arm-smmu.c 55.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
/*
 * IOMMU API for ARM architected SMMU implementations.
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
 *
 * Copyright (C) 2013 ARM Limited
 *
 * Author: Will Deacon <will.deacon@arm.com>
 *
 * This driver currently supports:
 *	- SMMUv1 and v2 implementations
 *	- Stream-matching and stream-indexing
 *	- v7/v8 long-descriptor format
 *	- Non-secure access to the SMMU
 *	- Context fault reporting
 */

#define pr_fmt(fmt) "arm-smmu: " fmt

#include <linux/delay.h>
32
#include <linux/dma-iommu.h>
33 34 35 36
#include <linux/dma-mapping.h>
#include <linux/err.h>
#include <linux/interrupt.h>
#include <linux/io.h>
37
#include <linux/io-64-nonatomic-hi-lo.h>
38
#include <linux/iommu.h>
39
#include <linux/iopoll.h>
40 41
#include <linux/module.h>
#include <linux/of.h>
42
#include <linux/of_address.h>
43
#include <linux/pci.h>
44 45 46 47 48 49
#include <linux/platform_device.h>
#include <linux/slab.h>
#include <linux/spinlock.h>

#include <linux/amba/bus.h>

50
#include "io-pgtable.h"
51 52

/* Maximum number of stream IDs assigned to a single device */
53
#define MAX_MASTER_STREAMIDS		128
54 55 56 57 58 59 60 61 62

/* Maximum number of context banks per SMMU */
#define ARM_SMMU_MAX_CBS		128

/* Maximum number of mapping groups per SMMU */
#define ARM_SMMU_MAX_SMRS		128

/* SMMU global address space */
#define ARM_SMMU_GR0(smmu)		((smmu)->base)
63
#define ARM_SMMU_GR1(smmu)		((smmu)->base + (1 << (smmu)->pgshift))
64

65 66 67 68 69 70 71 72 73 74
/*
 * SMMU global address space with conditional offset to access secure
 * aliases of non-secure registers (e.g. nsCR0: 0x400, nsGFSR: 0x448,
 * nsGFSYNR0: 0x450)
 */
#define ARM_SMMU_GR0_NS(smmu)						\
	((smmu)->base +							\
		((smmu->options & ARM_SMMU_OPT_SECURE_CFG_ACCESS)	\
			? 0x400 : 0))

75 76 77 78 79
/*
 * Some 64-bit registers only make sense to write atomically, but in such
 * cases all the data relevant to AArch32 formats lies within the lower word,
 * therefore this actually makes more sense than it might first appear.
 */
80
#ifdef CONFIG_64BIT
81
#define smmu_write_atomic_lq		writeq_relaxed
82
#else
83
#define smmu_write_atomic_lq		writel_relaxed
84 85
#endif

86 87 88 89 90 91 92 93 94 95 96
/* Configuration registers */
#define ARM_SMMU_GR0_sCR0		0x0
#define sCR0_CLIENTPD			(1 << 0)
#define sCR0_GFRE			(1 << 1)
#define sCR0_GFIE			(1 << 2)
#define sCR0_GCFGFRE			(1 << 4)
#define sCR0_GCFGFIE			(1 << 5)
#define sCR0_USFCFG			(1 << 10)
#define sCR0_VMIDPNE			(1 << 11)
#define sCR0_PTM			(1 << 12)
#define sCR0_FB				(1 << 13)
97
#define sCR0_VMID16EN			(1 << 31)
98 99 100
#define sCR0_BSU_SHIFT			14
#define sCR0_BSU_MASK			0x3

101 102 103
/* Auxiliary Configuration register */
#define ARM_SMMU_GR0_sACR		0x10

104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121
/* Identification registers */
#define ARM_SMMU_GR0_ID0		0x20
#define ARM_SMMU_GR0_ID1		0x24
#define ARM_SMMU_GR0_ID2		0x28
#define ARM_SMMU_GR0_ID3		0x2c
#define ARM_SMMU_GR0_ID4		0x30
#define ARM_SMMU_GR0_ID5		0x34
#define ARM_SMMU_GR0_ID6		0x38
#define ARM_SMMU_GR0_ID7		0x3c
#define ARM_SMMU_GR0_sGFSR		0x48
#define ARM_SMMU_GR0_sGFSYNR0		0x50
#define ARM_SMMU_GR0_sGFSYNR1		0x54
#define ARM_SMMU_GR0_sGFSYNR2		0x58

#define ID0_S1TS			(1 << 30)
#define ID0_S2TS			(1 << 29)
#define ID0_NTS				(1 << 28)
#define ID0_SMS				(1 << 27)
122
#define ID0_ATOSNS			(1 << 26)
123 124
#define ID0_PTFS_NO_AARCH32		(1 << 25)
#define ID0_PTFS_NO_AARCH32S		(1 << 24)
125 126 127
#define ID0_CTTW			(1 << 14)
#define ID0_NUMIRPT_SHIFT		16
#define ID0_NUMIRPT_MASK		0xff
128 129
#define ID0_NUMSIDB_SHIFT		9
#define ID0_NUMSIDB_MASK		0xf
130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149
#define ID0_NUMSMRG_SHIFT		0
#define ID0_NUMSMRG_MASK		0xff

#define ID1_PAGESIZE			(1 << 31)
#define ID1_NUMPAGENDXB_SHIFT		28
#define ID1_NUMPAGENDXB_MASK		7
#define ID1_NUMS2CB_SHIFT		16
#define ID1_NUMS2CB_MASK		0xff
#define ID1_NUMCB_SHIFT			0
#define ID1_NUMCB_MASK			0xff

#define ID2_OAS_SHIFT			4
#define ID2_OAS_MASK			0xf
#define ID2_IAS_SHIFT			0
#define ID2_IAS_MASK			0xf
#define ID2_UBS_SHIFT			8
#define ID2_UBS_MASK			0xf
#define ID2_PTFS_4K			(1 << 12)
#define ID2_PTFS_16K			(1 << 13)
#define ID2_PTFS_64K			(1 << 14)
150
#define ID2_VMID16			(1 << 15)
151

152 153
#define ID7_MAJOR_SHIFT			4
#define ID7_MAJOR_MASK			0xf
154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180

/* Global TLB invalidation */
#define ARM_SMMU_GR0_TLBIVMID		0x64
#define ARM_SMMU_GR0_TLBIALLNSNH	0x68
#define ARM_SMMU_GR0_TLBIALLH		0x6c
#define ARM_SMMU_GR0_sTLBGSYNC		0x70
#define ARM_SMMU_GR0_sTLBGSTATUS	0x74
#define sTLBGSTATUS_GSACTIVE		(1 << 0)
#define TLB_LOOP_TIMEOUT		1000000	/* 1s! */

/* Stream mapping registers */
#define ARM_SMMU_GR0_SMR(n)		(0x800 + ((n) << 2))
#define SMR_VALID			(1 << 31)
#define SMR_MASK_SHIFT			16
#define SMR_MASK_MASK			0x7fff
#define SMR_ID_SHIFT			0
#define SMR_ID_MASK			0x7fff

#define ARM_SMMU_GR0_S2CR(n)		(0xc00 + ((n) << 2))
#define S2CR_CBNDX_SHIFT		0
#define S2CR_CBNDX_MASK			0xff
#define S2CR_TYPE_SHIFT			16
#define S2CR_TYPE_MASK			0x3
#define S2CR_TYPE_TRANS			(0 << S2CR_TYPE_SHIFT)
#define S2CR_TYPE_BYPASS		(1 << S2CR_TYPE_SHIFT)
#define S2CR_TYPE_FAULT			(2 << S2CR_TYPE_SHIFT)

181 182 183
#define S2CR_PRIVCFG_SHIFT		24
#define S2CR_PRIVCFG_UNPRIV		(2 << S2CR_PRIVCFG_SHIFT)

184 185 186 187
/* Context bank attribute registers */
#define ARM_SMMU_GR1_CBAR(n)		(0x0 + ((n) << 2))
#define CBAR_VMID_SHIFT			0
#define CBAR_VMID_MASK			0xff
188 189 190
#define CBAR_S1_BPSHCFG_SHIFT		8
#define CBAR_S1_BPSHCFG_MASK		3
#define CBAR_S1_BPSHCFG_NSH		3
191 192 193 194 195 196 197 198 199 200 201 202 203 204 205
#define CBAR_S1_MEMATTR_SHIFT		12
#define CBAR_S1_MEMATTR_MASK		0xf
#define CBAR_S1_MEMATTR_WB		0xf
#define CBAR_TYPE_SHIFT			16
#define CBAR_TYPE_MASK			0x3
#define CBAR_TYPE_S2_TRANS		(0 << CBAR_TYPE_SHIFT)
#define CBAR_TYPE_S1_TRANS_S2_BYPASS	(1 << CBAR_TYPE_SHIFT)
#define CBAR_TYPE_S1_TRANS_S2_FAULT	(2 << CBAR_TYPE_SHIFT)
#define CBAR_TYPE_S1_TRANS_S2_TRANS	(3 << CBAR_TYPE_SHIFT)
#define CBAR_IRPTNDX_SHIFT		24
#define CBAR_IRPTNDX_MASK		0xff

#define ARM_SMMU_GR1_CBA2R(n)		(0x800 + ((n) << 2))
#define CBA2R_RW64_32BIT		(0 << 0)
#define CBA2R_RW64_64BIT		(1 << 0)
206 207
#define CBA2R_VMID_SHIFT		16
#define CBA2R_VMID_MASK			0xffff
208 209 210

/* Translation context bank */
#define ARM_SMMU_CB_BASE(smmu)		((smmu)->base + ((smmu)->size >> 1))
211
#define ARM_SMMU_CB(smmu, n)		((n) * (1 << (smmu)->pgshift))
212 213

#define ARM_SMMU_CB_SCTLR		0x0
214
#define ARM_SMMU_CB_ACTLR		0x4
215 216
#define ARM_SMMU_CB_RESUME		0x8
#define ARM_SMMU_CB_TTBCR2		0x10
217 218
#define ARM_SMMU_CB_TTBR0		0x20
#define ARM_SMMU_CB_TTBR1		0x28
219 220
#define ARM_SMMU_CB_TTBCR		0x30
#define ARM_SMMU_CB_S1_MAIR0		0x38
221
#define ARM_SMMU_CB_S1_MAIR1		0x3c
222
#define ARM_SMMU_CB_PAR			0x50
223
#define ARM_SMMU_CB_FSR			0x58
224
#define ARM_SMMU_CB_FAR			0x60
225
#define ARM_SMMU_CB_FSYNR0		0x68
226
#define ARM_SMMU_CB_S1_TLBIVA		0x600
227
#define ARM_SMMU_CB_S1_TLBIASID		0x610
228 229 230
#define ARM_SMMU_CB_S1_TLBIVAL		0x620
#define ARM_SMMU_CB_S2_TLBIIPAS2	0x630
#define ARM_SMMU_CB_S2_TLBIIPAS2L	0x638
231
#define ARM_SMMU_CB_ATS1PR		0x800
232
#define ARM_SMMU_CB_ATSR		0x8f0
233 234 235 236 237 238 239 240 241 242 243

