arm-smmu.c 56.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
/*
 * IOMMU API for ARM architected SMMU implementations.
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
 *
 * Copyright (C) 2013 ARM Limited
 *
 * Author: Will Deacon <will.deacon@arm.com>
 *
 * This driver currently supports:
 *	- SMMUv1 and v2 implementations
 *	- Stream-matching and stream-indexing
 *	- v7/v8 long-descriptor format
 *	- Non-secure access to the SMMU
 *	- Context fault reporting
 */

#define pr_fmt(fmt) "arm-smmu: " fmt

31
#include <linux/atomic.h>
32
#include <linux/delay.h>
33
#include <linux/dma-iommu.h>
34 35 36 37
#include <linux/dma-mapping.h>
#include <linux/err.h>
#include <linux/interrupt.h>
#include <linux/io.h>
38
#include <linux/io-64-nonatomic-hi-lo.h>
39
#include <linux/iommu.h>
40
#include <linux/iopoll.h>
41 42
#include <linux/module.h>
#include <linux/of.h>
43
#include <linux/of_address.h>
44
#include <linux/of_device.h>
45
#include <linux/of_iommu.h>
46
#include <linux/pci.h>
47 48 49 50 51 52
#include <linux/platform_device.h>
#include <linux/slab.h>
#include <linux/spinlock.h>

#include <linux/amba/bus.h>

53
#include "io-pgtable.h"
54 55 56 57 58 59

/* Maximum number of context banks per SMMU */
#define ARM_SMMU_MAX_CBS		128

/* SMMU global address space */
#define ARM_SMMU_GR0(smmu)		((smmu)->base)
60
#define ARM_SMMU_GR1(smmu)		((smmu)->base + (1 << (smmu)->pgshift))
61

62 63 64 65 66 67 68 69 70 71
/*
 * SMMU global address space with conditional offset to access secure
 * aliases of non-secure registers (e.g. nsCR0: 0x400, nsGFSR: 0x448,
 * nsGFSYNR0: 0x450)
 */
#define ARM_SMMU_GR0_NS(smmu)						\
	((smmu)->base +							\
		((smmu->options & ARM_SMMU_OPT_SECURE_CFG_ACCESS)	\
			? 0x400 : 0))

72 73 74 75 76
/*
 * Some 64-bit registers only make sense to write atomically, but in such
 * cases all the data relevant to AArch32 formats lies within the lower word,
 * therefore this actually makes more sense than it might first appear.
 */
77
#ifdef CONFIG_64BIT
78
#define smmu_write_atomic_lq		writeq_relaxed
79
#else
80
#define smmu_write_atomic_lq		writel_relaxed
81 82
#endif

83 84 85 86 87 88 89 90 91 92 93
/* Configuration registers */
#define ARM_SMMU_GR0_sCR0		0x0
#define sCR0_CLIENTPD			(1 << 0)
#define sCR0_GFRE			(1 << 1)
#define sCR0_GFIE			(1 << 2)
#define sCR0_GCFGFRE			(1 << 4)
#define sCR0_GCFGFIE			(1 << 5)
#define sCR0_USFCFG			(1 << 10)
#define sCR0_VMIDPNE			(1 << 11)
#define sCR0_PTM			(1 << 12)
#define sCR0_FB				(1 << 13)
94
#define sCR0_VMID16EN			(1 << 31)
95 96 97
#define sCR0_BSU_SHIFT			14
#define sCR0_BSU_MASK			0x3

98 99 100
/* Auxiliary Configuration register */
#define ARM_SMMU_GR0_sACR		0x10

101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118
/* Identification registers */
#define ARM_SMMU_GR0_ID0		0x20
#define ARM_SMMU_GR0_ID1		0x24
#define ARM_SMMU_GR0_ID2		0x28
#define ARM_SMMU_GR0_ID3		0x2c
#define ARM_SMMU_GR0_ID4		0x30
#define ARM_SMMU_GR0_ID5		0x34
#define ARM_SMMU_GR0_ID6		0x38
#define ARM_SMMU_GR0_ID7		0x3c
#define ARM_SMMU_GR0_sGFSR		0x48
#define ARM_SMMU_GR0_sGFSYNR0		0x50
#define ARM_SMMU_GR0_sGFSYNR1		0x54
#define ARM_SMMU_GR0_sGFSYNR2		0x58

#define ID0_S1TS			(1 << 30)
#define ID0_S2TS			(1 << 29)
#define ID0_NTS				(1 << 28)
#define ID0_SMS				(1 << 27)
119
#define ID0_ATOSNS			(1 << 26)
120 121
#define ID0_PTFS_NO_AARCH32		(1 << 25)
#define ID0_PTFS_NO_AARCH32S		(1 << 24)
122 123 124
#define ID0_CTTW			(1 << 14)
#define ID0_NUMIRPT_SHIFT		16
#define ID0_NUMIRPT_MASK		0xff
125 126
#define ID0_NUMSIDB_SHIFT		9
#define ID0_NUMSIDB_MASK		0xf
127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146
#define ID0_NUMSMRG_SHIFT		0
#define ID0_NUMSMRG_MASK		0xff

#define ID1_PAGESIZE			(1 << 31)
#define ID1_NUMPAGENDXB_SHIFT		28
#define ID1_NUMPAGENDXB_MASK		7
#define ID1_NUMS2CB_SHIFT		16
#define ID1_NUMS2CB_MASK		0xff
#define ID1_NUMCB_SHIFT			0
#define ID1_NUMCB_MASK			0xff

#define ID2_OAS_SHIFT			4
#define ID2_OAS_MASK			0xf
#define ID2_IAS_SHIFT			0
#define ID2_IAS_MASK			0xf
#define ID2_UBS_SHIFT			8
#define ID2_UBS_MASK			0xf
#define ID2_PTFS_4K			(1 << 12)
#define ID2_PTFS_16K			(1 << 13)
#define ID2_PTFS_64K			(1 << 14)
147
#define ID2_VMID16			(1 << 15)
148

149 150
#define ID7_MAJOR_SHIFT			4
#define ID7_MAJOR_MASK			0xf
151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171

/* Global TLB invalidation */
#define ARM_SMMU_GR0_TLBIVMID		0x64
#define ARM_SMMU_GR0_TLBIALLNSNH	0x68
#define ARM_SMMU_GR0_TLBIALLH		0x6c
#define ARM_SMMU_GR0_sTLBGSYNC		0x70
#define ARM_SMMU_GR0_sTLBGSTATUS	0x74
#define sTLBGSTATUS_GSACTIVE		(1 << 0)
#define TLB_LOOP_TIMEOUT		1000000	/* 1s! */

/* Stream mapping registers */
#define ARM_SMMU_GR0_SMR(n)		(0x800 + ((n) << 2))
#define SMR_VALID			(1 << 31)
#define SMR_MASK_SHIFT			16
#define SMR_ID_SHIFT			0

#define ARM_SMMU_GR0_S2CR(n)		(0xc00 + ((n) << 2))
#define S2CR_CBNDX_SHIFT		0
#define S2CR_CBNDX_MASK			0xff
#define S2CR_TYPE_SHIFT			16
#define S2CR_TYPE_MASK			0x3
172 173 174 175 176
enum arm_smmu_s2cr_type {
	S2CR_TYPE_TRANS,
	S2CR_TYPE_BYPASS,
	S2CR_TYPE_FAULT,
};
177

178
#define S2CR_PRIVCFG_SHIFT		24
179 180 181 182 183 184 185
#define S2CR_PRIVCFG_MASK		0x3
enum arm_smmu_s2cr_privcfg {
	S2CR_PRIVCFG_DEFAULT,
	S2CR_PRIVCFG_DIPAN,
	S2CR_PRIVCFG_UNPRIV,
	S2CR_PRIVCFG_PRIV,
};
186

187 188 189 190
/* Context bank attribute registers */
#define ARM_SMMU_GR1_CBAR(n)		(0x0 + ((n) << 2))
#define CBAR_VMID_SHIFT			0
#define CBAR_VMID_MASK			0xff
191 192 193
#define CBAR_S1_BPSHCFG_SHIFT		8
#define CBAR_S1_BPSHCFG_MASK		3
#define CBAR_S1_BPSHCFG_NSH		3
194 195 196 197 198 199 200 201 202 203 204 205 206 207 208
#define CBAR_S1_MEMATTR_SHIFT		12
#define CBAR_S1_MEMATTR_MASK		0xf
#define CBAR_S1_MEMATTR_WB		0xf
#define CBAR_TYPE_SHIFT			16
#define CBAR_TYPE_MASK			0x3
#define CBAR_TYPE_S2_TRANS		(0 << CBAR_TYPE_SHIFT)
#define CBAR_TYPE_S1_TRANS_S2_BYPASS	(1 << CBAR_TYPE_SHIFT)
#define CBAR_TYPE_S1_TRANS_S2_FAULT	(2 << CBAR_TYPE_SHIFT)
#define CBAR_TYPE_S1_TRANS_S2_TRANS	(3 << CBAR_TYPE_SHIFT)
#define CBAR_IRPTNDX_SHIFT		24
#define CBAR_IRPTNDX_MASK		0xff

#define ARM_SMMU_GR1_CBA2R(n)		(0x800 + ((n) << 2))
#define CBA2R_RW64_32BIT		(0 << 0)
#define CBA2R_RW64_64BIT		(1 << 0)
209 210
#define CBA2R_VMID_SHIFT		16
#define CBA2R_VMID_MASK			0xffff
211 212 213

/* Translation context bank */
#define ARM_SMMU_CB_BASE(smmu)		((smmu)->base + ((smmu)->size >> 1))
214
#define ARM_SMMU_CB(smmu, n)		((n) * (1 << (smmu)->pgshift))
215 216

#define ARM_SMMU_CB_SCTLR		0x0
217
#define ARM_SMMU_CB_ACTLR		0x4
218 219
#define ARM_SMMU_CB_RESUME		0x8
#define ARM_SMMU_CB_TTBCR2		0x10
220 221
#define ARM_SMMU_CB_TTBR0		0x20
#define ARM_SMMU_CB_TTBR1		0x28
222
#define ARM_SMMU_CB_TTBCR		0x30
223
#define ARM_SMMU_CB_CONTEXTIDR		0x34
224
#define ARM_SMMU_CB_S1_MAIR0		0x38
225
#define ARM_SMMU_CB_S1_MAIR1		0x3c
226
#define ARM_SMMU_CB_PAR			0x50
227
#define ARM_SMMU_CB_FSR			0x58
228
#define ARM_SMMU_CB_FAR			0x60
229
#define ARM_SMMU_CB_FSYNR0		0x68
230
#define ARM_SMMU_CB_S1_TLBIVA		0x600
231
#define ARM_SMMU_CB_S1_TLBIASID		0x610
232 233 234
#define ARM_SMMU_CB_S1_TLBIVAL		0x620
#define ARM_SMMU_CB_S2_TLBIIPAS2	0x630
#define ARM_SMMU_CB_S2_TLBIIPAS2L	0x638
235
#define ARM_SMMU_CB_ATS1PR		0x800
236
#define ARM_SMMU_CB_ATSR		0x8f0
237 238 239 240 241 242 243 244 245 246

#define SCTLR_S1_ASIDPNE		(1 << 12)
#define SCTLR_CFCFG			(1 << 7)
#define SCTLR_CFIE			(1 << 6)
#define SCTLR_CFRE			(1 << 5)
#define SCTLR_E				(1 << 4)
#define SCTLR_AFE			(1 << 2)
#define SCTLR_TRE			(1 << 1)
#define SCTLR_M				(1 << 0)

247 248
#define ARM_MMU500_ACTLR_CPRE		(1 << 1)

