arm-smmu.c 49.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36
/*
 * IOMMU API for ARM architected SMMU implementations.
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
 *
 * Copyright (C) 2013 ARM Limited
 *
 * Author: Will Deacon <will.deacon@arm.com>
 *
 * This driver currently supports:
 *	- SMMUv1 and v2 implementations
 *	- Stream-matching and stream-indexing
 *	- v7/v8 long-descriptor format
 *	- Non-secure access to the SMMU
 *	- Context fault reporting
 */

#define pr_fmt(fmt) "arm-smmu: " fmt

#include <linux/delay.h>
#include <linux/dma-mapping.h>
#include <linux/err.h>
#include <linux/interrupt.h>
#include <linux/io.h>
#include <linux/iommu.h>
37
#include <linux/iopoll.h>
38 39
#include <linux/module.h>
#include <linux/of.h>
40
#include <linux/pci.h>
41 42 43 44 45 46
#include <linux/platform_device.h>
#include <linux/slab.h>
#include <linux/spinlock.h>

#include <linux/amba/bus.h>

47
#include "io-pgtable.h"
48 49

/* Maximum number of stream IDs assigned to a single device */
50
#define MAX_MASTER_STREAMIDS		MAX_PHANDLE_ARGS
51 52 53 54 55 56 57 58 59

/* Maximum number of context banks per SMMU */
#define ARM_SMMU_MAX_CBS		128

/* Maximum number of mapping groups per SMMU */
#define ARM_SMMU_MAX_SMRS		128

/* SMMU global address space */
#define ARM_SMMU_GR0(smmu)		((smmu)->base)
60
#define ARM_SMMU_GR1(smmu)		((smmu)->base + (1 << (smmu)->pgshift))
61

62 63 64 65 66 67 68 69 70 71
/*
 * SMMU global address space with conditional offset to access secure
 * aliases of non-secure registers (e.g. nsCR0: 0x400, nsGFSR: 0x448,
 * nsGFSYNR0: 0x450)
 */
#define ARM_SMMU_GR0_NS(smmu)						\
	((smmu)->base +							\
		((smmu->options & ARM_SMMU_OPT_SECURE_CFG_ACCESS)	\
			? 0x400 : 0))

72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103
/* Configuration registers */
#define ARM_SMMU_GR0_sCR0		0x0
#define sCR0_CLIENTPD			(1 << 0)
#define sCR0_GFRE			(1 << 1)
#define sCR0_GFIE			(1 << 2)
#define sCR0_GCFGFRE			(1 << 4)
#define sCR0_GCFGFIE			(1 << 5)
#define sCR0_USFCFG			(1 << 10)
#define sCR0_VMIDPNE			(1 << 11)
#define sCR0_PTM			(1 << 12)
#define sCR0_FB				(1 << 13)
#define sCR0_BSU_SHIFT			14
#define sCR0_BSU_MASK			0x3

/* Identification registers */
#define ARM_SMMU_GR0_ID0		0x20
#define ARM_SMMU_GR0_ID1		0x24
#define ARM_SMMU_GR0_ID2		0x28
#define ARM_SMMU_GR0_ID3		0x2c
#define ARM_SMMU_GR0_ID4		0x30
#define ARM_SMMU_GR0_ID5		0x34
#define ARM_SMMU_GR0_ID6		0x38
#define ARM_SMMU_GR0_ID7		0x3c
#define ARM_SMMU_GR0_sGFSR		0x48
#define ARM_SMMU_GR0_sGFSYNR0		0x50
#define ARM_SMMU_GR0_sGFSYNR1		0x54
#define ARM_SMMU_GR0_sGFSYNR2		0x58

#define ID0_S1TS			(1 << 30)
#define ID0_S2TS			(1 << 29)
#define ID0_NTS				(1 << 28)
#define ID0_SMS				(1 << 27)
104
#define ID0_ATOSNS			(1 << 26)
105 106 107
#define ID0_CTTW			(1 << 14)
#define ID0_NUMIRPT_SHIFT		16
#define ID0_NUMIRPT_MASK		0xff
108 109
#define ID0_NUMSIDB_SHIFT		9
#define ID0_NUMSIDB_MASK		0xf
110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160
#define ID0_NUMSMRG_SHIFT		0
#define ID0_NUMSMRG_MASK		0xff