#define SCTLR_S1_ASIDPNE		(1 << 12)
#define SCTLR_CFCFG			(1 << 7)
#define SCTLR_CFIE			(1 << 6)
#define SCTLR_CFRE			(1 << 5)
#define SCTLR_E				(1 << 4)
#define SCTLR_AFE			(1 << 2)
#define SCTLR_TRE			(1 << 1)
#define SCTLR_M				(1 << 0)
#define SCTLR_EAE_SBOP			(SCTLR_AFE | SCTLR_TRE)

244 245
#define ARM_MMU500_ACTLR_CPRE		(1 << 1)

246 247
#define ARM_MMU500_ACR_CACHE_LOCK	(1 << 26)

248 249 250 251
#define CB_PAR_F			(1 << 0)

#define ATSR_ACTIVE			(1 << 0)

252 253 254 255
#define RESUME_RETRY			(0 << 0)
#define RESUME_TERMINATE		(1 << 0)

#define TTBCR2_SEP_SHIFT		15
256
#define TTBCR2_SEP_UPSTREAM		(0x7 << TTBCR2_SEP_SHIFT)
257

258
#define TTBRn_ASID_SHIFT		48
259 260 261 262 263 264 265 266 267 268 269 270

#define FSR_MULTI			(1 << 31)
#define FSR_SS				(1 << 30)
#define FSR_UUT				(1 << 8)
#define FSR_ASF				(1 << 7)
#define FSR_TLBLKF			(1 << 6)
#define FSR_TLBMCF			(1 << 5)
#define FSR_EF				(1 << 4)
#define FSR_PF				(1 << 3)
#define FSR_AFF				(1 << 2)
#define FSR_TF				(1 << 1)

271 272 273
#define FSR_IGN				(FSR_AFF | FSR_ASF | \
					 FSR_TLBMCF | FSR_TLBLKF)
#define FSR_FAULT			(FSR_MULTI | FSR_SS | FSR_UUT | \
274
					 FSR_EF | FSR_PF | FSR_TF | FSR_IGN)
275 276 277

#define FSYNR0_WNR			(1 << 4)

278
static int force_stage;
279
module_param(force_stage, int, S_IRUGO);
280 281
MODULE_PARM_DESC(force_stage,
	"Force SMMU mappings to be installed at a particular stage of translation. A value of '1' or '2' forces the corresponding stage. All other values are ignored (i.e. no stage is forced). Note that selecting a specific stage will disable support for nested translation.");
282 283 284 285
static bool disable_bypass;
module_param(disable_bypass, bool, S_IRUGO);
MODULE_PARM_DESC(disable_bypass,
	"Disable bypass streams such that incoming transactions from devices that are not attached to an iommu domain will report an abort back to the device and will not be allowed to pass through the SMMU.");
286

287
enum arm_smmu_arch_version {
288 289
	ARM_SMMU_V1,
	ARM_SMMU_V1_64K,
290 291 292
	ARM_SMMU_V2,
};

293 294
enum arm_smmu_implementation {
	GENERIC_SMMU,
295
	ARM_MMU500,
296
	CAVIUM_SMMUV2,
297 298
};

299 300 301 302 303 304
struct arm_smmu_smr {
	u8				idx;
	u16				mask;
	u16				id;
};

305
struct arm_smmu_master_cfg {
306 307 308 309 310
	int				num_streamids;
	u16				streamids[MAX_MASTER_STREAMIDS];
	struct arm_smmu_smr		*smrs;
};

311 312 313 314 315 316
struct arm_smmu_master {
	struct device_node		*of_node;
	struct rb_node			node;
	struct arm_smmu_master_cfg	cfg;
};

317 318 319 320 321
struct arm_smmu_device {
	struct device			*dev;

	void __iomem			*base;
	unsigned long			size;
322
	unsigned long			pgshift;
323 324 325 326 327 328

#define ARM_SMMU_FEAT_COHERENT_WALK	(1 << 0)
#define ARM_SMMU_FEAT_STREAM_MATCH	(1 << 1)
#define ARM_SMMU_FEAT_TRANS_S1		(1 << 2)
#define ARM_SMMU_FEAT_TRANS_S2		(1 << 3)
#define ARM_SMMU_FEAT_TRANS_NESTED	(1 << 4)
329
#define ARM_SMMU_FEAT_TRANS_OPS		(1 << 5)
330
#define ARM_SMMU_FEAT_VMID16		(1 << 6)
331 332 333 334 335
#define ARM_SMMU_FEAT_FMT_AARCH64_4K	(1 << 7)
#define ARM_SMMU_FEAT_FMT_AARCH64_16K	(1 << 8)
#define ARM_SMMU_FEAT_FMT_AARCH64_64K	(1 << 9)
#define ARM_SMMU_FEAT_FMT_AARCH32_L	(1 << 10)
#define ARM_SMMU_FEAT_FMT_AARCH32_S	(1 << 11)
336
	u32				features;
337 338 339

#define ARM_SMMU_OPT_SECURE_CFG_ACCESS (1 << 0)
	u32				options;
340
	enum arm_smmu_arch_version	version;
341
	enum arm_smmu_implementation	model;
342 343 344 345 346 347 348 349 350

	u32				num_context_banks;
	u32				num_s2_context_banks;
	DECLARE_BITMAP(context_map, ARM_SMMU_MAX_CBS);
	atomic_t			irptndx;

	u32				num_mapping_groups;
	DECLARE_BITMAP(smr_map, ARM_SMMU_MAX_SMRS);

351 352 353
	unsigned long			va_size;
	unsigned long			ipa_size;
	unsigned long			pa_size;
354
	unsigned long			pgsize_bitmap;
355 356 357 358 359 360 361

	u32				num_global_irqs;
	u32				num_context_irqs;
	unsigned int			*irqs;

	struct list_head		list;
	struct rb_root			masters;
362 363

	u32				cavium_id_base; /* Specific to Cavium */
364 365
};

366 367 368 369 370
enum arm_smmu_context_fmt {
	ARM_SMMU_CTX_FMT_NONE,
	ARM_SMMU_CTX_FMT_AARCH64,
	ARM_SMMU_CTX_FMT_AARCH32_L,
	ARM_SMMU_CTX_FMT_AARCH32_S,
371 372 373 374 375 376
};

struct arm_smmu_cfg {
	u8				cbndx;
	u8				irptndx;
	u32				cbar;
377
	enum arm_smmu_context_fmt	fmt;
378
};
379
#define INVALID_IRPTNDX			0xff
380

381 382
#define ARM_SMMU_CB_ASID(smmu, cfg) ((u16)(smmu)->cavium_id_base + (cfg)->cbndx)
#define ARM_SMMU_CB_VMID(smmu, cfg) ((u16)(smmu)->cavium_id_base + (cfg)->cbndx + 1)
383

384 385 386 387 388 389
enum arm_smmu_domain_stage {
	ARM_SMMU_DOMAIN_S1 = 0,
	ARM_SMMU_DOMAIN_S2,
	ARM_SMMU_DOMAIN_NESTED,
};

390
struct arm_smmu_domain {
391
	struct arm_smmu_device		*smmu;
392 393
	struct io_pgtable_ops		*pgtbl_ops;
	spinlock_t			pgtbl_lock;
394
	struct arm_smmu_cfg		cfg;
395
	enum arm_smmu_domain_stage	stage;
396
	struct mutex			init_mutex; /* Protects smmu pointer */
397
	struct iommu_domain		domain;
398 399
};

400 401 402 403 404 405
struct arm_smmu_phandle_args {
	struct device_node *np;
	int args_count;
	uint32_t args[MAX_MASTER_STREAMIDS];
};

406 407 408
static DEFINE_SPINLOCK(arm_smmu_devices_lock);
static LIST_HEAD(arm_smmu_devices);

409 410 411 412 413
struct arm_smmu_option_prop {
	u32 opt;
	const char *prop;
};

414 415
static atomic_t cavium_smmu_context_count = ATOMIC_INIT(0);

416
static struct arm_smmu_option_prop arm_smmu_options[] = {
417 418 419 420
	{ ARM_SMMU_OPT_SECURE_CFG_ACCESS, "calxeda,smmu-secure-config-access" },
	{ 0, NULL},
};

421 422 423 424 425
static struct arm_smmu_domain *to_smmu_domain(struct iommu_domain *dom)
{
	return container_of(dom, struct arm_smmu_domain, domain);
}

426 427 428
static void parse_driver_options(struct arm_smmu_device *smmu)
{
	int i = 0;
429

430 431 432 433 434 435 436 437 438 439
	do {
		if (of_property_read_bool(smmu->dev->of_node,
						arm_smmu_options[i].prop)) {
			smmu->options |= arm_smmu_options[i].opt;
			dev_notice(smmu->dev, "option %s\n",
				arm_smmu_options[i].prop);
		}
	} while (arm_smmu_options[++i].opt);
}

440
static struct device_node *dev_get_dev_node(struct device *dev)
441 442 443
{
	if (dev_is_pci(dev)) {
		struct pci_bus *bus = to_pci_dev(dev)->bus;
444

445 446
		while (!pci_is_root_bus(bus))
			bus = bus->parent;
447
		return bus->bridge->parent->of_node;
448 449
	}

450
	return dev->of_node;
451 452
}

453 454 455 456 457 458 459
static struct arm_smmu_master *find_smmu_master(struct arm_smmu_device *smmu,
						struct device_node *dev_node)
{
	struct rb_node *node = smmu->masters.rb_node;

	while (node) {
		struct arm_smmu_master *master;
460

461 462 463 464 465 466 467 468 469 470 471 472 473
		master = container_of(node, struct arm_smmu_master, node);

		if (dev_node < master->of_node)
			node = node->rb_left;
		else if (dev_node > master->of_node)
			node = node->rb_right;
		else
			return master;
	}

	return NULL;
}

474
static struct arm_smmu_master_cfg *
475
find_smmu_master_cfg(struct device *dev)
476
{
477 478
	struct arm_smmu_master_cfg *cfg = NULL;
	struct iommu_group *group = iommu_group_get(dev);
479

480 481 482 483
	if (group) {
		cfg = iommu_group_get_iommudata(group);
		iommu_group_put(group);
	}
484

485
	return cfg;
486 487
}

488 489 490 491 492 493 494 495
static int insert_smmu_master(struct arm_smmu_device *smmu,
			      struct arm_smmu_master *master)
{
	struct rb_node **new, *parent;

	new = &smmu->masters.rb_node;
	parent = NULL;
	while (*new) {
496 497
		struct arm_smmu_master *this
			= container_of(*new, struct arm_smmu_master, node);
498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514

		parent = *new;
		if (master->of_node < this->of_node)
			new = &((*new)->rb_left);
		else if (master->of_node > this->of_node)
			new = &((*new)->rb_right);
		else
			return -EEXIST;
	}

	rb_link_node(&master->node, parent, new);
	rb_insert_color(&master->node, &smmu->masters);
	return 0;
}

static int register_smmu_master(struct arm_smmu_device *smmu,
				struct device *dev,
515
				struct arm_smmu_phandle_args *masterspec)
516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538
{
	int i;
	struct arm_smmu_master *master;

	master = find_smmu_master(smmu, masterspec->np);
	if (master) {
		dev_err(dev,
			"rejecting multiple registrations for master device %s\n",
			masterspec->np->name);
		return -EBUSY;
	}

	if (masterspec->args_count > MAX_MASTER_STREAMIDS) {
		dev_err(dev,
			"reached maximum number (%d) of stream IDs for master device %s\n",
			MAX_MASTER_STREAMIDS, masterspec->np->name);
		return -ENOSPC;
	}

	master = devm_kzalloc(dev, sizeof(*master), GFP_KERNEL);
	if (!master)
		return -ENOMEM;

