arm-smmu.c 63.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
/*
 * IOMMU API for ARM architected SMMU implementations.
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
 *
 * Copyright (C) 2013 ARM Limited
 *
 * Author: Will Deacon <will.deacon@arm.com>
 *
 * This driver currently supports:
 *	- SMMUv1 and v2 implementations
 *	- Stream-matching and stream-indexing
 *	- v7/v8 long-descriptor format
 *	- Non-secure access to the SMMU
 *	- Context fault reporting
27
 *	- Extended Stream ID (16 bit)
28 29 30 31
 */

#define pr_fmt(fmt) "arm-smmu: " fmt

32 33
#include <linux/acpi.h>
#include <linux/acpi_iort.h>
34
#include <linux/atomic.h>
35
#include <linux/delay.h>
36
#include <linux/dma-iommu.h>
37 38 39 40
#include <linux/dma-mapping.h>
#include <linux/err.h>
#include <linux/interrupt.h>
#include <linux/io.h>
41
#include <linux/io-64-nonatomic-hi-lo.h>
42
#include <linux/iommu.h>
43
#include <linux/iopoll.h>
44 45
#include <linux/module.h>
#include <linux/of.h>
46
#include <linux/of_address.h>
47
#include <linux/of_device.h>
48
#include <linux/of_iommu.h>
49
#include <linux/pci.h>
50 51 52 53 54 55
#include <linux/platform_device.h>
#include <linux/slab.h>
#include <linux/spinlock.h>

#include <linux/amba/bus.h>

56
#include "io-pgtable.h"
57 58 59 60 61 62

/* Maximum number of context banks per SMMU */
#define ARM_SMMU_MAX_CBS		128

/* SMMU global address space */
#define ARM_SMMU_GR0(smmu)		((smmu)->base)
63
#define ARM_SMMU_GR1(smmu)		((smmu)->base + (1 << (smmu)->pgshift))
64

65 66 67 68 69 70 71 72 73 74
/*
 * SMMU global address space with conditional offset to access secure
 * aliases of non-secure registers (e.g. nsCR0: 0x400, nsGFSR: 0x448,
 * nsGFSYNR0: 0x450)
 */
#define ARM_SMMU_GR0_NS(smmu)						\
	((smmu)->base +							\
		((smmu->options & ARM_SMMU_OPT_SECURE_CFG_ACCESS)	\
			? 0x400 : 0))

75 76 77 78 79
/*
 * Some 64-bit registers only make sense to write atomically, but in such
 * cases all the data relevant to AArch32 formats lies within the lower word,
 * therefore this actually makes more sense than it might first appear.
 */
80
#ifdef CONFIG_64BIT
81
#define smmu_write_atomic_lq		writeq_relaxed
82
#else
83
#define smmu_write_atomic_lq		writel_relaxed
84 85
#endif

86 87 88 89 90
/* Configuration registers */
#define ARM_SMMU_GR0_sCR0		0x0
#define sCR0_CLIENTPD			(1 << 0)
#define sCR0_GFRE			(1 << 1)
#define sCR0_GFIE			(1 << 2)
91
#define sCR0_EXIDENABLE			(1 << 3)
92 93 94 95 96 97
#define sCR0_GCFGFRE			(1 << 4)
#define sCR0_GCFGFIE			(1 << 5)
#define sCR0_USFCFG			(1 << 10)
#define sCR0_VMIDPNE			(1 << 11)
#define sCR0_PTM			(1 << 12)
#define sCR0_FB				(1 << 13)
98
#define sCR0_VMID16EN			(1 << 31)
99 100 101
#define sCR0_BSU_SHIFT			14
#define sCR0_BSU_MASK			0x3

102 103 104
/* Auxiliary Configuration register */
#define ARM_SMMU_GR0_sACR		0x10

105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122
/* Identification registers */
#define ARM_SMMU_GR0_ID0		0x20
#define ARM_SMMU_GR0_ID1		0x24
#define ARM_SMMU_GR0_ID2		0x28
#define ARM_SMMU_GR0_ID3		0x2c
#define ARM_SMMU_GR0_ID4		0x30
#define ARM_SMMU_GR0_ID5		0x34
#define ARM_SMMU_GR0_ID6		0x38
#define ARM_SMMU_GR0_ID7		0x3c
#define ARM_SMMU_GR0_sGFSR		0x48
#define ARM_SMMU_GR0_sGFSYNR0		0x50
#define ARM_SMMU_GR0_sGFSYNR1		0x54
#define ARM_SMMU_GR0_sGFSYNR2		0x58

#define ID0_S1TS			(1 << 30)
#define ID0_S2TS			(1 << 29)
#define ID0_NTS				(1 << 28)
#define ID0_SMS				(1 << 27)
123
#define ID0_ATOSNS			(1 << 26)
124 125
#define ID0_PTFS_NO_AARCH32		(1 << 25)
#define ID0_PTFS_NO_AARCH32S		(1 << 24)
126 127 128
#define ID0_CTTW			(1 << 14)
#define ID0_NUMIRPT_SHIFT		16
#define ID0_NUMIRPT_MASK		0xff
129 130
#define ID0_NUMSIDB_SHIFT		9
#define ID0_NUMSIDB_MASK		0xf
131
#define ID0_EXIDS			(1 << 8)
132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151
#define ID0_NUMSMRG_SHIFT		0
#define ID0_NUMSMRG_MASK		0xff

#define ID1_PAGESIZE			(1 << 31)
#define ID1_NUMPAGENDXB_SHIFT		28
#define ID1_NUMPAGENDXB_MASK		7
#define ID1_NUMS2CB_SHIFT		16
#define ID1_NUMS2CB_MASK		0xff
#define ID1_NUMCB_SHIFT			0
#define ID1_NUMCB_MASK			0xff

#define ID2_OAS_SHIFT			4
#define ID2_OAS_MASK			0xf
#define ID2_IAS_SHIFT			0
#define ID2_IAS_MASK			0xf
#define ID2_UBS_SHIFT			8
#define ID2_UBS_MASK			0xf
#define ID2_PTFS_4K			(1 << 12)
#define ID2_PTFS_16K			(1 << 13)
#define ID2_PTFS_64K			(1 << 14)
152
#define ID2_VMID16			(1 << 15)
153

154 155
#define ID7_MAJOR_SHIFT			4
#define ID7_MAJOR_MASK			0xf
156 157 158 159 160 161 162 163 164

/* Global TLB invalidation */
#define ARM_SMMU_GR0_TLBIVMID		0x64
#define ARM_SMMU_GR0_TLBIALLNSNH	0x68
#define ARM_SMMU_GR0_TLBIALLH		0x6c
#define ARM_SMMU_GR0_sTLBGSYNC		0x70
#define ARM_SMMU_GR0_sTLBGSTATUS	0x74
#define sTLBGSTATUS_GSACTIVE		(1 << 0)
#define TLB_LOOP_TIMEOUT		1000000	/* 1s! */
165
#define TLB_SPIN_COUNT			10
166 167 168 169 170 171 172 173 174 175

/* Stream mapping registers */
#define ARM_SMMU_GR0_SMR(n)		(0x800 + ((n) << 2))
#define SMR_VALID			(1 << 31)
#define SMR_MASK_SHIFT			16
#define SMR_ID_SHIFT			0

#define ARM_SMMU_GR0_S2CR(n)		(0xc00 + ((n) << 2))
#define S2CR_CBNDX_SHIFT		0
#define S2CR_CBNDX_MASK			0xff
176
#define S2CR_EXIDVALID			(1 << 10)
177 178
#define S2CR_TYPE_SHIFT			16
#define S2CR_TYPE_MASK			0x3
179 180 181 182 183
enum arm_smmu_s2cr_type {
	S2CR_TYPE_TRANS,
	S2CR_TYPE_BYPASS,
	S2CR_TYPE_FAULT,
};
184

185
#define S2CR_PRIVCFG_SHIFT		24
186 187 188 189 190 191 192
#define S2CR_PRIVCFG_MASK		0x3
enum arm_smmu_s2cr_privcfg {
	S2CR_PRIVCFG_DEFAULT,
	S2CR_PRIVCFG_DIPAN,
	S2CR_PRIVCFG_UNPRIV,
	S2CR_PRIVCFG_PRIV,
};
193

194 195 196 197
/* Context bank attribute registers */
#define ARM_SMMU_GR1_CBAR(n)		(0x0 + ((n) << 2))
#define CBAR_VMID_SHIFT			0
#define CBAR_VMID_MASK			0xff
198 199 200
#define CBAR_S1_BPSHCFG_SHIFT		8
#define CBAR_S1_BPSHCFG_MASK		3
#define CBAR_S1_BPSHCFG_NSH		3
201 202 203 204 205 206 207 208 209 210 211 212 213 214 215
#define CBAR_S1_MEMATTR_SHIFT		12
#define CBAR_S1_MEMATTR_MASK		0xf
#define CBAR_S1_MEMATTR_WB		0xf
#define CBAR_TYPE_SHIFT			16
#define CBAR_TYPE_MASK			0x3
#define CBAR_TYPE_S2_TRANS		(0 << CBAR_TYPE_SHIFT)
#define CBAR_TYPE_S1_TRANS_S2_BYPASS	(1 << CBAR_TYPE_SHIFT)
#define CBAR_TYPE_S1_TRANS_S2_FAULT	(2 << CBAR_TYPE_SHIFT)
#define CBAR_TYPE_S1_TRANS_S2_TRANS	(3 << CBAR_TYPE_SHIFT)
#define CBAR_IRPTNDX_SHIFT		24
#define CBAR_IRPTNDX_MASK		0xff

#define ARM_SMMU_GR1_CBA2R(n)		(0x800 + ((n) << 2))
#define CBA2R_RW64_32BIT		(0 << 0)
#define CBA2R_RW64_64BIT		(1 << 0)
216 217
#define CBA2R_VMID_SHIFT		16
#define CBA2R_VMID_MASK			0xffff
218 219

/* Translation context bank */
220
#define ARM_SMMU_CB(smmu, n)	((smmu)->cb_base + ((n) << (smmu)->pgshift))
221 222

#define ARM_SMMU_CB_SCTLR		0x0
223
#define ARM_SMMU_CB_ACTLR		0x4
224 225
#define ARM_SMMU_CB_RESUME		0x8
#define ARM_SMMU_CB_TTBCR2		0x10
226 227
#define ARM_SMMU_CB_TTBR0		0x20
#define ARM_SMMU_CB_TTBR1		0x28
228
#define ARM_SMMU_CB_TTBCR		0x30
229
#define ARM_SMMU_CB_CONTEXTIDR		0x34
230
#define ARM_SMMU_CB_S1_MAIR0		0x38
231
#define ARM_SMMU_CB_S1_MAIR1		0x3c
232
#define ARM_SMMU_CB_PAR			0x50
233
#define ARM_SMMU_CB_FSR			0x58
234
#define ARM_SMMU_CB_FAR			0x60
235
#define ARM_SMMU_CB_FSYNR0		0x68
236
#define ARM_SMMU_CB_S1_TLBIVA		0x600
237
#define ARM_SMMU_CB_S1_TLBIASID		0x610
238 239 240
#define ARM_SMMU_CB_S1_TLBIVAL		0x620
#define ARM_SMMU_CB_S2_TLBIIPAS2	0x630
#define ARM_SMMU_CB_S2_TLBIIPAS2L	0x638
241 242
#define ARM_SMMU_CB_TLBSYNC		0x7f0
#define ARM_SMMU_CB_TLBSTATUS		0x7f4
243
#define ARM_SMMU_CB_ATS1PR		0x800
244
#define ARM_SMMU_CB_ATSR		0x8f0
245 246 247 248 249 250 251 252 253 254

#define SCTLR_S1_ASIDPNE		(1 << 12)
#define SCTLR_CFCFG			(1 << 7)
#define SCTLR_CFIE			(1 << 6)
#define SCTLR_CFRE			(1 << 5)
#define SCTLR_E				(1 << 4)
#define SCTLR_AFE			(1 << 2)
#define SCTLR_TRE			(1 << 1)
#define SCTLR_M				(1 << 0)

255 256
#define ARM_MMU500_ACTLR_CPRE		(1 << 1)

257
#define ARM_MMU500_ACR_CACHE_LOCK	(1 << 26)
258
#define ARM_MMU500_ACR_SMTNMB_TLBEN	(1 << 8)
259

260 261 262 263
#define CB_PAR_F			(1 << 0)

#define ATSR_ACTIVE			(1 << 0)

264 265 266 267
#define RESUME_RETRY			(0 << 0)
#define RESUME_TERMINATE		(1 << 0)

#define TTBCR2_SEP_SHIFT		15
268
#define TTBCR2_SEP_UPSTREAM		(0x7 << TTBCR2_SEP_SHIFT)
269
#define TTBCR2_AS			(1 << 4)
270

