arm-smmu.c 65.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
/*
 * IOMMU API for ARM architected SMMU implementations.
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
 *
 * Copyright (C) 2013 ARM Limited
 *
 * Author: Will Deacon <will.deacon@arm.com>
 *
 * This driver currently supports:
 *	- SMMUv1 and v2 implementations
 *	- Stream-matching and stream-indexing
 *	- v7/v8 long-descriptor format
 *	- Non-secure access to the SMMU
 *	- Context fault reporting
27
 *	- Extended Stream ID (16 bit)
28 29 30 31
 */

#define pr_fmt(fmt) "arm-smmu: " fmt

32 33
#include <linux/acpi.h>
#include <linux/acpi_iort.h>
34
#include <linux/atomic.h>
35
#include <linux/delay.h>
36
#include <linux/dma-iommu.h>
37 38 39 40
#include <linux/dma-mapping.h>
#include <linux/err.h>
#include <linux/interrupt.h>
#include <linux/io.h>
41
#include <linux/io-64-nonatomic-hi-lo.h>
42
#include <linux/iommu.h>
43
#include <linux/iopoll.h>
44 45
#include <linux/module.h>
#include <linux/of.h>
46
#include <linux/of_address.h>
47
#include <linux/of_device.h>
48
#include <linux/of_iommu.h>
49
#include <linux/pci.h>
50 51 52 53 54 55
#include <linux/platform_device.h>
#include <linux/slab.h>
#include <linux/spinlock.h>

#include <linux/amba/bus.h>

56
#include "io-pgtable.h"
57 58 59 60 61 62

/* Maximum number of context banks per SMMU */
#define ARM_SMMU_MAX_CBS		128

/* SMMU global address space */
#define ARM_SMMU_GR0(smmu)		((smmu)->base)
63
#define ARM_SMMU_GR1(smmu)		((smmu)->base + (1 << (smmu)->pgshift))
64

65 66 67 68 69 70 71 72 73 74
/*
 * SMMU global address space with conditional offset to access secure
 * aliases of non-secure registers (e.g. nsCR0: 0x400, nsGFSR: 0x448,
 * nsGFSYNR0: 0x450)
 */
#define ARM_SMMU_GR0_NS(smmu)						\
	((smmu)->base +							\
		((smmu->options & ARM_SMMU_OPT_SECURE_CFG_ACCESS)	\
			? 0x400 : 0))

75 76 77 78 79
/*
 * Some 64-bit registers only make sense to write atomically, but in such
 * cases all the data relevant to AArch32 formats lies within the lower word,
 * therefore this actually makes more sense than it might first appear.
 */
80
#ifdef CONFIG_64BIT
81
#define smmu_write_atomic_lq		writeq_relaxed
82
#else
83
#define smmu_write_atomic_lq		writel_relaxed
84 85
#endif

86 87 88 89 90
/* Configuration registers */
#define ARM_SMMU_GR0_sCR0		0x0
#define sCR0_CLIENTPD			(1 << 0)
#define sCR0_GFRE			(1 << 1)
#define sCR0_GFIE			(1 << 2)
91
#define sCR0_EXIDENABLE			(1 << 3)
92 93 94 95 96 97
#define sCR0_GCFGFRE			(1 << 4)
#define sCR0_GCFGFIE			(1 << 5)
#define sCR0_USFCFG			(1 << 10)
#define sCR0_VMIDPNE			(1 << 11)
#define sCR0_PTM			(1 << 12)
#define sCR0_FB				(1 << 13)
98
#define sCR0_VMID16EN			(1 << 31)
99 100 101
#define sCR0_BSU_SHIFT			14
#define sCR0_BSU_MASK			0x3

102 103 104
/* Auxiliary Configuration register */
#define ARM_SMMU_GR0_sACR		0x10

105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122
/* Identification registers */
#define ARM_SMMU_GR0_ID0		0x20
#define ARM_SMMU_GR0_ID1		0x24
#define ARM_SMMU_GR0_ID2		0x28
#define ARM_SMMU_GR0_ID3		0x2c
#define ARM_SMMU_GR0_ID4		0x30
#define ARM_SMMU_GR0_ID5		0x34
#define ARM_SMMU_GR0_ID6		0x38
#define ARM_SMMU_GR0_ID7		0x3c
#define ARM_SMMU_GR0_sGFSR		0x48
#define ARM_SMMU_GR0_sGFSYNR0		0x50
#define ARM_SMMU_GR0_sGFSYNR1		0x54
#define ARM_SMMU_GR0_sGFSYNR2		0x58

#define ID0_S1TS			(1 << 30)
#define ID0_S2TS			(1 << 29)
#define ID0_NTS				(1 << 28)
#define ID0_SMS				(1 << 27)
123
#define ID0_ATOSNS			(1 << 26)
124 125
#define ID0_PTFS_NO_AARCH32		(1 << 25)
#define ID0_PTFS_NO_AARCH32S		(1 << 24)
126 127 128
#define ID0_CTTW			(1 << 14)
#define ID0_NUMIRPT_SHIFT		16
#define ID0_NUMIRPT_MASK		0xff
129 130
#define ID0_NUMSIDB_SHIFT		9
#define ID0_NUMSIDB_MASK		0xf
131
#define ID0_EXIDS			(1 << 8)
132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151
#define ID0_NUMSMRG_SHIFT		0
#define ID0_NUMSMRG_MASK		0xff

#define ID1_PAGESIZE			(1 << 31)
#define ID1_NUMPAGENDXB_SHIFT		28
#define ID1_NUMPAGENDXB_MASK		7
#define ID1_NUMS2CB_SHIFT		16
#define ID1_NUMS2CB_MASK		0xff
#define ID1_NUMCB_SHIFT			0
#define ID1_NUMCB_MASK			0xff

#define ID2_OAS_SHIFT			4
#define ID2_OAS_MASK			0xf
#define ID2_IAS_SHIFT			0
#define ID2_IAS_MASK			0xf
#define ID2_UBS_SHIFT			8
#define ID2_UBS_MASK			0xf
#define ID2_PTFS_4K			(1 << 12)
#define ID2_PTFS_16K			(1 << 13)
#define ID2_PTFS_64K			(1 << 14)
152
#define ID2_VMID16			(1 << 15)
153

154 155
#define ID7_MAJOR_SHIFT			4
#define ID7_MAJOR_MASK			0xf
156 157 158 159 160 161 162 163 164

/* Global TLB invalidation */
#define ARM_SMMU_GR0_TLBIVMID		0x64
#define ARM_SMMU_GR0_TLBIALLNSNH	0x68
#define ARM_SMMU_GR0_TLBIALLH		0x6c
#define ARM_SMMU_GR0_sTLBGSYNC		0x70
#define ARM_SMMU_GR0_sTLBGSTATUS	0x74
#define sTLBGSTATUS_GSACTIVE		(1 << 0)
#define TLB_LOOP_TIMEOUT		1000000	/* 1s! */
165
#define TLB_SPIN_COUNT			10
166 167 168 169 170 171 172 173 174 175

/* Stream mapping registers */
#define ARM_SMMU_GR0_SMR(n)		(0x800 + ((n) << 2))
#define SMR_VALID			(1 << 31)
#define SMR_MASK_SHIFT			16
#define SMR_ID_SHIFT			0

#define ARM_SMMU_GR0_S2CR(n)		(0xc00 + ((n) << 2))
#define S2CR_CBNDX_SHIFT		0
#define S2CR_CBNDX_MASK			0xff
176
#define S2CR_EXIDVALID			(1 << 10)
177 178
#define S2CR_TYPE_SHIFT			16
#define S2CR_TYPE_MASK			0x3
179 180 181 182 183
enum arm_smmu_s2cr_type {
	S2CR_TYPE_TRANS,
	S2CR_TYPE_BYPASS,
	S2CR_TYPE_FAULT,
};
184

185
#define S2CR_PRIVCFG_SHIFT		24
186 187 188 189 190 191 192
#define S2CR_PRIVCFG_MASK		0x3
enum arm_smmu_s2cr_privcfg {
	S2CR_PRIVCFG_DEFAULT,
	S2CR_PRIVCFG_DIPAN,
	S2CR_PRIVCFG_UNPRIV,
	S2CR_PRIVCFG_PRIV,
};
193

194 195 196 197
/* Context bank attribute registers */
#define ARM_SMMU_GR1_CBAR(n)		(0x0 + ((n) << 2))
#define CBAR_VMID_SHIFT			0
#define CBAR_VMID_MASK			0xff
198 199 200
#define CBAR_S1_BPSHCFG_SHIFT		8
#define CBAR_S1_BPSHCFG_MASK		3
#define CBAR_S1_BPSHCFG_NSH		3
201 202 203 204 205 206 207 208 209 210 211 212 213 214 215
#define CBAR_S1_MEMATTR_SHIFT		12
#define CBAR_S1_MEMATTR_MASK		0xf
#define CBAR_S1_MEMATTR_WB		0xf
#define CBAR_TYPE_SHIFT			16
#define CBAR_TYPE_MASK			0x3
#define CBAR_TYPE_S2_TRANS		(0 << CBAR_TYPE_SHIFT)
#define CBAR_TYPE_S1_TRANS_S2_BYPASS	(1 << CBAR_TYPE_SHIFT)
#define CBAR_TYPE_S1_TRANS_S2_FAULT	(2 << CBAR_TYPE_SHIFT)
#define CBAR_TYPE_S1_TRANS_S2_TRANS	(3 << CBAR_TYPE_SHIFT)
#define CBAR_IRPTNDX_SHIFT		24
#define CBAR_IRPTNDX_MASK		0xff

#define ARM_SMMU_GR1_CBA2R(n)		(0x800 + ((n) << 2))
#define CBA2R_RW64_32BIT		(0 << 0)
#define CBA2R_RW64_64BIT		(1 << 0)
216 217
#define CBA2R_VMID_SHIFT		16
#define CBA2R_VMID_MASK			0xffff
218 219

/* Translation context bank */
220
#define ARM_SMMU_CB(smmu, n)	((smmu)->cb_base + ((n) << (smmu)->pgshift))
221 222

#define ARM_SMMU_CB_SCTLR		0x0
223
#define ARM_SMMU_CB_ACTLR		0x4
224 225
#define ARM_SMMU_CB_RESUME		0x8
#define ARM_SMMU_CB_TTBCR2		0x10
226 227
#define ARM_SMMU_CB_TTBR0		0x20
#define ARM_SMMU_CB_TTBR1		0x28
228
#define ARM_SMMU_CB_TTBCR		0x30
229
#define ARM_SMMU_CB_CONTEXTIDR		0x34
230
#define ARM_SMMU_CB_S1_MAIR0		0x38
231
#define ARM_SMMU_CB_S1_MAIR1		0x3c
232
#define ARM_SMMU_CB_PAR			0x50
233
#define ARM_SMMU_CB_FSR			0x58
234
#define ARM_SMMU_CB_FAR			0x60
235
#define ARM_SMMU_CB_FSYNR0		0x68
236
#define ARM_SMMU_CB_S1_TLBIVA		0x600
237
#define ARM_SMMU_CB_S1_TLBIASID		0x610
238 239 240
#define ARM_SMMU_CB_S1_TLBIVAL		0x620
#define ARM_SMMU_CB_S2_TLBIIPAS2	0x630
#define ARM_SMMU_CB_S2_TLBIIPAS2L	0x638
241 242
#define ARM_SMMU_CB_TLBSYNC		0x7f0
#define ARM_SMMU_CB_TLBSTATUS		0x7f4
243
#define ARM_SMMU_CB_ATS1PR		0x800
244
#define ARM_SMMU_CB_ATSR		0x8f0
245 246 247 248 249 250 251 252 253 254

#define SCTLR_S1_ASIDPNE		(1 << 12)
#define SCTLR_CFCFG			(1 << 7)
#define SCTLR_CFIE			(1 << 6)
#define SCTLR_CFRE			(1 << 5)
#define SCTLR_E				(1 << 4)
#define SCTLR_AFE			(1 << 2)
#define SCTLR_TRE			(1 << 1)
#define SCTLR_M				(1 << 0)

255 256
#define ARM_MMU500_ACTLR_CPRE		(1 << 1)

257
#define ARM_MMU500_ACR_CACHE_LOCK	(1 << 26)
258
#define ARM_MMU500_ACR_SMTNMB_TLBEN	(1 << 8)
259

260 261 262 263
#define CB_PAR_F			(1 << 0)

#define ATSR_ACTIVE			(1 << 0)

264 265 266 267
#define RESUME_RETRY			(0 << 0)
#define RESUME_TERMINATE		(1 << 0)

#define TTBCR2_SEP_SHIFT		15
268
#define TTBCR2_SEP_UPSTREAM		(0x7 << TTBCR2_SEP_SHIFT)
269
#define TTBCR2_AS			(1 << 4)
270

271
#define TTBRn_ASID_SHIFT		48
272 273 274 275 276 277 278 279 280 281 282 283

#define FSR_MULTI			(1 << 31)
#define FSR_SS				(1 << 30)
#define FSR_UUT				(1 << 8)
#define FSR_ASF				(1 << 7)
#define FSR_TLBLKF			(1 << 6)
#define FSR_TLBMCF			(1 << 5)
#define FSR_EF				(1 << 4)
#define FSR_PF				(1 << 3)
#define FSR_AFF				(1 << 2)
#define FSR_TF				(1 << 1)