539 540
	master->of_node			= masterspec->np;
	master->cfg.num_streamids	= masterspec->args_count;
541

542 543
	for (i = 0; i < master->cfg.num_streamids; ++i) {
		u16 streamid = masterspec->args[i];
544

545 546 547 548 549 550 551 552 553
		if (!(smmu->features & ARM_SMMU_FEAT_STREAM_MATCH) &&
		     (streamid >= smmu->num_mapping_groups)) {
			dev_err(dev,
				"stream ID for master device %s greater than maximum allowed (%d)\n",
				masterspec->np->name, smmu->num_mapping_groups);
			return -ERANGE;
		}
		master->cfg.streamids[i] = streamid;
	}
554 555 556
	return insert_smmu_master(smmu, master);
}

557
static struct arm_smmu_device *find_smmu_for_device(struct device *dev)
558
{
559
	struct arm_smmu_device *smmu;
560
	struct arm_smmu_master *master = NULL;
561
	struct device_node *dev_node = dev_get_dev_node(dev);
562 563

	spin_lock(&arm_smmu_devices_lock);
564
	list_for_each_entry(smmu, &arm_smmu_devices, list) {
565 566 567 568
		master = find_smmu_master(smmu, dev_node);
		if (master)
			break;
	}
569
	spin_unlock(&arm_smmu_devices_lock);
570

571
	return master ? smmu : NULL;
572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592
}

static int __arm_smmu_alloc_bitmap(unsigned long *map, int start, int end)
{
	int idx;

	do {
		idx = find_next_zero_bit(map, end, start);
		if (idx == end)
			return -ENOSPC;
	} while (test_and_set_bit(idx, map));

	return idx;
}

static void __arm_smmu_free_bitmap(unsigned long *map, int idx)
{
	clear_bit(idx, map);
}

/* Wait for any pending TLB invalidations to complete */
593
static void __arm_smmu_tlb_sync(struct arm_smmu_device *smmu)
594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610
{
	int count = 0;
	void __iomem *gr0_base = ARM_SMMU_GR0(smmu);

	writel_relaxed(0, gr0_base + ARM_SMMU_GR0_sTLBGSYNC);
	while (readl_relaxed(gr0_base + ARM_SMMU_GR0_sTLBGSTATUS)
	       & sTLBGSTATUS_GSACTIVE) {
		cpu_relax();
		if (++count == TLB_LOOP_TIMEOUT) {
			dev_err_ratelimited(smmu->dev,
			"TLB sync timed out -- SMMU may be deadlocked\n");
			return;
		}
		udelay(1);
	}
}

611 612 613 614 615 616 617
static void arm_smmu_tlb_sync(void *cookie)
{
	struct arm_smmu_domain *smmu_domain = cookie;
	__arm_smmu_tlb_sync(smmu_domain->smmu);
}

static void arm_smmu_tlb_inv_context(void *cookie)
618
{
619
	struct arm_smmu_domain *smmu_domain = cookie;
620 621
	struct arm_smmu_cfg *cfg = &smmu_domain->cfg;
	struct arm_smmu_device *smmu = smmu_domain->smmu;
622
	bool stage1 = cfg->cbar != CBAR_TYPE_S2_TRANS;
623
	void __iomem *base;
624 625 626

	if (stage1) {
		base = ARM_SMMU_CB_BASE(smmu) + ARM_SMMU_CB(smmu, cfg->cbndx);
627
		writel_relaxed(ARM_SMMU_CB_ASID(smmu, cfg),
628
			       base + ARM_SMMU_CB_S1_TLBIASID);
629 630
	} else {
		base = ARM_SMMU_GR0(smmu);
631
		writel_relaxed(ARM_SMMU_CB_VMID(smmu, cfg),
632
			       base + ARM_SMMU_GR0_TLBIVMID);
633 634
	}

635 636 637 638
	__arm_smmu_tlb_sync(smmu);
}

static void arm_smmu_tlb_inv_range_nosync(unsigned long iova, size_t size,
639
					  size_t granule, bool leaf, void *cookie)
640 641 642 643 644 645 646 647 648 649 650
{
	struct arm_smmu_domain *smmu_domain = cookie;
	struct arm_smmu_cfg *cfg = &smmu_domain->cfg;
	struct arm_smmu_device *smmu = smmu_domain->smmu;
	bool stage1 = cfg->cbar != CBAR_TYPE_S2_TRANS;
	void __iomem *reg;

	if (stage1) {
		reg = ARM_SMMU_CB_BASE(smmu) + ARM_SMMU_CB(smmu, cfg->cbndx);
		reg += leaf ? ARM_SMMU_CB_S1_TLBIVAL : ARM_SMMU_CB_S1_TLBIVA;

651
		if (cfg->fmt != ARM_SMMU_CTX_FMT_AARCH64) {
652
			iova &= ~12UL;
653
			iova |= ARM_SMMU_CB_ASID(smmu, cfg);
654 655 656 657
			do {
				writel_relaxed(iova, reg);
				iova += granule;
			} while (size -= granule);
658 659
		} else {
			iova >>= 12;
660
			iova |= (u64)ARM_SMMU_CB_ASID(smmu, cfg) << 48;
661 662 663 664
			do {
				writeq_relaxed(iova, reg);
				iova += granule >> 12;
			} while (size -= granule);
665 666 667 668 669
		}
	} else if (smmu->version == ARM_SMMU_V2) {
		reg = ARM_SMMU_CB_BASE(smmu) + ARM_SMMU_CB(smmu, cfg->cbndx);
		reg += leaf ? ARM_SMMU_CB_S2_TLBIIPAS2L :
			      ARM_SMMU_CB_S2_TLBIIPAS2;
670 671
		iova >>= 12;
		do {
672
			smmu_write_atomic_lq(iova, reg);
673 674
			iova += granule >> 12;
		} while (size -= granule);
675 676
	} else {
		reg = ARM_SMMU_GR0(smmu) + ARM_SMMU_GR0_TLBIVMID;
677
		writel_relaxed(ARM_SMMU_CB_VMID(smmu, cfg), reg);
678 679 680 681 682 683 684 685 686
	}
}

static struct iommu_gather_ops arm_smmu_gather_ops = {
	.tlb_flush_all	= arm_smmu_tlb_inv_context,
	.tlb_add_flush	= arm_smmu_tlb_inv_range_nosync,
	.tlb_sync	= arm_smmu_tlb_sync,
};

687 688
static irqreturn_t arm_smmu_context_fault(int irq, void *dev)
{
689
	u32 fsr, fsynr;
690 691
	unsigned long iova;
	struct iommu_domain *domain = dev;
692
	struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
693 694
	struct arm_smmu_cfg *cfg = &smmu_domain->cfg;
	struct arm_smmu_device *smmu = smmu_domain->smmu;
695 696
	void __iomem *cb_base;

697
	cb_base = ARM_SMMU_CB_BASE(smmu) + ARM_SMMU_CB(smmu, cfg->cbndx);
698 699 700 701 702 703
	fsr = readl_relaxed(cb_base + ARM_SMMU_CB_FSR);

	if (!(fsr & FSR_FAULT))
		return IRQ_NONE;

	fsynr = readl_relaxed(cb_base + ARM_SMMU_CB_FSYNR0);
704
	iova = readq_relaxed(cb_base + ARM_SMMU_CB_FAR);
705

706 707 708
	dev_err_ratelimited(smmu->dev,
	"Unhandled context fault: fsr=0x%x, iova=0x%08lx, fsynr=0x%x, cb=%d\n",
			    fsr, iova, fsynr, cfg->cbndx);
709

710 711
	writel(fsr, cb_base + ARM_SMMU_CB_FSR);
	return IRQ_HANDLED;
712 713 714 715 716 717
}

static irqreturn_t arm_smmu_global_fault(int irq, void *dev)
{
	u32 gfsr, gfsynr0, gfsynr1, gfsynr2;
	struct arm_smmu_device *smmu = dev;
718
	void __iomem *gr0_base = ARM_SMMU_GR0_NS(smmu);
719 720 721 722 723 724

	gfsr = readl_relaxed(gr0_base + ARM_SMMU_GR0_sGFSR);
	gfsynr0 = readl_relaxed(gr0_base + ARM_SMMU_GR0_sGFSYNR0);
	gfsynr1 = readl_relaxed(gr0_base + ARM_SMMU_GR0_sGFSYNR1);
	gfsynr2 = readl_relaxed(gr0_base + ARM_SMMU_GR0_sGFSYNR2);

725 726 727
	if (!gfsr)
		return IRQ_NONE;

728 729 730 731 732 733 734
	dev_err_ratelimited(smmu->dev,
		"Unexpected global fault, this could be serious\n");
	dev_err_ratelimited(smmu->dev,
		"\tGFSR 0x%08x, GFSYNR0 0x%08x, GFSYNR1 0x%08x, GFSYNR2 0x%08x\n",
		gfsr, gfsynr0, gfsynr1, gfsynr2);

	writel(gfsr, gr0_base + ARM_SMMU_GR0_sGFSR);
735
	return IRQ_HANDLED;
736 737
}

738 739
static void arm_smmu_init_context_bank(struct arm_smmu_domain *smmu_domain,
				       struct io_pgtable_cfg *pgtbl_cfg)
740 741
{
	u32 reg;
742
	u64 reg64;
743
	bool stage1;
744 745
	struct arm_smmu_cfg *cfg = &smmu_domain->cfg;
	struct arm_smmu_device *smmu = smmu_domain->smmu;
746
	void __iomem *cb_base, *gr1_base;
747 748

	gr1_base = ARM_SMMU_GR1(smmu);
749 750
	stage1 = cfg->cbar != CBAR_TYPE_S2_TRANS;
	cb_base = ARM_SMMU_CB_BASE(smmu) + ARM_SMMU_CB(smmu, cfg->cbndx);
751

752
	if (smmu->version > ARM_SMMU_V1) {
753 754 755 756
		if (cfg->fmt == ARM_SMMU_CTX_FMT_AARCH64)
			reg = CBA2R_RW64_64BIT;
		else
			reg = CBA2R_RW64_32BIT;
757 758
		/* 16-bit VMIDs live in CBA2R */
		if (smmu->features & ARM_SMMU_FEAT_VMID16)
759
			reg |= ARM_SMMU_CB_VMID(smmu, cfg) << CBA2R_VMID_SHIFT;
760

761 762 763
		writel_relaxed(reg, gr1_base + ARM_SMMU_GR1_CBA2R(cfg->cbndx));
	}

764
	/* CBAR */
765
	reg = cfg->cbar;
766
	if (smmu->version < ARM_SMMU_V2)
767
		reg |= cfg->irptndx << CBAR_IRPTNDX_SHIFT;
768

769 770 771 772 773 774 775
	/*
	 * Use the weakest shareability/memory types, so they are
	 * overridden by the ttbcr/pte.
	 */
	if (stage1) {
		reg |= (CBAR_S1_BPSHCFG_NSH << CBAR_S1_BPSHCFG_SHIFT) |
			(CBAR_S1_MEMATTR_WB << CBAR_S1_MEMATTR_SHIFT);
776 777
	} else if (!(smmu->features & ARM_SMMU_FEAT_VMID16)) {
		/* 8-bit VMIDs live in CBAR */
778
		reg |= ARM_SMMU_CB_VMID(smmu, cfg) << CBAR_VMID_SHIFT;
779
	}
780
	writel_relaxed(reg, gr1_base + ARM_SMMU_GR1_CBAR(cfg->cbndx));
781