271
#define TTBRn_ASID_SHIFT		48
272 273 274 275 276 277 278 279 280 281 282 283

#define FSR_MULTI			(1 << 31)
#define FSR_SS				(1 << 30)
#define FSR_UUT				(1 << 8)
#define FSR_ASF				(1 << 7)
#define FSR_TLBLKF			(1 << 6)
#define FSR_TLBMCF			(1 << 5)
#define FSR_EF				(1 << 4)
#define FSR_PF				(1 << 3)
#define FSR_AFF				(1 << 2)
#define FSR_TF				(1 << 1)

284 285 286
#define FSR_IGN				(FSR_AFF | FSR_ASF | \
					 FSR_TLBMCF | FSR_TLBLKF)
#define FSR_FAULT			(FSR_MULTI | FSR_SS | FSR_UUT | \
287
					 FSR_EF | FSR_PF | FSR_TF | FSR_IGN)
288 289 290

#define FSYNR0_WNR			(1 << 4)

291 292 293
#define MSI_IOVA_BASE			0x8000000
#define MSI_IOVA_LENGTH			0x100000

294
static int force_stage;
295
module_param(force_stage, int, S_IRUGO);
296 297
MODULE_PARM_DESC(force_stage,
	"Force SMMU mappings to be installed at a particular stage of translation. A value of '1' or '2' forces the corresponding stage. All other values are ignored (i.e. no stage is forced). Note that selecting a specific stage will disable support for nested translation.");
298 299 300 301
static bool disable_bypass;
module_param(disable_bypass, bool, S_IRUGO);
MODULE_PARM_DESC(disable_bypass,
	"Disable bypass streams such that incoming transactions from devices that are not attached to an iommu domain will report an abort back to the device and will not be allowed to pass through the SMMU.");
302

303
enum arm_smmu_arch_version {
304 305
	ARM_SMMU_V1,
	ARM_SMMU_V1_64K,
306 307 308
	ARM_SMMU_V2,
};

309 310
enum arm_smmu_implementation {
	GENERIC_SMMU,
311
	ARM_MMU500,
312
	CAVIUM_SMMUV2,
313 314
};

315
struct arm_smmu_s2cr {
316 317
	struct iommu_group		*group;
	int				count;
318 319 320 321 322 323 324 325 326
	enum arm_smmu_s2cr_type		type;
	enum arm_smmu_s2cr_privcfg	privcfg;
	u8				cbndx;
};

#define s2cr_init_val (struct arm_smmu_s2cr){				\
	.type = disable_bypass ? S2CR_TYPE_FAULT : S2CR_TYPE_BYPASS,	\
}

327 328 329
struct arm_smmu_smr {
	u16				mask;
	u16				id;
330
	bool				valid;
331 332
};

333
struct arm_smmu_master_cfg {
334
	struct arm_smmu_device		*smmu;
335
	s16				smendx[];
336
};
337
#define INVALID_SMENDX			-1
338 339
#define __fwspec_cfg(fw) ((struct arm_smmu_master_cfg *)fw->iommu_priv)
#define fwspec_smmu(fw)  (__fwspec_cfg(fw)->smmu)
340 341
#define fwspec_smendx(fw, i) \
	(i >= fw->num_ids ? INVALID_SMENDX : __fwspec_cfg(fw)->smendx[i])
342
#define for_each_cfg_sme(fw, i, idx) \
343
	for (i = 0; idx = fwspec_smendx(fw, i), i < fw->num_ids; ++i)
344 345 346 347 348

struct arm_smmu_device {
	struct device			*dev;

	void __iomem			*base;
349
	void __iomem			*cb_base;
350
	unsigned long			pgshift;
351 352 353 354 355 356

#define ARM_SMMU_FEAT_COHERENT_WALK	(1 << 0)
#define ARM_SMMU_FEAT_STREAM_MATCH	(1 << 1)
#define ARM_SMMU_FEAT_TRANS_S1		(1 << 2)
#define ARM_SMMU_FEAT_TRANS_S2		(1 << 3)
#define ARM_SMMU_FEAT_TRANS_NESTED	(1 << 4)
357
#define ARM_SMMU_FEAT_TRANS_OPS		(1 << 5)
358
#define ARM_SMMU_FEAT_VMID16		(1 << 6)
359 360 361 362 363
#define ARM_SMMU_FEAT_FMT_AARCH64_4K	(1 << 7)
#define ARM_SMMU_FEAT_FMT_AARCH64_16K	(1 << 8)
#define ARM_SMMU_FEAT_FMT_AARCH64_64K	(1 << 9)
#define ARM_SMMU_FEAT_FMT_AARCH32_L	(1 << 10)
#define ARM_SMMU_FEAT_FMT_AARCH32_S	(1 << 11)
364
#define ARM_SMMU_FEAT_EXIDS		(1 << 12)
365
	u32				features;
366 367 368

#define ARM_SMMU_OPT_SECURE_CFG_ACCESS (1 << 0)
	u32				options;
369
	enum arm_smmu_arch_version	version;
370
	enum arm_smmu_implementation	model;
371 372 373 374 375 376 377

	u32				num_context_banks;
	u32				num_s2_context_banks;
	DECLARE_BITMAP(context_map, ARM_SMMU_MAX_CBS);
	atomic_t			irptndx;

	u32				num_mapping_groups;
378 379
	u16				streamid_mask;
	u16				smr_mask_mask;
380
	struct arm_smmu_smr		*smrs;
381
	struct arm_smmu_s2cr		*s2crs;
382
	struct mutex			stream_map_mutex;
383

384 385 386
	unsigned long			va_size;
	unsigned long			ipa_size;
	unsigned long			pa_size;
387
	unsigned long			pgsize_bitmap;
388 389 390 391 392

	u32				num_global_irqs;
	u32				num_context_irqs;
	unsigned int			*irqs;

393
	u32				cavium_id_base; /* Specific to Cavium */
394 395 396

	/* IOMMU core code handle */
	struct iommu_device		iommu;
397 398
};

399 400 401 402 403
enum arm_smmu_context_fmt {
	ARM_SMMU_CTX_FMT_NONE,
	ARM_SMMU_CTX_FMT_AARCH64,
	ARM_SMMU_CTX_FMT_AARCH32_L,
	ARM_SMMU_CTX_FMT_AARCH32_S,
404 405 406 407 408
};

struct arm_smmu_cfg {
	u8				cbndx;
	u8				irptndx;
409 410 411 412
	union {
		u16			asid;
		u16			vmid;
	};
413
	u32				cbar;
414
	enum arm_smmu_context_fmt	fmt;
415
};
416
#define INVALID_IRPTNDX			0xff
417

418 419 420 421 422 423
enum arm_smmu_domain_stage {
	ARM_SMMU_DOMAIN_S1 = 0,
	ARM_SMMU_DOMAIN_S2,
	ARM_SMMU_DOMAIN_NESTED,
};

424
struct arm_smmu_domain {
425
	struct arm_smmu_device		*smmu;
426 427
	struct io_pgtable_ops		*pgtbl_ops;
	spinlock_t			pgtbl_lock;
428
	struct arm_smmu_cfg		cfg;
429
	enum arm_smmu_domain_stage	stage;
430
	struct mutex			init_mutex; /* Protects smmu pointer */
431
	struct iommu_domain		domain;
432 433
};

434 435 436 437 438
struct arm_smmu_option_prop {
	u32 opt;
	const char *prop;
};

439 440
static atomic_t cavium_smmu_context_count = ATOMIC_INIT(0);

441 442
static bool using_legacy_binding, using_generic_binding;

443
static struct arm_smmu_option_prop arm_smmu_options[] = {
444 445 446 447
	{ ARM_SMMU_OPT_SECURE_CFG_ACCESS, "calxeda,smmu-secure-config-access" },
	{ 0, NULL},
};

448 449 450 451 452
static struct arm_smmu_domain *to_smmu_domain(struct iommu_domain *dom)
{
	return container_of(dom, struct arm_smmu_domain, domain);
}

453 454 455
static void parse_driver_options(struct arm_smmu_device *smmu)
{
	int i = 0;
456

457 458 459 460 461 462 463 464 465 466
	do {
		if (of_property_read_bool(smmu->dev->of_node,
						arm_smmu_options[i].prop)) {
			smmu->options |= arm_smmu_options[i].opt;
			dev_notice(smmu->dev, "option %s\n",
				arm_smmu_options[i].prop);
		}
	} while (arm_smmu_options[++i].opt);
}

467
static struct device_node *dev_get_dev_node(struct device *dev)
468 469 470
{
	if (dev_is_pci(dev)) {
		struct pci_bus *bus = to_pci_dev(dev)->bus;
471

472 473
		while (!pci_is_root_bus(bus))
			bus = bus->parent;
474
		return of_node_get(bus->bridge->parent->of_node);
475 476
	}

477
	return of_node_get(dev->of_node);
478 479
}

480
static int __arm_smmu_get_pci_sid(struct pci_dev *pdev, u16 alias, void *data)
481
{
482 483
	*((__be32 *)data) = cpu_to_be32(alias);
	return 0; /* Continue walking */
484 485
}

486
static int __find_legacy_master_phandle(struct device *dev, void *data)
487
{
488 489 490 491 492 493 494 495 496 497 498 499
	struct of_phandle_iterator *it = *(void **)data;
	struct device_node *np = it->node;
	int err;

	of_for_each_phandle(it, err, dev->of_node, "mmu-masters",
			    "#stream-id-cells", 0)
		if (it->node == np) {
			*(void **)data = dev;
			return 1;
		}
	it->node = np;
	return err == -ENOENT ? 0 : err;
500 501
}

502
static struct platform_driver arm_smmu_driver;
503
static struct iommu_ops arm_smmu_ops;
504

505 506
static int arm_smmu_register_legacy_master(struct device *dev,
					   struct arm_smmu_device **smmu)
507
{
508
	struct device *smmu_dev;
509 510 511
	struct device_node *np;
	struct of_phandle_iterator it;
	void *data = &it;
512
	u32 *sids;
513 514
	__be32 pci_sid;
	int err;
515

516 517 518 519 520
	np = dev_get_dev_node(dev);
	if (!np || !of_find_property(np, "#stream-id-cells", NULL)) {
		of_node_put(np);
		return -ENODEV;
	}
521

522
	it.node = np;
523 524
	err = driver_for_each_device(&arm_smmu_driver.driver, NULL, &data,
				     __find_legacy_master_phandle);
525
	smmu_dev = data;
526 527 528 529 530
	of_node_put(np);
	if (err == 0)
		return -ENODEV;
	if (err < 0)
		return err;
531

532 533 534 535 536 537 538
	if (dev_is_pci(dev)) {
		/* "mmu-masters" assumes Stream ID == Requester ID */
		pci_for_each_dma_alias(to_pci_dev(dev), __arm_smmu_get_pci_sid,
				       &pci_sid);
		it.cur = &pci_sid;
		it.cur_count = 1;
	}
539

540 541 542 543
	err = iommu_fwspec_init(dev, &smmu_dev->of_node->fwnode,
				&arm_smmu_ops);
	if (err)
		return err;
544

545 546 547
	sids = kcalloc(it.cur_count, sizeof(*sids), GFP_KERNEL);
	if (!sids)
		return -ENOMEM;
548

549 550 551 552 553
	*smmu = dev_get_drvdata(smmu_dev);
	of_phandle_iterator_args(&it, sids, it.cur_count);
	err = iommu_fwspec_add_ids(dev, sids, it.cur_count);
	kfree(sids);
	return err;
554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574
}

static int __arm_smmu_alloc_bitmap(unsigned long *map, int start, int end)
{
	int idx;

	do {
		idx = find_next_zero_bit(map, end, start);
		if (idx == end)
			return -ENOSPC;
	} while (test_and_set_bit(idx, map));

	return idx;
}

static void __arm_smmu_free_bitmap(unsigned long *map, int idx)
{
	clear_bit(idx, map);
}

/* Wait for any pending TLB invalidations to complete */
575 576
static void __arm_smmu_tlb_sync(struct arm_smmu_device *smmu,
				void __iomem *sync, void __iomem *status)
577
{
578
	unsigned int spin_cnt, delay;
579

580
	writel_relaxed(0, sync);
581 582 583 584 585
	for (delay = 1; delay < TLB_LOOP_TIMEOUT; delay *= 2) {
		for (spin_cnt = TLB_SPIN_COUNT; spin_cnt > 0; spin_cnt--) {
			if (!(readl_relaxed(status) & sTLBGSTATUS_GSACTIVE))
				return;
			cpu_relax();
586
		}
587
		udelay(delay);
588
	}
589 590
	dev_err_ratelimited(smmu->dev,
			    "TLB sync timed out -- SMMU may be deadlocked\n");
591 592
}

593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611
static void arm_smmu_tlb_sync_global(struct arm_smmu_device *smmu)
{
	void __iomem *base = ARM_SMMU_GR0(smmu);