249 250
#define ARM_MMU500_ACR_CACHE_LOCK	(1 << 26)

251 252 253 254
#define CB_PAR_F			(1 << 0)

#define ATSR_ACTIVE			(1 << 0)

255 256 257 258
#define RESUME_RETRY			(0 << 0)
#define RESUME_TERMINATE		(1 << 0)

#define TTBCR2_SEP_SHIFT		15
259
#define TTBCR2_SEP_UPSTREAM		(0x7 << TTBCR2_SEP_SHIFT)
260

261
#define TTBRn_ASID_SHIFT		48
262 263 264 265 266 267 268 269 270 271 272 273

#define FSR_MULTI			(1 << 31)
#define FSR_SS				(1 << 30)
#define FSR_UUT				(1 << 8)
#define FSR_ASF				(1 << 7)
#define FSR_TLBLKF			(1 << 6)
#define FSR_TLBMCF			(1 << 5)
#define FSR_EF				(1 << 4)
#define FSR_PF				(1 << 3)
#define FSR_AFF				(1 << 2)
#define FSR_TF				(1 << 1)

274 275 276
#define FSR_IGN				(FSR_AFF | FSR_ASF | \
					 FSR_TLBMCF | FSR_TLBLKF)
#define FSR_FAULT			(FSR_MULTI | FSR_SS | FSR_UUT | \
277
					 FSR_EF | FSR_PF | FSR_TF | FSR_IGN)
278 279 280

#define FSYNR0_WNR			(1 << 4)

281
static int force_stage;
282
module_param(force_stage, int, S_IRUGO);
283 284
MODULE_PARM_DESC(force_stage,
	"Force SMMU mappings to be installed at a particular stage of translation. A value of '1' or '2' forces the corresponding stage. All other values are ignored (i.e. no stage is forced). Note that selecting a specific stage will disable support for nested translation.");
285 286 287 288
static bool disable_bypass;
module_param(disable_bypass, bool, S_IRUGO);
MODULE_PARM_DESC(disable_bypass,
	"Disable bypass streams such that incoming transactions from devices that are not attached to an iommu domain will report an abort back to the device and will not be allowed to pass through the SMMU.");
289

290
enum arm_smmu_arch_version {
291 292
	ARM_SMMU_V1,
	ARM_SMMU_V1_64K,
293 294 295
	ARM_SMMU_V2,
};

296 297
enum arm_smmu_implementation {
	GENERIC_SMMU,
298
	ARM_MMU500,
299
	CAVIUM_SMMUV2,
300 301
};

302
struct arm_smmu_s2cr {
303 304
	struct iommu_group		*group;
	int				count;
305 306 307 308 309 310 311 312 313
	enum arm_smmu_s2cr_type		type;
	enum arm_smmu_s2cr_privcfg	privcfg;
	u8				cbndx;
};

#define s2cr_init_val (struct arm_smmu_s2cr){				\
	.type = disable_bypass ? S2CR_TYPE_FAULT : S2CR_TYPE_BYPASS,	\
}

314 315 316
struct arm_smmu_smr {
	u16				mask;
	u16				id;
317
	bool				valid;
318 319
};

320
struct arm_smmu_master_cfg {
321
	struct arm_smmu_device		*smmu;
322
	s16				smendx[];
323
};
324
#define INVALID_SMENDX			-1
325 326 327 328
#define __fwspec_cfg(fw) ((struct arm_smmu_master_cfg *)fw->iommu_priv)
#define fwspec_smmu(fw)  (__fwspec_cfg(fw)->smmu)
#define for_each_cfg_sme(fw, i, idx) \
	for (i = 0; idx = __fwspec_cfg(fw)->smendx[i], i < fw->num_ids; ++i)
329 330 331 332 333 334

struct arm_smmu_device {
	struct device			*dev;

	void __iomem			*base;
	unsigned long			size;
335
	unsigned long			pgshift;
336 337 338 339 340 341

#define ARM_SMMU_FEAT_COHERENT_WALK	(1 << 0)
#define ARM_SMMU_FEAT_STREAM_MATCH	(1 << 1)
#define ARM_SMMU_FEAT_TRANS_S1		(1 << 2)
#define ARM_SMMU_FEAT_TRANS_S2		(1 << 3)
#define ARM_SMMU_FEAT_TRANS_NESTED	(1 << 4)
342
#define ARM_SMMU_FEAT_TRANS_OPS		(1 << 5)
343
#define ARM_SMMU_FEAT_VMID16		(1 << 6)
344 345 346 347 348
#define ARM_SMMU_FEAT_FMT_AARCH64_4K	(1 << 7)
#define ARM_SMMU_FEAT_FMT_AARCH64_16K	(1 << 8)
#define ARM_SMMU_FEAT_FMT_AARCH64_64K	(1 << 9)
#define ARM_SMMU_FEAT_FMT_AARCH32_L	(1 << 10)
#define ARM_SMMU_FEAT_FMT_AARCH32_S	(1 << 11)
349
	u32				features;
350 351 352

#define ARM_SMMU_OPT_SECURE_CFG_ACCESS (1 << 0)
	u32				options;
353
	enum arm_smmu_arch_version	version;
354
	enum arm_smmu_implementation	model;
355 356 357 358 359 360 361

	u32				num_context_banks;
	u32				num_s2_context_banks;
	DECLARE_BITMAP(context_map, ARM_SMMU_MAX_CBS);
	atomic_t			irptndx;

	u32				num_mapping_groups;
362 363
	u16				streamid_mask;
	u16				smr_mask_mask;
364
	struct arm_smmu_smr		*smrs;
365
	struct arm_smmu_s2cr		*s2crs;
366
	struct mutex			stream_map_mutex;
367

368 369 370
	unsigned long			va_size;
	unsigned long			ipa_size;
	unsigned long			pa_size;
371
	unsigned long			pgsize_bitmap;
372 373 374 375 376

	u32				num_global_irqs;
	u32				num_context_irqs;
	unsigned int			*irqs;

377
	u32				cavium_id_base; /* Specific to Cavium */
378 379
};

380 381 382 383 384
enum arm_smmu_context_fmt {
	ARM_SMMU_CTX_FMT_NONE,
	ARM_SMMU_CTX_FMT_AARCH64,
	ARM_SMMU_CTX_FMT_AARCH32_L,
	ARM_SMMU_CTX_FMT_AARCH32_S,
385 386 387 388 389 390
};

struct arm_smmu_cfg {
	u8				cbndx;
	u8				irptndx;
	u32				cbar;
391
	enum arm_smmu_context_fmt	fmt;
392
};
393
#define INVALID_IRPTNDX			0xff
394

395 396
#define ARM_SMMU_CB_ASID(smmu, cfg) ((u16)(smmu)->cavium_id_base + (cfg)->cbndx)
#define ARM_SMMU_CB_VMID(smmu, cfg) ((u16)(smmu)->cavium_id_base + (cfg)->cbndx + 1)
397

398 399 400 401 402 403
enum arm_smmu_domain_stage {
	ARM_SMMU_DOMAIN_S1 = 0,
	ARM_SMMU_DOMAIN_S2,
	ARM_SMMU_DOMAIN_NESTED,
};

404
struct arm_smmu_domain {
405
	struct arm_smmu_device		*smmu;
406 407
	struct io_pgtable_ops		*pgtbl_ops;
	spinlock_t			pgtbl_lock;
408
	struct arm_smmu_cfg		cfg;
409
	enum arm_smmu_domain_stage	stage;
410
	struct mutex			init_mutex; /* Protects smmu pointer */
411
	struct iommu_domain		domain;
412 413
};

414 415 416 417 418
struct arm_smmu_option_prop {
	u32 opt;
	const char *prop;
};

419 420
static atomic_t cavium_smmu_context_count = ATOMIC_INIT(0);

421 422
static bool using_legacy_binding, using_generic_binding;

423
static struct arm_smmu_option_prop arm_smmu_options[] = {
424 425 426 427
	{ ARM_SMMU_OPT_SECURE_CFG_ACCESS, "calxeda,smmu-secure-config-access" },
	{ 0, NULL},
};

428 429 430 431 432
static struct arm_smmu_domain *to_smmu_domain(struct iommu_domain *dom)
{
	return container_of(dom, struct arm_smmu_domain, domain);
}

433 434 435
static void parse_driver_options(struct arm_smmu_device *smmu)
{
	int i = 0;
436

437 438 439 440 441 442 443 444 445 446
	do {
		if (of_property_read_bool(smmu->dev->of_node,
						arm_smmu_options[i].prop)) {
			smmu->options |= arm_smmu_options[i].opt;
			dev_notice(smmu->dev, "option %s\n",
				arm_smmu_options[i].prop);
		}
	} while (arm_smmu_options[++i].opt);
}

447
static struct device_node *dev_get_dev_node(struct device *dev)
448 449 450
{
	if (dev_is_pci(dev)) {
		struct pci_bus *bus = to_pci_dev(dev)->bus;
451

452 453
		while (!pci_is_root_bus(bus))
			bus = bus->parent;
454
		return of_node_get(bus->bridge->parent->of_node);
455 456
	}

457
	return of_node_get(dev->of_node);
458 459
}

460
static int __arm_smmu_get_pci_sid(struct pci_dev *pdev, u16 alias, void *data)
461
{
462 463
	*((__be32 *)data) = cpu_to_be32(alias);
	return 0; /* Continue walking */
464 465
}

466
static int __find_legacy_master_phandle(struct device *dev, void *data)
467
{
468 469 470 471 472 473 474 475 476 477 478 479
	struct of_phandle_iterator *it = *(void **)data;
	struct device_node *np = it->node;
	int err;

	of_for_each_phandle(it, err, dev->of_node, "mmu-masters",
			    "#stream-id-cells", 0)
		if (it->node == np) {
			*(void **)data = dev;
			return 1;
		}
	it->node = np;
	return err == -ENOENT ? 0 : err;
480 481
}

482
static struct platform_driver arm_smmu_driver;
483
static struct iommu_ops arm_smmu_ops;
484

485 486
static int arm_smmu_register_legacy_master(struct device *dev,
					   struct arm_smmu_device **smmu)
487
{
488
	struct device *smmu_dev;
489 490 491
	struct device_node *np;
	struct of_phandle_iterator it;
	void *data = &it;
492
	u32 *sids;
493 494
	__be32 pci_sid;
	int err;
495

496 497 498 499 500
	np = dev_get_dev_node(dev);
	if (!np || !of_find_property(np, "#stream-id-cells", NULL)) {
		of_node_put(np);
		return -ENODEV;
	}
501

502
	it.node = np;
503 504
	err = driver_for_each_device(&arm_smmu_driver.driver, NULL, &data,
				     __find_legacy_master_phandle);
505
	smmu_dev = data;
506 507 508 509 510
	of_node_put(np);
	if (err == 0)
		return -ENODEV;
	if (err < 0)
		return err;
511

512 513 514 515 516 517 518
	if (dev_is_pci(dev)) {
		/* "mmu-masters" assumes Stream ID == Requester ID */
		pci_for_each_dma_alias(to_pci_dev(dev), __arm_smmu_get_pci_sid,
				       &pci_sid);
		it.cur = &pci_sid;
		it.cur_count = 1;
	}
519

520 521 522 523
	err = iommu_fwspec_init(dev, &smmu_dev->of_node->fwnode,
				&arm_smmu_ops);
	if (err)
		return err;
524

525 526 527
	sids = kcalloc(it.cur_count, sizeof(*sids), GFP_KERNEL);
	if (!sids)
		return -ENOMEM;
528

