arm-smmu.c 50.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36
/*
 * IOMMU API for ARM architected SMMU implementations.
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
 *
 * Copyright (C) 2013 ARM Limited
 *
 * Author: Will Deacon <will.deacon@arm.com>
 *
 * This driver currently supports:
 *	- SMMUv1 and v2 implementations
 *	- Stream-matching and stream-indexing
 *	- v7/v8 long-descriptor format
 *	- Non-secure access to the SMMU
 *	- Context fault reporting
 */

#define pr_fmt(fmt) "arm-smmu: " fmt

#include <linux/delay.h>
#include <linux/dma-mapping.h>
#include <linux/err.h>
#include <linux/interrupt.h>
#include <linux/io.h>
#include <linux/iommu.h>
37
#include <linux/iopoll.h>
38 39
#include <linux/module.h>
#include <linux/of.h>
40
#include <linux/pci.h>
41 42 43 44 45 46
#include <linux/platform_device.h>
#include <linux/slab.h>
#include <linux/spinlock.h>

#include <linux/amba/bus.h>

47
#include "io-pgtable.h"
48 49

/* Maximum number of stream IDs assigned to a single device */
50
#define MAX_MASTER_STREAMIDS		MAX_PHANDLE_ARGS
51 52 53 54 55 56 57 58 59

/* Maximum number of context banks per SMMU */
#define ARM_SMMU_MAX_CBS		128

/* Maximum number of mapping groups per SMMU */
#define ARM_SMMU_MAX_SMRS		128

/* SMMU global address space */
#define ARM_SMMU_GR0(smmu)		((smmu)->base)
60
#define ARM_SMMU_GR1(smmu)		((smmu)->base + (1 << (smmu)->pgshift))
61

62 63 64 65 66 67 68 69 70 71
/*
 * SMMU global address space with conditional offset to access secure
 * aliases of non-secure registers (e.g. nsCR0: 0x400, nsGFSR: 0x448,
 * nsGFSYNR0: 0x450)
 */
#define ARM_SMMU_GR0_NS(smmu)						\
	((smmu)->base +							\
		((smmu->options & ARM_SMMU_OPT_SECURE_CFG_ACCESS)	\
			? 0x400 : 0))

72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103
/* Configuration registers */
#define ARM_SMMU_GR0_sCR0		0x0
#define sCR0_CLIENTPD			(1 << 0)
#define sCR0_GFRE			(1 << 1)
#define sCR0_GFIE			(1 << 2)
#define sCR0_GCFGFRE			(1 << 4)
#define sCR0_GCFGFIE			(1 << 5)
#define sCR0_USFCFG			(1 << 10)
#define sCR0_VMIDPNE			(1 << 11)
#define sCR0_PTM			(1 << 12)
#define sCR0_FB				(1 << 13)
#define sCR0_BSU_SHIFT			14
#define sCR0_BSU_MASK			0x3

/* Identification registers */
#define ARM_SMMU_GR0_ID0		0x20
#define ARM_SMMU_GR0_ID1		0x24
#define ARM_SMMU_GR0_ID2		0x28
#define ARM_SMMU_GR0_ID3		0x2c
#define ARM_SMMU_GR0_ID4		0x30
#define ARM_SMMU_GR0_ID5		0x34
#define ARM_SMMU_GR0_ID6		0x38
#define ARM_SMMU_GR0_ID7		0x3c
#define ARM_SMMU_GR0_sGFSR		0x48
#define ARM_SMMU_GR0_sGFSYNR0		0x50
#define ARM_SMMU_GR0_sGFSYNR1		0x54
#define ARM_SMMU_GR0_sGFSYNR2		0x58

#define ID0_S1TS			(1 << 30)
#define ID0_S2TS			(1 << 29)
#define ID0_NTS				(1 << 28)
#define ID0_SMS				(1 << 27)
104
#define ID0_ATOSNS			(1 << 26)
105 106 107
#define ID0_CTTW			(1 << 14)
#define ID0_NUMIRPT_SHIFT		16
#define ID0_NUMIRPT_MASK		0xff
108 109
#define ID0_NUMSIDB_SHIFT		9
#define ID0_NUMSIDB_MASK		0xf
110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160
#define ID0_NUMSMRG_SHIFT		0
#define ID0_NUMSMRG_MASK		0xff

#define ID1_PAGESIZE			(1 << 31)
#define ID1_NUMPAGENDXB_SHIFT		28
#define ID1_NUMPAGENDXB_MASK		7
#define ID1_NUMS2CB_SHIFT		16
#define ID1_NUMS2CB_MASK		0xff
#define ID1_NUMCB_SHIFT			0
#define ID1_NUMCB_MASK			0xff

#define ID2_OAS_SHIFT			4
#define ID2_OAS_MASK			0xf
#define ID2_IAS_SHIFT			0
#define ID2_IAS_MASK			0xf
#define ID2_UBS_SHIFT			8
#define ID2_UBS_MASK			0xf
#define ID2_PTFS_4K			(1 << 12)
#define ID2_PTFS_16K			(1 << 13)
#define ID2_PTFS_64K			(1 << 14)

/* Global TLB invalidation */
#define ARM_SMMU_GR0_TLBIVMID		0x64
#define ARM_SMMU_GR0_TLBIALLNSNH	0x68
#define ARM_SMMU_GR0_TLBIALLH		0x6c
#define ARM_SMMU_GR0_sTLBGSYNC		0x70
#define ARM_SMMU_GR0_sTLBGSTATUS	0x74
#define sTLBGSTATUS_GSACTIVE		(1 << 0)
#define TLB_LOOP_TIMEOUT		1000000	/* 1s! */

/* Stream mapping registers */
#define ARM_SMMU_GR0_SMR(n)		(0x800 + ((n) << 2))
#define SMR_VALID			(1 << 31)
#define SMR_MASK_SHIFT			16
#define SMR_MASK_MASK			0x7fff
#define SMR_ID_SHIFT			0
#define SMR_ID_MASK			0x7fff

#define ARM_SMMU_GR0_S2CR(n)		(0xc00 + ((n) << 2))
#define S2CR_CBNDX_SHIFT		0
#define S2CR_CBNDX_MASK			0xff
#define S2CR_TYPE_SHIFT			16
#define S2CR_TYPE_MASK			0x3
#define S2CR_TYPE_TRANS			(0 << S2CR_TYPE_SHIFT)
#define S2CR_TYPE_BYPASS		(1 << S2CR_TYPE_SHIFT)
#define S2CR_TYPE_FAULT			(2 << S2CR_TYPE_SHIFT)

/* Context bank attribute registers */
#define ARM_SMMU_GR1_CBAR(n)		(0x0 + ((n) << 2))
#define CBAR_VMID_SHIFT			0
#define CBAR_VMID_MASK			0xff
161 162 163
#define CBAR_S1_BPSHCFG_SHIFT		8
#define CBAR_S1_BPSHCFG_MASK		3
#define CBAR_S1_BPSHCFG_NSH		3
164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181
#define CBAR_S1_MEMATTR_SHIFT		12
#define CBAR_S1_MEMATTR_MASK		0xf
#define CBAR_S1_MEMATTR_WB		0xf
#define CBAR_TYPE_SHIFT			16
#define CBAR_TYPE_MASK			0x3
#define CBAR_TYPE_S2_TRANS		(0 << CBAR_TYPE_SHIFT)
#define CBAR_TYPE_S1_TRANS_S2_BYPASS	(1 << CBAR_TYPE_SHIFT)
#define CBAR_TYPE_S1_TRANS_S2_FAULT	(2 << CBAR_TYPE_SHIFT)
#define CBAR_TYPE_S1_TRANS_S2_TRANS	(3 << CBAR_TYPE_SHIFT)
#define CBAR_IRPTNDX_SHIFT		24
#define CBAR_IRPTNDX_MASK		0xff

#define ARM_SMMU_GR1_CBA2R(n)		(0x800 + ((n) << 2))
#define CBA2R_RW64_32BIT		(0 << 0)
#define CBA2R_RW64_64BIT		(1 << 0)

/* Translation context bank */
#define ARM_SMMU_CB_BASE(smmu)		((smmu)->base + ((smmu)->size >> 1))
182
#define ARM_SMMU_CB(smmu, n)		((n) * (1 << (smmu)->pgshift))
183 184 185 186 187 188

#define ARM_SMMU_CB_SCTLR		0x0
#define ARM_SMMU_CB_RESUME		0x8
#define ARM_SMMU_CB_TTBCR2		0x10
#define ARM_SMMU_CB_TTBR0_LO		0x20
#define ARM_SMMU_CB_TTBR0_HI		0x24
189 190
#define ARM_SMMU_CB_TTBR1_LO		0x28
#define ARM_SMMU_CB_TTBR1_HI		0x2c
191 192
#define ARM_SMMU_CB_TTBCR		0x30
#define ARM_SMMU_CB_S1_MAIR0		0x38
193
#define ARM_SMMU_CB_S1_MAIR1		0x3c
194 195
#define ARM_SMMU_CB_PAR_LO		0x50
#define ARM_SMMU_CB_PAR_HI		0x54
196 197 198 199
#define ARM_SMMU_CB_FSR			0x58
#define ARM_SMMU_CB_FAR_LO		0x60
#define ARM_SMMU_CB_FAR_HI		0x64
#define ARM_SMMU_CB_FSYNR0		0x68
200
#define ARM_SMMU_CB_S1_TLBIVA		0x600
201
#define ARM_SMMU_CB_S1_TLBIASID		0x610
202 203 204
#define ARM_SMMU_CB_S1_TLBIVAL		0x620
#define ARM_SMMU_CB_S2_TLBIIPAS2	0x630
#define ARM_SMMU_CB_S2_TLBIIPAS2L	0x638
205 206 207
#define ARM_SMMU_CB_ATS1PR_LO		0x800
#define ARM_SMMU_CB_ATS1PR_HI		0x804
#define ARM_SMMU_CB_ATSR		0x8f0
208 209 210 211 212 213 214 215 216 217 218

