arm-smmu.c 50.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36
/*
 * IOMMU API for ARM architected SMMU implementations.
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
 *
 * Copyright (C) 2013 ARM Limited
 *
 * Author: Will Deacon <will.deacon@arm.com>
 *
 * This driver currently supports:
 *	- SMMUv1 and v2 implementations
 *	- Stream-matching and stream-indexing
 *	- v7/v8 long-descriptor format
 *	- Non-secure access to the SMMU
 *	- Context fault reporting
 */

#define pr_fmt(fmt) "arm-smmu: " fmt

#include <linux/delay.h>
#include <linux/dma-mapping.h>
#include <linux/err.h>
#include <linux/interrupt.h>
#include <linux/io.h>
#include <linux/iommu.h>
37
#include <linux/iopoll.h>
38 39
#include <linux/module.h>
#include <linux/of.h>
40
#include <linux/of_address.h>
41
#include <linux/pci.h>
42 43 44 45 46 47
#include <linux/platform_device.h>
#include <linux/slab.h>
#include <linux/spinlock.h>

#include <linux/amba/bus.h>

48
#include "io-pgtable.h"
49 50

/* Maximum number of stream IDs assigned to a single device */
51
#define MAX_MASTER_STREAMIDS		MAX_PHANDLE_ARGS
52 53 54 55 56 57 58 59 60

/* Maximum number of context banks per SMMU */
#define ARM_SMMU_MAX_CBS		128

/* Maximum number of mapping groups per SMMU */
#define ARM_SMMU_MAX_SMRS		128

/* SMMU global address space */
#define ARM_SMMU_GR0(smmu)		((smmu)->base)
61
#define ARM_SMMU_GR1(smmu)		((smmu)->base + (1 << (smmu)->pgshift))
62

63 64 65 66 67 68 69 70 71 72
/*
 * SMMU global address space with conditional offset to access secure
 * aliases of non-secure registers (e.g. nsCR0: 0x400, nsGFSR: 0x448,
 * nsGFSYNR0: 0x450)
 */
#define ARM_SMMU_GR0_NS(smmu)						\
	((smmu)->base +							\
		((smmu->options & ARM_SMMU_OPT_SECURE_CFG_ACCESS)	\
			? 0x400 : 0))

73 74 75 76 77 78 79 80 81 82 83 84
#ifdef CONFIG_64BIT
#define smmu_writeq	writeq_relaxed
#else
#define smmu_writeq(reg64, addr)				\
	do {							\
		u64 __val = (reg64);				\
		void __iomem *__addr = (addr);			\
		writel_relaxed(__val >> 32, __addr + 4);	\
		writel_relaxed(__val, __addr);			\
	} while (0)
#endif

85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116
/* Configuration registers */
#define ARM_SMMU_GR0_sCR0		0x0
#define sCR0_CLIENTPD			(1 << 0)
#define sCR0_GFRE			(1 << 1)
#define sCR0_GFIE			(1 << 2)
#define sCR0_GCFGFRE			(1 << 4)
#define sCR0_GCFGFIE			(1 << 5)
#define sCR0_USFCFG			(1 << 10)
#define sCR0_VMIDPNE			(1 << 11)
#define sCR0_PTM			(1 << 12)
#define sCR0_FB				(1 << 13)
#define sCR0_BSU_SHIFT			14
#define sCR0_BSU_MASK			0x3

/* Identification registers */
#define ARM_SMMU_GR0_ID0		0x20
#define ARM_SMMU_GR0_ID1		0x24
#define ARM_SMMU_GR0_ID2		0x28
#define ARM_SMMU_GR0_ID3		0x2c
#define ARM_SMMU_GR0_ID4		0x30
#define ARM_SMMU_GR0_ID5		0x34
#define ARM_SMMU_GR0_ID6		0x38
#define ARM_SMMU_GR0_ID7		0x3c
#define ARM_SMMU_GR0_sGFSR		0x48
#define ARM_SMMU_GR0_sGFSYNR0		0x50
#define ARM_SMMU_GR0_sGFSYNR1		0x54
#define ARM_SMMU_GR0_sGFSYNR2		0x58

#define ID0_S1TS			(1 << 30)
#define ID0_S2TS			(1 << 29)
#define ID0_NTS				(1 << 28)
#define ID0_SMS				(1 << 27)
117
#define ID0_ATOSNS			(1 << 26)
118 119 120
#define ID0_CTTW			(1 << 14)
#define ID0_NUMIRPT_SHIFT		16
#define ID0_NUMIRPT_MASK		0xff
121 122
#define ID0_NUMSIDB_SHIFT		9
#define ID0_NUMSIDB_MASK		0xf
123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169
#define ID0_NUMSMRG_SHIFT		0
#define ID0_NUMSMRG_MASK		0xff

#define ID1_PAGESIZE			(1 << 31)
#define ID1_NUMPAGENDXB_SHIFT		28
#define ID1_NUMPAGENDXB_MASK		7
#define ID1_NUMS2CB_SHIFT		16
#define ID1_NUMS2CB_MASK		0xff
#define ID1_NUMCB_SHIFT			0
#define ID1_NUMCB_MASK			0xff

#define ID2_OAS_SHIFT			4
#define ID2_OAS_MASK			0xf
#define ID2_IAS_SHIFT			0
#define ID2_IAS_MASK			0xf
#define ID2_UBS_SHIFT			8
#define ID2_UBS_MASK			0xf
#define ID2_PTFS_4K			(1 << 12)
#define ID2_PTFS_16K			(1 << 13)
#define ID2_PTFS_64K			(1 << 14)

/* Global TLB invalidation */
#define ARM_SMMU_GR0_TLBIVMID		0x64
#define ARM_SMMU_GR0_TLBIALLNSNH	0x68
#define ARM_SMMU_GR0_TLBIALLH		0x6c
#define ARM_SMMU_GR0_sTLBGSYNC		0x70
#define ARM_SMMU_GR0_sTLBGSTATUS	0x74
#define sTLBGSTATUS_GSACTIVE		(1 << 0)
#define TLB_LOOP_TIMEOUT		1000000	/* 1s! */

/* Stream mapping registers */
#define ARM_SMMU_GR0_SMR(n)		(0x800 + ((n) << 2))
#define SMR_VALID			(1 << 31)
#define SMR_MASK_SHIFT			16
#define SMR_MASK_MASK			0x7fff
#define SMR_ID_SHIFT			0
#define SMR_ID_MASK			0x7fff

#define ARM_SMMU_GR0_S2CR(n)		(0xc00 + ((n) << 2))
#define S2CR_CBNDX_SHIFT		0
#define S2CR_CBNDX_MASK			0xff
#define S2CR_TYPE_SHIFT			16
#define S2CR_TYPE_MASK			0x3
#define S2CR_TYPE_TRANS			(0 << S2CR_TYPE_SHIFT)
#define S2CR_TYPE_BYPASS		(1 << S2CR_TYPE_SHIFT)
#define S2CR_TYPE_FAULT			(2 << S2CR_TYPE_SHIFT)

170 171 172
#define S2CR_PRIVCFG_SHIFT		24
#define S2CR_PRIVCFG_UNPRIV		(2 << S2CR_PRIVCFG_SHIFT)

173 174 175 176
/* Context bank attribute registers */
#define ARM_SMMU_GR1_CBAR(n)		(0x0 + ((n) << 2))
#define CBAR_VMID_SHIFT			0
#define CBAR_VMID_MASK			0xff
177 178 179
#define CBAR_S1_BPSHCFG_SHIFT		8
#define CBAR_S1_BPSHCFG_MASK		3
#define CBAR_S1_BPSHCFG_NSH		3
180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197
#define CBAR_S1_MEMATTR_SHIFT		12
#define CBAR_S1_MEMATTR_MASK		0xf
#define CBAR_S1_MEMATTR_WB		0xf
#define CBAR_TYPE_SHIFT			16
#define CBAR_TYPE_MASK			0x3
#define CBAR_TYPE_S2_TRANS		(0 << CBAR_TYPE_SHIFT)
#define CBAR_TYPE_S1_TRANS_S2_BYPASS	(1 << CBAR_TYPE_SHIFT)
#define CBAR_TYPE_S1_TRANS_S2_FAULT	(2 << CBAR_TYPE_SHIFT)
#define CBAR_TYPE_S1_TRANS_S2_TRANS	(3 << CBAR_TYPE_SHIFT)
#define CBAR_IRPTNDX_SHIFT		24
#define CBAR_IRPTNDX_MASK		0xff

#define ARM_SMMU_GR1_CBA2R(n)		(0x800 + ((n) << 2))
#define CBA2R_RW64_32BIT		(0 << 0)
#define CBA2R_RW64_64BIT		(1 << 0)

/* Translation context bank */
#define ARM_SMMU_CB_BASE(smmu)		((smmu)->base + ((smmu)->size >> 1))
198
#define ARM_SMMU_CB(smmu, n)		((n) * (1 << (smmu)->pgshift))
199 200 201 202

#define ARM_SMMU_CB_SCTLR		0x0
#define ARM_SMMU_CB_RESUME		0x8
#define ARM_SMMU_CB_TTBCR2		0x10
203 204
#define ARM_SMMU_CB_TTBR0		0x20
#define ARM_SMMU_CB_TTBR1		0x28
205 206
#define ARM_SMMU_CB_TTBCR		0x30
#define ARM_SMMU_CB_S1_MAIR0		0x38
207
#define ARM_SMMU_CB_S1_MAIR1		0x3c
208 209
#define ARM_SMMU_CB_PAR_LO		0x50
#define ARM_SMMU_CB_PAR_HI		0x54
210 211 212 213
#define ARM_SMMU_CB_FSR			0x58
#define ARM_SMMU_CB_FAR_LO		0x60
#define ARM_SMMU_CB_FAR_HI		0x64
#define ARM_SMMU_CB_FSYNR0		0x68
214
#define ARM_SMMU_CB_S1_TLBIVA		0x600
215
#define ARM_SMMU_CB_S1_TLBIASID		0x610
216 217 218
#define ARM_SMMU_CB_S1_TLBIVAL		0x620
#define ARM_SMMU_CB_S2_TLBIIPAS2	0x630
#define ARM_SMMU_CB_S2_TLBIIPAS2L	0x638
219
#define ARM_SMMU_CB_ATS1PR		0x800
220
#define ARM_SMMU_CB_ATSR		0x8f0
221 222 223 224 225 226 227 228 229 230 231

