arm-smmu.c 54.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
/*
 * IOMMU API for ARM architected SMMU implementations.
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
 *
 * Copyright (C) 2013 ARM Limited
 *
 * Author: Will Deacon <will.deacon@arm.com>
 *
 * This driver currently supports:
 *	- SMMUv1 and v2 implementations
 *	- Stream-matching and stream-indexing
 *	- v7/v8 long-descriptor format
 *	- Non-secure access to the SMMU
 *	- Context fault reporting
 */

#define pr_fmt(fmt) "arm-smmu: " fmt

31
#include <linux/atomic.h>
32
#include <linux/delay.h>
33
#include <linux/dma-iommu.h>
34 35 36 37
#include <linux/dma-mapping.h>
#include <linux/err.h>
#include <linux/interrupt.h>
#include <linux/io.h>
38
#include <linux/io-64-nonatomic-hi-lo.h>
39
#include <linux/iommu.h>
40
#include <linux/iopoll.h>
41 42
#include <linux/module.h>
#include <linux/of.h>
43
#include <linux/of_address.h>
44
#include <linux/pci.h>
45 46 47 48 49 50
#include <linux/platform_device.h>
#include <linux/slab.h>
#include <linux/spinlock.h>

#include <linux/amba/bus.h>

51
#include "io-pgtable.h"
52 53

/* Maximum number of stream IDs assigned to a single device */
54
#define MAX_MASTER_STREAMIDS		128
55 56 57 58 59 60

/* Maximum number of context banks per SMMU */
#define ARM_SMMU_MAX_CBS		128

/* SMMU global address space */
#define ARM_SMMU_GR0(smmu)		((smmu)->base)
61
#define ARM_SMMU_GR1(smmu)		((smmu)->base + (1 << (smmu)->pgshift))
62

63 64 65 66 67 68 69 70 71 72
/*
 * SMMU global address space with conditional offset to access secure
 * aliases of non-secure registers (e.g. nsCR0: 0x400, nsGFSR: 0x448,
 * nsGFSYNR0: 0x450)
 */
#define ARM_SMMU_GR0_NS(smmu)						\
	((smmu)->base +							\
		((smmu->options & ARM_SMMU_OPT_SECURE_CFG_ACCESS)	\
			? 0x400 : 0))

73 74 75 76 77
/*
 * Some 64-bit registers only make sense to write atomically, but in such
 * cases all the data relevant to AArch32 formats lies within the lower word,
 * therefore this actually makes more sense than it might first appear.
 */
78
#ifdef CONFIG_64BIT
79
#define smmu_write_atomic_lq		writeq_relaxed
80
#else
81
#define smmu_write_atomic_lq		writel_relaxed
82 83
#endif

84 85 86 87 88 89 90 91 92 93 94
/* Configuration registers */
#define ARM_SMMU_GR0_sCR0		0x0
#define sCR0_CLIENTPD			(1 << 0)
#define sCR0_GFRE			(1 << 1)
#define sCR0_GFIE			(1 << 2)
#define sCR0_GCFGFRE			(1 << 4)
#define sCR0_GCFGFIE			(1 << 5)
#define sCR0_USFCFG			(1 << 10)
#define sCR0_VMIDPNE			(1 << 11)
#define sCR0_PTM			(1 << 12)
#define sCR0_FB				(1 << 13)
95
#define sCR0_VMID16EN			(1 << 31)
96 97 98
#define sCR0_BSU_SHIFT			14
#define sCR0_BSU_MASK			0x3

99 100 101
/* Auxiliary Configuration register */
#define ARM_SMMU_GR0_sACR		0x10

102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119
/* Identification registers */
#define ARM_SMMU_GR0_ID0		0x20
#define ARM_SMMU_GR0_ID1		0x24
#define ARM_SMMU_GR0_ID2		0x28
#define ARM_SMMU_GR0_ID3		0x2c
#define ARM_SMMU_GR0_ID4		0x30
#define ARM_SMMU_GR0_ID5		0x34
#define ARM_SMMU_GR0_ID6		0x38
#define ARM_SMMU_GR0_ID7		0x3c
#define ARM_SMMU_GR0_sGFSR		0x48
#define ARM_SMMU_GR0_sGFSYNR0		0x50
#define ARM_SMMU_GR0_sGFSYNR1		0x54
#define ARM_SMMU_GR0_sGFSYNR2		0x58

#define ID0_S1TS			(1 << 30)
#define ID0_S2TS			(1 << 29)
#define ID0_NTS				(1 << 28)
#define ID0_SMS				(1 << 27)
120
#define ID0_ATOSNS			(1 << 26)
121 122
#define ID0_PTFS_NO_AARCH32		(1 << 25)
#define ID0_PTFS_NO_AARCH32S		(1 << 24)
123 124 125
#define ID0_CTTW			(1 << 14)
#define ID0_NUMIRPT_SHIFT		16
#define ID0_NUMIRPT_MASK		0xff
126 127
#define ID0_NUMSIDB_SHIFT		9
#define ID0_NUMSIDB_MASK		0xf
128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147
#define ID0_NUMSMRG_SHIFT		0
#define ID0_NUMSMRG_MASK		0xff

#define ID1_PAGESIZE			(1 << 31)
#define ID1_NUMPAGENDXB_SHIFT		28
#define ID1_NUMPAGENDXB_MASK		7
#define ID1_NUMS2CB_SHIFT		16
#define ID1_NUMS2CB_MASK		0xff
#define ID1_NUMCB_SHIFT			0
#define ID1_NUMCB_MASK			0xff

#define ID2_OAS_SHIFT			4
#define ID2_OAS_MASK			0xf
#define ID2_IAS_SHIFT			0
#define ID2_IAS_MASK			0xf
#define ID2_UBS_SHIFT			8
#define ID2_UBS_MASK			0xf
#define ID2_PTFS_4K			(1 << 12)
#define ID2_PTFS_16K			(1 << 13)
#define ID2_PTFS_64K			(1 << 14)
148
#define ID2_VMID16			(1 << 15)
149

150 151
#define ID7_MAJOR_SHIFT			4
#define ID7_MAJOR_MASK			0xf
152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172

/* Global TLB invalidation */
#define ARM_SMMU_GR0_TLBIVMID		0x64
#define ARM_SMMU_GR0_TLBIALLNSNH	0x68
#define ARM_SMMU_GR0_TLBIALLH		0x6c
#define ARM_SMMU_GR0_sTLBGSYNC		0x70
#define ARM_SMMU_GR0_sTLBGSTATUS	0x74
#define sTLBGSTATUS_GSACTIVE		(1 << 0)
#define TLB_LOOP_TIMEOUT		1000000	/* 1s! */

/* Stream mapping registers */
#define ARM_SMMU_GR0_SMR(n)		(0x800 + ((n) << 2))
#define SMR_VALID			(1 << 31)
#define SMR_MASK_SHIFT			16
#define SMR_ID_SHIFT			0

#define ARM_SMMU_GR0_S2CR(n)		(0xc00 + ((n) << 2))
#define S2CR_CBNDX_SHIFT		0
#define S2CR_CBNDX_MASK			0xff
#define S2CR_TYPE_SHIFT			16
#define S2CR_TYPE_MASK			0x3
173 174 175 176 177
enum arm_smmu_s2cr_type {
	S2CR_TYPE_TRANS,
	S2CR_TYPE_BYPASS,
	S2CR_TYPE_FAULT,
};
178

179
#define S2CR_PRIVCFG_SHIFT		24
180 181 182 183 184 185 186
#define S2CR_PRIVCFG_MASK		0x3
enum arm_smmu_s2cr_privcfg {
	S2CR_PRIVCFG_DEFAULT,
	S2CR_PRIVCFG_DIPAN,
	S2CR_PRIVCFG_UNPRIV,
	S2CR_PRIVCFG_PRIV,
};
187

188 189 190 191
/* Context bank attribute registers */
#define ARM_SMMU_GR1_CBAR(n)		(0x0 + ((n) << 2))
#define CBAR_VMID_SHIFT			0
#define CBAR_VMID_MASK			0xff
192 193 194
#define CBAR_S1_BPSHCFG_SHIFT		8
#define CBAR_S1_BPSHCFG_MASK		3
#define CBAR_S1_BPSHCFG_NSH		3
195 196 197 198 199 200 201 202 203 204 205 206 207 208 209
#define CBAR_S1_MEMATTR_SHIFT		12
#define CBAR_S1_MEMATTR_MASK		0xf
#define CBAR_S1_MEMATTR_WB		0xf
#define CBAR_TYPE_SHIFT			16
#define CBAR_TYPE_MASK			0x3
#define CBAR_TYPE_S2_TRANS		(0 << CBAR_TYPE_SHIFT)
#define CBAR_TYPE_S1_TRANS_S2_BYPASS	(1 << CBAR_TYPE_SHIFT)
#define CBAR_TYPE_S1_TRANS_S2_FAULT	(2 << CBAR_TYPE_SHIFT)
#define CBAR_TYPE_S1_TRANS_S2_TRANS	(3 << CBAR_TYPE_SHIFT)
#define CBAR_IRPTNDX_SHIFT		24
#define CBAR_IRPTNDX_MASK		0xff

#define ARM_SMMU_GR1_CBA2R(n)		(0x800 + ((n) << 2))
#define CBA2R_RW64_32BIT		(0 << 0)
#define CBA2R_RW64_64BIT		(1 << 0)
210 211
#define CBA2R_VMID_SHIFT		16
#define CBA2R_VMID_MASK			0xffff
212 213 214

/* Translation context bank */
#define ARM_SMMU_CB_BASE(smmu)		((smmu)->base + ((smmu)->size >> 1))
215
#define ARM_SMMU_CB(smmu, n)		((n) * (1 << (smmu)->pgshift))
216 217

#define ARM_SMMU_CB_SCTLR		0x0
218
#define ARM_SMMU_CB_ACTLR		0x4
219 220
#define ARM_SMMU_CB_RESUME		0x8
#define ARM_SMMU_CB_TTBCR2		0x10
221 222
#define ARM_SMMU_CB_TTBR0		0x20
#define ARM_SMMU_CB_TTBR1		0x28
223
#define ARM_SMMU_CB_TTBCR		0x30
224
#define ARM_SMMU_CB_CONTEXTIDR		0x34
225
#define ARM_SMMU_CB_S1_MAIR0		0x38
226
#define ARM_SMMU_CB_S1_MAIR1		0x3c
227
#define ARM_SMMU_CB_PAR			0x50
228
#define ARM_SMMU_CB_FSR			0x58
229
#define ARM_SMMU_CB_FAR			0x60
230
#define ARM_SMMU_CB_FSYNR0		0x68
231
#define ARM_SMMU_CB_S1_TLBIVA		0x600
232
#define ARM_SMMU_CB_S1_TLBIASID		0x610
233 234 235
#define ARM_SMMU_CB_S1_TLBIVAL		0x620
#define ARM_SMMU_CB_S2_TLBIIPAS2	0x630
#define ARM_SMMU_CB_S2_TLBIIPAS2L	0x638
236
#define ARM_SMMU_CB_ATS1PR		0x800
237
#define ARM_SMMU_CB_ATSR		0x8f0
238 239 240 241 242 243 244 245 246 247