529 530 531 532 533
	*smmu = dev_get_drvdata(smmu_dev);
	of_phandle_iterator_args(&it, sids, it.cur_count);
	err = iommu_fwspec_add_ids(dev, sids, it.cur_count);
	kfree(sids);
	return err;
534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554
}

static int __arm_smmu_alloc_bitmap(unsigned long *map, int start, int end)
{
	int idx;

	do {
		idx = find_next_zero_bit(map, end, start);
		if (idx == end)
			return -ENOSPC;
	} while (test_and_set_bit(idx, map));

	return idx;
}

static void __arm_smmu_free_bitmap(unsigned long *map, int idx)
{
	clear_bit(idx, map);
}

/* Wait for any pending TLB invalidations to complete */
555
static void __arm_smmu_tlb_sync(struct arm_smmu_device *smmu)
556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572
{
	int count = 0;
	void __iomem *gr0_base = ARM_SMMU_GR0(smmu);

	writel_relaxed(0, gr0_base + ARM_SMMU_GR0_sTLBGSYNC);
	while (readl_relaxed(gr0_base + ARM_SMMU_GR0_sTLBGSTATUS)
	       & sTLBGSTATUS_GSACTIVE) {
		cpu_relax();
		if (++count == TLB_LOOP_TIMEOUT) {
			dev_err_ratelimited(smmu->dev,
			"TLB sync timed out -- SMMU may be deadlocked\n");
			return;
		}
		udelay(1);
	}
}

573 574 575 576 577 578 579
static void arm_smmu_tlb_sync(void *cookie)
{
	struct arm_smmu_domain *smmu_domain = cookie;
	__arm_smmu_tlb_sync(smmu_domain->smmu);
}

static void arm_smmu_tlb_inv_context(void *cookie)
580
{
581
	struct arm_smmu_domain *smmu_domain = cookie;
582 583
	struct arm_smmu_cfg *cfg = &smmu_domain->cfg;
	struct arm_smmu_device *smmu = smmu_domain->smmu;
584
	bool stage1 = cfg->cbar != CBAR_TYPE_S2_TRANS;
585
	void __iomem *base;
586 587 588

	if (stage1) {
		base = ARM_SMMU_CB_BASE(smmu) + ARM_SMMU_CB(smmu, cfg->cbndx);
589
		writel_relaxed(ARM_SMMU_CB_ASID(smmu, cfg),
590
			       base + ARM_SMMU_CB_S1_TLBIASID);
591 592
	} else {
		base = ARM_SMMU_GR0(smmu);
593
		writel_relaxed(ARM_SMMU_CB_VMID(smmu, cfg),
594
			       base + ARM_SMMU_GR0_TLBIVMID);
595 596
	}

597 598 599 600
	__arm_smmu_tlb_sync(smmu);
}

static void arm_smmu_tlb_inv_range_nosync(unsigned long iova, size_t size,
601
					  size_t granule, bool leaf, void *cookie)
602 603 604 605 606 607 608 609 610 611 612
{
	struct arm_smmu_domain *smmu_domain = cookie;
	struct arm_smmu_cfg *cfg = &smmu_domain->cfg;
	struct arm_smmu_device *smmu = smmu_domain->smmu;
	bool stage1 = cfg->cbar != CBAR_TYPE_S2_TRANS;
	void __iomem *reg;

	if (stage1) {
		reg = ARM_SMMU_CB_BASE(smmu) + ARM_SMMU_CB(smmu, cfg->cbndx);
		reg += leaf ? ARM_SMMU_CB_S1_TLBIVAL : ARM_SMMU_CB_S1_TLBIVA;

613
		if (cfg->fmt != ARM_SMMU_CTX_FMT_AARCH64) {
614
			iova &= ~12UL;
615
			iova |= ARM_SMMU_CB_ASID(smmu, cfg);
616 617 618 619
			do {
				writel_relaxed(iova, reg);
				iova += granule;
			} while (size -= granule);
620 621
		} else {
			iova >>= 12;
622
			iova |= (u64)ARM_SMMU_CB_ASID(smmu, cfg) << 48;
623 624 625 626
			do {
				writeq_relaxed(iova, reg);
				iova += granule >> 12;
			} while (size -= granule);
627 628 629 630 631
		}
	} else if (smmu->version == ARM_SMMU_V2) {
		reg = ARM_SMMU_CB_BASE(smmu) + ARM_SMMU_CB(smmu, cfg->cbndx);
		reg += leaf ? ARM_SMMU_CB_S2_TLBIIPAS2L :
			      ARM_SMMU_CB_S2_TLBIIPAS2;
632 633
		iova >>= 12;
		do {
634
			smmu_write_atomic_lq(iova, reg);
635 636
			iova += granule >> 12;
		} while (size -= granule);
637 638
	} else {
		reg = ARM_SMMU_GR0(smmu) + ARM_SMMU_GR0_TLBIVMID;
639
		writel_relaxed(ARM_SMMU_CB_VMID(smmu, cfg), reg);
640 641 642 643 644 645 646 647 648
	}
}

static struct iommu_gather_ops arm_smmu_gather_ops = {
	.tlb_flush_all	= arm_smmu_tlb_inv_context,
	.tlb_add_flush	= arm_smmu_tlb_inv_range_nosync,
	.tlb_sync	= arm_smmu_tlb_sync,
};

649 650
static irqreturn_t arm_smmu_context_fault(int irq, void *dev)
{
651
	u32 fsr, fsynr;
652 653
	unsigned long iova;
	struct iommu_domain *domain = dev;
654
	struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
655 656
	struct arm_smmu_cfg *cfg = &smmu_domain->cfg;
	struct arm_smmu_device *smmu = smmu_domain->smmu;
657 658
	void __iomem *cb_base;

659
	cb_base = ARM_SMMU_CB_BASE(smmu) + ARM_SMMU_CB(smmu, cfg->cbndx);
660 661 662 663 664 665
	fsr = readl_relaxed(cb_base + ARM_SMMU_CB_FSR);

	if (!(fsr & FSR_FAULT))
		return IRQ_NONE;

	fsynr = readl_relaxed(cb_base + ARM_SMMU_CB_FSYNR0);
666
	iova = readq_relaxed(cb_base + ARM_SMMU_CB_FAR);
667

668 669 670
	dev_err_ratelimited(smmu->dev,
	"Unhandled context fault: fsr=0x%x, iova=0x%08lx, fsynr=0x%x, cb=%d\n",
			    fsr, iova, fsynr, cfg->cbndx);
671

672 673
	writel(fsr, cb_base + ARM_SMMU_CB_FSR);
	return IRQ_HANDLED;
674 675 676 677 678 679
}

static irqreturn_t arm_smmu_global_fault(int irq, void *dev)
{
	u32 gfsr, gfsynr0, gfsynr1, gfsynr2;
	struct arm_smmu_device *smmu = dev;
680
	void __iomem *gr0_base = ARM_SMMU_GR0_NS(smmu);
681 682 683 684 685 686

	gfsr = readl_relaxed(gr0_base + ARM_SMMU_GR0_sGFSR);
	gfsynr0 = readl_relaxed(gr0_base + ARM_SMMU_GR0_sGFSYNR0);
	gfsynr1 = readl_relaxed(gr0_base + ARM_SMMU_GR0_sGFSYNR1);
	gfsynr2 = readl_relaxed(gr0_base + ARM_SMMU_GR0_sGFSYNR2);

687 688 689
	if (!gfsr)
		return IRQ_NONE;

690 691 692 693 694 695 696
	dev_err_ratelimited(smmu->dev,
		"Unexpected global fault, this could be serious\n");
	dev_err_ratelimited(smmu->dev,
		"\tGFSR 0x%08x, GFSYNR0 0x%08x, GFSYNR1 0x%08x, GFSYNR2 0x%08x\n",
		gfsr, gfsynr0, gfsynr1, gfsynr2);

	writel(gfsr, gr0_base + ARM_SMMU_GR0_sGFSR);
697
	return IRQ_HANDLED;
698 699
}

700 701
static void arm_smmu_init_context_bank(struct arm_smmu_domain *smmu_domain,
				       struct io_pgtable_cfg *pgtbl_cfg)
702
{
703
	u32 reg, reg2;
704
	u64 reg64;
705
	bool stage1;
706 707
	struct arm_smmu_cfg *cfg = &smmu_domain->cfg;
	struct arm_smmu_device *smmu = smmu_domain->smmu;
708
	void __iomem *cb_base, *gr1_base;
709 710

	gr1_base = ARM_SMMU_GR1(smmu);
711 712
	stage1 = cfg->cbar != CBAR_TYPE_S2_TRANS;
	cb_base = ARM_SMMU_CB_BASE(smmu) + ARM_SMMU_CB(smmu, cfg->cbndx);
713

714
	if (smmu->version > ARM_SMMU_V1) {
715 716 717 718
		if (cfg->fmt == ARM_SMMU_CTX_FMT_AARCH64)
			reg = CBA2R_RW64_64BIT;
		else
			reg = CBA2R_RW64_32BIT;
719 720
		/* 16-bit VMIDs live in CBA2R */
		if (smmu->features & ARM_SMMU_FEAT_VMID16)
721
			reg |= ARM_SMMU_CB_VMID(smmu, cfg) << CBA2R_VMID_SHIFT;
722

723 724 725
		writel_relaxed(reg, gr1_base + ARM_SMMU_GR1_CBA2R(cfg->cbndx));
	}

726
	/* CBAR */
727
	reg = cfg->cbar;
728
	if (smmu->version < ARM_SMMU_V2)
729
		reg |= cfg->irptndx << CBAR_IRPTNDX_SHIFT;
730

731 732 733 734 735 736 737
	/*
	 * Use the weakest shareability/memory types, so they are
	 * overridden by the ttbcr/pte.
	 */
	if (stage1) {
		reg |= (CBAR_S1_BPSHCFG_NSH << CBAR_S1_BPSHCFG_SHIFT) |
			(CBAR_S1_MEMATTR_WB << CBAR_S1_MEMATTR_SHIFT);
738 739
	} else if (!(smmu->features & ARM_SMMU_FEAT_VMID16)) {
		/* 8-bit VMIDs live in CBAR */
740
		reg |= ARM_SMMU_CB_VMID(smmu, cfg) << CBAR_VMID_SHIFT;
741
	}
742
	writel_relaxed(reg, gr1_base + ARM_SMMU_GR1_CBAR(cfg->cbndx));
743

744 745
	/* TTBRs */
	if (stage1) {
746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761
		u16 asid = ARM_SMMU_CB_ASID(smmu, cfg);

		if (cfg->fmt == ARM_SMMU_CTX_FMT_AARCH32_S) {
			reg = pgtbl_cfg->arm_v7s_cfg.ttbr[0];
			writel_relaxed(reg, cb_base + ARM_SMMU_CB_TTBR0);
			reg = pgtbl_cfg->arm_v7s_cfg.ttbr[1];
			writel_relaxed(reg, cb_base + ARM_SMMU_CB_TTBR1);
			writel_relaxed(asid, cb_base + ARM_SMMU_CB_CONTEXTIDR);
		} else {
			reg64 = pgtbl_cfg->arm_lpae_s1_cfg.ttbr[0];
			reg64 |= (u64)asid << TTBRn_ASID_SHIFT;
			writeq_relaxed(reg64, cb_base + ARM_SMMU_CB_TTBR0);
			reg64 = pgtbl_cfg->arm_lpae_s1_cfg.ttbr[1];
			reg64 |= (u64)asid << TTBRn_ASID_SHIFT;
			writeq_relaxed(reg64, cb_base + ARM_SMMU_CB_TTBR1);
		}
762
	} else {
763
		reg64 = pgtbl_cfg->arm_lpae_s2_cfg.vttbr;
764
		writeq_relaxed(reg64, cb_base + ARM_SMMU_CB_TTBR0);
765
	}
766

