arm-smmu.c 58.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
/*
 * IOMMU API for ARM architected SMMU implementations.
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
 *
 * Copyright (C) 2013 ARM Limited
 *
 * Author: Will Deacon <will.deacon@arm.com>
 *
 * This driver currently supports:
 *	- SMMUv1 and v2 implementations
 *	- Stream-matching and stream-indexing
 *	- v7/v8 long-descriptor format
 *	- Non-secure access to the SMMU
 *	- Context fault reporting
 */

#define pr_fmt(fmt) "arm-smmu: " fmt

31
#include <linux/atomic.h>
32
#include <linux/delay.h>
33
#include <linux/dma-iommu.h>
34 35 36 37
#include <linux/dma-mapping.h>
#include <linux/err.h>
#include <linux/interrupt.h>
#include <linux/io.h>
38
#include <linux/io-64-nonatomic-hi-lo.h>
39
#include <linux/iommu.h>
40
#include <linux/iopoll.h>
41 42
#include <linux/module.h>
#include <linux/of.h>
43
#include <linux/of_address.h>
44
#include <linux/pci.h>
45 46 47 48 49 50
#include <linux/platform_device.h>
#include <linux/slab.h>
#include <linux/spinlock.h>

#include <linux/amba/bus.h>

51
#include "io-pgtable.h"
52 53

/* Maximum number of stream IDs assigned to a single device */
54
#define MAX_MASTER_STREAMIDS		128
55 56 57 58 59 60

/* Maximum number of context banks per SMMU */
#define ARM_SMMU_MAX_CBS		128

/* SMMU global address space */
#define ARM_SMMU_GR0(smmu)		((smmu)->base)
61
#define ARM_SMMU_GR1(smmu)		((smmu)->base + (1 << (smmu)->pgshift))
62

63 64 65 66 67 68 69 70 71 72
/*
 * SMMU global address space with conditional offset to access secure
 * aliases of non-secure registers (e.g. nsCR0: 0x400, nsGFSR: 0x448,
 * nsGFSYNR0: 0x450)
 */
#define ARM_SMMU_GR0_NS(smmu)						\
	((smmu)->base +							\
		((smmu->options & ARM_SMMU_OPT_SECURE_CFG_ACCESS)	\
			? 0x400 : 0))

73 74 75 76 77
/*
 * Some 64-bit registers only make sense to write atomically, but in such
 * cases all the data relevant to AArch32 formats lies within the lower word,
 * therefore this actually makes more sense than it might first appear.
 */
78
#ifdef CONFIG_64BIT
79
#define smmu_write_atomic_lq		writeq_relaxed
80
#else
81
#define smmu_write_atomic_lq		writel_relaxed
82 83
#endif

84 85 86 87 88 89 90 91 92 93 94
/* Configuration registers */
#define ARM_SMMU_GR0_sCR0		0x0
#define sCR0_CLIENTPD			(1 << 0)
#define sCR0_GFRE			(1 << 1)
#define sCR0_GFIE			(1 << 2)
#define sCR0_GCFGFRE			(1 << 4)
#define sCR0_GCFGFIE			(1 << 5)
#define sCR0_USFCFG			(1 << 10)
#define sCR0_VMIDPNE			(1 << 11)
#define sCR0_PTM			(1 << 12)
#define sCR0_FB				(1 << 13)
95
#define sCR0_VMID16EN			(1 << 31)
96 97 98
#define sCR0_BSU_SHIFT			14
#define sCR0_BSU_MASK			0x3

99 100 101
/* Auxiliary Configuration register */
#define ARM_SMMU_GR0_sACR		0x10

102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119
/* Identification registers */
#define ARM_SMMU_GR0_ID0		0x20
#define ARM_SMMU_GR0_ID1		0x24
#define ARM_SMMU_GR0_ID2		0x28
#define ARM_SMMU_GR0_ID3		0x2c
#define ARM_SMMU_GR0_ID4		0x30
#define ARM_SMMU_GR0_ID5		0x34
#define ARM_SMMU_GR0_ID6		0x38
#define ARM_SMMU_GR0_ID7		0x3c
#define ARM_SMMU_GR0_sGFSR		0x48
#define ARM_SMMU_GR0_sGFSYNR0		0x50
#define ARM_SMMU_GR0_sGFSYNR1		0x54
#define ARM_SMMU_GR0_sGFSYNR2		0x58

#define ID0_S1TS			(1 << 30)
#define ID0_S2TS			(1 << 29)
#define ID0_NTS				(1 << 28)
#define ID0_SMS				(1 << 27)
120
#define ID0_ATOSNS			(1 << 26)
121 122
#define ID0_PTFS_NO_AARCH32		(1 << 25)
#define ID0_PTFS_NO_AARCH32S		(1 << 24)
123 124 125
#define ID0_CTTW			(1 << 14)
#define ID0_NUMIRPT_SHIFT		16
#define ID0_NUMIRPT_MASK		0xff
126 127
#define ID0_NUMSIDB_SHIFT		9
#define ID0_NUMSIDB_MASK		0xf
128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147
#define ID0_NUMSMRG_SHIFT		0
#define ID0_NUMSMRG_MASK		0xff

#define ID1_PAGESIZE			(1 << 31)
#define ID1_NUMPAGENDXB_SHIFT		28
#define ID1_NUMPAGENDXB_MASK		7
#define ID1_NUMS2CB_SHIFT		16
#define ID1_NUMS2CB_MASK		0xff
#define ID1_NUMCB_SHIFT			0
#define ID1_NUMCB_MASK			0xff

#define ID2_OAS_SHIFT			4
#define ID2_OAS_MASK			0xf
#define ID2_IAS_SHIFT			0
#define ID2_IAS_MASK			0xf
#define ID2_UBS_SHIFT			8
#define ID2_UBS_MASK			0xf
#define ID2_PTFS_4K			(1 << 12)
#define ID2_PTFS_16K			(1 << 13)
#define ID2_PTFS_64K			(1 << 14)
148
#define ID2_VMID16			(1 << 15)
149

150 151
#define ID7_MAJOR_SHIFT			4
#define ID7_MAJOR_MASK			0xf
152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172

/* Global TLB invalidation */
#define ARM_SMMU_GR0_TLBIVMID		0x64
#define ARM_SMMU_GR0_TLBIALLNSNH	0x68
#define ARM_SMMU_GR0_TLBIALLH		0x6c
#define ARM_SMMU_GR0_sTLBGSYNC		0x70
#define ARM_SMMU_GR0_sTLBGSTATUS	0x74
#define sTLBGSTATUS_GSACTIVE		(1 << 0)
#define TLB_LOOP_TIMEOUT		1000000	/* 1s! */

/* Stream mapping registers */
#define ARM_SMMU_GR0_SMR(n)		(0x800 + ((n) << 2))
#define SMR_VALID			(1 << 31)
#define SMR_MASK_SHIFT			16
#define SMR_ID_SHIFT			0

#define ARM_SMMU_GR0_S2CR(n)		(0xc00 + ((n) << 2))
#define S2CR_CBNDX_SHIFT		0
#define S2CR_CBNDX_MASK			0xff
#define S2CR_TYPE_SHIFT			16
#define S2CR_TYPE_MASK			0x3
173 174 175 176 177
enum arm_smmu_s2cr_type {
	S2CR_TYPE_TRANS,
	S2CR_TYPE_BYPASS,
	S2CR_TYPE_FAULT,
};
178

179
#define S2CR_PRIVCFG_SHIFT		24
180 181 182 183 184 185 186
#define S2CR_PRIVCFG_MASK		0x3
enum arm_smmu_s2cr_privcfg {
	S2CR_PRIVCFG_DEFAULT,
	S2CR_PRIVCFG_DIPAN,
	S2CR_PRIVCFG_UNPRIV,
	S2CR_PRIVCFG_PRIV,
};
187

188 189 190 191
/* Context bank attribute registers */
#define ARM_SMMU_GR1_CBAR(n)		(0x0 + ((n) << 2))
#define CBAR_VMID_SHIFT			0
#define CBAR_VMID_MASK			0xff
192 193 194
#define CBAR_S1_BPSHCFG_SHIFT		8
#define CBAR_S1_BPSHCFG_MASK		3
#define CBAR_S1_BPSHCFG_NSH		3
195 196 197 198 199 200 201 202 203 204 205 206 207 208 209
#define CBAR_S1_MEMATTR_SHIFT		12
#define CBAR_S1_MEMATTR_MASK		0xf
#define CBAR_S1_MEMATTR_WB		0xf
#define CBAR_TYPE_SHIFT			16
#define CBAR_TYPE_MASK			0x3
#define CBAR_TYPE_S2_TRANS		(0 << CBAR_TYPE_SHIFT)
#define CBAR_TYPE_S1_TRANS_S2_BYPASS	(1 << CBAR_TYPE_SHIFT)
#define CBAR_TYPE_S1_TRANS_S2_FAULT	(2 << CBAR_TYPE_SHIFT)
#define CBAR_TYPE_S1_TRANS_S2_TRANS	(3 << CBAR_TYPE_SHIFT)
#define CBAR_IRPTNDX_SHIFT		24
#define CBAR_IRPTNDX_MASK		0xff

#define ARM_SMMU_GR1_CBA2R(n)		(0x800 + ((n) << 2))
#define CBA2R_RW64_32BIT		(0 << 0)
#define CBA2R_RW64_64BIT		(1 << 0)
210 211
#define CBA2R_VMID_SHIFT		16
#define CBA2R_VMID_MASK			0xffff
212 213 214

/* Translation context bank */
#define ARM_SMMU_CB_BASE(smmu)		((smmu)->base + ((smmu)->size >> 1))
215
#define ARM_SMMU_CB(smmu, n)		((n) * (1 << (smmu)->pgshift))
216 217

#define ARM_SMMU_CB_SCTLR		0x0
218
#define ARM_SMMU_CB_ACTLR		0x4
219 220
#define ARM_SMMU_CB_RESUME		0x8
#define ARM_SMMU_CB_TTBCR2		0x10
221 222
#define ARM_SMMU_CB_TTBR0		0x20
#define ARM_SMMU_CB_TTBR1		0x28
223
#define ARM_SMMU_CB_TTBCR		0x30
224
#define ARM_SMMU_CB_CONTEXTIDR		0x34
225
#define ARM_SMMU_CB_S1_MAIR0		0x38
226
#define ARM_SMMU_CB_S1_MAIR1		0x3c
227
#define ARM_SMMU_CB_PAR			0x50
228
#define ARM_SMMU_CB_FSR			0x58
229
#define ARM_SMMU_CB_FAR			0x60
230
#define ARM_SMMU_CB_FSYNR0		0x68
231
#define ARM_SMMU_CB_S1_TLBIVA		0x600
232
#define ARM_SMMU_CB_S1_TLBIASID		0x610
233 234 235
#define ARM_SMMU_CB_S1_TLBIVAL		0x620
#define ARM_SMMU_CB_S2_TLBIIPAS2	0x630
#define ARM_SMMU_CB_S2_TLBIIPAS2L	0x638
236
#define ARM_SMMU_CB_ATS1PR		0x800
237
#define ARM_SMMU_CB_ATSR		0x8f0
238 239 240 241 242 243 244 245 246 247

#define SCTLR_S1_ASIDPNE		(1 << 12)
#define SCTLR_CFCFG			(1 << 7)
#define SCTLR_CFIE			(1 << 6)
#define SCTLR_CFRE			(1 << 5)
#define SCTLR_E				(1 << 4)
#define SCTLR_AFE			(1 << 2)
#define SCTLR_TRE			(1 << 1)
#define SCTLR_M				(1 << 0)

248 249
#define ARM_MMU500_ACTLR_CPRE		(1 << 1)

250 251
#define ARM_MMU500_ACR_CACHE_LOCK	(1 << 26)

252 253 254 255
#define CB_PAR_F			(1 << 0)