782 783
	/* TTBRs */
	if (stage1) {
784 785
		reg64 = pgtbl_cfg->arm_lpae_s1_cfg.ttbr[0];

786
		reg64 |= ((u64)ARM_SMMU_CB_ASID(smmu, cfg)) << TTBRn_ASID_SHIFT;
787
		writeq_relaxed(reg64, cb_base + ARM_SMMU_CB_TTBR0);
788 789

		reg64 = pgtbl_cfg->arm_lpae_s1_cfg.ttbr[1];
790
		reg64 |= ((u64)ARM_SMMU_CB_ASID(smmu, cfg)) << TTBRn_ASID_SHIFT;
791
		writeq_relaxed(reg64, cb_base + ARM_SMMU_CB_TTBR1);
792
	} else {
793
		reg64 = pgtbl_cfg->arm_lpae_s2_cfg.vttbr;
794
		writeq_relaxed(reg64, cb_base + ARM_SMMU_CB_TTBR0);
795
	}
796

797 798 799 800 801 802
	/* TTBCR */
	if (stage1) {
		reg = pgtbl_cfg->arm_lpae_s1_cfg.tcr;
		writel_relaxed(reg, cb_base + ARM_SMMU_CB_TTBCR);
		if (smmu->version > ARM_SMMU_V1) {
			reg = pgtbl_cfg->arm_lpae_s1_cfg.tcr >> 32;
803
			reg |= TTBCR2_SEP_UPSTREAM;
804
			writel_relaxed(reg, cb_base + ARM_SMMU_CB_TTBCR2);
805 806
		}
	} else {
807 808
		reg = pgtbl_cfg->arm_lpae_s2_cfg.vtcr;
		writel_relaxed(reg, cb_base + ARM_SMMU_CB_TTBCR);
809 810
	}

811
	/* MAIRs (stage-1 only) */
812
	if (stage1) {
813
		reg = pgtbl_cfg->arm_lpae_s1_cfg.mair[0];
814
		writel_relaxed(reg, cb_base + ARM_SMMU_CB_S1_MAIR0);
815 816
		reg = pgtbl_cfg->arm_lpae_s1_cfg.mair[1];
		writel_relaxed(reg, cb_base + ARM_SMMU_CB_S1_MAIR1);
817 818 819
	}

	/* SCTLR */
820
	reg = SCTLR_CFIE | SCTLR_CFRE | SCTLR_M | SCTLR_EAE_SBOP;
821 822 823 824 825
	if (stage1)
		reg |= SCTLR_S1_ASIDPNE;
#ifdef __BIG_ENDIAN
	reg |= SCTLR_E;
#endif
826
	writel_relaxed(reg, cb_base + ARM_SMMU_CB_SCTLR);
827 828 829
}

static int arm_smmu_init_domain_context(struct iommu_domain *domain,
830
					struct arm_smmu_device *smmu)
831
{
832
	int irq, start, ret = 0;
833 834 835 836
	unsigned long ias, oas;
	struct io_pgtable_ops *pgtbl_ops;
	struct io_pgtable_cfg pgtbl_cfg;
	enum io_pgtable_fmt fmt;
837
	struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
838
	struct arm_smmu_cfg *cfg = &smmu_domain->cfg;
839

840
	mutex_lock(&smmu_domain->init_mutex);
841 842 843
	if (smmu_domain->smmu)
		goto out_unlock;

844 845 846 847 848 849
	/* We're bypassing these SIDs, so don't allocate an actual context */
	if (domain->type == IOMMU_DOMAIN_DMA) {
		smmu_domain->smmu = smmu;
		goto out_unlock;
	}

850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872
	/*
	 * Mapping the requested stage onto what we support is surprisingly
	 * complicated, mainly because the spec allows S1+S2 SMMUs without
	 * support for nested translation. That means we end up with the
	 * following table:
	 *
	 * Requested        Supported        Actual
	 *     S1               N              S1
	 *     S1             S1+S2            S1
	 *     S1               S2             S2
	 *     S1               S1             S1
	 *     N                N              N
	 *     N              S1+S2            S2
	 *     N                S2             S2
	 *     N                S1             S1
	 *
	 * Note that you can't actually request stage-2 mappings.
	 */
	if (!(smmu->features & ARM_SMMU_FEAT_TRANS_S1))
		smmu_domain->stage = ARM_SMMU_DOMAIN_S2;
	if (!(smmu->features & ARM_SMMU_FEAT_TRANS_S2))
		smmu_domain->stage = ARM_SMMU_DOMAIN_S1;

873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893
	/*
	 * Choosing a suitable context format is even more fiddly. Until we
	 * grow some way for the caller to express a preference, and/or move
	 * the decision into the io-pgtable code where it arguably belongs,
	 * just aim for the closest thing to the rest of the system, and hope
	 * that the hardware isn't esoteric enough that we can't assume AArch64
	 * support to be a superset of AArch32 support...
	 */
	if (smmu->features & ARM_SMMU_FEAT_FMT_AARCH32_L)
		cfg->fmt = ARM_SMMU_CTX_FMT_AARCH32_L;
	if ((IS_ENABLED(CONFIG_64BIT) || cfg->fmt == ARM_SMMU_CTX_FMT_NONE) &&
	    (smmu->features & (ARM_SMMU_FEAT_FMT_AARCH64_64K |
			       ARM_SMMU_FEAT_FMT_AARCH64_16K |
			       ARM_SMMU_FEAT_FMT_AARCH64_4K)))
		cfg->fmt = ARM_SMMU_CTX_FMT_AARCH64;

	if (cfg->fmt == ARM_SMMU_CTX_FMT_NONE) {
		ret = -EINVAL;
		goto out_unlock;
	}

894 895 896 897
	switch (smmu_domain->stage) {
	case ARM_SMMU_DOMAIN_S1:
		cfg->cbar = CBAR_TYPE_S1_TRANS_S2_BYPASS;
		start = smmu->num_s2_context_banks;
898 899
		ias = smmu->va_size;
		oas = smmu->ipa_size;
900
		if (cfg->fmt == ARM_SMMU_CTX_FMT_AARCH64) {
901
			fmt = ARM_64_LPAE_S1;
902
		} else {
903
			fmt = ARM_32_LPAE_S1;
904 905 906
			ias = min(ias, 32UL);
			oas = min(oas, 40UL);
		}
907 908
		break;
	case ARM_SMMU_DOMAIN_NESTED:
909 910 911 912
		/*
		 * We will likely want to change this if/when KVM gets
		 * involved.
		 */
913
	case ARM_SMMU_DOMAIN_S2:
914 915
		cfg->cbar = CBAR_TYPE_S2_TRANS;
		start = 0;
916 917
		ias = smmu->ipa_size;
		oas = smmu->pa_size;
918
		if (cfg->fmt == ARM_SMMU_CTX_FMT_AARCH64) {
919
			fmt = ARM_64_LPAE_S2;
920
		} else {
921
			fmt = ARM_32_LPAE_S2;
922 923 924
			ias = min(ias, 40UL);
			oas = min(oas, 40UL);
		}
925 926 927 928
		break;
	default:
		ret = -EINVAL;
		goto out_unlock;
929 930 931 932
	}

	ret = __arm_smmu_alloc_bitmap(smmu->context_map, start,
				      smmu->num_context_banks);
933
	if (ret < 0)
934
		goto out_unlock;
935

936
	cfg->cbndx = ret;
937
	if (smmu->version < ARM_SMMU_V2) {
938 939
		cfg->irptndx = atomic_inc_return(&smmu->irptndx);
		cfg->irptndx %= smmu->num_context_irqs;
940
	} else {
941
		cfg->irptndx = cfg->cbndx;
942 943
	}

944
	pgtbl_cfg = (struct io_pgtable_cfg) {
945
		.pgsize_bitmap	= smmu->pgsize_bitmap,
946 947 948
		.ias		= ias,
		.oas		= oas,
		.tlb		= &arm_smmu_gather_ops,
949
		.iommu_dev	= smmu->dev,
950 951 952 953 954 955 956 957 958
	};

	smmu_domain->smmu = smmu;
	pgtbl_ops = alloc_io_pgtable_ops(fmt, &pgtbl_cfg, smmu_domain);
	if (!pgtbl_ops) {
		ret = -ENOMEM;
		goto out_clear_smmu;
	}

959 960
	/* Update the domain's page sizes to reflect the page table format */
	domain->pgsize_bitmap = pgtbl_cfg.pgsize_bitmap;
961

962 963 964 965 966 967 968
	/* Initialise the context bank with our page table cfg */
	arm_smmu_init_context_bank(smmu_domain, &pgtbl_cfg);

	/*
	 * Request context fault interrupt. Do this last to avoid the
	 * handler seeing a half-initialised domain state.
	 */
969
	irq = smmu->irqs[smmu->num_global_irqs + cfg->irptndx];
970 971
	ret = devm_request_irq(smmu->dev, irq, arm_smmu_context_fault,
			       IRQF_SHARED, "arm-smmu-context-fault", domain);
972
	if (ret < 0) {
973
		dev_err(smmu->dev, "failed to request context IRQ %d (%u)\n",
974 975
			cfg->irptndx, irq);
		cfg->irptndx = INVALID_IRPTNDX;
976 977
	}

978 979 980 981
	mutex_unlock(&smmu_domain->init_mutex);

	/* Publish page table ops for map/unmap */
	smmu_domain->pgtbl_ops = pgtbl_ops;
982
	return 0;
983

984 985
out_clear_smmu:
	smmu_domain->smmu = NULL;
986
out_unlock:
987
	mutex_unlock(&smmu_domain->init_mutex);
988 989 990 991 992
	return ret;
}

static void arm_smmu_destroy_domain_context(struct iommu_domain *domain)
{
993
	struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
994 995
	struct arm_smmu_device *smmu = smmu_domain->smmu;
	struct arm_smmu_cfg *cfg = &smmu_domain->cfg;
996
	void __iomem *cb_base;
997 998
	int irq;

999
	if (!smmu || domain->type == IOMMU_DOMAIN_DMA)
1000 1001
		return;

1002 1003 1004 1005
	/*
	 * Disable the context bank and free the page tables before freeing
	 * it.
	 */
1006
	cb_base = ARM_SMMU_CB_BASE(smmu) + ARM_SMMU_CB(smmu, cfg->cbndx);
1007 1008
	writel_relaxed(0, cb_base + ARM_SMMU_CB_SCTLR);

1009 1010
	if (cfg->irptndx != INVALID_IRPTNDX) {
		irq = smmu->irqs[smmu->num_global_irqs + cfg->irptndx];
1011
		devm_free_irq(smmu->dev, irq, domain);
1012 1013
	}

1014
	free_io_pgtable_ops(smmu_domain->pgtbl_ops);
1015
	__arm_smmu_free_bitmap(smmu->context_map, cfg->cbndx);
1016 1017
}

1018
static struct iommu_domain *arm_smmu_domain_alloc(unsigned type)
1019 1020 1021
{
	struct arm_smmu_domain *smmu_domain;

