_TRANS_S1 | ARM_SMMU_FEAT_TRANS_S2))) {
1701 1702 1703 1704
		dev_err(smmu->dev, "\tno translation support!\n");
		return -ENODEV;
	}

1705 1706
	if ((id & ID0_S1TS) &&
		((smmu->version < ARM_SMMU_V2) || !(id & ID0_ATOSNS))) {
1707 1708 1709 1710
		smmu->features |= ARM_SMMU_FEAT_TRANS_OPS;
		dev_notice(smmu->dev, "\taddress translation ops\n");
	}

1711 1712 1713 1714 1715 1716 1717 1718 1719
	/*
	 * In order for DMA API calls to work properly, we must defer to what
	 * the DT says about coherency, regardless of what the hardware claims.
	 * Fortunately, this also opens up a workaround for systems where the
	 * ID register value has ended up configured incorrectly.
	 */
	cttw_dt = of_dma_is_coherent(smmu->dev->of_node);
	cttw_reg = !!(id & ID0_CTTW);
	if (cttw_dt)
1720
		smmu->features |= ARM_SMMU_FEAT_COHERENT_WALK;
1721 1722 1723 1724 1725 1726
	if (cttw_dt || cttw_reg)
		dev_notice(smmu->dev, "\t%scoherent table walk\n",
			   cttw_dt ? "" : "non-");
	if (cttw_dt != cttw_reg)
		dev_notice(smmu->dev,
			   "\t(IDR0.CTTW overridden by dma-coherent property)\n");
1727

1728 1729 1730
	/* Max. number of entries we have for stream matching/indexing */
	size = 1 << ((id >> ID0_NUMSIDB_SHIFT) & ID0_NUMSIDB_MASK);
	smmu->streamid_mask = size - 1;
1731
	if (id & ID0_SMS) {
1732
		u32 smr;
1733 1734

		smmu->features |= ARM_SMMU_FEAT_STREAM_MATCH;
1735 1736
		size = (id >> ID0_NUMSMRG_SHIFT) & ID0_NUMSMRG_MASK;
		if (size == 0) {
1737 1738 1739 1740 1741
			dev_err(smmu->dev,
				"stream-matching supported, but no SMRs present!\n");
			return -ENODEV;
		}

1742 1743 1744 1745 1746 1747
		/*
		 * SMR.ID bits may not be preserved if the corresponding MASK
		 * bits are set, so check each one separately. We can reject
		 * masters later if they try to claim IDs outside these masks.
		 */
		smr = smmu->streamid_mask << SMR_ID_SHIFT;
1748 1749
		writel_relaxed(smr, gr0_base + ARM_SMMU_GR0_SMR(0));
		smr = readl_relaxed(gr0_base + ARM_SMMU_GR0_SMR(0));
1750
		smmu->streamid_mask = smr >> SMR_ID_SHIFT;
1751

1752 1753 1754 1755
		smr = smmu->streamid_mask << SMR_MASK_SHIFT;
		writel_relaxed(smr, gr0_base + ARM_SMMU_GR0_SMR(0));
		smr = readl_relaxed(gr0_base + ARM_SMMU_GR0_SMR(0));
		smmu->smr_mask_mask = smr >> SMR_MASK_SHIFT;
1756

1757 1758 1759 1760 1761 1762
		/* Zero-initialised to mark as invalid */
		smmu->smrs = devm_kcalloc(smmu->dev, size, sizeof(*smmu->smrs),
					  GFP_KERNEL);
		if (!smmu->smrs)
			return -ENOMEM;

1763
		dev_notice(smmu->dev,
1764 1765
			   "\tstream matching with %lu register groups, mask 0x%x",
			   size, smmu->smr_mask_mask);
1766
	}
1767 1768 1769 1770 1771 1772 1773 1774
	/* s2cr->type == 0 means translation, so initialise explicitly */
	smmu->s2crs = devm_kmalloc_array(smmu->dev, size, sizeof(*smmu->s2crs),
					 GFP_KERNEL);
	if (!smmu->s2crs)
		return -ENOMEM;
	for (i = 0; i < size; i++)
		smmu->s2crs[i] = s2cr_init_val;