767 768
	/* TTBCR */
	if (stage1) {
769 770 771 772 773 774 775
		if (cfg->fmt == ARM_SMMU_CTX_FMT_AARCH32_S) {
			reg = pgtbl_cfg->arm_v7s_cfg.tcr;
			reg2 = 0;
		} else {
			reg = pgtbl_cfg->arm_lpae_s1_cfg.tcr;
			reg2 = pgtbl_cfg->arm_lpae_s1_cfg.tcr >> 32;
			reg2 |= TTBCR2_SEP_UPSTREAM;
776
		}
777 778
		if (smmu->version > ARM_SMMU_V1)
			writel_relaxed(reg2, cb_base + ARM_SMMU_CB_TTBCR2);
779
	} else {
780
		reg = pgtbl_cfg->arm_lpae_s2_cfg.vtcr;
781
	}
782
	writel_relaxed(reg, cb_base + ARM_SMMU_CB_TTBCR);
783

784
	/* MAIRs (stage-1 only) */
785
	if (stage1) {
786 787 788 789 790 791 792
		if (cfg->fmt == ARM_SMMU_CTX_FMT_AARCH32_S) {
			reg = pgtbl_cfg->arm_v7s_cfg.prrr;
			reg2 = pgtbl_cfg->arm_v7s_cfg.nmrr;
		} else {
			reg = pgtbl_cfg->arm_lpae_s1_cfg.mair[0];
			reg2 = pgtbl_cfg->arm_lpae_s1_cfg.mair[1];
		}
793
		writel_relaxed(reg, cb_base + ARM_SMMU_CB_S1_MAIR0);
794
		writel_relaxed(reg2, cb_base + ARM_SMMU_CB_S1_MAIR1);
795 796 797
	}

	/* SCTLR */
798
	reg = SCTLR_CFIE | SCTLR_CFRE | SCTLR_AFE | SCTLR_TRE | SCTLR_M;
799 800 801 802 803
	if (stage1)
		reg |= SCTLR_S1_ASIDPNE;
#ifdef __BIG_ENDIAN
	reg |= SCTLR_E;
#endif
804
	writel_relaxed(reg, cb_base + ARM_SMMU_CB_SCTLR);
805 806 807
}

static int arm_smmu_init_domain_context(struct iommu_domain *domain,
808
					struct arm_smmu_device *smmu)
809
{
810
	int irq, start, ret = 0;
811 812 813 814
	unsigned long ias, oas;
	struct io_pgtable_ops *pgtbl_ops;
	struct io_pgtable_cfg pgtbl_cfg;
	enum io_pgtable_fmt fmt;
815
	struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
816
	struct arm_smmu_cfg *cfg = &smmu_domain->cfg;
817

818
	mutex_lock(&smmu_domain->init_mutex);
819 820 821
	if (smmu_domain->smmu)
		goto out_unlock;

822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844
	/*
	 * Mapping the requested stage onto what we support is surprisingly
	 * complicated, mainly because the spec allows S1+S2 SMMUs without
	 * support for nested translation. That means we end up with the
	 * following table:
	 *
	 * Requested        Supported        Actual
	 *     S1               N              S1
	 *     S1             S1+S2            S1
	 *     S1               S2             S2
	 *     S1               S1             S1
	 *     N                N              N
	 *     N              S1+S2            S2
	 *     N                S2             S2
	 *     N                S1             S1
	 *
	 * Note that you can't actually request stage-2 mappings.
	 */
	if (!(smmu->features & ARM_SMMU_FEAT_TRANS_S1))
		smmu_domain->stage = ARM_SMMU_DOMAIN_S2;
	if (!(smmu->features & ARM_SMMU_FEAT_TRANS_S2))
		smmu_domain->stage = ARM_SMMU_DOMAIN_S1;

845 846 847 848 849 850 851 852 853 854
	/*
	 * Choosing a suitable context format is even more fiddly. Until we
	 * grow some way for the caller to express a preference, and/or move
	 * the decision into the io-pgtable code where it arguably belongs,
	 * just aim for the closest thing to the rest of the system, and hope
	 * that the hardware isn't esoteric enough that we can't assume AArch64
	 * support to be a superset of AArch32 support...
	 */
	if (smmu->features & ARM_SMMU_FEAT_FMT_AARCH32_L)
		cfg->fmt = ARM_SMMU_CTX_FMT_AARCH32_L;
855 856 857 858 859
	if (IS_ENABLED(CONFIG_IOMMU_IO_PGTABLE_ARMV7S) &&
	    !IS_ENABLED(CONFIG_64BIT) && !IS_ENABLED(CONFIG_ARM_LPAE) &&
	    (smmu->features & ARM_SMMU_FEAT_FMT_AARCH32_S) &&
	    (smmu_domain->stage == ARM_SMMU_DOMAIN_S1))
		cfg->fmt = ARM_SMMU_CTX_FMT_AARCH32_S;
860 861 862 863 864 865 866 867 868 869 870
	if ((IS_ENABLED(CONFIG_64BIT) || cfg->fmt == ARM_SMMU_CTX_FMT_NONE) &&
	    (smmu->features & (ARM_SMMU_FEAT_FMT_AARCH64_64K |
			       ARM_SMMU_FEAT_FMT_AARCH64_16K |
			       ARM_SMMU_FEAT_FMT_AARCH64_4K)))
		cfg->fmt = ARM_SMMU_CTX_FMT_AARCH64;

	if (cfg->fmt == ARM_SMMU_CTX_FMT_NONE) {
		ret = -EINVAL;
		goto out_unlock;
	}

871 872 873 874
	switch (smmu_domain->stage) {
	case ARM_SMMU_DOMAIN_S1:
		cfg->cbar = CBAR_TYPE_S1_TRANS_S2_BYPASS;
		start = smmu->num_s2_context_banks;
875 876
		ias = smmu->va_size;
		oas = smmu->ipa_size;
877
		if (cfg->fmt == ARM_SMMU_CTX_FMT_AARCH64) {
878
			fmt = ARM_64_LPAE_S1;
879
		} else if (cfg->fmt == ARM_SMMU_CTX_FMT_AARCH32_L) {
880
			fmt = ARM_32_LPAE_S1;
881 882
			ias = min(ias, 32UL);
			oas = min(oas, 40UL);
883 884 885 886
		} else {
			fmt = ARM_V7S;
			ias = min(ias, 32UL);
			oas = min(oas, 32UL);
887
		}
888 889
		break;
	case ARM_SMMU_DOMAIN_NESTED:
890 891 892 893
		/*
		 * We will likely want to change this if/when KVM gets
		 * involved.
		 */
894
	case ARM_SMMU_DOMAIN_S2:
895 896
		cfg->cbar = CBAR_TYPE_S2_TRANS;
		start = 0;
897 898
		ias = smmu->ipa_size;
		oas = smmu->pa_size;
899
		if (cfg->fmt == ARM_SMMU_CTX_FMT_AARCH64) {
900
			fmt = ARM_64_LPAE_S2;
901
		} else {
902
			fmt = ARM_32_LPAE_S2;
903 904 905
			ias = min(ias, 40UL);
			oas = min(oas, 40UL);
		}
906 907 908 909
		break;
	default:
		ret = -EINVAL;
		goto out_unlock;
910 911 912 913
	}

	ret = __arm_smmu_alloc_bitmap(smmu->context_map, start,
				      smmu->num_context_banks);
914
	if (ret < 0)
915
		goto out_unlock;
916

917
	cfg->cbndx = ret;
918
	if (smmu->version < ARM_SMMU_V2) {
919 920
		cfg->irptndx = atomic_inc_return(&smmu->irptndx);
		cfg->irptndx %= smmu->num_context_irqs;
921
	} else {
922
		cfg->irptndx = cfg->cbndx;
923 924
	}

925
	pgtbl_cfg = (struct io_pgtable_cfg) {
926
		.pgsize_bitmap	= smmu->pgsize_bitmap,
927 928 929
		.ias		= ias,
		.oas		= oas,
		.tlb		= &arm_smmu_gather_ops,
930
		.iommu_dev	= smmu->dev,
931 932 933 934 935 936 937 938 939
	};

	smmu_domain->smmu = smmu;
	pgtbl_ops = alloc_io_pgtable_ops(fmt, &pgtbl_cfg, smmu_domain);
	if (!pgtbl_ops) {
		ret = -ENOMEM;
		goto out_clear_smmu;
	}

940 941
	/* Update the domain's page sizes to reflect the page table format */
	domain->pgsize_bitmap = pgtbl_cfg.pgsize_bitmap;
942

943 944 945 946 947 948 949
	/* Initialise the context bank with our page table cfg */
	arm_smmu_init_context_bank(smmu_domain, &pgtbl_cfg);

	/*
	 * Request context fault interrupt. Do this last to avoid the
	 * handler seeing a half-initialised domain state.
	 */
950
	irq = smmu->irqs[smmu->num_global_irqs + cfg->irptndx];
951 952
	ret = devm_request_irq(smmu->dev, irq, arm_smmu_context_fault,
			       IRQF_SHARED, "arm-smmu-context-fault", domain);
953
	if (ret < 0) {
954
		dev_err(smmu->dev, "failed to request context IRQ %d (%u)\n",
955 956
			cfg->irptndx, irq);
		cfg->irptndx = INVALID_IRPTNDX;
957 958
	}

959 960 961 962
	mutex_unlock(&smmu_domain->init_mutex);

	/* Publish page table ops for map/unmap */
	smmu_domain->pgtbl_ops = pgtbl_ops;
963
	return 0;
964

965 966
out_clear_smmu:
	smmu_domain->smmu = NULL;
967
out_unlock:
968
	mutex_unlock(&smmu_domain->init_mutex);
969 970 971 972 973
	return ret;
}

static void arm_smmu_destroy_domain_context(struct iommu_domain *domain)
{
974
	struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
975 976
	struct arm_smmu_device *smmu = smmu_domain->smmu;
	struct arm_smmu_cfg *cfg = &smmu_domain->cfg;
977
	void __iomem *cb_base;
978 979
	int irq;

980
	if (!smmu)
981 982
		return;

983 984 985 986
	/*
	 * Disable the context bank and free the page tables before freeing
	 * it.
	 */
987
	cb_base = ARM_SMMU_CB_BASE(smmu) + ARM_SMMU_CB(smmu, cfg->cbndx);
988 989
	writel_relaxed(0, cb_base + ARM_SMMU_CB_SCTLR);

990 991
	if (cfg->irptndx != INVALID_IRPTNDX) {
		irq = smmu->irqs[smmu->num_global_irqs + cfg->irptndx];
992
		devm_free_irq(smmu->dev, irq, domain);
993 994
	}

995
	free_io_pgtable_ops(smmu_domain->pgtbl_ops);
996
	__arm_smmu_free_bitmap(smmu->context_map, cfg->cbndx);
997 998
}

999
static struct iommu_domain *arm_smmu_domain_alloc(unsigned type)
1000 1001 1002
{
	struct arm_smmu_domain *smmu_domain;

1003
	if (type != IOMMU_DOMAIN_UNMANAGED && type != IOMMU_DOMAIN_DMA)
1004
		return NULL;
1005 1006 1007 1008 1009 1010 1011
	/*
	 * Allocate the domain and initialise some of its data structures.
	 * We can't really do anything meaningful until we've added a
	 * master.
	 */
	smmu_domain = kzalloc(sizeof(*smmu_domain), GFP_KERNEL);
	if (!smmu_domain)
1012
		return NULL;
1013

1014 1015
	if (type == IOMMU_DOMAIN_DMA && (using_legacy_binding ||
	    iommu_get_dma_cookie(&smmu_domain->domain))) {
1016 1017 1018 1019
		kfree(smmu_domain);
		return NULL;
	}