#define ATSR_ACTIVE			(1 << 0)

256 257 258 259
#define RESUME_RETRY			(0 << 0)
#define RESUME_TERMINATE		(1 << 0)

#define TTBCR2_SEP_SHIFT		15
260
#define TTBCR2_SEP_UPSTREAM		(0x7 << TTBCR2_SEP_SHIFT)
261

262
#define TTBRn_ASID_SHIFT		48
263 264 265 266 267 268 269 270 271 272 273 274

#define FSR_MULTI			(1 << 31)
#define FSR_SS				(1 << 30)
#define FSR_UUT				(1 << 8)
#define FSR_ASF				(1 << 7)
#define FSR_TLBLKF			(1 << 6)
#define FSR_TLBMCF			(1 << 5)
#define FSR_EF				(1 << 4)
#define FSR_PF				(1 << 3)
#define FSR_AFF				(1 << 2)
#define FSR_TF				(1 << 1)

275 276 277
#define FSR_IGN				(FSR_AFF | FSR_ASF | \
					 FSR_TLBMCF | FSR_TLBLKF)
#define FSR_FAULT			(FSR_MULTI | FSR_SS | FSR_UUT | \
278
					 FSR_EF | FSR_PF | FSR_TF | FSR_IGN)
279 280 281

#define FSYNR0_WNR			(1 << 4)

282
static int force_stage;
283
module_param(force_stage, int, S_IRUGO);
284 285
MODULE_PARM_DESC(force_stage,
	"Force SMMU mappings to be installed at a particular stage of translation. A value of '1' or '2' forces the corresponding stage. All other values are ignored (i.e. no stage is forced). Note that selecting a specific stage will disable support for nested translation.");
286 287 288 289
static bool disable_bypass;
module_param(disable_bypass, bool, S_IRUGO);
MODULE_PARM_DESC(disable_bypass,
	"Disable bypass streams such that incoming transactions from devices that are not attached to an iommu domain will report an abort back to the device and will not be allowed to pass through the SMMU.");
290

291
enum arm_smmu_arch_version {
292 293
	ARM_SMMU_V1,
	ARM_SMMU_V1_64K,
294 295 296
	ARM_SMMU_V2,
};

297 298
enum arm_smmu_implementation {
	GENERIC_SMMU,
299
	ARM_MMU500,
300
	CAVIUM_SMMUV2,
301 302
};

303 304 305 306 307 308 309 310 311 312
struct arm_smmu_s2cr {
	enum arm_smmu_s2cr_type		type;
	enum arm_smmu_s2cr_privcfg	privcfg;
	u8				cbndx;
};

#define s2cr_init_val (struct arm_smmu_s2cr){				\
	.type = disable_bypass ? S2CR_TYPE_FAULT : S2CR_TYPE_BYPASS,	\
}

313 314 315
struct arm_smmu_smr {
	u16				mask;
	u16				id;
316
	bool				valid;
317 318
};

319
struct arm_smmu_master_cfg {
320 321
	int				num_streamids;
	u16				streamids[MAX_MASTER_STREAMIDS];
322
	s16				smendx[MAX_MASTER_STREAMIDS];
323
};
324
#define INVALID_SMENDX			-1
325

326 327 328 329 330 331
struct arm_smmu_master {
	struct device_node		*of_node;
	struct rb_node			node;
	struct arm_smmu_master_cfg	cfg;
};

332 333 334 335 336
struct arm_smmu_device {
	struct device			*dev;

	void __iomem			*base;
	unsigned long			size;
337
	unsigned long			pgshift;
338 339 340 341 342 343

#define ARM_SMMU_FEAT_COHERENT_WALK	(1 << 0)
#define ARM_SMMU_FEAT_STREAM_MATCH	(1 << 1)
#define ARM_SMMU_FEAT_TRANS_S1		(1 << 2)
#define ARM_SMMU_FEAT_TRANS_S2		(1 << 3)
#define ARM_SMMU_FEAT_TRANS_NESTED	(1 << 4)
344
#define ARM_SMMU_FEAT_TRANS_OPS		(1 << 5)
345
#define ARM_SMMU_FEAT_VMID16		(1 << 6)
346 347 348 349 350
#define ARM_SMMU_FEAT_FMT_AARCH64_4K	(1 << 7)
#define ARM_SMMU_FEAT_FMT_AARCH64_16K	(1 << 8)
#define ARM_SMMU_FEAT_FMT_AARCH64_64K	(1 << 9)
#define ARM_SMMU_FEAT_FMT_AARCH32_L	(1 << 10)
#define ARM_SMMU_FEAT_FMT_AARCH32_S	(1 << 11)
351
	u32				features;
352 353 354

#define ARM_SMMU_OPT_SECURE_CFG_ACCESS (1 << 0)
	u32				options;
355
	enum arm_smmu_arch_version	version;
356
	enum arm_smmu_implementation	model;
357 358 359 360 361 362 363

	u32				num_context_banks;
	u32				num_s2_context_banks;
	DECLARE_BITMAP(context_map, ARM_SMMU_MAX_CBS);
	atomic_t			irptndx;

	u32				num_mapping_groups;
364 365
	u16				streamid_mask;
	u16				smr_mask_mask;
366
	struct arm_smmu_smr		*smrs;
367
	struct arm_smmu_s2cr		*s2crs;
368

369 370 371
	unsigned long			va_size;
	unsigned long			ipa_size;
	unsigned long			pa_size;
372
	unsigned long			pgsize_bitmap;
373 374 375 376 377 378 379

	u32				num_global_irqs;
	u32				num_context_irqs;
	unsigned int			*irqs;

	struct list_head		list;
	struct rb_root			masters;
380 381

	u32				cavium_id_base; /* Specific to Cavium */
382 383
};

384 385 386 387 388
enum arm_smmu_context_fmt {
	ARM_SMMU_CTX_FMT_NONE,
	ARM_SMMU_CTX_FMT_AARCH64,
	ARM_SMMU_CTX_FMT_AARCH32_L,
	ARM_SMMU_CTX_FMT_AARCH32_S,
389 390 391 392 393 394
};

struct arm_smmu_cfg {
	u8				cbndx;
	u8				irptndx;
	u32				cbar;
395
	enum arm_smmu_context_fmt	fmt;
396
};
397
#define INVALID_IRPTNDX			0xff
398

399 400
#define ARM_SMMU_CB_ASID(smmu, cfg) ((u16)(smmu)->cavium_id_base + (cfg)->cbndx)
#define ARM_SMMU_CB_VMID(smmu, cfg) ((u16)(smmu)->cavium_id_base + (cfg)->cbndx + 1)
401

402 403 404 405 406 407
enum arm_smmu_domain_stage {
	ARM_SMMU_DOMAIN_S1 = 0,
	ARM_SMMU_DOMAIN_S2,
	ARM_SMMU_DOMAIN_NESTED,
};

408
struct arm_smmu_domain {
409
	struct arm_smmu_device		*smmu;
410 411
	struct io_pgtable_ops		*pgtbl_ops;
	spinlock_t			pgtbl_lock;
412
	struct arm_smmu_cfg		cfg;
413
	enum arm_smmu_domain_stage	stage;
414
	struct mutex			init_mutex; /* Protects smmu pointer */
415
	struct iommu_domain		domain;
416 417
};

418 419 420 421 422 423
struct arm_smmu_phandle_args {
	struct device_node *np;
	int args_count;
	uint32_t args[MAX_MASTER_STREAMIDS];
};

424 425 426
static DEFINE_SPINLOCK(arm_smmu_devices_lock);
static LIST_HEAD(arm_smmu_devices);

427 428 429 430 431
struct arm_smmu_option_prop {
	u32 opt;
	const char *prop;
};

432 433
static atomic_t cavium_smmu_context_count = ATOMIC_INIT(0);

434
static struct arm_smmu_option_prop arm_smmu_options[] = {
435 436 437 438
	{ ARM_SMMU_OPT_SECURE_CFG_ACCESS, "calxeda,smmu-secure-config-access" },
	{ 0, NULL},
};

439 440 441 442 443
static struct arm_smmu_domain *to_smmu_domain(struct iommu_domain *dom)
{
	return container_of(dom, struct arm_smmu_domain, domain);
}

444 445 446
static void parse_driver_options(struct arm_smmu_device *smmu)
{
	int i = 0;
447

448 449 450 451 452 453 454 455 456 457
	do {
		if (of_property_read_bool(smmu->dev->of_node,
						arm_smmu_options[i].prop)) {
			smmu->options |= arm_smmu_options[i].opt;
			dev_notice(smmu->dev, "option %s\n",
				arm_smmu_options[i].prop);
		}
	} while (arm_smmu_options[++i].opt);
}

458
static struct device_node *dev_get_dev_node(struct device *dev)
459 460 461
{
	if (dev_is_pci(dev)) {
		struct pci_bus *bus = to_pci_dev(dev)->bus;
462

463 464
		while (!pci_is_root_bus(bus))
			bus = bus->parent;
465
		return bus->bridge->parent->of_node;
466 467
	}

468
	return dev->of_node;
469 470
}

471 472 473 474 475 476 477
static struct arm_smmu_master *find_smmu_master(struct arm_smmu_device *smmu,
						struct device_node *dev_node)
{
	struct rb_node *node = smmu->masters.rb_node;

	while (node) {
		struct arm_smmu_master *master;
478

479 480 481 482 483 484 485 486 487 488 489 490 491
		master = container_of(node, struct arm_smmu_master, node);

		if (dev_node < master->of_node)
			node = node->rb_left;
		else if (dev_node > master->of_node)
			node = node->rb_right;
		else
			return master;
	}

	return NULL;
}

492
static struct arm_smmu_master_cfg *
493
find_smmu_master_cfg(struct device *dev)
494
{
495 496
	struct arm_smmu_master_cfg *cfg = NULL;
	struct iommu_group *group = iommu_group_get(dev);
497

498 499 500 501
	if (group) {
		cfg = iommu_group_get_iommudata(group);
		iommu_group_put(group);
	}
502

503
	return cfg;
504 505
}

506 507 508 509 510 511 512 513
static int insert_smmu_master(struct arm_smmu_device *smmu,
			      struct arm_smmu_master *master)
{
	struct rb_node **new, *parent;

	new = &smmu->masters.rb_node;
	parent = NULL;
	while (*new) {
514 515
		struct arm_smmu_master *this
			= container_of(*new, struct arm_smmu_master, node);
516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532

		parent = *new;
		if (master->of_node < this->of_node)
			new = &((*new)->rb_left);
		else if (master->of_node > this->of_node)
			new = &((*new)->rb_right);
		else
			return -EEXIST;
	}

	rb_link_node(&master->node, parent, new);
	rb_insert_color(&master->node, &smmu->masters);
	return 0;
}

static int register_smmu_master(struct arm_smmu_device *smmu,
				struct device *dev,
533
				struct arm_smmu_phandle_args *masterspec)
534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556
{
	int i;
	struct arm_smmu_master *master;

	master = find_smmu_master(smmu, masterspec->np);
	if (master) {
		dev_err(dev,
			"rejecting multiple registrations for master device %s\n",
			masterspec->np->name);
		return -EBUSY;
	}

	if (masterspec->args_count > MAX_MASTER_STREAMIDS) {
		dev_err(dev,
			"reached maximum number (%d) of stream IDs for master device %s\n",
			MAX_MASTER_STREAMIDS, masterspec->np->name);
		return -ENOSPC;
	}

	master = devm_kzalloc(dev, sizeof(*master), GFP_KERNEL);
	if (!master)
		return -ENOMEM;

557 558
	master->of_node			= masterspec->np;
	master->cfg.num_streamids	= masterspec->args_count;
559

560 561
	for (i = 0; i < master->cfg.num_streamids; ++i) {
		u16 streamid = masterspec->args[i];
562