	__arm_smmu_tlb_sync(smmu, base + ARM_SMMU_GR0_sTLBGSYNC,
			    base + ARM_SMMU_GR0_sTLBGSTATUS);
}

static void arm_smmu_tlb_sync_context(void *cookie)
{
	struct arm_smmu_domain *smmu_domain = cookie;
	struct arm_smmu_device *smmu = smmu_domain->smmu;
	void __iomem *base = ARM_SMMU_CB(smmu, smmu_domain->cfg.cbndx);

	__arm_smmu_tlb_sync(smmu, base + ARM_SMMU_CB_TLBSYNC,
			    base + ARM_SMMU_CB_TLBSTATUS);
}

static void arm_smmu_tlb_sync_vmid(void *cookie)
612 613
{
	struct arm_smmu_domain *smmu_domain = cookie;
614 615

	arm_smmu_tlb_sync_global(smmu_domain->smmu);
616 617
}

618
static void arm_smmu_tlb_inv_context_s1(void *cookie)
619
{
620
	struct arm_smmu_domain *smmu_domain = cookie;
621
	struct arm_smmu_cfg *cfg = &smmu_domain->cfg;
622
	void __iomem *base = ARM_SMMU_CB(smmu_domain->smmu, cfg->cbndx);
623

624 625 626
	writel_relaxed(cfg->asid, base + ARM_SMMU_CB_S1_TLBIASID);
	arm_smmu_tlb_sync_context(cookie);
}
627

628 629 630 631 632 633 634 635
static void arm_smmu_tlb_inv_context_s2(void *cookie)
{
	struct arm_smmu_domain *smmu_domain = cookie;
	struct arm_smmu_device *smmu = smmu_domain->smmu;
	void __iomem *base = ARM_SMMU_GR0(smmu);

	writel_relaxed(smmu_domain->cfg.vmid, base + ARM_SMMU_GR0_TLBIVMID);
	arm_smmu_tlb_sync_global(smmu);
636 637 638
}

static void arm_smmu_tlb_inv_range_nosync(unsigned long iova, size_t size,
639
					  size_t granule, bool leaf, void *cookie)
640 641 642 643
{
	struct arm_smmu_domain *smmu_domain = cookie;
	struct arm_smmu_cfg *cfg = &smmu_domain->cfg;
	bool stage1 = cfg->cbar != CBAR_TYPE_S2_TRANS;
644
	void __iomem *reg = ARM_SMMU_CB(smmu_domain->smmu, cfg->cbndx);
645 646 647 648

	if (stage1) {
		reg += leaf ? ARM_SMMU_CB_S1_TLBIVAL : ARM_SMMU_CB_S1_TLBIVA;

649
		if (cfg->fmt != ARM_SMMU_CTX_FMT_AARCH64) {
650
			iova &= ~12UL;
651
			iova |= cfg->asid;
652 653 654 655
			do {
				writel_relaxed(iova, reg);
				iova += granule;
			} while (size -= granule);
656 657
		} else {
			iova >>= 12;
658
			iova |= (u64)cfg->asid << 48;
659 660 661 662
			do {
				writeq_relaxed(iova, reg);
				iova += granule >> 12;
			} while (size -= granule);
663
		}
664
	} else {
665 666
		reg += leaf ? ARM_SMMU_CB_S2_TLBIIPAS2L :
			      ARM_SMMU_CB_S2_TLBIIPAS2;
667 668
		iova >>= 12;
		do {
669
			smmu_write_atomic_lq(iova, reg);
670 671
			iova += granule >> 12;
		} while (size -= granule);
672 673 674
	}
}

675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697
/*
 * On MMU-401 at least, the cost of firing off multiple TLBIVMIDs appears
 * almost negligible, but the benefit of getting the first one in as far ahead
 * of the sync as possible is significant, hence we don't just make this a
 * no-op and set .tlb_sync to arm_smmu_inv_context_s2() as you might think.
 */
static void arm_smmu_tlb_inv_vmid_nosync(unsigned long iova, size_t size,
					 size_t granule, bool leaf, void *cookie)
{
	struct arm_smmu_domain *smmu_domain = cookie;
	void __iomem *base = ARM_SMMU_GR0(smmu_domain->smmu);

	writel_relaxed(smmu_domain->cfg.vmid, base + ARM_SMMU_GR0_TLBIVMID);
}

static const struct iommu_gather_ops arm_smmu_s1_tlb_ops = {
	.tlb_flush_all	= arm_smmu_tlb_inv_context_s1,
	.tlb_add_flush	= arm_smmu_tlb_inv_range_nosync,
	.tlb_sync	= arm_smmu_tlb_sync_context,
};

static const struct iommu_gather_ops arm_smmu_s2_tlb_ops_v2 = {
	.tlb_flush_all	= arm_smmu_tlb_inv_context_s2,
698
	.tlb_add_flush	= arm_smmu_tlb_inv_range_nosync,
699 700 701 702 703 704 705
	.tlb_sync	= arm_smmu_tlb_sync_context,
};

static const struct iommu_gather_ops arm_smmu_s2_tlb_ops_v1 = {
	.tlb_flush_all	= arm_smmu_tlb_inv_context_s2,
	.tlb_add_flush	= arm_smmu_tlb_inv_vmid_nosync,
	.tlb_sync	= arm_smmu_tlb_sync_vmid,
706 707
};

708 709
static irqreturn_t arm_smmu_context_fault(int irq, void *dev)
{
710
	u32 fsr, fsynr;
711 712
	unsigned long iova;
	struct iommu_domain *domain = dev;
713
	struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
714 715
	struct arm_smmu_cfg *cfg = &smmu_domain->cfg;
	struct arm_smmu_device *smmu = smmu_domain->smmu;
716 717
	void __iomem *cb_base;

718
	cb_base = ARM_SMMU_CB(smmu, cfg->cbndx);
719 720 721 722 723 724
	fsr = readl_relaxed(cb_base + ARM_SMMU_CB_FSR);

	if (!(fsr & FSR_FAULT))
		return IRQ_NONE;

	fsynr = readl_relaxed(cb_base + ARM_SMMU_CB_FSYNR0);
725
	iova = readq_relaxed(cb_base + ARM_SMMU_CB_FAR);
726

727 728 729
	dev_err_ratelimited(smmu->dev,
	"Unhandled context fault: fsr=0x%x, iova=0x%08lx, fsynr=0x%x, cb=%d\n",
			    fsr, iova, fsynr, cfg->cbndx);
730

731 732
	writel(fsr, cb_base + ARM_SMMU_CB_FSR);
	return IRQ_HANDLED;
733 734 735 736 737 738
}

static irqreturn_t arm_smmu_global_fault(int irq, void *dev)
{
	u32 gfsr, gfsynr0, gfsynr1, gfsynr2;
	struct arm_smmu_device *smmu = dev;
739
	void __iomem *gr0_base = ARM_SMMU_GR0_NS(smmu);
740 741 742 743 744 745

	gfsr = readl_relaxed(gr0_base + ARM_SMMU_GR0_sGFSR);
	gfsynr0 = readl_relaxed(gr0_base + ARM_SMMU_GR0_sGFSYNR0);
	gfsynr1 = readl_relaxed(gr0_base + ARM_SMMU_GR0_sGFSYNR1);
	gfsynr2 = readl_relaxed(gr0_base + ARM_SMMU_GR0_sGFSYNR2);

746 747 748
	if (!gfsr)
		return IRQ_NONE;

749 750 751 752 753 754 755
	dev_err_ratelimited(smmu->dev,
		"Unexpected global fault, this could be serious\n");
	dev_err_ratelimited(smmu->dev,
		"\tGFSR 0x%08x, GFSYNR0 0x%08x, GFSYNR1 0x%08x, GFSYNR2 0x%08x\n",
		gfsr, gfsynr0, gfsynr1, gfsynr2);

	writel(gfsr, gr0_base + ARM_SMMU_GR0_sGFSR);
756
	return IRQ_HANDLED;
757 758
}

759 760
static void arm_smmu_init_context_bank(struct arm_smmu_domain *smmu_domain,
				       struct io_pgtable_cfg *pgtbl_cfg)
761
{
762
	u32 reg, reg2;
763
	u64 reg64;
764
	bool stage1;
765 766
	struct arm_smmu_cfg *cfg = &smmu_domain->cfg;
	struct arm_smmu_device *smmu = smmu_domain->smmu;
767
	void __iomem *cb_base, *gr1_base;
768 769

	gr1_base = ARM_SMMU_GR1(smmu);
770
	stage1 = cfg->cbar != CBAR_TYPE_S2_TRANS;
771
	cb_base = ARM_SMMU_CB(smmu, cfg->cbndx);
772

773
	if (smmu->version > ARM_SMMU_V1) {
774 775 776 777
		if (cfg->fmt == ARM_SMMU_CTX_FMT_AARCH64)
			reg = CBA2R_RW64_64BIT;
		else
			reg = CBA2R_RW64_32BIT;
778 779
		/* 16-bit VMIDs live in CBA2R */
		if (smmu->features & ARM_SMMU_FEAT_VMID16)
780
			reg |= cfg->vmid << CBA2R_VMID_SHIFT;
781

782 783 784
		writel_relaxed(reg, gr1_base + ARM_SMMU_GR1_CBA2R(cfg->cbndx));
	}

785
	/* CBAR */
786
	reg = cfg->cbar;
787
	if (smmu->version < ARM_SMMU_V2)
788
		reg |= cfg->irptndx << CBAR_IRPTNDX_SHIFT;
789

790 791 792 793 794 795 796
	/*
	 * Use the weakest shareability/memory types, so they are
	 * overridden by the ttbcr/pte.
	 */
	if (stage1) {
		reg |= (CBAR_S1_BPSHCFG_NSH << CBAR_S1_BPSHCFG_SHIFT) |
			(CBAR_S1_MEMATTR_WB << CBAR_S1_MEMATTR_SHIFT);
797 798
	} else if (!(smmu->features & ARM_SMMU_FEAT_VMID16)) {
		/* 8-bit VMIDs live in CBAR */
799
		reg |= cfg->vmid << CBAR_VMID_SHIFT;
800
	}
801
	writel_relaxed(reg, gr1_base + ARM_SMMU_GR1_CBAR(cfg->cbndx));
802

803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825
	/*
	 * TTBCR
	 * We must write this before the TTBRs, since it determines the
	 * access behaviour of some fields (in particular, ASID[15:8]).
	 */
	if (stage1) {
		if (cfg->fmt == ARM_SMMU_CTX_FMT_AARCH32_S) {
			reg = pgtbl_cfg->arm_v7s_cfg.tcr;
			reg2 = 0;
		} else {
			reg = pgtbl_cfg->arm_lpae_s1_cfg.tcr;
			reg2 = pgtbl_cfg->arm_lpae_s1_cfg.tcr >> 32;
			reg2 |= TTBCR2_SEP_UPSTREAM;
			if (cfg->fmt == ARM_SMMU_CTX_FMT_AARCH64)
				reg2 |= TTBCR2_AS;
		}
		if (smmu->version > ARM_SMMU_V1)
			writel_relaxed(reg2, cb_base + ARM_SMMU_CB_TTBCR2);
	} else {
		reg = pgtbl_cfg->arm_lpae_s2_cfg.vtcr;
	}
	writel_relaxed(reg, cb_base + ARM_SMMU_CB_TTBCR);

826 827
	/* TTBRs */
	if (stage1) {
828 829 830 831 832
		if (cfg->fmt == ARM_SMMU_CTX_FMT_AARCH32_S) {
			reg = pgtbl_cfg->arm_v7s_cfg.ttbr[0];
			writel_relaxed(reg, cb_base + ARM_SMMU_CB_TTBR0);
			reg = pgtbl_cfg->arm_v7s_cfg.ttbr[1];
			writel_relaxed(reg, cb_base + ARM_SMMU_CB_TTBR1);
833
			writel_relaxed(cfg->asid, cb_base + ARM_SMMU_CB_CONTEXTIDR);
834 835
		} else {
			reg64 = pgtbl_cfg->arm_lpae_s1_cfg.ttbr[0];
836
			reg64 |= (u64)cfg->asid << TTBRn_ASID_SHIFT;
837 838
			writeq_relaxed(reg64, cb_base + ARM_SMMU_CB_TTBR0);
			reg64 = pgtbl_cfg->arm_lpae_s1_cfg.ttbr[1];
839
			reg64 |= (u64)cfg->asid << TTBRn_ASID_SHIFT;
840 841
			writeq_relaxed(reg64, cb_base + ARM_SMMU_CB_TTBR1);
		}
842
	} else {
843
		reg64 = pgtbl_cfg->arm_lpae_s2_cfg.vttbr;
844
		writeq_relaxed(reg64, cb_base + ARM_SMMU_CB_TTBR0);
845
	}
846