1020 1021
	mutex_init(&smmu_domain->init_mutex);
	spin_lock_init(&smmu_domain->pgtbl_lock);
1022 1023

	return &smmu_domain->domain;
1024 1025
}

1026
static void arm_smmu_domain_free(struct iommu_domain *domain)
1027
{
1028
	struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1029 1030 1031 1032 1033

	/*
	 * Free the domain resources. We assume that all devices have
	 * already been detached.
	 */
1034
	iommu_put_dma_cookie(domain);
1035 1036 1037 1038
	arm_smmu_destroy_domain_context(domain);
	kfree(smmu_domain);
}

1039 1040 1041
static void arm_smmu_write_smr(struct arm_smmu_device *smmu, int idx)
{
	struct arm_smmu_smr *smr = smmu->smrs + idx;
1042
	u32 reg = smr->id << SMR_ID_SHIFT | smr->mask << SMR_MASK_SHIFT;
1043 1044 1045 1046 1047 1048

	if (smr->valid)
		reg |= SMR_VALID;
	writel_relaxed(reg, ARM_SMMU_GR0(smmu) + ARM_SMMU_GR0_SMR(idx));
}

1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065
static void arm_smmu_write_s2cr(struct arm_smmu_device *smmu, int idx)
{
	struct arm_smmu_s2cr *s2cr = smmu->s2crs + idx;
	u32 reg = (s2cr->type & S2CR_TYPE_MASK) << S2CR_TYPE_SHIFT |
		  (s2cr->cbndx & S2CR_CBNDX_MASK) << S2CR_CBNDX_SHIFT |
		  (s2cr->privcfg & S2CR_PRIVCFG_MASK) << S2CR_PRIVCFG_SHIFT;

	writel_relaxed(reg, ARM_SMMU_GR0(smmu) + ARM_SMMU_GR0_S2CR(idx));
}

static void arm_smmu_write_sme(struct arm_smmu_device *smmu, int idx)
{
	arm_smmu_write_s2cr(smmu, idx);
	if (smmu->smrs)
		arm_smmu_write_smr(smmu, idx);
}

1066
static int arm_smmu_find_sme(struct arm_smmu_device *smmu, u16 id, u16 mask)
1067 1068
{
	struct arm_smmu_smr *smrs = smmu->smrs;
1069
	int i, free_idx = -ENOSPC;
1070

1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083
	/* Stream indexing is blissfully easy */
	if (!smrs)
		return id;

	/* Validating SMRs is... less so */
	for (i = 0; i < smmu->num_mapping_groups; ++i) {
		if (!smrs[i].valid) {
			/*
			 * Note the first free entry we come across, which
			 * we'll claim in the end if nothing else matches.
			 */
			if (free_idx < 0)
				free_idx = i;
1084 1085
			continue;
		}
1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103
		/*
		 * If the new entry is _entirely_ matched by an existing entry,
		 * then reuse that, with the guarantee that there also cannot
		 * be any subsequent conflicting entries. In normal use we'd
		 * expect simply identical entries for this case, but there's
		 * no harm in accommodating the generalisation.
		 */
		if ((mask & smrs[i].mask) == mask &&
		    !((id ^ smrs[i].id) & ~smrs[i].mask))
			return i;
		/*
		 * If the new entry has any other overlap with an existing one,
		 * though, then there always exists at least one stream ID
		 * which would cause a conflict, and we can't allow that risk.
		 */
		if (!((id ^ smrs[i].id) & ~(smrs[i].mask | mask)))
			return -EINVAL;
	}
1104

1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121
	return free_idx;
}

static bool arm_smmu_free_sme(struct arm_smmu_device *smmu, int idx)
{
	if (--smmu->s2crs[idx].count)
		return false;

	smmu->s2crs[idx] = s2cr_init_val;
	if (smmu->smrs)
		smmu->smrs[idx].valid = false;

	return true;
}

static int arm_smmu_master_alloc_smes(struct device *dev)
{
1122 1123
	struct iommu_fwspec *fwspec = dev->iommu_fwspec;
	struct arm_smmu_master_cfg *cfg = fwspec->iommu_priv;
1124 1125 1126 1127 1128 1129 1130
	struct arm_smmu_device *smmu = cfg->smmu;
	struct arm_smmu_smr *smrs = smmu->smrs;
	struct iommu_group *group;
	int i, idx, ret;

	mutex_lock(&smmu->stream_map_mutex);
	/* Figure out a viable stream map entry allocation */
1131
	for_each_cfg_sme(fwspec, i, idx) {
1132 1133 1134
		u16 sid = fwspec->ids[i];
		u16 mask = fwspec->ids[i] >> SMR_MASK_SHIFT;

1135 1136 1137
		if (idx != INVALID_SMENDX) {
			ret = -EEXIST;
			goto out_err;
1138 1139
		}

1140
		ret = arm_smmu_find_sme(smmu, sid, mask);
1141 1142 1143 1144 1145
		if (ret < 0)
			goto out_err;

		idx = ret;
		if (smrs && smmu->s2crs[idx].count == 0) {
1146 1147
			smrs[idx].id = sid;
			smrs[idx].mask = mask;
1148 1149 1150 1151
			smrs[idx].valid = true;
		}
		smmu->s2crs[idx].count++;
		cfg->smendx[i] = (s16)idx;
1152 1153
	}

1154 1155 1156 1157 1158 1159 1160 1161
	group = iommu_group_get_for_dev(dev);
	if (!group)
		group = ERR_PTR(-ENOMEM);
	if (IS_ERR(group)) {
		ret = PTR_ERR(group);
		goto out_err;
	}
	iommu_group_put(group);
1162

1163
	/* It worked! Now, poke the actual hardware */
1164
	for_each_cfg_sme(fwspec, i, idx) {
1165 1166 1167
		arm_smmu_write_sme(smmu, idx);
		smmu->s2crs[idx].group = group;
	}
1168

1169
	mutex_unlock(&smmu->stream_map_mutex);
1170 1171
	return 0;

1172
out_err:
1173
	while (i--) {
1174
		arm_smmu_free_sme(smmu, cfg->smendx[i]);
1175 1176
		cfg->smendx[i] = INVALID_SMENDX;
	}
1177 1178
	mutex_unlock(&smmu->stream_map_mutex);
	return ret;
1179 1180
}

1181
static void arm_smmu_master_free_smes(struct iommu_fwspec *fwspec)
1182
{
1183 1184
	struct arm_smmu_device *smmu = fwspec_smmu(fwspec);
	struct arm_smmu_master_cfg *cfg = fwspec->iommu_priv;
1185
	int i, idx;
1186

1187
	mutex_lock(&smmu->stream_map_mutex);
1188
	for_each_cfg_sme(fwspec, i, idx) {
1189 1190
		if (arm_smmu_free_sme(smmu, idx))
			arm_smmu_write_sme(smmu, idx);
1191
		cfg->smendx[i] = INVALID_SMENDX;
1192
	}
1193
	mutex_unlock(&smmu->stream_map_mutex);
1194 1195 1196
}

static int arm_smmu_domain_add_master(struct arm_smmu_domain *smmu_domain,
1197
				      struct iommu_fwspec *fwspec)
1198
{
1199
	struct arm_smmu_device *smmu = smmu_domain->smmu;
1200 1201 1202
	struct arm_smmu_s2cr *s2cr = smmu->s2crs;
	enum arm_smmu_s2cr_type type = S2CR_TYPE_TRANS;
	u8 cbndx = smmu_domain->cfg.cbndx;
1203
	int i, idx;
1204

1205
	for_each_cfg_sme(fwspec, i, idx) {
1206
		if (type == s2cr[idx].type && cbndx == s2cr[idx].cbndx)
1207
			continue;
1208

1209 1210 1211 1212
		s2cr[idx].type = type;
		s2cr[idx].privcfg = S2CR_PRIVCFG_UNPRIV;
		s2cr[idx].cbndx = cbndx;
		arm_smmu_write_s2cr(smmu, idx);
1213
	}
1214
	return 0;
1215 1216
}

1217 1218
static int arm_smmu_attach_dev(struct iommu_domain *domain, struct device *dev)
{
1219
	int ret;
1220 1221
	struct iommu_fwspec *fwspec = dev->iommu_fwspec;
	struct arm_smmu_device *smmu;
1222
	struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1223

1224
	if (!fwspec || fwspec->ops != &arm_smmu_ops) {
1225 1226 1227 1228
		dev_err(dev, "cannot attach to SMMU, is it on the same bus?\n");
		return -ENXIO;
	}

1229
	smmu = fwspec_smmu(fwspec);
1230
	/* Ensure that the domain is finalised */
1231
	ret = arm_smmu_init_domain_context(domain, smmu);
1232
	if (ret < 0)
1233 1234
		return ret;

1235
	/*
1236 1237
	 * Sanity check the domain. We don't support domains across
	 * different SMMUs.
1238
	 */
1239
	if (smmu_domain->smmu != smmu) {
1240 1241
		dev_err(dev,
			"cannot attach to SMMU %s whilst already attached to domain on SMMU %s\n",
1242
			dev_name(smmu_domain->smmu->dev), dev_name(smmu->dev));
1243
		return -EINVAL;
1244 1245 1246
	}

	/* Looks ok, so add the device to the domain */
1247
	return arm_smmu_domain_add_master(smmu_domain, fwspec);
1248 1249 1250
}

static int arm_smmu_map(struct iommu_domain *domain, unsigned long iova,
1251
			phys_addr_t paddr, size_t size, int prot)
1252
{
1253 1254
	int ret;
	unsigned long flags;
1255
	struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1256
	struct io_pgtable_ops *ops= smmu_domain->pgtbl_ops;
1257

1258
	if (!ops)
1259 1260
		return -ENODEV;

1261 1262 1263 1264
	spin_lock_irqsave(&smmu_domain->pgtbl_lock, flags);
	ret = ops->map(ops, iova, paddr, size, prot);
	spin_unlock_irqrestore(&smmu_domain->pgtbl_lock, flags);
	return ret;
1265 1266 1267 1268 1269
}

static size_t arm_smmu_unmap(struct iommu_domain *domain, unsigned long iova,
			     size_t size)
{
1270 1271
	size_t ret;
	unsigned long flags;
1272
	struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1273
	struct io_pgtable_ops *ops= smmu_domain->pgtbl_ops;
1274

1275 1276 1277 1278 1279 1280 1281
	if (!ops)
		return 0;

	spin_lock_irqsave(&smmu_domain->pgtbl_lock, flags);
	ret = ops->unmap(ops, iova, size);
	spin_unlock_irqrestore(&smmu_domain->pgtbl_lock, flags);
	return ret;
1282 1283
}

1284 1285 1286
static phys_addr_t arm_smmu_iova_to_phys_hard(struct iommu_domain *domain,
					      dma_addr_t iova)
{
1287
	struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1288 1289 1290 1291 1292 1293 1294
	struct arm_smmu_device *smmu = smmu_domain->smmu;
	struct arm_smmu_cfg *cfg = &smmu_domain->cfg;
	struct io_pgtable_ops *ops= smmu_domain->pgtbl_ops;
	struct device *dev = smmu->dev;
	void __iomem *cb_base;
	u32 tmp;
	u64 phys;
1295
	unsigned long va;
1296 1297 1298

	cb_base = ARM_SMMU_CB_BASE(smmu) + ARM_SMMU_CB(smmu, cfg->cbndx);