563 564 565 566 567 568 569 570
		if (!(smmu->features & ARM_SMMU_FEAT_STREAM_MATCH) &&
		     (streamid >= smmu->num_mapping_groups)) {
			dev_err(dev,
				"stream ID for master device %s greater than maximum allowed (%d)\n",
				masterspec->np->name, smmu->num_mapping_groups);
			return -ERANGE;
		}
		master->cfg.streamids[i] = streamid;
571
		master->cfg.smendx[i] = INVALID_SMENDX;
572
	}
573 574 575
	return insert_smmu_master(smmu, master);
}

576
static struct arm_smmu_device *find_smmu_for_device(struct device *dev)
577
{
578
	struct arm_smmu_device *smmu;
579
	struct arm_smmu_master *master = NULL;
580
	struct device_node *dev_node = dev_get_dev_node(dev);
581 582

	spin_lock(&arm_smmu_devices_lock);
583
	list_for_each_entry(smmu, &arm_smmu_devices, list) {
584 585 586 587
		master = find_smmu_master(smmu, dev_node);
		if (master)
			break;
	}
588
	spin_unlock(&arm_smmu_devices_lock);
589

590
	return master ? smmu : NULL;
591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611
}

static int __arm_smmu_alloc_bitmap(unsigned long *map, int start, int end)
{
	int idx;

	do {
		idx = find_next_zero_bit(map, end, start);
		if (idx == end)
			return -ENOSPC;
	} while (test_and_set_bit(idx, map));

	return idx;
}

static void __arm_smmu_free_bitmap(unsigned long *map, int idx)
{
	clear_bit(idx, map);
}

/* Wait for any pending TLB invalidations to complete */
612
static void __arm_smmu_tlb_sync(struct arm_smmu_device *smmu)
613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629
{
	int count = 0;
	void __iomem *gr0_base = ARM_SMMU_GR0(smmu);

	writel_relaxed(0, gr0_base + ARM_SMMU_GR0_sTLBGSYNC);
	while (readl_relaxed(gr0_base + ARM_SMMU_GR0_sTLBGSTATUS)
	       & sTLBGSTATUS_GSACTIVE) {
		cpu_relax();
		if (++count == TLB_LOOP_TIMEOUT) {
			dev_err_ratelimited(smmu->dev,
			"TLB sync timed out -- SMMU may be deadlocked\n");
			return;
		}
		udelay(1);
	}
}

630 631 632 633 634 635 636
static void arm_smmu_tlb_sync(void *cookie)
{
	struct arm_smmu_domain *smmu_domain = cookie;
	__arm_smmu_tlb_sync(smmu_domain->smmu);
}

static void arm_smmu_tlb_inv_context(void *cookie)
637
{
638
	struct arm_smmu_domain *smmu_domain = cookie;
639 640
	struct arm_smmu_cfg *cfg = &smmu_domain->cfg;
	struct arm_smmu_device *smmu = smmu_domain->smmu;
641
	bool stage1 = cfg->cbar != CBAR_TYPE_S2_TRANS;
642
	void __iomem *base;
643 644 645

	if (stage1) {
		base = ARM_SMMU_CB_BASE(smmu) + ARM_SMMU_CB(smmu, cfg->cbndx);
646
		writel_relaxed(ARM_SMMU_CB_ASID(smmu, cfg),
647
			       base + ARM_SMMU_CB_S1_TLBIASID);
648 649
	} else {
		base = ARM_SMMU_GR0(smmu);
650
		writel_relaxed(ARM_SMMU_CB_VMID(smmu, cfg),
651
			       base + ARM_SMMU_GR0_TLBIVMID);
652 653
	}

654 655 656 657
	__arm_smmu_tlb_sync(smmu);
}

static void arm_smmu_tlb_inv_range_nosync(unsigned long iova, size_t size,
658
					  size_t granule, bool leaf, void *cookie)
659 660 661 662 663 664 665 666 667 668 669
{
	struct arm_smmu_domain *smmu_domain = cookie;
	struct arm_smmu_cfg *cfg = &smmu_domain->cfg;
	struct arm_smmu_device *smmu = smmu_domain->smmu;
	bool stage1 = cfg->cbar != CBAR_TYPE_S2_TRANS;
	void __iomem *reg;

	if (stage1) {
		reg = ARM_SMMU_CB_BASE(smmu) + ARM_SMMU_CB(smmu, cfg->cbndx);
		reg += leaf ? ARM_SMMU_CB_S1_TLBIVAL : ARM_SMMU_CB_S1_TLBIVA;

670
		if (cfg->fmt != ARM_SMMU_CTX_FMT_AARCH64) {
671
			iova &= ~12UL;
672
			iova |= ARM_SMMU_CB_ASID(smmu, cfg);
673 674 675 676
			do {
				writel_relaxed(iova, reg);
				iova += granule;
			} while (size -= granule);
677 678
		} else {
			iova >>= 12;
679
			iova |= (u64)ARM_SMMU_CB_ASID(smmu, cfg) << 48;
680 681 682 683
			do {
				writeq_relaxed(iova, reg);
				iova += granule >> 12;
			} while (size -= granule);
684 685 686 687 688
		}
	} else if (smmu->version == ARM_SMMU_V2) {
		reg = ARM_SMMU_CB_BASE(smmu) + ARM_SMMU_CB(smmu, cfg->cbndx);
		reg += leaf ? ARM_SMMU_CB_S2_TLBIIPAS2L :
			      ARM_SMMU_CB_S2_TLBIIPAS2;
689 690
		iova >>= 12;
		do {
691
			smmu_write_atomic_lq(iova, reg);
692 693
			iova += granule >> 12;
		} while (size -= granule);
694 695
	} else {
		reg = ARM_SMMU_GR0(smmu) + ARM_SMMU_GR0_TLBIVMID;
696
		writel_relaxed(ARM_SMMU_CB_VMID(smmu, cfg), reg);
697 698 699 700 701 702 703 704 705
	}
}

static struct iommu_gather_ops arm_smmu_gather_ops = {
	.tlb_flush_all	= arm_smmu_tlb_inv_context,
	.tlb_add_flush	= arm_smmu_tlb_inv_range_nosync,
	.tlb_sync	= arm_smmu_tlb_sync,
};

706 707
static irqreturn_t arm_smmu_context_fault(int irq, void *dev)
{
708
	u32 fsr, fsynr;
709 710
	unsigned long iova;
	struct iommu_domain *domain = dev;
711
	struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
712 713
	struct arm_smmu_cfg *cfg = &smmu_domain->cfg;
	struct arm_smmu_device *smmu = smmu_domain->smmu;
714 715
	void __iomem *cb_base;

716
	cb_base = ARM_SMMU_CB_BASE(smmu) + ARM_SMMU_CB(smmu, cfg->cbndx);
717 718 719 720 721 722
	fsr = readl_relaxed(cb_base + ARM_SMMU_CB_FSR);

	if (!(fsr & FSR_FAULT))
		return IRQ_NONE;

	fsynr = readl_relaxed(cb_base + ARM_SMMU_CB_FSYNR0);
723
	iova = readq_relaxed(cb_base + ARM_SMMU_CB_FAR);
724

725 726 727
	dev_err_ratelimited(smmu->dev,
	"Unhandled context fault: fsr=0x%x, iova=0x%08lx, fsynr=0x%x, cb=%d\n",
			    fsr, iova, fsynr, cfg->cbndx);
728

729 730
	writel(fsr, cb_base + ARM_SMMU_CB_FSR);
	return IRQ_HANDLED;
731 732 733 734 735 736
}

static irqreturn_t arm_smmu_global_fault(int irq, void *dev)
{
	u32 gfsr, gfsynr0, gfsynr1, gfsynr2;
	struct arm_smmu_device *smmu = dev;
737
	void __iomem *gr0_base = ARM_SMMU_GR0_NS(smmu);
738 739 740 741 742 743

	gfsr = readl_relaxed(gr0_base + ARM_SMMU_GR0_sGFSR);
	gfsynr0 = readl_relaxed(gr0_base + ARM_SMMU_GR0_sGFSYNR0);
	gfsynr1 = readl_relaxed(gr0_base + ARM_SMMU_GR0_sGFSYNR1);
	gfsynr2 = readl_relaxed(gr0_base + ARM_SMMU_GR0_sGFSYNR2);

744 745 746
	if (!gfsr)
		return IRQ_NONE;

747 748 749 750 751 752 753
	dev_err_ratelimited(smmu->dev,
		"Unexpected global fault, this could be serious\n");
	dev_err_ratelimited(smmu->dev,
		"\tGFSR 0x%08x, GFSYNR0 0x%08x, GFSYNR1 0x%08x, GFSYNR2 0x%08x\n",
		gfsr, gfsynr0, gfsynr1, gfsynr2);

	writel(gfsr, gr0_base + ARM_SMMU_GR0_sGFSR);
754
	return IRQ_HANDLED;
755 756
}

757 758
static void arm_smmu_init_context_bank(struct arm_smmu_domain *smmu_domain,
				       struct io_pgtable_cfg *pgtbl_cfg)
759
{
760
	u32 reg, reg2;
761
	u64 reg64;
762
	bool stage1;
763 764
	struct arm_smmu_cfg *cfg = &smmu_domain->cfg;
	struct arm_smmu_device *smmu = smmu_domain->smmu;
765
	void __iomem *cb_base, *gr1_base;
766 767

	gr1_base = ARM_SMMU_GR1(smmu);
768 769
	stage1 = cfg->cbar != CBAR_TYPE_S2_TRANS;
	cb_base = ARM_SMMU_CB_BASE(smmu) + ARM_SMMU_CB(smmu, cfg->cbndx);
770

771
	if (smmu->version > ARM_SMMU_V1) {
772 773 774 775
		if (cfg->fmt == ARM_SMMU_CTX_FMT_AARCH64)
			reg = CBA2R_RW64_64BIT;
		else
			reg = CBA2R_RW64_32BIT;
776 777
		/* 16-bit VMIDs live in CBA2R */
		if (smmu->features & ARM_SMMU_FEAT_VMID16)
778
			reg |= ARM_SMMU_CB_VMID(smmu, cfg) << CBA2R_VMID_SHIFT;
779

780 781 782
		writel_relaxed(reg, gr1_base + ARM_SMMU_GR1_CBA2R(cfg->cbndx));
	}

783
	/* CBAR */
784
	reg = cfg->cbar;
785
	if (smmu->version < ARM_SMMU_V2)
786
		reg |= cfg->irptndx << CBAR_IRPTNDX_SHIFT;
787

788 789 790 791 792 793 794
	/*
	 * Use the weakest shareability/memory types, so they are
	 * overridden by the ttbcr/pte.
	 */
	if (stage1) {
		reg |= (CBAR_S1_BPSHCFG_NSH << CBAR_S1_BPSHCFG_SHIFT) |
			(CBAR_S1_MEMATTR_WB << CBAR_S1_MEMATTR_SHIFT);
795 796
	} else if (!(smmu->features & ARM_SMMU_FEAT_VMID16)) {
		/* 8-bit VMIDs live in CBAR */
797
		reg |= ARM_SMMU_CB_VMID(smmu, cfg) << CBAR_VMID_SHIFT;
798
	}
799
	writel_relaxed(reg, gr1_base + ARM_SMMU_GR1_CBAR(cfg->cbndx));
800