1022
	if (type != IOMMU_DOMAIN_UNMANAGED && type != IOMMU_DOMAIN_DMA)
1023
		return NULL;
1024 1025 1026 1027 1028 1029 1030
	/*
	 * Allocate the domain and initialise some of its data structures.
	 * We can't really do anything meaningful until we've added a
	 * master.
	 */
	smmu_domain = kzalloc(sizeof(*smmu_domain), GFP_KERNEL);
	if (!smmu_domain)
1031
		return NULL;
1032

1033 1034 1035 1036 1037 1038
	if (type == IOMMU_DOMAIN_DMA &&
	    iommu_get_dma_cookie(&smmu_domain->domain)) {
		kfree(smmu_domain);
		return NULL;
	}

1039 1040
	mutex_init(&smmu_domain->init_mutex);
	spin_lock_init(&smmu_domain->pgtbl_lock);
1041 1042

	return &smmu_domain->domain;
1043 1044
}

1045
static void arm_smmu_domain_free(struct iommu_domain *domain)
1046
{
1047
	struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1048 1049 1050 1051 1052

	/*
	 * Free the domain resources. We assume that all devices have
	 * already been detached.
	 */
1053
	iommu_put_dma_cookie(domain);
1054 1055 1056 1057 1058
	arm_smmu_destroy_domain_context(domain);
	kfree(smmu_domain);
}

static int arm_smmu_master_configure_smrs(struct arm_smmu_device *smmu,
1059
					  struct arm_smmu_master_cfg *cfg)
1060 1061 1062 1063 1064 1065 1066 1067
{
	int i;
	struct arm_smmu_smr *smrs;
	void __iomem *gr0_base = ARM_SMMU_GR0(smmu);

	if (!(smmu->features & ARM_SMMU_FEAT_STREAM_MATCH))
		return 0;

1068
	if (cfg->smrs)
1069 1070
		return -EEXIST;

1071
	smrs = kmalloc_array(cfg->num_streamids, sizeof(*smrs), GFP_KERNEL);
1072
	if (!smrs) {
1073 1074
		dev_err(smmu->dev, "failed to allocate %d SMRs\n",
			cfg->num_streamids);
1075 1076 1077
		return -ENOMEM;
	}

1078
	/* Allocate the SMRs on the SMMU */
1079
	for (i = 0; i < cfg->num_streamids; ++i) {
1080 1081
		int idx = __arm_smmu_alloc_bitmap(smmu->smr_map, 0,
						  smmu->num_mapping_groups);
1082
		if (idx < 0) {
1083 1084 1085 1086 1087 1088 1089
			dev_err(smmu->dev, "failed to allocate free SMR\n");
			goto err_free_smrs;
		}

		smrs[i] = (struct arm_smmu_smr) {
			.idx	= idx,
			.mask	= 0, /* We don't currently share SMRs */
1090
			.id	= cfg->streamids[i],
1091 1092 1093 1094
		};
	}

	/* It worked! Now, poke the actual hardware */
1095
	for (i = 0; i < cfg->num_streamids; ++i) {
1096 1097 1098 1099 1100
		u32 reg = SMR_VALID | smrs[i].id << SMR_ID_SHIFT |
			  smrs[i].mask << SMR_MASK_SHIFT;
		writel_relaxed(reg, gr0_base + ARM_SMMU_GR0_SMR(smrs[i].idx));
	}

1101
	cfg->smrs = smrs;
1102 1103 1104 1105 1106 1107 1108 1109 1110 1111
	return 0;

err_free_smrs:
	while (--i >= 0)
		__arm_smmu_free_bitmap(smmu->smr_map, smrs[i].idx);
	kfree(smrs);
	return -ENOSPC;
}

static void arm_smmu_master_free_smrs(struct arm_smmu_device *smmu,
1112
				      struct arm_smmu_master_cfg *cfg)
1113 1114 1115
{
	int i;
	void __iomem *gr0_base = ARM_SMMU_GR0(smmu);
1116
	struct arm_smmu_smr *smrs = cfg->smrs;
1117

1118 1119 1120
	if (!smrs)
		return;

1121
	/* Invalidate the SMRs before freeing back to the allocator */
1122
	for (i = 0; i < cfg->num_streamids; ++i) {
1123
		u8 idx = smrs[i].idx;
1124

1125 1126 1127 1128
		writel_relaxed(~SMR_VALID, gr0_base + ARM_SMMU_GR0_SMR(idx));
		__arm_smmu_free_bitmap(smmu->smr_map, idx);
	}

1129
	cfg->smrs = NULL;
1130 1131 1132 1133
	kfree(smrs);
}

static int arm_smmu_domain_add_master(struct arm_smmu_domain *smmu_domain,
1134
				      struct arm_smmu_master_cfg *cfg)
1135 1136
{
	int i, ret;
1137
	struct arm_smmu_device *smmu = smmu_domain->smmu;
1138 1139
	void __iomem *gr0_base = ARM_SMMU_GR0(smmu);

1140 1141
	/*
	 * FIXME: This won't be needed once we have IOMMU-backed DMA ops
1142 1143 1144
	 * for all devices behind the SMMU. Note that we need to take
	 * care configuring SMRs for devices both a platform_device and
	 * and a PCI device (i.e. a PCI host controller)
1145 1146 1147 1148
	 */
	if (smmu_domain->domain.type == IOMMU_DOMAIN_DMA)
		return 0;

1149 1150 1151 1152 1153
	/* Devices in an IOMMU group may already be configured */
	ret = arm_smmu_master_configure_smrs(smmu, cfg);
	if (ret)
		return ret == -EEXIST ? 0 : ret;

1154
	for (i = 0; i < cfg->num_streamids; ++i) {
1155
		u32 idx, s2cr;
1156

1157
		idx = cfg->smrs ? cfg->smrs[i].idx : cfg->streamids[i];
1158
		s2cr = S2CR_TYPE_TRANS | S2CR_PRIVCFG_UNPRIV |
1159
		       (smmu_domain->cfg.cbndx << S2CR_CBNDX_SHIFT);
1160 1161 1162 1163 1164 1165 1166
		writel_relaxed(s2cr, gr0_base + ARM_SMMU_GR0_S2CR(idx));
	}

	return 0;
}

static void arm_smmu_domain_remove_master(struct arm_smmu_domain *smmu_domain,
1167
					  struct arm_smmu_master_cfg *cfg)
1168
{
1169
	int i;
1170
	struct arm_smmu_device *smmu = smmu_domain->smmu;
1171
	void __iomem *gr0_base = ARM_SMMU_GR0(smmu);
1172

1173 1174 1175
	/* An IOMMU group is torn down by the first device to be removed */
	if ((smmu->features & ARM_SMMU_FEAT_STREAM_MATCH) && !cfg->smrs)
		return;
1176 1177 1178 1179 1180

	/*
	 * We *must* clear the S2CR first, because freeing the SMR means
	 * that it can be re-allocated immediately.
	 */
1181 1182
	for (i = 0; i < cfg->num_streamids; ++i) {
		u32 idx = cfg->smrs ? cfg->smrs[i].idx : cfg->streamids[i];
1183
		u32 reg = disable_bypass ? S2CR_TYPE_FAULT : S2CR_TYPE_BYPASS;
1184

1185
		writel_relaxed(reg, gr0_base + ARM_SMMU_GR0_S2CR(idx));
1186 1187
	}

1188
	arm_smmu_master_free_smrs(smmu, cfg);
1189 1190
}

1191 1192 1193 1194 1195 1196 1197 1198 1199 1200
static void arm_smmu_detach_dev(struct device *dev,
				struct arm_smmu_master_cfg *cfg)
{
	struct iommu_domain *domain = dev->archdata.iommu;
	struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);

	dev->archdata.iommu = NULL;
	arm_smmu_domain_remove_master(smmu_domain, cfg);
}

1201 1202
static int arm_smmu_attach_dev(struct iommu_domain *domain, struct device *dev)
{
1203
	int ret;
1204
	struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1205
	struct arm_smmu_device *smmu;
1206
	struct arm_smmu_master_cfg *cfg;
1207

1208
	smmu = find_smmu_for_device(dev);
1209
	if (!smmu) {
1210 1211 1212 1213
		dev_err(dev, "cannot attach to SMMU, is it on the same bus?\n");
		return -ENXIO;
	}

1214 1215
	/* Ensure that the domain is finalised */
	ret = arm_smmu_init_domain_context(domain, smmu);
1216
	if (ret < 0)
1217 1218
		return ret;

1219
	/*
1220 1221
	 * Sanity check the domain. We don't support domains across
	 * different SMMUs.
1222
	 */
1223
	if (smmu_domain->smmu != smmu) {
1224 1225
		dev_err(dev,
			"cannot attach to SMMU %s whilst already attached to domain on SMMU %s\n",
1226 1227
			dev_name(smmu_domain->smmu->dev), dev_name(smmu->dev));
		return -EINVAL;
1228 1229 1230
	}

	/* Looks ok, so add the device to the domain */
1231
	cfg = find_smmu_master_cfg(dev);
1232
	if (!cfg)
1233 1234
		return -ENODEV;

1235 1236 1237 1238
	/* Detach the dev from its current domain */
	if (dev->archdata.iommu)
		arm_smmu_detach_dev(dev, cfg);

1239 1240 1241
	ret = arm_smmu_domain_add_master(smmu_domain, cfg);
	if (!ret)
		dev->archdata.iommu = domain;
1242 1243 1244 1245
	return ret;
}

static int arm_smmu_map(struct iommu_domain *domain, unsigned long iova,
1246
			phys_addr_t paddr, size_t size, int prot)
1247
{
1248 1249
	int ret;
	unsigned long flags;
1250
	struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1251
	struct io_pgtable_ops *ops= smmu_domain->pgtbl_ops;
1252

1253
	if (!ops)
1254 1255
		return -ENODEV;

1256 1257 1258 1259
	spin_lock_irqsave(&smmu_domain->pgtbl_lock, flags);
	ret = ops->map(ops, iova, paddr, size, prot);
	spin_unlock_irqrestore(&smmu_domain->pgtbl_lock, flags);
	return ret;
1260 1261 1262 1263 1264
}

static size_t arm_smmu_unmap(struct iommu_domain *domain, unsigned long iova,
			     size_t size)
{
1265 1266
	size_t ret;
	unsigned long flags;
1267
	struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1268
	struct io_pgtable_ops *ops= smmu_domain->pgtbl_ops;
1269

1270 1271 1272 1273 1274 1275 1276
	if (!ops)
		return 0;

	spin_lock_irqsave(&smmu_domain->pgtbl_lock, flags);
	ret = ops->unmap(ops, iova, size);
	spin_unlock_irqrestore(&smmu_domain->pgtbl_lock, flags);
	return ret;
1277 1278
}

1279 1280 1281
static phys_addr_t arm_smmu_iova_to_phys_hard(struct iommu_domain *domain,
					      dma_addr_t iova)
{
1282
	struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1283 1284 1285 1286 1287 1288 1289
	struct arm_smmu_device *smmu = smmu_domain->smmu;
	struct arm_smmu_cfg *cfg = &smmu_domain->cfg;
	struct io_pgtable_ops *ops= smmu_domain->pgtbl_ops;
	struct device *dev = smmu->dev;
	void __iomem *cb_base;
	u32 tmp;
	u64 phys;
1290
	unsigned long va;
1291 1292 1293

	cb_base = ARM_SMMU_CB_BASE(smmu) + ARM_SMMU_CB(smmu, cfg->cbndx);