1775
	smmu->num_mapping_groups = size;
1776
	mutex_init(&smmu->stream_map_mutex);
1777

1778 1779 1780 1781 1782 1783
	if (smmu->version < ARM_SMMU_V2 || !(id & ID0_PTFS_NO_AARCH32)) {
		smmu->features |= ARM_SMMU_FEAT_FMT_AARCH32_L;
		if (!(id & ID0_PTFS_NO_AARCH32S))
			smmu->features |= ARM_SMMU_FEAT_FMT_AARCH32_S;
	}

1784 1785
	/* ID1 */
	id = readl_relaxed(gr0_base + ARM_SMMU_GR0_ID1);
1786
	smmu->pgshift = (id & ID1_PAGESIZE) ? 16 : 12;
1787

1788
	/* Check for size mismatch of SMMU address space from mapped region */
1789
	size = 1 << (((id >> ID1_NUMPAGENDXB_SHIFT) & ID1_NUMPAGENDXB_MASK) + 1);
1790
	size *= 2 << smmu->pgshift;
1791
	if (smmu->size != size)
1792 1793 1794
		dev_warn(smmu->dev,
			"SMMU address space size (0x%lx) differs from mapped region size (0x%lx)!\n",
			size, smmu->size);
1795

1796
	smmu->num_s2_context_banks = (id >> ID1_NUMS2CB_SHIFT) & ID1_NUMS2CB_MASK;
1797 1798 1799 1800 1801 1802 1803
	smmu->num_context_banks = (id >> ID1_NUMCB_SHIFT) & ID1_NUMCB_MASK;
	if (smmu->num_s2_context_banks > smmu->num_context_banks) {
		dev_err(smmu->dev, "impossible number of S2 context banks!\n");
		return -ENODEV;
	}
	dev_notice(smmu->dev, "\t%u context banks (%u stage-2 only)\n",
		   smmu->num_context_banks, smmu->num_s2_context_banks);
1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814
	/*
	 * Cavium CN88xx erratum #27704.
	 * Ensure ASID and VMID allocation is unique across all SMMUs in
	 * the system.
	 */
	if (smmu->model == CAVIUM_SMMUV2) {
		smmu->cavium_id_base =
			atomic_add_return(smmu->num_context_banks,
					  &cavium_smmu_context_count);
		smmu->cavium_id_base -= smmu->num_context_banks;
	}
1815 1816 1817 1818

	/* ID2 */
	id = readl_relaxed(gr0_base + ARM_SMMU_GR0_ID2);
	size = arm_smmu_id_size_to_bits((id >> ID2_IAS_SHIFT) & ID2_IAS_MASK);
1819
	smmu->ipa_size = size;
1820

1821
	/* The output mask is also applied for bypass */
1822
	size = arm_smmu_id_size_to_bits((id >> ID2_OAS_SHIFT) & ID2_OAS_MASK);
1823
	smmu->pa_size = size;
1824

1825 1826 1827
	if (id & ID2_VMID16)
		smmu->features |= ARM_SMMU_FEAT_VMID16;

1828 1829 1830 1831 1832 1833 1834 1835 1836
	/*
	 * What the page table walker can address actually depends on which
	 * descriptor format is in use, but since a) we don't know that yet,
	 * and b) it can vary per context bank, this will have to do...
	 */
	if (dma_set_mask_and_coherent(smmu->dev, DMA_BIT_MASK(size)))
		dev_warn(smmu->dev,
			 "failed to set DMA mask for table walker\n");