#define SCTLR_S1_ASIDPNE		(1 << 12)
#define SCTLR_CFCFG			(1 << 7)
#define SCTLR_CFIE			(1 << 6)
#define SCTLR_CFRE			(1 << 5)
#define SCTLR_E				(1 << 4)
#define SCTLR_AFE			(1 << 2)
#define SCTLR_TRE			(1 << 1)
#define SCTLR_M				(1 << 0)

248 249
#define ARM_MMU500_ACTLR_CPRE		(1 << 1)

250 251
#define ARM_MMU500_ACR_CACHE_LOCK	(1 << 26)

252 253 254 255
#define CB_PAR_F			(1 << 0)

#define ATSR_ACTIVE			(1 << 0)

256 257 258 259
#define RESUME_RETRY			(0 << 0)
#define RESUME_TERMINATE		(1 << 0)

#define TTBCR2_SEP_SHIFT		15
260
#define TTBCR2_SEP_UPSTREAM		(0x7 << TTBCR2_SEP_SHIFT)
261

262
#define TTBRn_ASID_SHIFT		48
263 264 265 266 267 268 269 270 271 272 273 274

#define FSR_MULTI			(1 << 31)
#define FSR_SS				(1 << 30)
#define FSR_UUT				(1 << 8)
#define FSR_ASF				(1 << 7)
#define FSR_TLBLKF			(1 << 6)
#define FSR_TLBMCF			(1 << 5)
#define FSR_EF				(1 << 4)
#define FSR_PF				(1 << 3)
#define FSR_AFF				(1 << 2)
#define FSR_TF				(1 << 1)

275 276 277
#define FSR_IGN				(FSR_AFF | FSR_ASF | \
					 FSR_TLBMCF | FSR_TLBLKF)
#define FSR_FAULT			(FSR_MULTI | FSR_SS | FSR_UUT | \
278
					 FSR_EF | FSR_PF | FSR_TF | FSR_IGN)
279 280 281

#define FSYNR0_WNR			(1 << 4)

282
static int force_stage;
283
module_param(force_stage, int, S_IRUGO);
284 285
MODULE_PARM_DESC(force_stage,
	"Force SMMU mappings to be installed at a particular stage of translation. A value of '1' or '2' forces the corresponding stage. All other values are ignored (i.e. no stage is forced). Note that selecting a specific stage will disable support for nested translation.");
286 287 288 289
static bool disable_bypass;
module_param(disable_bypass, bool, S_IRUGO);
MODULE_PARM_DESC(disable_bypass,
	"Disable bypass streams such that incoming transactions from devices that are not attached to an iommu domain will report an abort back to the device and will not be allowed to pass through the SMMU.");
290

291
enum arm_smmu_arch_version {
292 293
	ARM_SMMU_V1,
	ARM_SMMU_V1_64K,
294 295 296
	ARM_SMMU_V2,
};

297 298
enum arm_smmu_implementation {
	GENERIC_SMMU,
299
	ARM_MMU500,
300
	CAVIUM_SMMUV2,
301 302
};

303 304 305 306 307 308 309 310 311 312
struct arm_smmu_s2cr {
	enum arm_smmu_s2cr_type		type;
	enum arm_smmu_s2cr_privcfg	privcfg;
	u8				cbndx;
};

#define s2cr_init_val (struct arm_smmu_s2cr){				\
	.type = disable_bypass ? S2CR_TYPE_FAULT : S2CR_TYPE_BYPASS,	\
}

313 314 315
struct arm_smmu_smr {
	u16				mask;
	u16				id;
316
	bool				valid;
317 318
};

319
struct arm_smmu_master_cfg {
320
	struct arm_smmu_device		*smmu;
321 322
	int				num_streamids;
	u16				streamids[MAX_MASTER_STREAMIDS];
323
	s16				smendx[MAX_MASTER_STREAMIDS];
324
};
325
#define INVALID_SMENDX			-1
326 327 328 329 330 331

struct arm_smmu_device {
	struct device			*dev;

	void __iomem			*base;
	unsigned long			size;
332
	unsigned long			pgshift;
333 334 335 336 337 338

#define ARM_SMMU_FEAT_COHERENT_WALK	(1 << 0)
#define ARM_SMMU_FEAT_STREAM_MATCH	(1 << 1)
#define ARM_SMMU_FEAT_TRANS_S1		(1 << 2)
#define ARM_SMMU_FEAT_TRANS_S2		(1 << 3)
#define ARM_SMMU_FEAT_TRANS_NESTED	(1 << 4)
339
#define ARM_SMMU_FEAT_TRANS_OPS		(1 << 5)
340
#define ARM_SMMU_FEAT_VMID16		(1 << 6)
341 342 343 344 345
#define ARM_SMMU_FEAT_FMT_AARCH64_4K	(1 << 7)
#define ARM_SMMU_FEAT_FMT_AARCH64_16K	(1 << 8)
#define ARM_SMMU_FEAT_FMT_AARCH64_64K	(1 << 9)
#define ARM_SMMU_FEAT_FMT_AARCH32_L	(1 << 10)
#define ARM_SMMU_FEAT_FMT_AARCH32_S	(1 << 11)
346
	u32				features;
347 348 349

#define ARM_SMMU_OPT_SECURE_CFG_ACCESS (1 << 0)
	u32				options;
350
	enum arm_smmu_arch_version	version;
351
	enum arm_smmu_implementation	model;
352 353 354 355 356 357 358

	u32				num_context_banks;
	u32				num_s2_context_banks;
	DECLARE_BITMAP(context_map, ARM_SMMU_MAX_CBS);
	atomic_t			irptndx;

	u32				num_mapping_groups;
359 360
	u16				streamid_mask;
	u16				smr_mask_mask;
361
	struct arm_smmu_smr		*smrs;
362
	struct arm_smmu_s2cr		*s2crs;
363

364 365 366
	unsigned long			va_size;
	unsigned long			ipa_size;
	unsigned long			pa_size;
367
	unsigned long			pgsize_bitmap;
368 369 370 371 372 373

	u32				num_global_irqs;
	u32				num_context_irqs;
	unsigned int			*irqs;

	struct list_head		list;
374 375

	u32				cavium_id_base; /* Specific to Cavium */
376 377
};

378 379 380 381 382
enum arm_smmu_context_fmt {
	ARM_SMMU_CTX_FMT_NONE,
	ARM_SMMU_CTX_FMT_AARCH64,
	ARM_SMMU_CTX_FMT_AARCH32_L,
	ARM_SMMU_CTX_FMT_AARCH32_S,
383 384 385 386 387 388
};

struct arm_smmu_cfg {
	u8				cbndx;
	u8				irptndx;
	u32				cbar;
389
	enum arm_smmu_context_fmt	fmt;
390
};
391
#define INVALID_IRPTNDX			0xff
392

393 394
#define ARM_SMMU_CB_ASID(smmu, cfg) ((u16)(smmu)->cavium_id_base + (cfg)->cbndx)
#define ARM_SMMU_CB_VMID(smmu, cfg) ((u16)(smmu)->cavium_id_base + (cfg)->cbndx + 1)
395

396 397 398 399 400 401
enum arm_smmu_domain_stage {
	ARM_SMMU_DOMAIN_S1 = 0,
	ARM_SMMU_DOMAIN_S2,
	ARM_SMMU_DOMAIN_NESTED,
};

402
struct arm_smmu_domain {
403
	struct arm_smmu_device		*smmu;
404 405
	struct io_pgtable_ops		*pgtbl_ops;
	spinlock_t			pgtbl_lock;
406
	struct arm_smmu_cfg		cfg;
407
	enum arm_smmu_domain_stage	stage;
408
	struct mutex			init_mutex; /* Protects smmu pointer */
409
	struct iommu_domain		domain;
410 411 412 413 414
};

static DEFINE_SPINLOCK(arm_smmu_devices_lock);
static LIST_HEAD(arm_smmu_devices);

415 416 417 418 419
struct arm_smmu_option_prop {
	u32 opt;
	const char *prop;
};

420 421
static atomic_t cavium_smmu_context_count = ATOMIC_INIT(0);

422
static struct arm_smmu_option_prop arm_smmu_options[] = {
423 424 425 426
	{ ARM_SMMU_OPT_SECURE_CFG_ACCESS, "calxeda,smmu-secure-config-access" },
	{ 0, NULL},
};

427 428 429 430 431
static struct arm_smmu_domain *to_smmu_domain(struct iommu_domain *dom)
{
	return container_of(dom, struct arm_smmu_domain, domain);
}

432 433 434
static void parse_driver_options(struct arm_smmu_device *smmu)
{
	int i = 0;
435

436 437 438 439 440 441 442 443 444 445
	do {
		if (of_property_read_bool(smmu->dev->of_node,
						arm_smmu_options[i].prop)) {
			smmu->options |= arm_smmu_options[i].opt;
			dev_notice(smmu->dev, "option %s\n",
				arm_smmu_options[i].prop);
		}
	} while (arm_smmu_options[++i].opt);
}

446
static struct device_node *dev_get_dev_node(struct device *dev)
447 448 449
{
	if (dev_is_pci(dev)) {
		struct pci_bus *bus = to_pci_dev(dev)->bus;
450

451 452
		while (!pci_is_root_bus(bus))
			bus = bus->parent;
453
		return of_node_get(bus->bridge->parent->of_node);
454 455
	}

456
	return of_node_get(dev->of_node);
457 458
}

459
static int __arm_smmu_get_pci_sid(struct pci_dev *pdev, u16 alias, void *data)
460
{
461 462
	*((__be32 *)data) = cpu_to_be32(alias);
	return 0; /* Continue walking */
463 464
}

465
static int __find_legacy_master_phandle(struct device *dev, void *data)
466
{
467 468 469 470 471 472 473 474 475 476 477 478
	struct of_phandle_iterator *it = *(void **)data;
	struct device_node *np = it->node;
	int err;

	of_for_each_phandle(it, err, dev->of_node, "mmu-masters",
			    "#stream-id-cells", 0)
		if (it->node == np) {
			*(void **)data = dev;
			return 1;
		}
	it->node = np;
	return err == -ENOENT ? 0 : err;
479 480
}

481
static int arm_smmu_register_legacy_master(struct device *dev)
482
{
483 484 485 486 487 488 489
	struct arm_smmu_device *smmu;
	struct arm_smmu_master_cfg *cfg;
	struct device_node *np;
	struct of_phandle_iterator it;
	void *data = &it;
	__be32 pci_sid;
	int err;
490

491 492 493 494 495
	np = dev_get_dev_node(dev);
	if (!np || !of_find_property(np, "#stream-id-cells", NULL)) {
		of_node_put(np);
		return -ENODEV;
	}
496

497 498 499 500 501 502
	it.node = np;
	spin_lock(&arm_smmu_devices_lock);
	list_for_each_entry(smmu, &arm_smmu_devices, list) {
		err = __find_legacy_master_phandle(smmu->dev, &data);
		if (err)
			break;
503
	}
504 505 506 507 508 509
	spin_unlock(&arm_smmu_devices_lock);
	of_node_put(np);
	if (err == 0)
		return -ENODEV;
	if (err < 0)
		return err;
510