#define SCTLR_S1_ASIDPNE		(1 << 12)
#define SCTLR_CFCFG			(1 << 7)
#define SCTLR_CFIE			(1 << 6)
#define SCTLR_CFRE			(1 << 5)
#define SCTLR_E				(1 << 4)
#define SCTLR_AFE			(1 << 2)
#define SCTLR_TRE			(1 << 1)
#define SCTLR_M				(1 << 0)
#define SCTLR_EAE_SBOP			(SCTLR_AFE | SCTLR_TRE)

219 220 221 222
#define CB_PAR_F			(1 << 0)

#define ATSR_ACTIVE			(1 << 0)

223 224 225 226
#define RESUME_RETRY			(0 << 0)
#define RESUME_TERMINATE		(1 << 0)

#define TTBCR2_SEP_SHIFT		15
227
#define TTBCR2_SEP_UPSTREAM		(0x7 << TTBCR2_SEP_SHIFT)
228

229
#define TTBRn_HI_ASID_SHIFT            16
230 231 232 233 234 235 236 237 238 239 240 241

#define FSR_MULTI			(1 << 31)
#define FSR_SS				(1 << 30)
#define FSR_UUT				(1 << 8)
#define FSR_ASF				(1 << 7)
#define FSR_TLBLKF			(1 << 6)
#define FSR_TLBMCF			(1 << 5)
#define FSR_EF				(1 << 4)
#define FSR_PF				(1 << 3)
#define FSR_AFF				(1 << 2)
#define FSR_TF				(1 << 1)

242 243 244
#define FSR_IGN				(FSR_AFF | FSR_ASF | \
					 FSR_TLBMCF | FSR_TLBLKF)
#define FSR_FAULT			(FSR_MULTI | FSR_SS | FSR_UUT | \
245
					 FSR_EF | FSR_PF | FSR_TF | FSR_IGN)
246 247 248

#define FSYNR0_WNR			(1 << 4)

249 250 251 252 253
static int force_stage;
module_param_named(force_stage, force_stage, int, S_IRUGO | S_IWUSR);
MODULE_PARM_DESC(force_stage,
	"Force SMMU mappings to be installed at a particular stage of translation. A value of '1' or '2' forces the corresponding stage. All other values are ignored (i.e. no stage is forced). Note that selecting a specific stage will disable support for nested translation.");

254 255 256 257 258
enum arm_smmu_arch_version {
	ARM_SMMU_V1 = 1,
	ARM_SMMU_V2,
};

259 260 261 262 263 264
struct arm_smmu_smr {
	u8				idx;
	u16				mask;
	u16				id;
};

265
struct arm_smmu_master_cfg {
266 267 268 269 270
	int				num_streamids;
	u16				streamids[MAX_MASTER_STREAMIDS];
	struct arm_smmu_smr		*smrs;
};

271 272 273 274 275 276
struct arm_smmu_master {
	struct device_node		*of_node;
	struct rb_node			node;
	struct arm_smmu_master_cfg	cfg;
};

277 278 279 280 281
struct arm_smmu_device {
	struct device			*dev;

	void __iomem			*base;
	unsigned long			size;
282
	unsigned long			pgshift;
283 284 285 286 287 288

#define ARM_SMMU_FEAT_COHERENT_WALK	(1 << 0)
#define ARM_SMMU_FEAT_STREAM_MATCH	(1 << 1)
#define ARM_SMMU_FEAT_TRANS_S1		(1 << 2)
#define ARM_SMMU_FEAT_TRANS_S2		(1 << 3)
#define ARM_SMMU_FEAT_TRANS_NESTED	(1 << 4)
289
#define ARM_SMMU_FEAT_TRANS_OPS		(1 << 5)
290
	u32				features;
291 292 293

#define ARM_SMMU_OPT_SECURE_CFG_ACCESS (1 << 0)
	u32				options;
294
	enum arm_smmu_arch_version	version;
295 296 297 298 299 300 301 302 303

	u32				num_context_banks;
	u32				num_s2_context_banks;
	DECLARE_BITMAP(context_map, ARM_SMMU_MAX_CBS);
	atomic_t			irptndx;

	u32				num_mapping_groups;
	DECLARE_BITMAP(smr_map, ARM_SMMU_MAX_SMRS);

304 305 306
	unsigned long			va_size;
	unsigned long			ipa_size;
	unsigned long			pa_size;
307 308 309 310 311 312 313 314 315 316 317 318 319 320

	u32				num_global_irqs;
	u32				num_context_irqs;
	unsigned int			*irqs;

	struct list_head		list;
	struct rb_root			masters;
};

struct arm_smmu_cfg {
	u8				cbndx;
	u8				irptndx;
	u32				cbar;
};
321
#define INVALID_IRPTNDX			0xff
322

323 324 325
#define ARM_SMMU_CB_ASID(cfg)		((cfg)->cbndx)
#define ARM_SMMU_CB_VMID(cfg)		((cfg)->cbndx + 1)

326 327 328 329 330 331
enum arm_smmu_domain_stage {
	ARM_SMMU_DOMAIN_S1 = 0,
	ARM_SMMU_DOMAIN_S2,
	ARM_SMMU_DOMAIN_NESTED,
};

332
struct arm_smmu_domain {
333
	struct arm_smmu_device		*smmu;
334 335
	struct io_pgtable_ops		*pgtbl_ops;
	spinlock_t			pgtbl_lock;
336
	struct arm_smmu_cfg		cfg;
337
	enum arm_smmu_domain_stage	stage;
338
	struct mutex			init_mutex; /* Protects smmu pointer */
339
	struct iommu_domain		domain;
340 341
};

342 343
static struct iommu_ops arm_smmu_ops;

344 345 346
static DEFINE_SPINLOCK(arm_smmu_devices_lock);
static LIST_HEAD(arm_smmu_devices);

347 348 349 350 351
struct arm_smmu_option_prop {
	u32 opt;
	const char *prop;
};

352
static struct arm_smmu_option_prop arm_smmu_options[] = {
353 354 355 356
	{ ARM_SMMU_OPT_SECURE_CFG_ACCESS, "calxeda,smmu-secure-config-access" },
	{ 0, NULL},
};

357 358 359 360 361
static struct arm_smmu_domain *to_smmu_domain(struct iommu_domain *dom)
{
	return container_of(dom, struct arm_smmu_domain, domain);
}

362 363 364
static void parse_driver_options(struct arm_smmu_device *smmu)
{
	int i = 0;
365

366 367 368 369 370 371 372 373 374 375
	do {
		if (of_property_read_bool(smmu->dev->of_node,
						arm_smmu_options[i].prop)) {
			smmu->options |= arm_smmu_options[i].opt;
			dev_notice(smmu->dev, "option %s\n",
				arm_smmu_options[i].prop);
		}
	} while (arm_smmu_options[++i].opt);
}

376
static struct device_node *dev_get_dev_node(struct device *dev)
377 378 379
{
	if (dev_is_pci(dev)) {
		struct pci_bus *bus = to_pci_dev(dev)->bus;
380

381 382
		while (!pci_is_root_bus(bus))
			bus = bus->parent;
383
		return bus->bridge->parent->of_node;
384 385
	}

386
	return dev->of_node;
387 388
}

389 390 391 392 393 394 395
static struct arm_smmu_master *find_smmu_master(struct arm_smmu_device *smmu,
						struct device_node *dev_node)
{
	struct rb_node *node = smmu->masters.rb_node;

	while (node) {
		struct arm_smmu_master *master;
396

397 398 399 400 401 402 403 404 405 406 407 408 409
		master = container_of(node, struct arm_smmu_master, node);

		if (dev_node < master->of_node)
			node = node->rb_left;
		else if (dev_node > master->of_node)
			node = node->rb_right;
		else
			return master;
	}

	return NULL;
}

410
static struct arm_smmu_master_cfg *
411
find_smmu_master_cfg(struct device *dev)
412
{
413 414
	struct arm_smmu_master_cfg *cfg = NULL;
	struct iommu_group *group = iommu_group_get(dev);
415

416 417 418 419
	if (group) {
		cfg = iommu_group_get_iommudata(group);
		iommu_group_put(group);
	}
420

421
	return cfg;
422 423
}

424 425 426 427 428 429 430 431
static int insert_smmu_master(struct arm_smmu_device *smmu,
			      struct arm_smmu_master *master)
{
	struct rb_node **new, *parent;

	new = &smmu->masters.rb_node;
	parent = NULL;
	while (*new) {
432 433
		struct arm_smmu_master *this
			= container_of(*new, struct arm_smmu_master, node);
434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474

		parent = *new;
		if (master->of_node < this->of_node)
			new = &((*new)->rb_left);
		else if (master->of_node > this->of_node)
			new = &((*new)->rb_right);
		else
			return -EEXIST;
	}

	rb_link_node(&master->node, parent, new);
	rb_insert_color(&master->node, &smmu->masters);
	return 0;
}

static int register_smmu_master(struct arm_smmu_device *smmu,
				struct device *dev,
				struct of_phandle_args *masterspec)
{
	int i;
	struct arm_smmu_master *master;

	master = find_smmu_master(smmu, masterspec->np);
	if (master) {
		dev_err(dev,
			"rejecting multiple registrations for master device %s\n",
			masterspec->np->name);
		return -EBUSY;
	}

	if (masterspec->args_count > MAX_MASTER_STREAMIDS) {
		dev_err(dev,
			"reached maximum number (%d) of stream IDs for master device %s\n",
			MAX_MASTER_STREAMIDS, masterspec->np->name);
		return -ENOSPC;
	}

	master = devm_kzalloc(dev, sizeof(*master), GFP_KERNEL);
	if (!master)
		return -ENOMEM;

475 476
	master->of_node			= masterspec->np;
	master->cfg.num_streamids	= masterspec->args_count;
477

478 479
	for (i = 0; i < master->cfg.num_streamids; ++i) {
		u16 streamid = masterspec->args[i];
480