1294 1295 1296
	/* ATS1 registers can only be written atomically */
	va = iova & ~0xfffUL;
	if (smmu->version == ARM_SMMU_V2)
1297 1298
		smmu_write_atomic_lq(va, cb_base + ARM_SMMU_CB_ATS1PR);
	else /* Register is only 32-bit in v1 */
1299
		writel_relaxed(va, cb_base + ARM_SMMU_CB_ATS1PR);
1300 1301 1302 1303

	if (readl_poll_timeout_atomic(cb_base + ARM_SMMU_CB_ATSR, tmp,
				      !(tmp & ATSR_ACTIVE), 5, 50)) {
		dev_err(dev,
1304
			"iova to phys timed out on %pad. Falling back to software table walk.\n",
1305 1306 1307 1308
			&iova);
		return ops->iova_to_phys(ops, iova);
	}

1309
	phys = readq_relaxed(cb_base + ARM_SMMU_CB_PAR);
1310 1311 1312 1313 1314 1315 1316 1317 1318
	if (phys & CB_PAR_F) {
		dev_err(dev, "translation fault!\n");
		dev_err(dev, "PAR = 0x%llx\n", phys);
		return 0;
	}

	return (phys & GENMASK_ULL(39, 12)) | (iova & 0xfff);
}

1319
static phys_addr_t arm_smmu_iova_to_phys(struct iommu_domain *domain,
1320
					dma_addr_t iova)
1321
{
1322 1323
	phys_addr_t ret;
	unsigned long flags;
1324
	struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1325
	struct io_pgtable_ops *ops= smmu_domain->pgtbl_ops;
1326

1327
	if (!ops)
1328
		return 0;
1329

1330
	spin_lock_irqsave(&smmu_domain->pgtbl_lock, flags);
1331 1332
	if (smmu_domain->smmu->features & ARM_SMMU_FEAT_TRANS_OPS &&
			smmu_domain->stage == ARM_SMMU_DOMAIN_S1) {
1333
		ret = arm_smmu_iova_to_phys_hard(domain, iova);
1334
	} else {
1335
		ret = ops->iova_to_phys(ops, iova);
1336 1337
	}

1338
	spin_unlock_irqrestore(&smmu_domain->pgtbl_lock, flags);
1339

1340
	return ret;
1341 1342
}

1343
static bool arm_smmu_capable(enum iommu_cap cap)
1344
{
1345 1346
	switch (cap) {
	case IOMMU_CAP_CACHE_COHERENCY:
1347 1348 1349 1350 1351
		/*
		 * Return true here as the SMMU can always send out coherent
		 * requests.
		 */
		return true;
1352
	case IOMMU_CAP_INTR_REMAP:
1353
		return true; /* MSIs are just memory writes */
1354 1355
	case IOMMU_CAP_NOEXEC:
		return true;
1356
	default:
1357
		return false;
1358
	}
1359 1360
}

1361 1362 1363 1364
static int __arm_smmu_get_pci_sid(struct pci_dev *pdev, u16 alias, void *data)
{
	*((u16 *)data) = alias;
	return 0; /* Continue walking */
1365 1366
}

1367 1368 1369 1370 1371
static void __arm_smmu_release_pci_iommudata(void *data)
{
	kfree(data);
}

1372 1373
static int arm_smmu_init_pci_device(struct pci_dev *pdev,
				    struct iommu_group *group)
1374
{
1375
	struct arm_smmu_master_cfg *cfg;
1376 1377
	u16 sid;
	int i;
1378

1379 1380
	cfg = iommu_group_get_iommudata(group);
	if (!cfg) {
1381
		cfg = kzalloc(sizeof(*cfg), GFP_KERNEL);
1382 1383
		if (!cfg)
			return -ENOMEM;
1384

1385 1386 1387
		iommu_group_set_iommudata(group, cfg,
					  __arm_smmu_release_pci_iommudata);
	}
1388

1389 1390
	if (cfg->num_streamids >= MAX_MASTER_STREAMIDS)
		return -ENOSPC;
1391

1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403
	/*
	 * Assume Stream ID == Requester ID for now.
	 * We need a way to describe the ID mappings in FDT.
	 */
	pci_for_each_dma_alias(pdev, __arm_smmu_get_pci_sid, &sid);
	for (i = 0; i < cfg->num_streamids; ++i)
		if (cfg->streamids[i] == sid)
			break;

	/* Avoid duplicate SIDs, as this can lead to SMR conflicts */
	if (i == cfg->num_streamids)
		cfg->streamids[cfg->num_streamids++] = sid;
1404

1405
	return 0;
1406 1407
}

1408 1409
static int arm_smmu_init_platform_device(struct device *dev,
					 struct iommu_group *group)
1410 1411
{
	struct arm_smmu_device *smmu = find_smmu_for_device(dev);
1412
	struct arm_smmu_master *master;
1413 1414 1415 1416 1417 1418 1419 1420 1421

	if (!smmu)
		return -ENODEV;

	master = find_smmu_master(smmu, dev->of_node);
	if (!master)
		return -ENODEV;

	iommu_group_set_iommudata(group, &master->cfg, NULL);
1422 1423

	return 0;
1424 1425 1426 1427
}

static int arm_smmu_add_device(struct device *dev)
{
1428
	struct iommu_group *group;
1429

1430 1431 1432
	group = iommu_group_get_for_dev(dev);
	if (IS_ERR(group))
		return PTR_ERR(group);
1433

1434
	iommu_group_put(group);
1435
	return 0;
1436 1437
}

1438 1439
static void arm_smmu_remove_device(struct device *dev)
{
1440
	iommu_group_remove_device(dev);
1441 1442
}

1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468
static struct iommu_group *arm_smmu_device_group(struct device *dev)
{
	struct iommu_group *group;
	int ret;

	if (dev_is_pci(dev))
		group = pci_device_group(dev);
	else
		group = generic_device_group(dev);

	if (IS_ERR(group))
		return group;

	if (dev_is_pci(dev))
		ret = arm_smmu_init_pci_device(to_pci_dev(dev), group);
	else
		ret = arm_smmu_init_platform_device(dev, group);

	if (ret) {
		iommu_group_put(group);
		group = ERR_PTR(ret);
	}

	return group;
}

1469 1470 1471
static int arm_smmu_domain_get_attr(struct iommu_domain *domain,
				    enum iommu_attr attr, void *data)
{
1472
	struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485

	switch (attr) {
	case DOMAIN_ATTR_NESTING:
		*(int *)data = (smmu_domain->stage == ARM_SMMU_DOMAIN_NESTED);
		return 0;
	default:
		return -ENODEV;
	}
}

static int arm_smmu_domain_set_attr(struct iommu_domain *domain,
				    enum iommu_attr attr, void *data)
{
1486
	int ret = 0;
1487
	struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1488

1489 1490
	mutex_lock(&smmu_domain->init_mutex);

1491 1492
	switch (attr) {
	case DOMAIN_ATTR_NESTING:
1493 1494 1495 1496 1497
		if (smmu_domain->smmu) {
			ret = -EPERM;
			goto out_unlock;
		}

1498 1499 1500 1501 1502
		if (*(int *)data)
			smmu_domain->stage = ARM_SMMU_DOMAIN_NESTED;
		else
			smmu_domain->stage = ARM_SMMU_DOMAIN_S1;

1503
		break;
1504
	default:
1505
		ret = -ENODEV;
1506
	}
1507 1508 1509 1510

out_unlock:
	mutex_unlock(&smmu_domain->init_mutex);
	return ret;
1511 1512
}

1513
static struct iommu_ops arm_smmu_ops = {
1514
	.capable		= arm_smmu_capable,
1515 1516
	.domain_alloc		= arm_smmu_domain_alloc,
	.domain_free		= arm_smmu_domain_free,
1517 1518 1519
	.attach_dev		= arm_smmu_attach_dev,
	.map			= arm_smmu_map,
	.unmap			= arm_smmu_unmap,
1520
	.map_sg			= default_iommu_map_sg,
1521 1522 1523
	.iova_to_phys		= arm_smmu_iova_to_phys,
	.add_device		= arm_smmu_add_device,
	.remove_device		= arm_smmu_remove_device,
1524
	.device_group		= arm_smmu_device_group,
1525 1526
	.domain_get_attr	= arm_smmu_domain_get_attr,
	.domain_set_attr	= arm_smmu_domain_set_attr,
1527
	.pgsize_bitmap		= -1UL, /* Restricted during device attach */
1528 1529 1530 1531 1532
};

static void arm_smmu_device_reset(struct arm_smmu_device *smmu)
{
	void __iomem *gr0_base = ARM_SMMU_GR0(smmu);
1533
	void __iomem *cb_base;
1534
	int i = 0;
1535
	u32 reg, major;
1536

1537 1538 1539
	/* clear global FSR */
	reg = readl_relaxed(ARM_SMMU_GR0_NS(smmu) + ARM_SMMU_GR0_sGFSR);
	writel(reg, ARM_SMMU_GR0_NS(smmu) + ARM_SMMU_GR0_sGFSR);
1540

1541 1542
	/* Mark all SMRn as invalid and all S2CRn as bypass unless overridden */
	reg = disable_bypass ? S2CR_TYPE_FAULT : S2CR_TYPE_BYPASS;
1543
	for (i = 0; i < smmu->num_mapping_groups; ++i) {
1544
		writel_relaxed(0, gr0_base + ARM_SMMU_GR0_SMR(i));
1545
		writel_relaxed(reg, gr0_base + ARM_SMMU_GR0_S2CR(i));
1546 1547
	}

1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560
	/*
	 * Before clearing ARM_MMU500_ACTLR_CPRE, need to
	 * clear CACHE_LOCK bit of ACR first. And, CACHE_LOCK
	 * bit is only present in MMU-500r2 onwards.
	 */
	reg = readl_relaxed(gr0_base + ARM_SMMU_GR0_ID7);
	major = (reg >> ID7_MAJOR_SHIFT) & ID7_MAJOR_MASK;
	if ((smmu->model == ARM_MMU500) && (major >= 2)) {
		reg = readl_relaxed(gr0_base + ARM_SMMU_GR0_sACR);
		reg &= ~ARM_MMU500_ACR_CACHE_LOCK;
		writel_relaxed(reg, gr0_base + ARM_SMMU_GR0_sACR);
	}

1561 1562 1563 1564 1565
	/* Make sure all context banks are disabled and clear CB_FSR  */
	for (i = 0; i < smmu->num_context_banks; ++i) {
		cb_base = ARM_SMMU_CB_BASE(smmu) + ARM_SMMU_CB(smmu, i);
		writel_relaxed(0, cb_base + ARM_SMMU_CB_SCTLR);
		writel_relaxed(FSR_FAULT, cb_base + ARM_SMMU_CB_FSR);
1566 1567 1568 1569 1570 1571 1572 1573 1574
		/*
		 * Disable MMU-500's not-particularly-beneficial next-page
		 * prefetcher for the sake of errata #841119 and #826419.
		 */
		if (smmu->model == ARM_MMU500) {
			reg = readl_relaxed(cb_base + ARM_SMMU_CB_ACTLR);
			reg &= ~ARM_MMU500_ACTLR_CPRE;
			writel_relaxed(reg, cb_base + ARM_SMMU_CB_ACTLR);
		}
1575
	}
1576

1577 1578 1579 1580
	/* Invalidate the TLB, just in case */
	writel_relaxed(0, gr0_base + ARM_SMMU_GR0_TLBIALLH);
	writel_relaxed(0, gr0_base + ARM_SMMU_GR0_TLBIALLNSNH);