#define SCTLR_S1_ASIDPNE		(1 << 12)
#define SCTLR_CFCFG			(1 << 7)
#define SCTLR_CFIE			(1 << 6)
#define SCTLR_CFRE			(1 << 5)
#define SCTLR_E				(1 << 4)
#define SCTLR_AFE			(1 << 2)
#define SCTLR_TRE			(1 << 1)
#define SCTLR_M				(1 << 0)
#define SCTLR_EAE_SBOP			(SCTLR_AFE | SCTLR_TRE)

232 233 234 235
#define CB_PAR_F			(1 << 0)

#define ATSR_ACTIVE			(1 << 0)

236 237 238 239
#define RESUME_RETRY			(0 << 0)
#define RESUME_TERMINATE		(1 << 0)

#define TTBCR2_SEP_SHIFT		15
240
#define TTBCR2_SEP_UPSTREAM		(0x7 << TTBCR2_SEP_SHIFT)
241

242
#define TTBRn_ASID_SHIFT		48
243 244 245 246 247 248 249 250 251 252 253 254

#define FSR_MULTI			(1 << 31)
#define FSR_SS				(1 << 30)
#define FSR_UUT				(1 << 8)
#define FSR_ASF				(1 << 7)
#define FSR_TLBLKF			(1 << 6)
#define FSR_TLBMCF			(1 << 5)
#define FSR_EF				(1 << 4)
#define FSR_PF				(1 << 3)
#define FSR_AFF				(1 << 2)
#define FSR_TF				(1 << 1)

255 256 257
#define FSR_IGN				(FSR_AFF | FSR_ASF | \
					 FSR_TLBMCF | FSR_TLBLKF)
#define FSR_FAULT			(FSR_MULTI | FSR_SS | FSR_UUT | \
258
					 FSR_EF | FSR_PF | FSR_TF | FSR_IGN)
259 260 261

#define FSYNR0_WNR			(1 << 4)

262
static int force_stage;
263
module_param_named(force_stage, force_stage, int, S_IRUGO);
264 265 266
MODULE_PARM_DESC(force_stage,
	"Force SMMU mappings to be installed at a particular stage of translation. A value of '1' or '2' forces the corresponding stage. All other values are ignored (i.e. no stage is forced). Note that selecting a specific stage will disable support for nested translation.");

267 268 269 270 271
enum arm_smmu_arch_version {
	ARM_SMMU_V1 = 1,
	ARM_SMMU_V2,
};

272 273 274 275 276 277
struct arm_smmu_smr {
	u8				idx;
	u16				mask;
	u16				id;
};

278
struct arm_smmu_master_cfg {
279 280 281 282 283
	int				num_streamids;
	u16				streamids[MAX_MASTER_STREAMIDS];
	struct arm_smmu_smr		*smrs;
};

284 285 286 287 288 289
struct arm_smmu_master {
	struct device_node		*of_node;
	struct rb_node			node;
	struct arm_smmu_master_cfg	cfg;
};

290 291 292 293 294
struct arm_smmu_device {
	struct device			*dev;

	void __iomem			*base;
	unsigned long			size;
295
	unsigned long			pgshift;
296 297 298 299 300 301

#define ARM_SMMU_FEAT_COHERENT_WALK	(1 << 0)
#define ARM_SMMU_FEAT_STREAM_MATCH	(1 << 1)
#define ARM_SMMU_FEAT_TRANS_S1		(1 << 2)
#define ARM_SMMU_FEAT_TRANS_S2		(1 << 3)
#define ARM_SMMU_FEAT_TRANS_NESTED	(1 << 4)
302
#define ARM_SMMU_FEAT_TRANS_OPS		(1 << 5)
303
	u32				features;
304 305 306

#define ARM_SMMU_OPT_SECURE_CFG_ACCESS (1 << 0)
	u32				options;
307
	enum arm_smmu_arch_version	version;
308 309 310 311 312 313 314 315 316

	u32				num_context_banks;
	u32				num_s2_context_banks;
	DECLARE_BITMAP(context_map, ARM_SMMU_MAX_CBS);
	atomic_t			irptndx;

	u32				num_mapping_groups;
	DECLARE_BITMAP(smr_map, ARM_SMMU_MAX_SMRS);

317 318 319
	unsigned long			va_size;
	unsigned long			ipa_size;
	unsigned long			pa_size;
320 321 322 323 324 325 326 327 328 329 330 331 332 333

	u32				num_global_irqs;
	u32				num_context_irqs;
	unsigned int			*irqs;

	struct list_head		list;
	struct rb_root			masters;
};

struct arm_smmu_cfg {
	u8				cbndx;
	u8				irptndx;
	u32				cbar;
};
334
#define INVALID_IRPTNDX			0xff
335

336 337 338
#define ARM_SMMU_CB_ASID(cfg)		((cfg)->cbndx)
#define ARM_SMMU_CB_VMID(cfg)		((cfg)->cbndx + 1)

339 340 341 342 343 344
enum arm_smmu_domain_stage {
	ARM_SMMU_DOMAIN_S1 = 0,
	ARM_SMMU_DOMAIN_S2,
	ARM_SMMU_DOMAIN_NESTED,
};

345
struct arm_smmu_domain {
346
	struct arm_smmu_device		*smmu;
347 348
	struct io_pgtable_ops		*pgtbl_ops;
	spinlock_t			pgtbl_lock;
349
	struct arm_smmu_cfg		cfg;
350
	enum arm_smmu_domain_stage	stage;
351
	struct mutex			init_mutex; /* Protects smmu pointer */
352
	struct iommu_domain		domain;
353 354
};

355 356
static struct iommu_ops arm_smmu_ops;

357 358 359
static DEFINE_SPINLOCK(arm_smmu_devices_lock);
static LIST_HEAD(arm_smmu_devices);

360 361 362 363 364
struct arm_smmu_option_prop {
	u32 opt;
	const char *prop;
};

365
static struct arm_smmu_option_prop arm_smmu_options[] = {
366 367 368 369
	{ ARM_SMMU_OPT_SECURE_CFG_ACCESS, "calxeda,smmu-secure-config-access" },
	{ 0, NULL},
};

370 371 372 373 374
static struct arm_smmu_domain *to_smmu_domain(struct iommu_domain *dom)
{
	return container_of(dom, struct arm_smmu_domain, domain);
}

375 376 377
static void parse_driver_options(struct arm_smmu_device *smmu)
{
	int i = 0;
378

379 380 381 382 383 384 385 386 387 388
	do {
		if (of_property_read_bool(smmu->dev->of_node,
						arm_smmu_options[i].prop)) {
			smmu->options |= arm_smmu_options[i].opt;
			dev_notice(smmu->dev, "option %s\n",
				arm_smmu_options[i].prop);
		}
	} while (arm_smmu_options[++i].opt);
}

389
static struct device_node *dev_get_dev_node(struct device *dev)
390 391 392
{
	if (dev_is_pci(dev)) {
		struct pci_bus *bus = to_pci_dev(dev)->bus;
393

394 395
		while (!pci_is_root_bus(bus))
			bus = bus->parent;
396
		return bus->bridge->parent->of_node;
397 398
	}

399
	return dev->of_node;
400 401
}

402 403 404 405 406 407 408
static struct arm_smmu_master *find_smmu_master(struct arm_smmu_device *smmu,
						struct device_node *dev_node)
{
	struct rb_node *node = smmu->masters.rb_node;

	while (node) {
		struct arm_smmu_master *master;
409

410 411 412 413 414 415 416 417 418 419 420 421 422
		master = container_of(node, struct arm_smmu_master, node);

		if (dev_node < master->of_node)
			node = node->rb_left;
		else if (dev_node > master->of_node)
			node = node->rb_right;
		else
			return master;
	}

	return NULL;
}

423
static struct arm_smmu_master_cfg *
424
find_smmu_master_cfg(struct device *dev)
425
{
426 427
	struct arm_smmu_master_cfg *cfg = NULL;
	struct iommu_group *group = iommu_group_get(dev);
428

429 430 431 432
	if (group) {
		cfg = iommu_group_get_iommudata(group);
		iommu_group_put(group);
	}
433

434
	return cfg;
435 436
}

437 438 439 440 441 442 443 444
static int insert_smmu_master(struct arm_smmu_device *smmu,
			      struct arm_smmu_master *master)
{
	struct rb_node **new, *parent;

	new = &smmu->masters.rb_node;
	parent = NULL;
	while (*new) {
445 446
		struct arm_smmu_master *this
			= container_of(*new, struct arm_smmu_master, node);
447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487

		parent = *new;
		if (master->of_node < this->of_node)
			new = &((*new)->rb_left);
		else if (master->of_node > this->of_node)
			new = &((*new)->rb_right);
		else
			return -EEXIST;
	}

	rb_link_node(&master->node, parent, new);
	rb_insert_color(&master->node, &smmu->masters);
	return 0;
}

static int register_smmu_master(struct arm_smmu_device *smmu,
				struct device *dev,
				struct of_phandle_args *masterspec)
{
	int i;
	struct arm_smmu_master *master;

	master = find_smmu_master(smmu, masterspec->np);
	if (master) {
		dev_err(dev,
			"rejecting multiple registrations for master device %s\n",
			masterspec->np->name);
		return -EBUSY;
	}

	if (masterspec->args_count > MAX_MASTER_STREAMIDS) {
		dev_err(dev,
			"reached maximum number (%d) of stream IDs for master device %s\n",
			MAX_MASTER_STREAMIDS, masterspec->np->name);
		return -ENOSPC;
	}

	master = devm_kzalloc(dev, sizeof(*master), GFP_KERNEL);
	if (!master)
		return -ENOMEM;

488 489
	master->of_node			= masterspec->np;
	master->cfg.num_streamids	= masterspec->args_count;
490