1837
	if (smmu->version < ARM_SMMU_V2) {
1838
		smmu->va_size = smmu->ipa_size;
1839 1840
		if (smmu->version == ARM_SMMU_V1_64K)
			smmu->features |= ARM_SMMU_FEAT_FMT_AARCH64_64K;
1841 1842
	} else {
		size = (id >> ID2_UBS_SHIFT) & ID2_UBS_MASK;
1843 1844
		smmu->va_size = arm_smmu_id_size_to_bits(size);
		if (id & ID2_PTFS_4K)
1845
			smmu->features |= ARM_SMMU_FEAT_FMT_AARCH64_4K;
1846
		if (id & ID2_PTFS_16K)
1847
			smmu->features |= ARM_SMMU_FEAT_FMT_AARCH64_16K;
1848
		if (id & ID2_PTFS_64K)
1849
			smmu->features |= ARM_SMMU_FEAT_FMT_AARCH64_64K;
1850 1851
	}

1852 1853
	/* Now we've corralled the various formats, what'll it do? */
	if (smmu->features & ARM_SMMU_FEAT_FMT_AARCH32_S)
1854
		smmu->pgsize_bitmap |= SZ_4K | SZ_64K | SZ_1M | SZ_16M;
1855 1856
	if (smmu->features &
	    (ARM_SMMU_FEAT_FMT_AARCH32_L | ARM_SMMU_FEAT_FMT_AARCH64_4K))
1857
		smmu->pgsize_bitmap |= SZ_4K | SZ_2M | SZ_1G;
1858
	if (smmu->features & ARM_SMMU_FEAT_FMT_AARCH64_16K)
1859
		smmu->pgsize_bitmap |= SZ_16K | SZ_32M;
1860
	if (smmu->features & ARM_SMMU_FEAT_FMT_AARCH64_64K)
1861 1862 1863 1864 1865 1866 1867 1868
		smmu->pgsize_bitmap |= SZ_64K | SZ_512M;

	if (arm_smmu_ops.pgsize_bitmap == -1UL)
		arm_smmu_ops.pgsize_bitmap = smmu->pgsize_bitmap;
	else
		arm_smmu_ops.pgsize_bitmap |= smmu->pgsize_bitmap;
	dev_notice(smmu->dev, "\tSupported page sizes: 0x%08lx\n",
		   smmu->pgsize_bitmap);
1869

1870

1871 1872
	if (smmu->features & ARM_SMMU_FEAT_TRANS_S1)
		dev_notice(smmu->dev, "\tStage-1: %lu-bit VA -> %lu-bit IPA\n",
1873
			   smmu->va_size, smmu->ipa_size);
1874 1875 1876

	if (smmu->features & ARM_SMMU_FEAT_TRANS_S2)
		dev_notice(smmu->dev, "\tStage-2: %lu-bit IPA -> %lu-bit PA\n",
1877
			   smmu->ipa_size, smmu->pa_size);
1878

1879 1880 1881
	return 0;
}

1882 1883 1884 1885 1886 1887 1888 1889 1890 1891
struct arm_smmu_match_data {
	enum arm_smmu_arch_version version;
	enum arm_smmu_implementation model;
};

#define ARM_SMMU_MATCH_DATA(name, ver, imp)	\
static struct arm_smmu_match_data name = { .version = ver, .model = imp }

ARM_SMMU_MATCH_DATA(smmu_generic_v1, ARM_SMMU_V1, GENERIC_SMMU);
ARM_SMMU_MATCH_DATA(smmu_generic_v2, ARM_SMMU_V2, GENERIC_SMMU);
1892
ARM_SMMU_MATCH_DATA(arm_mmu401, ARM_SMMU_V1_64K, GENERIC_SMMU);
1893
ARM_SMMU_MATCH_DATA(arm_mmu500, ARM_SMMU_V2, ARM_MMU500);
1894
ARM_SMMU_MATCH_DATA(cavium_smmuv2, ARM_SMMU_V2, CAVIUM_SMMUV2);
1895