511 512
	if (it.cur_count > MAX_MASTER_STREAMIDS) {
		dev_err(smmu->dev,
513
			"reached maximum number (%d) of stream IDs for master device %s\n",
514
			MAX_MASTER_STREAMIDS, dev_name(dev));
515 516
		return -ENOSPC;
	}
517 518 519 520 521 522 523
	if (dev_is_pci(dev)) {
		/* "mmu-masters" assumes Stream ID == Requester ID */
		pci_for_each_dma_alias(to_pci_dev(dev), __arm_smmu_get_pci_sid,
				       &pci_sid);
		it.cur = &pci_sid;
		it.cur_count = 1;
	}
524

525 526
	cfg = kzalloc(sizeof(*cfg), GFP_KERNEL);
	if (!cfg)
527 528
		return -ENOMEM;

529 530
	cfg->smmu = smmu;
	dev->archdata.iommu = cfg;
531

532 533
	while (it.cur_count--)
		cfg->streamids[cfg->num_streamids++] = be32_to_cpup(it.cur++);
534

535
	return 0;
536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556
}

static int __arm_smmu_alloc_bitmap(unsigned long *map, int start, int end)
{
	int idx;

	do {
		idx = find_next_zero_bit(map, end, start);
		if (idx == end)
			return -ENOSPC;
	} while (test_and_set_bit(idx, map));

	return idx;
}

static void __arm_smmu_free_bitmap(unsigned long *map, int idx)
{
	clear_bit(idx, map);
}

/* Wait for any pending TLB invalidations to complete */
557
static void __arm_smmu_tlb_sync(struct arm_smmu_device *smmu)
558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574
{
	int count = 0;
	void __iomem *gr0_base = ARM_SMMU_GR0(smmu);

	writel_relaxed(0, gr0_base + ARM_SMMU_GR0_sTLBGSYNC);
	while (readl_relaxed(gr0_base + ARM_SMMU_GR0_sTLBGSTATUS)
	       & sTLBGSTATUS_GSACTIVE) {
		cpu_relax();
		if (++count == TLB_LOOP_TIMEOUT) {
			dev_err_ratelimited(smmu->dev,
			"TLB sync timed out -- SMMU may be deadlocked\n");
			return;
		}
		udelay(1);
	}
}

575 576 577 578 579 580 581
static void arm_smmu_tlb_sync(void *cookie)
{
	struct arm_smmu_domain *smmu_domain = cookie;
	__arm_smmu_tlb_sync(smmu_domain->smmu);
}

static void arm_smmu_tlb_inv_context(void *cookie)
582
{
583
	struct arm_smmu_domain *smmu_domain = cookie;
584 585
	struct arm_smmu_cfg *cfg = &smmu_domain->cfg;
	struct arm_smmu_device *smmu = smmu_domain->smmu;
586
	bool stage1 = cfg->cbar != CBAR_TYPE_S2_TRANS;
587
	void __iomem *base;
588 589 590

	if (stage1) {
		base = ARM_SMMU_CB_BASE(smmu) + ARM_SMMU_CB(smmu, cfg->cbndx);
591
		writel_relaxed(ARM_SMMU_CB_ASID(smmu, cfg),
592
			       base + ARM_SMMU_CB_S1_TLBIASID);
593 594
	} else {
		base = ARM_SMMU_GR0(smmu);
595
		writel_relaxed(ARM_SMMU_CB_VMID(smmu, cfg),
596
			       base + ARM_SMMU_GR0_TLBIVMID);
597 598
	}

599 600 601 602
	__arm_smmu_tlb_sync(smmu);
}

static void arm_smmu_tlb_inv_range_nosync(unsigned long iova, size_t size,
603
					  size_t granule, bool leaf, void *cookie)
604 605 606 607 608 609 610 611 612 613 614
{
	struct arm_smmu_domain *smmu_domain = cookie;
	struct arm_smmu_cfg *cfg = &smmu_domain->cfg;
	struct arm_smmu_device *smmu = smmu_domain->smmu;
	bool stage1 = cfg->cbar != CBAR_TYPE_S2_TRANS;
	void __iomem *reg;

	if (stage1) {
		reg = ARM_SMMU_CB_BASE(smmu) + ARM_SMMU_CB(smmu, cfg->cbndx);
		reg += leaf ? ARM_SMMU_CB_S1_TLBIVAL : ARM_SMMU_CB_S1_TLBIVA;

615
		if (cfg->fmt != ARM_SMMU_CTX_FMT_AARCH64) {
616
			iova &= ~12UL;
617
			iova |= ARM_SMMU_CB_ASID(smmu, cfg);
618 619 620 621
			do {
				writel_relaxed(iova, reg);
				iova += granule;
			} while (size -= granule);
622 623
		} else {
			iova >>= 12;
624
			iova |= (u64)ARM_SMMU_CB_ASID(smmu, cfg) << 48;
625 626 627 628
			do {
				writeq_relaxed(iova, reg);
				iova += granule >> 12;
			} while (size -= granule);
629 630 631 632 633
		}
	} else if (smmu->version == ARM_SMMU_V2) {
		reg = ARM_SMMU_CB_BASE(smmu) + ARM_SMMU_CB(smmu, cfg->cbndx);
		reg += leaf ? ARM_SMMU_CB_S2_TLBIIPAS2L :
			      ARM_SMMU_CB_S2_TLBIIPAS2;
634 635
		iova >>= 12;
		do {
636
			smmu_write_atomic_lq(iova, reg);
637 638
			iova += granule >> 12;
		} while (size -= granule);
639 640
	} else {
		reg = ARM_SMMU_GR0(smmu) + ARM_SMMU_GR0_TLBIVMID;
641
		writel_relaxed(ARM_SMMU_CB_VMID(smmu, cfg), reg);
642 643 644 645 646 647 648 649 650
	}
}

static struct iommu_gather_ops arm_smmu_gather_ops = {
	.tlb_flush_all	= arm_smmu_tlb_inv_context,
	.tlb_add_flush	= arm_smmu_tlb_inv_range_nosync,
	.tlb_sync	= arm_smmu_tlb_sync,
};

651 652
static irqreturn_t arm_smmu_context_fault(int irq, void *dev)
{
653
	u32 fsr, fsynr;
654 655
	unsigned long iova;
	struct iommu_domain *domain = dev;
656
	struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
657 658
	struct arm_smmu_cfg *cfg = &smmu_domain->cfg;
	struct arm_smmu_device *smmu = smmu_domain->smmu;
659 660
	void __iomem *cb_base;

661
	cb_base = ARM_SMMU_CB_BASE(smmu) + ARM_SMMU_CB(smmu, cfg->cbndx);
662 663 664 665 666 667
	fsr = readl_relaxed(cb_base + ARM_SMMU_CB_FSR);

	if (!(fsr & FSR_FAULT))
		return IRQ_NONE;

	fsynr = readl_relaxed(cb_base + ARM_SMMU_CB_FSYNR0);
668
	iova = readq_relaxed(cb_base + ARM_SMMU_CB_FAR);
669

670 671 672
	dev_err_ratelimited(smmu->dev,
	"Unhandled context fault: fsr=0x%x, iova=0x%08lx, fsynr=0x%x, cb=%d\n",
			    fsr, iova, fsynr, cfg->cbndx);
673

674 675
	writel(fsr, cb_base + ARM_SMMU_CB_FSR);
	return IRQ_HANDLED;
676 677 678 679 680 681
}

static irqreturn_t arm_smmu_global_fault(int irq, void *dev)
{
	u32 gfsr, gfsynr0, gfsynr1, gfsynr2;
	struct arm_smmu_device *smmu = dev;
682
	void __iomem *gr0_base = ARM_SMMU_GR0_NS(smmu);
683 684 685 686 687 688

	gfsr = readl_relaxed(gr0_base + ARM_SMMU_GR0_sGFSR);
	gfsynr0 = readl_relaxed(gr0_base + ARM_SMMU_GR0_sGFSYNR0);
	gfsynr1 = readl_relaxed(gr0_base + ARM_SMMU_GR0_sGFSYNR1);
	gfsynr2 = readl_relaxed(gr0_base + ARM_SMMU_GR0_sGFSYNR2);

689 690 691
	if (!gfsr)
		return IRQ_NONE;

692 693 694 695 696 697 698
	dev_err_ratelimited(smmu->dev,
		"Unexpected global fault, this could be serious\n");
	dev_err_ratelimited(smmu->dev,
		"\tGFSR 0x%08x, GFSYNR0 0x%08x, GFSYNR1 0x%08x, GFSYNR2 0x%08x\n",
		gfsr, gfsynr0, gfsynr1, gfsynr2);

	writel(gfsr, gr0_base + ARM_SMMU_GR0_sGFSR);
699
	return IRQ_HANDLED;
700 701
}

702 703
static void arm_smmu_init_context_bank(struct arm_smmu_domain *smmu_domain,
				       struct io_pgtable_cfg *pgtbl_cfg)
704
{
705
	u32 reg, reg2;
706
	u64 reg64;
707
	bool stage1;
708 709
	struct arm_smmu_cfg *cfg = &smmu_domain->cfg;
	struct arm_smmu_device *smmu = smmu_domain->smmu;
710
	void __iomem *cb_base, *gr1_base;
711 712

	gr1_base = ARM_SMMU_GR1(smmu);
713 714
	stage1 = cfg->cbar != CBAR_TYPE_S2_TRANS;
	cb_base = ARM_SMMU_CB_BASE(smmu) + ARM_SMMU_CB(smmu, cfg->cbndx);
715

716
	if (smmu->version > ARM_SMMU_V1) {
717 718 719 720
		if (cfg->fmt == ARM_SMMU_CTX_FMT_AARCH64)
			reg = CBA2R_RW64_64BIT;
		else
			reg = CBA2R_RW64_32BIT;
721 722
		/* 16-bit VMIDs live in CBA2R */
		if (smmu->features & ARM_SMMU_FEAT_VMID16)
723
			reg |= ARM_SMMU_CB_VMID(smmu, cfg) << CBA2R_VMID_SHIFT;
724

725 726 727
		writel_relaxed(reg, gr1_base + ARM_SMMU_GR1_CBA2R(cfg->cbndx));
	}

728
	/* CBAR */
729
	reg = cfg->cbar;
730
	if (smmu->version < ARM_SMMU_V2)
731
		reg |= cfg->irptndx << CBAR_IRPTNDX_SHIFT;
732

733 734 735 736 737 738 739
	/*
	 * Use the weakest shareability/memory types, so they are
	 * overridden by the ttbcr/pte.
	 */
	if (stage1) {
		reg |= (CBAR_S1_BPSHCFG_NSH << CBAR_S1_BPSHCFG_SHIFT) |
			(CBAR_S1_MEMATTR_WB << CBAR_S1_MEMATTR_SHIFT);
740 741
	} else if (!(smmu->features & ARM_SMMU_FEAT_VMID16)) {
		/* 8-bit VMIDs live in CBAR */
742
		reg |= ARM_SMMU_CB_VMID(smmu, cfg) << CBAR_VMID_SHIFT;
743
	}
744
	writel_relaxed(reg, gr1_base + ARM_SMMU_GR1_CBAR(cfg->cbndx));
745