801 802
	/* TTBRs */
	if (stage1) {
803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818
		u16 asid = ARM_SMMU_CB_ASID(smmu, cfg);

		if (cfg->fmt == ARM_SMMU_CTX_FMT_AARCH32_S) {
			reg = pgtbl_cfg->arm_v7s_cfg.ttbr[0];
			writel_relaxed(reg, cb_base + ARM_SMMU_CB_TTBR0);
			reg = pgtbl_cfg->arm_v7s_cfg.ttbr[1];
			writel_relaxed(reg, cb_base + ARM_SMMU_CB_TTBR1);
			writel_relaxed(asid, cb_base + ARM_SMMU_CB_CONTEXTIDR);
		} else {
			reg64 = pgtbl_cfg->arm_lpae_s1_cfg.ttbr[0];
			reg64 |= (u64)asid << TTBRn_ASID_SHIFT;
			writeq_relaxed(reg64, cb_base + ARM_SMMU_CB_TTBR0);
			reg64 = pgtbl_cfg->arm_lpae_s1_cfg.ttbr[1];
			reg64 |= (u64)asid << TTBRn_ASID_SHIFT;
			writeq_relaxed(reg64, cb_base + ARM_SMMU_CB_TTBR1);
		}
819
	} else {
820
		reg64 = pgtbl_cfg->arm_lpae_s2_cfg.vttbr;
821
		writeq_relaxed(reg64, cb_base + ARM_SMMU_CB_TTBR0);
822
	}
823

824 825
	/* TTBCR */
	if (stage1) {
826 827 828 829 830 831 832
		if (cfg->fmt == ARM_SMMU_CTX_FMT_AARCH32_S) {
			reg = pgtbl_cfg->arm_v7s_cfg.tcr;
			reg2 = 0;
		} else {
			reg = pgtbl_cfg->arm_lpae_s1_cfg.tcr;
			reg2 = pgtbl_cfg->arm_lpae_s1_cfg.tcr >> 32;
			reg2 |= TTBCR2_SEP_UPSTREAM;
833
		}
834 835
		if (smmu->version > ARM_SMMU_V1)
			writel_relaxed(reg2, cb_base + ARM_SMMU_CB_TTBCR2);
836
	} else {
837
		reg = pgtbl_cfg->arm_lpae_s2_cfg.vtcr;
838
	}
839
	writel_relaxed(reg, cb_base + ARM_SMMU_CB_TTBCR);
840

841
	/* MAIRs (stage-1 only) */
842
	if (stage1) {
843 844 845 846 847 848 849
		if (cfg->fmt == ARM_SMMU_CTX_FMT_AARCH32_S) {
			reg = pgtbl_cfg->arm_v7s_cfg.prrr;
			reg2 = pgtbl_cfg->arm_v7s_cfg.nmrr;
		} else {
			reg = pgtbl_cfg->arm_lpae_s1_cfg.mair[0];
			reg2 = pgtbl_cfg->arm_lpae_s1_cfg.mair[1];
		}
850
		writel_relaxed(reg, cb_base + ARM_SMMU_CB_S1_MAIR0);
851
		writel_relaxed(reg2, cb_base + ARM_SMMU_CB_S1_MAIR1);
852 853 854
	}

	/* SCTLR */
855
	reg = SCTLR_CFIE | SCTLR_CFRE | SCTLR_AFE | SCTLR_TRE | SCTLR_M;
856 857 858 859 860
	if (stage1)
		reg |= SCTLR_S1_ASIDPNE;
#ifdef __BIG_ENDIAN
	reg |= SCTLR_E;
#endif
861
	writel_relaxed(reg, cb_base + ARM_SMMU_CB_SCTLR);
862 863 864
}

static int arm_smmu_init_domain_context(struct iommu_domain *domain,
865
					struct arm_smmu_device *smmu)
866
{
867
	int irq, start, ret = 0;
868 869 870 871
	unsigned long ias, oas;
	struct io_pgtable_ops *pgtbl_ops;
	struct io_pgtable_cfg pgtbl_cfg;
	enum io_pgtable_fmt fmt;
872
	struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
873
	struct arm_smmu_cfg *cfg = &smmu_domain->cfg;
874

875
	mutex_lock(&smmu_domain->init_mutex);
876 877 878
	if (smmu_domain->smmu)
		goto out_unlock;

879 880 881 882 883 884
	/* We're bypassing these SIDs, so don't allocate an actual context */
	if (domain->type == IOMMU_DOMAIN_DMA) {
		smmu_domain->smmu = smmu;
		goto out_unlock;
	}

885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907
	/*
	 * Mapping the requested stage onto what we support is surprisingly
	 * complicated, mainly because the spec allows S1+S2 SMMUs without
	 * support for nested translation. That means we end up with the
	 * following table:
	 *
	 * Requested        Supported        Actual
	 *     S1               N              S1
	 *     S1             S1+S2            S1
	 *     S1               S2             S2
	 *     S1               S1             S1
	 *     N                N              N
	 *     N              S1+S2            S2
	 *     N                S2             S2
	 *     N                S1             S1
	 *
	 * Note that you can't actually request stage-2 mappings.
	 */
	if (!(smmu->features & ARM_SMMU_FEAT_TRANS_S1))
		smmu_domain->stage = ARM_SMMU_DOMAIN_S2;
	if (!(smmu->features & ARM_SMMU_FEAT_TRANS_S2))
		smmu_domain->stage = ARM_SMMU_DOMAIN_S1;

908 909 910 911 912 913 914 915 916 917
	/*
	 * Choosing a suitable context format is even more fiddly. Until we
	 * grow some way for the caller to express a preference, and/or move
	 * the decision into the io-pgtable code where it arguably belongs,
	 * just aim for the closest thing to the rest of the system, and hope
	 * that the hardware isn't esoteric enough that we can't assume AArch64
	 * support to be a superset of AArch32 support...
	 */
	if (smmu->features & ARM_SMMU_FEAT_FMT_AARCH32_L)
		cfg->fmt = ARM_SMMU_CTX_FMT_AARCH32_L;
918 919 920 921 922
	if (IS_ENABLED(CONFIG_IOMMU_IO_PGTABLE_ARMV7S) &&
	    !IS_ENABLED(CONFIG_64BIT) && !IS_ENABLED(CONFIG_ARM_LPAE) &&
	    (smmu->features & ARM_SMMU_FEAT_FMT_AARCH32_S) &&
	    (smmu_domain->stage == ARM_SMMU_DOMAIN_S1))
		cfg->fmt = ARM_SMMU_CTX_FMT_AARCH32_S;
923 924 925 926 927 928 929 930 931 932 933
	if ((IS_ENABLED(CONFIG_64BIT) || cfg->fmt == ARM_SMMU_CTX_FMT_NONE) &&
	    (smmu->features & (ARM_SMMU_FEAT_FMT_AARCH64_64K |
			       ARM_SMMU_FEAT_FMT_AARCH64_16K |
			       ARM_SMMU_FEAT_FMT_AARCH64_4K)))
		cfg->fmt = ARM_SMMU_CTX_FMT_AARCH64;

	if (cfg->fmt == ARM_SMMU_CTX_FMT_NONE) {
		ret = -EINVAL;
		goto out_unlock;
	}

934 935 936 937
	switch (smmu_domain->stage) {
	case ARM_SMMU_DOMAIN_S1:
		cfg->cbar = CBAR_TYPE_S1_TRANS_S2_BYPASS;
		start = smmu->num_s2_context_banks;
938 939
		ias = smmu->va_size;
		oas = smmu->ipa_size;
940
		if (cfg->fmt == ARM_SMMU_CTX_FMT_AARCH64) {
941
			fmt = ARM_64_LPAE_S1;
942
		} else if (cfg->fmt == ARM_SMMU_CTX_FMT_AARCH32_L) {
943
			fmt = ARM_32_LPAE_S1;
944 945
			ias = min(ias, 32UL);
			oas = min(oas, 40UL);
946 947 948 949
		} else {
			fmt = ARM_V7S;
			ias = min(ias, 32UL);
			oas = min(oas, 32UL);
950
		}
951 952
		break;
	case ARM_SMMU_DOMAIN_NESTED:
953 954 955 956
		/*
		 * We will likely want to change this if/when KVM gets
		 * involved.
		 */
957
	case ARM_SMMU_DOMAIN_S2:
958 959
		cfg->cbar = CBAR_TYPE_S2_TRANS;
		start = 0;
960 961
		ias = smmu->ipa_size;
		oas = smmu->pa_size;
962
		if (cfg->fmt == ARM_SMMU_CTX_FMT_AARCH64) {
963
			fmt = ARM_64_LPAE_S2;
964
		} else {
965
			fmt = ARM_32_LPAE_S2;
966 967 968
			ias = min(ias, 40UL);
			oas = min(oas, 40UL);
		}
969 970 971 972
		break;
	default:
		ret = -EINVAL;
		goto out_unlock;
973 974 975 976
	}

	ret = __arm_smmu_alloc_bitmap(smmu->context_map, start,
				      smmu->num_context_banks);
977
	if (ret < 0)
978
		goto out_unlock;
979

980
	cfg->cbndx = ret;
981
	if (smmu->version < ARM_SMMU_V2) {
982 983
		cfg->irptndx = atomic_inc_return(&smmu->irptndx);
		cfg->irptndx %= smmu->num_context_irqs;
984
	} else {
985
		cfg->irptndx = cfg->cbndx;
986 987
	}

988
	pgtbl_cfg = (struct io_pgtable_cfg) {
989
		.pgsize_bitmap	= smmu->pgsize_bitmap,
990 991 992
		.ias		= ias,
		.oas		= oas,
		.tlb		= &arm_smmu_gather_ops,
993
		.iommu_dev	= smmu->dev,
994 995 996 997 998 999 1000 1001 1002
	};

	smmu_domain->smmu = smmu;
	pgtbl_ops = alloc_io_pgtable_ops(fmt, &pgtbl_cfg, smmu_domain);
	if (!pgtbl_ops) {
		ret = -ENOMEM;
		goto out_clear_smmu;
	}

1003 1004
	/* Update the domain's page sizes to reflect the page table format */
	domain->pgsize_bitmap = pgtbl_cfg.pgsize_bitmap;
1005

1006 1007 1008 1009 1010 1011 1012
	/* Initialise the context bank with our page table cfg */
	arm_smmu_init_context_bank(smmu_domain, &pgtbl_cfg);

	/*
	 * Request context fault interrupt. Do this last to avoid the
	 * handler seeing a half-initialised domain state.
	 */
1013
	irq = smmu->irqs[smmu->num_global_irqs + cfg->irptndx];
1014 1015
	ret = devm_request_irq(smmu->dev, irq, arm_smmu_context_fault,
			       IRQF_SHARED, "arm-smmu-context-fault", domain);
1016
	if (ret < 0) {
1017
		dev_err(smmu->dev, "failed to request context IRQ %d (%u)\n",
1018 1019
			cfg->irptndx, irq);
		cfg->irptndx = INVALID_IRPTNDX;
1020 1021
	}

1022 1023 1024 1025
	mutex_unlock(&smmu_domain->init_mutex);

	/* Publish page table ops for map/unmap */
	smmu_domain->pgtbl_ops = pgtbl_ops;
1026
	return 0;
1027

1028 1029
out_clear_smmu:
	smmu_domain->smmu = NULL;
1030
out_unlock:
1031
	mutex_unlock(&smmu_domain->init_mutex);
1032 1033 1034 1035 1036
	return ret;
}

static void arm_smmu_destroy_domain_context(struct iommu_domain *domain)
{
1037
	struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1038 1039
	struct arm_smmu_device *smmu = smmu_domain->smmu;
	struct arm_smmu_cfg *cfg = &smmu_domain->cfg;
1040
	void __iomem *cb_base;
1041 1042
	int irq;

1043
	if (!smmu || domain->type == IOMMU_DOMAIN_DMA)
1044 1045
		return;

1046 1047 1048 1049
	/*
	 * Disable the context bank and free the page tables before freeing
	 * it.
	 */
1050
	cb_base = ARM_SMMU_CB_BASE(smmu) + ARM_SMMU_CB(smmu, cfg->cbndx);
1051 1052
	writel_relaxed(0, cb_base + ARM_SMMU_CB_SCTLR);

1053 1054
	if (cfg->irptndx != INVALID_IRPTNDX) {
		irq = smmu->irqs[smmu->num_global_irqs + cfg->irptndx];
1055
		devm_free_irq(smmu->dev, irq, domain);
1056 1057
	}