#define ID1_PAGESIZE			(1 << 31)
#define ID1_NUMPAGENDXB_SHIFT		28
#define ID1_NUMPAGENDXB_MASK		7
#define ID1_NUMS2CB_SHIFT		16
#define ID1_NUMS2CB_MASK		0xff
#define ID1_NUMCB_SHIFT			0
#define ID1_NUMCB_MASK			0xff

#define ID2_OAS_SHIFT			4
#define ID2_OAS_MASK			0xf
#define ID2_IAS_SHIFT			0
#define ID2_IAS_MASK			0xf
#define ID2_UBS_SHIFT			8
#define ID2_UBS_MASK			0xf
#define ID2_PTFS_4K			(1 << 12)
#define ID2_PTFS_16K			(1 << 13)
#define ID2_PTFS_64K			(1 << 14)

/* Global TLB invalidation */
#define ARM_SMMU_GR0_TLBIVMID		0x64
#define ARM_SMMU_GR0_TLBIALLNSNH	0x68
#define ARM_SMMU_GR0_TLBIALLH		0x6c
#define ARM_SMMU_GR0_sTLBGSYNC		0x70
#define ARM_SMMU_GR0_sTLBGSTATUS	0x74
#define sTLBGSTATUS_GSACTIVE		(1 << 0)
#define TLB_LOOP_TIMEOUT		1000000	/* 1s! */

/* Stream mapping registers */
#define ARM_SMMU_GR0_SMR(n)		(0x800 + ((n) << 2))
#define SMR_VALID			(1 << 31)
#define SMR_MASK_SHIFT			16
#define SMR_MASK_MASK			0x7fff
#define SMR_ID_SHIFT			0
#define SMR_ID_MASK			0x7fff

#define ARM_SMMU_GR0_S2CR(n)		(0xc00 + ((n) << 2))
#define S2CR_CBNDX_SHIFT		0
#define S2CR_CBNDX_MASK			0xff
#define S2CR_TYPE_SHIFT			16
#define S2CR_TYPE_MASK			0x3
#define S2CR_TYPE_TRANS			(0 << S2CR_TYPE_SHIFT)
#define S2CR_TYPE_BYPASS		(1 << S2CR_TYPE_SHIFT)
#define S2CR_TYPE_FAULT			(2 << S2CR_TYPE_SHIFT)

/* Context bank attribute registers */
#define ARM_SMMU_GR1_CBAR(n)		(0x0 + ((n) << 2))
#define CBAR_VMID_SHIFT			0
#define CBAR_VMID_MASK			0xff
161 162 163
#define CBAR_S1_BPSHCFG_SHIFT		8
#define CBAR_S1_BPSHCFG_MASK		3
#define CBAR_S1_BPSHCFG_NSH		3
164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181
#define CBAR_S1_MEMATTR_SHIFT		12
#define CBAR_S1_MEMATTR_MASK		0xf
#define CBAR_S1_MEMATTR_WB		0xf
#define CBAR_TYPE_SHIFT			16
#define CBAR_TYPE_MASK			0x3
#define CBAR_TYPE_S2_TRANS		(0 << CBAR_TYPE_SHIFT)
#define CBAR_TYPE_S1_TRANS_S2_BYPASS	(1 << CBAR_TYPE_SHIFT)
#define CBAR_TYPE_S1_TRANS_S2_FAULT	(2 << CBAR_TYPE_SHIFT)
#define CBAR_TYPE_S1_TRANS_S2_TRANS	(3 << CBAR_TYPE_SHIFT)
#define CBAR_IRPTNDX_SHIFT		24
#define CBAR_IRPTNDX_MASK		0xff

#define ARM_SMMU_GR1_CBA2R(n)		(0x800 + ((n) << 2))
#define CBA2R_RW64_32BIT		(0 << 0)
#define CBA2R_RW64_64BIT		(1 << 0)

/* Translation context bank */
#define ARM_SMMU_CB_BASE(smmu)		((smmu)->base + ((smmu)->size >> 1))
182
#define ARM_SMMU_CB(smmu, n)		((n) * (1 << (smmu)->pgshift))
183 184 185 186 187 188