1581
	reg = readl_relaxed(ARM_SMMU_GR0_NS(smmu) + ARM_SMMU_GR0_sCR0);
1582

1583
	/* Enable fault reporting */
1584
	reg |= (sCR0_GFRE | sCR0_GFIE | sCR0_GCFGFRE | sCR0_GCFGFIE);
1585 1586

	/* Disable TLB broadcasting. */
1587
	reg |= (sCR0_VMIDPNE | sCR0_PTM);
1588

1589 1590 1591 1592 1593 1594
	/* Enable client access, handling unmatched streams as appropriate */
	reg &= ~sCR0_CLIENTPD;
	if (disable_bypass)
		reg |= sCR0_USFCFG;
	else
		reg &= ~sCR0_USFCFG;
1595 1596

	/* Disable forced broadcasting */
1597
	reg &= ~sCR0_FB;
1598 1599

	/* Don't upgrade barriers */
1600
	reg &= ~(sCR0_BSU_MASK << sCR0_BSU_SHIFT);
1601

1602 1603 1604
	if (smmu->features & ARM_SMMU_FEAT_VMID16)
		reg |= sCR0_VMID16EN;

1605
	/* Push the button */
1606
	__arm_smmu_tlb_sync(smmu);
1607
	writel(reg, ARM_SMMU_GR0_NS(smmu) + ARM_SMMU_GR0_sCR0);
1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633
}

static int arm_smmu_id_size_to_bits(int size)
{
	switch (size) {
	case 0:
		return 32;
	case 1:
		return 36;
	case 2:
		return 40;
	case 3:
		return 42;
	case 4:
		return 44;
	case 5:
	default:
		return 48;
	}
}

static int arm_smmu_device_cfg_probe(struct arm_smmu_device *smmu)
{
	unsigned long size;
	void __iomem *gr0_base = ARM_SMMU_GR0(smmu);
	u32 id;
1634
	bool cttw_dt, cttw_reg;
1635 1636

	dev_notice(smmu->dev, "probing hardware configuration...\n");
1637 1638
	dev_notice(smmu->dev, "SMMUv%d with:\n",
			smmu->version == ARM_SMMU_V2 ? 2 : 1);
1639 1640 1641

	/* ID0 */
	id = readl_relaxed(gr0_base + ARM_SMMU_GR0_ID0);
1642 1643 1644 1645 1646 1647 1648

	/* Restrict available stages based on module parameter */
	if (force_stage == 1)
		id &= ~(ID0_S2TS | ID0_NTS);
	else if (force_stage == 2)
		id &= ~(ID0_S1TS | ID0_NTS);

1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664
	if (id & ID0_S1TS) {
		smmu->features |= ARM_SMMU_FEAT_TRANS_S1;
		dev_notice(smmu->dev, "\tstage 1 translation\n");
	}

	if (id & ID0_S2TS) {
		smmu->features |= ARM_SMMU_FEAT_TRANS_S2;
		dev_notice(smmu->dev, "\tstage 2 translation\n");
	}

	if (id & ID0_NTS) {
		smmu->features |= ARM_SMMU_FEAT_TRANS_NESTED;
		dev_notice(smmu->dev, "\tnested translation\n");
	}

	if (!(smmu->features &
1665
		(ARM_SMMU_FEAT_TRANS_S1 | ARM_SMMU_FEAT_TRANS_S2))) {
1666 1667 1668 1669
		dev_err(smmu->dev, "\tno translation support!\n");
		return -ENODEV;
	}

1670 1671
	if ((id & ID0_S1TS) &&
		((smmu->version < ARM_SMMU_V2) || !(id & ID0_ATOSNS))) {
1672 1673 1674 1675
		smmu->features |= ARM_SMMU_FEAT_TRANS_OPS;
		dev_notice(smmu->dev, "\taddress translation ops\n");
	}

1676 1677 1678 1679 1680 1681 1682 1683 1684
	/*
	 * In order for DMA API calls to work properly, we must defer to what
	 * the DT says about coherency, regardless of what the hardware claims.
	 * Fortunately, this also opens up a workaround for systems where the
	 * ID register value has ended up configured incorrectly.
	 */
	cttw_dt = of_dma_is_coherent(smmu->dev->of_node);
	cttw_reg = !!(id & ID0_CTTW);
	if (cttw_dt)
1685
		smmu->features |= ARM_SMMU_FEAT_COHERENT_WALK;
1686 1687 1688 1689 1690 1691
	if (cttw_dt || cttw_reg)
		dev_notice(smmu->dev, "\t%scoherent table walk\n",
			   cttw_dt ? "" : "non-");
	if (cttw_dt != cttw_reg)
		dev_notice(smmu->dev,
			   "\t(IDR0.CTTW overridden by dma-coherent property)\n");
1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721

	if (id & ID0_SMS) {
		u32 smr, sid, mask;

		smmu->features |= ARM_SMMU_FEAT_STREAM_MATCH;
		smmu->num_mapping_groups = (id >> ID0_NUMSMRG_SHIFT) &
					   ID0_NUMSMRG_MASK;
		if (smmu->num_mapping_groups == 0) {
			dev_err(smmu->dev,
				"stream-matching supported, but no SMRs present!\n");
			return -ENODEV;
		}

		smr = SMR_MASK_MASK << SMR_MASK_SHIFT;
		smr |= (SMR_ID_MASK << SMR_ID_SHIFT);
		writel_relaxed(smr, gr0_base + ARM_SMMU_GR0_SMR(0));
		smr = readl_relaxed(gr0_base + ARM_SMMU_GR0_SMR(0));

		mask = (smr >> SMR_MASK_SHIFT) & SMR_MASK_MASK;
		sid = (smr >> SMR_ID_SHIFT) & SMR_ID_MASK;
		if ((mask & sid) != sid) {
			dev_err(smmu->dev,
				"SMR mask bits (0x%x) insufficient for ID field (0x%x)\n",
				mask, sid);
			return -ENODEV;
		}

		dev_notice(smmu->dev,
			   "\tstream matching with %u register groups, mask 0x%x",
			   smmu->num_mapping_groups, mask);
1722 1723 1724
	} else {
		smmu->num_mapping_groups = (id >> ID0_NUMSIDB_SHIFT) &
					   ID0_NUMSIDB_MASK;
1725 1726
	}

1727 1728 1729 1730 1731 1732
	if (smmu->version < ARM_SMMU_V2 || !(id & ID0_PTFS_NO_AARCH32)) {
		smmu->features |= ARM_SMMU_FEAT_FMT_AARCH32_L;
		if (!(id & ID0_PTFS_NO_AARCH32S))
			smmu->features |= ARM_SMMU_FEAT_FMT_AARCH32_S;
	}

1733 1734
	/* ID1 */
	id = readl_relaxed(gr0_base + ARM_SMMU_GR0_ID1);
1735
	smmu->pgshift = (id & ID1_PAGESIZE) ? 16 : 12;
1736

1737
	/* Check for size mismatch of SMMU address space from mapped region */
1738
	size = 1 << (((id >> ID1_NUMPAGENDXB_SHIFT) & ID1_NUMPAGENDXB_MASK) + 1);
1739
	size *= 2 << smmu->pgshift;
1740
	if (smmu->size != size)
1741 1742 1743
		dev_warn(smmu->dev,
			"SMMU address space size (0x%lx) differs from mapped region size (0x%lx)!\n",
			size, smmu->size);
1744

1745
	smmu->num_s2_context_banks = (id >> ID1_NUMS2CB_SHIFT) & ID1_NUMS2CB_MASK;
1746 1747 1748 1749 1750 1751 1752
	smmu->num_context_banks = (id >> ID1_NUMCB_SHIFT) & ID1_NUMCB_MASK;
	if (smmu->num_s2_context_banks > smmu->num_context_banks) {
		dev_err(smmu->dev, "impossible number of S2 context banks!\n");
		return -ENODEV;
	}
	dev_notice(smmu->dev, "\t%u context banks (%u stage-2 only)\n",
		   smmu->num_context_banks, smmu->num_s2_context_banks);
1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763
	/*
	 * Cavium CN88xx erratum #27704.
	 * Ensure ASID and VMID allocation is unique across all SMMUs in
	 * the system.
	 */
	if (smmu->model == CAVIUM_SMMUV2) {
		smmu->cavium_id_base =
			atomic_add_return(smmu->num_context_banks,
					  &cavium_smmu_context_count);
		smmu->cavium_id_base -= smmu->num_context_banks;
	}
1764 1765 1766 1767

	/* ID2 */
	id = readl_relaxed(gr0_base + ARM_SMMU_GR0_ID2);
	size = arm_smmu_id_size_to_bits((id >> ID2_IAS_SHIFT) & ID2_IAS_MASK);
1768
	smmu->ipa_size = size;
1769

1770
	/* The output mask is also applied for bypass */
1771
	size = arm_smmu_id_size_to_bits((id >> ID2_OAS_SHIFT) & ID2_OAS_MASK);
1772
	smmu->pa_size = size;
1773

1774 1775 1776
	if (id & ID2_VMID16)
		smmu->features |= ARM_SMMU_FEAT_VMID16;

1777 1778 1779 1780 1781 1782 1783 1784 1785
	/*
	 * What the page table walker can address actually depends on which
	 * descriptor format is in use, but since a) we don't know that yet,
	 * and b) it can vary per context bank, this will have to do...
	 */
	if (dma_set_mask_and_coherent(smmu->dev, DMA_BIT_MASK(size)))
		dev_warn(smmu->dev,
			 "failed to set DMA mask for table walker\n");

1786
	if (smmu->version < ARM_SMMU_V2) {
1787
		smmu->va_size = smmu->ipa_size;
1788 1789
		if (smmu->version == ARM_SMMU_V1_64K)
			smmu->features |= ARM_SMMU_FEAT_FMT_AARCH64_64K;
1790 1791
	} else {
		size = (id >> ID2_UBS_SHIFT) & ID2_UBS_MASK;
1792 1793
		smmu->va_size = arm_smmu_id_size_to_bits(size);
		if (id & ID2_PTFS_4K)
1794
			smmu->features |= ARM_SMMU_FEAT_FMT_AARCH64_4K;
1795
		if (id & ID2_PTFS_16K)
1796
			smmu->features |= ARM_SMMU_FEAT_FMT_AARCH64_16K;
1797
		if (id & ID2_PTFS_64K)
1798
			smmu->features |= ARM_SMMU_FEAT_FMT_AARCH64_64K;
1799 1800
	}

1801 1802
	/* Now we've corralled the various formats, what'll it do? */
	if (smmu->features & ARM_SMMU_FEAT_FMT_AARCH32_S)
1803
		smmu->pgsize_bitmap |= SZ_4K | SZ_64K | SZ_1M | SZ_16M;
1804 1805
	if (smmu->features &
	    (ARM_SMMU_FEAT_FMT_AARCH32_L | ARM_SMMU_FEAT_FMT_AARCH64_4K))
1806
		smmu->pgsize_bitmap |= SZ_4K | SZ_2M | SZ_1G;
1807
	if (smmu->features & ARM_SMMU_FEAT_FMT_AARCH64_16K)
1808
		smmu->pgsize_bitmap |= SZ_16K | SZ_32M;
1809
	if (smmu->features & ARM_SMMU_FEAT_FMT_AARCH64_64K)
1810 1811 1812 1813 1814 1815 1816 1817
		smmu->pgsize_bitmap |= SZ_64K | SZ_512M;

	if (arm_smmu_ops.pgsize_bitmap == -1UL)
		arm_smmu_ops.pgsize_bitmap = smmu->pgsize_bitmap;
	else
		arm_smmu_ops.pgsize_bitmap |= smmu->pgsize_bitmap;
	dev_notice(smmu->dev, "\tSupported page sizes: 0x%08lx\n",
		   smmu->pgsize_bitmap);
1818