746 747
	/* TTBRs */
	if (stage1) {
748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763
		u16 asid = ARM_SMMU_CB_ASID(smmu, cfg);

		if (cfg->fmt == ARM_SMMU_CTX_FMT_AARCH32_S) {
			reg = pgtbl_cfg->arm_v7s_cfg.ttbr[0];
			writel_relaxed(reg, cb_base + ARM_SMMU_CB_TTBR0);
			reg = pgtbl_cfg->arm_v7s_cfg.ttbr[1];
			writel_relaxed(reg, cb_base + ARM_SMMU_CB_TTBR1);
			writel_relaxed(asid, cb_base + ARM_SMMU_CB_CONTEXTIDR);
		} else {
			reg64 = pgtbl_cfg->arm_lpae_s1_cfg.ttbr[0];
			reg64 |= (u64)asid << TTBRn_ASID_SHIFT;
			writeq_relaxed(reg64, cb_base + ARM_SMMU_CB_TTBR0);
			reg64 = pgtbl_cfg->arm_lpae_s1_cfg.ttbr[1];
			reg64 |= (u64)asid << TTBRn_ASID_SHIFT;
			writeq_relaxed(reg64, cb_base + ARM_SMMU_CB_TTBR1);
		}
764
	} else {
765
		reg64 = pgtbl_cfg->arm_lpae_s2_cfg.vttbr;
766
		writeq_relaxed(reg64, cb_base + ARM_SMMU_CB_TTBR0);
767
	}
768

769 770
	/* TTBCR */
	if (stage1) {
771 772 773 774 775 776 777
		if (cfg->fmt == ARM_SMMU_CTX_FMT_AARCH32_S) {
			reg = pgtbl_cfg->arm_v7s_cfg.tcr;
			reg2 = 0;
		} else {
			reg = pgtbl_cfg->arm_lpae_s1_cfg.tcr;
			reg2 = pgtbl_cfg->arm_lpae_s1_cfg.tcr >> 32;
			reg2 |= TTBCR2_SEP_UPSTREAM;
778
		}
779 780
		if (smmu->version > ARM_SMMU_V1)
			writel_relaxed(reg2, cb_base + ARM_SMMU_CB_TTBCR2);
781
	} else {
782
		reg = pgtbl_cfg->arm_lpae_s2_cfg.vtcr;
783
	}
784
	writel_relaxed(reg, cb_base + ARM_SMMU_CB_TTBCR);
785

786
	/* MAIRs (stage-1 only) */
787
	if (stage1) {
788 789 790 791 792 793 794
		if (cfg->fmt == ARM_SMMU_CTX_FMT_AARCH32_S) {
			reg = pgtbl_cfg->arm_v7s_cfg.prrr;
			reg2 = pgtbl_cfg->arm_v7s_cfg.nmrr;
		} else {
			reg = pgtbl_cfg->arm_lpae_s1_cfg.mair[0];
			reg2 = pgtbl_cfg->arm_lpae_s1_cfg.mair[1];
		}
795
		writel_relaxed(reg, cb_base + ARM_SMMU_CB_S1_MAIR0);
796
		writel_relaxed(reg2, cb_base + ARM_SMMU_CB_S1_MAIR1);
797 798 799
	}

	/* SCTLR */
800
	reg = SCTLR_CFIE | SCTLR_CFRE | SCTLR_AFE | SCTLR_TRE | SCTLR_M;
801 802 803 804 805
	if (stage1)
		reg |= SCTLR_S1_ASIDPNE;
#ifdef __BIG_ENDIAN
	reg |= SCTLR_E;
#endif
806
	writel_relaxed(reg, cb_base + ARM_SMMU_CB_SCTLR);
807 808 809
}

static int arm_smmu_init_domain_context(struct iommu_domain *domain,
810
					struct arm_smmu_device *smmu)
811
{
812
	int irq, start, ret = 0;
813 814 815 816
	unsigned long ias, oas;
	struct io_pgtable_ops *pgtbl_ops;
	struct io_pgtable_cfg pgtbl_cfg;
	enum io_pgtable_fmt fmt;
817
	struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
818
	struct arm_smmu_cfg *cfg = &smmu_domain->cfg;
819

820
	mutex_lock(&smmu_domain->init_mutex);
821 822 823
	if (smmu_domain->smmu)
		goto out_unlock;

824 825 826 827 828 829
	/* We're bypassing these SIDs, so don't allocate an actual context */
	if (domain->type == IOMMU_DOMAIN_DMA) {
		smmu_domain->smmu = smmu;
		goto out_unlock;
	}

830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852
	/*
	 * Mapping the requested stage onto what we support is surprisingly
	 * complicated, mainly because the spec allows S1+S2 SMMUs without
	 * support for nested translation. That means we end up with the
	 * following table:
	 *
	 * Requested        Supported        Actual
	 *     S1               N              S1
	 *     S1             S1+S2            S1
	 *     S1               S2             S2
	 *     S1               S1             S1
	 *     N                N              N
	 *     N              S1+S2            S2
	 *     N                S2             S2
	 *     N                S1             S1
	 *
	 * Note that you can't actually request stage-2 mappings.
	 */
	if (!(smmu->features & ARM_SMMU_FEAT_TRANS_S1))
		smmu_domain->stage = ARM_SMMU_DOMAIN_S2;
	if (!(smmu->features & ARM_SMMU_FEAT_TRANS_S2))
		smmu_domain->stage = ARM_SMMU_DOMAIN_S1;

853 854 855 856 857 858 859 860 861 862
	/*
	 * Choosing a suitable context format is even more fiddly. Until we
	 * grow some way for the caller to express a preference, and/or move
	 * the decision into the io-pgtable code where it arguably belongs,
	 * just aim for the closest thing to the rest of the system, and hope
	 * that the hardware isn't esoteric enough that we can't assume AArch64
	 * support to be a superset of AArch32 support...
	 */
	if (smmu->features & ARM_SMMU_FEAT_FMT_AARCH32_L)
		cfg->fmt = ARM_SMMU_CTX_FMT_AARCH32_L;
863 864 865 866 867
	if (IS_ENABLED(CONFIG_IOMMU_IO_PGTABLE_ARMV7S) &&
	    !IS_ENABLED(CONFIG_64BIT) && !IS_ENABLED(CONFIG_ARM_LPAE) &&
	    (smmu->features & ARM_SMMU_FEAT_FMT_AARCH32_S) &&
	    (smmu_domain->stage == ARM_SMMU_DOMAIN_S1))
		cfg->fmt = ARM_SMMU_CTX_FMT_AARCH32_S;
868 869 870 871 872 873 874 875 876 877 878
	if ((IS_ENABLED(CONFIG_64BIT) || cfg->fmt == ARM_SMMU_CTX_FMT_NONE) &&
	    (smmu->features & (ARM_SMMU_FEAT_FMT_AARCH64_64K |
			       ARM_SMMU_FEAT_FMT_AARCH64_16K |
			       ARM_SMMU_FEAT_FMT_AARCH64_4K)))
		cfg->fmt = ARM_SMMU_CTX_FMT_AARCH64;

	if (cfg->fmt == ARM_SMMU_CTX_FMT_NONE) {
		ret = -EINVAL;
		goto out_unlock;
	}

879 880 881 882
	switch (smmu_domain->stage) {
	case ARM_SMMU_DOMAIN_S1:
		cfg->cbar = CBAR_TYPE_S1_TRANS_S2_BYPASS;
		start = smmu->num_s2_context_banks;
883 884
		ias = smmu->va_size;
		oas = smmu->ipa_size;
885
		if (cfg->fmt == ARM_SMMU_CTX_FMT_AARCH64) {
886
			fmt = ARM_64_LPAE_S1;
887
		} else if (cfg->fmt == ARM_SMMU_CTX_FMT_AARCH32_L) {
888
			fmt = ARM_32_LPAE_S1;
889 890
			ias = min(ias, 32UL);
			oas = min(oas, 40UL);
891 892 893 894
		} else {
			fmt = ARM_V7S;
			ias = min(ias, 32UL);
			oas = min(oas, 32UL);
895
		}
896 897
		break;
	case ARM_SMMU_DOMAIN_NESTED:
898 899 900 901
		/*
		 * We will likely want to change this if/when KVM gets
		 * involved.
		 */
902
	case ARM_SMMU_DOMAIN_S2:
903 904
		cfg->cbar = CBAR_TYPE_S2_TRANS;
		start = 0;
905 906
		ias = smmu->ipa_size;
		oas = smmu->pa_size;
907
		if (cfg->fmt == ARM_SMMU_CTX_FMT_AARCH64) {
908
			fmt = ARM_64_LPAE_S2;
909
		} else {
910
			fmt = ARM_32_LPAE_S2;
911 912 913
			ias = min(ias, 40UL);
			oas = min(oas, 40UL);
		}
914 915 916 917
		break;
	default:
		ret = -EINVAL;
		goto out_unlock;
918 919 920 921
	}

	ret = __arm_smmu_alloc_bitmap(smmu->context_map, start,
				      smmu->num_context_banks);
922
	if (ret < 0)
923
		goto out_unlock;
924

925
	cfg->cbndx = ret;
926
	if (smmu->version < ARM_SMMU_V2) {
927 928
		cfg->irptndx = atomic_inc_return(&smmu->irptndx);
		cfg->irptndx %= smmu->num_context_irqs;
929
	} else {
930
		cfg->irptndx = cfg->cbndx;
931 932
	}

933
	pgtbl_cfg = (struct io_pgtable_cfg) {
934
		.pgsize_bitmap	= smmu->pgsize_bitmap,
935 936 937
		.ias		= ias,
		.oas		= oas,
		.tlb		= &arm_smmu_gather_ops,
938
		.iommu_dev	= smmu->dev,
939 940 941 942 943 944 945 946 947
	};

	smmu_domain->smmu = smmu;
	pgtbl_ops = alloc_io_pgtable_ops(fmt, &pgtbl_cfg, smmu_domain);
	if (!pgtbl_ops) {
		ret = -ENOMEM;
		goto out_clear_smmu;
	}

948 949
	/* Update the domain's page sizes to reflect the page table format */
	domain->pgsize_bitmap = pgtbl_cfg.pgsize_bitmap;
950

951 952 953 954 955 956 957
	/* Initialise the context bank with our page table cfg */
	arm_smmu_init_context_bank(smmu_domain, &pgtbl_cfg);

	/*
	 * Request context fault interrupt. Do this last to avoid the
	 * handler seeing a half-initialised domain state.
	 */
958
	irq = smmu->irqs[smmu->num_global_irqs + cfg->irptndx];
959 960
	ret = devm_request_irq(smmu->dev, irq, arm_smmu_context_fault,
			       IRQF_SHARED, "arm-smmu-context-fault", domain);
961
	if (ret < 0) {
962
		dev_err(smmu->dev, "failed to request context IRQ %d (%u)\n",
963 964
			cfg->irptndx, irq);
		cfg->irptndx = INVALID_IRPTNDX;
965 966
	}

967 968 969 970
	mutex_unlock(&smmu_domain->init_mutex);

	/* Publish page table ops for map/unmap */
	smmu_domain->pgtbl_ops = pgtbl_ops;
971
	return 0;
972