491 492
	for (i = 0; i < master->cfg.num_streamids; ++i) {
		u16 streamid = masterspec->args[i];
493

494 495 496 497 498 499 500 501 502
		if (!(smmu->features & ARM_SMMU_FEAT_STREAM_MATCH) &&
		     (streamid >= smmu->num_mapping_groups)) {
			dev_err(dev,
				"stream ID for master device %s greater than maximum allowed (%d)\n",
				masterspec->np->name, smmu->num_mapping_groups);
			return -ERANGE;
		}
		master->cfg.streamids[i] = streamid;
	}
503 504 505
	return insert_smmu_master(smmu, master);
}

506
static struct arm_smmu_device *find_smmu_for_device(struct device *dev)
507
{
508
	struct arm_smmu_device *smmu;
509
	struct arm_smmu_master *master = NULL;
510
	struct device_node *dev_node = dev_get_dev_node(dev);
511 512

	spin_lock(&arm_smmu_devices_lock);
513
	list_for_each_entry(smmu, &arm_smmu_devices, list) {
514 515 516 517
		master = find_smmu_master(smmu, dev_node);
		if (master)
			break;
	}
518
	spin_unlock(&arm_smmu_devices_lock);
519

520
	return master ? smmu : NULL;
521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541
}

static int __arm_smmu_alloc_bitmap(unsigned long *map, int start, int end)
{
	int idx;

	do {
		idx = find_next_zero_bit(map, end, start);
		if (idx == end)
			return -ENOSPC;
	} while (test_and_set_bit(idx, map));

	return idx;
}

static void __arm_smmu_free_bitmap(unsigned long *map, int idx)
{
	clear_bit(idx, map);
}

/* Wait for any pending TLB invalidations to complete */
542
static void __arm_smmu_tlb_sync(struct arm_smmu_device *smmu)
543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559
{
	int count = 0;
	void __iomem *gr0_base = ARM_SMMU_GR0(smmu);

	writel_relaxed(0, gr0_base + ARM_SMMU_GR0_sTLBGSYNC);
	while (readl_relaxed(gr0_base + ARM_SMMU_GR0_sTLBGSTATUS)
	       & sTLBGSTATUS_GSACTIVE) {
		cpu_relax();
		if (++count == TLB_LOOP_TIMEOUT) {
			dev_err_ratelimited(smmu->dev,
			"TLB sync timed out -- SMMU may be deadlocked\n");
			return;
		}
		udelay(1);
	}
}

560 561 562 563 564 565 566
static void arm_smmu_tlb_sync(void *cookie)
{
	struct arm_smmu_domain *smmu_domain = cookie;
	__arm_smmu_tlb_sync(smmu_domain->smmu);
}

static void arm_smmu_tlb_inv_context(void *cookie)
567
{
568
	struct arm_smmu_domain *smmu_domain = cookie;
569 570
	struct arm_smmu_cfg *cfg = &smmu_domain->cfg;
	struct arm_smmu_device *smmu = smmu_domain->smmu;
571
	bool stage1 = cfg->cbar != CBAR_TYPE_S2_TRANS;
572
	void __iomem *base;
573 574 575

	if (stage1) {
		base = ARM_SMMU_CB_BASE(smmu) + ARM_SMMU_CB(smmu, cfg->cbndx);
576 577
		writel_relaxed(ARM_SMMU_CB_ASID(cfg),
			       base + ARM_SMMU_CB_S1_TLBIASID);
578 579
	} else {
		base = ARM_SMMU_GR0(smmu);
580 581
		writel_relaxed(ARM_SMMU_CB_VMID(cfg),
			       base + ARM_SMMU_GR0_TLBIVMID);
582 583
	}

584 585 586 587
	__arm_smmu_tlb_sync(smmu);
}

static void arm_smmu_tlb_inv_range_nosync(unsigned long iova, size_t size,
588
					  size_t granule, bool leaf, void *cookie)
589 590 591 592 593 594 595 596 597 598 599 600 601 602
{
	struct arm_smmu_domain *smmu_domain = cookie;
	struct arm_smmu_cfg *cfg = &smmu_domain->cfg;
	struct arm_smmu_device *smmu = smmu_domain->smmu;
	bool stage1 = cfg->cbar != CBAR_TYPE_S2_TRANS;
	void __iomem *reg;

	if (stage1) {
		reg = ARM_SMMU_CB_BASE(smmu) + ARM_SMMU_CB(smmu, cfg->cbndx);
		reg += leaf ? ARM_SMMU_CB_S1_TLBIVAL : ARM_SMMU_CB_S1_TLBIVA;

		if (!IS_ENABLED(CONFIG_64BIT) || smmu->version == ARM_SMMU_V1) {
			iova &= ~12UL;
			iova |= ARM_SMMU_CB_ASID(cfg);
603 604 605 606
			do {
				writel_relaxed(iova, reg);
				iova += granule;
			} while (size -= granule);
607 608 609 610
#ifdef CONFIG_64BIT
		} else {
			iova >>= 12;
			iova |= (u64)ARM_SMMU_CB_ASID(cfg) << 48;
611 612 613 614
			do {
				writeq_relaxed(iova, reg);
				iova += granule >> 12;
			} while (size -= granule);
615 616 617 618 619 620 621
#endif
		}
#ifdef CONFIG_64BIT
	} else if (smmu->version == ARM_SMMU_V2) {
		reg = ARM_SMMU_CB_BASE(smmu) + ARM_SMMU_CB(smmu, cfg->cbndx);
		reg += leaf ? ARM_SMMU_CB_S2_TLBIIPAS2L :
			      ARM_SMMU_CB_S2_TLBIIPAS2;
622 623 624 625 626
		iova >>= 12;
		do {
			writeq_relaxed(iova, reg);
			iova += granule >> 12;
		} while (size -= granule);
627 628 629 630 631 632 633 634 635 636 637 638 639
#endif
	} else {
		reg = ARM_SMMU_GR0(smmu) + ARM_SMMU_GR0_TLBIVMID;
		writel_relaxed(ARM_SMMU_CB_VMID(cfg), reg);
	}
}

static struct iommu_gather_ops arm_smmu_gather_ops = {
	.tlb_flush_all	= arm_smmu_tlb_inv_context,
	.tlb_add_flush	= arm_smmu_tlb_inv_range_nosync,
	.tlb_sync	= arm_smmu_tlb_sync,
};

640 641 642 643 644 645
static irqreturn_t arm_smmu_context_fault(int irq, void *dev)
{
	int flags, ret;
	u32 fsr, far, fsynr, resume;
	unsigned long iova;
	struct iommu_domain *domain = dev;
646
	struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
647 648
	struct arm_smmu_cfg *cfg = &smmu_domain->cfg;
	struct arm_smmu_device *smmu = smmu_domain->smmu;
649 650
	void __iomem *cb_base;

651
	cb_base = ARM_SMMU_CB_BASE(smmu) + ARM_SMMU_CB(smmu, cfg->cbndx);
652 653 654 655 656 657 658
	fsr = readl_relaxed(cb_base + ARM_SMMU_CB_FSR);

	if (!(fsr & FSR_FAULT))
		return IRQ_NONE;

	if (fsr & FSR_IGN)
		dev_err_ratelimited(smmu->dev,
659
				    "Unexpected context fault (fsr 0x%x)\n",
660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675
				    fsr);

	fsynr = readl_relaxed(cb_base + ARM_SMMU_CB_FSYNR0);
	flags = fsynr & FSYNR0_WNR ? IOMMU_FAULT_WRITE : IOMMU_FAULT_READ;

	far = readl_relaxed(cb_base + ARM_SMMU_CB_FAR_LO);
	iova = far;
#ifdef CONFIG_64BIT
	far = readl_relaxed(cb_base + ARM_SMMU_CB_FAR_HI);
	iova |= ((unsigned long)far << 32);
#endif

	if (!report_iommu_fault(domain, smmu->dev, iova, flags)) {
		ret = IRQ_HANDLED;
		resume = RESUME_RETRY;
	} else {
676 677
		dev_err_ratelimited(smmu->dev,
		    "Unhandled context fault: iova=0x%08lx, fsynr=0x%x, cb=%d\n",
678
		    iova, fsynr, cfg->cbndx);
679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696
		ret = IRQ_NONE;
		resume = RESUME_TERMINATE;
	}

	/* Clear the faulting FSR */
	writel(fsr, cb_base + ARM_SMMU_CB_FSR);

	/* Retry or terminate any stalled transactions */
	if (fsr & FSR_SS)
		writel_relaxed(resume, cb_base + ARM_SMMU_CB_RESUME);

	return ret;
}

static irqreturn_t arm_smmu_global_fault(int irq, void *dev)
{
	u32 gfsr, gfsynr0, gfsynr1, gfsynr2;
	struct arm_smmu_device *smmu = dev;
697
	void __iomem *gr0_base = ARM_SMMU_GR0_NS(smmu);
698 699 700 701 702 703

	gfsr = readl_relaxed(gr0_base + ARM_SMMU_GR0_sGFSR);
	gfsynr0 = readl_relaxed(gr0_base + ARM_SMMU_GR0_sGFSYNR0);
	gfsynr1 = readl_relaxed(gr0_base + ARM_SMMU_GR0_sGFSYNR1);
	gfsynr2 = readl_relaxed(gr0_base + ARM_SMMU_GR0_sGFSYNR2);

704 705 706
	if (!gfsr)
		return IRQ_NONE;

707 708 709 710 711 712 713
	dev_err_ratelimited(smmu->dev,
		"Unexpected global fault, this could be serious\n");
	dev_err_ratelimited(smmu->dev,
		"\tGFSR 0x%08x, GFSYNR0 0x%08x, GFSYNR1 0x%08x, GFSYNR2 0x%08x\n",
		gfsr, gfsynr0, gfsynr1, gfsynr2);

	writel(gfsr, gr0_base + ARM_SMMU_GR0_sGFSR);
714
	return IRQ_HANDLED;
715 716
}

717 718
static void arm_smmu_init_context_bank(struct arm_smmu_domain *smmu_domain,
				       struct io_pgtable_cfg *pgtbl_cfg)
719 720
{
	u32 reg;
721
	u64 reg64;
722
	bool stage1;
723 724
	struct arm_smmu_cfg *cfg = &smmu_domain->cfg;
	struct arm_smmu_device *smmu = smmu_domain->smmu;
725
	void __iomem *cb_base, *gr1_base;
726 727

	gr1_base = ARM_SMMU_GR1(smmu);
728 729
	stage1 = cfg->cbar != CBAR_TYPE_S2_TRANS;
	cb_base = ARM_SMMU_CB_BASE(smmu) + ARM_SMMU_CB(smmu, cfg->cbndx);
730