284 285 286
#define FSR_IGN				(FSR_AFF | FSR_ASF | \
					 FSR_TLBMCF | FSR_TLBLKF)
#define FSR_FAULT			(FSR_MULTI | FSR_SS | FSR_UUT | \
287
					 FSR_EF | FSR_PF | FSR_TF | FSR_IGN)
288 289 290

#define FSYNR0_WNR			(1 << 4)

291 292 293
#define MSI_IOVA_BASE			0x8000000
#define MSI_IOVA_LENGTH			0x100000

294
static int force_stage;
295
module_param(force_stage, int, S_IRUGO);
296 297
MODULE_PARM_DESC(force_stage,
	"Force SMMU mappings to be installed at a particular stage of translation. A value of '1' or '2' forces the corresponding stage. All other values are ignored (i.e. no stage is forced). Note that selecting a specific stage will disable support for nested translation.");
298 299 300 301
static bool disable_bypass;
module_param(disable_bypass, bool, S_IRUGO);
MODULE_PARM_DESC(disable_bypass,
	"Disable bypass streams such that incoming transactions from devices that are not attached to an iommu domain will report an abort back to the device and will not be allowed to pass through the SMMU.");
302

303
enum arm_smmu_arch_version {
304 305
	ARM_SMMU_V1,
	ARM_SMMU_V1_64K,
306 307 308
	ARM_SMMU_V2,
};

309 310
enum arm_smmu_implementation {
	GENERIC_SMMU,
311
	ARM_MMU500,
312
	CAVIUM_SMMUV2,
313 314
};

315 316 317 318 319 320 321 322
/* Until ACPICA headers cover IORT rev. C */
#ifndef ACPI_IORT_SMMU_CORELINK_MMU401
#define ACPI_IORT_SMMU_CORELINK_MMU401	0x4
#endif
#ifndef ACPI_IORT_SMMU_CAVIUM_THUNDERX
#define ACPI_IORT_SMMU_CAVIUM_THUNDERX	0x5
#endif

323
struct arm_smmu_s2cr {
324 325
	struct iommu_group		*group;
	int				count;
326 327 328 329 330 331 332 333 334
	enum arm_smmu_s2cr_type		type;
	enum arm_smmu_s2cr_privcfg	privcfg;
	u8				cbndx;
};

#define s2cr_init_val (struct arm_smmu_s2cr){				\
	.type = disable_bypass ? S2CR_TYPE_FAULT : S2CR_TYPE_BYPASS,	\
}

335 336 337
struct arm_smmu_smr {
	u16				mask;
	u16				id;
338
	bool				valid;
339 340
};

341 342 343 344 345 346 347
struct arm_smmu_cb {
	u64				ttbr[2];
	u32				tcr[2];
	u32				mair[2];
	struct arm_smmu_cfg		*cfg;
};

348
struct arm_smmu_master_cfg {
349
	struct arm_smmu_device		*smmu;
350
	s16				smendx[];
351
};
352
#define INVALID_SMENDX			-1
353 354
#define __fwspec_cfg(fw) ((struct arm_smmu_master_cfg *)fw->iommu_priv)
#define fwspec_smmu(fw)  (__fwspec_cfg(fw)->smmu)
355 356
#define fwspec_smendx(fw, i) \
	(i >= fw->num_ids ? INVALID_SMENDX : __fwspec_cfg(fw)->smendx[i])
357
#define for_each_cfg_sme(fw, i, idx) \
358
	for (i = 0; idx = fwspec_smendx(fw, i), i < fw->num_ids; ++i)
359 360 361 362 363

struct arm_smmu_device {
	struct device			*dev;

	void __iomem			*base;
364
	void __iomem			*cb_base;
365
	unsigned long			pgshift;
366 367 368 369 370 371

#define ARM_SMMU_FEAT_COHERENT_WALK	(1 << 0)
#define ARM_SMMU_FEAT_STREAM_MATCH	(1 << 1)
#define ARM_SMMU_FEAT_TRANS_S1		(1 << 2)
#define ARM_SMMU_FEAT_TRANS_S2		(1 << 3)
#define ARM_SMMU_FEAT_TRANS_NESTED	(1 << 4)
372
#define ARM_SMMU_FEAT_TRANS_OPS		(1 << 5)
373
#define ARM_SMMU_FEAT_VMID16		(1 << 6)
374 375 376 377 378
#define ARM_SMMU_FEAT_FMT_AARCH64_4K	(1 << 7)
#define ARM_SMMU_FEAT_FMT_AARCH64_16K	(1 << 8)
#define ARM_SMMU_FEAT_FMT_AARCH64_64K	(1 << 9)
#define ARM_SMMU_FEAT_FMT_AARCH32_L	(1 << 10)
#define ARM_SMMU_FEAT_FMT_AARCH32_S	(1 << 11)
379
#define ARM_SMMU_FEAT_EXIDS		(1 << 12)
380
	u32				features;
381 382 383

#define ARM_SMMU_OPT_SECURE_CFG_ACCESS (1 << 0)
	u32				options;
384
	enum arm_smmu_arch_version	version;
385
	enum arm_smmu_implementation	model;
386 387 388 389

	u32				num_context_banks;
	u32				num_s2_context_banks;
	DECLARE_BITMAP(context_map, ARM_SMMU_MAX_CBS);
390
	struct arm_smmu_cb		*cbs;
391 392 393
	atomic_t			irptndx;

	u32				num_mapping_groups;
394 395
	u16				streamid_mask;
	u16				smr_mask_mask;
396
	struct arm_smmu_smr		*smrs;
397
	struct arm_smmu_s2cr		*s2crs;
398
	struct mutex			stream_map_mutex;
399

400 401 402
	unsigned long			va_size;
	unsigned long			ipa_size;
	unsigned long			pa_size;
403
	unsigned long			pgsize_bitmap;
404 405 406 407 408

	u32				num_global_irqs;
	u32				num_context_irqs;
	unsigned int			*irqs;

409
	u32				cavium_id_base; /* Specific to Cavium */
410

411 412
	spinlock_t			global_sync_lock;

413 414
	/* IOMMU core code handle */
	struct iommu_device		iommu;
415 416
};

417 418 419 420 421
enum arm_smmu_context_fmt {
	ARM_SMMU_CTX_FMT_NONE,
	ARM_SMMU_CTX_FMT_AARCH64,
	ARM_SMMU_CTX_FMT_AARCH32_L,
	ARM_SMMU_CTX_FMT_AARCH32_S,
422 423 424 425 426
};

struct arm_smmu_cfg {
	u8				cbndx;
	u8				irptndx;
427 428 429 430
	union {
		u16			asid;
		u16			vmid;
	};
431
	u32				cbar;
432
	enum arm_smmu_context_fmt	fmt;
433
};
434
#define INVALID_IRPTNDX			0xff
435

436 437 438 439
enum arm_smmu_domain_stage {
	ARM_SMMU_DOMAIN_S1 = 0,
	ARM_SMMU_DOMAIN_S2,
	ARM_SMMU_DOMAIN_NESTED,
440
	ARM_SMMU_DOMAIN_BYPASS,
441 442
};

443
struct arm_smmu_domain {
444
	struct arm_smmu_device		*smmu;
445
	struct io_pgtable_ops		*pgtbl_ops;
446
	struct arm_smmu_cfg		cfg;
447
	enum arm_smmu_domain_stage	stage;
448
	struct mutex			init_mutex; /* Protects smmu pointer */
449
	spinlock_t			cb_lock; /* Serialises ATS1* ops and TLB syncs */
450
	struct iommu_domain		domain;
451 452
};

453 454 455 456 457
struct arm_smmu_option_prop {
	u32 opt;
	const char *prop;
};

458 459
static atomic_t cavium_smmu_context_count = ATOMIC_INIT(0);

460 461
static bool using_legacy_binding, using_generic_binding;

462
static struct arm_smmu_option_prop arm_smmu_options[] = {
463 464 465 466
	{ ARM_SMMU_OPT_SECURE_CFG_ACCESS, "calxeda,smmu-secure-config-access" },
	{ 0, NULL},
};

467 468 469 470 471
static struct arm_smmu_domain *to_smmu_domain(struct iommu_domain *dom)
{
	return container_of(dom, struct arm_smmu_domain, domain);
}

472 473 474
static void parse_driver_options(struct arm_smmu_device *smmu)
{
	int i = 0;
475

476 477 478 479 480 481 482 483 484 485
	do {
		if (of_property_read_bool(smmu->dev->of_node,
						arm_smmu_options[i].prop)) {
			smmu->options |= arm_smmu_options[i].opt;
			dev_notice(smmu->dev, "option %s\n",
				arm_smmu_options[i].prop);
		}
	} while (arm_smmu_options[++i].opt);
}

486
static struct device_node *dev_get_dev_node(struct device *dev)
487 488 489
{
	if (dev_is_pci(dev)) {
		struct pci_bus *bus = to_pci_dev(dev)->bus;
490

491 492
		while (!pci_is_root_bus(bus))
			bus = bus->parent;
493
		return of_node_get(bus->bridge->parent->of_node);
494 495
	}

496
	return of_node_get(dev->of_node);
497 498
}

499
static int __arm_smmu_get_pci_sid(struct pci_dev *pdev, u16 alias, void *data)
500
{
501 502
	*((__be32 *)data) = cpu_to_be32(alias);
	return 0; /* Continue walking */
503 504
}

505
static int __find_legacy_master_phandle(struct device *dev, void *data)
506
{
507 508 509 510 511 512 513 514 515 516 517 518
	struct of_phandle_iterator *it = *(void **)data;
	struct device_node *np = it->node;
	int err;

	of_for_each_phandle(it, err, dev->of_node, "mmu-masters",
			    "#stream-id-cells", 0)
		if (it->node == np) {
			*(void **)data = dev;
			return 1;
		}
	it->node = np;
	return err == -ENOENT ? 0 : err;
519 520
}

521
static struct platform_driver arm_smmu_driver;
522
static struct iommu_ops arm_smmu_ops;
523

524 525
static int arm_smmu_register_legacy_master(struct device *dev,
					   struct arm_smmu_device **smmu)
526
{
527
	struct device *smmu_dev;
528 529 530
	struct device_node *np;
	struct of_phandle_iterator it;
	void *data = &it;
531
	u32 *sids;
532 533
	__be32 pci_sid;
	int err;
534

535 536 537 538 539
	np = dev_get_dev_node(dev);
	if (!np || !of_find_property(np, "#stream-id-cells", NULL)) {
		of_node_put(np);
		return -ENODEV;
	}
540

541
	it.node = np;
542 543
	err = driver_for_each_device(&arm_smmu_driver.driver, NULL, &data,
				     __find_legacy_master_phandle);
544
	smmu_dev = data;
545 546 547 548 549
	of_node_put(np);
	if (err == 0)
		return -ENODEV;
	if (err < 0)
		return err;
550

551 552 553 554 555 556 557
	if (dev_is_pci(dev)) {
		/* "mmu-masters" assumes Stream ID == Requester ID */
		pci_for_each_dma_alias(to_pci_dev(dev), __arm_smmu_get_pci_sid,
				       &pci_sid);
		it.cur = &pci_sid;
		it.cur_count = 1;
	}
558

559 560 561 562
	err = iommu_fwspec_init(dev, &smmu_dev->of_node->fwnode,
				&arm_smmu_ops);
	if (err)
		return err;
563

564 565 566
	sids = kcalloc(it.cur_count, sizeof(*sids), GFP_KERNEL);
	if (!sids)
		return -ENOMEM;
567

568 569 570 571 572
	*smmu = dev_get_drvdata(smmu_dev);
	of_phandle_iterator_args(&it, sids, it.cur_count);
	err = iommu_fwspec_add_ids(dev, sids, it.cur_count);
	kfree(sids);
	return err;
573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593
}

static int __arm_smmu_alloc_bitmap(unsigned long *map, int start, int end)
{
	int idx;

	do {
		idx = find_next_zero_bit(map, end, start);
		if (idx == end)
			return -ENOSPC;
	} while (test_and_set_bit(idx, map));

	return idx;
}

static void __arm_smmu_free_bitmap(unsigned long *map, int idx)
{
	clear_bit(idx, map);
}

/* Wait for any pending TLB invalidations to complete */
594 595
static void __arm_smmu_tlb_sync(struct arm_smmu_device *smmu,
				void __iomem *sync, void __iomem *status)
596
{
597
	unsigned int spin_cnt, delay;
598

599
	writel_relaxed(0, sync);
600 601 602 603 604
	for (delay = 1; delay < TLB_LOOP_TIMEOUT; delay *= 2) {
		for (spin_cnt = TLB_SPIN_COUNT; spin_cnt > 0; spin_cnt--) {
			if (!(readl_relaxed(status) & sTLBGSTATUS_GSACTIVE))
				return;
			cpu_relax();
605
		}
606
		udelay(delay);
607
	}
608 609
	dev_err_ratelimited(smmu->dev,
			    "TLB sync timed out -- SMMU may be deadlocked\n");
610 611
}

612 613 614
static void arm_smmu_tlb_sync_global(struct arm_smmu_device *smmu)
{
	void __iomem *base = ARM_SMMU_GR0(smmu);
615
	unsigned long flags;
616