1299 1300 1301
	/* ATS1 registers can only be written atomically */
	va = iova & ~0xfffUL;
	if (smmu->version == ARM_SMMU_V2)
1302 1303
		smmu_write_atomic_lq(va, cb_base + ARM_SMMU_CB_ATS1PR);
	else /* Register is only 32-bit in v1 */
1304
		writel_relaxed(va, cb_base + ARM_SMMU_CB_ATS1PR);
1305 1306 1307 1308

	if (readl_poll_timeout_atomic(cb_base + ARM_SMMU_CB_ATSR, tmp,
				      !(tmp & ATSR_ACTIVE), 5, 50)) {
		dev_err(dev,
1309
			"iova to phys timed out on %pad. Falling back to software table walk.\n",
1310 1311 1312 1313
			&iova);
		return ops->iova_to_phys(ops, iova);
	}

1314
	phys = readq_relaxed(cb_base + ARM_SMMU_CB_PAR);
1315 1316 1317 1318 1319 1320 1321 1322 1323
	if (phys & CB_PAR_F) {
		dev_err(dev, "translation fault!\n");
		dev_err(dev, "PAR = 0x%llx\n", phys);
		return 0;
	}

	return (phys & GENMASK_ULL(39, 12)) | (iova & 0xfff);
}

1324
static phys_addr_t arm_smmu_iova_to_phys(struct iommu_domain *domain,
1325
					dma_addr_t iova)
1326
{
1327 1328
	phys_addr_t ret;
	unsigned long flags;
1329
	struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1330
	struct io_pgtable_ops *ops= smmu_domain->pgtbl_ops;
1331

1332
	if (!ops)
1333
		return 0;
1334

1335
	spin_lock_irqsave(&smmu_domain->pgtbl_lock, flags);
1336 1337
	if (smmu_domain->smmu->features & ARM_SMMU_FEAT_TRANS_OPS &&
			smmu_domain->stage == ARM_SMMU_DOMAIN_S1) {
1338
		ret = arm_smmu_iova_to_phys_hard(domain, iova);
1339
	} else {
1340
		ret = ops->iova_to_phys(ops, iova);
1341 1342
	}

1343
	spin_unlock_irqrestore(&smmu_domain->pgtbl_lock, flags);
1344

1345
	return ret;
1346 1347
}

1348
static bool arm_smmu_capable(enum iommu_cap cap)
1349
{
1350 1351
	switch (cap) {
	case IOMMU_CAP_CACHE_COHERENCY:
1352 1353 1354 1355 1356
		/*
		 * Return true here as the SMMU can always send out coherent
		 * requests.
		 */
		return true;
1357
	case IOMMU_CAP_INTR_REMAP:
1358
		return true; /* MSIs are just memory writes */
1359 1360
	case IOMMU_CAP_NOEXEC:
		return true;
1361
	default:
1362
		return false;
1363
	}
1364 1365
}

1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378
static int arm_smmu_match_node(struct device *dev, void *data)
{
	return dev->of_node == data;
}

static struct arm_smmu_device *arm_smmu_get_by_node(struct device_node *np)
{
	struct device *dev = driver_find_device(&arm_smmu_driver.driver, NULL,
						np, arm_smmu_match_node);
	put_device(dev);
	return dev ? dev_get_drvdata(dev) : NULL;
}

1379
static int arm_smmu_add_device(struct device *dev)
1380
{
1381
	struct arm_smmu_device *smmu;
1382
	struct arm_smmu_master_cfg *cfg;
1383
	struct iommu_fwspec *fwspec = dev->iommu_fwspec;
1384
	int i, ret;
1385

1386 1387 1388 1389 1390 1391 1392 1393 1394 1395
	if (using_legacy_binding) {
		ret = arm_smmu_register_legacy_master(dev, &smmu);
		fwspec = dev->iommu_fwspec;
		if (ret)
			goto out_free;
	} else if (fwspec) {
		smmu = arm_smmu_get_by_node(to_of_node(fwspec->iommu_fwnode));
	} else {
		return -ENODEV;
	}
1396

1397
	ret = -EINVAL;
1398 1399
	for (i = 0; i < fwspec->num_ids; i++) {
		u16 sid = fwspec->ids[i];
1400
		u16 mask = fwspec->ids[i] >> SMR_MASK_SHIFT;
1401

1402
		if (sid & ~smmu->streamid_mask) {
1403
			dev_err(dev, "stream ID 0x%x out of range for SMMU (0x%x)\n",
1404 1405 1406 1407 1408 1409
				sid, smmu->streamid_mask);
			goto out_free;
		}
		if (mask & ~smmu->smr_mask_mask) {
			dev_err(dev, "SMR mask 0x%x out of range for SMMU (0x%x)\n",
				sid, smmu->smr_mask_mask);
1410 1411
			goto out_free;
		}
1412
	}
1413

1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424
	ret = -ENOMEM;
	cfg = kzalloc(offsetof(struct arm_smmu_master_cfg, smendx[i]),
		      GFP_KERNEL);
	if (!cfg)
		goto out_free;

	cfg->smmu = smmu;
	fwspec->iommu_priv = cfg;
	while (i--)
		cfg->smendx[i] = INVALID_SMENDX;

1425
	ret = arm_smmu_master_alloc_smes(dev);
1426 1427 1428 1429
	if (ret)
		goto out_free;

	return 0;
1430 1431

out_free:
1432 1433 1434
	if (fwspec)
		kfree(fwspec->iommu_priv);
	iommu_fwspec_free(dev);
1435
	return ret;
1436 1437
}

1438 1439
static void arm_smmu_remove_device(struct device *dev)
{
1440
	struct iommu_fwspec *fwspec = dev->iommu_fwspec;
1441

1442
	if (!fwspec || fwspec->ops != &arm_smmu_ops)
1443
		return;
1444

1445
	arm_smmu_master_free_smes(fwspec);
1446
	iommu_group_remove_device(dev);
1447 1448
	kfree(fwspec->iommu_priv);
	iommu_fwspec_free(dev);
1449 1450
}

1451 1452
static struct iommu_group *arm_smmu_device_group(struct device *dev)
{
1453 1454
	struct iommu_fwspec *fwspec = dev->iommu_fwspec;
	struct arm_smmu_device *smmu = fwspec_smmu(fwspec);
1455 1456 1457
	struct iommu_group *group = NULL;
	int i, idx;

1458
	for_each_cfg_sme(fwspec, i, idx) {
1459 1460 1461 1462 1463 1464 1465 1466 1467
		if (group && smmu->s2crs[idx].group &&
		    group != smmu->s2crs[idx].group)
			return ERR_PTR(-EINVAL);

		group = smmu->s2crs[idx].group;
	}

	if (group)
		return group;
1468 1469 1470 1471 1472 1473 1474 1475 1476

	if (dev_is_pci(dev))
		group = pci_device_group(dev);
	else
		group = generic_device_group(dev);

	return group;
}

1477 1478 1479
static int arm_smmu_domain_get_attr(struct iommu_domain *domain,
				    enum iommu_attr attr, void *data)
{
1480
	struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493

	switch (attr) {
	case DOMAIN_ATTR_NESTING:
		*(int *)data = (smmu_domain->stage == ARM_SMMU_DOMAIN_NESTED);
		return 0;
	default:
		return -ENODEV;
	}
}

static int arm_smmu_domain_set_attr(struct iommu_domain *domain,
				    enum iommu_attr attr, void *data)
{
1494
	int ret = 0;
1495
	struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1496

1497 1498
	mutex_lock(&smmu_domain->init_mutex);

1499 1500
	switch (attr) {
	case DOMAIN_ATTR_NESTING:
1501 1502 1503 1504 1505
		if (smmu_domain->smmu) {
			ret = -EPERM;
			goto out_unlock;
		}

1506 1507 1508 1509 1510
		if (*(int *)data)
			smmu_domain->stage = ARM_SMMU_DOMAIN_NESTED;
		else
			smmu_domain->stage = ARM_SMMU_DOMAIN_S1;

1511
		break;
1512
	default:
1513
		ret = -ENODEV;
1514
	}
1515 1516 1517 1518

out_unlock:
	mutex_unlock(&smmu_domain->init_mutex);
	return ret;
1519 1520
}

1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533
static int arm_smmu_of_xlate(struct device *dev, struct of_phandle_args *args)
{
	u32 fwid = 0;

	if (args->args_count > 0)
		fwid |= (u16)args->args[0];

	if (args->args_count > 1)
		fwid |= (u16)args->args[1] << SMR_MASK_SHIFT;

	return iommu_fwspec_add_ids(dev, &fwid, 1);
}

1534
static struct iommu_ops arm_smmu_ops = {
1535
	.capable		= arm_smmu_capable,
1536 1537
	.domain_alloc		= arm_smmu_domain_alloc,
	.domain_free		= arm_smmu_domain_free,
1538 1539 1540
	.attach_dev		= arm_smmu_attach_dev,
	.map			= arm_smmu_map,
	.unmap			= arm_smmu_unmap,
1541
	.map_sg			= default_iommu_map_sg,
1542 1543 1544
	.iova_to_phys		= arm_smmu_iova_to_phys,
	.add_device		= arm_smmu_add_device,
	.remove_device		= arm_smmu_remove_device,
1545
	.device_group		= arm_smmu_device_group,
1546 1547
	.domain_get_attr	= arm_smmu_domain_get_attr,
	.domain_set_attr	= arm_smmu_domain_set_attr,
1548
	.of_xlate		= arm_smmu_of_xlate,
1549
	.pgsize_bitmap		= -1UL, /* Restricted during device attach */
1550 1551 1552 1553 1554
};

static void arm_smmu_device_reset(struct arm_smmu_device *smmu)
{
	void __iomem *gr0_base = ARM_SMMU_GR0(smmu);
1555
	void __iomem *cb_base;
1556
	int i;
1557
	u32 reg, major;
1558

1559 1560 1561
	/* clear global FSR */
	reg = readl_relaxed(ARM_SMMU_GR0_NS(smmu) + ARM_SMMU_GR0_sGFSR);
	writel(reg, ARM_SMMU_GR0_NS(smmu) + ARM_SMMU_GR0_sGFSR);
1562

1563 1564 1565 1566
	/*
	 * Reset stream mapping groups: Initial values mark all SMRn as
	 * invalid and all S2CRn as bypass unless overridden.
	 */
1567 1568
	for (i = 0; i < smmu->num_mapping_groups; ++i)
		arm_smmu_write_sme(smmu, i);
1569

1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582
	/*
	 * Before clearing ARM_MMU500_ACTLR_CPRE, need to
	 * clear CACHE_LOCK bit of ACR first. And, CACHE_LOCK
	 * bit is only present in MMU-500r2 onwards.
	 */
	reg = readl_relaxed(gr0_base + ARM_SMMU_GR0_ID7);
	major = (reg >> ID7_MAJOR_SHIFT) & ID7_MAJOR_MASK;
	if ((smmu->model == ARM_MMU500) && (major >= 2)) {
		reg = readl_relaxed(gr0_base + ARM_SMMU_GR0_sACR);
		reg &= ~ARM_MMU500_ACR_CACHE_LOCK;
		writel_relaxed(reg, gr0_base + ARM_SMMU_GR0_sACR);
	}

1583 1584 1585 1586 1587
	/* Make sure all context banks are disabled and clear CB_FSR  */
	for (i = 0; i < smmu->num_context_banks; ++i) {
		cb_base = ARM_SMMU_CB_BASE(smmu) + ARM_SMMU_CB(smmu, i);
		writel_relaxed(0, cb_base + ARM_SMMU_CB_SCTLR);
		writel_relaxed(FSR_FAULT, cb_base + ARM_SMMU_CB_FSR);
1588 1589 1590 1591 1592 1593 1594 1595 1596
		/*
		 * Disable MMU-500's not-particularly-beneficial next-page
		 * prefetcher for the sake of errata #841119 and #826419.
		 */
		if (smmu->model == ARM_MMU500) {
			reg = readl_relaxed(cb_base + ARM_SMMU_CB_ACTLR);
			reg &= ~ARM_MMU500_ACTLR_CPRE;
			writel_relaxed(reg, cb_base + ARM_SMMU_CB_ACTLR);
		}
1597
	}
1598