1058
	free_io_pgtable_ops(smmu_domain->pgtbl_ops);
1059
	__arm_smmu_free_bitmap(smmu->context_map, cfg->cbndx);
1060 1061
}

1062
static struct iommu_domain *arm_smmu_domain_alloc(unsigned type)
1063 1064 1065
{
	struct arm_smmu_domain *smmu_domain;

1066
	if (type != IOMMU_DOMAIN_UNMANAGED && type != IOMMU_DOMAIN_DMA)
1067
		return NULL;
1068 1069 1070 1071 1072 1073 1074
	/*
	 * Allocate the domain and initialise some of its data structures.
	 * We can't really do anything meaningful until we've added a
	 * master.
	 */
	smmu_domain = kzalloc(sizeof(*smmu_domain), GFP_KERNEL);
	if (!smmu_domain)
1075
		return NULL;
1076

1077 1078 1079 1080 1081 1082
	if (type == IOMMU_DOMAIN_DMA &&
	    iommu_get_dma_cookie(&smmu_domain->domain)) {
		kfree(smmu_domain);
		return NULL;
	}

1083 1084
	mutex_init(&smmu_domain->init_mutex);
	spin_lock_init(&smmu_domain->pgtbl_lock);
1085 1086

	return &smmu_domain->domain;
1087 1088
}

1089
static void arm_smmu_domain_free(struct iommu_domain *domain)
1090
{
1091
	struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1092 1093 1094 1095 1096

	/*
	 * Free the domain resources. We assume that all devices have
	 * already been detached.
	 */
1097
	iommu_put_dma_cookie(domain);
1098 1099 1100 1101
	arm_smmu_destroy_domain_context(domain);
	kfree(smmu_domain);
}

1102
static int arm_smmu_alloc_smr(struct arm_smmu_device *smmu)
1103 1104 1105
{
	int i;

1106 1107 1108
	for (i = 0; i < smmu->num_mapping_groups; i++)
		if (!cmpxchg(&smmu->smrs[i].valid, false, true))
			return i;
1109

1110 1111
	return INVALID_SMENDX;
}
1112

1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129
static void arm_smmu_free_smr(struct arm_smmu_device *smmu, int idx)
{
	writel_relaxed(~SMR_VALID, ARM_SMMU_GR0(smmu) + ARM_SMMU_GR0_SMR(idx));
	WRITE_ONCE(smmu->smrs[idx].valid, false);
}

static void arm_smmu_write_smr(struct arm_smmu_device *smmu, int idx)
{
	struct arm_smmu_smr *smr = smmu->smrs + idx;
	u32 reg = (smr->id & smmu->streamid_mask) << SMR_ID_SHIFT |
		  (smr->mask & smmu->smr_mask_mask) << SMR_MASK_SHIFT;

	if (smr->valid)
		reg |= SMR_VALID;
	writel_relaxed(reg, ARM_SMMU_GR0(smmu) + ARM_SMMU_GR0_SMR(idx));
}

1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146
static void arm_smmu_write_s2cr(struct arm_smmu_device *smmu, int idx)
{
	struct arm_smmu_s2cr *s2cr = smmu->s2crs + idx;
	u32 reg = (s2cr->type & S2CR_TYPE_MASK) << S2CR_TYPE_SHIFT |
		  (s2cr->cbndx & S2CR_CBNDX_MASK) << S2CR_CBNDX_SHIFT |
		  (s2cr->privcfg & S2CR_PRIVCFG_MASK) << S2CR_PRIVCFG_SHIFT;

	writel_relaxed(reg, ARM_SMMU_GR0(smmu) + ARM_SMMU_GR0_S2CR(idx));
}

static void arm_smmu_write_sme(struct arm_smmu_device *smmu, int idx)
{
	arm_smmu_write_s2cr(smmu, idx);
	if (smmu->smrs)
		arm_smmu_write_smr(smmu, idx);
}

1147 1148 1149 1150 1151
static int arm_smmu_master_alloc_smes(struct arm_smmu_device *smmu,
				      struct arm_smmu_master_cfg *cfg)
{
	struct arm_smmu_smr *smrs = smmu->smrs;
	int i, idx;
1152

1153
	/* Allocate the SMRs on the SMMU */
1154
	for (i = 0; i < cfg->num_streamids; ++i) {
1155 1156 1157 1158 1159 1160 1161 1162 1163 1164
		if (cfg->smendx[i] != INVALID_SMENDX)
			return -EEXIST;

		/* ...except on stream indexing hardware, of course */
		if (!smrs) {
			cfg->smendx[i] = cfg->streamids[i];
			continue;
		}

		idx = arm_smmu_alloc_smr(smmu);
1165
		if (idx < 0) {
1166 1167 1168
			dev_err(smmu->dev, "failed to allocate free SMR\n");
			goto err_free_smrs;
		}
1169
		cfg->smendx[i] = idx;
1170

1171 1172
		smrs[idx].id = cfg->streamids[i];
		smrs[idx].mask = 0; /* We don't currently share SMRs */
1173 1174
	}

1175 1176 1177
	if (!smrs)
		return 0;

1178
	/* It worked! Now, poke the actual hardware */
1179 1180
	for (i = 0; i < cfg->num_streamids; ++i)
		arm_smmu_write_smr(smmu, cfg->smendx[i]);
1181 1182 1183 1184

	return 0;

err_free_smrs:
1185 1186 1187 1188
	while (i--) {
		arm_smmu_free_smr(smmu, cfg->smendx[i]);
		cfg->smendx[i] = INVALID_SMENDX;
	}
1189 1190 1191
	return -ENOSPC;
}

1192
static void arm_smmu_master_free_smes(struct arm_smmu_device *smmu,
1193
				      struct arm_smmu_master_cfg *cfg)
1194 1195
{
	int i;
1196

1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213
	/*
	 * We *must* clear the S2CR first, because freeing the SMR means
	 * that it can be re-allocated immediately.
	 */
	for (i = 0; i < cfg->num_streamids; ++i) {
		int idx = cfg->smendx[i];

		/* An IOMMU group is torn down by the first device to be removed */
		if (idx == INVALID_SMENDX)
			return;

		smmu->s2crs[idx] = s2cr_init_val;
		arm_smmu_write_s2cr(smmu, idx);
	}
	/* Sync S2CR updates before touching anything else */
	__iowmb();

1214
	/* Invalidate the SMRs before freeing back to the allocator */
1215
	for (i = 0; i < cfg->num_streamids; ++i) {
1216 1217
		if (smmu->smrs)
			arm_smmu_free_smr(smmu, cfg->smendx[i]);
1218

1219
		cfg->smendx[i] = INVALID_SMENDX;
1220 1221 1222 1223
	}
}

static int arm_smmu_domain_add_master(struct arm_smmu_domain *smmu_domain,
1224
				      struct arm_smmu_master_cfg *cfg)
1225
{
1226
	int i, ret = 0;
1227
	struct arm_smmu_device *smmu = smmu_domain->smmu;
1228 1229 1230 1231 1232 1233 1234 1235
	struct arm_smmu_s2cr *s2cr = smmu->s2crs;
	enum arm_smmu_s2cr_type type = S2CR_TYPE_TRANS;
	u8 cbndx = smmu_domain->cfg.cbndx;

	if (cfg->smendx[0] == INVALID_SMENDX)
		ret = arm_smmu_master_alloc_smes(smmu, cfg);
	if (ret)
		return ret;
1236

1237 1238
	/*
	 * FIXME: This won't be needed once we have IOMMU-backed DMA ops
1239 1240 1241
	 * for all devices behind the SMMU. Note that we need to take
	 * care configuring SMRs for devices both a platform_device and
	 * and a PCI device (i.e. a PCI host controller)
1242 1243
	 */
	if (smmu_domain->domain.type == IOMMU_DOMAIN_DMA)
1244
		type = S2CR_TYPE_BYPASS;
1245

1246
	for (i = 0; i < cfg->num_streamids; ++i) {
1247
		int idx = cfg->smendx[i];
1248

1249 1250 1251
		/* Devices in an IOMMU group may already be configured */
		if (type == s2cr[idx].type && cbndx == s2cr[idx].cbndx)
			break;
1252

1253 1254 1255 1256
		s2cr[idx].type = type;
		s2cr[idx].privcfg = S2CR_PRIVCFG_UNPRIV;
		s2cr[idx].cbndx = cbndx;
		arm_smmu_write_s2cr(smmu, idx);
1257
	}
1258
	return 0;
1259 1260
}

1261 1262
static int arm_smmu_attach_dev(struct iommu_domain *domain, struct device *dev)
{
1263
	int ret;
1264
	struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1265
	struct arm_smmu_device *smmu;
1266
	struct arm_smmu_master_cfg *cfg;
1267

1268
	smmu = find_smmu_for_device(dev);
1269
	if (!smmu) {
1270 1271 1272 1273
		dev_err(dev, "cannot attach to SMMU, is it on the same bus?\n");
		return -ENXIO;
	}

1274 1275
	/* Ensure that the domain is finalised */
	ret = arm_smmu_init_domain_context(domain, smmu);
1276
	if (ret < 0)
1277 1278
		return ret;

1279
	/*
1280 1281
	 * Sanity check the domain. We don't support domains across
	 * different SMMUs.
1282
	 */
1283
	if (smmu_domain->smmu != smmu) {
1284 1285
		dev_err(dev,
			"cannot attach to SMMU %s whilst already attached to domain on SMMU %s\n",
1286 1287
			dev_name(smmu_domain->smmu->dev), dev_name(smmu->dev));
		return -EINVAL;
1288 1289 1290
	}

	/* Looks ok, so add the device to the domain */
1291
	cfg = find_smmu_master_cfg(dev);
1292
	if (!cfg)
1293 1294
		return -ENODEV;

1295
	return arm_smmu_domain_add_master(smmu_domain, cfg);
1296 1297 1298
}

static int arm_smmu_map(struct iommu_domain *domain, unsigned long iova,
1299
			phys_addr_t paddr, size_t size, int prot)
1300
{
1301 1302
	int ret;
	unsigned long flags;
1303
	struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1304
	struct io_pgtable_ops *ops= smmu_domain->pgtbl_ops;
1305

1306
	if (!ops)
1307 1308
		return -ENODEV;

1309 1310 1311 1312
	spin_lock_irqsave(&smmu_domain->pgtbl_lock, flags);
	ret = ops->map(ops, iova, paddr, size, prot);
	spin_unlock_irqrestore(&smmu_domain->pgtbl_lock, flags);
	return ret;
1313 1314 1315 1316 1317
}

static size_t arm_smmu_unmap(struct iommu_domain *domain, unsigned long iova,
			     size_t size)
{
1318 1319
	size_t ret;
	unsigned long flags;
1320
	struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1321
	struct io_pgtable_ops *ops= smmu_domain->pgtbl_ops;
1322

1323 1324 1325 1326 1327 1328 1329
	if (!ops)
		return 0;

	spin_lock_irqsave(&smmu_domain->pgtbl_lock, flags);
	ret = ops->unmap(ops, iova, size);
	spin_unlock_irqrestore(&smmu_domain->pgtbl_lock, flags);
	return ret;
1330 1331
}

1332 1333 1334
static phys_addr_t arm_smmu_iova_to_phys_hard(struct iommu_domain *domain,
					      dma_addr_t iova)
{
1335
	struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1336 1337 1338 1339 1340 1341 1342
	struct arm_smmu_device *smmu = smmu_domain->smmu;
	struct arm_smmu_cfg *cfg = &smmu_domain->cfg;
	struct io_pgtable_ops *ops= smmu_domain->pgtbl_ops;
	struct device *dev = smmu->dev;
	void __iomem *cb_base;
	u32 tmp;
	u64 phys;
1343
	unsigned long va;
1344 1345 1346

	cb_base = ARM_SMMU_CB_BASE(smmu) + ARM_SMMU_CB(smmu, cfg->cbndx);