973 974
out_clear_smmu:
	smmu_domain->smmu = NULL;
975
out_unlock:
976
	mutex_unlock(&smmu_domain->init_mutex);
977 978 979 980 981
	return ret;
}

static void arm_smmu_destroy_domain_context(struct iommu_domain *domain)
{
982
	struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
983 984
	struct arm_smmu_device *smmu = smmu_domain->smmu;
	struct arm_smmu_cfg *cfg = &smmu_domain->cfg;
985
	void __iomem *cb_base;
986 987
	int irq;

988
	if (!smmu || domain->type == IOMMU_DOMAIN_DMA)
989 990
		return;

991 992 993 994
	/*
	 * Disable the context bank and free the page tables before freeing
	 * it.
	 */
995
	cb_base = ARM_SMMU_CB_BASE(smmu) + ARM_SMMU_CB(smmu, cfg->cbndx);
996 997
	writel_relaxed(0, cb_base + ARM_SMMU_CB_SCTLR);

998 999
	if (cfg->irptndx != INVALID_IRPTNDX) {
		irq = smmu->irqs[smmu->num_global_irqs + cfg->irptndx];
1000
		devm_free_irq(smmu->dev, irq, domain);
1001 1002
	}

1003
	free_io_pgtable_ops(smmu_domain->pgtbl_ops);
1004
	__arm_smmu_free_bitmap(smmu->context_map, cfg->cbndx);
1005 1006
}

1007
static struct iommu_domain *arm_smmu_domain_alloc(unsigned type)
1008 1009 1010
{
	struct arm_smmu_domain *smmu_domain;

1011
	if (type != IOMMU_DOMAIN_UNMANAGED && type != IOMMU_DOMAIN_DMA)
1012
		return NULL;
1013 1014 1015 1016 1017 1018 1019
	/*
	 * Allocate the domain and initialise some of its data structures.
	 * We can't really do anything meaningful until we've added a
	 * master.
	 */
	smmu_domain = kzalloc(sizeof(*smmu_domain), GFP_KERNEL);
	if (!smmu_domain)
1020
		return NULL;
1021

1022 1023 1024 1025 1026 1027
	if (type == IOMMU_DOMAIN_DMA &&
	    iommu_get_dma_cookie(&smmu_domain->domain)) {
		kfree(smmu_domain);
		return NULL;
	}

1028 1029
	mutex_init(&smmu_domain->init_mutex);
	spin_lock_init(&smmu_domain->pgtbl_lock);
1030 1031

	return &smmu_domain->domain;
1032 1033
}

1034
static void arm_smmu_domain_free(struct iommu_domain *domain)
1035
{
1036
	struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1037 1038 1039 1040 1041

	/*
	 * Free the domain resources. We assume that all devices have
	 * already been detached.
	 */
1042
	iommu_put_dma_cookie(domain);
1043 1044 1045 1046
	arm_smmu_destroy_domain_context(domain);
	kfree(smmu_domain);
}

1047
static int arm_smmu_alloc_smr(struct arm_smmu_device *smmu)
1048 1049 1050
{
	int i;

1051 1052 1053
	for (i = 0; i < smmu->num_mapping_groups; i++)
		if (!cmpxchg(&smmu->smrs[i].valid, false, true))
			return i;
1054

1055 1056
	return INVALID_SMENDX;
}
1057

1058 1059 1060 1061 1062 1063 1064 1065 1066
static void arm_smmu_free_smr(struct arm_smmu_device *smmu, int idx)
{
	writel_relaxed(~SMR_VALID, ARM_SMMU_GR0(smmu) + ARM_SMMU_GR0_SMR(idx));
	WRITE_ONCE(smmu->smrs[idx].valid, false);
}

static void arm_smmu_write_smr(struct arm_smmu_device *smmu, int idx)
{
	struct arm_smmu_smr *smr = smmu->smrs + idx;
1067
	u32 reg = smr->id << SMR_ID_SHIFT | smr->mask << SMR_MASK_SHIFT;
1068 1069 1070 1071 1072 1073

	if (smr->valid)
		reg |= SMR_VALID;
	writel_relaxed(reg, ARM_SMMU_GR0(smmu) + ARM_SMMU_GR0_SMR(idx));
}

1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090
static void arm_smmu_write_s2cr(struct arm_smmu_device *smmu, int idx)
{
	struct arm_smmu_s2cr *s2cr = smmu->s2crs + idx;
	u32 reg = (s2cr->type & S2CR_TYPE_MASK) << S2CR_TYPE_SHIFT |
		  (s2cr->cbndx & S2CR_CBNDX_MASK) << S2CR_CBNDX_SHIFT |
		  (s2cr->privcfg & S2CR_PRIVCFG_MASK) << S2CR_PRIVCFG_SHIFT;

	writel_relaxed(reg, ARM_SMMU_GR0(smmu) + ARM_SMMU_GR0_S2CR(idx));
}

static void arm_smmu_write_sme(struct arm_smmu_device *smmu, int idx)
{
	arm_smmu_write_s2cr(smmu, idx);
	if (smmu->smrs)
		arm_smmu_write_smr(smmu, idx);
}

1091 1092 1093 1094 1095
static int arm_smmu_master_alloc_smes(struct arm_smmu_device *smmu,
				      struct arm_smmu_master_cfg *cfg)
{
	struct arm_smmu_smr *smrs = smmu->smrs;
	int i, idx;
1096

1097
	/* Allocate the SMRs on the SMMU */
1098
	for (i = 0; i < cfg->num_streamids; ++i) {
1099 1100 1101 1102 1103 1104 1105 1106 1107 1108
		if (cfg->smendx[i] != INVALID_SMENDX)
			return -EEXIST;

		/* ...except on stream indexing hardware, of course */
		if (!smrs) {
			cfg->smendx[i] = cfg->streamids[i];
			continue;
		}

		idx = arm_smmu_alloc_smr(smmu);
1109
		if (idx < 0) {
1110 1111 1112
			dev_err(smmu->dev, "failed to allocate free SMR\n");
			goto err_free_smrs;
		}
1113
		cfg->smendx[i] = idx;
1114

1115 1116
		smrs[idx].id = cfg->streamids[i];
		smrs[idx].mask = 0; /* We don't currently share SMRs */
1117 1118
	}

1119 1120 1121
	if (!smrs)
		return 0;

1122
	/* It worked! Now, poke the actual hardware */
1123 1124
	for (i = 0; i < cfg->num_streamids; ++i)
		arm_smmu_write_smr(smmu, cfg->smendx[i]);
1125 1126 1127 1128

	return 0;

err_free_smrs:
1129 1130 1131 1132
	while (i--) {
		arm_smmu_free_smr(smmu, cfg->smendx[i]);
		cfg->smendx[i] = INVALID_SMENDX;
	}
1133 1134 1135
	return -ENOSPC;
}

1136
static void arm_smmu_master_free_smes(struct arm_smmu_master_cfg *cfg)
1137
{
1138
	struct arm_smmu_device *smmu = cfg->smmu;
1139
	int i;
1140

1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157
	/*
	 * We *must* clear the S2CR first, because freeing the SMR means
	 * that it can be re-allocated immediately.
	 */
	for (i = 0; i < cfg->num_streamids; ++i) {
		int idx = cfg->smendx[i];

		/* An IOMMU group is torn down by the first device to be removed */
		if (idx == INVALID_SMENDX)
			return;

		smmu->s2crs[idx] = s2cr_init_val;
		arm_smmu_write_s2cr(smmu, idx);
	}
	/* Sync S2CR updates before touching anything else */
	__iowmb();

1158
	/* Invalidate the SMRs before freeing back to the allocator */
1159
	for (i = 0; i < cfg->num_streamids; ++i) {
1160 1161
		if (smmu->smrs)
			arm_smmu_free_smr(smmu, cfg->smendx[i]);
1162

1163
		cfg->smendx[i] = INVALID_SMENDX;
1164 1165 1166 1167
	}
}

static int arm_smmu_domain_add_master(struct arm_smmu_domain *smmu_domain,
1168
				      struct arm_smmu_master_cfg *cfg)
1169
{
1170
	int i, ret = 0;
1171
	struct arm_smmu_device *smmu = smmu_domain->smmu;
1172 1173 1174 1175 1176 1177 1178 1179
	struct arm_smmu_s2cr *s2cr = smmu->s2crs;
	enum arm_smmu_s2cr_type type = S2CR_TYPE_TRANS;
	u8 cbndx = smmu_domain->cfg.cbndx;

	if (cfg->smendx[0] == INVALID_SMENDX)
		ret = arm_smmu_master_alloc_smes(smmu, cfg);
	if (ret)
		return ret;
1180

1181 1182
	/*
	 * FIXME: This won't be needed once we have IOMMU-backed DMA ops
1183 1184 1185
	 * for all devices behind the SMMU. Note that we need to take
	 * care configuring SMRs for devices both a platform_device and
	 * and a PCI device (i.e. a PCI host controller)
1186 1187
	 */
	if (smmu_domain->domain.type == IOMMU_DOMAIN_DMA)
1188
		type = S2CR_TYPE_BYPASS;
1189

1190
	for (i = 0; i < cfg->num_streamids; ++i) {
1191
		int idx = cfg->smendx[i];
1192

1193 1194 1195
		/* Devices in an IOMMU group may already be configured */
		if (type == s2cr[idx].type && cbndx == s2cr[idx].cbndx)
			break;
1196

1197 1198 1199 1200
		s2cr[idx].type = type;
		s2cr[idx].privcfg = S2CR_PRIVCFG_UNPRIV;
		s2cr[idx].cbndx = cbndx;
		arm_smmu_write_s2cr(smmu, idx);
1201
	}
1202
	return 0;
1203 1204
}

1205 1206
static int arm_smmu_attach_dev(struct iommu_domain *domain, struct device *dev)
{
1207
	int ret;
1208
	struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1209
	struct arm_smmu_master_cfg *cfg = dev->archdata.iommu;
1210

1211
	if (!cfg) {
1212 1213 1214 1215
		dev_err(dev, "cannot attach to SMMU, is it on the same bus?\n");
		return -ENXIO;
	}

1216
	/* Ensure that the domain is finalised */
1217
	ret = arm_smmu_init_domain_context(domain, cfg->smmu);
1218
	if (ret < 0)
1219 1220
		return ret;

1221
	/*
1222 1223
	 * Sanity check the domain. We don't support domains across
	 * different SMMUs.
1224
	 */
1225
	if (smmu_domain->smmu != cfg->smmu) {
1226 1227
		dev_err(dev,
			"cannot attach to SMMU %s whilst already attached to domain on SMMU %s\n",
1228
			dev_name(smmu_domain->smmu->dev), dev_name(cfg->smmu->dev));
1229
		return -EINVAL;
1230 1231 1232
	}

	/* Looks ok, so add the device to the domain */
1233
	return arm_smmu_domain_add_master(smmu_domain, cfg);
1234 1235 1236
}

static int arm_smmu_map(struct iommu_domain *domain, unsigned long iova,
1237
			phys_addr_t paddr, size_t size, int prot)
1238
{
1239 1240
	int ret;
	unsigned long flags;
1241
	struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1242
	struct io_pgtable_ops *ops= smmu_domain->pgtbl_ops;
1243

1244
	if (!ops)
1245 1246
		return -ENODEV;