1599 1600 1601 1602
	/* Invalidate the TLB, just in case */
	writel_relaxed(0, gr0_base + ARM_SMMU_GR0_TLBIALLH);
	writel_relaxed(0, gr0_base + ARM_SMMU_GR0_TLBIALLNSNH);

1603
	reg = readl_relaxed(ARM_SMMU_GR0_NS(smmu) + ARM_SMMU_GR0_sCR0);
1604

1605
	/* Enable fault reporting */
1606
	reg |= (sCR0_GFRE | sCR0_GFIE | sCR0_GCFGFRE | sCR0_GCFGFIE);
1607 1608

	/* Disable TLB broadcasting. */
1609
	reg |= (sCR0_VMIDPNE | sCR0_PTM);
1610

1611 1612 1613 1614 1615 1616
	/* Enable client access, handling unmatched streams as appropriate */
	reg &= ~sCR0_CLIENTPD;
	if (disable_bypass)
		reg |= sCR0_USFCFG;
	else
		reg &= ~sCR0_USFCFG;
1617 1618

	/* Disable forced broadcasting */
1619
	reg &= ~sCR0_FB;
1620 1621

	/* Don't upgrade barriers */
1622
	reg &= ~(sCR0_BSU_MASK << sCR0_BSU_SHIFT);
1623

1624 1625 1626
	if (smmu->features & ARM_SMMU_FEAT_VMID16)
		reg |= sCR0_VMID16EN;

1627
	/* Push the button */
1628
	__arm_smmu_tlb_sync(smmu);
1629
	writel(reg, ARM_SMMU_GR0_NS(smmu) + ARM_SMMU_GR0_sCR0);
1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655
}

static int arm_smmu_id_size_to_bits(int size)
{
	switch (size) {
	case 0:
		return 32;
	case 1:
		return 36;
	case 2:
		return 40;
	case 3:
		return 42;
	case 4:
		return 44;
	case 5:
	default:
		return 48;
	}
}

static int arm_smmu_device_cfg_probe(struct arm_smmu_device *smmu)
{
	unsigned long size;
	void __iomem *gr0_base = ARM_SMMU_GR0(smmu);
	u32 id;
1656
	bool cttw_dt, cttw_reg;
1657
	int i;
1658 1659

	dev_notice(smmu->dev, "probing hardware configuration...\n");
1660 1661
	dev_notice(smmu->dev, "SMMUv%d with:\n",
			smmu->version == ARM_SMMU_V2 ? 2 : 1);
1662 1663 1664

	/* ID0 */
	id = readl_relaxed(gr0_base + ARM_SMMU_GR0_ID0);
1665 1666 1667 1668 1669 1670 1671

	/* Restrict available stages based on module parameter */
	if (force_stage == 1)
		id &= ~(ID0_S2TS | ID0_NTS);
	else if (force_stage == 2)
		id &= ~(ID0_S1TS | ID0_NTS);

1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687
	if (id & ID0_S1TS) {
		smmu->features |= ARM_SMMU_FEAT_TRANS_S1;
		dev_notice(smmu->dev, "\tstage 1 translation\n");
	}

	if (id & ID0_S2TS) {
		smmu->features |= ARM_SMMU_FEAT_TRANS_S2;
		dev_notice(smmu->dev, "\tstage 2 translation\n");
	}

	if (id & ID0_NTS) {
		smmu->features |= ARM_SMMU_FEAT_TRANS_NESTED;
		dev_notice(smmu->dev, "\tnested translation\n");
	}

	if (!(smmu->features &
1688
		(ARM_SMMU_FEAT_TRANS_S1 | ARM_SMMU_FEAT_TRANS_S2))) {
1689 1690 1691 1692
		dev_err(smmu->dev, "\tno translation support!\n");
		return -ENODEV;
	}

1693 1694
	if ((id & ID0_S1TS) &&
		((smmu->version < ARM_SMMU_V2) || !(id & ID0_ATOSNS))) {
1695 1696 1697 1698
		smmu->features |= ARM_SMMU_FEAT_TRANS_OPS;
		dev_notice(smmu->dev, "\taddress translation ops\n");
	}

1699 1700 1701 1702 1703 1704 1705 1706 1707
	/*
	 * In order for DMA API calls to work properly, we must defer to what
	 * the DT says about coherency, regardless of what the hardware claims.
	 * Fortunately, this also opens up a workaround for systems where the
	 * ID register value has ended up configured incorrectly.
	 */
	cttw_dt = of_dma_is_coherent(smmu->dev->of_node);
	cttw_reg = !!(id & ID0_CTTW);
	if (cttw_dt)
1708
		smmu->features |= ARM_SMMU_FEAT_COHERENT_WALK;
1709 1710 1711 1712 1713 1714
	if (cttw_dt || cttw_reg)
		dev_notice(smmu->dev, "\t%scoherent table walk\n",
			   cttw_dt ? "" : "non-");
	if (cttw_dt != cttw_reg)
		dev_notice(smmu->dev,
			   "\t(IDR0.CTTW overridden by dma-coherent property)\n");
1715

1716 1717 1718
	/* Max. number of entries we have for stream matching/indexing */
	size = 1 << ((id >> ID0_NUMSIDB_SHIFT) & ID0_NUMSIDB_MASK);
	smmu->streamid_mask = size - 1;
1719
	if (id & ID0_SMS) {
1720
		u32 smr;
1721 1722

		smmu->features |= ARM_SMMU_FEAT_STREAM_MATCH;
1723 1724
		size = (id >> ID0_NUMSMRG_SHIFT) & ID0_NUMSMRG_MASK;
		if (size == 0) {
1725 1726 1727 1728 1729
			dev_err(smmu->dev,
				"stream-matching supported, but no SMRs present!\n");
			return -ENODEV;
		}

1730 1731 1732 1733 1734 1735
		/*
		 * SMR.ID bits may not be preserved if the corresponding MASK
		 * bits are set, so check each one separately. We can reject
		 * masters later if they try to claim IDs outside these masks.
		 */
		smr = smmu->streamid_mask << SMR_ID_SHIFT;
1736 1737
		writel_relaxed(smr, gr0_base + ARM_SMMU_GR0_SMR(0));
		smr = readl_relaxed(gr0_base + ARM_SMMU_GR0_SMR(0));
1738
		smmu->streamid_mask = smr >> SMR_ID_SHIFT;
1739

1740 1741 1742 1743
		smr = smmu->streamid_mask << SMR_MASK_SHIFT;
		writel_relaxed(smr, gr0_base + ARM_SMMU_GR0_SMR(0));
		smr = readl_relaxed(gr0_base + ARM_SMMU_GR0_SMR(0));
		smmu->smr_mask_mask = smr >> SMR_MASK_SHIFT;
1744

1745 1746 1747 1748 1749 1750
		/* Zero-initialised to mark as invalid */
		smmu->smrs = devm_kcalloc(smmu->dev, size, sizeof(*smmu->smrs),
					  GFP_KERNEL);
		if (!smmu->smrs)
			return -ENOMEM;

1751
		dev_notice(smmu->dev,
1752 1753
			   "\tstream matching with %lu register groups, mask 0x%x",
			   size, smmu->smr_mask_mask);
1754
	}
1755 1756 1757 1758 1759 1760 1761 1762
	/* s2cr->type == 0 means translation, so initialise explicitly */
	smmu->s2crs = devm_kmalloc_array(smmu->dev, size, sizeof(*smmu->s2crs),
					 GFP_KERNEL);
	if (!smmu->s2crs)
		return -ENOMEM;
	for (i = 0; i < size; i++)
		smmu->s2crs[i] = s2cr_init_val;

1763
	smmu->num_mapping_groups = size;
1764
	mutex_init(&smmu->stream_map_mutex);
1765

1766 1767 1768 1769 1770 1771
	if (smmu->version < ARM_SMMU_V2 || !(id & ID0_PTFS_NO_AARCH32)) {
		smmu->features |= ARM_SMMU_FEAT_FMT_AARCH32_L;
		if (!(id & ID0_PTFS_NO_AARCH32S))
			smmu->features |= ARM_SMMU_FEAT_FMT_AARCH32_S;
	}

1772 1773
	/* ID1 */
	id = readl_relaxed(gr0_base + ARM_SMMU_GR0_ID1);
1774
	smmu->pgshift = (id & ID1_PAGESIZE) ? 16 : 12;
1775

1776
	/* Check for size mismatch of SMMU address space from mapped region */
1777
	size = 1 << (((id >> ID1_NUMPAGENDXB_SHIFT) & ID1_NUMPAGENDXB_MASK) + 1);
1778
	size *= 2 << smmu->pgshift;
1779
	if (smmu->size != size)
1780 1781 1782
		dev_warn(smmu->dev,
			"SMMU address space size (0x%lx) differs from mapped region size (0x%lx)!\n",
			size, smmu->size);
1783

1784
	smmu->num_s2_context_banks = (id >> ID1_NUMS2CB_SHIFT) & ID1_NUMS2CB_MASK;
1785 1786 1787 1788 1789 1790 1791
	smmu->num_context_banks = (id >> ID1_NUMCB_SHIFT) & ID1_NUMCB_MASK;
	if (smmu->num_s2_context_banks > smmu->num_context_banks) {
		dev_err(smmu->dev, "impossible number of S2 context banks!\n");
		return -ENODEV;
	}
	dev_notice(smmu->dev, "\t%u context banks (%u stage-2 only)\n",
		   smmu->num_context_banks, smmu->num_s2_context_banks);
1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802
	/*
	 * Cavium CN88xx erratum #27704.
	 * Ensure ASID and VMID allocation is unique across all SMMUs in
	 * the system.
	 */
	if (smmu->model == CAVIUM_SMMUV2) {
		smmu->cavium_id_base =
			atomic_add_return(smmu->num_context_banks,
					  &cavium_smmu_context_count);
		smmu->cavium_id_base -= smmu->num_context_banks;
	}
1803 1804 1805 1806

	/* ID2 */
	id = readl_relaxed(gr0_base + ARM_SMMU_GR0_ID2);
	size = arm_smmu_id_size_to_bits((id >> ID2_IAS_SHIFT) & ID2_IAS_MASK);
1807
	smmu->ipa_size = size;
1808

1809
	/* The output mask is also applied for bypass */
1810
	size = arm_smmu_id_size_to_bits((id >> ID2_OAS_SHIFT) & ID2_OAS_MASK);
1811
	smmu->pa_size = size;
1812

1813 1814 1815
	if (id & ID2_VMID16)
		smmu->features |= ARM_SMMU_FEAT_VMID16;

1816 1817 1818 1819 1820 1821 1822 1823 1824
	/*
	 * What the page table walker can address actually depends on which
	 * descriptor format is in use, but since a) we don't know that yet,
	 * and b) it can vary per context bank, this will have to do...
	 */
	if (dma_set_mask_and_coherent(smmu->dev, DMA_BIT_MASK(size)))
		dev_warn(smmu->dev,
			 "failed to set DMA mask for table walker\n");