1896
static const struct of_device_id arm_smmu_of_match[] = {
1897 1898 1899
	{ .compatible = "arm,smmu-v1", .data = &smmu_generic_v1 },
	{ .compatible = "arm,smmu-v2", .data = &smmu_generic_v2 },
	{ .compatible = "arm,mmu-400", .data = &smmu_generic_v1 },
1900
	{ .compatible = "arm,mmu-401", .data = &arm_mmu401 },
1901
	{ .compatible = "arm,mmu-500", .data = &arm_mmu500 },
1902
	{ .compatible = "cavium,smmu-v2", .data = &cavium_smmuv2 },
1903 1904 1905 1906
	{ },
};
MODULE_DEVICE_TABLE(of, arm_smmu_of_match);

1907 1908
static int arm_smmu_device_dt_probe(struct platform_device *pdev)
{
1909
	const struct arm_smmu_match_data *data;
1910 1911 1912 1913
	struct resource *res;
	struct arm_smmu_device *smmu;
	struct device *dev = &pdev->dev;
	int num_irqs, i, err;
1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926
	bool legacy_binding;

	legacy_binding = of_find_property(dev->of_node, "mmu-masters", NULL);
	if (legacy_binding && !using_generic_binding) {
		if (!using_legacy_binding)
			pr_notice("deprecated \"mmu-masters\" DT property in use; DMA API support unavailable\n");
		using_legacy_binding = true;
	} else if (!legacy_binding && !using_legacy_binding) {
		using_generic_binding = true;
	} else {
		dev_err(dev, "not probing due to mismatched DT properties\n");
		return -ENODEV;
	}
1927 1928 1929 1930 1931 1932 1933 1934

	smmu = devm_kzalloc(dev, sizeof(*smmu), GFP_KERNEL);
	if (!smmu) {
		dev_err(dev, "failed to allocate arm_smmu_device\n");
		return -ENOMEM;
	}
	smmu->dev = dev;

1935
	data = of_device_get_match_data(dev);
1936 1937
	smmu->version = data->version;
	smmu->model = data->model;
1938

1939
	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1940 1941 1942
	smmu->base = devm_ioremap_resource(dev, res);
	if (IS_ERR(smmu->base))
		return PTR_ERR(smmu->base);
1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957
	smmu->size = resource_size(res);

	if (of_property_read_u32(dev->of_node, "#global-interrupts",
				 &smmu->num_global_irqs)) {
		dev_err(dev, "missing #global-interrupts property\n");
		return -ENODEV;
	}

	num_irqs = 0;
	while ((res = platform_get_resource(pdev, IORESOURCE_IRQ, num_irqs))) {
		num_irqs++;
		if (num_irqs > smmu->num_global_irqs)
			smmu->num_context_irqs++;
	}

1958 1959 1960 1961
	if (!smmu->num_context_irqs) {
		dev_err(dev, "found %d interrupts but expected at least %d\n",
			num_irqs, smmu->num_global_irqs + 1);
		return -ENODEV;
1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972
	}

	smmu->irqs = devm_kzalloc(dev, sizeof(*smmu->irqs) * num_irqs,
				  GFP_KERNEL);
	if (!smmu->irqs) {
		dev_err(dev, "failed to allocate %d irqs\n", num_irqs);
		return -ENOMEM;
	}

	for (i = 0; i < num_irqs; ++i) {
		int irq = platform_get_irq(pdev, i);
1973

1974 1975 1976 1977 1978 1979 1980
		if (irq < 0) {
			dev_err(dev, "failed to get irq index %d\n", i);
			return -ENODEV;
		}
		smmu->irqs[i] = irq;
	}

1981 1982 1983 1984
	err = arm_smmu_device_cfg_probe(smmu);
	if (err)
		return err;

1985 1986
	parse_driver_options(smmu);

1987
	if (smmu->version == ARM_SMMU_V2 &&
1988 1989 1990 1991
	    smmu->num_context_banks != smmu->num_context_irqs) {
		dev_err(dev,
			"found only %d context interrupt(s) but %d required\n",
			smmu->num_context_irqs, smmu->num_context_banks);
1992
		return -ENODEV;
1993 1994 1995
	}

	for (i = 0; i < smmu->num_global_irqs; ++i) {
1996 1997 1998 1999 2000
		err = devm_request_irq(smmu->dev, smmu->irqs[i],
				       arm_smmu_global_fault,
				       IRQF_SHARED,
				       "arm-smmu global fault",
				       smmu);
2001 2002 2003
		if (err) {
			dev_err(dev, "failed to request global IRQ %d (%u)\n",
				i, smmu->irqs[i]);
2004
			return err;
2005 2006 2007
		}
	}