481 482 483 484 485 486 487 488 489
		if (!(smmu->features & ARM_SMMU_FEAT_STREAM_MATCH) &&
		     (streamid >= smmu->num_mapping_groups)) {
			dev_err(dev,
				"stream ID for master device %s greater than maximum allowed (%d)\n",
				masterspec->np->name, smmu->num_mapping_groups);
			return -ERANGE;
		}
		master->cfg.streamids[i] = streamid;
	}
490 491 492
	return insert_smmu_master(smmu, master);
}

493
static struct arm_smmu_device *find_smmu_for_device(struct device *dev)
494
{
495
	struct arm_smmu_device *smmu;
496
	struct arm_smmu_master *master = NULL;
497
	struct device_node *dev_node = dev_get_dev_node(dev);
498 499

	spin_lock(&arm_smmu_devices_lock);
500
	list_for_each_entry(smmu, &arm_smmu_devices, list) {
501 502 503 504
		master = find_smmu_master(smmu, dev_node);
		if (master)
			break;
	}
505
	spin_unlock(&arm_smmu_devices_lock);
506

507
	return master ? smmu : NULL;
508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528
}

static int __arm_smmu_alloc_bitmap(unsigned long *map, int start, int end)
{
	int idx;

	do {
		idx = find_next_zero_bit(map, end, start);
		if (idx == end)
			return -ENOSPC;
	} while (test_and_set_bit(idx, map));

	return idx;
}

static void __arm_smmu_free_bitmap(unsigned long *map, int idx)
{
	clear_bit(idx, map);
}

/* Wait for any pending TLB invalidations to complete */
529
static void __arm_smmu_tlb_sync(struct arm_smmu_device *smmu)
530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546
{
	int count = 0;
	void __iomem *gr0_base = ARM_SMMU_GR0(smmu);

	writel_relaxed(0, gr0_base + ARM_SMMU_GR0_sTLBGSYNC);
	while (readl_relaxed(gr0_base + ARM_SMMU_GR0_sTLBGSTATUS)
	       & sTLBGSTATUS_GSACTIVE) {
		cpu_relax();
		if (++count == TLB_LOOP_TIMEOUT) {
			dev_err_ratelimited(smmu->dev,
			"TLB sync timed out -- SMMU may be deadlocked\n");
			return;
		}
		udelay(1);
	}
}

547 548 549 550 551 552 553
static void arm_smmu_tlb_sync(void *cookie)
{
	struct arm_smmu_domain *smmu_domain = cookie;
	__arm_smmu_tlb_sync(smmu_domain->smmu);
}

static void arm_smmu_tlb_inv_context(void *cookie)
554
{
555
	struct arm_smmu_domain *smmu_domain = cookie;
556 557
	struct arm_smmu_cfg *cfg = &smmu_domain->cfg;
	struct arm_smmu_device *smmu = smmu_domain->smmu;
558
	bool stage1 = cfg->cbar != CBAR_TYPE_S2_TRANS;
559
	void __iomem *base;
560 561 562

	if (stage1) {
		base = ARM_SMMU_CB_BASE(smmu) + ARM_SMMU_CB(smmu, cfg->cbndx);
563 564
		writel_relaxed(ARM_SMMU_CB_ASID(cfg),
			       base + ARM_SMMU_CB_S1_TLBIASID);
565 566
	} else {
		base = ARM_SMMU_GR0(smmu);
567 568
		writel_relaxed(ARM_SMMU_CB_VMID(cfg),
			       base + ARM_SMMU_GR0_TLBIVMID);
569 570
	}

571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631
	__arm_smmu_tlb_sync(smmu);
}

static void arm_smmu_tlb_inv_range_nosync(unsigned long iova, size_t size,
					  bool leaf, void *cookie)
{
	struct arm_smmu_domain *smmu_domain = cookie;
	struct arm_smmu_cfg *cfg = &smmu_domain->cfg;
	struct arm_smmu_device *smmu = smmu_domain->smmu;
	bool stage1 = cfg->cbar != CBAR_TYPE_S2_TRANS;
	void __iomem *reg;

	if (stage1) {
		reg = ARM_SMMU_CB_BASE(smmu) + ARM_SMMU_CB(smmu, cfg->cbndx);
		reg += leaf ? ARM_SMMU_CB_S1_TLBIVAL : ARM_SMMU_CB_S1_TLBIVA;

		if (!IS_ENABLED(CONFIG_64BIT) || smmu->version == ARM_SMMU_V1) {
			iova &= ~12UL;
			iova |= ARM_SMMU_CB_ASID(cfg);
			writel_relaxed(iova, reg);
#ifdef CONFIG_64BIT
		} else {
			iova >>= 12;
			iova |= (u64)ARM_SMMU_CB_ASID(cfg) << 48;
			writeq_relaxed(iova, reg);
#endif
		}
#ifdef CONFIG_64BIT
	} else if (smmu->version == ARM_SMMU_V2) {
		reg = ARM_SMMU_CB_BASE(smmu) + ARM_SMMU_CB(smmu, cfg->cbndx);
		reg += leaf ? ARM_SMMU_CB_S2_TLBIIPAS2L :
			      ARM_SMMU_CB_S2_TLBIIPAS2;
		writeq_relaxed(iova >> 12, reg);
#endif
	} else {
		reg = ARM_SMMU_GR0(smmu) + ARM_SMMU_GR0_TLBIVMID;
		writel_relaxed(ARM_SMMU_CB_VMID(cfg), reg);
	}
}

static void arm_smmu_flush_pgtable(void *addr, size_t size, void *cookie)
{
	struct arm_smmu_domain *smmu_domain = cookie;
	struct arm_smmu_device *smmu = smmu_domain->smmu;
	unsigned long offset = (unsigned long)addr & ~PAGE_MASK;


	/* Ensure new page tables are visible to the hardware walker */
	if (smmu->features & ARM_SMMU_FEAT_COHERENT_WALK) {
		dsb(ishst);
	} else {
		/*
		 * If the SMMU can't walk tables in the CPU caches, treat them
		 * like non-coherent DMA since we need to flush the new entries
		 * all the way out to memory. There's no possibility of
		 * recursion here as the SMMU table walker will not be wired
		 * through another SMMU.
		 */
		dma_map_page(smmu->dev, virt_to_page(addr), offset, size,
			     DMA_TO_DEVICE);
	}
632 633
}

634 635 636 637 638 639 640
static struct iommu_gather_ops arm_smmu_gather_ops = {
	.tlb_flush_all	= arm_smmu_tlb_inv_context,
	.tlb_add_flush	= arm_smmu_tlb_inv_range_nosync,
	.tlb_sync	= arm_smmu_tlb_sync,
	.flush_pgtable	= arm_smmu_flush_pgtable,
};

641 642 643 644 645 646
static irqreturn_t arm_smmu_context_fault(int irq, void *dev)
{
	int flags, ret;
	u32 fsr, far, fsynr, resume;
	unsigned long iova;
	struct iommu_domain *domain = dev;
647
	struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
648 649
	struct arm_smmu_cfg *cfg = &smmu_domain->cfg;
	struct arm_smmu_device *smmu = smmu_domain->smmu;
650 651
	void __iomem *cb_base;

652
	cb_base = ARM_SMMU_CB_BASE(smmu) + ARM_SMMU_CB(smmu, cfg->cbndx);
653 654 655 656 657 658 659
	fsr = readl_relaxed(cb_base + ARM_SMMU_CB_FSR);

	if (!(fsr & FSR_FAULT))
		return IRQ_NONE;

	if (fsr & FSR_IGN)
		dev_err_ratelimited(smmu->dev,
660
				    "Unexpected context fault (fsr 0x%x)\n",
661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676
				    fsr);

	fsynr = readl_relaxed(cb_base + ARM_SMMU_CB_FSYNR0);
	flags = fsynr & FSYNR0_WNR ? IOMMU_FAULT_WRITE : IOMMU_FAULT_READ;

	far = readl_relaxed(cb_base + ARM_SMMU_CB_FAR_LO);
	iova = far;
#ifdef CONFIG_64BIT
	far = readl_relaxed(cb_base + ARM_SMMU_CB_FAR_HI);
	iova |= ((unsigned long)far << 32);
#endif

	if (!report_iommu_fault(domain, smmu->dev, iova, flags)) {
		ret = IRQ_HANDLED;
		resume = RESUME_RETRY;
	} else {
677 678
		dev_err_ratelimited(smmu->dev,
		    "Unhandled context fault: iova=0x%08lx, fsynr=0x%x, cb=%d\n",
679
		    iova, fsynr, cfg->cbndx);
680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697
		ret = IRQ_NONE;
		resume = RESUME_TERMINATE;
	}

	/* Clear the faulting FSR */
	writel(fsr, cb_base + ARM_SMMU_CB_FSR);

	/* Retry or terminate any stalled transactions */
	if (fsr & FSR_SS)
		writel_relaxed(resume, cb_base + ARM_SMMU_CB_RESUME);

	return ret;
}

static irqreturn_t arm_smmu_global_fault(int irq, void *dev)
{
	u32 gfsr, gfsynr0, gfsynr1, gfsynr2;
	struct arm_smmu_device *smmu = dev;
698
	void __iomem *gr0_base = ARM_SMMU_GR0_NS(smmu);
699 700 701 702 703 704

	gfsr = readl_relaxed(gr0_base + ARM_SMMU_GR0_sGFSR);
	gfsynr0 = readl_relaxed(gr0_base + ARM_SMMU_GR0_sGFSYNR0);
	gfsynr1 = readl_relaxed(gr0_base + ARM_SMMU_GR0_sGFSYNR1);
	gfsynr2 = readl_relaxed(gr0_base + ARM_SMMU_GR0_sGFSYNR2);

705 706 707
	if (!gfsr)
		return IRQ_NONE;