1347 1348 1349
	/* ATS1 registers can only be written atomically */
	va = iova & ~0xfffUL;
	if (smmu->version == ARM_SMMU_V2)
1350 1351
		smmu_write_atomic_lq(va, cb_base + ARM_SMMU_CB_ATS1PR);
	else /* Register is only 32-bit in v1 */
1352
		writel_relaxed(va, cb_base + ARM_SMMU_CB_ATS1PR);
1353 1354 1355 1356

	if (readl_poll_timeout_atomic(cb_base + ARM_SMMU_CB_ATSR, tmp,
				      !(tmp & ATSR_ACTIVE), 5, 50)) {
		dev_err(dev,
1357
			"iova to phys timed out on %pad. Falling back to software table walk.\n",
1358 1359 1360 1361
			&iova);
		return ops->iova_to_phys(ops, iova);
	}

1362
	phys = readq_relaxed(cb_base + ARM_SMMU_CB_PAR);
1363 1364 1365 1366 1367 1368 1369 1370 1371
	if (phys & CB_PAR_F) {
		dev_err(dev, "translation fault!\n");
		dev_err(dev, "PAR = 0x%llx\n", phys);
		return 0;
	}

	return (phys & GENMASK_ULL(39, 12)) | (iova & 0xfff);
}

1372
static phys_addr_t arm_smmu_iova_to_phys(struct iommu_domain *domain,
1373
					dma_addr_t iova)
1374
{
1375 1376
	phys_addr_t ret;
	unsigned long flags;
1377
	struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1378
	struct io_pgtable_ops *ops= smmu_domain->pgtbl_ops;
1379

1380
	if (!ops)
1381
		return 0;
1382

1383
	spin_lock_irqsave(&smmu_domain->pgtbl_lock, flags);
1384 1385
	if (smmu_domain->smmu->features & ARM_SMMU_FEAT_TRANS_OPS &&
			smmu_domain->stage == ARM_SMMU_DOMAIN_S1) {
1386
		ret = arm_smmu_iova_to_phys_hard(domain, iova);
1387
	} else {
1388
		ret = ops->iova_to_phys(ops, iova);
1389 1390
	}

1391
	spin_unlock_irqrestore(&smmu_domain->pgtbl_lock, flags);
1392

1393
	return ret;
1394 1395
}

1396
static bool arm_smmu_capable(enum iommu_cap cap)
1397
{
1398 1399
	switch (cap) {
	case IOMMU_CAP_CACHE_COHERENCY:
1400 1401 1402 1403 1404
		/*
		 * Return true here as the SMMU can always send out coherent
		 * requests.
		 */
		return true;
1405
	case IOMMU_CAP_INTR_REMAP:
1406
		return true; /* MSIs are just memory writes */
1407 1408
	case IOMMU_CAP_NOEXEC:
		return true;
1409
	default:
1410
		return false;
1411
	}
1412 1413
}

1414 1415 1416 1417
static int __arm_smmu_get_pci_sid(struct pci_dev *pdev, u16 alias, void *data)
{
	*((u16 *)data) = alias;
	return 0; /* Continue walking */
1418 1419
}

1420 1421 1422 1423 1424
static void __arm_smmu_release_pci_iommudata(void *data)
{
	kfree(data);
}

1425 1426
static int arm_smmu_init_pci_device(struct pci_dev *pdev,
				    struct iommu_group *group)
1427
{
1428
	struct arm_smmu_master_cfg *cfg;
1429 1430
	u16 sid;
	int i;
1431

1432 1433
	cfg = iommu_group_get_iommudata(group);
	if (!cfg) {
1434
		cfg = kzalloc(sizeof(*cfg), GFP_KERNEL);
1435 1436
		if (!cfg)
			return -ENOMEM;
1437

1438 1439 1440
		iommu_group_set_iommudata(group, cfg,
					  __arm_smmu_release_pci_iommudata);
	}
1441

1442 1443
	if (cfg->num_streamids >= MAX_MASTER_STREAMIDS)
		return -ENOSPC;
1444

1445 1446 1447 1448 1449 1450 1451 1452 1453 1454
	/*
	 * Assume Stream ID == Requester ID for now.
	 * We need a way to describe the ID mappings in FDT.
	 */
	pci_for_each_dma_alias(pdev, __arm_smmu_get_pci_sid, &sid);
	for (i = 0; i < cfg->num_streamids; ++i)
		if (cfg->streamids[i] == sid)
			break;

	/* Avoid duplicate SIDs, as this can lead to SMR conflicts */
1455 1456 1457 1458 1459
	if (i == cfg->num_streamids) {
		cfg->streamids[i] = sid;
		cfg->smendx[i] = INVALID_SMENDX;
		cfg->num_streamids++;
	}
1460

1461
	return 0;
1462 1463
}

1464 1465
static int arm_smmu_init_platform_device(struct device *dev,
					 struct iommu_group *group)
1466 1467
{
	struct arm_smmu_device *smmu = find_smmu_for_device(dev);
1468
	struct arm_smmu_master *master;
1469 1470 1471 1472 1473 1474 1475 1476 1477

	if (!smmu)
		return -ENODEV;

	master = find_smmu_master(smmu, dev->of_node);
	if (!master)
		return -ENODEV;

	iommu_group_set_iommudata(group, &master->cfg, NULL);
1478 1479

	return 0;
1480 1481 1482 1483
}

static int arm_smmu_add_device(struct device *dev)
{
1484
	struct iommu_group *group;
1485

1486 1487 1488
	group = iommu_group_get_for_dev(dev);
	if (IS_ERR(group))
		return PTR_ERR(group);
1489

1490
	iommu_group_put(group);
1491
	return 0;
1492 1493
}

1494 1495
static void arm_smmu_remove_device(struct device *dev)
{
1496 1497 1498 1499 1500 1501
	struct arm_smmu_device *smmu = find_smmu_for_device(dev);
	struct arm_smmu_master_cfg *cfg = find_smmu_master_cfg(dev);

	if (smmu && cfg)
		arm_smmu_master_free_smes(smmu, cfg);

1502
	iommu_group_remove_device(dev);
1503 1504
}

1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530
static struct iommu_group *arm_smmu_device_group(struct device *dev)
{
	struct iommu_group *group;
	int ret;

	if (dev_is_pci(dev))
		group = pci_device_group(dev);
	else
		group = generic_device_group(dev);

	if (IS_ERR(group))
		return group;

	if (dev_is_pci(dev))
		ret = arm_smmu_init_pci_device(to_pci_dev(dev), group);
	else
		ret = arm_smmu_init_platform_device(dev, group);

	if (ret) {
		iommu_group_put(group);
		group = ERR_PTR(ret);
	}

	return group;
}

1531 1532 1533
static int arm_smmu_domain_get_attr(struct iommu_domain *domain,
				    enum iommu_attr attr, void *data)
{
1534
	struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547

	switch (attr) {
	case DOMAIN_ATTR_NESTING:
		*(int *)data = (smmu_domain->stage == ARM_SMMU_DOMAIN_NESTED);
		return 0;
	default:
		return -ENODEV;
	}
}

static int arm_smmu_domain_set_attr(struct iommu_domain *domain,
				    enum iommu_attr attr, void *data)
{
1548
	int ret = 0;
1549
	struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1550

1551 1552
	mutex_lock(&smmu_domain->init_mutex);

1553 1554
	switch (attr) {
	case DOMAIN_ATTR_NESTING:
1555 1556 1557 1558 1559
		if (smmu_domain->smmu) {
			ret = -EPERM;
			goto out_unlock;
		}

1560 1561 1562 1563 1564
		if (*(int *)data)
			smmu_domain->stage = ARM_SMMU_DOMAIN_NESTED;
		else
			smmu_domain->stage = ARM_SMMU_DOMAIN_S1;

1565
		break;
1566
	default:
1567
		ret = -ENODEV;
1568
	}
1569 1570 1571 1572

out_unlock:
	mutex_unlock(&smmu_domain->init_mutex);
	return ret;
1573 1574
}

1575
static struct iommu_ops arm_smmu_ops = {
1576
	.capable		= arm_smmu_capable,
1577 1578
	.domain_alloc		= arm_smmu_domain_alloc,
	.domain_free		= arm_smmu_domain_free,
1579 1580 1581
	.attach_dev		= arm_smmu_attach_dev,
	.map			= arm_smmu_map,
	.unmap			= arm_smmu_unmap,
1582
	.map_sg			= default_iommu_map_sg,
1583 1584 1585
	.iova_to_phys		= arm_smmu_iova_to_phys,
	.add_device		= arm_smmu_add_device,
	.remove_device		= arm_smmu_remove_device,
1586
	.device_group		= arm_smmu_device_group,
1587 1588
	.domain_get_attr	= arm_smmu_domain_get_attr,
	.domain_set_attr	= arm_smmu_domain_set_attr,
1589
	.pgsize_bitmap		= -1UL, /* Restricted during device attach */
1590 1591 1592 1593 1594
};

static void arm_smmu_device_reset(struct arm_smmu_device *smmu)
{
	void __iomem *gr0_base = ARM_SMMU_GR0(smmu);
1595
	void __iomem *cb_base;
1596
	int i;
1597
	u32 reg, major;
1598

1599 1600 1601
	/* clear global FSR */
	reg = readl_relaxed(ARM_SMMU_GR0_NS(smmu) + ARM_SMMU_GR0_sGFSR);
	writel(reg, ARM_SMMU_GR0_NS(smmu) + ARM_SMMU_GR0_sGFSR);
1602

1603 1604 1605 1606
	/*
	 * Reset stream mapping groups: Initial values mark all SMRn as
	 * invalid and all S2CRn as bypass unless overridden.
	 */
1607 1608
	for (i = 0; i < smmu->num_mapping_groups; ++i)
		arm_smmu_write_sme(smmu, i);
1609

1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622
	/*
	 * Before clearing ARM_MMU500_ACTLR_CPRE, need to
	 * clear CACHE_LOCK bit of ACR first. And, CACHE_LOCK
	 * bit is only present in MMU-500r2 onwards.
	 */
	reg = readl_relaxed(gr0_base + ARM_SMMU_GR0_ID7);
	major = (reg >> ID7_MAJOR_SHIFT) & ID7_MAJOR_MASK;
	if ((smmu->model == ARM_MMU500) && (major >= 2)) {
		reg = readl_relaxed(gr0_base + ARM_SMMU_GR0_sACR);
		reg &= ~ARM_MMU500_ACR_CACHE_LOCK;
		writel_relaxed(reg, gr0_base + ARM_SMMU_GR0_sACR);
	}

1623 1624 1625 1626 1627
	/* Make sure all context banks are disabled and clear CB_FSR  */
	for (i = 0; i < smmu->num_context_banks; ++i) {
		cb_base = ARM_SMMU_CB_BASE(smmu) + ARM_SMMU_CB(smmu, i);
		writel_relaxed(0, cb_base + ARM_SMMU_CB_SCTLR);
		writel_relaxed(FSR_FAULT, cb_base + ARM_SMMU_CB_FSR);
1628 1629 1630 1631 1632 1633 1634 1635 1636
		/*
		 * Disable MMU-500's not-particularly-beneficial next-page
		 * prefetcher for the sake of errata #841119 and #826419.
		 */
		if (smmu->model == ARM_MMU500) {
			reg = readl_relaxed(cb_base + ARM_SMMU_CB_ACTLR);
			reg &= ~ARM_MMU500_ACTLR_CPRE;
			writel_relaxed(reg, cb_base + ARM_SMMU_CB_ACTLR);
		}
1637
	}
1638

1639 1640 1641 1642
	/* Invalidate the TLB, just in case */
	writel_relaxed(0, gr0_base + ARM_SMMU_GR0_TLBIALLH);
	writel_relaxed(0, gr0_base + ARM_SMMU_GR0_TLBIALLNSNH);