617
	spin_lock_irqsave(&smmu->global_sync_lock, flags);
618 619
	__arm_smmu_tlb_sync(smmu, base + ARM_SMMU_GR0_sTLBGSYNC,
			    base + ARM_SMMU_GR0_sTLBGSTATUS);
620
	spin_unlock_irqrestore(&smmu->global_sync_lock, flags);
621 622 623
}

static void arm_smmu_tlb_sync_context(void *cookie)
624 625
{
	struct arm_smmu_domain *smmu_domain = cookie;
626 627
	struct arm_smmu_device *smmu = smmu_domain->smmu;
	void __iomem *base = ARM_SMMU_CB(smmu, smmu_domain->cfg.cbndx);
628
	unsigned long flags;
629

630
	spin_lock_irqsave(&smmu_domain->cb_lock, flags);
631 632
	__arm_smmu_tlb_sync(smmu, base + ARM_SMMU_CB_TLBSYNC,
			    base + ARM_SMMU_CB_TLBSTATUS);
633
	spin_unlock_irqrestore(&smmu_domain->cb_lock, flags);
634 635
}

636
static void arm_smmu_tlb_sync_vmid(void *cookie)
637 638
{
	struct arm_smmu_domain *smmu_domain = cookie;
639 640

	arm_smmu_tlb_sync_global(smmu_domain->smmu);
641 642
}

643
static void arm_smmu_tlb_inv_context_s1(void *cookie)
644
{
645
	struct arm_smmu_domain *smmu_domain = cookie;
646
	struct arm_smmu_cfg *cfg = &smmu_domain->cfg;
647
	void __iomem *base = ARM_SMMU_CB(smmu_domain->smmu, cfg->cbndx);
648

649 650 651
	writel_relaxed(cfg->asid, base + ARM_SMMU_CB_S1_TLBIASID);
	arm_smmu_tlb_sync_context(cookie);
}
652

653 654 655 656 657
static void arm_smmu_tlb_inv_context_s2(void *cookie)
{
	struct arm_smmu_domain *smmu_domain = cookie;
	struct arm_smmu_device *smmu = smmu_domain->smmu;
	void __iomem *base = ARM_SMMU_GR0(smmu);
658

659 660
	writel_relaxed(smmu_domain->cfg.vmid, base + ARM_SMMU_GR0_TLBIVMID);
	arm_smmu_tlb_sync_global(smmu);
661 662 663
}

static void arm_smmu_tlb_inv_range_nosync(unsigned long iova, size_t size,
664
					  size_t granule, bool leaf, void *cookie)
665 666 667 668
{
	struct arm_smmu_domain *smmu_domain = cookie;
	struct arm_smmu_cfg *cfg = &smmu_domain->cfg;
	bool stage1 = cfg->cbar != CBAR_TYPE_S2_TRANS;
669
	void __iomem *reg = ARM_SMMU_CB(smmu_domain->smmu, cfg->cbndx);
670 671 672 673

	if (stage1) {
		reg += leaf ? ARM_SMMU_CB_S1_TLBIVAL : ARM_SMMU_CB_S1_TLBIVA;

674
		if (cfg->fmt != ARM_SMMU_CTX_FMT_AARCH64) {
675
			iova &= ~12UL;
676
			iova |= cfg->asid;
677 678 679 680
			do {
				writel_relaxed(iova, reg);
				iova += granule;
			} while (size -= granule);
681 682
		} else {
			iova >>= 12;
683
			iova |= (u64)cfg->asid << 48;
684 685 686 687
			do {
				writeq_relaxed(iova, reg);
				iova += granule >> 12;
			} while (size -= granule);
688
		}
689
	} else {
690 691
		reg += leaf ? ARM_SMMU_CB_S2_TLBIIPAS2L :
			      ARM_SMMU_CB_S2_TLBIIPAS2;
692 693
		iova >>= 12;
		do {
694
			smmu_write_atomic_lq(iova, reg);
695 696
			iova += granule >> 12;
		} while (size -= granule);
697 698 699
	}
}

700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716
/*
 * On MMU-401 at least, the cost of firing off multiple TLBIVMIDs appears
 * almost negligible, but the benefit of getting the first one in as far ahead
 * of the sync as possible is significant, hence we don't just make this a
 * no-op and set .tlb_sync to arm_smmu_inv_context_s2() as you might think.
 */
static void arm_smmu_tlb_inv_vmid_nosync(unsigned long iova, size_t size,
					 size_t granule, bool leaf, void *cookie)
{
	struct arm_smmu_domain *smmu_domain = cookie;
	void __iomem *base = ARM_SMMU_GR0(smmu_domain->smmu);

	writel_relaxed(smmu_domain->cfg.vmid, base + ARM_SMMU_GR0_TLBIVMID);
}

static const struct iommu_gather_ops arm_smmu_s1_tlb_ops = {
	.tlb_flush_all	= arm_smmu_tlb_inv_context_s1,
717
	.tlb_add_flush	= arm_smmu_tlb_inv_range_nosync,
718 719 720 721 722
	.tlb_sync	= arm_smmu_tlb_sync_context,
};

static const struct iommu_gather_ops arm_smmu_s2_tlb_ops_v2 = {
	.tlb_flush_all	= arm_smmu_tlb_inv_context_s2,
723
	.tlb_add_flush	= arm_smmu_tlb_inv_range_nosync,
724 725 726 727 728 729 730
	.tlb_sync	= arm_smmu_tlb_sync_context,
};

static const struct iommu_gather_ops arm_smmu_s2_tlb_ops_v1 = {
	.tlb_flush_all	= arm_smmu_tlb_inv_context_s2,
	.tlb_add_flush	= arm_smmu_tlb_inv_vmid_nosync,
	.tlb_sync	= arm_smmu_tlb_sync_vmid,
731 732
};

733 734
static irqreturn_t arm_smmu_context_fault(int irq, void *dev)
{
735
	u32 fsr, fsynr;
736 737
	unsigned long iova;
	struct iommu_domain *domain = dev;
738
	struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
739 740
	struct arm_smmu_cfg *cfg = &smmu_domain->cfg;
	struct arm_smmu_device *smmu = smmu_domain->smmu;
741 742
	void __iomem *cb_base;

743
	cb_base = ARM_SMMU_CB(smmu, cfg->cbndx);
744 745 746 747 748 749
	fsr = readl_relaxed(cb_base + ARM_SMMU_CB_FSR);

	if (!(fsr & FSR_FAULT))
		return IRQ_NONE;

	fsynr = readl_relaxed(cb_base + ARM_SMMU_CB_FSYNR0);
750
	iova = readq_relaxed(cb_base + ARM_SMMU_CB_FAR);
751

752 753 754
	dev_err_ratelimited(smmu->dev,
	"Unhandled context fault: fsr=0x%x, iova=0x%08lx, fsynr=0x%x, cb=%d\n",
			    fsr, iova, fsynr, cfg->cbndx);
755

756 757
	writel(fsr, cb_base + ARM_SMMU_CB_FSR);
	return IRQ_HANDLED;
758 759 760 761 762 763
}

static irqreturn_t arm_smmu_global_fault(int irq, void *dev)
{
	u32 gfsr, gfsynr0, gfsynr1, gfsynr2;
	struct arm_smmu_device *smmu = dev;
764
	void __iomem *gr0_base = ARM_SMMU_GR0_NS(smmu);
765 766 767 768 769 770

	gfsr = readl_relaxed(gr0_base + ARM_SMMU_GR0_sGFSR);
	gfsynr0 = readl_relaxed(gr0_base + ARM_SMMU_GR0_sGFSYNR0);
	gfsynr1 = readl_relaxed(gr0_base + ARM_SMMU_GR0_sGFSYNR1);
	gfsynr2 = readl_relaxed(gr0_base + ARM_SMMU_GR0_sGFSYNR2);

771 772 773
	if (!gfsr)
		return IRQ_NONE;

774 775 776 777 778 779 780
	dev_err_ratelimited(smmu->dev,
		"Unexpected global fault, this could be serious\n");
	dev_err_ratelimited(smmu->dev,
		"\tGFSR 0x%08x, GFSYNR0 0x%08x, GFSYNR1 0x%08x, GFSYNR2 0x%08x\n",
		gfsr, gfsynr0, gfsynr1, gfsynr2);

	writel(gfsr, gr0_base + ARM_SMMU_GR0_sGFSR);
781
	return IRQ_HANDLED;
782 783
}

784 785
static void arm_smmu_init_context_bank(struct arm_smmu_domain *smmu_domain,
				       struct io_pgtable_cfg *pgtbl_cfg)
786
{
787
	struct arm_smmu_cfg *cfg = &smmu_domain->cfg;
788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840
	struct arm_smmu_cb *cb = &smmu_domain->smmu->cbs[cfg->cbndx];
	bool stage1 = cfg->cbar != CBAR_TYPE_S2_TRANS;

	cb->cfg = cfg;

	/* TTBCR */
	if (stage1) {
		if (cfg->fmt == ARM_SMMU_CTX_FMT_AARCH32_S) {
			cb->tcr[0] = pgtbl_cfg->arm_v7s_cfg.tcr;
		} else {
			cb->tcr[0] = pgtbl_cfg->arm_lpae_s1_cfg.tcr;
			cb->tcr[1] = pgtbl_cfg->arm_lpae_s1_cfg.tcr >> 32;
			cb->tcr[1] |= TTBCR2_SEP_UPSTREAM;
			if (cfg->fmt == ARM_SMMU_CTX_FMT_AARCH64)
				cb->tcr[1] |= TTBCR2_AS;
		}
	} else {
		cb->tcr[0] = pgtbl_cfg->arm_lpae_s2_cfg.vtcr;
	}

	/* TTBRs */
	if (stage1) {
		if (cfg->fmt == ARM_SMMU_CTX_FMT_AARCH32_S) {
			cb->ttbr[0] = pgtbl_cfg->arm_v7s_cfg.ttbr[0];
			cb->ttbr[1] = pgtbl_cfg->arm_v7s_cfg.ttbr[1];
		} else {
			cb->ttbr[0] = pgtbl_cfg->arm_lpae_s1_cfg.ttbr[0];
			cb->ttbr[0] |= (u64)cfg->asid << TTBRn_ASID_SHIFT;
			cb->ttbr[1] = pgtbl_cfg->arm_lpae_s1_cfg.ttbr[1];
			cb->ttbr[1] |= (u64)cfg->asid << TTBRn_ASID_SHIFT;
		}
	} else {
		cb->ttbr[0] = pgtbl_cfg->arm_lpae_s2_cfg.vttbr;
	}

	/* MAIRs (stage-1 only) */
	if (stage1) {
		if (cfg->fmt == ARM_SMMU_CTX_FMT_AARCH32_S) {
			cb->mair[0] = pgtbl_cfg->arm_v7s_cfg.prrr;
			cb->mair[1] = pgtbl_cfg->arm_v7s_cfg.nmrr;
		} else {
			cb->mair[0] = pgtbl_cfg->arm_lpae_s1_cfg.mair[0];
			cb->mair[1] = pgtbl_cfg->arm_lpae_s1_cfg.mair[1];
		}
	}
}

static void arm_smmu_write_context_bank(struct arm_smmu_device *smmu, int idx)
{
	u32 reg;
	bool stage1;
	struct arm_smmu_cb *cb = &smmu->cbs[idx];
	struct arm_smmu_cfg *cfg = cb->cfg;
841
	void __iomem *cb_base, *gr1_base;
842

843 844 845 846 847 848 849 850
	cb_base = ARM_SMMU_CB(smmu, idx);

	/* Unassigned context banks only need disabling */
	if (!cfg) {
		writel_relaxed(0, cb_base + ARM_SMMU_CB_SCTLR);
		return;
	}

851
	gr1_base = ARM_SMMU_GR1(smmu);
852
	stage1 = cfg->cbar != CBAR_TYPE_S2_TRANS;
853

854
	/* CBA2R */
855
	if (smmu->version > ARM_SMMU_V1) {
856 857 858 859
		if (cfg->fmt == ARM_SMMU_CTX_FMT_AARCH64)
			reg = CBA2R_RW64_64BIT;
		else
			reg = CBA2R_RW64_32BIT;
860 861
		/* 16-bit VMIDs live in CBA2R */
		if (smmu->features & ARM_SMMU_FEAT_VMID16)
862
			reg |= cfg->vmid << CBA2R_VMID_SHIFT;
863

864
		writel_relaxed(reg, gr1_base + ARM_SMMU_GR1_CBA2R(idx));
865 866
	}

867
	/* CBAR */
868
	reg = cfg->cbar;
869
	if (smmu->version < ARM_SMMU_V2)
870
		reg |= cfg->irptndx << CBAR_IRPTNDX_SHIFT;
871

872 873 874 875 876 877 878
	/*
	 * Use the weakest shareability/memory types, so they are
	 * overridden by the ttbcr/pte.
	 */
	if (stage1) {
		reg |= (CBAR_S1_BPSHCFG_NSH << CBAR_S1_BPSHCFG_SHIFT) |
			(CBAR_S1_MEMATTR_WB << CBAR_S1_MEMATTR_SHIFT);
879 880
	} else if (!(smmu->features & ARM_SMMU_FEAT_VMID16)) {
		/* 8-bit VMIDs live in CBAR */
881
		reg |= cfg->vmid << CBAR_VMID_SHIFT;
882
	}
883
	writel_relaxed(reg, gr1_base + ARM_SMMU_GR1_CBAR(idx));
884