708 709 710 711 712 713 714
	dev_err_ratelimited(smmu->dev,
		"Unexpected global fault, this could be serious\n");
	dev_err_ratelimited(smmu->dev,
		"\tGFSR 0x%08x, GFSYNR0 0x%08x, GFSYNR1 0x%08x, GFSYNR2 0x%08x\n",
		gfsr, gfsynr0, gfsynr1, gfsynr2);

	writel(gfsr, gr0_base + ARM_SMMU_GR0_sGFSR);
715
	return IRQ_HANDLED;
716 717
}

718 719
static void arm_smmu_init_context_bank(struct arm_smmu_domain *smmu_domain,
				       struct io_pgtable_cfg *pgtbl_cfg)
720 721 722
{
	u32 reg;
	bool stage1;
723 724
	struct arm_smmu_cfg *cfg = &smmu_domain->cfg;
	struct arm_smmu_device *smmu = smmu_domain->smmu;
725 726 727 728
	void __iomem *cb_base, *gr0_base, *gr1_base;

	gr0_base = ARM_SMMU_GR0(smmu);
	gr1_base = ARM_SMMU_GR1(smmu);
729 730
	stage1 = cfg->cbar != CBAR_TYPE_S2_TRANS;
	cb_base = ARM_SMMU_CB_BASE(smmu) + ARM_SMMU_CB(smmu, cfg->cbndx);
731

732 733 734 735 736 737 738 739 740 741 742 743 744 745
	if (smmu->version > ARM_SMMU_V1) {
		/*
		 * CBA2R.
		 * *Must* be initialised before CBAR thanks to VMID16
		 * architectural oversight affected some implementations.
		 */
#ifdef CONFIG_64BIT
		reg = CBA2R_RW64_64BIT;
#else
		reg = CBA2R_RW64_32BIT;
#endif
		writel_relaxed(reg, gr1_base + ARM_SMMU_GR1_CBA2R(cfg->cbndx));
	}

746
	/* CBAR */
747
	reg = cfg->cbar;
748
	if (smmu->version == ARM_SMMU_V1)
749
		reg |= cfg->irptndx << CBAR_IRPTNDX_SHIFT;
750

751 752 753 754 755 756 757 758
	/*
	 * Use the weakest shareability/memory types, so they are
	 * overridden by the ttbcr/pte.
	 */
	if (stage1) {
		reg |= (CBAR_S1_BPSHCFG_NSH << CBAR_S1_BPSHCFG_SHIFT) |
			(CBAR_S1_MEMATTR_WB << CBAR_S1_MEMATTR_SHIFT);
	} else {
759
		reg |= ARM_SMMU_CB_VMID(cfg) << CBAR_VMID_SHIFT;
760
	}
761
	writel_relaxed(reg, gr1_base + ARM_SMMU_GR1_CBAR(cfg->cbndx));
762

763 764 765 766 767
	/* TTBRs */
	if (stage1) {
		reg = pgtbl_cfg->arm_lpae_s1_cfg.ttbr[0];
		writel_relaxed(reg, cb_base + ARM_SMMU_CB_TTBR0_LO);
		reg = pgtbl_cfg->arm_lpae_s1_cfg.ttbr[0] >> 32;
768
		reg |= ARM_SMMU_CB_ASID(cfg) << TTBRn_HI_ASID_SHIFT;
769
		writel_relaxed(reg, cb_base + ARM_SMMU_CB_TTBR0_HI);
770

771 772 773 774 775 776 777 778 779 780 781
		reg = pgtbl_cfg->arm_lpae_s1_cfg.ttbr[1];
		writel_relaxed(reg, cb_base + ARM_SMMU_CB_TTBR1_LO);
		reg = pgtbl_cfg->arm_lpae_s1_cfg.ttbr[1] >> 32;
		reg |= ARM_SMMU_CB_ASID(cfg) << TTBRn_HI_ASID_SHIFT;
		writel_relaxed(reg, cb_base + ARM_SMMU_CB_TTBR1_HI);
	} else {
		reg = pgtbl_cfg->arm_lpae_s2_cfg.vttbr;
		writel_relaxed(reg, cb_base + ARM_SMMU_CB_TTBR0_LO);
		reg = pgtbl_cfg->arm_lpae_s2_cfg.vttbr >> 32;
		writel_relaxed(reg, cb_base + ARM_SMMU_CB_TTBR0_HI);
	}
782

783 784 785 786 787 788
	/* TTBCR */
	if (stage1) {
		reg = pgtbl_cfg->arm_lpae_s1_cfg.tcr;
		writel_relaxed(reg, cb_base + ARM_SMMU_CB_TTBCR);
		if (smmu->version > ARM_SMMU_V1) {
			reg = pgtbl_cfg->arm_lpae_s1_cfg.tcr >> 32;
789
			reg |= TTBCR2_SEP_UPSTREAM;
790
			writel_relaxed(reg, cb_base + ARM_SMMU_CB_TTBCR2);
791 792
		}
	} else {
793 794
		reg = pgtbl_cfg->arm_lpae_s2_cfg.vtcr;
		writel_relaxed(reg, cb_base + ARM_SMMU_CB_TTBCR);
795 796
	}

797
	/* MAIRs (stage-1 only) */
798
	if (stage1) {
799
		reg = pgtbl_cfg->arm_lpae_s1_cfg.mair[0];
800
		writel_relaxed(reg, cb_base + ARM_SMMU_CB_S1_MAIR0);
801 802
		reg = pgtbl_cfg->arm_lpae_s1_cfg.mair[1];
		writel_relaxed(reg, cb_base + ARM_SMMU_CB_S1_MAIR1);
803 804 805 806 807 808 809 810 811
	}

	/* SCTLR */
	reg = SCTLR_CFCFG | SCTLR_CFIE | SCTLR_CFRE | SCTLR_M | SCTLR_EAE_SBOP;
	if (stage1)
		reg |= SCTLR_S1_ASIDPNE;
#ifdef __BIG_ENDIAN
	reg |= SCTLR_E;
#endif
812
	writel_relaxed(reg, cb_base + ARM_SMMU_CB_SCTLR);
813 814 815
}

static int arm_smmu_init_domain_context(struct iommu_domain *domain,
816
					struct arm_smmu_device *smmu)
817
{
818
	int irq, start, ret = 0;
819 820 821 822
	unsigned long ias, oas;
	struct io_pgtable_ops *pgtbl_ops;
	struct io_pgtable_cfg pgtbl_cfg;
	enum io_pgtable_fmt fmt;
823
	struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
824
	struct arm_smmu_cfg *cfg = &smmu_domain->cfg;
825

826
	mutex_lock(&smmu_domain->init_mutex);
827 828 829
	if (smmu_domain->smmu)
		goto out_unlock;

830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856
	/*
	 * Mapping the requested stage onto what we support is surprisingly
	 * complicated, mainly because the spec allows S1+S2 SMMUs without
	 * support for nested translation. That means we end up with the
	 * following table:
	 *
	 * Requested        Supported        Actual
	 *     S1               N              S1
	 *     S1             S1+S2            S1
	 *     S1               S2             S2
	 *     S1               S1             S1
	 *     N                N              N
	 *     N              S1+S2            S2
	 *     N                S2             S2
	 *     N                S1             S1
	 *
	 * Note that you can't actually request stage-2 mappings.
	 */
	if (!(smmu->features & ARM_SMMU_FEAT_TRANS_S1))
		smmu_domain->stage = ARM_SMMU_DOMAIN_S2;
	if (!(smmu->features & ARM_SMMU_FEAT_TRANS_S2))
		smmu_domain->stage = ARM_SMMU_DOMAIN_S1;

	switch (smmu_domain->stage) {
	case ARM_SMMU_DOMAIN_S1:
		cfg->cbar = CBAR_TYPE_S1_TRANS_S2_BYPASS;
		start = smmu->num_s2_context_banks;
857 858 859 860 861 862
		ias = smmu->va_size;
		oas = smmu->ipa_size;
		if (IS_ENABLED(CONFIG_64BIT))
			fmt = ARM_64_LPAE_S1;
		else
			fmt = ARM_32_LPAE_S1;
863 864
		break;
	case ARM_SMMU_DOMAIN_NESTED:
865 866 867 868
		/*
		 * We will likely want to change this if/when KVM gets
		 * involved.
		 */
869
	case ARM_SMMU_DOMAIN_S2:
870 871
		cfg->cbar = CBAR_TYPE_S2_TRANS;
		start = 0;
872 873 874 875 876 877
		ias = smmu->ipa_size;
		oas = smmu->pa_size;
		if (IS_ENABLED(CONFIG_64BIT))
			fmt = ARM_64_LPAE_S2;
		else
			fmt = ARM_32_LPAE_S2;
878 879 880 881
		break;
	default:
		ret = -EINVAL;
		goto out_unlock;
882 883 884 885 886
	}

	ret = __arm_smmu_alloc_bitmap(smmu->context_map, start,
				      smmu->num_context_banks);
	if (IS_ERR_VALUE(ret))
887
		goto out_unlock;
888

889
	cfg->cbndx = ret;
890
	if (smmu->version == ARM_SMMU_V1) {
891 892
		cfg->irptndx = atomic_inc_return(&smmu->irptndx);
		cfg->irptndx %= smmu->num_context_irqs;
893
	} else {
894
		cfg->irptndx = cfg->cbndx;
895 896
	}

897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912
	pgtbl_cfg = (struct io_pgtable_cfg) {
		.pgsize_bitmap	= arm_smmu_ops.pgsize_bitmap,
		.ias		= ias,
		.oas		= oas,
		.tlb		= &arm_smmu_gather_ops,
	};

	smmu_domain->smmu = smmu;
	pgtbl_ops = alloc_io_pgtable_ops(fmt, &pgtbl_cfg, smmu_domain);
	if (!pgtbl_ops) {
		ret = -ENOMEM;
		goto out_clear_smmu;
	}

	/* Update our support page sizes to reflect the page table format */
	arm_smmu_ops.pgsize_bitmap = pgtbl_cfg.pgsize_bitmap;
913

914 915 916 917 918 919 920
	/* Initialise the context bank with our page table cfg */
	arm_smmu_init_context_bank(smmu_domain, &pgtbl_cfg);