1643
	reg = readl_relaxed(ARM_SMMU_GR0_NS(smmu) + ARM_SMMU_GR0_sCR0);
1644

1645
	/* Enable fault reporting */
1646
	reg |= (sCR0_GFRE | sCR0_GFIE | sCR0_GCFGFRE | sCR0_GCFGFIE);
1647 1648

	/* Disable TLB broadcasting. */
1649
	reg |= (sCR0_VMIDPNE | sCR0_PTM);
1650

1651 1652 1653 1654 1655 1656
	/* Enable client access, handling unmatched streams as appropriate */
	reg &= ~sCR0_CLIENTPD;
	if (disable_bypass)
		reg |= sCR0_USFCFG;
	else
		reg &= ~sCR0_USFCFG;
1657 1658

	/* Disable forced broadcasting */
1659
	reg &= ~sCR0_FB;
1660 1661

	/* Don't upgrade barriers */
1662
	reg &= ~(sCR0_BSU_MASK << sCR0_BSU_SHIFT);
1663

1664 1665 1666
	if (smmu->features & ARM_SMMU_FEAT_VMID16)
		reg |= sCR0_VMID16EN;

1667
	/* Push the button */
1668
	__arm_smmu_tlb_sync(smmu);
1669
	writel(reg, ARM_SMMU_GR0_NS(smmu) + ARM_SMMU_GR0_sCR0);
1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695
}

static int arm_smmu_id_size_to_bits(int size)
{
	switch (size) {
	case 0:
		return 32;
	case 1:
		return 36;
	case 2:
		return 40;
	case 3:
		return 42;
	case 4:
		return 44;
	case 5:
	default:
		return 48;
	}
}

static int arm_smmu_device_cfg_probe(struct arm_smmu_device *smmu)
{
	unsigned long size;
	void __iomem *gr0_base = ARM_SMMU_GR0(smmu);
	u32 id;
1696
	bool cttw_dt, cttw_reg;
1697
	int i;
1698 1699

	dev_notice(smmu->dev, "probing hardware configuration...\n");
1700 1701
	dev_notice(smmu->dev, "SMMUv%d with:\n",
			smmu->version == ARM_SMMU_V2 ? 2 : 1);
1702 1703 1704

	/* ID0 */
	id = readl_relaxed(gr0_base + ARM_SMMU_GR0_ID0);
1705 1706 1707 1708 1709 1710 1711

	/* Restrict available stages based on module parameter */
	if (force_stage == 1)
		id &= ~(ID0_S2TS | ID0_NTS);
	else if (force_stage == 2)
		id &= ~(ID0_S1TS | ID0_NTS);

1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727
	if (id & ID0_S1TS) {
		smmu->features |= ARM_SMMU_FEAT_TRANS_S1;
		dev_notice(smmu->dev, "\tstage 1 translation\n");
	}

	if (id & ID0_S2TS) {
		smmu->features |= ARM_SMMU_FEAT_TRANS_S2;
		dev_notice(smmu->dev, "\tstage 2 translation\n");
	}

	if (id & ID0_NTS) {
		smmu->features |= ARM_SMMU_FEAT_TRANS_NESTED;
		dev_notice(smmu->dev, "\tnested translation\n");
	}

	if (!(smmu->features &
1728
		(ARM_SMMU_FEAT_TRANS_S1 | ARM_SMMU_FEAT_TRANS_S2))) {
1729 1730 1731 1732
		dev_err(smmu->dev, "\tno translation support!\n");
		return -ENODEV;
	}

1733 1734
	if ((id & ID0_S1TS) &&
		((smmu->version < ARM_SMMU_V2) || !(id & ID0_ATOSNS))) {
1735 1736 1737 1738
		smmu->features |= ARM_SMMU_FEAT_TRANS_OPS;
		dev_notice(smmu->dev, "\taddress translation ops\n");
	}

1739 1740 1741 1742 1743 1744 1745 1746 1747
	/*
	 * In order for DMA API calls to work properly, we must defer to what
	 * the DT says about coherency, regardless of what the hardware claims.
	 * Fortunately, this also opens up a workaround for systems where the
	 * ID register value has ended up configured incorrectly.
	 */
	cttw_dt = of_dma_is_coherent(smmu->dev->of_node);
	cttw_reg = !!(id & ID0_CTTW);
	if (cttw_dt)
1748
		smmu->features |= ARM_SMMU_FEAT_COHERENT_WALK;
1749 1750 1751 1752 1753 1754
	if (cttw_dt || cttw_reg)
		dev_notice(smmu->dev, "\t%scoherent table walk\n",
			   cttw_dt ? "" : "non-");
	if (cttw_dt != cttw_reg)
		dev_notice(smmu->dev,
			   "\t(IDR0.CTTW overridden by dma-coherent property)\n");
1755

1756 1757 1758
	/* Max. number of entries we have for stream matching/indexing */
	size = 1 << ((id >> ID0_NUMSIDB_SHIFT) & ID0_NUMSIDB_MASK);
	smmu->streamid_mask = size - 1;
1759
	if (id & ID0_SMS) {
1760
		u32 smr;
1761 1762

		smmu->features |= ARM_SMMU_FEAT_STREAM_MATCH;
1763 1764
		size = (id >> ID0_NUMSMRG_SHIFT) & ID0_NUMSMRG_MASK;
		if (size == 0) {
1765 1766 1767 1768 1769
			dev_err(smmu->dev,
				"stream-matching supported, but no SMRs present!\n");
			return -ENODEV;
		}

1770 1771 1772 1773 1774 1775
		/*
		 * SMR.ID bits may not be preserved if the corresponding MASK
		 * bits are set, so check each one separately. We can reject
		 * masters later if they try to claim IDs outside these masks.
		 */
		smr = smmu->streamid_mask << SMR_ID_SHIFT;
1776 1777
		writel_relaxed(smr, gr0_base + ARM_SMMU_GR0_SMR(0));
		smr = readl_relaxed(gr0_base + ARM_SMMU_GR0_SMR(0));
1778
		smmu->streamid_mask = smr >> SMR_ID_SHIFT;
1779

1780 1781 1782 1783
		smr = smmu->streamid_mask << SMR_MASK_SHIFT;
		writel_relaxed(smr, gr0_base + ARM_SMMU_GR0_SMR(0));
		smr = readl_relaxed(gr0_base + ARM_SMMU_GR0_SMR(0));
		smmu->smr_mask_mask = smr >> SMR_MASK_SHIFT;
1784

1785 1786 1787 1788 1789 1790
		/* Zero-initialised to mark as invalid */
		smmu->smrs = devm_kcalloc(smmu->dev, size, sizeof(*smmu->smrs),
					  GFP_KERNEL);
		if (!smmu->smrs)
			return -ENOMEM;

1791
		dev_notice(smmu->dev,
1792 1793
			   "\tstream matching with %lu register groups, mask 0x%x",
			   size, smmu->smr_mask_mask);
1794
	}
1795 1796 1797 1798 1799 1800 1801 1802
	/* s2cr->type == 0 means translation, so initialise explicitly */
	smmu->s2crs = devm_kmalloc_array(smmu->dev, size, sizeof(*smmu->s2crs),
					 GFP_KERNEL);
	if (!smmu->s2crs)
		return -ENOMEM;
	for (i = 0; i < size; i++)
		smmu->s2crs[i] = s2cr_init_val;

1803
	smmu->num_mapping_groups = size;
1804

1805 1806 1807 1808 1809 1810
	if (smmu->version < ARM_SMMU_V2 || !(id & ID0_PTFS_NO_AARCH32)) {
		smmu->features |= ARM_SMMU_FEAT_FMT_AARCH32_L;
		if (!(id & ID0_PTFS_NO_AARCH32S))
			smmu->features |= ARM_SMMU_FEAT_FMT_AARCH32_S;
	}

1811 1812
	/* ID1 */
	id = readl_relaxed(gr0_base + ARM_SMMU_GR0_ID1);
1813
	smmu->pgshift = (id & ID1_PAGESIZE) ? 16 : 12;
1814

1815
	/* Check for size mismatch of SMMU address space from mapped region */
1816
	size = 1 << (((id >> ID1_NUMPAGENDXB_SHIFT) & ID1_NUMPAGENDXB_MASK) + 1);
1817
	size *= 2 << smmu->pgshift;
1818
	if (smmu->size != size)
1819 1820 1821
		dev_warn(smmu->dev,
			"SMMU address space size (0x%lx) differs from mapped region size (0x%lx)!\n",
			size, smmu->size);
1822

1823
	smmu->num_s2_context_banks = (id >> ID1_NUMS2CB_SHIFT) & ID1_NUMS2CB_MASK;
1824 1825 1826 1827 1828 1829 1830
	smmu->num_context_banks = (id >> ID1_NUMCB_SHIFT) & ID1_NUMCB_MASK;
	if (smmu->num_s2_context_banks > smmu->num_context_banks) {
		dev_err(smmu->dev, "impossible number of S2 context banks!\n");
		return -ENODEV;
	}
	dev_notice(smmu->dev, "\t%u context banks (%u stage-2 only)\n",
		   smmu->num_context_banks, smmu->num_s2_context_banks);
1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841
	/*
	 * Cavium CN88xx erratum #27704.
	 * Ensure ASID and VMID allocation is unique across all SMMUs in
	 * the system.
	 */
	if (smmu->model == CAVIUM_SMMUV2) {
		smmu->cavium_id_base =
			atomic_add_return(smmu->num_context_banks,
					  &cavium_smmu_context_count);
		smmu->cavium_id_base -= smmu->num_context_banks;
	}
1842 1843 1844 1845

	/* ID2 */
	id = readl_relaxed(gr0_base + ARM_SMMU_GR0_ID2);
	size = arm_smmu_id_size_to_bits((id >> ID2_IAS_SHIFT) & ID2_IAS_MASK);
1846
	smmu->ipa_size = size;
1847

1848
	/* The output mask is also applied for bypass */
1849
	size = arm_smmu_id_size_to_bits((id >> ID2_OAS_SHIFT) & ID2_OAS_MASK);
1850
	smmu->pa_size = size;
1851

1852 1853 1854
	if (id & ID2_VMID16)
		smmu->features |= ARM_SMMU_FEAT_VMID16;

1855 1856 1857 1858 1859 1860 1861 1862 1863
	/*
	 * What the page table walker can address actually depends on which
	 * descriptor format is in use, but since a) we don't know that yet,
	 * and b) it can vary per context bank, this will have to do...
	 */
	if (dma_set_mask_and_coherent(smmu->dev, DMA_BIT_MASK(size)))
		dev_warn(smmu->dev,
			 "failed to set DMA mask for table walker\n");

1864
	if (smmu->version < ARM_SMMU_V2) {
1865
		smmu->va_size = smmu->ipa_size;
1866 1867
		if (smmu->version == ARM_SMMU_V1_64K)
			smmu->features |= ARM_SMMU_FEAT_FMT_AARCH64_64K;
1868 1869
	} else {
		size = (id >> ID2_UBS_SHIFT) & ID2_UBS_MASK;
1870 1871
		smmu->va_size = arm_smmu_id_size_to_bits(size);
		if (id & ID2_PTFS_4K)
1872
			smmu->features |= ARM_SMMU_FEAT_FMT_AARCH64_4K;
1873
		if (id & ID2_PTFS_16K)
1874
			smmu->features |= ARM_SMMU_FEAT_FMT_AARCH64_16K;
1875
		if (id & ID2_PTFS_64K)
1876
			smmu->features |= ARM_SMMU_FEAT_FMT_AARCH64_64K;
1877 1878
	}