847
	/* MAIRs (stage-1 only) */
848
	if (stage1) {
849 850 851 852 853 854 855
		if (cfg->fmt == ARM_SMMU_CTX_FMT_AARCH32_S) {
			reg = pgtbl_cfg->arm_v7s_cfg.prrr;
			reg2 = pgtbl_cfg->arm_v7s_cfg.nmrr;
		} else {
			reg = pgtbl_cfg->arm_lpae_s1_cfg.mair[0];
			reg2 = pgtbl_cfg->arm_lpae_s1_cfg.mair[1];
		}
856
		writel_relaxed(reg, cb_base + ARM_SMMU_CB_S1_MAIR0);
857
		writel_relaxed(reg2, cb_base + ARM_SMMU_CB_S1_MAIR1);
858 859 860
	}

	/* SCTLR */
861
	reg = SCTLR_CFIE | SCTLR_CFRE | SCTLR_AFE | SCTLR_TRE | SCTLR_M;
862 863 864 865 866
	if (stage1)
		reg |= SCTLR_S1_ASIDPNE;
#ifdef __BIG_ENDIAN
	reg |= SCTLR_E;
#endif
867
	writel_relaxed(reg, cb_base + ARM_SMMU_CB_SCTLR);
868 869 870
}

static int arm_smmu_init_domain_context(struct iommu_domain *domain,
871
					struct arm_smmu_device *smmu)
872
{
873
	int irq, start, ret = 0;
874 875 876 877
	unsigned long ias, oas;
	struct io_pgtable_ops *pgtbl_ops;
	struct io_pgtable_cfg pgtbl_cfg;
	enum io_pgtable_fmt fmt;
878
	struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
879
	struct arm_smmu_cfg *cfg = &smmu_domain->cfg;
880
	const struct iommu_gather_ops *tlb_ops;
881

882
	mutex_lock(&smmu_domain->init_mutex);
883 884 885
	if (smmu_domain->smmu)
		goto out_unlock;

886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908
	/*
	 * Mapping the requested stage onto what we support is surprisingly
	 * complicated, mainly because the spec allows S1+S2 SMMUs without
	 * support for nested translation. That means we end up with the
	 * following table:
	 *
	 * Requested        Supported        Actual
	 *     S1               N              S1
	 *     S1             S1+S2            S1
	 *     S1               S2             S2
	 *     S1               S1             S1
	 *     N                N              N
	 *     N              S1+S2            S2
	 *     N                S2             S2
	 *     N                S1             S1
	 *
	 * Note that you can't actually request stage-2 mappings.
	 */
	if (!(smmu->features & ARM_SMMU_FEAT_TRANS_S1))
		smmu_domain->stage = ARM_SMMU_DOMAIN_S2;
	if (!(smmu->features & ARM_SMMU_FEAT_TRANS_S2))
		smmu_domain->stage = ARM_SMMU_DOMAIN_S1;

909 910 911 912 913 914 915 916 917 918
	/*
	 * Choosing a suitable context format is even more fiddly. Until we
	 * grow some way for the caller to express a preference, and/or move
	 * the decision into the io-pgtable code where it arguably belongs,
	 * just aim for the closest thing to the rest of the system, and hope
	 * that the hardware isn't esoteric enough that we can't assume AArch64
	 * support to be a superset of AArch32 support...
	 */
	if (smmu->features & ARM_SMMU_FEAT_FMT_AARCH32_L)
		cfg->fmt = ARM_SMMU_CTX_FMT_AARCH32_L;
919 920 921 922 923
	if (IS_ENABLED(CONFIG_IOMMU_IO_PGTABLE_ARMV7S) &&
	    !IS_ENABLED(CONFIG_64BIT) && !IS_ENABLED(CONFIG_ARM_LPAE) &&
	    (smmu->features & ARM_SMMU_FEAT_FMT_AARCH32_S) &&
	    (smmu_domain->stage == ARM_SMMU_DOMAIN_S1))
		cfg->fmt = ARM_SMMU_CTX_FMT_AARCH32_S;
924 925 926 927 928 929 930 931 932 933 934
	if ((IS_ENABLED(CONFIG_64BIT) || cfg->fmt == ARM_SMMU_CTX_FMT_NONE) &&
	    (smmu->features & (ARM_SMMU_FEAT_FMT_AARCH64_64K |
			       ARM_SMMU_FEAT_FMT_AARCH64_16K |
			       ARM_SMMU_FEAT_FMT_AARCH64_4K)))
		cfg->fmt = ARM_SMMU_CTX_FMT_AARCH64;

	if (cfg->fmt == ARM_SMMU_CTX_FMT_NONE) {
		ret = -EINVAL;
		goto out_unlock;
	}

935 936 937 938
	switch (smmu_domain->stage) {
	case ARM_SMMU_DOMAIN_S1:
		cfg->cbar = CBAR_TYPE_S1_TRANS_S2_BYPASS;
		start = smmu->num_s2_context_banks;
939 940
		ias = smmu->va_size;
		oas = smmu->ipa_size;
941
		if (cfg->fmt == ARM_SMMU_CTX_FMT_AARCH64) {
942
			fmt = ARM_64_LPAE_S1;
943
		} else if (cfg->fmt == ARM_SMMU_CTX_FMT_AARCH32_L) {
944
			fmt = ARM_32_LPAE_S1;
945 946
			ias = min(ias, 32UL);
			oas = min(oas, 40UL);
947 948 949 950
		} else {
			fmt = ARM_V7S;
			ias = min(ias, 32UL);
			oas = min(oas, 32UL);
951
		}
952
		tlb_ops = &arm_smmu_s1_tlb_ops;
953 954
		break;
	case ARM_SMMU_DOMAIN_NESTED:
955 956 957 958
		/*
		 * We will likely want to change this if/when KVM gets
		 * involved.
		 */
959
	case ARM_SMMU_DOMAIN_S2:
960 961
		cfg->cbar = CBAR_TYPE_S2_TRANS;
		start = 0;
962 963
		ias = smmu->ipa_size;
		oas = smmu->pa_size;
964
		if (cfg->fmt == ARM_SMMU_CTX_FMT_AARCH64) {
965
			fmt = ARM_64_LPAE_S2;
966
		} else {
967
			fmt = ARM_32_LPAE_S2;
968 969 970
			ias = min(ias, 40UL);
			oas = min(oas, 40UL);
		}
971 972 973 974
		if (smmu->version == ARM_SMMU_V2)
			tlb_ops = &arm_smmu_s2_tlb_ops_v2;
		else
			tlb_ops = &arm_smmu_s2_tlb_ops_v1;
975 976 977 978
		break;
	default:
		ret = -EINVAL;
		goto out_unlock;
979 980 981
	}
	ret = __arm_smmu_alloc_bitmap(smmu->context_map, start,
				      smmu->num_context_banks);
982
	if (ret < 0)
983
		goto out_unlock;
984

985
	cfg->cbndx = ret;
986
	if (smmu->version < ARM_SMMU_V2) {
987 988
		cfg->irptndx = atomic_inc_return(&smmu->irptndx);
		cfg->irptndx %= smmu->num_context_irqs;
989
	} else {
990
		cfg->irptndx = cfg->cbndx;
991 992
	}

993 994 995 996 997
	if (smmu_domain->stage == ARM_SMMU_DOMAIN_S2)
		cfg->vmid = cfg->cbndx + 1 + smmu->cavium_id_base;
	else
		cfg->asid = cfg->cbndx + smmu->cavium_id_base;

998
	pgtbl_cfg = (struct io_pgtable_cfg) {
999
		.pgsize_bitmap	= smmu->pgsize_bitmap,
1000 1001
		.ias		= ias,
		.oas		= oas,
1002
		.tlb		= tlb_ops,
1003
		.iommu_dev	= smmu->dev,
1004 1005 1006 1007 1008 1009 1010 1011 1012
	};

	smmu_domain->smmu = smmu;
	pgtbl_ops = alloc_io_pgtable_ops(fmt, &pgtbl_cfg, smmu_domain);
	if (!pgtbl_ops) {
		ret = -ENOMEM;
		goto out_clear_smmu;
	}

1013 1014
	/* Update the domain's page sizes to reflect the page table format */
	domain->pgsize_bitmap = pgtbl_cfg.pgsize_bitmap;
1015 1016
	domain->geometry.aperture_end = (1UL << ias) - 1;
	domain->geometry.force_aperture = true;
1017

1018 1019 1020 1021 1022 1023 1024
	/* Initialise the context bank with our page table cfg */
	arm_smmu_init_context_bank(smmu_domain, &pgtbl_cfg);

	/*
	 * Request context fault interrupt. Do this last to avoid the
	 * handler seeing a half-initialised domain state.
	 */
1025
	irq = smmu->irqs[smmu->num_global_irqs + cfg->irptndx];
1026 1027
	ret = devm_request_irq(smmu->dev, irq, arm_smmu_context_fault,
			       IRQF_SHARED, "arm-smmu-context-fault", domain);
1028
	if (ret < 0) {
1029
		dev_err(smmu->dev, "failed to request context IRQ %d (%u)\n",
1030 1031
			cfg->irptndx, irq);
		cfg->irptndx = INVALID_IRPTNDX;
1032 1033
	}

1034 1035 1036 1037
	mutex_unlock(&smmu_domain->init_mutex);

	/* Publish page table ops for map/unmap */
	smmu_domain->pgtbl_ops = pgtbl_ops;
1038
	return 0;
1039

1040 1041
out_clear_smmu:
	smmu_domain->smmu = NULL;
1042
out_unlock:
1043
	mutex_unlock(&smmu_domain->init_mutex);
1044 1045 1046 1047 1048
	return ret;
}

static void arm_smmu_destroy_domain_context(struct iommu_domain *domain)
{
1049
	struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1050 1051
	struct arm_smmu_device *smmu = smmu_domain->smmu;
	struct arm_smmu_cfg *cfg = &smmu_domain->cfg;
1052
	void __iomem *cb_base;
1053 1054
	int irq;

1055
	if (!smmu)
1056 1057
		return;

1058 1059 1060 1061
	/*
	 * Disable the context bank and free the page tables before freeing
	 * it.
	 */
1062
	cb_base = ARM_SMMU_CB(smmu, cfg->cbndx);
1063 1064
	writel_relaxed(0, cb_base + ARM_SMMU_CB_SCTLR);

1065 1066
	if (cfg->irptndx != INVALID_IRPTNDX) {
		irq = smmu->irqs[smmu->num_global_irqs + cfg->irptndx];
1067
		devm_free_irq(smmu->dev, irq, domain);
1068 1069
	}

1070
	free_io_pgtable_ops(smmu_domain->pgtbl_ops);
1071
	__arm_smmu_free_bitmap(smmu->context_map, cfg->cbndx);
1072 1073
}

1074
static struct iommu_domain *arm_smmu_domain_alloc(unsigned type)
1075 1076 1077
{
	struct arm_smmu_domain *smmu_domain;

1078
	if (type != IOMMU_DOMAIN_UNMANAGED && type != IOMMU_DOMAIN_DMA)
1079
		return NULL;
1080 1081 1082 1083 1084 1085 1086
	/*
	 * Allocate the domain and initialise some of its data structures.
	 * We can't really do anything meaningful until we've added a
	 * master.
	 */
	smmu_domain = kzalloc(sizeof(*smmu_domain), GFP_KERNEL);
	if (!smmu_domain)
1087
		return NULL;
1088

1089 1090
	if (type == IOMMU_DOMAIN_DMA && (using_legacy_binding ||
	    iommu_get_dma_cookie(&smmu_domain->domain))) {
1091 1092 1093 1094
		kfree(smmu_domain);
		return NULL;
	}

1095 1096
	mutex_init(&smmu_domain->init_mutex);
	spin_lock_init(&smmu_domain->pgtbl_lock);
1097 1098

	return &smmu_domain->domain;
1099 1100
}

1101
static void arm_smmu_domain_free(struct iommu_domain *domain)
1102
{
1103
	struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1104 1105 1106 1107 1108

	/*
	 * Free the domain resources. We assume that all devices have
	 * already been detached.
	 */
1109
	iommu_put_dma_cookie(domain);
1110 1111 1112 1113
	arm_smmu_destroy_domain_context(domain);
	kfree(smmu_domain);
}

1114 1115 1116
static void arm_smmu_write_smr(struct arm_smmu_device *smmu, int idx)
{
	struct arm_smmu_smr *smr = smmu->smrs + idx;
1117
	u32 reg = smr->id << SMR_ID_SHIFT | smr->mask << SMR_MASK_SHIFT;
1118

1119
	if (!(smmu->features & ARM_SMMU_FEAT_EXIDS) && smr->valid)
1120 1121 1122 1123
		reg |= SMR_VALID;
	writel_relaxed(reg, ARM_SMMU_GR0(smmu) + ARM_SMMU_GR0_SMR(idx));
}

1124 1125 1126 1127 1128 1129 1130
static void arm_smmu_write_s2cr(struct arm_smmu_device *smmu, int idx)
{
	struct arm_smmu_s2cr *s2cr = smmu->s2crs + idx;
	u32 reg = (s2cr->type & S2CR_TYPE_MASK) << S2CR_TYPE_SHIFT |
		  (s2cr->cbndx & S2CR_CBNDX_MASK) << S2CR_CBNDX_SHIFT |
		  (s2cr->privcfg & S2CR_PRIVCFG_MASK) << S2CR_PRIVCFG_SHIFT;