	/*
	 * Request context fault interrupt. Do this last to avoid the
	 * handler seeing a half-initialised domain state.
	 */
921
	irq = smmu->irqs[smmu->num_global_irqs + cfg->irptndx];
922 923 924 925
	ret = request_irq(irq, arm_smmu_context_fault, IRQF_SHARED,
			  "arm-smmu-context-fault", domain);
	if (IS_ERR_VALUE(ret)) {
		dev_err(smmu->dev, "failed to request context IRQ %d (%u)\n",
926 927
			cfg->irptndx, irq);
		cfg->irptndx = INVALID_IRPTNDX;
928 929
	}

930 931 932 933
	mutex_unlock(&smmu_domain->init_mutex);

	/* Publish page table ops for map/unmap */
	smmu_domain->pgtbl_ops = pgtbl_ops;
934
	return 0;
935

936 937
out_clear_smmu:
	smmu_domain->smmu = NULL;
938
out_unlock:
939
	mutex_unlock(&smmu_domain->init_mutex);
940 941 942 943 944
	return ret;
}

static void arm_smmu_destroy_domain_context(struct iommu_domain *domain)
{
945
	struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
946 947
	struct arm_smmu_device *smmu = smmu_domain->smmu;
	struct arm_smmu_cfg *cfg = &smmu_domain->cfg;
948
	void __iomem *cb_base;
949 950 951 952 953
	int irq;

	if (!smmu)
		return;

954 955 956 957
	/*
	 * Disable the context bank and free the page tables before freeing
	 * it.
	 */
958
	cb_base = ARM_SMMU_CB_BASE(smmu) + ARM_SMMU_CB(smmu, cfg->cbndx);
959 960
	writel_relaxed(0, cb_base + ARM_SMMU_CB_SCTLR);

961 962
	if (cfg->irptndx != INVALID_IRPTNDX) {
		irq = smmu->irqs[smmu->num_global_irqs + cfg->irptndx];
963 964 965
		free_irq(irq, domain);
	}

966 967 968
	if (smmu_domain->pgtbl_ops)
		free_io_pgtable_ops(smmu_domain->pgtbl_ops);

969
	__arm_smmu_free_bitmap(smmu->context_map, cfg->cbndx);
970 971
}

972
static struct iommu_domain *arm_smmu_domain_alloc(unsigned type)
973 974 975
{
	struct arm_smmu_domain *smmu_domain;

976 977
	if (type != IOMMU_DOMAIN_UNMANAGED)
		return NULL;
978 979 980 981 982 983 984
	/*
	 * Allocate the domain and initialise some of its data structures.
	 * We can't really do anything meaningful until we've added a
	 * master.
	 */
	smmu_domain = kzalloc(sizeof(*smmu_domain), GFP_KERNEL);
	if (!smmu_domain)
985
		return NULL;
986

987 988
	mutex_init(&smmu_domain->init_mutex);
	spin_lock_init(&smmu_domain->pgtbl_lock);
989 990

	return &smmu_domain->domain;
991 992
}

993
static void arm_smmu_domain_free(struct iommu_domain *domain)
994
{
995
	struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
996 997 998 999 1000

	/*
	 * Free the domain resources. We assume that all devices have
	 * already been detached.
	 */
1001 1002 1003 1004 1005
	arm_smmu_destroy_domain_context(domain);
	kfree(smmu_domain);
}

static int arm_smmu_master_configure_smrs(struct arm_smmu_device *smmu,
1006
					  struct arm_smmu_master_cfg *cfg)
1007 1008 1009 1010 1011 1012 1013 1014
{
	int i;
	struct arm_smmu_smr *smrs;
	void __iomem *gr0_base = ARM_SMMU_GR0(smmu);

	if (!(smmu->features & ARM_SMMU_FEAT_STREAM_MATCH))
		return 0;

1015
	if (cfg->smrs)
1016 1017
		return -EEXIST;

1018
	smrs = kmalloc_array(cfg->num_streamids, sizeof(*smrs), GFP_KERNEL);
1019
	if (!smrs) {
1020 1021
		dev_err(smmu->dev, "failed to allocate %d SMRs\n",
			cfg->num_streamids);
1022 1023 1024
		return -ENOMEM;
	}

1025
	/* Allocate the SMRs on the SMMU */
1026
	for (i = 0; i < cfg->num_streamids; ++i) {
1027 1028 1029 1030 1031 1032 1033 1034 1035 1036
		int idx = __arm_smmu_alloc_bitmap(smmu->smr_map, 0,
						  smmu->num_mapping_groups);
		if (IS_ERR_VALUE(idx)) {
			dev_err(smmu->dev, "failed to allocate free SMR\n");
			goto err_free_smrs;
		}

		smrs[i] = (struct arm_smmu_smr) {
			.idx	= idx,
			.mask	= 0, /* We don't currently share SMRs */
1037
			.id	= cfg->streamids[i],
1038 1039 1040 1041
		};
	}

	/* It worked! Now, poke the actual hardware */
1042
	for (i = 0; i < cfg->num_streamids; ++i) {
1043 1044 1045 1046 1047
		u32 reg = SMR_VALID | smrs[i].id << SMR_ID_SHIFT |
			  smrs[i].mask << SMR_MASK_SHIFT;
		writel_relaxed(reg, gr0_base + ARM_SMMU_GR0_SMR(smrs[i].idx));
	}

1048
	cfg->smrs = smrs;
1049 1050 1051 1052 1053 1054 1055 1056 1057 1058
	return 0;

err_free_smrs:
	while (--i >= 0)
		__arm_smmu_free_bitmap(smmu->smr_map, smrs[i].idx);
	kfree(smrs);
	return -ENOSPC;
}

static void arm_smmu_master_free_smrs(struct arm_smmu_device *smmu,
1059
				      struct arm_smmu_master_cfg *cfg)
1060 1061 1062
{
	int i;
	void __iomem *gr0_base = ARM_SMMU_GR0(smmu);
1063
	struct arm_smmu_smr *smrs = cfg->smrs;
1064

1065 1066 1067
	if (!smrs)
		return;

1068
	/* Invalidate the SMRs before freeing back to the allocator */
1069
	for (i = 0; i < cfg->num_streamids; ++i) {
1070
		u8 idx = smrs[i].idx;
1071

1072 1073 1074 1075
		writel_relaxed(~SMR_VALID, gr0_base + ARM_SMMU_GR0_SMR(idx));
		__arm_smmu_free_bitmap(smmu->smr_map, idx);
	}

1076
	cfg->smrs = NULL;
1077 1078 1079 1080
	kfree(smrs);
}

static int arm_smmu_domain_add_master(struct arm_smmu_domain *smmu_domain,
1081
				      struct arm_smmu_master_cfg *cfg)
1082 1083
{
	int i, ret;
1084
	struct arm_smmu_device *smmu = smmu_domain->smmu;
1085 1086
	void __iomem *gr0_base = ARM_SMMU_GR0(smmu);

1087
	/* Devices in an IOMMU group may already be configured */
1088
	ret = arm_smmu_master_configure_smrs(smmu, cfg);
1089
	if (ret)
1090
		return ret == -EEXIST ? 0 : ret;
1091

1092
	for (i = 0; i < cfg->num_streamids; ++i) {
1093
		u32 idx, s2cr;
1094

1095
		idx = cfg->smrs ? cfg->smrs[i].idx : cfg->streamids[i];
1096
		s2cr = S2CR_TYPE_TRANS |
1097
		       (smmu_domain->cfg.cbndx << S2CR_CBNDX_SHIFT);
1098 1099 1100 1101 1102 1103 1104
		writel_relaxed(s2cr, gr0_base + ARM_SMMU_GR0_S2CR(idx));
	}

	return 0;
}

static void arm_smmu_domain_remove_master(struct arm_smmu_domain *smmu_domain,
1105
					  struct arm_smmu_master_cfg *cfg)
1106
{
1107
	int i;
1108
	struct arm_smmu_device *smmu = smmu_domain->smmu;
1109
	void __iomem *gr0_base = ARM_SMMU_GR0(smmu);
1110

1111 1112 1113
	/* An IOMMU group is torn down by the first device to be removed */
	if ((smmu->features & ARM_SMMU_FEAT_STREAM_MATCH) && !cfg->smrs)
		return;
1114 1115 1116 1117 1118

	/*
	 * We *must* clear the S2CR first, because freeing the SMR means
	 * that it can be re-allocated immediately.
	 */
1119 1120 1121 1122 1123 1124 1125
	for (i = 0; i < cfg->num_streamids; ++i) {
		u32 idx = cfg->smrs ? cfg->smrs[i].idx : cfg->streamids[i];

		writel_relaxed(S2CR_TYPE_BYPASS,
			       gr0_base + ARM_SMMU_GR0_S2CR(idx));
	}

1126
	arm_smmu_master_free_smrs(smmu, cfg);
1127 1128 1129 1130
}

static int arm_smmu_attach_dev(struct iommu_domain *domain, struct device *dev)
{
1131
	int ret;
1132
	struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1133
	struct arm_smmu_device *smmu;
1134
	struct arm_smmu_master_cfg *cfg;
1135

1136
	smmu = find_smmu_for_device(dev);
1137
	if (!smmu) {
1138 1139 1140 1141
		dev_err(dev, "cannot attach to SMMU, is it on the same bus?\n");
		return -ENXIO;
	}

1142 1143 1144 1145 1146
	if (dev->archdata.iommu) {
		dev_err(dev, "already attached to IOMMU domain\n");
		return -EEXIST;
	}

1147 1148 1149 1150 1151
	/* Ensure that the domain is finalised */
	ret = arm_smmu_init_domain_context(domain, smmu);
	if (IS_ERR_VALUE(ret))
		return ret;

1152
	/*
1153 1154
	 * Sanity check the domain. We don't support domains across
	 * different SMMUs.
1155
	 */
1156
	if (smmu_domain->smmu != smmu) {
1157 1158
		dev_err(dev,
			"cannot attach to SMMU %s whilst already attached to domain on SMMU %s\n",
1159 1160
			dev_name(smmu_domain->smmu->dev), dev_name(smmu->dev));
		return -EINVAL;
1161 1162 1163
	}

	/* Looks ok, so add the device to the domain */
1164
	cfg = find_smmu_master_cfg(dev);
1165
	if (!cfg)
1166 1167
		return -ENODEV;