885 886 887 888 889
	/*
	 * TTBCR
	 * We must write this before the TTBRs, since it determines the
	 * access behaviour of some fields (in particular, ASID[15:8]).
	 */
890 891 892
	if (stage1 && smmu->version > ARM_SMMU_V1)
		writel_relaxed(cb->tcr[1], cb_base + ARM_SMMU_CB_TTBCR2);
	writel_relaxed(cb->tcr[0], cb_base + ARM_SMMU_CB_TTBCR);
893

894
	/* TTBRs */
895 896 897 898
	if (cfg->fmt == ARM_SMMU_CTX_FMT_AARCH32_S) {
		writel_relaxed(cfg->asid, cb_base + ARM_SMMU_CB_CONTEXTIDR);
		writel_relaxed(cb->ttbr[0], cb_base + ARM_SMMU_CB_TTBR0);
		writel_relaxed(cb->ttbr[1], cb_base + ARM_SMMU_CB_TTBR1);
899
	} else {
900 901 902
		writeq_relaxed(cb->ttbr[0], cb_base + ARM_SMMU_CB_TTBR0);
		if (stage1)
			writeq_relaxed(cb->ttbr[1], cb_base + ARM_SMMU_CB_TTBR1);
903
	}
904

905
	/* MAIRs (stage-1 only) */
906
	if (stage1) {
907 908
		writel_relaxed(cb->mair[0], cb_base + ARM_SMMU_CB_S1_MAIR0);
		writel_relaxed(cb->mair[1], cb_base + ARM_SMMU_CB_S1_MAIR1);
909 910 911
	}

	/* SCTLR */
912
	reg = SCTLR_CFIE | SCTLR_CFRE | SCTLR_AFE | SCTLR_TRE | SCTLR_M;
913 914
	if (stage1)
		reg |= SCTLR_S1_ASIDPNE;
915 916 917
	if (IS_ENABLED(CONFIG_CPU_BIG_ENDIAN))
		reg |= SCTLR_E;

918
	writel_relaxed(reg, cb_base + ARM_SMMU_CB_SCTLR);
919 920 921
}

static int arm_smmu_init_domain_context(struct iommu_domain *domain,
922
					struct arm_smmu_device *smmu)
923
{
924
	int irq, start, ret = 0;
925 926 927 928
	unsigned long ias, oas;
	struct io_pgtable_ops *pgtbl_ops;
	struct io_pgtable_cfg pgtbl_cfg;
	enum io_pgtable_fmt fmt;
929
	struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
930
	struct arm_smmu_cfg *cfg = &smmu_domain->cfg;
931
	const struct iommu_gather_ops *tlb_ops;
932

933
	mutex_lock(&smmu_domain->init_mutex);
934 935 936
	if (smmu_domain->smmu)
		goto out_unlock;

937 938 939 940 941 942
	if (domain->type == IOMMU_DOMAIN_IDENTITY) {
		smmu_domain->stage = ARM_SMMU_DOMAIN_BYPASS;
		smmu_domain->smmu = smmu;
		goto out_unlock;
	}

943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965
	/*
	 * Mapping the requested stage onto what we support is surprisingly
	 * complicated, mainly because the spec allows S1+S2 SMMUs without
	 * support for nested translation. That means we end up with the
	 * following table:
	 *
	 * Requested        Supported        Actual
	 *     S1               N              S1
	 *     S1             S1+S2            S1
	 *     S1               S2             S2
	 *     S1               S1             S1
	 *     N                N              N
	 *     N              S1+S2            S2
	 *     N                S2             S2
	 *     N                S1             S1
	 *
	 * Note that you can't actually request stage-2 mappings.
	 */
	if (!(smmu->features & ARM_SMMU_FEAT_TRANS_S1))
		smmu_domain->stage = ARM_SMMU_DOMAIN_S2;
	if (!(smmu->features & ARM_SMMU_FEAT_TRANS_S2))
		smmu_domain->stage = ARM_SMMU_DOMAIN_S1;

966 967 968 969 970 971 972 973 974 975
	/*
	 * Choosing a suitable context format is even more fiddly. Until we
	 * grow some way for the caller to express a preference, and/or move
	 * the decision into the io-pgtable code where it arguably belongs,
	 * just aim for the closest thing to the rest of the system, and hope
	 * that the hardware isn't esoteric enough that we can't assume AArch64
	 * support to be a superset of AArch32 support...
	 */
	if (smmu->features & ARM_SMMU_FEAT_FMT_AARCH32_L)
		cfg->fmt = ARM_SMMU_CTX_FMT_AARCH32_L;
976 977 978 979 980
	if (IS_ENABLED(CONFIG_IOMMU_IO_PGTABLE_ARMV7S) &&
	    !IS_ENABLED(CONFIG_64BIT) && !IS_ENABLED(CONFIG_ARM_LPAE) &&
	    (smmu->features & ARM_SMMU_FEAT_FMT_AARCH32_S) &&
	    (smmu_domain->stage == ARM_SMMU_DOMAIN_S1))
		cfg->fmt = ARM_SMMU_CTX_FMT_AARCH32_S;
981 982 983 984 985 986 987 988 989 990 991
	if ((IS_ENABLED(CONFIG_64BIT) || cfg->fmt == ARM_SMMU_CTX_FMT_NONE) &&
	    (smmu->features & (ARM_SMMU_FEAT_FMT_AARCH64_64K |
			       ARM_SMMU_FEAT_FMT_AARCH64_16K |
			       ARM_SMMU_FEAT_FMT_AARCH64_4K)))
		cfg->fmt = ARM_SMMU_CTX_FMT_AARCH64;

	if (cfg->fmt == ARM_SMMU_CTX_FMT_NONE) {
		ret = -EINVAL;
		goto out_unlock;
	}

992 993 994 995
	switch (smmu_domain->stage) {
	case ARM_SMMU_DOMAIN_S1:
		cfg->cbar = CBAR_TYPE_S1_TRANS_S2_BYPASS;
		start = smmu->num_s2_context_banks;
996 997
		ias = smmu->va_size;
		oas = smmu->ipa_size;
998
		if (cfg->fmt == ARM_SMMU_CTX_FMT_AARCH64) {
999
			fmt = ARM_64_LPAE_S1;
1000
		} else if (cfg->fmt == ARM_SMMU_CTX_FMT_AARCH32_L) {
1001
			fmt = ARM_32_LPAE_S1;
1002 1003
			ias = min(ias, 32UL);
			oas = min(oas, 40UL);
1004 1005 1006 1007
		} else {
			fmt = ARM_V7S;
			ias = min(ias, 32UL);
			oas = min(oas, 32UL);
1008
		}
1009
		tlb_ops = &arm_smmu_s1_tlb_ops;
1010 1011
		break;
	case ARM_SMMU_DOMAIN_NESTED:
1012 1013 1014 1015
		/*
		 * We will likely want to change this if/when KVM gets
		 * involved.
		 */
1016
	case ARM_SMMU_DOMAIN_S2:
1017 1018
		cfg->cbar = CBAR_TYPE_S2_TRANS;
		start = 0;
1019 1020
		ias = smmu->ipa_size;
		oas = smmu->pa_size;
1021
		if (cfg->fmt == ARM_SMMU_CTX_FMT_AARCH64) {
1022
			fmt = ARM_64_LPAE_S2;
1023
		} else {
1024
			fmt = ARM_32_LPAE_S2;
1025 1026 1027
			ias = min(ias, 40UL);
			oas = min(oas, 40UL);
		}
1028 1029 1030 1031
		if (smmu->version == ARM_SMMU_V2)
			tlb_ops = &arm_smmu_s2_tlb_ops_v2;
		else
			tlb_ops = &arm_smmu_s2_tlb_ops_v1;
1032 1033 1034 1035
		break;
	default:
		ret = -EINVAL;
		goto out_unlock;
1036 1037 1038
	}
	ret = __arm_smmu_alloc_bitmap(smmu->context_map, start,
				      smmu->num_context_banks);
1039
	if (ret < 0)
1040
		goto out_unlock;
1041

1042
	cfg->cbndx = ret;
1043
	if (smmu->version < ARM_SMMU_V2) {
1044 1045
		cfg->irptndx = atomic_inc_return(&smmu->irptndx);
		cfg->irptndx %= smmu->num_context_irqs;
1046
	} else {
1047
		cfg->irptndx = cfg->cbndx;
1048 1049
	}

1050 1051 1052 1053 1054
	if (smmu_domain->stage == ARM_SMMU_DOMAIN_S2)
		cfg->vmid = cfg->cbndx + 1 + smmu->cavium_id_base;
	else
		cfg->asid = cfg->cbndx + smmu->cavium_id_base;

1055
	pgtbl_cfg = (struct io_pgtable_cfg) {
1056
		.pgsize_bitmap	= smmu->pgsize_bitmap,
1057 1058
		.ias		= ias,
		.oas		= oas,
1059
		.tlb		= tlb_ops,
1060
		.iommu_dev	= smmu->dev,
1061 1062
	};

1063 1064 1065
	if (smmu->features & ARM_SMMU_FEAT_COHERENT_WALK)
		pgtbl_cfg.quirks = IO_PGTABLE_QUIRK_NO_DMA;

1066 1067 1068 1069 1070 1071 1072
	smmu_domain->smmu = smmu;
	pgtbl_ops = alloc_io_pgtable_ops(fmt, &pgtbl_cfg, smmu_domain);
	if (!pgtbl_ops) {
		ret = -ENOMEM;
		goto out_clear_smmu;
	}

1073 1074
	/* Update the domain's page sizes to reflect the page table format */
	domain->pgsize_bitmap = pgtbl_cfg.pgsize_bitmap;
1075 1076
	domain->geometry.aperture_end = (1UL << ias) - 1;
	domain->geometry.force_aperture = true;
1077

1078 1079
	/* Initialise the context bank with our page table cfg */
	arm_smmu_init_context_bank(smmu_domain, &pgtbl_cfg);
1080
	arm_smmu_write_context_bank(smmu, cfg->cbndx);
1081 1082 1083 1084 1085

	/*
	 * Request context fault interrupt. Do this last to avoid the
	 * handler seeing a half-initialised domain state.
	 */
1086
	irq = smmu->irqs[smmu->num_global_irqs + cfg->irptndx];
1087 1088
	ret = devm_request_irq(smmu->dev, irq, arm_smmu_context_fault,
			       IRQF_SHARED, "arm-smmu-context-fault", domain);
1089
	if (ret < 0) {
1090
		dev_err(smmu->dev, "failed to request context IRQ %d (%u)\n",
1091 1092
			cfg->irptndx, irq);
		cfg->irptndx = INVALID_IRPTNDX;
1093 1094
	}

1095 1096 1097 1098
	mutex_unlock(&smmu_domain->init_mutex);

	/* Publish page table ops for map/unmap */
	smmu_domain->pgtbl_ops = pgtbl_ops;
1099
	return 0;
1100

1101 1102
out_clear_smmu:
	smmu_domain->smmu = NULL;
1103
out_unlock:
1104
	mutex_unlock(&smmu_domain->init_mutex);
1105 1106 1107 1108 1109
	return ret;
}

static void arm_smmu_destroy_domain_context(struct iommu_domain *domain)
{
1110
	struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1111 1112
	struct arm_smmu_device *smmu = smmu_domain->smmu;
	struct arm_smmu_cfg *cfg = &smmu_domain->cfg;
1113 1114
	int irq;

1115
	if (!smmu || domain->type == IOMMU_DOMAIN_IDENTITY)
1116 1117
		return;

1118 1119 1120 1121
	/*
	 * Disable the context bank and free the page tables before freeing
	 * it.
	 */
1122 1123
	smmu->cbs[cfg->cbndx].cfg = NULL;
	arm_smmu_write_context_bank(smmu, cfg->cbndx);
1124

1125 1126
	if (cfg->irptndx != INVALID_IRPTNDX) {
		irq = smmu->irqs[smmu->num_global_irqs + cfg->irptndx];
1127
		devm_free_irq(smmu->dev, irq, domain);
1128 1129
	}

1130
	free_io_pgtable_ops(smmu_domain->pgtbl_ops);
1131
	__arm_smmu_free_bitmap(smmu->context_map, cfg->cbndx);
1132 1133
}

1134
static struct iommu_domain *arm_smmu_domain_alloc(unsigned type)
1135 1136 1137
{
	struct arm_smmu_domain *smmu_domain;

1138 1139 1140
	if (type != IOMMU_DOMAIN_UNMANAGED &&
	    type != IOMMU_DOMAIN_DMA &&
	    type != IOMMU_DOMAIN_IDENTITY)
1141
		return NULL;
1142 1143 1144 1145 1146 1147 1148
	/*
	 * Allocate the domain and initialise some of its data structures.
	 * We can't really do anything meaningful until we've added a
	 * master.
	 */
	smmu_domain = kzalloc(sizeof(*smmu_domain), GFP_KERNEL);
	if (!smmu_domain)
1149
		return NULL;
1150

1151 1152
	if (type == IOMMU_DOMAIN_DMA && (using_legacy_binding ||
	    iommu_get_dma_cookie(&smmu_domain->domain))) {
1153 1154 1155 1156
		kfree(smmu_domain);
		return NULL;
	}

1157
	mutex_init(&smmu_domain->init_mutex);
1158
	spin_lock_init(&smmu_domain->cb_lock);
1159 1160

	return &smmu_domain->domain;
1161 1162
}

1163
static void arm_smmu_domain_free(struct iommu_domain *domain)
1164
{
1165
	struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1166 1167 1168 1169 1170