#define ARM_SMMU_CB_SCTLR		0x0
#define ARM_SMMU_CB_RESUME		0x8
#define ARM_SMMU_CB_TTBCR2		0x10
#define ARM_SMMU_CB_TTBR0_LO		0x20
#define ARM_SMMU_CB_TTBR0_HI		0x24
189 190
#define ARM_SMMU_CB_TTBR1_LO		0x28
#define ARM_SMMU_CB_TTBR1_HI		0x2c
191 192
#define ARM_SMMU_CB_TTBCR		0x30
#define ARM_SMMU_CB_S1_MAIR0		0x38
193
#define ARM_SMMU_CB_S1_MAIR1		0x3c
194 195
#define ARM_SMMU_CB_PAR_LO		0x50
#define ARM_SMMU_CB_PAR_HI		0x54
196 197 198 199
#define ARM_SMMU_CB_FSR			0x58
#define ARM_SMMU_CB_FAR_LO		0x60
#define ARM_SMMU_CB_FAR_HI		0x64
#define ARM_SMMU_CB_FSYNR0		0x68
200
#define ARM_SMMU_CB_S1_TLBIVA		0x600
201
#define ARM_SMMU_CB_S1_TLBIASID		0x610
202 203 204
#define ARM_SMMU_CB_S1_TLBIVAL		0x620
#define ARM_SMMU_CB_S2_TLBIIPAS2	0x630
#define ARM_SMMU_CB_S2_TLBIIPAS2L	0x638
205 206 207
#define ARM_SMMU_CB_ATS1PR_LO		0x800
#define ARM_SMMU_CB_ATS1PR_HI		0x804
#define ARM_SMMU_CB_ATSR		0x8f0
208 209 210 211 212 213 214 215 216 217 218

#define SCTLR_S1_ASIDPNE		(1 << 12)
#define SCTLR_CFCFG			(1 << 7)
#define SCTLR_CFIE			(1 << 6)
#define SCTLR_CFRE			(1 << 5)
#define SCTLR_E				(1 << 4)
#define SCTLR_AFE			(1 << 2)
#define SCTLR_TRE			(1 << 1)
#define SCTLR_M				(1 << 0)
#define SCTLR_EAE_SBOP			(SCTLR_AFE | SCTLR_TRE)

219 220 221 222
#define CB_PAR_F			(1 << 0)

#define ATSR_ACTIVE			(1 << 0)

223 224 225 226 227 228 229 230 231 232 233 234 235
#define RESUME_RETRY			(0 << 0)
#define RESUME_TERMINATE		(1 << 0)

#define TTBCR2_SEP_SHIFT		15
#define TTBCR2_SEP_MASK			0x7

#define TTBCR2_ADDR_32			0
#define TTBCR2_ADDR_36			1
#define TTBCR2_ADDR_40			2
#define TTBCR2_ADDR_42			3
#define TTBCR2_ADDR_44			4
#define TTBCR2_ADDR_48			5

236
#define TTBRn_HI_ASID_SHIFT            16
237 238 239 240 241 242 243 244 245 246 247 248

#define FSR_MULTI			(1 << 31)
#define FSR_SS				(1 << 30)
#define FSR_UUT				(1 << 8)
#define FSR_ASF				(1 << 7)
#define FSR_TLBLKF			(1 << 6)
#define FSR_TLBMCF			(1 << 5)
#define FSR_EF				(1 << 4)
#define FSR_PF				(1 << 3)
#define FSR_AFF				(1 << 2)
#define FSR_TF				(1 << 1)

249 250 251
#define FSR_IGN				(FSR_AFF | FSR_ASF | \
					 FSR_TLBMCF | FSR_TLBLKF)
#define FSR_FAULT			(FSR_MULTI | FSR_SS | FSR_UUT | \
252
					 FSR_EF | FSR_PF | FSR_TF | FSR_IGN)
253 254 255

#define FSYNR0_WNR			(1 << 4)

256 257 258 259 260
static int force_stage;
module_param_named(force_stage, force_stage, int, S_IRUGO | S_IWUSR);
MODULE_PARM_DESC(force_stage,
	"Force SMMU mappings to be installed at a particular stage of translation. A value of '1' or '2' forces the corresponding stage. All other values are ignored (i.e. no stage is forced). Note that selecting a specific stage will disable support for nested translation.");

261 262 263 264 265
enum arm_smmu_arch_version {
	ARM_SMMU_V1 = 1,
	ARM_SMMU_V2,
};

266 267 268 269 270 271
struct arm_smmu_smr {
	u8				idx;
	u16				mask;
	u16				id;
};

272
struct arm_smmu_master_cfg {
273 274 275 276 277
	int				num_streamids;
	u16				streamids[MAX_MASTER_STREAMIDS];
	struct arm_smmu_smr		*smrs;
};