1247 1248 1249 1250
	spin_lock_irqsave(&smmu_domain->pgtbl_lock, flags);
	ret = ops->map(ops, iova, paddr, size, prot);
	spin_unlock_irqrestore(&smmu_domain->pgtbl_lock, flags);
	return ret;
1251 1252 1253 1254 1255
}

static size_t arm_smmu_unmap(struct iommu_domain *domain, unsigned long iova,
			     size_t size)
{
1256 1257
	size_t ret;
	unsigned long flags;
1258
	struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1259
	struct io_pgtable_ops *ops= smmu_domain->pgtbl_ops;
1260

1261 1262 1263 1264 1265 1266 1267
	if (!ops)
		return 0;

	spin_lock_irqsave(&smmu_domain->pgtbl_lock, flags);
	ret = ops->unmap(ops, iova, size);
	spin_unlock_irqrestore(&smmu_domain->pgtbl_lock, flags);
	return ret;
1268 1269
}

1270 1271 1272
static phys_addr_t arm_smmu_iova_to_phys_hard(struct iommu_domain *domain,
					      dma_addr_t iova)
{
1273
	struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1274 1275 1276 1277 1278 1279 1280
	struct arm_smmu_device *smmu = smmu_domain->smmu;
	struct arm_smmu_cfg *cfg = &smmu_domain->cfg;
	struct io_pgtable_ops *ops= smmu_domain->pgtbl_ops;
	struct device *dev = smmu->dev;
	void __iomem *cb_base;
	u32 tmp;
	u64 phys;
1281
	unsigned long va;
1282 1283 1284

	cb_base = ARM_SMMU_CB_BASE(smmu) + ARM_SMMU_CB(smmu, cfg->cbndx);

1285 1286 1287
	/* ATS1 registers can only be written atomically */
	va = iova & ~0xfffUL;
	if (smmu->version == ARM_SMMU_V2)
1288 1289
		smmu_write_atomic_lq(va, cb_base + ARM_SMMU_CB_ATS1PR);
	else /* Register is only 32-bit in v1 */
1290
		writel_relaxed(va, cb_base + ARM_SMMU_CB_ATS1PR);
1291 1292 1293 1294

	if (readl_poll_timeout_atomic(cb_base + ARM_SMMU_CB_ATSR, tmp,
				      !(tmp & ATSR_ACTIVE), 5, 50)) {
		dev_err(dev,
1295
			"iova to phys timed out on %pad. Falling back to software table walk.\n",
1296 1297 1298 1299
			&iova);
		return ops->iova_to_phys(ops, iova);
	}

1300
	phys = readq_relaxed(cb_base + ARM_SMMU_CB_PAR);
1301 1302 1303 1304 1305 1306 1307 1308 1309
	if (phys & CB_PAR_F) {
		dev_err(dev, "translation fault!\n");
		dev_err(dev, "PAR = 0x%llx\n", phys);
		return 0;
	}

	return (phys & GENMASK_ULL(39, 12)) | (iova & 0xfff);
}

1310
static phys_addr_t arm_smmu_iova_to_phys(struct iommu_domain *domain,
1311
					dma_addr_t iova)
1312
{
1313 1314
	phys_addr_t ret;
	unsigned long flags;
1315
	struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1316
	struct io_pgtable_ops *ops= smmu_domain->pgtbl_ops;
1317

1318
	if (!ops)
1319
		return 0;
1320

1321
	spin_lock_irqsave(&smmu_domain->pgtbl_lock, flags);
1322 1323
	if (smmu_domain->smmu->features & ARM_SMMU_FEAT_TRANS_OPS &&
			smmu_domain->stage == ARM_SMMU_DOMAIN_S1) {
1324
		ret = arm_smmu_iova_to_phys_hard(domain, iova);
1325
	} else {
1326
		ret = ops->iova_to_phys(ops, iova);
1327 1328
	}

1329
	spin_unlock_irqrestore(&smmu_domain->pgtbl_lock, flags);
1330

1331
	return ret;
1332 1333
}

1334
static bool arm_smmu_capable(enum iommu_cap cap)
1335
{
1336 1337
	switch (cap) {
	case IOMMU_CAP_CACHE_COHERENCY:
1338 1339 1340 1341 1342
		/*
		 * Return true here as the SMMU can always send out coherent
		 * requests.
		 */
		return true;
1343
	case IOMMU_CAP_INTR_REMAP:
1344
		return true; /* MSIs are just memory writes */
1345 1346
	case IOMMU_CAP_NOEXEC:
		return true;
1347
	default:
1348
		return false;
1349
	}
1350 1351
}

1352
static int arm_smmu_add_device(struct device *dev)
1353
{
1354
	struct arm_smmu_master_cfg *cfg;
1355 1356
	struct iommu_group *group;
	int i, ret;
1357

1358 1359 1360 1361
	ret = arm_smmu_register_legacy_master(dev);
	cfg = dev->archdata.iommu;
	if (ret)
		goto out_free;
1362

1363 1364 1365
	ret = -EINVAL;
	for (i = 0; i < cfg->num_streamids; i++) {
		u16 sid = cfg->streamids[i];
1366

1367 1368 1369 1370 1371
		if (sid & ~cfg->smmu->streamid_mask) {
			dev_err(dev, "stream ID 0x%x out of range for SMMU (0x%x)\n",
				sid, cfg->smmu->streamid_mask);
			goto out_free;
		}
1372 1373
		cfg->smendx[i] = INVALID_SMENDX;
	}
1374

1375
	group = iommu_group_get_for_dev(dev);
1376 1377 1378 1379
	if (IS_ERR(group)) {
		ret = PTR_ERR(group);
		goto out_free;
	}
1380
	iommu_group_put(group);
1381
	return 0;
1382 1383 1384 1385 1386

out_free:
	kfree(cfg);
	dev->archdata.iommu = NULL;
	return ret;
1387 1388
}

1389 1390
static void arm_smmu_remove_device(struct device *dev)
{
1391
	struct arm_smmu_master_cfg *cfg = dev->archdata.iommu;
1392

1393 1394
	if (!cfg)
		return;
1395

1396
	arm_smmu_master_free_smes(cfg);
1397
	iommu_group_remove_device(dev);
1398 1399
	kfree(cfg);
	dev->archdata.iommu = NULL;
1400 1401
}

1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413
static struct iommu_group *arm_smmu_device_group(struct device *dev)
{
	struct iommu_group *group;

	if (dev_is_pci(dev))
		group = pci_device_group(dev);
	else
		group = generic_device_group(dev);

	return group;
}

1414 1415 1416
static int arm_smmu_domain_get_attr(struct iommu_domain *domain,
				    enum iommu_attr attr, void *data)
{
1417
	struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430

	switch (attr) {
	case DOMAIN_ATTR_NESTING:
		*(int *)data = (smmu_domain->stage == ARM_SMMU_DOMAIN_NESTED);
		return 0;
	default:
		return -ENODEV;
	}
}

static int arm_smmu_domain_set_attr(struct iommu_domain *domain,
				    enum iommu_attr attr, void *data)
{
1431
	int ret = 0;
1432
	struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1433

1434 1435
	mutex_lock(&smmu_domain->init_mutex);

1436 1437
	switch (attr) {
	case DOMAIN_ATTR_NESTING:
1438 1439 1440 1441 1442
		if (smmu_domain->smmu) {
			ret = -EPERM;
			goto out_unlock;
		}

1443 1444 1445 1446 1447
		if (*(int *)data)
			smmu_domain->stage = ARM_SMMU_DOMAIN_NESTED;
		else
			smmu_domain->stage = ARM_SMMU_DOMAIN_S1;

1448
		break;
1449
	default:
1450
		ret = -ENODEV;
1451
	}
1452 1453 1454 1455

out_unlock:
	mutex_unlock(&smmu_domain->init_mutex);
	return ret;
1456 1457
}

1458
static struct iommu_ops arm_smmu_ops = {
1459
	.capable		= arm_smmu_capable,
1460 1461
	.domain_alloc		= arm_smmu_domain_alloc,
	.domain_free		= arm_smmu_domain_free,
1462 1463 1464
	.attach_dev		= arm_smmu_attach_dev,
	.map			= arm_smmu_map,
	.unmap			= arm_smmu_unmap,
1465
	.map_sg			= default_iommu_map_sg,
1466 1467 1468
	.iova_to_phys		= arm_smmu_iova_to_phys,
	.add_device		= arm_smmu_add_device,
	.remove_device		= arm_smmu_remove_device,
1469
	.device_group		= arm_smmu_device_group,
1470 1471
	.domain_get_attr	= arm_smmu_domain_get_attr,
	.domain_set_attr	= arm_smmu_domain_set_attr,
1472
	.pgsize_bitmap		= -1UL, /* Restricted during device attach */
1473 1474 1475 1476 1477
};

static void arm_smmu_device_reset(struct arm_smmu_device *smmu)
{
	void __iomem *gr0_base = ARM_SMMU_GR0(smmu);
1478
	void __iomem *cb_base;
1479
	int i;
1480
	u32 reg, major;
1481

1482 1483 1484
	/* clear global FSR */
	reg = readl_relaxed(ARM_SMMU_GR0_NS(smmu) + ARM_SMMU_GR0_sGFSR);
	writel(reg, ARM_SMMU_GR0_NS(smmu) + ARM_SMMU_GR0_sGFSR);
1485

1486 1487 1488 1489
	/*
	 * Reset stream mapping groups: Initial values mark all SMRn as
	 * invalid and all S2CRn as bypass unless overridden.
	 */
1490 1491
	for (i = 0; i < smmu->num_mapping_groups; ++i)
		arm_smmu_write_sme(smmu, i);
1492

1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505
	/*
	 * Before clearing ARM_MMU500_ACTLR_CPRE, need to
	 * clear CACHE_LOCK bit of ACR first. And, CACHE_LOCK
	 * bit is only present in MMU-500r2 onwards.
	 */
	reg = readl_relaxed(gr0_base + ARM_SMMU_GR0_ID7);
	major = (reg >> ID7_MAJOR_SHIFT) & ID7_MAJOR_MASK;
	if ((smmu->model == ARM_MMU500) && (major >= 2)) {
		reg = readl_relaxed(gr0_base + ARM_SMMU_GR0_sACR);
		reg &= ~ARM_MMU500_ACR_CACHE_LOCK;
		writel_relaxed(reg, gr0_base + ARM_SMMU_GR0_sACR);
	}

1506 1507 1508 1509 1510
	/* Make sure all context banks are disabled and clear CB_FSR  */
	for (i = 0; i < smmu->num_context_banks; ++i) {
		cb_base = ARM_SMMU_CB_BASE(smmu) + ARM_SMMU_CB(smmu, i);
		writel_relaxed(0, cb_base + ARM_SMMU_CB_SCTLR);
		writel_relaxed(FSR_FAULT, cb_base + ARM_SMMU_CB_FSR);
1511 1512 1513 1514 1515 1516 1517 1518 1519
		/*
		 * Disable MMU-500's not-particularly-beneficial next-page
		 * prefetcher for the sake of errata #841119 and #826419.
		 */
		if (smmu->model == ARM_MMU500) {
			reg = readl_relaxed(cb_base + ARM_SMMU_CB_ACTLR);
			reg &= ~ARM_MMU500_ACTLR_CPRE;
			writel_relaxed(reg, cb_base + ARM_SMMU_CB_ACTLR);
		}
1520
	}
1521