731 732 733 734 735 736 737 738 739 740 741 742 743 744
	if (smmu->version > ARM_SMMU_V1) {
		/*
		 * CBA2R.
		 * *Must* be initialised before CBAR thanks to VMID16
		 * architectural oversight affected some implementations.
		 */
#ifdef CONFIG_64BIT
		reg = CBA2R_RW64_64BIT;
#else
		reg = CBA2R_RW64_32BIT;
#endif
		writel_relaxed(reg, gr1_base + ARM_SMMU_GR1_CBA2R(cfg->cbndx));
	}

745
	/* CBAR */
746
	reg = cfg->cbar;
747
	if (smmu->version == ARM_SMMU_V1)
748
		reg |= cfg->irptndx << CBAR_IRPTNDX_SHIFT;
749

750 751 752 753 754 755 756 757
	/*
	 * Use the weakest shareability/memory types, so they are
	 * overridden by the ttbcr/pte.
	 */
	if (stage1) {
		reg |= (CBAR_S1_BPSHCFG_NSH << CBAR_S1_BPSHCFG_SHIFT) |
			(CBAR_S1_MEMATTR_WB << CBAR_S1_MEMATTR_SHIFT);
	} else {
758
		reg |= ARM_SMMU_CB_VMID(cfg) << CBAR_VMID_SHIFT;
759
	}
760
	writel_relaxed(reg, gr1_base + ARM_SMMU_GR1_CBAR(cfg->cbndx));
761

762 763
	/* TTBRs */
	if (stage1) {
764 765 766 767 768 769 770 771
		reg64 = pgtbl_cfg->arm_lpae_s1_cfg.ttbr[0];

		reg64 |= ((u64)ARM_SMMU_CB_ASID(cfg)) << TTBRn_ASID_SHIFT;
		smmu_writeq(reg64, cb_base + ARM_SMMU_CB_TTBR0);

		reg64 = pgtbl_cfg->arm_lpae_s1_cfg.ttbr[1];
		reg64 |= ((u64)ARM_SMMU_CB_ASID(cfg)) << TTBRn_ASID_SHIFT;
		smmu_writeq(reg64, cb_base + ARM_SMMU_CB_TTBR1);
772
	} else {
773 774
		reg64 = pgtbl_cfg->arm_lpae_s2_cfg.vttbr;
		smmu_writeq(reg64, cb_base + ARM_SMMU_CB_TTBR0);
775
	}
776

777 778 779 780 781 782
	/* TTBCR */
	if (stage1) {
		reg = pgtbl_cfg->arm_lpae_s1_cfg.tcr;
		writel_relaxed(reg, cb_base + ARM_SMMU_CB_TTBCR);
		if (smmu->version > ARM_SMMU_V1) {
			reg = pgtbl_cfg->arm_lpae_s1_cfg.tcr >> 32;
783
			reg |= TTBCR2_SEP_UPSTREAM;
784
			writel_relaxed(reg, cb_base + ARM_SMMU_CB_TTBCR2);
785 786
		}
	} else {
787 788
		reg = pgtbl_cfg->arm_lpae_s2_cfg.vtcr;
		writel_relaxed(reg, cb_base + ARM_SMMU_CB_TTBCR);
789 790
	}

791
	/* MAIRs (stage-1 only) */
792
	if (stage1) {
793
		reg = pgtbl_cfg->arm_lpae_s1_cfg.mair[0];
794
		writel_relaxed(reg, cb_base + ARM_SMMU_CB_S1_MAIR0);
795 796
		reg = pgtbl_cfg->arm_lpae_s1_cfg.mair[1];
		writel_relaxed(reg, cb_base + ARM_SMMU_CB_S1_MAIR1);
797 798 799 800 801 802 803 804 805
	}

	/* SCTLR */
	reg = SCTLR_CFCFG | SCTLR_CFIE | SCTLR_CFRE | SCTLR_M | SCTLR_EAE_SBOP;
	if (stage1)
		reg |= SCTLR_S1_ASIDPNE;
#ifdef __BIG_ENDIAN
	reg |= SCTLR_E;
#endif
806
	writel_relaxed(reg, cb_base + ARM_SMMU_CB_SCTLR);
807 808 809
}

static int arm_smmu_init_domain_context(struct iommu_domain *domain,
810
					struct arm_smmu_device *smmu)
811
{
812
	int irq, start, ret = 0;
813 814 815 816
	unsigned long ias, oas;
	struct io_pgtable_ops *pgtbl_ops;
	struct io_pgtable_cfg pgtbl_cfg;
	enum io_pgtable_fmt fmt;
817
	struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
818
	struct arm_smmu_cfg *cfg = &smmu_domain->cfg;
819

820
	mutex_lock(&smmu_domain->init_mutex);
821 822 823
	if (smmu_domain->smmu)
		goto out_unlock;

824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850
	/*
	 * Mapping the requested stage onto what we support is surprisingly
	 * complicated, mainly because the spec allows S1+S2 SMMUs without
	 * support for nested translation. That means we end up with the
	 * following table:
	 *
	 * Requested        Supported        Actual
	 *     S1               N              S1
	 *     S1             S1+S2            S1
	 *     S1               S2             S2
	 *     S1               S1             S1
	 *     N                N              N
	 *     N              S1+S2            S2
	 *     N                S2             S2
	 *     N                S1             S1
	 *
	 * Note that you can't actually request stage-2 mappings.
	 */
	if (!(smmu->features & ARM_SMMU_FEAT_TRANS_S1))
		smmu_domain->stage = ARM_SMMU_DOMAIN_S2;
	if (!(smmu->features & ARM_SMMU_FEAT_TRANS_S2))
		smmu_domain->stage = ARM_SMMU_DOMAIN_S1;

	switch (smmu_domain->stage) {
	case ARM_SMMU_DOMAIN_S1:
		cfg->cbar = CBAR_TYPE_S1_TRANS_S2_BYPASS;
		start = smmu->num_s2_context_banks;
851 852 853 854 855 856
		ias = smmu->va_size;
		oas = smmu->ipa_size;
		if (IS_ENABLED(CONFIG_64BIT))
			fmt = ARM_64_LPAE_S1;
		else
			fmt = ARM_32_LPAE_S1;
857 858
		break;
	case ARM_SMMU_DOMAIN_NESTED:
859 860 861 862
		/*
		 * We will likely want to change this if/when KVM gets
		 * involved.
		 */
863
	case ARM_SMMU_DOMAIN_S2:
864 865
		cfg->cbar = CBAR_TYPE_S2_TRANS;
		start = 0;
866 867 868 869 870 871
		ias = smmu->ipa_size;
		oas = smmu->pa_size;
		if (IS_ENABLED(CONFIG_64BIT))
			fmt = ARM_64_LPAE_S2;
		else
			fmt = ARM_32_LPAE_S2;
872 873 874 875
		break;
	default:
		ret = -EINVAL;
		goto out_unlock;
876 877 878 879 880
	}

	ret = __arm_smmu_alloc_bitmap(smmu->context_map, start,
				      smmu->num_context_banks);
	if (IS_ERR_VALUE(ret))
881
		goto out_unlock;
882

883
	cfg->cbndx = ret;
884
	if (smmu->version == ARM_SMMU_V1) {
885 886
		cfg->irptndx = atomic_inc_return(&smmu->irptndx);
		cfg->irptndx %= smmu->num_context_irqs;
887
	} else {
888
		cfg->irptndx = cfg->cbndx;
889 890
	}

891 892 893 894 895
	pgtbl_cfg = (struct io_pgtable_cfg) {
		.pgsize_bitmap	= arm_smmu_ops.pgsize_bitmap,
		.ias		= ias,
		.oas		= oas,
		.tlb		= &arm_smmu_gather_ops,
896
		.iommu_dev	= smmu->dev,
897 898 899 900 901 902 903 904 905 906 907
	};

	smmu_domain->smmu = smmu;
	pgtbl_ops = alloc_io_pgtable_ops(fmt, &pgtbl_cfg, smmu_domain);
	if (!pgtbl_ops) {
		ret = -ENOMEM;
		goto out_clear_smmu;
	}

	/* Update our support page sizes to reflect the page table format */
	arm_smmu_ops.pgsize_bitmap = pgtbl_cfg.pgsize_bitmap;
908

909 910 911 912 913 914 915
	/* Initialise the context bank with our page table cfg */
	arm_smmu_init_context_bank(smmu_domain, &pgtbl_cfg);

	/*
	 * Request context fault interrupt. Do this last to avoid the
	 * handler seeing a half-initialised domain state.
	 */
916
	irq = smmu->irqs[smmu->num_global_irqs + cfg->irptndx];
917 918 919 920
	ret = request_irq(irq, arm_smmu_context_fault, IRQF_SHARED,
			  "arm-smmu-context-fault", domain);
	if (IS_ERR_VALUE(ret)) {
		dev_err(smmu->dev, "failed to request context IRQ %d (%u)\n",
921 922
			cfg->irptndx, irq);
		cfg->irptndx = INVALID_IRPTNDX;
923 924
	}

925 926 927 928
	mutex_unlock(&smmu_domain->init_mutex);

	/* Publish page table ops for map/unmap */
	smmu_domain->pgtbl_ops = pgtbl_ops;
929
	return 0;
930

931 932
out_clear_smmu:
	smmu_domain->smmu = NULL;
933
out_unlock:
934
	mutex_unlock(&smmu_domain->init_mutex);
935 936 937 938 939
	return ret;
}

static void arm_smmu_destroy_domain_context(struct iommu_domain *domain)
{
940
	struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
941 942
	struct arm_smmu_device *smmu = smmu_domain->smmu;
	struct arm_smmu_cfg *cfg = &smmu_domain->cfg;
943
	void __iomem *cb_base;
944 945 946 947 948
	int irq;

	if (!smmu)
		return;