278 279 280 281 282 283
struct arm_smmu_master {
	struct device_node		*of_node;
	struct rb_node			node;
	struct arm_smmu_master_cfg	cfg;
};

284 285 286 287 288
struct arm_smmu_device {
	struct device			*dev;

	void __iomem			*base;
	unsigned long			size;
289
	unsigned long			pgshift;
290 291 292 293 294 295

#define ARM_SMMU_FEAT_COHERENT_WALK	(1 << 0)
#define ARM_SMMU_FEAT_STREAM_MATCH	(1 << 1)
#define ARM_SMMU_FEAT_TRANS_S1		(1 << 2)
#define ARM_SMMU_FEAT_TRANS_S2		(1 << 3)
#define ARM_SMMU_FEAT_TRANS_NESTED	(1 << 4)
296
#define ARM_SMMU_FEAT_TRANS_OPS		(1 << 5)
297
	u32				features;
298 299 300

#define ARM_SMMU_OPT_SECURE_CFG_ACCESS (1 << 0)
	u32				options;
301
	enum arm_smmu_arch_version	version;
302 303 304 305 306 307 308 309 310

	u32				num_context_banks;
	u32				num_s2_context_banks;
	DECLARE_BITMAP(context_map, ARM_SMMU_MAX_CBS);
	atomic_t			irptndx;

	u32				num_mapping_groups;
	DECLARE_BITMAP(smr_map, ARM_SMMU_MAX_SMRS);

311 312 313
	unsigned long			va_size;
	unsigned long			ipa_size;
	unsigned long			pa_size;
314 315 316 317 318 319 320 321 322 323 324 325 326 327

	u32				num_global_irqs;
	u32				num_context_irqs;
	unsigned int			*irqs;

	struct list_head		list;
	struct rb_root			masters;
};

struct arm_smmu_cfg {
	u8				cbndx;
	u8				irptndx;
	u32				cbar;
};
328
#define INVALID_IRPTNDX			0xff
329

330 331 332
#define ARM_SMMU_CB_ASID(cfg)		((cfg)->cbndx)
#define ARM_SMMU_CB_VMID(cfg)		((cfg)->cbndx + 1)

333 334 335 336 337 338
enum arm_smmu_domain_stage {
	ARM_SMMU_DOMAIN_S1 = 0,
	ARM_SMMU_DOMAIN_S2,
	ARM_SMMU_DOMAIN_NESTED,
};

339
struct arm_smmu_domain {
340
	struct arm_smmu_device		*smmu;
341 342
	struct io_pgtable_ops		*pgtbl_ops;
	spinlock_t			pgtbl_lock;
343
	struct arm_smmu_cfg		cfg;
344
	enum arm_smmu_domain_stage	stage;
345
	struct mutex			init_mutex; /* Protects smmu pointer */
346 347
};

348 349
static struct iommu_ops arm_smmu_ops;

350 351 352
static DEFINE_SPINLOCK(arm_smmu_devices_lock);
static LIST_HEAD(arm_smmu_devices);

353 354 355 356 357
struct arm_smmu_option_prop {
	u32 opt;
	const char *prop;
};

358
static struct arm_smmu_option_prop arm_smmu_options[] = {
359 360 361 362 363 364 365
	{ ARM_SMMU_OPT_SECURE_CFG_ACCESS, "calxeda,smmu-secure-config-access" },
	{ 0, NULL},
};

static void parse_driver_options(struct arm_smmu_device *smmu)
{
	int i = 0;
366

367 368 369 370 371 372 373 374 375 376
	do {
		if (of_property_read_bool(smmu->dev->of_node,
						arm_smmu_options[i].prop)) {
			smmu->options |= arm_smmu_options[i].opt;
			dev_notice(smmu->dev, "option %s\n",
				arm_smmu_options[i].prop);
		}
	} while (arm_smmu_options[++i].opt);
}

377
static struct device_node *dev_get_dev_node(struct device *dev)
378 379 380
{
	if (dev_is_pci(dev)) {
		struct pci_bus *bus = to_pci_dev(dev)->bus;
381

382 383
		while (!pci_is_root_bus(bus))
			bus = bus->parent;
384
		return bus->bridge->parent->of_node;
385 386
	}