	/*
	 * Free the domain resources. We assume that all devices have
	 * already been detached.
	 */
1171
	iommu_put_dma_cookie(domain);
1172 1173 1174 1175
	arm_smmu_destroy_domain_context(domain);
	kfree(smmu_domain);
}

1176 1177 1178
static void arm_smmu_write_smr(struct arm_smmu_device *smmu, int idx)
{
	struct arm_smmu_smr *smr = smmu->smrs + idx;
1179
	u32 reg = smr->id << SMR_ID_SHIFT | smr->mask << SMR_MASK_SHIFT;
1180

1181
	if (!(smmu->features & ARM_SMMU_FEAT_EXIDS) && smr->valid)
1182 1183 1184 1185
		reg |= SMR_VALID;
	writel_relaxed(reg, ARM_SMMU_GR0(smmu) + ARM_SMMU_GR0_SMR(idx));
}

1186 1187 1188 1189 1190 1191 1192
static void arm_smmu_write_s2cr(struct arm_smmu_device *smmu, int idx)
{
	struct arm_smmu_s2cr *s2cr = smmu->s2crs + idx;
	u32 reg = (s2cr->type & S2CR_TYPE_MASK) << S2CR_TYPE_SHIFT |
		  (s2cr->cbndx & S2CR_CBNDX_MASK) << S2CR_CBNDX_SHIFT |
		  (s2cr->privcfg & S2CR_PRIVCFG_MASK) << S2CR_PRIVCFG_SHIFT;

1193 1194 1195
	if (smmu->features & ARM_SMMU_FEAT_EXIDS && smmu->smrs &&
	    smmu->smrs[idx].valid)
		reg |= S2CR_EXIDVALID;
1196 1197 1198 1199 1200 1201 1202 1203 1204 1205
	writel_relaxed(reg, ARM_SMMU_GR0(smmu) + ARM_SMMU_GR0_S2CR(idx));
}

static void arm_smmu_write_sme(struct arm_smmu_device *smmu, int idx)
{
	arm_smmu_write_s2cr(smmu, idx);
	if (smmu->smrs)
		arm_smmu_write_smr(smmu, idx);
}

1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233
/*
 * The width of SMR's mask field depends on sCR0_EXIDENABLE, so this function
 * should be called after sCR0 is written.
 */
static void arm_smmu_test_smr_masks(struct arm_smmu_device *smmu)
{
	void __iomem *gr0_base = ARM_SMMU_GR0(smmu);
	u32 smr;

	if (!smmu->smrs)
		return;

	/*
	 * SMR.ID bits may not be preserved if the corresponding MASK
	 * bits are set, so check each one separately. We can reject
	 * masters later if they try to claim IDs outside these masks.
	 */
	smr = smmu->streamid_mask << SMR_ID_SHIFT;
	writel_relaxed(smr, gr0_base + ARM_SMMU_GR0_SMR(0));
	smr = readl_relaxed(gr0_base + ARM_SMMU_GR0_SMR(0));
	smmu->streamid_mask = smr >> SMR_ID_SHIFT;

	smr = smmu->streamid_mask << SMR_MASK_SHIFT;
	writel_relaxed(smr, gr0_base + ARM_SMMU_GR0_SMR(0));
	smr = readl_relaxed(gr0_base + ARM_SMMU_GR0_SMR(0));
	smmu->smr_mask_mask = smr >> SMR_MASK_SHIFT;
}

1234
static int arm_smmu_find_sme(struct arm_smmu_device *smmu, u16 id, u16 mask)
1235 1236
{
	struct arm_smmu_smr *smrs = smmu->smrs;
1237
	int i, free_idx = -ENOSPC;
1238

1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251
	/* Stream indexing is blissfully easy */
	if (!smrs)
		return id;

	/* Validating SMRs is... less so */
	for (i = 0; i < smmu->num_mapping_groups; ++i) {
		if (!smrs[i].valid) {
			/*
			 * Note the first free entry we come across, which
			 * we'll claim in the end if nothing else matches.
			 */
			if (free_idx < 0)
				free_idx = i;
1252 1253
			continue;
		}
1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271
		/*
		 * If the new entry is _entirely_ matched by an existing entry,
		 * then reuse that, with the guarantee that there also cannot
		 * be any subsequent conflicting entries. In normal use we'd
		 * expect simply identical entries for this case, but there's
		 * no harm in accommodating the generalisation.
		 */
		if ((mask & smrs[i].mask) == mask &&
		    !((id ^ smrs[i].id) & ~smrs[i].mask))
			return i;
		/*
		 * If the new entry has any other overlap with an existing one,
		 * though, then there always exists at least one stream ID
		 * which would cause a conflict, and we can't allow that risk.
		 */
		if (!((id ^ smrs[i].id) & ~(smrs[i].mask | mask)))
			return -EINVAL;
	}
1272

1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289
	return free_idx;
}

static bool arm_smmu_free_sme(struct arm_smmu_device *smmu, int idx)
{
	if (--smmu->s2crs[idx].count)
		return false;

	smmu->s2crs[idx] = s2cr_init_val;
	if (smmu->smrs)
		smmu->smrs[idx].valid = false;

	return true;
}

static int arm_smmu_master_alloc_smes(struct device *dev)
{
1290 1291
	struct iommu_fwspec *fwspec = dev->iommu_fwspec;
	struct arm_smmu_master_cfg *cfg = fwspec->iommu_priv;
1292 1293 1294 1295 1296 1297 1298
	struct arm_smmu_device *smmu = cfg->smmu;
	struct arm_smmu_smr *smrs = smmu->smrs;
	struct iommu_group *group;
	int i, idx, ret;

	mutex_lock(&smmu->stream_map_mutex);
	/* Figure out a viable stream map entry allocation */
1299
	for_each_cfg_sme(fwspec, i, idx) {
1300 1301 1302
		u16 sid = fwspec->ids[i];
		u16 mask = fwspec->ids[i] >> SMR_MASK_SHIFT;

1303 1304 1305
		if (idx != INVALID_SMENDX) {
			ret = -EEXIST;
			goto out_err;
1306 1307
		}

1308
		ret = arm_smmu_find_sme(smmu, sid, mask);
1309 1310 1311 1312 1313
		if (ret < 0)
			goto out_err;

		idx = ret;
		if (smrs && smmu->s2crs[idx].count == 0) {
1314 1315
			smrs[idx].id = sid;
			smrs[idx].mask = mask;
1316 1317 1318 1319
			smrs[idx].valid = true;
		}
		smmu->s2crs[idx].count++;
		cfg->smendx[i] = (s16)idx;
1320 1321
	}

1322 1323 1324 1325 1326 1327 1328 1329
	group = iommu_group_get_for_dev(dev);
	if (!group)
		group = ERR_PTR(-ENOMEM);
	if (IS_ERR(group)) {
		ret = PTR_ERR(group);
		goto out_err;
	}
	iommu_group_put(group);
1330

1331
	/* It worked! Now, poke the actual hardware */
1332
	for_each_cfg_sme(fwspec, i, idx) {
1333 1334 1335
		arm_smmu_write_sme(smmu, idx);
		smmu->s2crs[idx].group = group;
	}
1336

1337
	mutex_unlock(&smmu->stream_map_mutex);
1338 1339
	return 0;

1340
out_err:
1341
	while (i--) {
1342
		arm_smmu_free_sme(smmu, cfg->smendx[i]);
1343 1344
		cfg->smendx[i] = INVALID_SMENDX;
	}
1345 1346
	mutex_unlock(&smmu->stream_map_mutex);
	return ret;
1347 1348
}

1349
static void arm_smmu_master_free_smes(struct iommu_fwspec *fwspec)
1350
{
1351 1352
	struct arm_smmu_device *smmu = fwspec_smmu(fwspec);
	struct arm_smmu_master_cfg *cfg = fwspec->iommu_priv;
1353
	int i, idx;
1354

1355
	mutex_lock(&smmu->stream_map_mutex);
1356
	for_each_cfg_sme(fwspec, i, idx) {
1357 1358
		if (arm_smmu_free_sme(smmu, idx))
			arm_smmu_write_sme(smmu, idx);
1359
		cfg->smendx[i] = INVALID_SMENDX;
1360
	}
1361
	mutex_unlock(&smmu->stream_map_mutex);
1362 1363 1364
}

static int arm_smmu_domain_add_master(struct arm_smmu_domain *smmu_domain,
1365
				      struct iommu_fwspec *fwspec)
1366
{
1367
	struct arm_smmu_device *smmu = smmu_domain->smmu;
1368 1369
	struct arm_smmu_s2cr *s2cr = smmu->s2crs;
	u8 cbndx = smmu_domain->cfg.cbndx;
1370
	enum arm_smmu_s2cr_type type;
1371
	int i, idx;
1372

1373 1374 1375 1376 1377
	if (smmu_domain->stage == ARM_SMMU_DOMAIN_BYPASS)
		type = S2CR_TYPE_BYPASS;
	else
		type = S2CR_TYPE_TRANS;

1378
	for_each_cfg_sme(fwspec, i, idx) {
1379
		if (type == s2cr[idx].type && cbndx == s2cr[idx].cbndx)
1380
			continue;
1381

1382
		s2cr[idx].type = type;
1383
		s2cr[idx].privcfg = S2CR_PRIVCFG_DEFAULT;
1384 1385
		s2cr[idx].cbndx = cbndx;
		arm_smmu_write_s2cr(smmu, idx);
1386
	}
1387
	return 0;
1388 1389
}

1390 1391
static int arm_smmu_attach_dev(struct iommu_domain *domain, struct device *dev)
{
1392
	int ret;
1393 1394
	struct iommu_fwspec *fwspec = dev->iommu_fwspec;
	struct arm_smmu_device *smmu;
1395
	struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1396

1397
	if (!fwspec || fwspec->ops != &arm_smmu_ops) {
1398 1399 1400 1401
		dev_err(dev, "cannot attach to SMMU, is it on the same bus?\n");
		return -ENXIO;
	}

1402 1403 1404 1405 1406 1407 1408 1409 1410 1411
	/*
	 * FIXME: The arch/arm DMA API code tries to attach devices to its own
	 * domains between of_xlate() and add_device() - we have no way to cope
	 * with that, so until ARM gets converted to rely on groups and default
	 * domains, just say no (but more politely than by dereferencing NULL).
	 * This should be at least a WARN_ON once that's sorted.
	 */
	if (!fwspec->iommu_priv)
		return -ENODEV;

1412
	smmu = fwspec_smmu(fwspec);
1413
	/* Ensure that the domain is finalised */
1414
	ret = arm_smmu_init_domain_context(domain, smmu);
1415
	if (ret < 0)
1416 1417
		return ret;

1418
	/*
1419 1420
	 * Sanity check the domain. We don't support domains across
	 * different SMMUs.
1421
	 */
1422
	if (smmu_domain->smmu != smmu) {
1423 1424
		dev_err(dev,
			"cannot attach to SMMU %s whilst already attached to domain on SMMU %s\n",
1425
			dev_name(smmu_domain->smmu->dev), dev_name(smmu->dev));
1426
		return -EINVAL;
1427 1428 1429
	}

	/* Looks ok, so add the device to the domain */
1430
	return arm_smmu_domain_add_master(smmu_domain, fwspec);
1431 1432 1433
}

static int arm_smmu_map(struct iommu_domain *domain, unsigned long iova,
1434
			phys_addr_t paddr, size_t size, int prot)
1435
{
1436
	struct io_pgtable_ops *ops = to_smmu_domain(domain)->pgtbl_ops;
1437

1438
	if (!ops)
1439 1440
		return -ENODEV;

1441
	return ops->map(ops, iova, paddr, size, prot);
1442 1443 1444 1445 1446
}

static size_t arm_smmu_unmap(struct iommu_domain *domain, unsigned long iova,
			     size_t size)
{
1447
	struct io_pgtable_ops *ops = to_smmu_domain(domain)->pgtbl_ops;
1448

1449 1450 1451
	if (!ops)
		return 0;

1452
	return ops->unmap(ops, iova, size);
1453 1454
}

1455 1456 1457
static phys_addr_t arm_smmu_iova_to_phys_hard(struct iommu_domain *domain,
					      dma_addr_t iova)
{
1458
	struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1459 1460 1461 1462 1463 1464 1465
	struct arm_smmu_device *smmu = smmu_domain->smmu;
	struct arm_smmu_cfg *cfg = &smmu_domain->cfg;
	struct io_pgtable_ops *ops= smmu_domain->pgtbl_ops;
	struct device *dev = smmu->dev;
	void __iomem *cb_base;
	u32 tmp;
	u64 phys;
1466
	unsigned long va, flags;
1467

1468
	cb_base = ARM_SMMU_CB(smmu, cfg->cbndx);
1469

1470
	spin_lock_irqsave(&smmu_domain->cb_lock, flags);
1471 1472 1473
	/* ATS1 registers can only be written atomically */
	va = iova & ~0xfffUL;
	if (smmu->version == ARM_SMMU_V2)
1474 1475
		smmu_write_atomic_lq(va, cb_base + ARM_SMMU_CB_ATS1PR);
	else /* Register is only 32-bit in v1 */
1476
		writel_relaxed(va, cb_base + ARM_SMMU_CB_ATS1PR);
1477 1478 1479

	if (readl_poll_timeout_atomic(cb_base + ARM_SMMU_CB_ATSR, tmp,
				      !(tmp & ATSR_ACTIVE), 5, 50)) {
1480
		spin_unlock_irqrestore(&smmu_domain->cb_lock, flags);
1481
		dev_err(dev,
1482
			"iova to phys timed out on %pad. Falling back to software table walk.\n",
1483 1484 1485 1486
			&iova);
		return ops->iova_to_phys(ops, iova);
	}