1522 1523 1524 1525
	/* Invalidate the TLB, just in case */
	writel_relaxed(0, gr0_base + ARM_SMMU_GR0_TLBIALLH);
	writel_relaxed(0, gr0_base + ARM_SMMU_GR0_TLBIALLNSNH);

1526
	reg = readl_relaxed(ARM_SMMU_GR0_NS(smmu) + ARM_SMMU_GR0_sCR0);
1527

1528
	/* Enable fault reporting */
1529
	reg |= (sCR0_GFRE | sCR0_GFIE | sCR0_GCFGFRE | sCR0_GCFGFIE);
1530 1531

	/* Disable TLB broadcasting. */
1532
	reg |= (sCR0_VMIDPNE | sCR0_PTM);
1533

1534 1535 1536 1537 1538 1539
	/* Enable client access, handling unmatched streams as appropriate */
	reg &= ~sCR0_CLIENTPD;
	if (disable_bypass)
		reg |= sCR0_USFCFG;
	else
		reg &= ~sCR0_USFCFG;
1540 1541

	/* Disable forced broadcasting */
1542
	reg &= ~sCR0_FB;
1543 1544

	/* Don't upgrade barriers */
1545
	reg &= ~(sCR0_BSU_MASK << sCR0_BSU_SHIFT);
1546

1547 1548 1549
	if (smmu->features & ARM_SMMU_FEAT_VMID16)
		reg |= sCR0_VMID16EN;

1550
	/* Push the button */
1551
	__arm_smmu_tlb_sync(smmu);
1552
	writel(reg, ARM_SMMU_GR0_NS(smmu) + ARM_SMMU_GR0_sCR0);
1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578
}

static int arm_smmu_id_size_to_bits(int size)
{
	switch (size) {
	case 0:
		return 32;
	case 1:
		return 36;
	case 2:
		return 40;
	case 3:
		return 42;
	case 4:
		return 44;
	case 5:
	default:
		return 48;
	}
}

static int arm_smmu_device_cfg_probe(struct arm_smmu_device *smmu)
{
	unsigned long size;
	void __iomem *gr0_base = ARM_SMMU_GR0(smmu);
	u32 id;
1579
	bool cttw_dt, cttw_reg;
1580
	int i;
1581 1582

	dev_notice(smmu->dev, "probing hardware configuration...\n");
1583 1584
	dev_notice(smmu->dev, "SMMUv%d with:\n",
			smmu->version == ARM_SMMU_V2 ? 2 : 1);
1585 1586 1587

	/* ID0 */
	id = readl_relaxed(gr0_base + ARM_SMMU_GR0_ID0);
1588 1589 1590 1591 1592 1593 1594

	/* Restrict available stages based on module parameter */
	if (force_stage == 1)
		id &= ~(ID0_S2TS | ID0_NTS);
	else if (force_stage == 2)
		id &= ~(ID0_S1TS | ID0_NTS);

1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610
	if (id & ID0_S1TS) {
		smmu->features |= ARM_SMMU_FEAT_TRANS_S1;
		dev_notice(smmu->dev, "\tstage 1 translation\n");
	}

	if (id & ID0_S2TS) {
		smmu->features |= ARM_SMMU_FEAT_TRANS_S2;
		dev_notice(smmu->dev, "\tstage 2 translation\n");
	}

	if (id & ID0_NTS) {
		smmu->features |= ARM_SMMU_FEAT_TRANS_NESTED;
		dev_notice(smmu->dev, "\tnested translation\n");
	}

	if (!(smmu->features &
1611
		(ARM_SMMU_FEAT_TRANS_S1 | ARM_SMMU_FEAT_TRANS_S2))) {
1612 1613 1614 1615
		dev_err(smmu->dev, "\tno translation support!\n");
		return -ENODEV;
	}

1616 1617
	if ((id & ID0_S1TS) &&
		((smmu->version < ARM_SMMU_V2) || !(id & ID0_ATOSNS))) {
1618 1619 1620 1621
		smmu->features |= ARM_SMMU_FEAT_TRANS_OPS;
		dev_notice(smmu->dev, "\taddress translation ops\n");
	}

1622 1623 1624 1625 1626 1627 1628 1629 1630
	/*
	 * In order for DMA API calls to work properly, we must defer to what
	 * the DT says about coherency, regardless of what the hardware claims.
	 * Fortunately, this also opens up a workaround for systems where the
	 * ID register value has ended up configured incorrectly.
	 */
	cttw_dt = of_dma_is_coherent(smmu->dev->of_node);
	cttw_reg = !!(id & ID0_CTTW);
	if (cttw_dt)
1631
		smmu->features |= ARM_SMMU_FEAT_COHERENT_WALK;
1632 1633 1634 1635 1636 1637
	if (cttw_dt || cttw_reg)
		dev_notice(smmu->dev, "\t%scoherent table walk\n",
			   cttw_dt ? "" : "non-");
	if (cttw_dt != cttw_reg)
		dev_notice(smmu->dev,
			   "\t(IDR0.CTTW overridden by dma-coherent property)\n");
1638

1639 1640 1641
	/* Max. number of entries we have for stream matching/indexing */
	size = 1 << ((id >> ID0_NUMSIDB_SHIFT) & ID0_NUMSIDB_MASK);
	smmu->streamid_mask = size - 1;
1642
	if (id & ID0_SMS) {
1643
		u32 smr;
1644 1645

		smmu->features |= ARM_SMMU_FEAT_STREAM_MATCH;
1646 1647
		size = (id >> ID0_NUMSMRG_SHIFT) & ID0_NUMSMRG_MASK;
		if (size == 0) {
1648 1649 1650 1651 1652
			dev_err(smmu->dev,
				"stream-matching supported, but no SMRs present!\n");
			return -ENODEV;
		}

1653 1654 1655 1656 1657 1658
		/*
		 * SMR.ID bits may not be preserved if the corresponding MASK
		 * bits are set, so check each one separately. We can reject
		 * masters later if they try to claim IDs outside these masks.
		 */
		smr = smmu->streamid_mask << SMR_ID_SHIFT;
1659 1660
		writel_relaxed(smr, gr0_base + ARM_SMMU_GR0_SMR(0));
		smr = readl_relaxed(gr0_base + ARM_SMMU_GR0_SMR(0));
1661
		smmu->streamid_mask = smr >> SMR_ID_SHIFT;
1662

1663 1664 1665 1666
		smr = smmu->streamid_mask << SMR_MASK_SHIFT;
		writel_relaxed(smr, gr0_base + ARM_SMMU_GR0_SMR(0));
		smr = readl_relaxed(gr0_base + ARM_SMMU_GR0_SMR(0));
		smmu->smr_mask_mask = smr >> SMR_MASK_SHIFT;
1667

1668 1669 1670 1671 1672 1673
		/* Zero-initialised to mark as invalid */
		smmu->smrs = devm_kcalloc(smmu->dev, size, sizeof(*smmu->smrs),
					  GFP_KERNEL);
		if (!smmu->smrs)
			return -ENOMEM;

1674
		dev_notice(smmu->dev,
1675 1676
			   "\tstream matching with %lu register groups, mask 0x%x",
			   size, smmu->smr_mask_mask);
1677
	}
1678 1679 1680 1681 1682 1683 1684 1685
	/* s2cr->type == 0 means translation, so initialise explicitly */
	smmu->s2crs = devm_kmalloc_array(smmu->dev, size, sizeof(*smmu->s2crs),
					 GFP_KERNEL);
	if (!smmu->s2crs)
		return -ENOMEM;
	for (i = 0; i < size; i++)
		smmu->s2crs[i] = s2cr_init_val;

1686
	smmu->num_mapping_groups = size;
1687

1688 1689 1690 1691 1692 1693
	if (smmu->version < ARM_SMMU_V2 || !(id & ID0_PTFS_NO_AARCH32)) {
		smmu->features |= ARM_SMMU_FEAT_FMT_AARCH32_L;
		if (!(id & ID0_PTFS_NO_AARCH32S))
			smmu->features |= ARM_SMMU_FEAT_FMT_AARCH32_S;
	}

1694 1695
	/* ID1 */
	id = readl_relaxed(gr0_base + ARM_SMMU_GR0_ID1);
1696
	smmu->pgshift = (id & ID1_PAGESIZE) ? 16 : 12;
1697

1698
	/* Check for size mismatch of SMMU address space from mapped region */
1699
	size = 1 << (((id >> ID1_NUMPAGENDXB_SHIFT) & ID1_NUMPAGENDXB_MASK) + 1);
1700
	size *= 2 << smmu->pgshift;
1701
	if (smmu->size != size)
1702 1703 1704
		dev_warn(smmu->dev,
			"SMMU address space size (0x%lx) differs from mapped region size (0x%lx)!\n",
			size, smmu->size);
1705

1706
	smmu->num_s2_context_banks = (id >> ID1_NUMS2CB_SHIFT) & ID1_NUMS2CB_MASK;
1707 1708 1709 1710 1711 1712 1713
	smmu->num_context_banks = (id >> ID1_NUMCB_SHIFT) & ID1_NUMCB_MASK;
	if (smmu->num_s2_context_banks > smmu->num_context_banks) {
		dev_err(smmu->dev, "impossible number of S2 context banks!\n");
		return -ENODEV;
	}
	dev_notice(smmu->dev, "\t%u context banks (%u stage-2 only)\n",
		   smmu->num_context_banks, smmu->num_s2_context_banks);
1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724
	/*
	 * Cavium CN88xx erratum #27704.
	 * Ensure ASID and VMID allocation is unique across all SMMUs in
	 * the system.
	 */
	if (smmu->model == CAVIUM_SMMUV2) {
		smmu->cavium_id_base =
			atomic_add_return(smmu->num_context_banks,
					  &cavium_smmu_context_count);
		smmu->cavium_id_base -= smmu->num_context_banks;
	}
1725 1726 1727 1728

	/* ID2 */
	id = readl_relaxed(gr0_base + ARM_SMMU_GR0_ID2);
	size = arm_smmu_id_size_to_bits((id >> ID2_IAS_SHIFT) & ID2_IAS_MASK);
1729
	smmu->ipa_size = size;
1730

1731
	/* The output mask is also applied for bypass */
1732
	size = arm_smmu_id_size_to_bits((id >> ID2_OAS_SHIFT) & ID2_OAS_MASK);
1733
	smmu->pa_size = size;
1734

1735 1736 1737
	if (id & ID2_VMID16)
		smmu->features |= ARM_SMMU_FEAT_VMID16;

1738 1739 1740 1741 1742 1743 1744 1745 1746
	/*
	 * What the page table walker can address actually depends on which
	 * descriptor format is in use, but since a) we don't know that yet,
	 * and b) it can vary per context bank, this will have to do...
	 */
	if (dma_set_mask_and_coherent(smmu->dev, DMA_BIT_MASK(size)))
		dev_warn(smmu->dev,
			 "failed to set DMA mask for table walker\n");