1168 1169 1170
	ret = arm_smmu_domain_add_master(smmu_domain, cfg);
	if (!ret)
		dev->archdata.iommu = domain;
1171 1172 1173 1174 1175
	return ret;
}

static void arm_smmu_detach_dev(struct iommu_domain *domain, struct device *dev)
{
1176
	struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1177
	struct arm_smmu_master_cfg *cfg;
1178

1179
	cfg = find_smmu_master_cfg(dev);
1180 1181 1182 1183 1184
	if (!cfg)
		return;

	dev->archdata.iommu = NULL;
	arm_smmu_domain_remove_master(smmu_domain, cfg);
1185 1186 1187
}

static int arm_smmu_map(struct iommu_domain *domain, unsigned long iova,
1188
			phys_addr_t paddr, size_t size, int prot)
1189
{
1190 1191
	int ret;
	unsigned long flags;
1192
	struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1193
	struct io_pgtable_ops *ops= smmu_domain->pgtbl_ops;
1194

1195
	if (!ops)
1196 1197
		return -ENODEV;

1198 1199 1200 1201
	spin_lock_irqsave(&smmu_domain->pgtbl_lock, flags);
	ret = ops->map(ops, iova, paddr, size, prot);
	spin_unlock_irqrestore(&smmu_domain->pgtbl_lock, flags);
	return ret;
1202 1203 1204 1205 1206
}

static size_t arm_smmu_unmap(struct iommu_domain *domain, unsigned long iova,
			     size_t size)
{
1207 1208
	size_t ret;
	unsigned long flags;
1209
	struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1210
	struct io_pgtable_ops *ops= smmu_domain->pgtbl_ops;
1211

1212 1213 1214 1215 1216 1217 1218
	if (!ops)
		return 0;

	spin_lock_irqsave(&smmu_domain->pgtbl_lock, flags);
	ret = ops->unmap(ops, iova, size);
	spin_unlock_irqrestore(&smmu_domain->pgtbl_lock, flags);
	return ret;
1219 1220
}

1221 1222 1223
static phys_addr_t arm_smmu_iova_to_phys_hard(struct iommu_domain *domain,
					      dma_addr_t iova)
{
1224
	struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240
	struct arm_smmu_device *smmu = smmu_domain->smmu;
	struct arm_smmu_cfg *cfg = &smmu_domain->cfg;
	struct io_pgtable_ops *ops= smmu_domain->pgtbl_ops;
	struct device *dev = smmu->dev;
	void __iomem *cb_base;
	u32 tmp;
	u64 phys;

	cb_base = ARM_SMMU_CB_BASE(smmu) + ARM_SMMU_CB(smmu, cfg->cbndx);

	if (smmu->version == 1) {
		u32 reg = iova & ~0xfff;
		writel_relaxed(reg, cb_base + ARM_SMMU_CB_ATS1PR_LO);
	} else {
		u32 reg = iova & ~0xfff;
		writel_relaxed(reg, cb_base + ARM_SMMU_CB_ATS1PR_LO);
1241
		reg = ((u64)iova & ~0xfff) >> 32;
1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264
		writel_relaxed(reg, cb_base + ARM_SMMU_CB_ATS1PR_HI);
	}

	if (readl_poll_timeout_atomic(cb_base + ARM_SMMU_CB_ATSR, tmp,
				      !(tmp & ATSR_ACTIVE), 5, 50)) {
		dev_err(dev,
			"iova to phys timed out on 0x%pad. Falling back to software table walk.\n",
			&iova);
		return ops->iova_to_phys(ops, iova);
	}

	phys = readl_relaxed(cb_base + ARM_SMMU_CB_PAR_LO);
	phys |= ((u64)readl_relaxed(cb_base + ARM_SMMU_CB_PAR_HI)) << 32;

	if (phys & CB_PAR_F) {
		dev_err(dev, "translation fault!\n");
		dev_err(dev, "PAR = 0x%llx\n", phys);
		return 0;
	}

	return (phys & GENMASK_ULL(39, 12)) | (iova & 0xfff);
}

1265
static phys_addr_t arm_smmu_iova_to_phys(struct iommu_domain *domain,
1266
					dma_addr_t iova)
1267
{
1268 1269
	phys_addr_t ret;
	unsigned long flags;
1270
	struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1271
	struct io_pgtable_ops *ops= smmu_domain->pgtbl_ops;
1272

1273
	if (!ops)
1274
		return 0;
1275

1276
	spin_lock_irqsave(&smmu_domain->pgtbl_lock, flags);
1277 1278
	if (smmu_domain->smmu->features & ARM_SMMU_FEAT_TRANS_OPS &&
			smmu_domain->stage == ARM_SMMU_DOMAIN_S1) {
1279
		ret = arm_smmu_iova_to_phys_hard(domain, iova);
1280
	} else {
1281
		ret = ops->iova_to_phys(ops, iova);
1282 1283
	}

1284
	spin_unlock_irqrestore(&smmu_domain->pgtbl_lock, flags);
1285

1286
	return ret;
1287 1288
}

1289
static bool arm_smmu_capable(enum iommu_cap cap)
1290
{
1291 1292
	switch (cap) {
	case IOMMU_CAP_CACHE_COHERENCY:
1293 1294 1295 1296 1297
		/*
		 * Return true here as the SMMU can always send out coherent
		 * requests.
		 */
		return true;
1298
	case IOMMU_CAP_INTR_REMAP:
1299
		return true; /* MSIs are just memory writes */
1300 1301
	case IOMMU_CAP_NOEXEC:
		return true;
1302
	default:
1303
		return false;
1304
	}
1305 1306
}

1307 1308 1309 1310
static int __arm_smmu_get_pci_sid(struct pci_dev *pdev, u16 alias, void *data)
{
	*((u16 *)data) = alias;
	return 0; /* Continue walking */
1311 1312
}

1313 1314 1315 1316 1317
static void __arm_smmu_release_pci_iommudata(void *data)
{
	kfree(data);
}

1318
static int arm_smmu_add_pci_device(struct pci_dev *pdev)
1319
{
1320 1321
	int i, ret;
	u16 sid;
1322
	struct iommu_group *group;
1323
	struct arm_smmu_master_cfg *cfg;
1324

1325 1326
	group = iommu_group_get_for_dev(&pdev->dev);
	if (IS_ERR(group))
1327
		return PTR_ERR(group);
1328

1329 1330
	cfg = iommu_group_get_iommudata(group);
	if (!cfg) {
1331 1332 1333 1334 1335 1336
		cfg = kzalloc(sizeof(*cfg), GFP_KERNEL);
		if (!cfg) {
			ret = -ENOMEM;
			goto out_put_group;
		}

1337 1338 1339
		iommu_group_set_iommudata(group, cfg,
					  __arm_smmu_release_pci_iommudata);
	}
1340

1341 1342 1343
	if (cfg->num_streamids >= MAX_MASTER_STREAMIDS) {
		ret = -ENOSPC;
		goto out_put_group;
1344 1345
	}

1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357
	/*
	 * Assume Stream ID == Requester ID for now.
	 * We need a way to describe the ID mappings in FDT.
	 */
	pci_for_each_dma_alias(pdev, __arm_smmu_get_pci_sid, &sid);
	for (i = 0; i < cfg->num_streamids; ++i)
		if (cfg->streamids[i] == sid)
			break;

	/* Avoid duplicate SIDs, as this can lead to SMR conflicts */
	if (i == cfg->num_streamids)
		cfg->streamids[cfg->num_streamids++] = sid;
1358

1359
	return 0;
1360 1361
out_put_group:
	iommu_group_put(group);
1362
	return ret;
1363 1364
}

1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394
static int arm_smmu_add_platform_device(struct device *dev)
{
	struct iommu_group *group;
	struct arm_smmu_master *master;
	struct arm_smmu_device *smmu = find_smmu_for_device(dev);

	if (!smmu)
		return -ENODEV;

	master = find_smmu_master(smmu, dev->of_node);
	if (!master)
		return -ENODEV;

	/* No automatic group creation for platform devices */
	group = iommu_group_alloc();
	if (IS_ERR(group))
		return PTR_ERR(group);

	iommu_group_set_iommudata(group, &master->cfg, NULL);
	return iommu_group_add_device(group, dev);
}

static int arm_smmu_add_device(struct device *dev)
{
	if (dev_is_pci(dev))
		return arm_smmu_add_pci_device(to_pci_dev(dev));

	return arm_smmu_add_platform_device(dev);
}

1395 1396
static void arm_smmu_remove_device(struct device *dev)
{
1397
	iommu_group_remove_device(dev);
1398 1399
}

1400 1401 1402
static int arm_smmu_domain_get_attr(struct iommu_domain *domain,
				    enum iommu_attr attr, void *data)
{
1403
	struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416

	switch (attr) {
	case DOMAIN_ATTR_NESTING:
		*(int *)data = (smmu_domain->stage == ARM_SMMU_DOMAIN_NESTED);
		return 0;
	default:
		return -ENODEV;
	}
}

static int arm_smmu_domain_set_attr(struct iommu_domain *domain,
				    enum iommu_attr attr, void *data)
{
1417
	int ret = 0;
1418
	struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1419

1420 1421
	mutex_lock(&smmu_domain->init_mutex);

1422 1423
	switch (attr) {
	case DOMAIN_ATTR_NESTING:
1424 1425 1426 1427 1428
		if (smmu_domain->smmu) {
			ret = -EPERM;
			goto out_unlock;
		}

1429 1430 1431 1432 1433
		if (*(int *)data)
			smmu_domain->stage = ARM_SMMU_DOMAIN_NESTED;
		else
			smmu_domain->stage = ARM_SMMU_DOMAIN_S1;