1131 1132 1133
	if (smmu->features & ARM_SMMU_FEAT_EXIDS && smmu->smrs &&
	    smmu->smrs[idx].valid)
		reg |= S2CR_EXIDVALID;
1134 1135 1136 1137 1138 1139 1140 1141 1142 1143
	writel_relaxed(reg, ARM_SMMU_GR0(smmu) + ARM_SMMU_GR0_S2CR(idx));
}

static void arm_smmu_write_sme(struct arm_smmu_device *smmu, int idx)
{
	arm_smmu_write_s2cr(smmu, idx);
	if (smmu->smrs)
		arm_smmu_write_smr(smmu, idx);
}

1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171
/*
 * The width of SMR's mask field depends on sCR0_EXIDENABLE, so this function
 * should be called after sCR0 is written.
 */
static void arm_smmu_test_smr_masks(struct arm_smmu_device *smmu)
{
	void __iomem *gr0_base = ARM_SMMU_GR0(smmu);
	u32 smr;

	if (!smmu->smrs)
		return;

	/*
	 * SMR.ID bits may not be preserved if the corresponding MASK
	 * bits are set, so check each one separately. We can reject
	 * masters later if they try to claim IDs outside these masks.
	 */
	smr = smmu->streamid_mask << SMR_ID_SHIFT;
	writel_relaxed(smr, gr0_base + ARM_SMMU_GR0_SMR(0));
	smr = readl_relaxed(gr0_base + ARM_SMMU_GR0_SMR(0));
	smmu->streamid_mask = smr >> SMR_ID_SHIFT;

	smr = smmu->streamid_mask << SMR_MASK_SHIFT;
	writel_relaxed(smr, gr0_base + ARM_SMMU_GR0_SMR(0));
	smr = readl_relaxed(gr0_base + ARM_SMMU_GR0_SMR(0));
	smmu->smr_mask_mask = smr >> SMR_MASK_SHIFT;
}

1172
static int arm_smmu_find_sme(struct arm_smmu_device *smmu, u16 id, u16 mask)
1173 1174
{
	struct arm_smmu_smr *smrs = smmu->smrs;
1175
	int i, free_idx = -ENOSPC;
1176

1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189
	/* Stream indexing is blissfully easy */
	if (!smrs)
		return id;

	/* Validating SMRs is... less so */
	for (i = 0; i < smmu->num_mapping_groups; ++i) {
		if (!smrs[i].valid) {
			/*
			 * Note the first free entry we come across, which
			 * we'll claim in the end if nothing else matches.
			 */
			if (free_idx < 0)
				free_idx = i;
1190 1191
			continue;
		}
1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209
		/*
		 * If the new entry is _entirely_ matched by an existing entry,
		 * then reuse that, with the guarantee that there also cannot
		 * be any subsequent conflicting entries. In normal use we'd
		 * expect simply identical entries for this case, but there's
		 * no harm in accommodating the generalisation.
		 */
		if ((mask & smrs[i].mask) == mask &&
		    !((id ^ smrs[i].id) & ~smrs[i].mask))
			return i;
		/*
		 * If the new entry has any other overlap with an existing one,
		 * though, then there always exists at least one stream ID
		 * which would cause a conflict, and we can't allow that risk.
		 */
		if (!((id ^ smrs[i].id) & ~(smrs[i].mask | mask)))
			return -EINVAL;
	}
1210

1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227
	return free_idx;
}

static bool arm_smmu_free_sme(struct arm_smmu_device *smmu, int idx)
{
	if (--smmu->s2crs[idx].count)
		return false;

	smmu->s2crs[idx] = s2cr_init_val;
	if (smmu->smrs)
		smmu->smrs[idx].valid = false;

	return true;
}

static int arm_smmu_master_alloc_smes(struct device *dev)
{
1228 1229
	struct iommu_fwspec *fwspec = dev->iommu_fwspec;
	struct arm_smmu_master_cfg *cfg = fwspec->iommu_priv;
1230 1231 1232 1233 1234 1235 1236
	struct arm_smmu_device *smmu = cfg->smmu;
	struct arm_smmu_smr *smrs = smmu->smrs;
	struct iommu_group *group;
	int i, idx, ret;

	mutex_lock(&smmu->stream_map_mutex);
	/* Figure out a viable stream map entry allocation */
1237
	for_each_cfg_sme(fwspec, i, idx) {
1238 1239 1240
		u16 sid = fwspec->ids[i];
		u16 mask = fwspec->ids[i] >> SMR_MASK_SHIFT;

1241 1242 1243
		if (idx != INVALID_SMENDX) {
			ret = -EEXIST;
			goto out_err;
1244 1245
		}

1246
		ret = arm_smmu_find_sme(smmu, sid, mask);
1247 1248 1249 1250 1251
		if (ret < 0)
			goto out_err;

		idx = ret;
		if (smrs && smmu->s2crs[idx].count == 0) {
1252 1253
			smrs[idx].id = sid;
			smrs[idx].mask = mask;
1254 1255 1256 1257
			smrs[idx].valid = true;
		}
		smmu->s2crs[idx].count++;
		cfg->smendx[i] = (s16)idx;
1258 1259
	}

1260 1261 1262 1263 1264 1265 1266 1267
	group = iommu_group_get_for_dev(dev);
	if (!group)
		group = ERR_PTR(-ENOMEM);
	if (IS_ERR(group)) {
		ret = PTR_ERR(group);
		goto out_err;
	}
	iommu_group_put(group);
1268

1269
	/* It worked! Now, poke the actual hardware */
1270
	for_each_cfg_sme(fwspec, i, idx) {
1271 1272 1273
		arm_smmu_write_sme(smmu, idx);
		smmu->s2crs[idx].group = group;
	}
1274

1275
	mutex_unlock(&smmu->stream_map_mutex);
1276 1277
	return 0;

1278
out_err:
1279
	while (i--) {
1280
		arm_smmu_free_sme(smmu, cfg->smendx[i]);
1281 1282
		cfg->smendx[i] = INVALID_SMENDX;
	}
1283 1284
	mutex_unlock(&smmu->stream_map_mutex);
	return ret;
1285 1286
}

1287
static void arm_smmu_master_free_smes(struct iommu_fwspec *fwspec)
1288
{
1289 1290
	struct arm_smmu_device *smmu = fwspec_smmu(fwspec);
	struct arm_smmu_master_cfg *cfg = fwspec->iommu_priv;
1291
	int i, idx;
1292

1293
	mutex_lock(&smmu->stream_map_mutex);
1294
	for_each_cfg_sme(fwspec, i, idx) {
1295 1296
		if (arm_smmu_free_sme(smmu, idx))
			arm_smmu_write_sme(smmu, idx);
1297
		cfg->smendx[i] = INVALID_SMENDX;
1298
	}
1299
	mutex_unlock(&smmu->stream_map_mutex);
1300 1301 1302
}

static int arm_smmu_domain_add_master(struct arm_smmu_domain *smmu_domain,
1303
				      struct iommu_fwspec *fwspec)
1304
{
1305
	struct arm_smmu_device *smmu = smmu_domain->smmu;
1306 1307 1308
	struct arm_smmu_s2cr *s2cr = smmu->s2crs;
	enum arm_smmu_s2cr_type type = S2CR_TYPE_TRANS;
	u8 cbndx = smmu_domain->cfg.cbndx;
1309
	int i, idx;
1310

1311
	for_each_cfg_sme(fwspec, i, idx) {
1312
		if (type == s2cr[idx].type && cbndx == s2cr[idx].cbndx)
1313
			continue;
1314

1315
		s2cr[idx].type = type;
1316
		s2cr[idx].privcfg = S2CR_PRIVCFG_DEFAULT;
1317 1318
		s2cr[idx].cbndx = cbndx;
		arm_smmu_write_s2cr(smmu, idx);
1319
	}
1320
	return 0;
1321 1322
}

1323 1324
static int arm_smmu_attach_dev(struct iommu_domain *domain, struct device *dev)
{
1325
	int ret;
1326 1327
	struct iommu_fwspec *fwspec = dev->iommu_fwspec;
	struct arm_smmu_device *smmu;
1328
	struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1329

1330
	if (!fwspec || fwspec->ops != &arm_smmu_ops) {
1331 1332 1333 1334
		dev_err(dev, "cannot attach to SMMU, is it on the same bus?\n");
		return -ENXIO;
	}

1335 1336 1337 1338 1339 1340 1341 1342 1343 1344
	/*
	 * FIXME: The arch/arm DMA API code tries to attach devices to its own
	 * domains between of_xlate() and add_device() - we have no way to cope
	 * with that, so until ARM gets converted to rely on groups and default
	 * domains, just say no (but more politely than by dereferencing NULL).
	 * This should be at least a WARN_ON once that's sorted.
	 */
	if (!fwspec->iommu_priv)
		return -ENODEV;

1345
	smmu = fwspec_smmu(fwspec);
1346
	/* Ensure that the domain is finalised */
1347
	ret = arm_smmu_init_domain_context(domain, smmu);
1348
	if (ret < 0)
1349 1350
		return ret;

1351
	/*
1352 1353
	 * Sanity check the domain. We don't support domains across
	 * different SMMUs.
1354
	 */
1355
	if (smmu_domain->smmu != smmu) {
1356 1357
		dev_err(dev,
			"cannot attach to SMMU %s whilst already attached to domain on SMMU %s\n",
1358
			dev_name(smmu_domain->smmu->dev), dev_name(smmu->dev));
1359
		return -EINVAL;
1360 1361 1362
	}

	/* Looks ok, so add the device to the domain */
1363
	return arm_smmu_domain_add_master(smmu_domain, fwspec);
1364 1365 1366
}

static int arm_smmu_map(struct iommu_domain *domain, unsigned long iova,
1367
			phys_addr_t paddr, size_t size, int prot)
1368
{
1369 1370
	int ret;
	unsigned long flags;
1371
	struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1372
	struct io_pgtable_ops *ops= smmu_domain->pgtbl_ops;
1373

1374
	if (!ops)
1375 1376
		return -ENODEV;

1377 1378 1379 1380
	spin_lock_irqsave(&smmu_domain->pgtbl_lock, flags);
	ret = ops->map(ops, iova, paddr, size, prot);
	spin_unlock_irqrestore(&smmu_domain->pgtbl_lock, flags);
	return ret;
1381 1382 1383 1384 1385
}

static size_t arm_smmu_unmap(struct iommu_domain *domain, unsigned long iova,
			     size_t size)
{
1386 1387
	size_t ret;
	unsigned long flags;
1388
	struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1389
	struct io_pgtable_ops *ops= smmu_domain->pgtbl_ops;
1390

1391 1392 1393 1394 1395 1396 1397
	if (!ops)
		return 0;

	spin_lock_irqsave(&smmu_domain->pgtbl_lock, flags);
	ret = ops->unmap(ops, iova, size);
	spin_unlock_irqrestore(&smmu_domain->pgtbl_lock, flags);
	return ret;
1398 1399
}

1400 1401 1402
static phys_addr_t arm_smmu_iova_to_phys_hard(struct iommu_domain *domain,
					      dma_addr_t iova)
{
1403
	struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1404 1405 1406 1407 1408 1409 1410
	struct arm_smmu_device *smmu = smmu_domain->smmu;
	struct arm_smmu_cfg *cfg = &smmu_domain->cfg;
	struct io_pgtable_ops *ops= smmu_domain->pgtbl_ops;
	struct device *dev = smmu->dev;
	void __iomem *cb_base;
	u32 tmp;
	u64 phys;
1411
	unsigned long va;
1412

1413
	cb_base = ARM_SMMU_CB(smmu, cfg->cbndx);
1414

1415 1416 1417
	/* ATS1 registers can only be written atomically */
	va = iova & ~0xfffUL;
	if (smmu->version == ARM_SMMU_V2)
1418 1419
		smmu_write_atomic_lq(va, cb_base + ARM_SMMU_CB_ATS1PR);
	else /* Register is only 32-bit in v1 */
1420
		writel_relaxed(va, cb_base + ARM_SMMU_CB_ATS1PR);
1421 1422 1423 1424

	if (readl_poll_timeout_atomic(cb_base + ARM_SMMU_CB_ATSR, tmp,
				      !(tmp & ATSR_ACTIVE), 5, 50)) {
		dev_err(dev,
1425
			"iova to phys timed out on %pad. Falling back to software table walk.\n",
1426 1427 1428 1429
			&iova);
		return ops->iova_to_phys(ops, iova);
	}