387
	return dev->of_node;
388 389
}

390 391 392 393 394 395 396
static struct arm_smmu_master *find_smmu_master(struct arm_smmu_device *smmu,
						struct device_node *dev_node)
{
	struct rb_node *node = smmu->masters.rb_node;

	while (node) {
		struct arm_smmu_master *master;
397

398 399 400 401 402 403 404 405 406 407 408 409 410
		master = container_of(node, struct arm_smmu_master, node);

		if (dev_node < master->of_node)
			node = node->rb_left;
		else if (dev_node > master->of_node)
			node = node->rb_right;
		else
			return master;
	}

	return NULL;
}

411
static struct arm_smmu_master_cfg *
412
find_smmu_master_cfg(struct device *dev)
413
{
414 415
	struct arm_smmu_master_cfg *cfg = NULL;
	struct iommu_group *group = iommu_group_get(dev);
416

417 418 419 420
	if (group) {
		cfg = iommu_group_get_iommudata(group);
		iommu_group_put(group);
	}
421

422
	return cfg;
423 424
}

425 426 427 428 429 430 431 432
static int insert_smmu_master(struct arm_smmu_device *smmu,
			      struct arm_smmu_master *master)
{
	struct rb_node **new, *parent;

	new = &smmu->masters.rb_node;
	parent = NULL;
	while (*new) {
433 434
		struct arm_smmu_master *this
			= container_of(*new, struct arm_smmu_master, node);
435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475

		parent = *new;
		if (master->of_node < this->of_node)
			new = &((*new)->rb_left);
		else if (master->of_node > this->of_node)
			new = &((*new)->rb_right);
		else
			return -EEXIST;
	}

	rb_link_node(&master->node, parent, new);
	rb_insert_color(&master->node, &smmu->masters);
	return 0;
}

static int register_smmu_master(struct arm_smmu_device *smmu,
				struct device *dev,
				struct of_phandle_args *masterspec)
{
	int i;
	struct arm_smmu_master *master;

	master = find_smmu_master(smmu, masterspec->np);
	if (master) {
		dev_err(dev,
			"rejecting multiple registrations for master device %s\n",
			masterspec->np->name);
		return -EBUSY;
	}

	if (masterspec->args_count > MAX_MASTER_STREAMIDS) {
		dev_err(dev,
			"reached maximum number (%d) of stream IDs for master device %s\n",
			MAX_MASTER_STREAMIDS, masterspec->np->name);
		return -ENOSPC;
	}

	master = devm_kzalloc(dev, sizeof(*master), GFP_KERNEL);
	if (!master)
		return -ENOMEM;

476 477
	master->of_node			= masterspec->np;
	master->cfg.num_streamids	= masterspec->args_count;
478

479 480
	for (i = 0; i < master->cfg.num_streamids; ++i) {
		u16 streamid = masterspec->args[i];
481

482 483 484 485 486 487 488 489 490
		if (!(smmu->features & ARM_SMMU_FEAT_STREAM_MATCH) &&
		     (streamid >= smmu->num_mapping_groups)) {
			dev_err(dev,
				"stream ID for master device %s greater than maximum allowed (%d)\n",
				masterspec->np->name, smmu->num_mapping_groups);
			return -ERANGE;
		}
		master->cfg.streamids[i] = streamid;
	}
491 492 493
	return insert_smmu_master(smmu, master);
}

494
static struct arm_smmu_device *find_smmu_for_device(struct device *dev)
495
{
496
	struct arm_smmu_device *smmu;
497
	struct arm_smmu_master *master = NULL;
498
	struct device_node *dev_node = dev_get_dev_node(dev);
499 500

	spin_lock(&arm_smmu_devices_lock);
501
	list_for_each_entry(smmu, &arm_smmu_devices, list) {
502 503 504 505
		master = find_smmu_master(smmu, dev_node);
		if (master)
			break;
	}
506
	spin_unlock(&arm_smmu_devices_lock);
507

508
	return master ? smmu : NULL;
509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529
}

static int __arm_smmu_alloc_bitmap(unsigned long *map, int start, int end)
{
	int idx;

	do {
		idx = find_next_zero_bit(map, end, start);
		if (idx == end)
			return -ENOSPC;
	} while (test_and_set_bit(idx, map));

	return idx;
}

static void __arm_smmu_free_bitmap(unsigned long *map, int idx)
{
	clear_bit(idx, map);
}