1434
		break;
1435
	default:
1436
		ret = -ENODEV;
1437
	}
1438 1439 1440 1441

out_unlock:
	mutex_unlock(&smmu_domain->init_mutex);
	return ret;
1442 1443
}

1444
static struct iommu_ops arm_smmu_ops = {
1445
	.capable		= arm_smmu_capable,
1446 1447
	.domain_alloc		= arm_smmu_domain_alloc,
	.domain_free		= arm_smmu_domain_free,
1448 1449 1450 1451
	.attach_dev		= arm_smmu_attach_dev,
	.detach_dev		= arm_smmu_detach_dev,
	.map			= arm_smmu_map,
	.unmap			= arm_smmu_unmap,
1452
	.map_sg			= default_iommu_map_sg,
1453 1454 1455 1456 1457
	.iova_to_phys		= arm_smmu_iova_to_phys,
	.add_device		= arm_smmu_add_device,
	.remove_device		= arm_smmu_remove_device,
	.domain_get_attr	= arm_smmu_domain_get_attr,
	.domain_set_attr	= arm_smmu_domain_set_attr,
1458
	.pgsize_bitmap		= -1UL, /* Restricted during device attach */
1459 1460 1461 1462 1463
};

static void arm_smmu_device_reset(struct arm_smmu_device *smmu)
{
	void __iomem *gr0_base = ARM_SMMU_GR0(smmu);
1464
	void __iomem *cb_base;
1465
	int i = 0;
1466 1467
	u32 reg;

1468 1469 1470
	/* clear global FSR */
	reg = readl_relaxed(ARM_SMMU_GR0_NS(smmu) + ARM_SMMU_GR0_sGFSR);
	writel(reg, ARM_SMMU_GR0_NS(smmu) + ARM_SMMU_GR0_sGFSR);
1471 1472 1473

	/* Mark all SMRn as invalid and all S2CRn as bypass */
	for (i = 0; i < smmu->num_mapping_groups; ++i) {
1474
		writel_relaxed(0, gr0_base + ARM_SMMU_GR0_SMR(i));
1475 1476
		writel_relaxed(S2CR_TYPE_BYPASS,
			gr0_base + ARM_SMMU_GR0_S2CR(i));
1477 1478
	}

1479 1480 1481 1482 1483 1484
	/* Make sure all context banks are disabled and clear CB_FSR  */
	for (i = 0; i < smmu->num_context_banks; ++i) {
		cb_base = ARM_SMMU_CB_BASE(smmu) + ARM_SMMU_CB(smmu, i);
		writel_relaxed(0, cb_base + ARM_SMMU_CB_SCTLR);
		writel_relaxed(FSR_FAULT, cb_base + ARM_SMMU_CB_FSR);
	}
1485

1486 1487 1488 1489
	/* Invalidate the TLB, just in case */
	writel_relaxed(0, gr0_base + ARM_SMMU_GR0_TLBIALLH);
	writel_relaxed(0, gr0_base + ARM_SMMU_GR0_TLBIALLNSNH);

1490
	reg = readl_relaxed(ARM_SMMU_GR0_NS(smmu) + ARM_SMMU_GR0_sCR0);
1491

1492
	/* Enable fault reporting */
1493
	reg |= (sCR0_GFRE | sCR0_GFIE | sCR0_GCFGFRE | sCR0_GCFGFIE);
1494 1495

	/* Disable TLB broadcasting. */
1496
	reg |= (sCR0_VMIDPNE | sCR0_PTM);
1497 1498

	/* Enable client access, but bypass when no mapping is found */
1499
	reg &= ~(sCR0_CLIENTPD | sCR0_USFCFG);
1500 1501

	/* Disable forced broadcasting */
1502
	reg &= ~sCR0_FB;
1503 1504

	/* Don't upgrade barriers */
1505
	reg &= ~(sCR0_BSU_MASK << sCR0_BSU_SHIFT);
1506 1507

	/* Push the button */
1508
	__arm_smmu_tlb_sync(smmu);
1509
	writel(reg, ARM_SMMU_GR0_NS(smmu) + ARM_SMMU_GR0_sCR0);
1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541
}

static int arm_smmu_id_size_to_bits(int size)
{
	switch (size) {
	case 0:
		return 32;
	case 1:
		return 36;
	case 2:
		return 40;
	case 3:
		return 42;
	case 4:
		return 44;
	case 5:
	default:
		return 48;
	}
}

static int arm_smmu_device_cfg_probe(struct arm_smmu_device *smmu)
{
	unsigned long size;
	void __iomem *gr0_base = ARM_SMMU_GR0(smmu);
	u32 id;

	dev_notice(smmu->dev, "probing hardware configuration...\n");
	dev_notice(smmu->dev, "SMMUv%d with:\n", smmu->version);

	/* ID0 */
	id = readl_relaxed(gr0_base + ARM_SMMU_GR0_ID0);
1542 1543 1544 1545 1546 1547 1548

	/* Restrict available stages based on module parameter */
	if (force_stage == 1)
		id &= ~(ID0_S2TS | ID0_NTS);
	else if (force_stage == 2)
		id &= ~(ID0_S1TS | ID0_NTS);

1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564
	if (id & ID0_S1TS) {
		smmu->features |= ARM_SMMU_FEAT_TRANS_S1;
		dev_notice(smmu->dev, "\tstage 1 translation\n");
	}

	if (id & ID0_S2TS) {
		smmu->features |= ARM_SMMU_FEAT_TRANS_S2;
		dev_notice(smmu->dev, "\tstage 2 translation\n");
	}

	if (id & ID0_NTS) {
		smmu->features |= ARM_SMMU_FEAT_TRANS_NESTED;
		dev_notice(smmu->dev, "\tnested translation\n");
	}

	if (!(smmu->features &
1565
		(ARM_SMMU_FEAT_TRANS_S1 | ARM_SMMU_FEAT_TRANS_S2))) {
1566 1567 1568 1569
		dev_err(smmu->dev, "\tno translation support!\n");
		return -ENODEV;
	}

1570
	if ((id & ID0_S1TS) && ((smmu->version == 1) || (id & ID0_ATOSNS))) {
1571 1572 1573 1574
		smmu->features |= ARM_SMMU_FEAT_TRANS_OPS;
		dev_notice(smmu->dev, "\taddress translation ops\n");
	}

1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608
	if (id & ID0_CTTW) {
		smmu->features |= ARM_SMMU_FEAT_COHERENT_WALK;
		dev_notice(smmu->dev, "\tcoherent table walk\n");
	}

	if (id & ID0_SMS) {
		u32 smr, sid, mask;

		smmu->features |= ARM_SMMU_FEAT_STREAM_MATCH;
		smmu->num_mapping_groups = (id >> ID0_NUMSMRG_SHIFT) &
					   ID0_NUMSMRG_MASK;
		if (smmu->num_mapping_groups == 0) {
			dev_err(smmu->dev,
				"stream-matching supported, but no SMRs present!\n");
			return -ENODEV;
		}

		smr = SMR_MASK_MASK << SMR_MASK_SHIFT;
		smr |= (SMR_ID_MASK << SMR_ID_SHIFT);
		writel_relaxed(smr, gr0_base + ARM_SMMU_GR0_SMR(0));
		smr = readl_relaxed(gr0_base + ARM_SMMU_GR0_SMR(0));

		mask = (smr >> SMR_MASK_SHIFT) & SMR_MASK_MASK;
		sid = (smr >> SMR_ID_SHIFT) & SMR_ID_MASK;
		if ((mask & sid) != sid) {
			dev_err(smmu->dev,
				"SMR mask bits (0x%x) insufficient for ID field (0x%x)\n",
				mask, sid);
			return -ENODEV;
		}

		dev_notice(smmu->dev,
			   "\tstream matching with %u register groups, mask 0x%x",
			   smmu->num_mapping_groups, mask);
1609 1610 1611
	} else {
		smmu->num_mapping_groups = (id >> ID0_NUMSIDB_SHIFT) &
					   ID0_NUMSIDB_MASK;
1612 1613 1614 1615
	}

	/* ID1 */
	id = readl_relaxed(gr0_base + ARM_SMMU_GR0_ID1);
1616
	smmu->pgshift = (id & ID1_PAGESIZE) ? 16 : 12;
1617

1618
	/* Check for size mismatch of SMMU address space from mapped region */
1619
	size = 1 << (((id >> ID1_NUMPAGENDXB_SHIFT) & ID1_NUMPAGENDXB_MASK) + 1);
1620
	size *= 2 << smmu->pgshift;
1621
	if (smmu->size != size)
1622 1623 1624
		dev_warn(smmu->dev,
			"SMMU address space size (0x%lx) differs from mapped region size (0x%lx)!\n",
			size, smmu->size);
1625

1626
	smmu->num_s2_context_banks = (id >> ID1_NUMS2CB_SHIFT) & ID1_NUMS2CB_MASK;
1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637
	smmu->num_context_banks = (id >> ID1_NUMCB_SHIFT) & ID1_NUMCB_MASK;
	if (smmu->num_s2_context_banks > smmu->num_context_banks) {
		dev_err(smmu->dev, "impossible number of S2 context banks!\n");
		return -ENODEV;
	}
	dev_notice(smmu->dev, "\t%u context banks (%u stage-2 only)\n",
		   smmu->num_context_banks, smmu->num_s2_context_banks);

	/* ID2 */
	id = readl_relaxed(gr0_base + ARM_SMMU_GR0_ID2);
	size = arm_smmu_id_size_to_bits((id >> ID2_IAS_SHIFT) & ID2_IAS_MASK);
1638
	smmu->ipa_size = size;
1639

1640
	/* The output mask is also applied for bypass */
1641
	size = arm_smmu_id_size_to_bits((id >> ID2_OAS_SHIFT) & ID2_OAS_MASK);
1642
	smmu->pa_size = size;
1643

1644 1645 1646 1647 1648 1649 1650 1651 1652
	/*
	 * What the page table walker can address actually depends on which
	 * descriptor format is in use, but since a) we don't know that yet,
	 * and b) it can vary per context bank, this will have to do...
	 */
	if (dma_set_mask_and_coherent(smmu->dev, DMA_BIT_MASK(size)))
		dev_warn(smmu->dev,
			 "failed to set DMA mask for table walker\n");