2008
	of_iommu_set_ops(dev->of_node, &arm_smmu_ops);
2009
	platform_set_drvdata(pdev, smmu);
2010
	arm_smmu_device_reset(smmu);
2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024

	/* Oh, for a proper bus abstraction */
	if (!iommu_present(&platform_bus_type))
		bus_set_iommu(&platform_bus_type, &arm_smmu_ops);
#ifdef CONFIG_ARM_AMBA
	if (!iommu_present(&amba_bustype))
		bus_set_iommu(&amba_bustype, &arm_smmu_ops);
#endif
#ifdef CONFIG_PCI
	if (!iommu_present(&pci_bus_type)) {
		pci_request_acs();
		bus_set_iommu(&pci_bus_type, &arm_smmu_ops);
	}
#endif
2025 2026 2027 2028 2029
	return 0;
}

static int arm_smmu_device_remove(struct platform_device *pdev)
{
2030
	struct arm_smmu_device *smmu = platform_get_drvdata(pdev);
2031 2032 2033 2034

	if (!smmu)
		return -ENODEV;

2035
	if (!bitmap_empty(smmu->context_map, ARM_SMMU_MAX_CBS))
2036
		dev_err(&pdev->dev, "removing device with active domains!\n");
2037 2038

	/* Turn the thing off */
2039
	writel(sCR0_CLIENTPD, ARM_SMMU_GR0_NS(smmu) + ARM_SMMU_GR0_sCR0);
2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053
	return 0;
}

static struct platform_driver arm_smmu_driver = {
	.driver	= {
		.name		= "arm-smmu",
		.of_match_table	= of_match_ptr(arm_smmu_of_match),
	},
	.probe	= arm_smmu_device_dt_probe,
	.remove	= arm_smmu_device_remove,
};

static int __init arm_smmu_init(void)
{
2054 2055
	static bool registered;
	int ret = 0;
2056

2057 2058 2059
	if (!registered) {
		ret = platform_driver_register(&arm_smmu_driver);
		registered = !ret;
2060
	}
2061
	return ret;
2062 2063 2064 2065 2066 2067 2068
}

static void __exit arm_smmu_exit(void)
{
	return platform_driver_unregister(&arm_smmu_driver);
}

2069
subsys_initcall(arm_smmu_init);
2070 2071
module_exit(arm_smmu_exit);

2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090
static int __init arm_smmu_of_init(struct device_node *np)
{
	int ret = arm_smmu_init();

	if (ret)
		return ret;

	if (!of_platform_device_create(np, NULL, platform_bus_type.dev_root))
		return -ENODEV;

	return 0;
}
IOMMU_OF_DECLARE(arm_smmuv1, "arm,smmu-v1", arm_smmu_of_init);
IOMMU_OF_DECLARE(arm_smmuv2, "arm,smmu-v2", arm_smmu_of_init);
IOMMU_OF_DECLARE(arm_mmu400, "arm,mmu-400", arm_smmu_of_init);
IOMMU_OF_DECLARE(arm_mmu401, "arm,mmu-401", arm_smmu_of_init);
IOMMU_OF_DECLARE(arm_mmu500, "arm,mmu-500", arm_smmu_of_init);
IOMMU_OF_DECLARE(cavium_smmuv2, "cavium,smmu-v2", arm_smmu_of_init);

2091 2092 2093
MODULE_DESCRIPTION("IOMMU API for ARM architected SMMU implementations");
MODULE_AUTHOR("Will Deacon <will.deacon@arm.com>");
MODULE_LICENSE("GPL v2");