1879 1880
	/* Now we've corralled the various formats, what'll it do? */
	if (smmu->features & ARM_SMMU_FEAT_FMT_AARCH32_S)
1881
		smmu->pgsize_bitmap |= SZ_4K | SZ_64K | SZ_1M | SZ_16M;
1882 1883
	if (smmu->features &
	    (ARM_SMMU_FEAT_FMT_AARCH32_L | ARM_SMMU_FEAT_FMT_AARCH64_4K))
1884
		smmu->pgsize_bitmap |= SZ_4K | SZ_2M | SZ_1G;
1885
	if (smmu->features & ARM_SMMU_FEAT_FMT_AARCH64_16K)
1886
		smmu->pgsize_bitmap |= SZ_16K | SZ_32M;
1887
	if (smmu->features & ARM_SMMU_FEAT_FMT_AARCH64_64K)
1888 1889 1890 1891 1892 1893 1894 1895
		smmu->pgsize_bitmap |= SZ_64K | SZ_512M;

	if (arm_smmu_ops.pgsize_bitmap == -1UL)
		arm_smmu_ops.pgsize_bitmap = smmu->pgsize_bitmap;
	else
		arm_smmu_ops.pgsize_bitmap |= smmu->pgsize_bitmap;
	dev_notice(smmu->dev, "\tSupported page sizes: 0x%08lx\n",
		   smmu->pgsize_bitmap);
1896

1897

1898 1899
	if (smmu->features & ARM_SMMU_FEAT_TRANS_S1)
		dev_notice(smmu->dev, "\tStage-1: %lu-bit VA -> %lu-bit IPA\n",
1900
			   smmu->va_size, smmu->ipa_size);
1901 1902 1903

	if (smmu->features & ARM_SMMU_FEAT_TRANS_S2)
		dev_notice(smmu->dev, "\tStage-2: %lu-bit IPA -> %lu-bit PA\n",
1904
			   smmu->ipa_size, smmu->pa_size);
1905

1906 1907 1908
	return 0;
}

1909 1910 1911 1912 1913 1914 1915 1916 1917 1918
struct arm_smmu_match_data {
	enum arm_smmu_arch_version version;
	enum arm_smmu_implementation model;
};

#define ARM_SMMU_MATCH_DATA(name, ver, imp)	\
static struct arm_smmu_match_data name = { .version = ver, .model = imp }

ARM_SMMU_MATCH_DATA(smmu_generic_v1, ARM_SMMU_V1, GENERIC_SMMU);
ARM_SMMU_MATCH_DATA(smmu_generic_v2, ARM_SMMU_V2, GENERIC_SMMU);
1919
ARM_SMMU_MATCH_DATA(arm_mmu401, ARM_SMMU_V1_64K, GENERIC_SMMU);
1920
ARM_SMMU_MATCH_DATA(arm_mmu500, ARM_SMMU_V2, ARM_MMU500);
1921
ARM_SMMU_MATCH_DATA(cavium_smmuv2, ARM_SMMU_V2, CAVIUM_SMMUV2);
1922

1923
static const struct of_device_id arm_smmu_of_match[] = {
1924 1925 1926
	{ .compatible = "arm,smmu-v1", .data = &smmu_generic_v1 },
	{ .compatible = "arm,smmu-v2", .data = &smmu_generic_v2 },
	{ .compatible = "arm,mmu-400", .data = &smmu_generic_v1 },
1927
	{ .compatible = "arm,mmu-401", .data = &arm_mmu401 },
1928
	{ .compatible = "arm,mmu-500", .data = &arm_mmu500 },
1929
	{ .compatible = "cavium,smmu-v2", .data = &cavium_smmuv2 },
1930 1931 1932 1933
	{ },
};
MODULE_DEVICE_TABLE(of, arm_smmu_of_match);

1934 1935
static int arm_smmu_device_dt_probe(struct platform_device *pdev)
{
1936
	const struct of_device_id *of_id;
1937
	const struct arm_smmu_match_data *data;
1938 1939 1940 1941
	struct resource *res;
	struct arm_smmu_device *smmu;
	struct device *dev = &pdev->dev;
	struct rb_node *node;
1942 1943
	struct of_phandle_iterator it;
	struct arm_smmu_phandle_args *masterspec;
1944 1945 1946 1947 1948 1949 1950 1951 1952
	int num_irqs, i, err;

	smmu = devm_kzalloc(dev, sizeof(*smmu), GFP_KERNEL);
	if (!smmu) {
		dev_err(dev, "failed to allocate arm_smmu_device\n");
		return -ENOMEM;
	}
	smmu->dev = dev;

1953
	of_id = of_match_node(arm_smmu_of_match, dev->of_node);
1954 1955 1956
	data = of_id->data;
	smmu->version = data->version;
	smmu->model = data->model;
1957

1958
	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1959 1960 1961
	smmu->base = devm_ioremap_resource(dev, res);
	if (IS_ERR(smmu->base))
		return PTR_ERR(smmu->base);
1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976
	smmu->size = resource_size(res);

	if (of_property_read_u32(dev->of_node, "#global-interrupts",
				 &smmu->num_global_irqs)) {
		dev_err(dev, "missing #global-interrupts property\n");
		return -ENODEV;
	}

	num_irqs = 0;
	while ((res = platform_get_resource(pdev, IORESOURCE_IRQ, num_irqs))) {
		num_irqs++;
		if (num_irqs > smmu->num_global_irqs)
			smmu->num_context_irqs++;
	}

1977 1978 1979 1980
	if (!smmu->num_context_irqs) {
		dev_err(dev, "found %d interrupts but expected at least %d\n",
			num_irqs, smmu->num_global_irqs + 1);
		return -ENODEV;
1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991
	}

	smmu->irqs = devm_kzalloc(dev, sizeof(*smmu->irqs) * num_irqs,
				  GFP_KERNEL);
	if (!smmu->irqs) {
		dev_err(dev, "failed to allocate %d irqs\n", num_irqs);
		return -ENOMEM;
	}

	for (i = 0; i < num_irqs; ++i) {
		int irq = platform_get_irq(pdev, i);
1992

1993 1994 1995 1996 1997 1998 1999
		if (irq < 0) {
			dev_err(dev, "failed to get irq index %d\n", i);
			return -ENODEV;
		}
		smmu->irqs[i] = irq;
	}

2000 2001 2002 2003
	err = arm_smmu_device_cfg_probe(smmu);
	if (err)
		return err;

2004 2005
	i = 0;
	smmu->masters = RB_ROOT;
2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020

	err = -ENOMEM;
	/* No need to zero the memory for masterspec */
	masterspec = kmalloc(sizeof(*masterspec), GFP_KERNEL);
	if (!masterspec)
		goto out_put_masters;

	of_for_each_phandle(&it, err, dev->of_node,
			    "mmu-masters", "#stream-id-cells", 0) {
		int count = of_phandle_iterator_args(&it, masterspec->args,
						     MAX_MASTER_STREAMIDS);
		masterspec->np		= of_node_get(it.node);
		masterspec->args_count	= count;

		err = register_smmu_master(smmu, dev, masterspec);
2021 2022
		if (err) {
			dev_err(dev, "failed to add master %s\n",
2023 2024
				masterspec->np->name);
			kfree(masterspec);
2025 2026 2027 2028 2029
			goto out_put_masters;
		}

		i++;
	}
2030

2031 2032
	dev_notice(dev, "registered %d master devices\n", i);

2033 2034
	kfree(masterspec);

2035 2036
	parse_driver_options(smmu);

2037
	if (smmu->version == ARM_SMMU_V2 &&
2038 2039 2040 2041
	    smmu->num_context_banks != smmu->num_context_irqs) {
		dev_err(dev,
			"found only %d context interrupt(s) but %d required\n",
			smmu->num_context_irqs, smmu->num_context_banks);
2042
		err = -ENODEV;
2043
		goto out_put_masters;
2044 2045 2046
	}

	for (i = 0; i < smmu->num_global_irqs; ++i) {
2047 2048 2049 2050 2051
		err = devm_request_irq(smmu->dev, smmu->irqs[i],
				       arm_smmu_global_fault,
				       IRQF_SHARED,
				       "arm-smmu global fault",
				       smmu);
2052 2053 2054
		if (err) {
			dev_err(dev, "failed to request global IRQ %d (%u)\n",
				i, smmu->irqs[i]);
2055
			goto out_put_masters;
2056 2057 2058 2059 2060 2061 2062
		}
	}

	INIT_LIST_HEAD(&smmu->list);
	spin_lock(&arm_smmu_devices_lock);
	list_add(&smmu->list, &arm_smmu_devices);
	spin_unlock(&arm_smmu_devices_lock);
2063 2064

	arm_smmu_device_reset(smmu);
2065 2066 2067 2068
	return 0;

out_put_masters:
	for (node = rb_first(&smmu->masters); node; node = rb_next(node)) {
2069 2070
		struct arm_smmu_master *master
			= container_of(node, struct arm_smmu_master, node);
2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096
		of_node_put(master->of_node);
	}

	return err;
}

static int arm_smmu_device_remove(struct platform_device *pdev)
{
	struct device *dev = &pdev->dev;
	struct arm_smmu_device *curr, *smmu = NULL;
	struct rb_node *node;

	spin_lock(&arm_smmu_devices_lock);
	list_for_each_entry(curr, &arm_smmu_devices, list) {
		if (curr->dev == dev) {
			smmu = curr;
			list_del(&smmu->list);
			break;
		}
	}
	spin_unlock(&arm_smmu_devices_lock);

	if (!smmu)
		return -ENODEV;

	for (node = rb_first(&smmu->masters); node; node = rb_next(node)) {
2097 2098
		struct arm_smmu_master *master
			= container_of(node, struct arm_smmu_master, node);
2099 2100 2101
		of_node_put(master->of_node);
	}

2102
	if (!bitmap_empty(smmu->context_map, ARM_SMMU_MAX_CBS))
2103 2104 2105
		dev_err(dev, "removing device with active domains!\n");

	/* Turn the thing off */
2106
	writel(sCR0_CLIENTPD, ARM_SMMU_GR0_NS(smmu) + ARM_SMMU_GR0_sCR0);
2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120
	return 0;
}

static struct platform_driver arm_smmu_driver = {
	.driver	= {
		.name		= "arm-smmu",
		.of_match_table	= of_match_ptr(arm_smmu_of_match),
	},
	.probe	= arm_smmu_device_dt_probe,
	.remove	= arm_smmu_device_remove,
};

static int __init arm_smmu_init(void)
{
2121
	struct device_node *np;
2122 2123
	int ret;

2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134
	/*
	 * Play nice with systems that don't have an ARM SMMU by checking that
	 * an ARM SMMU exists in the system before proceeding with the driver
	 * and IOMMU bus operation registration.
	 */
	np = of_find_matching_node(NULL, arm_smmu_of_match);
	if (!np)
		return 0;

	of_node_put(np);

2135 2136 2137 2138 2139
	ret = platform_driver_register(&arm_smmu_driver);
	if (ret)
		return ret;

	/* Oh, for a proper bus abstraction */
2140
	if (!iommu_present(&platform_bus_type))
2141 2142
		bus_set_iommu(&platform_bus_type, &arm_smmu_ops);

2143
#ifdef CONFIG_ARM_AMBA
2144
	if (!iommu_present(&amba_bustype))
2145
		bus_set_iommu(&amba_bustype, &arm_smmu_ops);
2146
#endif
2147

2148
#ifdef CONFIG_PCI
2149 2150
	if (!iommu_present(&pci_bus_type)) {
		pci_request_acs();
2151
		bus_set_iommu(&pci_bus_type, &arm_smmu_ops);
2152
	}
2153 2154
#endif

2155 2156 2157 2158 2159 2160 2161 2162
	return 0;
}

static void __exit arm_smmu_exit(void)
{
	return platform_driver_unregister(&arm_smmu_driver);
}

2163
subsys_initcall(arm_smmu_init);
2164 2165 2166 2167 2168
module_exit(arm_smmu_exit);

MODULE_DESCRIPTION("IOMMU API for ARM architected SMMU implementations");
MODULE_AUTHOR("Will Deacon <will.deacon@arm.com>");
MODULE_LICENSE("GPL v2");