1747
	if (smmu->version < ARM_SMMU_V2) {
1748
		smmu->va_size = smmu->ipa_size;
1749 1750
		if (smmu->version == ARM_SMMU_V1_64K)
			smmu->features |= ARM_SMMU_FEAT_FMT_AARCH64_64K;
1751 1752
	} else {
		size = (id >> ID2_UBS_SHIFT) & ID2_UBS_MASK;
1753 1754
		smmu->va_size = arm_smmu_id_size_to_bits(size);
		if (id & ID2_PTFS_4K)
1755
			smmu->features |= ARM_SMMU_FEAT_FMT_AARCH64_4K;
1756
		if (id & ID2_PTFS_16K)
1757
			smmu->features |= ARM_SMMU_FEAT_FMT_AARCH64_16K;
1758
		if (id & ID2_PTFS_64K)
1759
			smmu->features |= ARM_SMMU_FEAT_FMT_AARCH64_64K;
1760 1761
	}

1762 1763
	/* Now we've corralled the various formats, what'll it do? */
	if (smmu->features & ARM_SMMU_FEAT_FMT_AARCH32_S)
1764
		smmu->pgsize_bitmap |= SZ_4K | SZ_64K | SZ_1M | SZ_16M;
1765 1766
	if (smmu->features &
	    (ARM_SMMU_FEAT_FMT_AARCH32_L | ARM_SMMU_FEAT_FMT_AARCH64_4K))
1767
		smmu->pgsize_bitmap |= SZ_4K | SZ_2M | SZ_1G;
1768
	if (smmu->features & ARM_SMMU_FEAT_FMT_AARCH64_16K)
1769
		smmu->pgsize_bitmap |= SZ_16K | SZ_32M;
1770
	if (smmu->features & ARM_SMMU_FEAT_FMT_AARCH64_64K)
1771 1772 1773 1774 1775 1776 1777 1778
		smmu->pgsize_bitmap |= SZ_64K | SZ_512M;

	if (arm_smmu_ops.pgsize_bitmap == -1UL)
		arm_smmu_ops.pgsize_bitmap = smmu->pgsize_bitmap;
	else
		arm_smmu_ops.pgsize_bitmap |= smmu->pgsize_bitmap;
	dev_notice(smmu->dev, "\tSupported page sizes: 0x%08lx\n",
		   smmu->pgsize_bitmap);
1779

1780

1781 1782
	if (smmu->features & ARM_SMMU_FEAT_TRANS_S1)
		dev_notice(smmu->dev, "\tStage-1: %lu-bit VA -> %lu-bit IPA\n",
1783
			   smmu->va_size, smmu->ipa_size);
1784 1785 1786

	if (smmu->features & ARM_SMMU_FEAT_TRANS_S2)
		dev_notice(smmu->dev, "\tStage-2: %lu-bit IPA -> %lu-bit PA\n",
1787
			   smmu->ipa_size, smmu->pa_size);
1788

1789 1790 1791
	return 0;
}

1792 1793 1794 1795 1796 1797 1798 1799 1800 1801
struct arm_smmu_match_data {
	enum arm_smmu_arch_version version;
	enum arm_smmu_implementation model;
};

#define ARM_SMMU_MATCH_DATA(name, ver, imp)	\
static struct arm_smmu_match_data name = { .version = ver, .model = imp }

ARM_SMMU_MATCH_DATA(smmu_generic_v1, ARM_SMMU_V1, GENERIC_SMMU);
ARM_SMMU_MATCH_DATA(smmu_generic_v2, ARM_SMMU_V2, GENERIC_SMMU);
1802
ARM_SMMU_MATCH_DATA(arm_mmu401, ARM_SMMU_V1_64K, GENERIC_SMMU);
1803
ARM_SMMU_MATCH_DATA(arm_mmu500, ARM_SMMU_V2, ARM_MMU500);
1804
ARM_SMMU_MATCH_DATA(cavium_smmuv2, ARM_SMMU_V2, CAVIUM_SMMUV2);
1805

1806
static const struct of_device_id arm_smmu_of_match[] = {
1807 1808 1809
	{ .compatible = "arm,smmu-v1", .data = &smmu_generic_v1 },
	{ .compatible = "arm,smmu-v2", .data = &smmu_generic_v2 },
	{ .compatible = "arm,mmu-400", .data = &smmu_generic_v1 },
1810
	{ .compatible = "arm,mmu-401", .data = &arm_mmu401 },
1811
	{ .compatible = "arm,mmu-500", .data = &arm_mmu500 },
1812
	{ .compatible = "cavium,smmu-v2", .data = &cavium_smmuv2 },
1813 1814 1815 1816
	{ },
};
MODULE_DEVICE_TABLE(of, arm_smmu_of_match);

1817 1818
static int arm_smmu_device_dt_probe(struct platform_device *pdev)
{
1819
	const struct of_device_id *of_id;
1820
	const struct arm_smmu_match_data *data;
1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832
	struct resource *res;
	struct arm_smmu_device *smmu;
	struct device *dev = &pdev->dev;
	int num_irqs, i, err;

	smmu = devm_kzalloc(dev, sizeof(*smmu), GFP_KERNEL);
	if (!smmu) {
		dev_err(dev, "failed to allocate arm_smmu_device\n");
		return -ENOMEM;
	}
	smmu->dev = dev;

1833
	of_id = of_match_node(arm_smmu_of_match, dev->of_node);
1834 1835 1836
	data = of_id->data;
	smmu->version = data->version;
	smmu->model = data->model;
1837

1838
	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1839 1840 1841
	smmu->base = devm_ioremap_resource(dev, res);
	if (IS_ERR(smmu->base))
		return PTR_ERR(smmu->base);
1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856
	smmu->size = resource_size(res);

	if (of_property_read_u32(dev->of_node, "#global-interrupts",
				 &smmu->num_global_irqs)) {
		dev_err(dev, "missing #global-interrupts property\n");
		return -ENODEV;
	}

	num_irqs = 0;
	while ((res = platform_get_resource(pdev, IORESOURCE_IRQ, num_irqs))) {
		num_irqs++;
		if (num_irqs > smmu->num_global_irqs)
			smmu->num_context_irqs++;
	}

1857 1858 1859 1860
	if (!smmu->num_context_irqs) {
		dev_err(dev, "found %d interrupts but expected at least %d\n",
			num_irqs, smmu->num_global_irqs + 1);
		return -ENODEV;
1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871
	}

	smmu->irqs = devm_kzalloc(dev, sizeof(*smmu->irqs) * num_irqs,
				  GFP_KERNEL);
	if (!smmu->irqs) {
		dev_err(dev, "failed to allocate %d irqs\n", num_irqs);
		return -ENOMEM;
	}

	for (i = 0; i < num_irqs; ++i) {
		int irq = platform_get_irq(pdev, i);
1872

1873 1874 1875 1876 1877 1878 1879
		if (irq < 0) {
			dev_err(dev, "failed to get irq index %d\n", i);
			return -ENODEV;
		}
		smmu->irqs[i] = irq;
	}

1880 1881 1882 1883
	err = arm_smmu_device_cfg_probe(smmu);
	if (err)
		return err;

1884 1885
	parse_driver_options(smmu);

1886
	if (smmu->version == ARM_SMMU_V2 &&
1887 1888 1889 1890
	    smmu->num_context_banks != smmu->num_context_irqs) {
		dev_err(dev,
			"found only %d context interrupt(s) but %d required\n",
			smmu->num_context_irqs, smmu->num_context_banks);
1891
		return -ENODEV;
1892 1893 1894
	}

	for (i = 0; i < smmu->num_global_irqs; ++i) {
1895 1896 1897 1898 1899
		err = devm_request_irq(smmu->dev, smmu->irqs[i],
				       arm_smmu_global_fault,
				       IRQF_SHARED,
				       "arm-smmu global fault",
				       smmu);
1900 1901 1902
		if (err) {
			dev_err(dev, "failed to request global IRQ %d (%u)\n",
				i, smmu->irqs[i]);
1903
			return err;
1904 1905 1906 1907 1908 1909 1910
		}
	}

	INIT_LIST_HEAD(&smmu->list);
	spin_lock(&arm_smmu_devices_lock);
	list_add(&smmu->list, &arm_smmu_devices);
	spin_unlock(&arm_smmu_devices_lock);
1911 1912

	arm_smmu_device_reset(smmu);
1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933
	return 0;
}

static int arm_smmu_device_remove(struct platform_device *pdev)
{
	struct device *dev = &pdev->dev;
	struct arm_smmu_device *curr, *smmu = NULL;

	spin_lock(&arm_smmu_devices_lock);
	list_for_each_entry(curr, &arm_smmu_devices, list) {
		if (curr->dev == dev) {
			smmu = curr;
			list_del(&smmu->list);
			break;
		}
	}
	spin_unlock(&arm_smmu_devices_lock);

	if (!smmu)
		return -ENODEV;

1934
	if (!bitmap_empty(smmu->context_map, ARM_SMMU_MAX_CBS))
1935 1936 1937
		dev_err(dev, "removing device with active domains!\n");

	/* Turn the thing off */
1938
	writel(sCR0_CLIENTPD, ARM_SMMU_GR0_NS(smmu) + ARM_SMMU_GR0_sCR0);
1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952
	return 0;
}

static struct platform_driver arm_smmu_driver = {
	.driver	= {
		.name		= "arm-smmu",
		.of_match_table	= of_match_ptr(arm_smmu_of_match),
	},
	.probe	= arm_smmu_device_dt_probe,
	.remove	= arm_smmu_device_remove,
};

static int __init arm_smmu_init(void)
{
1953
	struct device_node *np;
1954 1955
	int ret;

1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966
	/*
	 * Play nice with systems that don't have an ARM SMMU by checking that
	 * an ARM SMMU exists in the system before proceeding with the driver
	 * and IOMMU bus operation registration.
	 */
	np = of_find_matching_node(NULL, arm_smmu_of_match);
	if (!np)
		return 0;

	of_node_put(np);

1967 1968 1969 1970 1971
	ret = platform_driver_register(&arm_smmu_driver);
	if (ret)
		return ret;

	/* Oh, for a proper bus abstraction */
1972
	if (!iommu_present(&platform_bus_type))
1973 1974
		bus_set_iommu(&platform_bus_type, &arm_smmu_ops);

1975
#ifdef CONFIG_ARM_AMBA
1976
	if (!iommu_present(&amba_bustype))
1977
		bus_set_iommu(&amba_bustype, &arm_smmu_ops);
1978
#endif
1979

1980
#ifdef CONFIG_PCI
1981 1982
	if (!iommu_present(&pci_bus_type)) {
		pci_request_acs();
1983
		bus_set_iommu(&pci_bus_type, &arm_smmu_ops);
1984
	}
1985 1986
#endif

1987 1988 1989 1990 1991 1992 1993 1994
	return 0;
}

static void __exit arm_smmu_exit(void)
{
	return platform_driver_unregister(&arm_smmu_driver);
}

1995
subsys_initcall(arm_smmu_init);
1996 1997 1998 1999 2000
module_exit(arm_smmu_exit);

MODULE_DESCRIPTION("IOMMU API for ARM architected SMMU implementations");
MODULE_AUTHOR("Will Deacon <will.deacon@arm.com>");
MODULE_LICENSE("GPL v2");