949 950 951 952
	/*
	 * Disable the context bank and free the page tables before freeing
	 * it.
	 */
953
	cb_base = ARM_SMMU_CB_BASE(smmu) + ARM_SMMU_CB(smmu, cfg->cbndx);
954 955
	writel_relaxed(0, cb_base + ARM_SMMU_CB_SCTLR);

956 957
	if (cfg->irptndx != INVALID_IRPTNDX) {
		irq = smmu->irqs[smmu->num_global_irqs + cfg->irptndx];
958 959 960
		free_irq(irq, domain);
	}

961
	free_io_pgtable_ops(smmu_domain->pgtbl_ops);
962
	__arm_smmu_free_bitmap(smmu->context_map, cfg->cbndx);
963 964
}

965
static struct iommu_domain *arm_smmu_domain_alloc(unsigned type)
966 967 968
{
	struct arm_smmu_domain *smmu_domain;

969 970
	if (type != IOMMU_DOMAIN_UNMANAGED)
		return NULL;
971 972 973 974 975 976 977
	/*
	 * Allocate the domain and initialise some of its data structures.
	 * We can't really do anything meaningful until we've added a
	 * master.
	 */
	smmu_domain = kzalloc(sizeof(*smmu_domain), GFP_KERNEL);
	if (!smmu_domain)
978
		return NULL;
979

980 981
	mutex_init(&smmu_domain->init_mutex);
	spin_lock_init(&smmu_domain->pgtbl_lock);
982 983

	return &smmu_domain->domain;
984 985
}

986
static void arm_smmu_domain_free(struct iommu_domain *domain)
987
{
988
	struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
989 990 991 992 993

	/*
	 * Free the domain resources. We assume that all devices have
	 * already been detached.
	 */
994 995 996 997 998
	arm_smmu_destroy_domain_context(domain);
	kfree(smmu_domain);
}

static int arm_smmu_master_configure_smrs(struct arm_smmu_device *smmu,
999
					  struct arm_smmu_master_cfg *cfg)
1000 1001 1002 1003 1004 1005 1006 1007
{
	int i;
	struct arm_smmu_smr *smrs;
	void __iomem *gr0_base = ARM_SMMU_GR0(smmu);

	if (!(smmu->features & ARM_SMMU_FEAT_STREAM_MATCH))
		return 0;

1008
	if (cfg->smrs)
1009 1010
		return -EEXIST;

1011
	smrs = kmalloc_array(cfg->num_streamids, sizeof(*smrs), GFP_KERNEL);
1012
	if (!smrs) {
1013 1014
		dev_err(smmu->dev, "failed to allocate %d SMRs\n",
			cfg->num_streamids);
1015 1016 1017
		return -ENOMEM;
	}

1018
	/* Allocate the SMRs on the SMMU */
1019
	for (i = 0; i < cfg->num_streamids; ++i) {
1020 1021 1022 1023 1024 1025 1026 1027 1028 1029
		int idx = __arm_smmu_alloc_bitmap(smmu->smr_map, 0,
						  smmu->num_mapping_groups);
		if (IS_ERR_VALUE(idx)) {
			dev_err(smmu->dev, "failed to allocate free SMR\n");
			goto err_free_smrs;
		}

		smrs[i] = (struct arm_smmu_smr) {
			.idx	= idx,
			.mask	= 0, /* We don't currently share SMRs */
1030
			.id	= cfg->streamids[i],
1031 1032 1033 1034
		};
	}

	/* It worked! Now, poke the actual hardware */
1035
	for (i = 0; i < cfg->num_streamids; ++i) {
1036 1037 1038 1039 1040
		u32 reg = SMR_VALID | smrs[i].id << SMR_ID_SHIFT |
			  smrs[i].mask << SMR_MASK_SHIFT;
		writel_relaxed(reg, gr0_base + ARM_SMMU_GR0_SMR(smrs[i].idx));
	}

1041
	cfg->smrs = smrs;
1042 1043 1044 1045 1046 1047 1048 1049 1050 1051
	return 0;

err_free_smrs:
	while (--i >= 0)
		__arm_smmu_free_bitmap(smmu->smr_map, smrs[i].idx);
	kfree(smrs);
	return -ENOSPC;
}

static void arm_smmu_master_free_smrs(struct arm_smmu_device *smmu,
1052
				      struct arm_smmu_master_cfg *cfg)
1053 1054 1055
{
	int i;
	void __iomem *gr0_base = ARM_SMMU_GR0(smmu);
1056
	struct arm_smmu_smr *smrs = cfg->smrs;
1057

1058 1059 1060
	if (!smrs)
		return;

1061
	/* Invalidate the SMRs before freeing back to the allocator */
1062
	for (i = 0; i < cfg->num_streamids; ++i) {
1063
		u8 idx = smrs[i].idx;
1064

1065 1066 1067 1068
		writel_relaxed(~SMR_VALID, gr0_base + ARM_SMMU_GR0_SMR(idx));
		__arm_smmu_free_bitmap(smmu->smr_map, idx);
	}

1069
	cfg->smrs = NULL;
1070 1071 1072 1073
	kfree(smrs);
}

static int arm_smmu_domain_add_master(struct arm_smmu_domain *smmu_domain,
1074
				      struct arm_smmu_master_cfg *cfg)
1075 1076
{
	int i, ret;
1077
	struct arm_smmu_device *smmu = smmu_domain->smmu;
1078 1079
	void __iomem *gr0_base = ARM_SMMU_GR0(smmu);

1080
	/* Devices in an IOMMU group may already be configured */
1081
	ret = arm_smmu_master_configure_smrs(smmu, cfg);
1082
	if (ret)
1083
		return ret == -EEXIST ? 0 : ret;
1084

1085
	for (i = 0; i < cfg->num_streamids; ++i) {
1086
		u32 idx, s2cr;
1087

1088
		idx = cfg->smrs ? cfg->smrs[i].idx : cfg->streamids[i];
1089
		s2cr = S2CR_TYPE_TRANS | S2CR_PRIVCFG_UNPRIV |
1090
		       (smmu_domain->cfg.cbndx << S2CR_CBNDX_SHIFT);
1091 1092 1093 1094 1095 1096 1097
		writel_relaxed(s2cr, gr0_base + ARM_SMMU_GR0_S2CR(idx));
	}

	return 0;
}

static void arm_smmu_domain_remove_master(struct arm_smmu_domain *smmu_domain,
1098
					  struct arm_smmu_master_cfg *cfg)
1099
{
1100
	int i;
1101
	struct arm_smmu_device *smmu = smmu_domain->smmu;
1102
	void __iomem *gr0_base = ARM_SMMU_GR0(smmu);
1103

1104 1105 1106
	/* An IOMMU group is torn down by the first device to be removed */
	if ((smmu->features & ARM_SMMU_FEAT_STREAM_MATCH) && !cfg->smrs)
		return;
1107 1108 1109 1110 1111

	/*
	 * We *must* clear the S2CR first, because freeing the SMR means
	 * that it can be re-allocated immediately.
	 */
1112 1113 1114 1115 1116 1117 1118
	for (i = 0; i < cfg->num_streamids; ++i) {
		u32 idx = cfg->smrs ? cfg->smrs[i].idx : cfg->streamids[i];

		writel_relaxed(S2CR_TYPE_BYPASS,
			       gr0_base + ARM_SMMU_GR0_S2CR(idx));
	}

1119
	arm_smmu_master_free_smrs(smmu, cfg);
1120 1121 1122 1123
}

static int arm_smmu_attach_dev(struct iommu_domain *domain, struct device *dev)
{
1124
	int ret;
1125
	struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1126
	struct arm_smmu_device *smmu;
1127
	struct arm_smmu_master_cfg *cfg;
1128

1129
	smmu = find_smmu_for_device(dev);
1130
	if (!smmu) {
1131 1132 1133 1134
		dev_err(dev, "cannot attach to SMMU, is it on the same bus?\n");
		return -ENXIO;
	}

1135 1136 1137 1138 1139
	if (dev->archdata.iommu) {
		dev_err(dev, "already attached to IOMMU domain\n");
		return -EEXIST;
	}

1140 1141 1142 1143 1144
	/* Ensure that the domain is finalised */
	ret = arm_smmu_init_domain_context(domain, smmu);
	if (IS_ERR_VALUE(ret))
		return ret;

1145
	/*
1146 1147
	 * Sanity check the domain. We don't support domains across
	 * different SMMUs.
1148
	 */
1149
	if (smmu_domain->smmu != smmu) {
1150 1151
		dev_err(dev,
			"cannot attach to SMMU %s whilst already attached to domain on SMMU %s\n",
1152 1153
			dev_name(smmu_domain->smmu->dev), dev_name(smmu->dev));
		return -EINVAL;
1154 1155 1156
	}

	/* Looks ok, so add the device to the domain */
1157
	cfg = find_smmu_master_cfg(dev);
1158
	if (!cfg)
1159 1160
		return -ENODEV;

1161 1162 1163
	ret = arm_smmu_domain_add_master(smmu_domain, cfg);
	if (!ret)
		dev->archdata.iommu = domain;
1164 1165 1166 1167 1168
	return ret;
}

static void arm_smmu_detach_dev(struct iommu_domain *domain, struct device *dev)
{
1169
	struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1170
	struct arm_smmu_master_cfg *cfg;
1171

1172
	cfg = find_smmu_master_cfg(dev);
1173 1174 1175 1176 1177
	if (!cfg)
		return;

	dev->archdata.iommu = NULL;
	arm_smmu_domain_remove_master(smmu_domain, cfg);
1178 1179 1180
}

static int arm_smmu_map(struct iommu_domain *domain, unsigned long iova,
1181
			phys_addr_t paddr, size_t size, int prot)
1182
{
1183 1184
	int ret;
	unsigned long flags;
1185
	struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1186
	struct io_pgtable_ops *ops= smmu_domain->pgtbl_ops;
1187