1819

1820 1821
	if (smmu->features & ARM_SMMU_FEAT_TRANS_S1)
		dev_notice(smmu->dev, "\tStage-1: %lu-bit VA -> %lu-bit IPA\n",
1822
			   smmu->va_size, smmu->ipa_size);
1823 1824 1825

	if (smmu->features & ARM_SMMU_FEAT_TRANS_S2)
		dev_notice(smmu->dev, "\tStage-2: %lu-bit IPA -> %lu-bit PA\n",
1826
			   smmu->ipa_size, smmu->pa_size);
1827

1828 1829 1830
	return 0;
}

1831 1832 1833 1834 1835 1836 1837 1838 1839 1840
struct arm_smmu_match_data {
	enum arm_smmu_arch_version version;
	enum arm_smmu_implementation model;
};

#define ARM_SMMU_MATCH_DATA(name, ver, imp)	\
static struct arm_smmu_match_data name = { .version = ver, .model = imp }

ARM_SMMU_MATCH_DATA(smmu_generic_v1, ARM_SMMU_V1, GENERIC_SMMU);
ARM_SMMU_MATCH_DATA(smmu_generic_v2, ARM_SMMU_V2, GENERIC_SMMU);
1841
ARM_SMMU_MATCH_DATA(arm_mmu401, ARM_SMMU_V1_64K, GENERIC_SMMU);
1842
ARM_SMMU_MATCH_DATA(arm_mmu500, ARM_SMMU_V2, ARM_MMU500);
1843
ARM_SMMU_MATCH_DATA(cavium_smmuv2, ARM_SMMU_V2, CAVIUM_SMMUV2);
1844

1845
static const struct of_device_id arm_smmu_of_match[] = {
1846 1847 1848
	{ .compatible = "arm,smmu-v1", .data = &smmu_generic_v1 },
	{ .compatible = "arm,smmu-v2", .data = &smmu_generic_v2 },
	{ .compatible = "arm,mmu-400", .data = &smmu_generic_v1 },
1849
	{ .compatible = "arm,mmu-401", .data = &arm_mmu401 },
1850
	{ .compatible = "arm,mmu-500", .data = &arm_mmu500 },
1851
	{ .compatible = "cavium,smmu-v2", .data = &cavium_smmuv2 },
1852 1853 1854 1855
	{ },
};
MODULE_DEVICE_TABLE(of, arm_smmu_of_match);

1856 1857
static int arm_smmu_device_dt_probe(struct platform_device *pdev)
{
1858
	const struct of_device_id *of_id;
1859
	const struct arm_smmu_match_data *data;
1860 1861 1862 1863
	struct resource *res;
	struct arm_smmu_device *smmu;
	struct device *dev = &pdev->dev;
	struct rb_node *node;
1864 1865
	struct of_phandle_iterator it;
	struct arm_smmu_phandle_args *masterspec;
1866 1867 1868 1869 1870 1871 1872 1873 1874
	int num_irqs, i, err;

	smmu = devm_kzalloc(dev, sizeof(*smmu), GFP_KERNEL);
	if (!smmu) {
		dev_err(dev, "failed to allocate arm_smmu_device\n");
		return -ENOMEM;
	}
	smmu->dev = dev;

1875
	of_id = of_match_node(arm_smmu_of_match, dev->of_node);
1876 1877 1878
	data = of_id->data;
	smmu->version = data->version;
	smmu->model = data->model;
1879

1880
	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1881 1882 1883
	smmu->base = devm_ioremap_resource(dev, res);
	if (IS_ERR(smmu->base))
		return PTR_ERR(smmu->base);
1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898
	smmu->size = resource_size(res);

	if (of_property_read_u32(dev->of_node, "#global-interrupts",
				 &smmu->num_global_irqs)) {
		dev_err(dev, "missing #global-interrupts property\n");
		return -ENODEV;
	}

	num_irqs = 0;
	while ((res = platform_get_resource(pdev, IORESOURCE_IRQ, num_irqs))) {
		num_irqs++;
		if (num_irqs > smmu->num_global_irqs)
			smmu->num_context_irqs++;
	}

1899 1900 1901 1902
	if (!smmu->num_context_irqs) {
		dev_err(dev, "found %d interrupts but expected at least %d\n",
			num_irqs, smmu->num_global_irqs + 1);
		return -ENODEV;
1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913
	}

	smmu->irqs = devm_kzalloc(dev, sizeof(*smmu->irqs) * num_irqs,
				  GFP_KERNEL);
	if (!smmu->irqs) {
		dev_err(dev, "failed to allocate %d irqs\n", num_irqs);
		return -ENOMEM;
	}

	for (i = 0; i < num_irqs; ++i) {
		int irq = platform_get_irq(pdev, i);
1914

1915 1916 1917 1918 1919 1920 1921
		if (irq < 0) {
			dev_err(dev, "failed to get irq index %d\n", i);
			return -ENODEV;
		}
		smmu->irqs[i] = irq;
	}

1922 1923 1924 1925
	err = arm_smmu_device_cfg_probe(smmu);
	if (err)
		return err;

1926 1927
	i = 0;
	smmu->masters = RB_ROOT;
1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942

	err = -ENOMEM;
	/* No need to zero the memory for masterspec */
	masterspec = kmalloc(sizeof(*masterspec), GFP_KERNEL);
	if (!masterspec)
		goto out_put_masters;

	of_for_each_phandle(&it, err, dev->of_node,
			    "mmu-masters", "#stream-id-cells", 0) {
		int count = of_phandle_iterator_args(&it, masterspec->args,
						     MAX_MASTER_STREAMIDS);
		masterspec->np		= of_node_get(it.node);
		masterspec->args_count	= count;

		err = register_smmu_master(smmu, dev, masterspec);
1943 1944
		if (err) {
			dev_err(dev, "failed to add master %s\n",
1945 1946
				masterspec->np->name);
			kfree(masterspec);
1947 1948 1949 1950 1951
			goto out_put_masters;
		}

		i++;
	}
1952

1953 1954
	dev_notice(dev, "registered %d master devices\n", i);

1955 1956
	kfree(masterspec);

1957 1958
	parse_driver_options(smmu);

1959
	if (smmu->version == ARM_SMMU_V2 &&
1960 1961 1962 1963
	    smmu->num_context_banks != smmu->num_context_irqs) {
		dev_err(dev,
			"found only %d context interrupt(s) but %d required\n",
			smmu->num_context_irqs, smmu->num_context_banks);
1964
		err = -ENODEV;
1965
		goto out_put_masters;
1966 1967 1968
	}

	for (i = 0; i < smmu->num_global_irqs; ++i) {
1969 1970 1971 1972 1973
		err = devm_request_irq(smmu->dev, smmu->irqs[i],
				       arm_smmu_global_fault,
				       IRQF_SHARED,
				       "arm-smmu global fault",
				       smmu);
1974 1975 1976
		if (err) {
			dev_err(dev, "failed to request global IRQ %d (%u)\n",
				i, smmu->irqs[i]);
1977
			goto out_put_masters;
1978 1979 1980 1981 1982 1983 1984
		}
	}

	INIT_LIST_HEAD(&smmu->list);
	spin_lock(&arm_smmu_devices_lock);
	list_add(&smmu->list, &arm_smmu_devices);
	spin_unlock(&arm_smmu_devices_lock);
1985 1986

	arm_smmu_device_reset(smmu);
1987 1988 1989 1990
	return 0;

out_put_masters:
	for (node = rb_first(&smmu->masters); node; node = rb_next(node)) {
1991 1992
		struct arm_smmu_master *master
			= container_of(node, struct arm_smmu_master, node);
1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018
		of_node_put(master->of_node);
	}

	return err;
}

static int arm_smmu_device_remove(struct platform_device *pdev)
{
	struct device *dev = &pdev->dev;
	struct arm_smmu_device *curr, *smmu = NULL;
	struct rb_node *node;

	spin_lock(&arm_smmu_devices_lock);
	list_for_each_entry(curr, &arm_smmu_devices, list) {
		if (curr->dev == dev) {
			smmu = curr;
			list_del(&smmu->list);
			break;
		}
	}
	spin_unlock(&arm_smmu_devices_lock);

	if (!smmu)
		return -ENODEV;

	for (node = rb_first(&smmu->masters); node; node = rb_next(node)) {
2019 2020
		struct arm_smmu_master *master
			= container_of(node, struct arm_smmu_master, node);
2021 2022 2023
		of_node_put(master->of_node);
	}

2024
	if (!bitmap_empty(smmu->context_map, ARM_SMMU_MAX_CBS))
2025 2026 2027
		dev_err(dev, "removing device with active domains!\n");

	/* Turn the thing off */
2028
	writel(sCR0_CLIENTPD, ARM_SMMU_GR0_NS(smmu) + ARM_SMMU_GR0_sCR0);
2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042
	return 0;
}

static struct platform_driver arm_smmu_driver = {
	.driver	= {
		.name		= "arm-smmu",
		.of_match_table	= of_match_ptr(arm_smmu_of_match),
	},
	.probe	= arm_smmu_device_dt_probe,
	.remove	= arm_smmu_device_remove,
};

static int __init arm_smmu_init(void)
{
2043
	struct device_node *np;
2044 2045
	int ret;

2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056
	/*
	 * Play nice with systems that don't have an ARM SMMU by checking that
	 * an ARM SMMU exists in the system before proceeding with the driver
	 * and IOMMU bus operation registration.
	 */
	np = of_find_matching_node(NULL, arm_smmu_of_match);
	if (!np)
		return 0;

	of_node_put(np);

2057 2058 2059 2060 2061
	ret = platform_driver_register(&arm_smmu_driver);
	if (ret)
		return ret;

	/* Oh, for a proper bus abstraction */
2062
	if (!iommu_present(&platform_bus_type))
2063 2064
		bus_set_iommu(&platform_bus_type, &arm_smmu_ops);

2065
#ifdef CONFIG_ARM_AMBA
2066
	if (!iommu_present(&amba_bustype))
2067
		bus_set_iommu(&amba_bustype, &arm_smmu_ops);
2068
#endif
2069

2070
#ifdef CONFIG_PCI
2071 2072
	if (!iommu_present(&pci_bus_type)) {
		pci_request_acs();
2073
		bus_set_iommu(&pci_bus_type, &arm_smmu_ops);
2074
	}
2075 2076
#endif

2077 2078 2079 2080 2081 2082 2083 2084
	return 0;
}

static void __exit arm_smmu_exit(void)
{
	return platform_driver_unregister(&arm_smmu_driver);
}

2085
subsys_initcall(arm_smmu_init);
2086 2087 2088 2089 2090
module_exit(arm_smmu_exit);

MODULE_DESCRIPTION("IOMMU API for ARM architected SMMU implementations");
MODULE_AUTHOR("Will Deacon <will.deacon@arm.com>");
MODULE_LICENSE("GPL v2");