1430
	phys = readq_relaxed(cb_base + ARM_SMMU_CB_PAR);
1431 1432 1433 1434 1435 1436 1437 1438 1439
	if (phys & CB_PAR_F) {
		dev_err(dev, "translation fault!\n");
		dev_err(dev, "PAR = 0x%llx\n", phys);
		return 0;
	}

	return (phys & GENMASK_ULL(39, 12)) | (iova & 0xfff);
}

1440
static phys_addr_t arm_smmu_iova_to_phys(struct iommu_domain *domain,
1441
					dma_addr_t iova)
1442
{
1443 1444
	phys_addr_t ret;
	unsigned long flags;
1445
	struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1446
	struct io_pgtable_ops *ops= smmu_domain->pgtbl_ops;
1447

1448
	if (!ops)
1449
		return 0;
1450

1451
	spin_lock_irqsave(&smmu_domain->pgtbl_lock, flags);
1452 1453
	if (smmu_domain->smmu->features & ARM_SMMU_FEAT_TRANS_OPS &&
			smmu_domain->stage == ARM_SMMU_DOMAIN_S1) {
1454
		ret = arm_smmu_iova_to_phys_hard(domain, iova);
1455
	} else {
1456
		ret = ops->iova_to_phys(ops, iova);
1457 1458
	}

1459
	spin_unlock_irqrestore(&smmu_domain->pgtbl_lock, flags);
1460

1461
	return ret;
1462 1463
}

1464
static bool arm_smmu_capable(enum iommu_cap cap)
1465
{
1466 1467
	switch (cap) {
	case IOMMU_CAP_CACHE_COHERENCY:
1468 1469 1470 1471 1472
		/*
		 * Return true here as the SMMU can always send out coherent
		 * requests.
		 */
		return true;
1473 1474
	case IOMMU_CAP_NOEXEC:
		return true;
1475
	default:
1476
		return false;
1477
	}
1478 1479
}

1480 1481
static int arm_smmu_match_node(struct device *dev, void *data)
{
1482
	return dev->fwnode == data;
1483 1484
}

1485 1486
static
struct arm_smmu_device *arm_smmu_get_by_fwnode(struct fwnode_handle *fwnode)
1487 1488
{
	struct device *dev = driver_find_device(&arm_smmu_driver.driver, NULL,
1489
						fwnode, arm_smmu_match_node);
1490 1491 1492 1493
	put_device(dev);
	return dev ? dev_get_drvdata(dev) : NULL;
}

1494
static int arm_smmu_add_device(struct device *dev)
1495
{
1496
	struct arm_smmu_device *smmu;
1497
	struct arm_smmu_master_cfg *cfg;
1498
	struct iommu_fwspec *fwspec = dev->iommu_fwspec;
1499
	int i, ret;
1500

1501 1502 1503 1504 1505
	if (using_legacy_binding) {
		ret = arm_smmu_register_legacy_master(dev, &smmu);
		fwspec = dev->iommu_fwspec;
		if (ret)
			goto out_free;
1506
	} else if (fwspec && fwspec->ops == &arm_smmu_ops) {
1507
		smmu = arm_smmu_get_by_fwnode(fwspec->iommu_fwnode);
1508 1509 1510
	} else {
		return -ENODEV;
	}
1511

1512
	ret = -EINVAL;
1513 1514
	for (i = 0; i < fwspec->num_ids; i++) {
		u16 sid = fwspec->ids[i];
1515
		u16 mask = fwspec->ids[i] >> SMR_MASK_SHIFT;
1516

1517
		if (sid & ~smmu->streamid_mask) {
1518
			dev_err(dev, "stream ID 0x%x out of range for SMMU (0x%x)\n",
1519 1520 1521 1522 1523 1524
				sid, smmu->streamid_mask);
			goto out_free;
		}
		if (mask & ~smmu->smr_mask_mask) {
			dev_err(dev, "SMR mask 0x%x out of range for SMMU (0x%x)\n",
				sid, smmu->smr_mask_mask);
1525 1526
			goto out_free;
		}
1527
	}
1528

1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539
	ret = -ENOMEM;
	cfg = kzalloc(offsetof(struct arm_smmu_master_cfg, smendx[i]),
		      GFP_KERNEL);
	if (!cfg)
		goto out_free;

	cfg->smmu = smmu;
	fwspec->iommu_priv = cfg;
	while (i--)
		cfg->smendx[i] = INVALID_SMENDX;

1540
	ret = arm_smmu_master_alloc_smes(dev);
1541 1542 1543
	if (ret)
		goto out_free;

1544 1545
	iommu_device_link(&smmu->iommu, dev);

1546
	return 0;
1547 1548

out_free:
1549 1550 1551
	if (fwspec)
		kfree(fwspec->iommu_priv);
	iommu_fwspec_free(dev);
1552
	return ret;
1553 1554
}

1555 1556
static void arm_smmu_remove_device(struct device *dev)
{
1557
	struct iommu_fwspec *fwspec = dev->iommu_fwspec;
1558 1559 1560
	struct arm_smmu_master_cfg *cfg;
	struct arm_smmu_device *smmu;

1561

1562
	if (!fwspec || fwspec->ops != &arm_smmu_ops)
1563
		return;
1564

1565 1566 1567 1568
	cfg  = fwspec->iommu_priv;
	smmu = cfg->smmu;

	iommu_device_unlink(&smmu->iommu, dev);
1569
	arm_smmu_master_free_smes(fwspec);
1570
	iommu_group_remove_device(dev);
1571 1572
	kfree(fwspec->iommu_priv);
	iommu_fwspec_free(dev);
1573 1574
}

1575 1576
static struct iommu_group *arm_smmu_device_group(struct device *dev)
{
1577 1578
	struct iommu_fwspec *fwspec = dev->iommu_fwspec;
	struct arm_smmu_device *smmu = fwspec_smmu(fwspec);
1579 1580 1581
	struct iommu_group *group = NULL;
	int i, idx;

1582
	for_each_cfg_sme(fwspec, i, idx) {
1583 1584 1585 1586 1587 1588 1589 1590
		if (group && smmu->s2crs[idx].group &&
		    group != smmu->s2crs[idx].group)
			return ERR_PTR(-EINVAL);

		group = smmu->s2crs[idx].group;
	}

	if (group)
1591
		return iommu_group_ref_get(group);
1592 1593 1594 1595 1596 1597 1598 1599 1600

	if (dev_is_pci(dev))
		group = pci_device_group(dev);
	else
		group = generic_device_group(dev);

	return group;
}

1601 1602 1603
static int arm_smmu_domain_get_attr(struct iommu_domain *domain,
				    enum iommu_attr attr, void *data)
{
1604
	struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617

	switch (attr) {
	case DOMAIN_ATTR_NESTING:
		*(int *)data = (smmu_domain->stage == ARM_SMMU_DOMAIN_NESTED);
		return 0;
	default:
		return -ENODEV;
	}
}

static int arm_smmu_domain_set_attr(struct iommu_domain *domain,
				    enum iommu_attr attr, void *data)
{
1618
	int ret = 0;
1619
	struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1620

1621 1622
	mutex_lock(&smmu_domain->init_mutex);

1623 1624
	switch (attr) {
	case DOMAIN_ATTR_NESTING:
1625 1626 1627 1628 1629
		if (smmu_domain->smmu) {
			ret = -EPERM;
			goto out_unlock;
		}

1630 1631 1632 1633 1634
		if (*(int *)data)
			smmu_domain->stage = ARM_SMMU_DOMAIN_NESTED;
		else
			smmu_domain->stage = ARM_SMMU_DOMAIN_S1;

1635
		break;
1636
	default:
1637
		ret = -ENODEV;
1638
	}
1639 1640 1641 1642

out_unlock:
	mutex_unlock(&smmu_domain->init_mutex);
	return ret;
1643 1644
}

1645 1646
static int arm_smmu_of_xlate(struct device *dev, struct of_phandle_args *args)
{
1647
	u32 mask, fwid = 0;
1648 1649 1650 1651 1652 1653

	if (args->args_count > 0)
		fwid |= (u16)args->args[0];

	if (args->args_count > 1)
		fwid |= (u16)args->args[1] << SMR_MASK_SHIFT;
1654 1655
	else if (!of_property_read_u32(args->np, "stream-match-mask", &mask))
		fwid |= (u16)mask << SMR_MASK_SHIFT;
1656 1657 1658 1659

	return iommu_fwspec_add_ids(dev, &fwid, 1);
}

1660 1661 1662 1663 1664 1665 1666
static void arm_smmu_get_resv_regions(struct device *dev,
				      struct list_head *head)
{
	struct iommu_resv_region *region;
	int prot = IOMMU_WRITE | IOMMU_NOEXEC | IOMMU_MMIO;

	region = iommu_alloc_resv_region(MSI_IOVA_BASE, MSI_IOVA_LENGTH,
1667
					 prot, IOMMU_RESV_SW_MSI);
1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682
	if (!region)
		return;

	list_add_tail(&region->list, head);
}

static void arm_smmu_put_resv_regions(struct device *dev,
				      struct list_head *head)
{
	struct iommu_resv_region *entry, *next;

	list_for_each_entry_safe(entry, next, head, list)
		kfree(entry);
}

1683
static struct iommu_ops arm_smmu_ops = {
1684
	.capable		= arm_smmu_capable,
1685 1686
	.domain_alloc		= arm_smmu_domain_alloc,
	.domain_free		= arm_smmu_domain_free,
1687 1688 1689
	.attach_dev		= arm_smmu_attach_dev,
	.map			= arm_smmu_map,
	.unmap			= arm_smmu_unmap,
1690
	.map_sg			= default_iommu_map_sg,
1691 1692 1693
	.iova_to_phys		= arm_smmu_iova_to_phys,
	.add_device		= arm_smmu_add_device,
	.remove_device		= arm_smmu_remove_device,
1694
	.device_group		= arm_smmu_device_group,
1695 1696
	.domain_get_attr	= arm_smmu_domain_get_attr,
	.domain_set_attr	= arm_smmu_domain_set_attr,
1697
	.of_xlate		= arm_smmu_of_xlate,
1698 1699
	.get_resv_regions	= arm_smmu_get_resv_regions,
	.put_resv_regions	= arm_smmu_put_resv_regions,
1700
	.pgsize_bitmap		= -1UL, /* Restricted during device attach */
1701 1702 1703 1704 1705
};

static void arm_smmu_device_reset(struct arm_smmu_device *smmu)
{
	void __iomem *gr0_base = ARM_SMMU_GR0(smmu);
1706
	void __iomem *cb_base;
1707
	int i;
1708
	u32 reg, major;
1709

1710 1711 1712
	/* clear global FSR */
	reg = readl_relaxed(ARM_SMMU_GR0_NS(smmu) + ARM_SMMU_GR0_sGFSR);
	writel(reg, ARM_SMMU_GR0_NS(smmu) + ARM_SMMU_GR0_sGFSR);
1713

1714 1715 1716 1717
	/*
	 * Reset stream mapping groups: Initial values mark all SMRn as
	 * invalid and all S2CRn as bypass unless overridden.
	 */
1718 1719
	for (i = 0; i < smmu->num_mapping_groups; ++i)
		arm_smmu_write_sme(smmu, i);
1720

1721 1722 1723 1724 1725 1726 1727 1728
	if (smmu->model == ARM_MMU500) {
		/*
		 * Before clearing ARM_MMU500_ACTLR_CPRE, need to
		 * clear CACHE_LOCK bit of ACR first. And, CACHE_LOCK
		 * bit is only present in MMU-500r2 onwards.
		 */
		reg = readl_relaxed(gr0_base + ARM_SMMU_GR0_ID7);
		major = (reg >> ID7_MAJOR_SHIFT) & ID7_MAJOR_MASK;
1729
		reg = readl_relaxed(gr0_base + ARM_SMMU_GR0_sACR);
1730 1731 1732 1733 1734 1735 1736
		if (major >= 2)
			reg &= ~ARM_MMU500_ACR_CACHE_LOCK;
		/*
		 * Allow unmatched Stream IDs to allocate bypass
		 * TLB entries for reduced latency.
		 */
		reg |= ARM_MMU500_ACR_SMTNMB_TLBEN;
1737 1738 1739
		writel_relaxed(reg, gr0_base + ARM_SMMU_GR0_sACR);
	}

1740 1741
	/* Make sure all context banks are disabled and clear CB_FSR  */
	for (i = 0; i < smmu->num_context_banks; ++i) {
1742
		cb_base = ARM_SMMU_CB(smmu, i);
1743 1744
		writel_relaxed(0, cb_base + ARM_SMMU_CB_SCTLR);
		writel_relaxed(FSR_FAULT, cb_base + ARM_SMMU_CB_FSR);
1745 1746 1747 1748 1749 1750 1751 1752 1753
		/*
		 * Disable MMU-500's not-particularly-beneficial next-page
		 * prefetcher for the sake of errata #841119 and #826419.
		 */
		if (smmu->model == ARM_MMU500) {
			reg = readl_relaxed(cb_base + ARM_SMMU_CB_ACTLR);
			reg &= ~ARM_MMU500_ACTLR_CPRE;
			writel_relaxed(reg, cb_base + ARM_SMMU_CB_ACTLR);
		}
1754
	}
1755