1188
	if (!ops)
1189 1190
		return -ENODEV;

1191 1192 1193 1194
	spin_lock_irqsave(&smmu_domain->pgtbl_lock, flags);
	ret = ops->map(ops, iova, paddr, size, prot);
	spin_unlock_irqrestore(&smmu_domain->pgtbl_lock, flags);
	return ret;
1195 1196 1197 1198 1199
}

static size_t arm_smmu_unmap(struct iommu_domain *domain, unsigned long iova,
			     size_t size)
{
1200 1201
	size_t ret;
	unsigned long flags;
1202
	struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1203
	struct io_pgtable_ops *ops= smmu_domain->pgtbl_ops;
1204

1205 1206 1207 1208 1209 1210 1211
	if (!ops)
		return 0;

	spin_lock_irqsave(&smmu_domain->pgtbl_lock, flags);
	ret = ops->unmap(ops, iova, size);
	spin_unlock_irqrestore(&smmu_domain->pgtbl_lock, flags);
	return ret;
1212 1213
}

1214 1215 1216
static phys_addr_t arm_smmu_iova_to_phys_hard(struct iommu_domain *domain,
					      dma_addr_t iova)
{
1217
	struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1218 1219 1220 1221 1222 1223 1224
	struct arm_smmu_device *smmu = smmu_domain->smmu;
	struct arm_smmu_cfg *cfg = &smmu_domain->cfg;
	struct io_pgtable_ops *ops= smmu_domain->pgtbl_ops;
	struct device *dev = smmu->dev;
	void __iomem *cb_base;
	u32 tmp;
	u64 phys;
1225
	unsigned long va;
1226 1227 1228

	cb_base = ARM_SMMU_CB_BASE(smmu) + ARM_SMMU_CB(smmu, cfg->cbndx);

1229 1230 1231
	/* ATS1 registers can only be written atomically */
	va = iova & ~0xfffUL;
	if (smmu->version == ARM_SMMU_V2)
1232
		smmu_writeq(va, cb_base + ARM_SMMU_CB_ATS1PR);
1233 1234
	else
		writel_relaxed(va, cb_base + ARM_SMMU_CB_ATS1PR);
1235 1236 1237 1238

	if (readl_poll_timeout_atomic(cb_base + ARM_SMMU_CB_ATSR, tmp,
				      !(tmp & ATSR_ACTIVE), 5, 50)) {
		dev_err(dev,
1239
			"iova to phys timed out on %pad. Falling back to software table walk.\n",
1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255
			&iova);
		return ops->iova_to_phys(ops, iova);
	}

	phys = readl_relaxed(cb_base + ARM_SMMU_CB_PAR_LO);
	phys |= ((u64)readl_relaxed(cb_base + ARM_SMMU_CB_PAR_HI)) << 32;

	if (phys & CB_PAR_F) {
		dev_err(dev, "translation fault!\n");
		dev_err(dev, "PAR = 0x%llx\n", phys);
		return 0;
	}

	return (phys & GENMASK_ULL(39, 12)) | (iova & 0xfff);
}

1256
static phys_addr_t arm_smmu_iova_to_phys(struct iommu_domain *domain,
1257
					dma_addr_t iova)
1258
{
1259 1260
	phys_addr_t ret;
	unsigned long flags;
1261
	struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1262
	struct io_pgtable_ops *ops= smmu_domain->pgtbl_ops;
1263

1264
	if (!ops)
1265
		return 0;
1266

1267
	spin_lock_irqsave(&smmu_domain->pgtbl_lock, flags);
1268 1269
	if (smmu_domain->smmu->features & ARM_SMMU_FEAT_TRANS_OPS &&
			smmu_domain->stage == ARM_SMMU_DOMAIN_S1) {
1270
		ret = arm_smmu_iova_to_phys_hard(domain, iova);
1271
	} else {
1272
		ret = ops->iova_to_phys(ops, iova);
1273 1274
	}

1275
	spin_unlock_irqrestore(&smmu_domain->pgtbl_lock, flags);
1276

1277
	return ret;
1278 1279
}

1280
static bool arm_smmu_capable(enum iommu_cap cap)
1281
{
1282 1283
	switch (cap) {
	case IOMMU_CAP_CACHE_COHERENCY:
1284 1285 1286 1287 1288
		/*
		 * Return true here as the SMMU can always send out coherent
		 * requests.
		 */
		return true;
1289
	case IOMMU_CAP_INTR_REMAP:
1290
		return true; /* MSIs are just memory writes */
1291 1292
	case IOMMU_CAP_NOEXEC:
		return true;
1293
	default:
1294
		return false;
1295
	}
1296 1297
}

1298 1299 1300 1301
static int __arm_smmu_get_pci_sid(struct pci_dev *pdev, u16 alias, void *data)
{
	*((u16 *)data) = alias;
	return 0; /* Continue walking */
1302 1303
}

1304 1305 1306 1307 1308
static void __arm_smmu_release_pci_iommudata(void *data)
{
	kfree(data);
}

1309 1310
static int arm_smmu_init_pci_device(struct pci_dev *pdev,
				    struct iommu_group *group)
1311
{
1312
	struct arm_smmu_master_cfg *cfg;
1313 1314
	u16 sid;
	int i;
1315

1316 1317
	cfg = iommu_group_get_iommudata(group);
	if (!cfg) {
1318
		cfg = kzalloc(sizeof(*cfg), GFP_KERNEL);
1319 1320
		if (!cfg)
			return -ENOMEM;
1321

1322 1323 1324
		iommu_group_set_iommudata(group, cfg,
					  __arm_smmu_release_pci_iommudata);
	}
1325

1326 1327
	if (cfg->num_streamids >= MAX_MASTER_STREAMIDS)
		return -ENOSPC;
1328

1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340
	/*
	 * Assume Stream ID == Requester ID for now.
	 * We need a way to describe the ID mappings in FDT.
	 */
	pci_for_each_dma_alias(pdev, __arm_smmu_get_pci_sid, &sid);
	for (i = 0; i < cfg->num_streamids; ++i)
		if (cfg->streamids[i] == sid)
			break;

	/* Avoid duplicate SIDs, as this can lead to SMR conflicts */
	if (i == cfg->num_streamids)
		cfg->streamids[cfg->num_streamids++] = sid;
1341

1342
	return 0;
1343 1344
}

1345 1346
static int arm_smmu_init_platform_device(struct device *dev,
					 struct iommu_group *group)
1347 1348
{
	struct arm_smmu_device *smmu = find_smmu_for_device(dev);
1349
	struct arm_smmu_master *master;
1350 1351 1352 1353 1354 1355 1356 1357 1358

	if (!smmu)
		return -ENODEV;

	master = find_smmu_master(smmu, dev->of_node);
	if (!master)
		return -ENODEV;

	iommu_group_set_iommudata(group, &master->cfg, NULL);
1359 1360

	return 0;
1361 1362 1363 1364
}

static int arm_smmu_add_device(struct device *dev)
{
1365
	struct iommu_group *group;
1366

1367 1368 1369
	group = iommu_group_get_for_dev(dev);
	if (IS_ERR(group))
		return PTR_ERR(group);
1370

1371
	iommu_group_put(group);
1372
	return 0;
1373 1374
}

1375 1376
static void arm_smmu_remove_device(struct device *dev)
{
1377
	iommu_group_remove_device(dev);
1378 1379
}

1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405
static struct iommu_group *arm_smmu_device_group(struct device *dev)
{
	struct iommu_group *group;
	int ret;

	if (dev_is_pci(dev))
		group = pci_device_group(dev);
	else
		group = generic_device_group(dev);

	if (IS_ERR(group))
		return group;

	if (dev_is_pci(dev))
		ret = arm_smmu_init_pci_device(to_pci_dev(dev), group);
	else
		ret = arm_smmu_init_platform_device(dev, group);

	if (ret) {
		iommu_group_put(group);
		group = ERR_PTR(ret);
	}

	return group;
}

1406 1407 1408
static int arm_smmu_domain_get_attr(struct iommu_domain *domain,
				    enum iommu_attr attr, void *data)
{
1409
	struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422

	switch (attr) {
	case DOMAIN_ATTR_NESTING:
		*(int *)data = (smmu_domain->stage == ARM_SMMU_DOMAIN_NESTED);
		return 0;
	default:
		return -ENODEV;
	}
}

static int arm_smmu_domain_set_attr(struct iommu_domain *domain,
				    enum iommu_attr attr, void *data)
{
1423
	int ret = 0;
1424
	struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1425

1426 1427
	mutex_lock(&smmu_domain->init_mutex);

1428 1429
	switch (attr) {
	case DOMAIN_ATTR_NESTING:
1430 1431 1432 1433 1434
		if (smmu_domain->smmu) {
			ret = -EPERM;
			goto out_unlock;
		}

1435 1436 1437 1438 1439
		if (*(int *)data)
			smmu_domain->stage = ARM_SMMU_DOMAIN_NESTED;
		else
			smmu_domain->stage = ARM_SMMU_DOMAIN_S1;

1440
		break;
1441
	default:
1442
		ret = -ENODEV;
1443
	}
1444 1445 1446 1447

out_unlock:
	mutex_unlock(&smmu_domain->init_mutex);
	return ret;
1448 1449
}

1450
static struct iommu_ops arm_smmu_ops = {
1451
	.capable		= arm_smmu_capable,
1452 1453
	.domain_alloc		= arm_smmu_domain_alloc,
	.domain_free		= arm_smmu_domain_free,
1454 1455 1456 1457
	.attach_dev		= arm_smmu_attach_dev,
	.detach_dev		= arm_smmu_detach_dev,
	.map			= arm_smmu_map,
	.unmap			= arm_smmu_unmap,
1458
	.map_sg			= default_iommu_map_sg,
1459 1460 1461
	.iova_to_phys		= arm_smmu_iova_to_phys,
	.add_device		= arm_smmu_add_device,
	.remove_device		= arm_smmu_remove_device,
1462
	.device_group		= arm_smmu_device_group,
1463 1464
	.domain_get_attr	= arm_smmu_domain_get_attr,
	.domain_set_attr	= arm_smmu_domain_set_attr,
1465
	.pgsize_bitmap		= -1UL, /* Restricted during device attach */
1466 1467 1468 1469 1470
};

static void arm_smmu_device_reset(struct arm_smmu_device *smmu)
{
	void __iomem *gr0_base = ARM_SMMU_GR0(smmu);
1471
	void __iomem *cb_base;
1472
	int i = 0;
1473 1474
	u32 reg;