1487
	phys = readq_relaxed(cb_base + ARM_SMMU_CB_PAR);
1488
	spin_unlock_irqrestore(&smmu_domain->cb_lock, flags);
1489 1490 1491 1492 1493 1494 1495 1496 1497
	if (phys & CB_PAR_F) {
		dev_err(dev, "translation fault!\n");
		dev_err(dev, "PAR = 0x%llx\n", phys);
		return 0;
	}

	return (phys & GENMASK_ULL(39, 12)) | (iova & 0xfff);
}

1498
static phys_addr_t arm_smmu_iova_to_phys(struct iommu_domain *domain,
1499
					dma_addr_t iova)
1500
{
1501
	struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1502
	struct io_pgtable_ops *ops = smmu_domain->pgtbl_ops;
1503

1504 1505 1506
	if (domain->type == IOMMU_DOMAIN_IDENTITY)
		return iova;

1507
	if (!ops)
1508
		return 0;
1509

1510
	if (smmu_domain->smmu->features & ARM_SMMU_FEAT_TRANS_OPS &&
1511 1512
			smmu_domain->stage == ARM_SMMU_DOMAIN_S1)
		return arm_smmu_iova_to_phys_hard(domain, iova);
1513

1514
	return ops->iova_to_phys(ops, iova);
1515 1516
}

1517
static bool arm_smmu_capable(enum iommu_cap cap)
1518
{
1519 1520
	switch (cap) {
	case IOMMU_CAP_CACHE_COHERENCY:
1521 1522 1523 1524 1525
		/*
		 * Return true here as the SMMU can always send out coherent
		 * requests.
		 */
		return true;
1526 1527
	case IOMMU_CAP_NOEXEC:
		return true;
1528
	default:
1529
		return false;
1530
	}
1531 1532
}

1533 1534
static int arm_smmu_match_node(struct device *dev, void *data)
{
1535
	return dev->fwnode == data;
1536 1537
}

1538 1539
static
struct arm_smmu_device *arm_smmu_get_by_fwnode(struct fwnode_handle *fwnode)
1540 1541
{
	struct device *dev = driver_find_device(&arm_smmu_driver.driver, NULL,
1542
						fwnode, arm_smmu_match_node);
1543 1544 1545 1546
	put_device(dev);
	return dev ? dev_get_drvdata(dev) : NULL;
}

1547
static int arm_smmu_add_device(struct device *dev)
1548
{
1549
	struct arm_smmu_device *smmu;
1550
	struct arm_smmu_master_cfg *cfg;
1551
	struct iommu_fwspec *fwspec = dev->iommu_fwspec;
1552
	int i, ret;
1553

1554 1555 1556 1557
	if (using_legacy_binding) {
		ret = arm_smmu_register_legacy_master(dev, &smmu);
		if (ret)
			goto out_free;
1558
	} else if (fwspec && fwspec->ops == &arm_smmu_ops) {
1559
		smmu = arm_smmu_get_by_fwnode(fwspec->iommu_fwnode);
1560 1561 1562
	} else {
		return -ENODEV;
	}
1563

1564
	ret = -EINVAL;
1565 1566
	for (i = 0; i < fwspec->num_ids; i++) {
		u16 sid = fwspec->ids[i];
1567
		u16 mask = fwspec->ids[i] >> SMR_MASK_SHIFT;
1568

1569
		if (sid & ~smmu->streamid_mask) {
1570
			dev_err(dev, "stream ID 0x%x out of range for SMMU (0x%x)\n",
1571 1572 1573 1574 1575
				sid, smmu->streamid_mask);
			goto out_free;
		}
		if (mask & ~smmu->smr_mask_mask) {
			dev_err(dev, "SMR mask 0x%x out of range for SMMU (0x%x)\n",
P
Peng Fan 已提交
1576
				mask, smmu->smr_mask_mask);
1577 1578
			goto out_free;
		}
1579
	}
1580

1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591
	ret = -ENOMEM;
	cfg = kzalloc(offsetof(struct arm_smmu_master_cfg, smendx[i]),
		      GFP_KERNEL);
	if (!cfg)
		goto out_free;

	cfg->smmu = smmu;
	fwspec->iommu_priv = cfg;
	while (i--)
		cfg->smendx[i] = INVALID_SMENDX;

1592
	ret = arm_smmu_master_alloc_smes(dev);
1593
	if (ret)
1594
		goto out_cfg_free;
1595

1596 1597
	iommu_device_link(&smmu->iommu, dev);

1598
	return 0;
1599

1600 1601
out_cfg_free:
	kfree(cfg);
1602
out_free:
1603
	iommu_fwspec_free(dev);
1604
	return ret;
1605 1606
}

1607 1608
static void arm_smmu_remove_device(struct device *dev)
{
1609
	struct iommu_fwspec *fwspec = dev->iommu_fwspec;
1610 1611 1612
	struct arm_smmu_master_cfg *cfg;
	struct arm_smmu_device *smmu;

1613

1614
	if (!fwspec || fwspec->ops != &arm_smmu_ops)
1615
		return;
1616

1617 1618 1619 1620
	cfg  = fwspec->iommu_priv;
	smmu = cfg->smmu;

	iommu_device_unlink(&smmu->iommu, dev);
1621
	arm_smmu_master_free_smes(fwspec);
1622
	iommu_group_remove_device(dev);
1623 1624
	kfree(fwspec->iommu_priv);
	iommu_fwspec_free(dev);
1625 1626
}

1627 1628
static struct iommu_group *arm_smmu_device_group(struct device *dev)
{
1629 1630
	struct iommu_fwspec *fwspec = dev->iommu_fwspec;
	struct arm_smmu_device *smmu = fwspec_smmu(fwspec);
1631 1632 1633
	struct iommu_group *group = NULL;
	int i, idx;

1634
	for_each_cfg_sme(fwspec, i, idx) {
1635 1636 1637 1638 1639 1640 1641 1642
		if (group && smmu->s2crs[idx].group &&
		    group != smmu->s2crs[idx].group)
			return ERR_PTR(-EINVAL);

		group = smmu->s2crs[idx].group;
	}

	if (group)
1643
		return iommu_group_ref_get(group);
1644 1645 1646 1647 1648 1649 1650 1651 1652

	if (dev_is_pci(dev))
		group = pci_device_group(dev);
	else
		group = generic_device_group(dev);

	return group;
}

1653 1654 1655
static int arm_smmu_domain_get_attr(struct iommu_domain *domain,
				    enum iommu_attr attr, void *data)
{
1656
	struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1657

1658 1659 1660
	if (domain->type != IOMMU_DOMAIN_UNMANAGED)
		return -EINVAL;

1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672
	switch (attr) {
	case DOMAIN_ATTR_NESTING:
		*(int *)data = (smmu_domain->stage == ARM_SMMU_DOMAIN_NESTED);
		return 0;
	default:
		return -ENODEV;
	}
}

static int arm_smmu_domain_set_attr(struct iommu_domain *domain,
				    enum iommu_attr attr, void *data)
{
1673
	int ret = 0;
1674
	struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1675

1676 1677 1678
	if (domain->type != IOMMU_DOMAIN_UNMANAGED)
		return -EINVAL;

1679 1680
	mutex_lock(&smmu_domain->init_mutex);

1681 1682
	switch (attr) {
	case DOMAIN_ATTR_NESTING:
1683 1684 1685 1686 1687
		if (smmu_domain->smmu) {
			ret = -EPERM;
			goto out_unlock;
		}

1688 1689 1690 1691 1692
		if (*(int *)data)
			smmu_domain->stage = ARM_SMMU_DOMAIN_NESTED;
		else
			smmu_domain->stage = ARM_SMMU_DOMAIN_S1;

1693
		break;
1694
	default:
1695
		ret = -ENODEV;
1696
	}
1697 1698 1699 1700

out_unlock:
	mutex_unlock(&smmu_domain->init_mutex);
	return ret;
1701 1702
}

1703 1704
static int arm_smmu_of_xlate(struct device *dev, struct of_phandle_args *args)
{
1705
	u32 mask, fwid = 0;
1706 1707 1708 1709 1710 1711

	if (args->args_count > 0)
		fwid |= (u16)args->args[0];

	if (args->args_count > 1)
		fwid |= (u16)args->args[1] << SMR_MASK_SHIFT;
1712 1713
	else if (!of_property_read_u32(args->np, "stream-match-mask", &mask))
		fwid |= (u16)mask << SMR_MASK_SHIFT;
1714 1715 1716 1717

	return iommu_fwspec_add_ids(dev, &fwid, 1);
}

1718 1719 1720 1721 1722 1723 1724
static void arm_smmu_get_resv_regions(struct device *dev,
				      struct list_head *head)
{
	struct iommu_resv_region *region;
	int prot = IOMMU_WRITE | IOMMU_NOEXEC | IOMMU_MMIO;

	region = iommu_alloc_resv_region(MSI_IOVA_BASE, MSI_IOVA_LENGTH,
1725
					 prot, IOMMU_RESV_SW_MSI);
1726 1727 1728 1729
	if (!region)
		return;

	list_add_tail(&region->list, head);
1730 1731

	iommu_dma_get_resv_regions(dev, head);
1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742
}

static void arm_smmu_put_resv_regions(struct device *dev,
				      struct list_head *head)
{
	struct iommu_resv_region *entry, *next;

	list_for_each_entry_safe(entry, next, head, list)
		kfree(entry);
}

1743
static struct iommu_ops arm_smmu_ops = {
1744
	.capable		= arm_smmu_capable,
1745 1746
	.domain_alloc		= arm_smmu_domain_alloc,
	.domain_free		= arm_smmu_domain_free,
1747 1748 1749
	.attach_dev		= arm_smmu_attach_dev,
	.map			= arm_smmu_map,
	.unmap			= arm_smmu_unmap,
1750
	.map_sg			= default_iommu_map_sg,
1751 1752 1753
	.iova_to_phys		= arm_smmu_iova_to_phys,
	.add_device		= arm_smmu_add_device,
	.remove_device		= arm_smmu_remove_device,
1754
	.device_group		= arm_smmu_device_group,
1755 1756
	.domain_get_attr	= arm_smmu_domain_get_attr,
	.domain_set_attr	= arm_smmu_domain_set_attr,
1757
	.of_xlate		= arm_smmu_of_xlate,
1758 1759
	.get_resv_regions	= arm_smmu_get_resv_regions,
	.put_resv_regions	= arm_smmu_put_resv_regions,
1760
	.pgsize_bitmap		= -1UL, /* Restricted during device attach */
1761 1762 1763 1764 1765
};

static void arm_smmu_device_reset(struct arm_smmu_device *smmu)
{
	void __iomem *gr0_base = ARM_SMMU_GR0(smmu);
1766
	int i;
1767
	u32 reg, major;
1768

1769 1770 1771
	/* clear global FSR */
	reg = readl_relaxed(ARM_SMMU_GR0_NS(smmu) + ARM_SMMU_GR0_sGFSR);
	writel(reg, ARM_SMMU_GR0_NS(smmu) + ARM_SMMU_GR0_sGFSR);
1772

1773 1774 1775 1776
	/*
	 * Reset stream mapping groups: Initial values mark all SMRn as
	 * invalid and all S2CRn as bypass unless overridden.
	 */
1777 1778
	for (i = 0; i < smmu->num_mapping_groups; ++i)
		arm_smmu_write_sme(smmu, i);
1779

1780 1781 1782 1783 1784 1785 1786 1787
	if (smmu->model == ARM_MMU500) {
		/*
		 * Before clearing ARM_MMU500_ACTLR_CPRE, need to
		 * clear CACHE_LOCK bit of ACR first. And, CACHE_LOCK
		 * bit is only present in MMU-500r2 onwards.
		 */
		reg = readl_relaxed(gr0_base + ARM_SMMU_GR0_ID7);
		major = (reg >> ID7_MAJOR_SHIFT) & ID7_MAJOR_MASK;
1788
		reg = readl_relaxed(gr0_base + ARM_SMMU_GR0_sACR);
1789 1790 1791 1792 1793 1794 1795
		if (major >= 2)
			reg &= ~ARM_MMU500_ACR_CACHE_LOCK;
		/*
		 * Allow unmatched Stream IDs to allocate bypass
		 * TLB entries for reduced latency.
		 */
		reg |= ARM_MMU500_ACR_SMTNMB_TLBEN;
1796 1797 1798
		writel_relaxed(reg, gr0_base + ARM_SMMU_GR0_sACR);
	}

1799 1800
	/* Make sure all context banks are disabled and clear CB_FSR  */
	for (i = 0; i < smmu->num_context_banks; ++i) {
1801 1802 1803
		void __iomem *cb_base = ARM_SMMU_CB(smmu, i);

		arm_smmu_write_context_bank(smmu, i);
1804
		writel_relaxed(FSR_FAULT, cb_base + ARM_SMMU_CB_FSR);
1805 1806 1807 1808 1809 1810 1811 1812 1813
		/*
		 * Disable MMU-500's not-particularly-beneficial next-page
		 * prefetcher for the sake of errata #841119 and #826419.
		 */
		if (smmu->model == ARM_MMU500) {
			reg = readl_relaxed(cb_base + ARM_SMMU_CB_ACTLR);
			reg &= ~ARM_MMU500_ACTLR_CPRE;
			writel_relaxed(reg, cb_base + ARM_SMMU_CB_ACTLR);
		}
1814
	}
1815