1756 1757 1758 1759
	/* Invalidate the TLB, just in case */
	writel_relaxed(0, gr0_base + ARM_SMMU_GR0_TLBIALLH);
	writel_relaxed(0, gr0_base + ARM_SMMU_GR0_TLBIALLNSNH);

1760
	reg = readl_relaxed(ARM_SMMU_GR0_NS(smmu) + ARM_SMMU_GR0_sCR0);
1761

1762
	/* Enable fault reporting */
1763
	reg |= (sCR0_GFRE | sCR0_GFIE | sCR0_GCFGFRE | sCR0_GCFGFIE);
1764 1765

	/* Disable TLB broadcasting. */
1766
	reg |= (sCR0_VMIDPNE | sCR0_PTM);
1767

1768 1769 1770 1771 1772 1773
	/* Enable client access, handling unmatched streams as appropriate */
	reg &= ~sCR0_CLIENTPD;
	if (disable_bypass)
		reg |= sCR0_USFCFG;
	else
		reg &= ~sCR0_USFCFG;
1774 1775

	/* Disable forced broadcasting */
1776
	reg &= ~sCR0_FB;
1777 1778

	/* Don't upgrade barriers */
1779
	reg &= ~(sCR0_BSU_MASK << sCR0_BSU_SHIFT);
1780

1781 1782 1783
	if (smmu->features & ARM_SMMU_FEAT_VMID16)
		reg |= sCR0_VMID16EN;

1784 1785 1786
	if (smmu->features & ARM_SMMU_FEAT_EXIDS)
		reg |= sCR0_EXIDENABLE;

1787
	/* Push the button */
1788
	arm_smmu_tlb_sync_global(smmu);
1789
	writel(reg, ARM_SMMU_GR0_NS(smmu) + ARM_SMMU_GR0_sCR0);
1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815
}

static int arm_smmu_id_size_to_bits(int size)
{
	switch (size) {
	case 0:
		return 32;
	case 1:
		return 36;
	case 2:
		return 40;
	case 3:
		return 42;
	case 4:
		return 44;
	case 5:
	default:
		return 48;
	}
}

static int arm_smmu_device_cfg_probe(struct arm_smmu_device *smmu)
{
	unsigned long size;
	void __iomem *gr0_base = ARM_SMMU_GR0(smmu);
	u32 id;
1816
	bool cttw_reg, cttw_fw = smmu->features & ARM_SMMU_FEAT_COHERENT_WALK;
1817
	int i;
1818 1819

	dev_notice(smmu->dev, "probing hardware configuration...\n");
1820 1821
	dev_notice(smmu->dev, "SMMUv%d with:\n",
			smmu->version == ARM_SMMU_V2 ? 2 : 1);
1822 1823 1824

	/* ID0 */
	id = readl_relaxed(gr0_base + ARM_SMMU_GR0_ID0);
1825 1826 1827 1828 1829 1830 1831

	/* Restrict available stages based on module parameter */
	if (force_stage == 1)
		id &= ~(ID0_S2TS | ID0_NTS);
	else if (force_stage == 2)
		id &= ~(ID0_S1TS | ID0_NTS);

1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847
	if (id & ID0_S1TS) {
		smmu->features |= ARM_SMMU_FEAT_TRANS_S1;
		dev_notice(smmu->dev, "\tstage 1 translation\n");
	}

	if (id & ID0_S2TS) {
		smmu->features |= ARM_SMMU_FEAT_TRANS_S2;
		dev_notice(smmu->dev, "\tstage 2 translation\n");
	}

	if (id & ID0_NTS) {
		smmu->features |= ARM_SMMU_FEAT_TRANS_NESTED;
		dev_notice(smmu->dev, "\tnested translation\n");
	}

	if (!(smmu->features &
1848
		(ARM_SMMU_FEAT_TRANS_S1 | ARM_SMMU_FEAT_TRANS_S2))) {
1849 1850 1851 1852
		dev_err(smmu->dev, "\tno translation support!\n");
		return -ENODEV;
	}

1853 1854
	if ((id & ID0_S1TS) &&
		((smmu->version < ARM_SMMU_V2) || !(id & ID0_ATOSNS))) {
1855 1856 1857 1858
		smmu->features |= ARM_SMMU_FEAT_TRANS_OPS;
		dev_notice(smmu->dev, "\taddress translation ops\n");
	}

1859 1860
	/*
	 * In order for DMA API calls to work properly, we must defer to what
1861
	 * the FW says about coherency, regardless of what the hardware claims.
1862 1863 1864 1865
	 * Fortunately, this also opens up a workaround for systems where the
	 * ID register value has ended up configured incorrectly.
	 */
	cttw_reg = !!(id & ID0_CTTW);
1866
	if (cttw_fw || cttw_reg)
1867
		dev_notice(smmu->dev, "\t%scoherent table walk\n",
1868 1869
			   cttw_fw ? "" : "non-");
	if (cttw_fw != cttw_reg)
1870
		dev_notice(smmu->dev,
1871
			   "\t(IDR0.CTTW overridden by FW configuration)\n");
1872

1873
	/* Max. number of entries we have for stream matching/indexing */
1874 1875 1876 1877 1878 1879
	if (smmu->version == ARM_SMMU_V2 && id & ID0_EXIDS) {
		smmu->features |= ARM_SMMU_FEAT_EXIDS;
		size = 1 << 16;
	} else {
		size = 1 << ((id >> ID0_NUMSIDB_SHIFT) & ID0_NUMSIDB_MASK);
	}
1880
	smmu->streamid_mask = size - 1;
1881 1882
	if (id & ID0_SMS) {
		smmu->features |= ARM_SMMU_FEAT_STREAM_MATCH;
1883 1884
		size = (id >> ID0_NUMSMRG_SHIFT) & ID0_NUMSMRG_MASK;
		if (size == 0) {
1885 1886 1887 1888 1889
			dev_err(smmu->dev,
				"stream-matching supported, but no SMRs present!\n");
			return -ENODEV;
		}

1890 1891 1892 1893 1894 1895
		/* Zero-initialised to mark as invalid */
		smmu->smrs = devm_kcalloc(smmu->dev, size, sizeof(*smmu->smrs),
					  GFP_KERNEL);
		if (!smmu->smrs)
			return -ENOMEM;

1896
		dev_notice(smmu->dev,
1897
			   "\tstream matching with %lu register groups", size);
1898
	}
1899 1900 1901 1902 1903 1904 1905 1906
	/* s2cr->type == 0 means translation, so initialise explicitly */
	smmu->s2crs = devm_kmalloc_array(smmu->dev, size, sizeof(*smmu->s2crs),
					 GFP_KERNEL);
	if (!smmu->s2crs)
		return -ENOMEM;
	for (i = 0; i < size; i++)
		smmu->s2crs[i] = s2cr_init_val;

1907
	smmu->num_mapping_groups = size;
1908
	mutex_init(&smmu->stream_map_mutex);
1909

1910 1911 1912 1913 1914 1915
	if (smmu->version < ARM_SMMU_V2 || !(id & ID0_PTFS_NO_AARCH32)) {
		smmu->features |= ARM_SMMU_FEAT_FMT_AARCH32_L;
		if (!(id & ID0_PTFS_NO_AARCH32S))
			smmu->features |= ARM_SMMU_FEAT_FMT_AARCH32_S;
	}

1916 1917
	/* ID1 */
	id = readl_relaxed(gr0_base + ARM_SMMU_GR0_ID1);
1918
	smmu->pgshift = (id & ID1_PAGESIZE) ? 16 : 12;
1919

1920
	/* Check for size mismatch of SMMU address space from mapped region */
1921
	size = 1 << (((id >> ID1_NUMPAGENDXB_SHIFT) & ID1_NUMPAGENDXB_MASK) + 1);
1922 1923
	size <<= smmu->pgshift;
	if (smmu->cb_base != gr0_base + size)
1924
		dev_warn(smmu->dev,
1925 1926
			"SMMU address space size (0x%lx) differs from mapped region size (0x%tx)!\n",
			size * 2, (smmu->cb_base - gr0_base) * 2);
1927

1928
	smmu->num_s2_context_banks = (id >> ID1_NUMS2CB_SHIFT) & ID1_NUMS2CB_MASK;
1929 1930 1931 1932 1933 1934 1935
	smmu->num_context_banks = (id >> ID1_NUMCB_SHIFT) & ID1_NUMCB_MASK;
	if (smmu->num_s2_context_banks > smmu->num_context_banks) {
		dev_err(smmu->dev, "impossible number of S2 context banks!\n");
		return -ENODEV;
	}
	dev_notice(smmu->dev, "\t%u context banks (%u stage-2 only)\n",
		   smmu->num_context_banks, smmu->num_s2_context_banks);
1936 1937 1938 1939 1940 1941 1942 1943 1944 1945
	/*
	 * Cavium CN88xx erratum #27704.
	 * Ensure ASID and VMID allocation is unique across all SMMUs in
	 * the system.
	 */
	if (smmu->model == CAVIUM_SMMUV2) {
		smmu->cavium_id_base =
			atomic_add_return(smmu->num_context_banks,
					  &cavium_smmu_context_count);
		smmu->cavium_id_base -= smmu->num_context_banks;
1946
		dev_notice(smmu->dev, "\tenabling workaround for Cavium erratum 27704\n");
1947
	}
1948 1949 1950 1951

	/* ID2 */
	id = readl_relaxed(gr0_base + ARM_SMMU_GR0_ID2);
	size = arm_smmu_id_size_to_bits((id >> ID2_IAS_SHIFT) & ID2_IAS_MASK);
1952
	smmu->ipa_size = size;
1953

1954
	/* The output mask is also applied for bypass */
1955
	size = arm_smmu_id_size_to_bits((id >> ID2_OAS_SHIFT) & ID2_OAS_MASK);
1956
	smmu->pa_size = size;
1957

1958 1959 1960
	if (id & ID2_VMID16)
		smmu->features |= ARM_SMMU_FEAT_VMID16;

1961 1962 1963 1964 1965 1966 1967 1968 1969
	/*
	 * What the page table walker can address actually depends on which
	 * descriptor format is in use, but since a) we don't know that yet,
	 * and b) it can vary per context bank, this will have to do...
	 */
	if (dma_set_mask_and_coherent(smmu->dev, DMA_BIT_MASK(size)))
		dev_warn(smmu->dev,
			 "failed to set DMA mask for table walker\n");

1970
	if (smmu->version < ARM_SMMU_V2) {
1971
		smmu->va_size = smmu->ipa_size;
1972 1973
		if (smmu->version == ARM_SMMU_V1_64K)
			smmu->features |= ARM_SMMU_FEAT_FMT_AARCH64_64K;
1974 1975
	} else {
		size = (id >> ID2_UBS_SHIFT) & ID2_UBS_MASK;
1976 1977
		smmu->va_size = arm_smmu_id_size_to_bits(size);
		if (id & ID2_PTFS_4K)
1978
			smmu->features |= ARM_SMMU_FEAT_FMT_AARCH64_4K;
1979
		if (id & ID2_PTFS_16K)
1980
			smmu->features |= ARM_SMMU_FEAT_FMT_AARCH64_16K;
1981
		if (id & ID2_PTFS_64K)
1982
			smmu->features |= ARM_SMMU_FEAT_FMT_AARCH64_64K;
1983 1984
	}

1985 1986
	/* Now we've corralled the various formats, what'll it do? */
	if (smmu->features & ARM_SMMU_FEAT_FMT_AARCH32_S)
1987
		smmu->pgsize_bitmap |= SZ_4K | SZ_64K | SZ_1M | SZ_16M;
1988 1989
	if (smmu->features &
	    (ARM_SMMU_FEAT_FMT_AARCH32_L | ARM_SMMU_FEAT_FMT_AARCH64_4K))
1990
		smmu->pgsize_bitmap |= SZ_4K | SZ_2M | SZ_1G;
1991
	if (smmu->features & ARM_SMMU_FEAT_FMT_AARCH64_16K)
1992
		smmu->pgsize_bitmap |= SZ_16K | SZ_32M;
1993
	if (smmu->features & ARM_SMMU_FEAT_FMT_AARCH64_64K)
1994 1995 1996 1997 1998 1999 2000 2001
		smmu->pgsize_bitmap |= SZ_64K | SZ_512M;

	if (arm_smmu_ops.pgsize_bitmap == -1UL)
		arm_smmu_ops.pgsize_bitmap = smmu->pgsize_bitmap;
	else
		arm_smmu_ops.pgsize_bitmap |= smmu->pgsize_bitmap;
	dev_notice(smmu->dev, "\tSupported page sizes: 0x%08lx\n",
		   smmu->pgsize_bitmap);
2002

2003

2004 2005
	if (smmu->features & ARM_SMMU_FEAT_TRANS_S1)
		dev_notice(smmu->dev, "\tStage-1: %lu-bit VA -> %lu-bit IPA\n",
2006
			   smmu->va_size, smmu->ipa_size);
2007 2008 2009

	if (smmu->features & ARM_SMMU_FEAT_TRANS_S2)
		dev_notice(smmu->dev, "\tStage-2: %lu-bit IPA -> %lu-bit PA\n",
2010
			   smmu->ipa_size, smmu->pa_size);
2011