1475 1476 1477
	/* clear global FSR */
	reg = readl_relaxed(ARM_SMMU_GR0_NS(smmu) + ARM_SMMU_GR0_sGFSR);
	writel(reg, ARM_SMMU_GR0_NS(smmu) + ARM_SMMU_GR0_sGFSR);
1478 1479 1480

	/* Mark all SMRn as invalid and all S2CRn as bypass */
	for (i = 0; i < smmu->num_mapping_groups; ++i) {
1481
		writel_relaxed(0, gr0_base + ARM_SMMU_GR0_SMR(i));
1482 1483
		writel_relaxed(S2CR_TYPE_BYPASS,
			gr0_base + ARM_SMMU_GR0_S2CR(i));
1484 1485
	}

1486 1487 1488 1489 1490 1491
	/* Make sure all context banks are disabled and clear CB_FSR  */
	for (i = 0; i < smmu->num_context_banks; ++i) {
		cb_base = ARM_SMMU_CB_BASE(smmu) + ARM_SMMU_CB(smmu, i);
		writel_relaxed(0, cb_base + ARM_SMMU_CB_SCTLR);
		writel_relaxed(FSR_FAULT, cb_base + ARM_SMMU_CB_FSR);
	}
1492

1493 1494 1495 1496
	/* Invalidate the TLB, just in case */
	writel_relaxed(0, gr0_base + ARM_SMMU_GR0_TLBIALLH);
	writel_relaxed(0, gr0_base + ARM_SMMU_GR0_TLBIALLNSNH);

1497
	reg = readl_relaxed(ARM_SMMU_GR0_NS(smmu) + ARM_SMMU_GR0_sCR0);
1498

1499
	/* Enable fault reporting */
1500
	reg |= (sCR0_GFRE | sCR0_GFIE | sCR0_GCFGFRE | sCR0_GCFGFIE);
1501 1502

	/* Disable TLB broadcasting. */
1503
	reg |= (sCR0_VMIDPNE | sCR0_PTM);
1504 1505

	/* Enable client access, but bypass when no mapping is found */
1506
	reg &= ~(sCR0_CLIENTPD | sCR0_USFCFG);
1507 1508

	/* Disable forced broadcasting */
1509
	reg &= ~sCR0_FB;
1510 1511

	/* Don't upgrade barriers */
1512
	reg &= ~(sCR0_BSU_MASK << sCR0_BSU_SHIFT);
1513 1514

	/* Push the button */
1515
	__arm_smmu_tlb_sync(smmu);
1516
	writel(reg, ARM_SMMU_GR0_NS(smmu) + ARM_SMMU_GR0_sCR0);
1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542
}

static int arm_smmu_id_size_to_bits(int size)
{
	switch (size) {
	case 0:
		return 32;
	case 1:
		return 36;
	case 2:
		return 40;
	case 3:
		return 42;
	case 4:
		return 44;
	case 5:
	default:
		return 48;
	}
}

static int arm_smmu_device_cfg_probe(struct arm_smmu_device *smmu)
{
	unsigned long size;
	void __iomem *gr0_base = ARM_SMMU_GR0(smmu);
	u32 id;
1543
	bool cttw_dt, cttw_reg;
1544 1545 1546 1547 1548 1549

	dev_notice(smmu->dev, "probing hardware configuration...\n");
	dev_notice(smmu->dev, "SMMUv%d with:\n", smmu->version);

	/* ID0 */
	id = readl_relaxed(gr0_base + ARM_SMMU_GR0_ID0);
1550 1551 1552 1553 1554 1555 1556

	/* Restrict available stages based on module parameter */
	if (force_stage == 1)
		id &= ~(ID0_S2TS | ID0_NTS);
	else if (force_stage == 2)
		id &= ~(ID0_S1TS | ID0_NTS);

1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572
	if (id & ID0_S1TS) {
		smmu->features |= ARM_SMMU_FEAT_TRANS_S1;
		dev_notice(smmu->dev, "\tstage 1 translation\n");
	}

	if (id & ID0_S2TS) {
		smmu->features |= ARM_SMMU_FEAT_TRANS_S2;
		dev_notice(smmu->dev, "\tstage 2 translation\n");
	}

	if (id & ID0_NTS) {
		smmu->features |= ARM_SMMU_FEAT_TRANS_NESTED;
		dev_notice(smmu->dev, "\tnested translation\n");
	}

	if (!(smmu->features &
1573
		(ARM_SMMU_FEAT_TRANS_S1 | ARM_SMMU_FEAT_TRANS_S2))) {
1574 1575 1576 1577
		dev_err(smmu->dev, "\tno translation support!\n");
		return -ENODEV;
	}

1578
	if ((id & ID0_S1TS) && ((smmu->version == 1) || !(id & ID0_ATOSNS))) {
1579 1580 1581 1582
		smmu->features |= ARM_SMMU_FEAT_TRANS_OPS;
		dev_notice(smmu->dev, "\taddress translation ops\n");
	}

1583 1584 1585 1586 1587 1588 1589 1590 1591
	/*
	 * In order for DMA API calls to work properly, we must defer to what
	 * the DT says about coherency, regardless of what the hardware claims.
	 * Fortunately, this also opens up a workaround for systems where the
	 * ID register value has ended up configured incorrectly.
	 */
	cttw_dt = of_dma_is_coherent(smmu->dev->of_node);
	cttw_reg = !!(id & ID0_CTTW);
	if (cttw_dt)
1592
		smmu->features |= ARM_SMMU_FEAT_COHERENT_WALK;
1593 1594 1595 1596 1597 1598
	if (cttw_dt || cttw_reg)
		dev_notice(smmu->dev, "\t%scoherent table walk\n",
			   cttw_dt ? "" : "non-");
	if (cttw_dt != cttw_reg)
		dev_notice(smmu->dev,
			   "\t(IDR0.CTTW overridden by dma-coherent property)\n");
1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628

	if (id & ID0_SMS) {
		u32 smr, sid, mask;

		smmu->features |= ARM_SMMU_FEAT_STREAM_MATCH;
		smmu->num_mapping_groups = (id >> ID0_NUMSMRG_SHIFT) &
					   ID0_NUMSMRG_MASK;
		if (smmu->num_mapping_groups == 0) {
			dev_err(smmu->dev,
				"stream-matching supported, but no SMRs present!\n");
			return -ENODEV;
		}

		smr = SMR_MASK_MASK << SMR_MASK_SHIFT;
		smr |= (SMR_ID_MASK << SMR_ID_SHIFT);
		writel_relaxed(smr, gr0_base + ARM_SMMU_GR0_SMR(0));
		smr = readl_relaxed(gr0_base + ARM_SMMU_GR0_SMR(0));

		mask = (smr >> SMR_MASK_SHIFT) & SMR_MASK_MASK;
		sid = (smr >> SMR_ID_SHIFT) & SMR_ID_MASK;
		if ((mask & sid) != sid) {
			dev_err(smmu->dev,
				"SMR mask bits (0x%x) insufficient for ID field (0x%x)\n",
				mask, sid);
			return -ENODEV;
		}

		dev_notice(smmu->dev,
			   "\tstream matching with %u register groups, mask 0x%x",
			   smmu->num_mapping_groups, mask);
1629 1630 1631
	} else {
		smmu->num_mapping_groups = (id >> ID0_NUMSIDB_SHIFT) &
					   ID0_NUMSIDB_MASK;
1632 1633 1634 1635
	}

	/* ID1 */
	id = readl_relaxed(gr0_base + ARM_SMMU_GR0_ID1);
1636
	smmu->pgshift = (id & ID1_PAGESIZE) ? 16 : 12;
1637

1638
	/* Check for size mismatch of SMMU address space from mapped region */
1639
	size = 1 << (((id >> ID1_NUMPAGENDXB_SHIFT) & ID1_NUMPAGENDXB_MASK) + 1);
1640
	size *= 2 << smmu->pgshift;
1641
	if (smmu->size != size)
1642 1643 1644
		dev_warn(smmu->dev,
			"SMMU address space size (0x%lx) differs from mapped region size (0x%lx)!\n",
			size, smmu->size);
1645

1646
	smmu->num_s2_context_banks = (id >> ID1_NUMS2CB_SHIFT) & ID1_NUMS2CB_MASK;
1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657
	smmu->num_context_banks = (id >> ID1_NUMCB_SHIFT) & ID1_NUMCB_MASK;
	if (smmu->num_s2_context_banks > smmu->num_context_banks) {
		dev_err(smmu->dev, "impossible number of S2 context banks!\n");
		return -ENODEV;
	}
	dev_notice(smmu->dev, "\t%u context banks (%u stage-2 only)\n",
		   smmu->num_context_banks, smmu->num_s2_context_banks);

	/* ID2 */
	id = readl_relaxed(gr0_base + ARM_SMMU_GR0_ID2);
	size = arm_smmu_id_size_to_bits((id >> ID2_IAS_SHIFT) & ID2_IAS_MASK);
1658
	smmu->ipa_size = size;
1659

1660
	/* The output mask is also applied for bypass */
1661
	size = arm_smmu_id_size_to_bits((id >> ID2_OAS_SHIFT) & ID2_OAS_MASK);
1662
	smmu->pa_size = size;
1663

1664 1665 1666 1667 1668 1669 1670 1671 1672
	/*
	 * What the page table walker can address actually depends on which
	 * descriptor format is in use, but since a) we don't know that yet,
	 * and b) it can vary per context bank, this will have to do...
	 */
	if (dma_set_mask_and_coherent(smmu->dev, DMA_BIT_MASK(size)))
		dev_warn(smmu->dev,
			 "failed to set DMA mask for table walker\n");