1816 1817 1818 1819
	/* Invalidate the TLB, just in case */
	writel_relaxed(0, gr0_base + ARM_SMMU_GR0_TLBIALLH);
	writel_relaxed(0, gr0_base + ARM_SMMU_GR0_TLBIALLNSNH);

1820
	reg = readl_relaxed(ARM_SMMU_GR0_NS(smmu) + ARM_SMMU_GR0_sCR0);
1821

1822
	/* Enable fault reporting */
1823
	reg |= (sCR0_GFRE | sCR0_GFIE | sCR0_GCFGFRE | sCR0_GCFGFIE);
1824 1825

	/* Disable TLB broadcasting. */
1826
	reg |= (sCR0_VMIDPNE | sCR0_PTM);
1827

1828 1829 1830 1831 1832 1833
	/* Enable client access, handling unmatched streams as appropriate */
	reg &= ~sCR0_CLIENTPD;
	if (disable_bypass)
		reg |= sCR0_USFCFG;
	else
		reg &= ~sCR0_USFCFG;
1834 1835

	/* Disable forced broadcasting */
1836
	reg &= ~sCR0_FB;
1837 1838

	/* Don't upgrade barriers */
1839
	reg &= ~(sCR0_BSU_MASK << sCR0_BSU_SHIFT);
1840

1841 1842 1843
	if (smmu->features & ARM_SMMU_FEAT_VMID16)
		reg |= sCR0_VMID16EN;

1844 1845 1846
	if (smmu->features & ARM_SMMU_FEAT_EXIDS)
		reg |= sCR0_EXIDENABLE;

1847
	/* Push the button */
1848
	arm_smmu_tlb_sync_global(smmu);
1849
	writel(reg, ARM_SMMU_GR0_NS(smmu) + ARM_SMMU_GR0_sCR0);
1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875
}

static int arm_smmu_id_size_to_bits(int size)
{
	switch (size) {
	case 0:
		return 32;
	case 1:
		return 36;
	case 2:
		return 40;
	case 3:
		return 42;
	case 4:
		return 44;
	case 5:
	default:
		return 48;
	}
}

static int arm_smmu_device_cfg_probe(struct arm_smmu_device *smmu)
{
	unsigned long size;
	void __iomem *gr0_base = ARM_SMMU_GR0(smmu);
	u32 id;
1876
	bool cttw_reg, cttw_fw = smmu->features & ARM_SMMU_FEAT_COHERENT_WALK;
1877
	int i;
1878 1879

	dev_notice(smmu->dev, "probing hardware configuration...\n");
1880 1881
	dev_notice(smmu->dev, "SMMUv%d with:\n",
			smmu->version == ARM_SMMU_V2 ? 2 : 1);
1882 1883 1884

	/* ID0 */
	id = readl_relaxed(gr0_base + ARM_SMMU_GR0_ID0);
1885 1886 1887 1888 1889 1890 1891

	/* Restrict available stages based on module parameter */
	if (force_stage == 1)
		id &= ~(ID0_S2TS | ID0_NTS);
	else if (force_stage == 2)
		id &= ~(ID0_S1TS | ID0_NTS);

1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907
	if (id & ID0_S1TS) {
		smmu->features |= ARM_SMMU_FEAT_TRANS_S1;
		dev_notice(smmu->dev, "\tstage 1 translation\n");
	}

	if (id & ID0_S2TS) {
		smmu->features |= ARM_SMMU_FEAT_TRANS_S2;
		dev_notice(smmu->dev, "\tstage 2 translation\n");
	}

	if (id & ID0_NTS) {
		smmu->features |= ARM_SMMU_FEAT_TRANS_NESTED;
		dev_notice(smmu->dev, "\tnested translation\n");
	}

	if (!(smmu->features &
1908
		(ARM_SMMU_FEAT_TRANS_S1 | ARM_SMMU_FEAT_TRANS_S2))) {
1909 1910 1911 1912
		dev_err(smmu->dev, "\tno translation support!\n");
		return -ENODEV;
	}

1913 1914
	if ((id & ID0_S1TS) &&
		((smmu->version < ARM_SMMU_V2) || !(id & ID0_ATOSNS))) {
1915 1916 1917 1918
		smmu->features |= ARM_SMMU_FEAT_TRANS_OPS;
		dev_notice(smmu->dev, "\taddress translation ops\n");
	}

1919 1920
	/*
	 * In order for DMA API calls to work properly, we must defer to what
1921
	 * the FW says about coherency, regardless of what the hardware claims.
1922 1923 1924 1925
	 * Fortunately, this also opens up a workaround for systems where the
	 * ID register value has ended up configured incorrectly.
	 */
	cttw_reg = !!(id & ID0_CTTW);
1926
	if (cttw_fw || cttw_reg)
1927
		dev_notice(smmu->dev, "\t%scoherent table walk\n",
1928 1929
			   cttw_fw ? "" : "non-");
	if (cttw_fw != cttw_reg)
1930
		dev_notice(smmu->dev,
1931
			   "\t(IDR0.CTTW overridden by FW configuration)\n");
1932

1933
	/* Max. number of entries we have for stream matching/indexing */
1934 1935 1936 1937 1938 1939
	if (smmu->version == ARM_SMMU_V2 && id & ID0_EXIDS) {
		smmu->features |= ARM_SMMU_FEAT_EXIDS;
		size = 1 << 16;
	} else {
		size = 1 << ((id >> ID0_NUMSIDB_SHIFT) & ID0_NUMSIDB_MASK);
	}
1940
	smmu->streamid_mask = size - 1;
1941 1942
	if (id & ID0_SMS) {
		smmu->features |= ARM_SMMU_FEAT_STREAM_MATCH;
1943 1944
		size = (id >> ID0_NUMSMRG_SHIFT) & ID0_NUMSMRG_MASK;
		if (size == 0) {
1945 1946 1947 1948 1949
			dev_err(smmu->dev,
				"stream-matching supported, but no SMRs present!\n");
			return -ENODEV;
		}

1950 1951 1952 1953 1954 1955
		/* Zero-initialised to mark as invalid */
		smmu->smrs = devm_kcalloc(smmu->dev, size, sizeof(*smmu->smrs),
					  GFP_KERNEL);
		if (!smmu->smrs)
			return -ENOMEM;

1956
		dev_notice(smmu->dev,
1957
			   "\tstream matching with %lu register groups", size);
1958
	}
1959 1960 1961 1962 1963 1964 1965 1966
	/* s2cr->type == 0 means translation, so initialise explicitly */
	smmu->s2crs = devm_kmalloc_array(smmu->dev, size, sizeof(*smmu->s2crs),
					 GFP_KERNEL);
	if (!smmu->s2crs)
		return -ENOMEM;
	for (i = 0; i < size; i++)
		smmu->s2crs[i] = s2cr_init_val;

1967
	smmu->num_mapping_groups = size;
1968
	mutex_init(&smmu->stream_map_mutex);
1969
	spin_lock_init(&smmu->global_sync_lock);
1970

1971 1972 1973 1974 1975 1976
	if (smmu->version < ARM_SMMU_V2 || !(id & ID0_PTFS_NO_AARCH32)) {
		smmu->features |= ARM_SMMU_FEAT_FMT_AARCH32_L;
		if (!(id & ID0_PTFS_NO_AARCH32S))
			smmu->features |= ARM_SMMU_FEAT_FMT_AARCH32_S;
	}

1977 1978
	/* ID1 */
	id = readl_relaxed(gr0_base + ARM_SMMU_GR0_ID1);
1979
	smmu->pgshift = (id & ID1_PAGESIZE) ? 16 : 12;
1980

1981
	/* Check for size mismatch of SMMU address space from mapped region */
1982
	size = 1 << (((id >> ID1_NUMPAGENDXB_SHIFT) & ID1_NUMPAGENDXB_MASK) + 1);
1983 1984
	size <<= smmu->pgshift;
	if (smmu->cb_base != gr0_base + size)
1985
		dev_warn(smmu->dev,
1986 1987
			"SMMU address space size (0x%lx) differs from mapped region size (0x%tx)!\n",
			size * 2, (smmu->cb_base - gr0_base) * 2);
1988

1989
	smmu->num_s2_context_banks = (id >> ID1_NUMS2CB_SHIFT) & ID1_NUMS2CB_MASK;
1990 1991 1992 1993 1994 1995 1996
	smmu->num_context_banks = (id >> ID1_NUMCB_SHIFT) & ID1_NUMCB_MASK;
	if (smmu->num_s2_context_banks > smmu->num_context_banks) {
		dev_err(smmu->dev, "impossible number of S2 context banks!\n");
		return -ENODEV;
	}
	dev_notice(smmu->dev, "\t%u context banks (%u stage-2 only)\n",
		   smmu->num_context_banks, smmu->num_s2_context_banks);
1997 1998 1999 2000 2001 2002 2003 2004 2005 2006
	/*
	 * Cavium CN88xx erratum #27704.
	 * Ensure ASID and VMID allocation is unique across all SMMUs in
	 * the system.
	 */
	if (smmu->model == CAVIUM_SMMUV2) {
		smmu->cavium_id_base =
			atomic_add_return(smmu->num_context_banks,
					  &cavium_smmu_context_count);
		smmu->cavium_id_base -= smmu->num_context_banks;
2007
		dev_notice(smmu->dev, "\tenabling workaround for Cavium erratum 27704\n");
2008
	}
2009 2010 2011 2012
	smmu->cbs = devm_kcalloc(smmu->dev, smmu->num_context_banks,
				 sizeof(*smmu->cbs), GFP_KERNEL);
	if (!smmu->cbs)
		return -ENOMEM;
2013 2014 2015 2016

	/* ID2 */
	id = readl_relaxed(gr0_base + ARM_SMMU_GR0_ID2);
	size = arm_smmu_id_size_to_bits((id >> ID2_IAS_SHIFT) & ID2_IAS_MASK);
2017
	smmu->ipa_size = size;
2018

2019
	/* The output mask is also applied for bypass */
2020
	size = arm_smmu_id_size_to_bits((id >> ID2_OAS_SHIFT) & ID2_OAS_MASK);
2021
	smmu->pa_size = size;
2022

2023 2024 2025
	if (id & ID2_VMID16)
		smmu->features |= ARM_SMMU_FEAT_VMID16;

2026 2027 2028 2029 2030 2031 2032 2033 2034
	/*
	 * What the page table walker can address actually depends on which
	 * descriptor format is in use, but since a) we don't know that yet,
	 * and b) it can vary per context bank, this will have to do...
	 */
	if (dma_set_mask_and_coherent(smmu->dev, DMA_BIT_MASK(size)))
		dev_warn(smmu->dev,
			 "failed to set DMA mask for table walker\n");

2035
	if (smmu->version < ARM_SMMU_V2) {
2036
		smmu->va_size = smmu->ipa_size;
2037 2038
		if (smmu->version == ARM_SMMU_V1_64K)
			smmu->features |= ARM_SMMU_FEAT_FMT_AARCH64_64K;
2039 2040
	} else {
		size = (id >> ID2_UBS_SHIFT) & ID2_UBS_MASK;
2041 2042
		smmu->va_size = arm_smmu_id_size_to_bits(size);
		if (id & ID2_PTFS_4K)
2043
			smmu->features |= ARM_SMMU_FEAT_FMT_AARCH64_4K;
2044
		if (id & ID2_PTFS_16K)
2045
			smmu->features |= ARM_SMMU_FEAT_FMT_AARCH64_16K;
2046
		if (id & ID2_PTFS_64K)
2047
			smmu->features |= ARM_SMMU_FEAT_FMT_AARCH64_64K;
2048 2049
	}

2050 2051
	/* Now we've corralled the various formats, what'll it do? */
	if (smmu->features & ARM_SMMU_FEAT_FMT_AARCH32_S)
2052
		smmu->pgsize_bitmap |= SZ_4K | SZ_64K | SZ_1M | SZ_16M;
2053 2054
	if (smmu->features &
	    (ARM_SMMU_FEAT_FMT_AARCH32_L | ARM_SMMU_FEAT_FMT_AARCH64_4K))
2055
		smmu->pgsize_bitmap |= SZ_4K | SZ_2M | SZ_1G;
2056
	if (smmu->features & ARM_SMMU_FEAT_FMT_AARCH64_16K)
2057
		smmu->pgsize_bitmap |= SZ_16K | SZ_32M;
2058
	if (smmu->features & ARM_SMMU_FEAT_FMT_AARCH64_64K)
2059 2060 2061 2062 2063 2064 2065 2066
		smmu->pgsize_bitmap |= SZ_64K | SZ_512M;

	if (arm_smmu_ops.pgsize_bitmap == -1UL)
		arm_smmu_ops.pgsize_bitmap = smmu->pgsize_bitmap;
	else
		arm_smmu_ops.pgsize_bitmap |= smmu->pgsize_bitmap;
	dev_notice(smmu->dev, "\tSupported page sizes: 0x%08lx\n",
		   smmu->pgsize_bitmap);
2067

2068

2069 2070
	if (smmu->features & ARM_SMMU_FEAT_TRANS_S1)
		dev_notice(smmu->dev, "\tStage-1: %lu-bit VA -> %lu-bit IPA\n",
2071
			   smmu->va_size, smmu->ipa_size);
2072 2073 2074

	if (smmu->features & ARM_SMMU_FEAT_TRANS_S2)
		dev_notice(smmu->dev, "\tStage-2: %lu-bit IPA -> %lu-bit PA\n",
2075
			   smmu->ipa_size, smmu->pa_size);
2076