1653
	if (smmu->version == ARM_SMMU_V1) {
1654 1655
		smmu->va_size = smmu->ipa_size;
		size = SZ_4K | SZ_2M | SZ_1G;
1656 1657
	} else {
		size = (id >> ID2_UBS_SHIFT) & ID2_UBS_MASK;
1658 1659 1660
		smmu->va_size = arm_smmu_id_size_to_bits(size);
#ifndef CONFIG_64BIT
		smmu->va_size = min(32UL, smmu->va_size);
1661
#endif
1662 1663 1664 1665 1666 1667 1668
		size = 0;
		if (id & ID2_PTFS_4K)
			size |= SZ_4K | SZ_2M | SZ_1G;
		if (id & ID2_PTFS_16K)
			size |= SZ_16K | SZ_32M;
		if (id & ID2_PTFS_64K)
			size |= SZ_64K | SZ_512M;
1669 1670
	}

1671 1672 1673
	arm_smmu_ops.pgsize_bitmap &= size;
	dev_notice(smmu->dev, "\tSupported page sizes: 0x%08lx\n", size);

1674 1675
	if (smmu->features & ARM_SMMU_FEAT_TRANS_S1)
		dev_notice(smmu->dev, "\tStage-1: %lu-bit VA -> %lu-bit IPA\n",
1676
			   smmu->va_size, smmu->ipa_size);
1677 1678 1679

	if (smmu->features & ARM_SMMU_FEAT_TRANS_S2)
		dev_notice(smmu->dev, "\tStage-2: %lu-bit IPA -> %lu-bit PA\n",
1680
			   smmu->ipa_size, smmu->pa_size);
1681

1682 1683 1684
	return 0;
}

1685
static const struct of_device_id arm_smmu_of_match[] = {
1686 1687 1688
	{ .compatible = "arm,smmu-v1", .data = (void *)ARM_SMMU_V1 },
	{ .compatible = "arm,smmu-v2", .data = (void *)ARM_SMMU_V2 },
	{ .compatible = "arm,mmu-400", .data = (void *)ARM_SMMU_V1 },
R
Robin Murphy 已提交
1689
	{ .compatible = "arm,mmu-401", .data = (void *)ARM_SMMU_V1 },
1690 1691 1692 1693 1694
	{ .compatible = "arm,mmu-500", .data = (void *)ARM_SMMU_V2 },
	{ },
};
MODULE_DEVICE_TABLE(of, arm_smmu_of_match);

1695 1696
static int arm_smmu_device_dt_probe(struct platform_device *pdev)
{
1697
	const struct of_device_id *of_id;
1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711
	struct resource *res;
	struct arm_smmu_device *smmu;
	struct device *dev = &pdev->dev;
	struct rb_node *node;
	struct of_phandle_args masterspec;
	int num_irqs, i, err;

	smmu = devm_kzalloc(dev, sizeof(*smmu), GFP_KERNEL);
	if (!smmu) {
		dev_err(dev, "failed to allocate arm_smmu_device\n");
		return -ENOMEM;
	}
	smmu->dev = dev;

1712 1713 1714
	of_id = of_match_node(arm_smmu_of_match, dev->of_node);
	smmu->version = (enum arm_smmu_arch_version)of_id->data;

1715
	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1716 1717 1718
	smmu->base = devm_ioremap_resource(dev, res);
	if (IS_ERR(smmu->base))
		return PTR_ERR(smmu->base);
1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733
	smmu->size = resource_size(res);

	if (of_property_read_u32(dev->of_node, "#global-interrupts",
				 &smmu->num_global_irqs)) {
		dev_err(dev, "missing #global-interrupts property\n");
		return -ENODEV;
	}

	num_irqs = 0;
	while ((res = platform_get_resource(pdev, IORESOURCE_IRQ, num_irqs))) {
		num_irqs++;
		if (num_irqs > smmu->num_global_irqs)
			smmu->num_context_irqs++;
	}

1734 1735 1736 1737
	if (!smmu->num_context_irqs) {
		dev_err(dev, "found %d interrupts but expected at least %d\n",
			num_irqs, smmu->num_global_irqs + 1);
		return -ENODEV;
1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748
	}

	smmu->irqs = devm_kzalloc(dev, sizeof(*smmu->irqs) * num_irqs,
				  GFP_KERNEL);
	if (!smmu->irqs) {
		dev_err(dev, "failed to allocate %d irqs\n", num_irqs);
		return -ENOMEM;
	}

	for (i = 0; i < num_irqs; ++i) {
		int irq = platform_get_irq(pdev, i);
1749

1750 1751 1752 1753 1754 1755 1756
		if (irq < 0) {
			dev_err(dev, "failed to get irq index %d\n", i);
			return -ENODEV;
		}
		smmu->irqs[i] = irq;
	}

1757 1758 1759 1760
	err = arm_smmu_device_cfg_probe(smmu);
	if (err)
		return err;

1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776
	i = 0;
	smmu->masters = RB_ROOT;
	while (!of_parse_phandle_with_args(dev->of_node, "mmu-masters",
					   "#stream-id-cells", i,
					   &masterspec)) {
		err = register_smmu_master(smmu, dev, &masterspec);
		if (err) {
			dev_err(dev, "failed to add master %s\n",
				masterspec.np->name);
			goto out_put_masters;
		}

		i++;
	}
	dev_notice(dev, "registered %d master devices\n", i);

1777 1778
	parse_driver_options(smmu);

1779
	if (smmu->version > ARM_SMMU_V1 &&
1780 1781 1782 1783
	    smmu->num_context_banks != smmu->num_context_irqs) {
		dev_err(dev,
			"found only %d context interrupt(s) but %d required\n",
			smmu->num_context_irqs, smmu->num_context_banks);
1784
		err = -ENODEV;
1785
		goto out_put_masters;
1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804
	}

	for (i = 0; i < smmu->num_global_irqs; ++i) {
		err = request_irq(smmu->irqs[i],
				  arm_smmu_global_fault,
				  IRQF_SHARED,
				  "arm-smmu global fault",
				  smmu);
		if (err) {
			dev_err(dev, "failed to request global IRQ %d (%u)\n",
				i, smmu->irqs[i]);
			goto out_free_irqs;
		}
	}

	INIT_LIST_HEAD(&smmu->list);
	spin_lock(&arm_smmu_devices_lock);
	list_add(&smmu->list, &arm_smmu_devices);
	spin_unlock(&arm_smmu_devices_lock);
1805 1806

	arm_smmu_device_reset(smmu);
1807 1808 1809 1810 1811 1812 1813 1814
	return 0;

out_free_irqs:
	while (i--)
		free_irq(smmu->irqs[i], smmu);

out_put_masters:
	for (node = rb_first(&smmu->masters); node; node = rb_next(node)) {
1815 1816
		struct arm_smmu_master *master
			= container_of(node, struct arm_smmu_master, node);
1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843
		of_node_put(master->of_node);
	}

	return err;
}

static int arm_smmu_device_remove(struct platform_device *pdev)
{
	int i;
	struct device *dev = &pdev->dev;
	struct arm_smmu_device *curr, *smmu = NULL;
	struct rb_node *node;

	spin_lock(&arm_smmu_devices_lock);
	list_for_each_entry(curr, &arm_smmu_devices, list) {
		if (curr->dev == dev) {
			smmu = curr;
			list_del(&smmu->list);
			break;
		}
	}
	spin_unlock(&arm_smmu_devices_lock);

	if (!smmu)
		return -ENODEV;

	for (node = rb_first(&smmu->masters); node; node = rb_next(node)) {
1844 1845
		struct arm_smmu_master *master
			= container_of(node, struct arm_smmu_master, node);
1846 1847 1848
		of_node_put(master->of_node);
	}

1849
	if (!bitmap_empty(smmu->context_map, ARM_SMMU_MAX_CBS))
1850 1851 1852 1853 1854 1855
		dev_err(dev, "removing device with active domains!\n");

	for (i = 0; i < smmu->num_global_irqs; ++i)
		free_irq(smmu->irqs[i], smmu);

	/* Turn the thing off */
1856
	writel(sCR0_CLIENTPD, ARM_SMMU_GR0_NS(smmu) + ARM_SMMU_GR0_sCR0);
1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870
	return 0;
}

static struct platform_driver arm_smmu_driver = {
	.driver	= {
		.name		= "arm-smmu",
		.of_match_table	= of_match_ptr(arm_smmu_of_match),
	},
	.probe	= arm_smmu_device_dt_probe,
	.remove	= arm_smmu_device_remove,
};

static int __init arm_smmu_init(void)
{
1871
	struct device_node *np;
1872 1873
	int ret;

1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884
	/*
	 * Play nice with systems that don't have an ARM SMMU by checking that
	 * an ARM SMMU exists in the system before proceeding with the driver
	 * and IOMMU bus operation registration.
	 */
	np = of_find_matching_node(NULL, arm_smmu_of_match);
	if (!np)
		return 0;

	of_node_put(np);

1885 1886 1887 1888 1889
	ret = platform_driver_register(&arm_smmu_driver);
	if (ret)
		return ret;

	/* Oh, for a proper bus abstraction */
1890
	if (!iommu_present(&platform_bus_type))
1891 1892
		bus_set_iommu(&platform_bus_type, &arm_smmu_ops);

1893
#ifdef CONFIG_ARM_AMBA
1894
	if (!iommu_present(&amba_bustype))
1895
		bus_set_iommu(&amba_bustype, &arm_smmu_ops);
1896
#endif
1897

1898 1899 1900 1901 1902
#ifdef CONFIG_PCI
	if (!iommu_present(&pci_bus_type))
		bus_set_iommu(&pci_bus_type, &arm_smmu_ops);
#endif

1903 1904 1905 1906 1907 1908 1909 1910
	return 0;
}

static void __exit arm_smmu_exit(void)
{
	return platform_driver_unregister(&arm_smmu_driver);
}

1911
subsys_initcall(arm_smmu_init);
1912 1913 1914 1915 1916
module_exit(arm_smmu_exit);

MODULE_DESCRIPTION("IOMMU API for ARM architected SMMU implementations");
MODULE_AUTHOR("Will Deacon <will.deacon@arm.com>");
MODULE_LICENSE("GPL v2");