1673
	if (smmu->version == ARM_SMMU_V1) {
1674 1675
		smmu->va_size = smmu->ipa_size;
		size = SZ_4K | SZ_2M | SZ_1G;
1676 1677
	} else {
		size = (id >> ID2_UBS_SHIFT) & ID2_UBS_MASK;
1678 1679 1680
		smmu->va_size = arm_smmu_id_size_to_bits(size);
#ifndef CONFIG_64BIT
		smmu->va_size = min(32UL, smmu->va_size);
1681
#endif
1682 1683 1684 1685 1686 1687 1688
		size = 0;
		if (id & ID2_PTFS_4K)
			size |= SZ_4K | SZ_2M | SZ_1G;
		if (id & ID2_PTFS_16K)
			size |= SZ_16K | SZ_32M;
		if (id & ID2_PTFS_64K)
			size |= SZ_64K | SZ_512M;
1689 1690
	}

1691 1692 1693
	arm_smmu_ops.pgsize_bitmap &= size;
	dev_notice(smmu->dev, "\tSupported page sizes: 0x%08lx\n", size);

1694 1695
	if (smmu->features & ARM_SMMU_FEAT_TRANS_S1)
		dev_notice(smmu->dev, "\tStage-1: %lu-bit VA -> %lu-bit IPA\n",
1696
			   smmu->va_size, smmu->ipa_size);
1697 1698 1699

	if (smmu->features & ARM_SMMU_FEAT_TRANS_S2)
		dev_notice(smmu->dev, "\tStage-2: %lu-bit IPA -> %lu-bit PA\n",
1700
			   smmu->ipa_size, smmu->pa_size);
1701

1702 1703 1704
	return 0;
}

1705
static const struct of_device_id arm_smmu_of_match[] = {
1706 1707 1708
	{ .compatible = "arm,smmu-v1", .data = (void *)ARM_SMMU_V1 },
	{ .compatible = "arm,smmu-v2", .data = (void *)ARM_SMMU_V2 },
	{ .compatible = "arm,mmu-400", .data = (void *)ARM_SMMU_V1 },
R
Robin Murphy 已提交
1709
	{ .compatible = "arm,mmu-401", .data = (void *)ARM_SMMU_V1 },
1710 1711 1712 1713 1714
	{ .compatible = "arm,mmu-500", .data = (void *)ARM_SMMU_V2 },
	{ },
};
MODULE_DEVICE_TABLE(of, arm_smmu_of_match);

1715 1716
static int arm_smmu_device_dt_probe(struct platform_device *pdev)
{
1717
	const struct of_device_id *of_id;
1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731
	struct resource *res;
	struct arm_smmu_device *smmu;
	struct device *dev = &pdev->dev;
	struct rb_node *node;
	struct of_phandle_args masterspec;
	int num_irqs, i, err;

	smmu = devm_kzalloc(dev, sizeof(*smmu), GFP_KERNEL);
	if (!smmu) {
		dev_err(dev, "failed to allocate arm_smmu_device\n");
		return -ENOMEM;
	}
	smmu->dev = dev;

1732 1733 1734
	of_id = of_match_node(arm_smmu_of_match, dev->of_node);
	smmu->version = (enum arm_smmu_arch_version)of_id->data;

1735
	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1736 1737 1738
	smmu->base = devm_ioremap_resource(dev, res);
	if (IS_ERR(smmu->base))
		return PTR_ERR(smmu->base);
1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753
	smmu->size = resource_size(res);

	if (of_property_read_u32(dev->of_node, "#global-interrupts",
				 &smmu->num_global_irqs)) {
		dev_err(dev, "missing #global-interrupts property\n");
		return -ENODEV;
	}

	num_irqs = 0;
	while ((res = platform_get_resource(pdev, IORESOURCE_IRQ, num_irqs))) {
		num_irqs++;
		if (num_irqs > smmu->num_global_irqs)
			smmu->num_context_irqs++;
	}

1754 1755 1756 1757
	if (!smmu->num_context_irqs) {
		dev_err(dev, "found %d interrupts but expected at least %d\n",
			num_irqs, smmu->num_global_irqs + 1);
		return -ENODEV;
1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768
	}

	smmu->irqs = devm_kzalloc(dev, sizeof(*smmu->irqs) * num_irqs,
				  GFP_KERNEL);
	if (!smmu->irqs) {
		dev_err(dev, "failed to allocate %d irqs\n", num_irqs);
		return -ENOMEM;
	}

	for (i = 0; i < num_irqs; ++i) {
		int irq = platform_get_irq(pdev, i);
1769

1770 1771 1772 1773 1774 1775 1776
		if (irq < 0) {
			dev_err(dev, "failed to get irq index %d\n", i);
			return -ENODEV;
		}
		smmu->irqs[i] = irq;
	}

1777 1778 1779 1780
	err = arm_smmu_device_cfg_probe(smmu);
	if (err)
		return err;

1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796
	i = 0;
	smmu->masters = RB_ROOT;
	while (!of_parse_phandle_with_args(dev->of_node, "mmu-masters",
					   "#stream-id-cells", i,
					   &masterspec)) {
		err = register_smmu_master(smmu, dev, &masterspec);
		if (err) {
			dev_err(dev, "failed to add master %s\n",
				masterspec.np->name);
			goto out_put_masters;
		}

		i++;
	}
	dev_notice(dev, "registered %d master devices\n", i);

1797 1798
	parse_driver_options(smmu);

1799
	if (smmu->version > ARM_SMMU_V1 &&
1800 1801 1802 1803
	    smmu->num_context_banks != smmu->num_context_irqs) {
		dev_err(dev,
			"found only %d context interrupt(s) but %d required\n",
			smmu->num_context_irqs, smmu->num_context_banks);
1804
		err = -ENODEV;
1805
		goto out_put_masters;
1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824
	}

	for (i = 0; i < smmu->num_global_irqs; ++i) {
		err = request_irq(smmu->irqs[i],
				  arm_smmu_global_fault,
				  IRQF_SHARED,
				  "arm-smmu global fault",
				  smmu);
		if (err) {
			dev_err(dev, "failed to request global IRQ %d (%u)\n",
				i, smmu->irqs[i]);
			goto out_free_irqs;
		}
	}

	INIT_LIST_HEAD(&smmu->list);
	spin_lock(&arm_smmu_devices_lock);
	list_add(&smmu->list, &arm_smmu_devices);
	spin_unlock(&arm_smmu_devices_lock);
1825 1826

	arm_smmu_device_reset(smmu);
1827 1828 1829 1830 1831 1832 1833 1834
	return 0;

out_free_irqs:
	while (i--)
		free_irq(smmu->irqs[i], smmu);

out_put_masters:
	for (node = rb_first(&smmu->masters); node; node = rb_next(node)) {
1835 1836
		struct arm_smmu_master *master
			= container_of(node, struct arm_smmu_master, node);
1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863
		of_node_put(master->of_node);
	}

	return err;
}

static int arm_smmu_device_remove(struct platform_device *pdev)
{
	int i;
	struct device *dev = &pdev->dev;
	struct arm_smmu_device *curr, *smmu = NULL;
	struct rb_node *node;

	spin_lock(&arm_smmu_devices_lock);
	list_for_each_entry(curr, &arm_smmu_devices, list) {
		if (curr->dev == dev) {
			smmu = curr;
			list_del(&smmu->list);
			break;
		}
	}
	spin_unlock(&arm_smmu_devices_lock);

	if (!smmu)
		return -ENODEV;

	for (node = rb_first(&smmu->masters); node; node = rb_next(node)) {
1864 1865
		struct arm_smmu_master *master
			= container_of(node, struct arm_smmu_master, node);
1866 1867 1868
		of_node_put(master->of_node);
	}

1869
	if (!bitmap_empty(smmu->context_map, ARM_SMMU_MAX_CBS))
1870 1871 1872 1873 1874 1875
		dev_err(dev, "removing device with active domains!\n");

	for (i = 0; i < smmu->num_global_irqs; ++i)
		free_irq(smmu->irqs[i], smmu);

	/* Turn the thing off */
1876
	writel(sCR0_CLIENTPD, ARM_SMMU_GR0_NS(smmu) + ARM_SMMU_GR0_sCR0);
1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890
	return 0;
}

static struct platform_driver arm_smmu_driver = {
	.driver	= {
		.name		= "arm-smmu",
		.of_match_table	= of_match_ptr(arm_smmu_of_match),
	},
	.probe	= arm_smmu_device_dt_probe,
	.remove	= arm_smmu_device_remove,
};

static int __init arm_smmu_init(void)
{
1891
	struct device_node *np;
1892 1893
	int ret;

1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904
	/*
	 * Play nice with systems that don't have an ARM SMMU by checking that
	 * an ARM SMMU exists in the system before proceeding with the driver
	 * and IOMMU bus operation registration.
	 */
	np = of_find_matching_node(NULL, arm_smmu_of_match);
	if (!np)
		return 0;

	of_node_put(np);

1905 1906 1907 1908 1909
	ret = platform_driver_register(&arm_smmu_driver);
	if (ret)
		return ret;

	/* Oh, for a proper bus abstraction */
1910
	if (!iommu_present(&platform_bus_type))
1911 1912
		bus_set_iommu(&platform_bus_type, &arm_smmu_ops);

1913
#ifdef CONFIG_ARM_AMBA
1914
	if (!iommu_present(&amba_bustype))
1915
		bus_set_iommu(&amba_bustype, &arm_smmu_ops);
1916
#endif
1917

1918 1919 1920 1921 1922
#ifdef CONFIG_PCI
	if (!iommu_present(&pci_bus_type))
		bus_set_iommu(&pci_bus_type, &arm_smmu_ops);
#endif

1923 1924 1925 1926 1927 1928 1929 1930
	return 0;
}

static void __exit arm_smmu_exit(void)
{
	return platform_driver_unregister(&arm_smmu_driver);
}

1931
subsys_initcall(arm_smmu_init);
1932 1933 1934 1935 1936
module_exit(arm_smmu_exit);

MODULE_DESCRIPTION("IOMMU API for ARM architected SMMU implementations");
MODULE_AUTHOR("Will Deacon <will.deacon@arm.com>");
MODULE_LICENSE("GPL v2");