2077 2078 2079
	return 0;
}

2080 2081 2082 2083 2084 2085 2086 2087 2088 2089
struct arm_smmu_match_data {
	enum arm_smmu_arch_version version;
	enum arm_smmu_implementation model;
};

#define ARM_SMMU_MATCH_DATA(name, ver, imp)	\
static struct arm_smmu_match_data name = { .version = ver, .model = imp }

ARM_SMMU_MATCH_DATA(smmu_generic_v1, ARM_SMMU_V1, GENERIC_SMMU);
ARM_SMMU_MATCH_DATA(smmu_generic_v2, ARM_SMMU_V2, GENERIC_SMMU);
2090
ARM_SMMU_MATCH_DATA(arm_mmu401, ARM_SMMU_V1_64K, GENERIC_SMMU);
2091
ARM_SMMU_MATCH_DATA(arm_mmu500, ARM_SMMU_V2, ARM_MMU500);
2092
ARM_SMMU_MATCH_DATA(cavium_smmuv2, ARM_SMMU_V2, CAVIUM_SMMUV2);
2093

2094
static const struct of_device_id arm_smmu_of_match[] = {
2095 2096 2097
	{ .compatible = "arm,smmu-v1", .data = &smmu_generic_v1 },
	{ .compatible = "arm,smmu-v2", .data = &smmu_generic_v2 },
	{ .compatible = "arm,mmu-400", .data = &smmu_generic_v1 },
2098
	{ .compatible = "arm,mmu-401", .data = &arm_mmu401 },
2099
	{ .compatible = "arm,mmu-500", .data = &arm_mmu500 },
2100
	{ .compatible = "cavium,smmu-v2", .data = &cavium_smmuv2 },
2101 2102 2103 2104
	{ },
};
MODULE_DEVICE_TABLE(of, arm_smmu_of_match);

2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115
#ifdef CONFIG_ACPI
static int acpi_smmu_get_data(u32 model, struct arm_smmu_device *smmu)
{
	int ret = 0;

	switch (model) {
	case ACPI_IORT_SMMU_V1:
	case ACPI_IORT_SMMU_CORELINK_MMU400:
		smmu->version = ARM_SMMU_V1;
		smmu->model = GENERIC_SMMU;
		break;
2116 2117 2118 2119
	case ACPI_IORT_SMMU_CORELINK_MMU401:
		smmu->version = ARM_SMMU_V1_64K;
		smmu->model = GENERIC_SMMU;
		break;
2120 2121 2122 2123 2124 2125 2126 2127
	case ACPI_IORT_SMMU_V2:
		smmu->version = ARM_SMMU_V2;
		smmu->model = GENERIC_SMMU;
		break;
	case ACPI_IORT_SMMU_CORELINK_MMU500:
		smmu->version = ARM_SMMU_V2;
		smmu->model = ARM_MMU500;
		break;
2128 2129 2130 2131
	case ACPI_IORT_SMMU_CAVIUM_THUNDERX:
		smmu->version = ARM_SMMU_V2;
		smmu->model = CAVIUM_SMMUV2;
		break;
2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170
	default:
		ret = -ENODEV;
	}

	return ret;
}

static int arm_smmu_device_acpi_probe(struct platform_device *pdev,
				      struct arm_smmu_device *smmu)
{
	struct device *dev = smmu->dev;
	struct acpi_iort_node *node =
		*(struct acpi_iort_node **)dev_get_platdata(dev);
	struct acpi_iort_smmu *iort_smmu;
	int ret;

	/* Retrieve SMMU1/2 specific data */
	iort_smmu = (struct acpi_iort_smmu *)node->node_data;

	ret = acpi_smmu_get_data(iort_smmu->model, smmu);
	if (ret < 0)
		return ret;

	/* Ignore the configuration access interrupt */
	smmu->num_global_irqs = 1;

	if (iort_smmu->flags & ACPI_IORT_SMMU_COHERENT_WALK)
		smmu->features |= ARM_SMMU_FEAT_COHERENT_WALK;

	return 0;
}
#else
static inline int arm_smmu_device_acpi_probe(struct platform_device *pdev,
					     struct arm_smmu_device *smmu)
{
	return -ENODEV;
}
#endif

2171 2172
static int arm_smmu_device_dt_probe(struct platform_device *pdev,
				    struct arm_smmu_device *smmu)
2173
{
2174
	const struct arm_smmu_match_data *data;
2175
	struct device *dev = &pdev->dev;
2176 2177
	bool legacy_binding;

2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189
	if (of_property_read_u32(dev->of_node, "#global-interrupts",
				 &smmu->num_global_irqs)) {
		dev_err(dev, "missing #global-interrupts property\n");
		return -ENODEV;
	}

	data = of_device_get_match_data(dev);
	smmu->version = data->version;
	smmu->model = data->model;

	parse_driver_options(smmu);

2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200
	legacy_binding = of_find_property(dev->of_node, "mmu-masters", NULL);
	if (legacy_binding && !using_generic_binding) {
		if (!using_legacy_binding)
			pr_notice("deprecated \"mmu-masters\" DT property in use; DMA API support unavailable\n");
		using_legacy_binding = true;
	} else if (!legacy_binding && !using_legacy_binding) {
		using_generic_binding = true;
	} else {
		dev_err(dev, "not probing due to mismatched DT properties\n");
		return -ENODEV;
	}
2201

2202 2203 2204 2205 2206 2207
	if (of_dma_is_coherent(dev->of_node))
		smmu->features |= ARM_SMMU_FEAT_COHERENT_WALK;

	return 0;
}

2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224
static void arm_smmu_bus_init(void)
{
	/* Oh, for a proper bus abstraction */
	if (!iommu_present(&platform_bus_type))
		bus_set_iommu(&platform_bus_type, &arm_smmu_ops);
#ifdef CONFIG_ARM_AMBA
	if (!iommu_present(&amba_bustype))
		bus_set_iommu(&amba_bustype, &arm_smmu_ops);
#endif
#ifdef CONFIG_PCI
	if (!iommu_present(&pci_bus_type)) {
		pci_request_acs();
		bus_set_iommu(&pci_bus_type, &arm_smmu_ops);
	}
#endif
}

2225 2226 2227
static int arm_smmu_device_probe(struct platform_device *pdev)
{
	struct resource *res;
2228
	resource_size_t ioaddr;
2229 2230 2231 2232
	struct arm_smmu_device *smmu;
	struct device *dev = &pdev->dev;
	int num_irqs, i, err;

2233 2234 2235 2236 2237 2238 2239
	smmu = devm_kzalloc(dev, sizeof(*smmu), GFP_KERNEL);
	if (!smmu) {
		dev_err(dev, "failed to allocate arm_smmu_device\n");
		return -ENOMEM;
	}
	smmu->dev = dev;

2240 2241 2242 2243 2244
	if (dev->of_node)
		err = arm_smmu_device_dt_probe(pdev, smmu);
	else
		err = arm_smmu_device_acpi_probe(pdev, smmu);

2245 2246
	if (err)
		return err;
2247

2248
	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2249
	ioaddr = res->start;
2250 2251 2252
	smmu->base = devm_ioremap_resource(dev, res);
	if (IS_ERR(smmu->base))
		return PTR_ERR(smmu->base);
2253
	smmu->cb_base = smmu->base + resource_size(res) / 2;
2254 2255 2256 2257 2258 2259 2260 2261

	num_irqs = 0;
	while ((res = platform_get_resource(pdev, IORESOURCE_IRQ, num_irqs))) {
		num_irqs++;
		if (num_irqs > smmu->num_global_irqs)
			smmu->num_context_irqs++;
	}

2262 2263 2264 2265
	if (!smmu->num_context_irqs) {
		dev_err(dev, "found %d interrupts but expected at least %d\n",
			num_irqs, smmu->num_global_irqs + 1);
		return -ENODEV;
2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276
	}

	smmu->irqs = devm_kzalloc(dev, sizeof(*smmu->irqs) * num_irqs,
				  GFP_KERNEL);
	if (!smmu->irqs) {
		dev_err(dev, "failed to allocate %d irqs\n", num_irqs);
		return -ENOMEM;
	}

	for (i = 0; i < num_irqs; ++i) {
		int irq = platform_get_irq(pdev, i);
2277

2278 2279 2280 2281 2282 2283 2284
		if (irq < 0) {
			dev_err(dev, "failed to get irq index %d\n", i);
			return -ENODEV;
		}
		smmu->irqs[i] = irq;
	}

2285 2286 2287 2288
	err = arm_smmu_device_cfg_probe(smmu);
	if (err)
		return err;

2289
	if (smmu->version == ARM_SMMU_V2 &&
2290 2291 2292 2293
	    smmu->num_context_banks != smmu->num_context_irqs) {
		dev_err(dev,
			"found only %d context interrupt(s) but %d required\n",
			smmu->num_context_irqs, smmu->num_context_banks);
2294
		return -ENODEV;
2295 2296 2297
	}

	for (i = 0; i < smmu->num_global_irqs; ++i) {
2298 2299 2300 2301 2302
		err = devm_request_irq(smmu->dev, smmu->irqs[i],
				       arm_smmu_global_fault,
				       IRQF_SHARED,
				       "arm-smmu global fault",
				       smmu);
2303 2304 2305
		if (err) {
			dev_err(dev, "failed to request global IRQ %d (%u)\n",
				i, smmu->irqs[i]);
2306
			return err;
2307 2308 2309
		}
	}

2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325
	err = iommu_device_sysfs_add(&smmu->iommu, smmu->dev, NULL,
				     "smmu.%pa", &ioaddr);
	if (err) {
		dev_err(dev, "Failed to register iommu in sysfs\n");
		return err;
	}

	iommu_device_set_ops(&smmu->iommu, &arm_smmu_ops);
	iommu_device_set_fwnode(&smmu->iommu, dev->fwnode);

	err = iommu_device_register(&smmu->iommu);
	if (err) {
		dev_err(dev, "Failed to register iommu\n");
		return err;
	}

2326
	platform_set_drvdata(pdev, smmu);
2327
	arm_smmu_device_reset(smmu);
2328
	arm_smmu_test_smr_masks(smmu);
2329

2330 2331 2332 2333 2334 2335 2336 2337
	/*
	 * For ACPI and generic DT bindings, an SMMU will be probed before
	 * any device which might need it, so we want the bus ops in place
	 * ready to handle default domain setup as soon as any SMMU exists.
	 */
	if (!using_legacy_binding)
		arm_smmu_bus_init();

2338 2339 2340
	return 0;
}

2341 2342 2343 2344 2345 2346 2347 2348 2349 2350
/*
 * With the legacy DT binding in play, though, we have no guarantees about
 * probe order, but then we're also not doing default domains, so we can
 * delay setting bus ops until we're sure every possible SMMU is ready,
 * and that way ensure that no add_device() calls get missed.
 */
static int arm_smmu_legacy_bus_init(void)
{
	if (using_legacy_binding)
		arm_smmu_bus_init();
2351 2352
	return 0;
}
2353
device_initcall_sync(arm_smmu_legacy_bus_init);
2354 2355 2356

static int arm_smmu_device_remove(struct platform_device *pdev)
{
2357
	struct arm_smmu_device *smmu = platform_get_drvdata(pdev);
2358 2359 2360 2361

	if (!smmu)
		return -ENODEV;

2362
	if (!bitmap_empty(smmu->context_map, ARM_SMMU_MAX_CBS))
2363
		dev_err(&pdev->dev, "removing device with active domains!\n");
2364 2365

	/* Turn the thing off */
2366
	writel(sCR0_CLIENTPD, ARM_SMMU_GR0_NS(smmu) + ARM_SMMU_GR0_sCR0);
2367 2368 2369
	return 0;
}

2370 2371 2372 2373 2374
static void arm_smmu_device_shutdown(struct platform_device *pdev)
{
	arm_smmu_device_remove(pdev);
}

2375 2376 2377 2378 2379
static struct platform_driver arm_smmu_driver = {
	.driver	= {
		.name		= "arm-smmu",
		.of_match_table	= of_match_ptr(arm_smmu_of_match),
	},
2380
	.probe	= arm_smmu_device_probe,
2381
	.remove	= arm_smmu_device_remove,
2382
	.shutdown = arm_smmu_device_shutdown,
2383
};
2384 2385 2386 2387 2388 2389 2390 2391
module_platform_driver(arm_smmu_driver);

IOMMU_OF_DECLARE(arm_smmuv1, "arm,smmu-v1", NULL);
IOMMU_OF_DECLARE(arm_smmuv2, "arm,smmu-v2", NULL);
IOMMU_OF_DECLARE(arm_mmu400, "arm,mmu-400", NULL);
IOMMU_OF_DECLARE(arm_mmu401, "arm,mmu-401", NULL);
IOMMU_OF_DECLARE(arm_mmu500, "arm,mmu-500", NULL);
IOMMU_OF_DECLARE(cavium_smmuv2, "cavium,smmu-v2", NULL);
2392

2393 2394 2395
MODULE_DESCRIPTION("IOMMU API for ARM architected SMMU implementations");
MODULE_AUTHOR("Will Deacon <will.deacon@arm.com>");
MODULE_LICENSE("GPL v2");