2012 2013 2014
	return 0;
}

2015 2016 2017 2018 2019 2020 2021 2022 2023 2024
struct arm_smmu_match_data {
	enum arm_smmu_arch_version version;
	enum arm_smmu_implementation model;
};

#define ARM_SMMU_MATCH_DATA(name, ver, imp)	\
static struct arm_smmu_match_data name = { .version = ver, .model = imp }

ARM_SMMU_MATCH_DATA(smmu_generic_v1, ARM_SMMU_V1, GENERIC_SMMU);
ARM_SMMU_MATCH_DATA(smmu_generic_v2, ARM_SMMU_V2, GENERIC_SMMU);
2025
ARM_SMMU_MATCH_DATA(arm_mmu401, ARM_SMMU_V1_64K, GENERIC_SMMU);
2026
ARM_SMMU_MATCH_DATA(arm_mmu500, ARM_SMMU_V2, ARM_MMU500);
2027
ARM_SMMU_MATCH_DATA(cavium_smmuv2, ARM_SMMU_V2, CAVIUM_SMMUV2);
2028

2029
static const struct of_device_id arm_smmu_of_match[] = {
2030 2031 2032
	{ .compatible = "arm,smmu-v1", .data = &smmu_generic_v1 },
	{ .compatible = "arm,smmu-v2", .data = &smmu_generic_v2 },
	{ .compatible = "arm,mmu-400", .data = &smmu_generic_v1 },
2033
	{ .compatible = "arm,mmu-401", .data = &arm_mmu401 },
2034
	{ .compatible = "arm,mmu-500", .data = &arm_mmu500 },
2035
	{ .compatible = "cavium,smmu-v2", .data = &cavium_smmuv2 },
2036 2037 2038 2039
	{ },
};
MODULE_DEVICE_TABLE(of, arm_smmu_of_match);

2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097
#ifdef CONFIG_ACPI
static int acpi_smmu_get_data(u32 model, struct arm_smmu_device *smmu)
{
	int ret = 0;

	switch (model) {
	case ACPI_IORT_SMMU_V1:
	case ACPI_IORT_SMMU_CORELINK_MMU400:
		smmu->version = ARM_SMMU_V1;
		smmu->model = GENERIC_SMMU;
		break;
	case ACPI_IORT_SMMU_V2:
		smmu->version = ARM_SMMU_V2;
		smmu->model = GENERIC_SMMU;
		break;
	case ACPI_IORT_SMMU_CORELINK_MMU500:
		smmu->version = ARM_SMMU_V2;
		smmu->model = ARM_MMU500;
		break;
	default:
		ret = -ENODEV;
	}

	return ret;
}

static int arm_smmu_device_acpi_probe(struct platform_device *pdev,
				      struct arm_smmu_device *smmu)
{
	struct device *dev = smmu->dev;
	struct acpi_iort_node *node =
		*(struct acpi_iort_node **)dev_get_platdata(dev);
	struct acpi_iort_smmu *iort_smmu;
	int ret;

	/* Retrieve SMMU1/2 specific data */
	iort_smmu = (struct acpi_iort_smmu *)node->node_data;

	ret = acpi_smmu_get_data(iort_smmu->model, smmu);
	if (ret < 0)
		return ret;

	/* Ignore the configuration access interrupt */
	smmu->num_global_irqs = 1;

	if (iort_smmu->flags & ACPI_IORT_SMMU_COHERENT_WALK)
		smmu->features |= ARM_SMMU_FEAT_COHERENT_WALK;

	return 0;
}
#else
static inline int arm_smmu_device_acpi_probe(struct platform_device *pdev,
					     struct arm_smmu_device *smmu)
{
	return -ENODEV;
}
#endif

2098 2099
static int arm_smmu_device_dt_probe(struct platform_device *pdev,
				    struct arm_smmu_device *smmu)
2100
{
2101
	const struct arm_smmu_match_data *data;
2102
	struct device *dev = &pdev->dev;
2103 2104
	bool legacy_binding;

2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116
	if (of_property_read_u32(dev->of_node, "#global-interrupts",
				 &smmu->num_global_irqs)) {
		dev_err(dev, "missing #global-interrupts property\n");
		return -ENODEV;
	}

	data = of_device_get_match_data(dev);
	smmu->version = data->version;
	smmu->model = data->model;

	parse_driver_options(smmu);

2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127
	legacy_binding = of_find_property(dev->of_node, "mmu-masters", NULL);
	if (legacy_binding && !using_generic_binding) {
		if (!using_legacy_binding)
			pr_notice("deprecated \"mmu-masters\" DT property in use; DMA API support unavailable\n");
		using_legacy_binding = true;
	} else if (!legacy_binding && !using_legacy_binding) {
		using_generic_binding = true;
	} else {
		dev_err(dev, "not probing due to mismatched DT properties\n");
		return -ENODEV;
	}
2128

2129 2130 2131 2132 2133 2134 2135 2136 2137
	if (of_dma_is_coherent(dev->of_node))
		smmu->features |= ARM_SMMU_FEAT_COHERENT_WALK;

	return 0;
}

static int arm_smmu_device_probe(struct platform_device *pdev)
{
	struct resource *res;
2138
	resource_size_t ioaddr;
2139 2140 2141 2142
	struct arm_smmu_device *smmu;
	struct device *dev = &pdev->dev;
	int num_irqs, i, err;

2143 2144 2145 2146 2147 2148 2149
	smmu = devm_kzalloc(dev, sizeof(*smmu), GFP_KERNEL);
	if (!smmu) {
		dev_err(dev, "failed to allocate arm_smmu_device\n");
		return -ENOMEM;
	}
	smmu->dev = dev;

2150 2151 2152 2153 2154
	if (dev->of_node)
		err = arm_smmu_device_dt_probe(pdev, smmu);
	else
		err = arm_smmu_device_acpi_probe(pdev, smmu);

2155 2156
	if (err)
		return err;
2157

2158
	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2159
	ioaddr = res->start;
2160 2161 2162
	smmu->base = devm_ioremap_resource(dev, res);
	if (IS_ERR(smmu->base))
		return PTR_ERR(smmu->base);
2163
	smmu->cb_base = smmu->base + resource_size(res) / 2;
2164 2165 2166 2167 2168 2169 2170 2171

	num_irqs = 0;
	while ((res = platform_get_resource(pdev, IORESOURCE_IRQ, num_irqs))) {
		num_irqs++;
		if (num_irqs > smmu->num_global_irqs)
			smmu->num_context_irqs++;
	}

2172 2173 2174 2175
	if (!smmu->num_context_irqs) {
		dev_err(dev, "found %d interrupts but expected at least %d\n",
			num_irqs, smmu->num_global_irqs + 1);
		return -ENODEV;
2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186
	}

	smmu->irqs = devm_kzalloc(dev, sizeof(*smmu->irqs) * num_irqs,
				  GFP_KERNEL);
	if (!smmu->irqs) {
		dev_err(dev, "failed to allocate %d irqs\n", num_irqs);
		return -ENOMEM;
	}

	for (i = 0; i < num_irqs; ++i) {
		int irq = platform_get_irq(pdev, i);
2187

2188 2189 2190 2191 2192 2193 2194
		if (irq < 0) {
			dev_err(dev, "failed to get irq index %d\n", i);
			return -ENODEV;
		}
		smmu->irqs[i] = irq;
	}

2195 2196 2197 2198
	err = arm_smmu_device_cfg_probe(smmu);
	if (err)
		return err;

2199
	if (smmu->version == ARM_SMMU_V2 &&
2200 2201 2202 2203
	    smmu->num_context_banks != smmu->num_context_irqs) {
		dev_err(dev,
			"found only %d context interrupt(s) but %d required\n",
			smmu->num_context_irqs, smmu->num_context_banks);
2204
		return -ENODEV;
2205 2206 2207
	}

	for (i = 0; i < smmu->num_global_irqs; ++i) {
2208 2209 2210 2211 2212
		err = devm_request_irq(smmu->dev, smmu->irqs[i],
				       arm_smmu_global_fault,
				       IRQF_SHARED,
				       "arm-smmu global fault",
				       smmu);
2213 2214 2215
		if (err) {
			dev_err(dev, "failed to request global IRQ %d (%u)\n",
				i, smmu->irqs[i]);
2216
			return err;
2217 2218 2219
		}
	}

2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235
	err = iommu_device_sysfs_add(&smmu->iommu, smmu->dev, NULL,
				     "smmu.%pa", &ioaddr);
	if (err) {
		dev_err(dev, "Failed to register iommu in sysfs\n");
		return err;
	}

	iommu_device_set_ops(&smmu->iommu, &arm_smmu_ops);
	iommu_device_set_fwnode(&smmu->iommu, dev->fwnode);

	err = iommu_device_register(&smmu->iommu);
	if (err) {
		dev_err(dev, "Failed to register iommu\n");
		return err;
	}

2236
	platform_set_drvdata(pdev, smmu);
2237
	arm_smmu_device_reset(smmu);
2238
	arm_smmu_test_smr_masks(smmu);
2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252

	/* Oh, for a proper bus abstraction */
	if (!iommu_present(&platform_bus_type))
		bus_set_iommu(&platform_bus_type, &arm_smmu_ops);
#ifdef CONFIG_ARM_AMBA
	if (!iommu_present(&amba_bustype))
		bus_set_iommu(&amba_bustype, &arm_smmu_ops);
#endif
#ifdef CONFIG_PCI
	if (!iommu_present(&pci_bus_type)) {
		pci_request_acs();
		bus_set_iommu(&pci_bus_type, &arm_smmu_ops);
	}
#endif
2253 2254 2255 2256 2257
	return 0;
}

static int arm_smmu_device_remove(struct platform_device *pdev)
{
2258
	struct arm_smmu_device *smmu = platform_get_drvdata(pdev);
2259 2260 2261 2262

	if (!smmu)
		return -ENODEV;

2263
	if (!bitmap_empty(smmu->context_map, ARM_SMMU_MAX_CBS))
2264
		dev_err(&pdev->dev, "removing device with active domains!\n");
2265 2266

	/* Turn the thing off */
2267
	writel(sCR0_CLIENTPD, ARM_SMMU_GR0_NS(smmu) + ARM_SMMU_GR0_sCR0);
2268 2269 2270 2271 2272 2273 2274 2275
	return 0;
}

static struct platform_driver arm_smmu_driver = {
	.driver	= {
		.name		= "arm-smmu",
		.of_match_table	= of_match_ptr(arm_smmu_of_match),
	},
2276
	.probe	= arm_smmu_device_probe,
2277 2278 2279 2280 2281
	.remove	= arm_smmu_device_remove,
};

static int __init arm_smmu_init(void)
{
2282 2283
	static bool registered;
	int ret = 0;
2284

2285 2286 2287
	if (!registered) {
		ret = platform_driver_register(&arm_smmu_driver);
		registered = !ret;
2288
	}
2289
	return ret;
2290 2291 2292 2293 2294 2295 2296
}

static void __exit arm_smmu_exit(void)
{
	return platform_driver_unregister(&arm_smmu_driver);
}

2297
subsys_initcall(arm_smmu_init);
2298 2299
module_exit(arm_smmu_exit);

2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318
static int __init arm_smmu_of_init(struct device_node *np)
{
	int ret = arm_smmu_init();

	if (ret)
		return ret;

	if (!of_platform_device_create(np, NULL, platform_bus_type.dev_root))
		return -ENODEV;

	return 0;
}
IOMMU_OF_DECLARE(arm_smmuv1, "arm,smmu-v1", arm_smmu_of_init);
IOMMU_OF_DECLARE(arm_smmuv2, "arm,smmu-v2", arm_smmu_of_init);
IOMMU_OF_DECLARE(arm_mmu400, "arm,mmu-400", arm_smmu_of_init);
IOMMU_OF_DECLARE(arm_mmu401, "arm,mmu-401", arm_smmu_of_init);
IOMMU_OF_DECLARE(arm_mmu500, "arm,mmu-500", arm_smmu_of_init);
IOMMU_OF_DECLARE(cavium_smmuv2, "cavium,smmu-v2", arm_smmu_of_init);

2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329
#ifdef CONFIG_ACPI
static int __init arm_smmu_acpi_init(struct acpi_table_header *table)
{
	if (iort_node_match(ACPI_IORT_NODE_SMMU))
		return arm_smmu_init();

	return 0;
}
IORT_ACPI_DECLARE(arm_smmu, ACPI_SIG_IORT, arm_smmu_acpi_init);
#endif

2330 2331 2332
MODULE_DESCRIPTION("IOMMU API for ARM architected SMMU implementations");
MODULE_AUTHOR("Will Deacon <will.deacon@arm.com>");
MODULE_LICENSE("GPL v2");