1825
	if (smmu->version < ARM_SMMU_V2) {
1826
		smmu->va_size = smmu->ipa_size;
1827 1828
		if (smmu->version == ARM_SMMU_V1_64K)
			smmu->features |= ARM_SMMU_FEAT_FMT_AARCH64_64K;
1829 1830
	} else {
		size = (id >> ID2_UBS_SHIFT) & ID2_UBS_MASK;
1831 1832
		smmu->va_size = arm_smmu_id_size_to_bits(size);
		if (id & ID2_PTFS_4K)
1833
			smmu->features |= ARM_SMMU_FEAT_FMT_AARCH64_4K;
1834
		if (id & ID2_PTFS_16K)
1835
			smmu->features |= ARM_SMMU_FEAT_FMT_AARCH64_16K;
1836
		if (id & ID2_PTFS_64K)
1837
			smmu->features |= ARM_SMMU_FEAT_FMT_AARCH64_64K;
1838 1839
	}

1840 1841
	/* Now we've corralled the various formats, what'll it do? */
	if (smmu->features & ARM_SMMU_FEAT_FMT_AARCH32_S)
1842
		smmu->pgsize_bitmap |= SZ_4K | SZ_64K | SZ_1M | SZ_16M;
1843 1844
	if (smmu->features &
	    (ARM_SMMU_FEAT_FMT_AARCH32_L | ARM_SMMU_FEAT_FMT_AARCH64_4K))
1845
		smmu->pgsize_bitmap |= SZ_4K | SZ_2M | SZ_1G;
1846
	if (smmu->features & ARM_SMMU_FEAT_FMT_AARCH64_16K)
1847
		smmu->pgsize_bitmap |= SZ_16K | SZ_32M;
1848
	if (smmu->features & ARM_SMMU_FEAT_FMT_AARCH64_64K)
1849 1850 1851 1852 1853 1854 1855 1856
		smmu->pgsize_bitmap |= SZ_64K | SZ_512M;

	if (arm_smmu_ops.pgsize_bitmap == -1UL)
		arm_smmu_ops.pgsize_bitmap = smmu->pgsize_bitmap;
	else
		arm_smmu_ops.pgsize_bitmap |= smmu->pgsize_bitmap;
	dev_notice(smmu->dev, "\tSupported page sizes: 0x%08lx\n",
		   smmu->pgsize_bitmap);
1857

1858

1859 1860
	if (smmu->features & ARM_SMMU_FEAT_TRANS_S1)
		dev_notice(smmu->dev, "\tStage-1: %lu-bit VA -> %lu-bit IPA\n",
1861
			   smmu->va_size, smmu->ipa_size);
1862 1863 1864

	if (smmu->features & ARM_SMMU_FEAT_TRANS_S2)
		dev_notice(smmu->dev, "\tStage-2: %lu-bit IPA -> %lu-bit PA\n",
1865
			   smmu->ipa_size, smmu->pa_size);
1866

1867 1868 1869
	return 0;
}

1870 1871 1872 1873 1874 1875 1876 1877 1878 1879
struct arm_smmu_match_data {
	enum arm_smmu_arch_version version;
	enum arm_smmu_implementation model;
};

#define ARM_SMMU_MATCH_DATA(name, ver, imp)	\
static struct arm_smmu_match_data name = { .version = ver, .model = imp }

ARM_SMMU_MATCH_DATA(smmu_generic_v1, ARM_SMMU_V1, GENERIC_SMMU);
ARM_SMMU_MATCH_DATA(smmu_generic_v2, ARM_SMMU_V2, GENERIC_SMMU);
1880
ARM_SMMU_MATCH_DATA(arm_mmu401, ARM_SMMU_V1_64K, GENERIC_SMMU);
1881
ARM_SMMU_MATCH_DATA(arm_mmu500, ARM_SMMU_V2, ARM_MMU500);
1882
ARM_SMMU_MATCH_DATA(cavium_smmuv2, ARM_SMMU_V2, CAVIUM_SMMUV2);
1883

1884
static const struct of_device_id arm_smmu_of_match[] = {
1885 1886 1887
	{ .compatible = "arm,smmu-v1", .data = &smmu_generic_v1 },
	{ .compatible = "arm,smmu-v2", .data = &smmu_generic_v2 },
	{ .compatible = "arm,mmu-400", .data = &smmu_generic_v1 },
1888
	{ .compatible = "arm,mmu-401", .data = &arm_mmu401 },
1889
	{ .compatible = "arm,mmu-500", .data = &arm_mmu500 },
1890
	{ .compatible = "cavium,smmu-v2", .data = &cavium_smmuv2 },
1891 1892 1893 1894
	{ },
};
MODULE_DEVICE_TABLE(of, arm_smmu_of_match);

1895 1896
static int arm_smmu_device_dt_probe(struct platform_device *pdev)
{
1897
	const struct arm_smmu_match_data *data;
1898 1899 1900 1901
	struct resource *res;
	struct arm_smmu_device *smmu;
	struct device *dev = &pdev->dev;
	int num_irqs, i, err;
1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914
	bool legacy_binding;

	legacy_binding = of_find_property(dev->of_node, "mmu-masters", NULL);
	if (legacy_binding && !using_generic_binding) {
		if (!using_legacy_binding)
			pr_notice("deprecated \"mmu-masters\" DT property in use; DMA API support unavailable\n");
		using_legacy_binding = true;
	} else if (!legacy_binding && !using_legacy_binding) {
		using_generic_binding = true;
	} else {
		dev_err(dev, "not probing due to mismatched DT properties\n");
		return -ENODEV;
	}
1915 1916 1917 1918 1919 1920 1921 1922

	smmu = devm_kzalloc(dev, sizeof(*smmu), GFP_KERNEL);
	if (!smmu) {
		dev_err(dev, "failed to allocate arm_smmu_device\n");
		return -ENOMEM;
	}
	smmu->dev = dev;

1923
	data = of_device_get_match_data(dev);
1924 1925
	smmu->version = data->version;
	smmu->model = data->model;
1926

1927
	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1928 1929 1930
	smmu->base = devm_ioremap_resource(dev, res);
	if (IS_ERR(smmu->base))
		return PTR_ERR(smmu->base);
1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945
	smmu->size = resource_size(res);

	if (of_property_read_u32(dev->of_node, "#global-interrupts",
				 &smmu->num_global_irqs)) {
		dev_err(dev, "missing #global-interrupts property\n");
		return -ENODEV;
	}

	num_irqs = 0;
	while ((res = platform_get_resource(pdev, IORESOURCE_IRQ, num_irqs))) {
		num_irqs++;
		if (num_irqs > smmu->num_global_irqs)
			smmu->num_context_irqs++;
	}

1946 1947 1948 1949
	if (!smmu->num_context_irqs) {
		dev_err(dev, "found %d interrupts but expected at least %d\n",
			num_irqs, smmu->num_global_irqs + 1);
		return -ENODEV;
1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960
	}

	smmu->irqs = devm_kzalloc(dev, sizeof(*smmu->irqs) * num_irqs,
				  GFP_KERNEL);
	if (!smmu->irqs) {
		dev_err(dev, "failed to allocate %d irqs\n", num_irqs);
		return -ENOMEM;
	}

	for (i = 0; i < num_irqs; ++i) {
		int irq = platform_get_irq(pdev, i);
1961

1962 1963 1964 1965 1966 1967 1968
		if (irq < 0) {
			dev_err(dev, "failed to get irq index %d\n", i);
			return -ENODEV;
		}
		smmu->irqs[i] = irq;
	}

1969 1970 1971 1972
	err = arm_smmu_device_cfg_probe(smmu);
	if (err)
		return err;

1973 1974
	parse_driver_options(smmu);

1975
	if (smmu->version == ARM_SMMU_V2 &&
1976 1977 1978 1979
	    smmu->num_context_banks != smmu->num_context_irqs) {
		dev_err(dev,
			"found only %d context interrupt(s) but %d required\n",
			smmu->num_context_irqs, smmu->num_context_banks);
1980
		return -ENODEV;
1981 1982 1983
	}

	for (i = 0; i < smmu->num_global_irqs; ++i) {
1984 1985 1986 1987 1988
		err = devm_request_irq(smmu->dev, smmu->irqs[i],
				       arm_smmu_global_fault,
				       IRQF_SHARED,
				       "arm-smmu global fault",
				       smmu);
1989 1990 1991
		if (err) {
			dev_err(dev, "failed to request global IRQ %d (%u)\n",
				i, smmu->irqs[i]);
1992
			return err;
1993 1994 1995
		}
	}

1996
	of_iommu_set_ops(dev->of_node, &arm_smmu_ops);
1997
	platform_set_drvdata(pdev, smmu);
1998
	arm_smmu_device_reset(smmu);
1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012

	/* Oh, for a proper bus abstraction */
	if (!iommu_present(&platform_bus_type))
		bus_set_iommu(&platform_bus_type, &arm_smmu_ops);
#ifdef CONFIG_ARM_AMBA
	if (!iommu_present(&amba_bustype))
		bus_set_iommu(&amba_bustype, &arm_smmu_ops);
#endif
#ifdef CONFIG_PCI
	if (!iommu_present(&pci_bus_type)) {
		pci_request_acs();
		bus_set_iommu(&pci_bus_type, &arm_smmu_ops);
	}
#endif
2013 2014 2015 2016 2017
	return 0;
}

static int arm_smmu_device_remove(struct platform_device *pdev)
{
2018
	struct arm_smmu_device *smmu = platform_get_drvdata(pdev);
2019 2020 2021 2022

	if (!smmu)
		return -ENODEV;

2023
	if (!bitmap_empty(smmu->context_map, ARM_SMMU_MAX_CBS))
2024
		dev_err(&pdev->dev, "removing device with active domains!\n");
2025 2026

	/* Turn the thing off */
2027
	writel(sCR0_CLIENTPD, ARM_SMMU_GR0_NS(smmu) + ARM_SMMU_GR0_sCR0);
2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041
	return 0;
}

static struct platform_driver arm_smmu_driver = {
	.driver	= {
		.name		= "arm-smmu",
		.of_match_table	= of_match_ptr(arm_smmu_of_match),
	},
	.probe	= arm_smmu_device_dt_probe,
	.remove	= arm_smmu_device_remove,
};

static int __init arm_smmu_init(void)
{
2042 2043
	static bool registered;
	int ret = 0;
2044

2045 2046 2047
	if (!registered) {
		ret = platform_driver_register(&arm_smmu_driver);
		registered = !ret;
2048
	}
2049
	return ret;
2050 2051 2052 2053 2054 2055 2056
}

static void __exit arm_smmu_exit(void)
{
	return platform_driver_unregister(&arm_smmu_driver);
}

2057
subsys_initcall(arm_smmu_init);
2058 2059
module_exit(arm_smmu_exit);

2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078
static int __init arm_smmu_of_init(struct device_node *np)
{
	int ret = arm_smmu_init();

	if (ret)
		return ret;

	if (!of_platform_device_create(np, NULL, platform_bus_type.dev_root))
		return -ENODEV;

	return 0;
}
IOMMU_OF_DECLARE(arm_smmuv1, "arm,smmu-v1", arm_smmu_of_init);
IOMMU_OF_DECLARE(arm_smmuv2, "arm,smmu-v2", arm_smmu_of_init);
IOMMU_OF_DECLARE(arm_mmu400, "arm,mmu-400", arm_smmu_of_init);
IOMMU_OF_DECLARE(arm_mmu401, "arm,mmu-401", arm_smmu_of_init);
IOMMU_OF_DECLARE(arm_mmu500, "arm,mmu-500", arm_smmu_of_init);
IOMMU_OF_DECLARE(cavium_smmuv2, "cavium,smmu-v2", arm_smmu_of_init);

2079 2080 2081
MODULE_DESCRIPTION("IOMMU API for ARM architected SMMU implementations");
MODULE_AUTHOR("Will Deacon <will.deacon@arm.com>");
MODULE_LICENSE("GPL v2");