/* Wait for any pending TLB invalidations to complete */
530
static void __arm_smmu_tlb_sync(struct arm_smmu_device *smmu)
531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547
{
	int count = 0;
	void __iomem *gr0_base = ARM_SMMU_GR0(smmu);

	writel_relaxed(0, gr0_base + ARM_SMMU_GR0_sTLBGSYNC);
	while (readl_relaxed(gr0_base + ARM_SMMU_GR0_sTLBGSTATUS)
	       & sTLBGSTATUS_GSACTIVE) {
		cpu_relax();
		if (++count == TLB_LOOP_TIMEOUT) {
			dev_err_ratelimited(smmu->dev,
			"TLB sync timed out -- SMMU may be deadlocked\n");
			return;
		}
		udelay(1);
	}
}

548 549 550 551 552 553 554
static void arm_smmu_tlb_sync(void *cookie)
{
	struct arm_smmu_domain *smmu_domain = cookie;
	__arm_smmu_tlb_sync(smmu_domain->smmu);
}

static void arm_smmu_tlb_inv_context(void *cookie)
555
{
556
	struct arm_smmu_domain *smmu_domain = cookie;
557 558
	struct arm_smmu_cfg *cfg = &smmu_domain->cfg;
	struct arm_smmu_device *smmu = smmu_domain->smmu;
559
	bool stage1 = cfg->cbar != CBAR_TYPE_S2_TRANS;
560
	void __iomem *base;
561 562 563

	if (stage1) {
		base = ARM_SMMU_CB_BASE(smmu) + ARM_SMMU_CB(smmu, cfg->cbndx);
564 565
		writel_relaxed(ARM_SMMU_CB_ASID(cfg),
			       base + ARM_SMMU_CB_S1_TLBIASID);
566 567
	} else {
		base = ARM_SMMU_GR0(smmu);
568 569
		writel_relaxed(ARM_SMMU_CB_VMID(cfg),
			       base + ARM_SMMU_GR0_TLBIVMID);
570 571
	}

572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632
	__arm_smmu_tlb_sync(smmu);
}

static void arm_smmu_tlb_inv_range_nosync(unsigned long iova, size_t size,
					  bool leaf, void *cookie)
{
	struct arm_smmu_domain *smmu_domain = cookie;
	struct arm_smmu_cfg *cfg = &smmu_domain->cfg;
	struct arm_smmu_device *smmu = smmu_domain->smmu;
	bool stage1 = cfg->cbar != CBAR_TYPE_S2_TRANS;
	void __iomem *reg;

	if (stage1) {
		reg = ARM_SMMU_CB_BASE(smmu) + ARM_SMMU_CB(smmu, cfg->cbndx);
		reg += leaf ? ARM_SMMU_CB_S1_TLBIVAL : ARM_SMMU_CB_S1_TLBIVA;

		if (!IS_ENABLED(CONFIG_64BIT) || smmu->version == ARM_SMMU_V1) {
			iova &= ~12UL;
			iova |= ARM_SMMU_CB_ASID(cfg);
			writel_relaxed(iova, reg);
#ifdef CONFIG_64BIT
		} else {
			iova >>= 12;
			iova |= (u64)ARM_SMMU_CB_ASID(cfg) << 48;
			writeq_relaxed(iova, reg);
#endif
		}
#ifdef CONFIG_64BIT
	} else if (smmu->version == ARM_SMMU_V2) {
		reg = ARM_SMMU_CB_BASE(smmu) + ARM_SMMU_CB(smmu, cfg->cbndx);
		reg += leaf ? ARM_SMMU_CB_S2_TLBIIPAS2L :
			      ARM_SMMU_CB_S2_TLBIIPAS2;
		writeq_relaxed(iova >> 12, reg);
#endif
	} else {
		reg = ARM_SMMU_GR0(smmu) + ARM_SMMU_GR0_TLBIVMID;
		writel_relaxed(ARM_SMMU_CB_VMID(cfg), reg);
	}
}

static void arm_smmu_flush_pgtable(void *addr, size_t size, void *cookie)
{
	struct arm_smmu_domain *smmu_domain = cookie;
	struct arm_smmu_device *smmu = smmu_domain->smmu;
	unsigned long offset = (unsigned long)addr & ~PAGE_MASK;


	/* Ensure new page tables are visible to the hardware walker */
	if (smmu->features & ARM_SMMU_FEAT_COHERENT_WALK) {
		dsb(ishst);
	} else {
		/*
		 * If the SMMU can't walk tables in the CPU caches, treat them
		 * like non-coherent DMA since we need to flush the new entries
		 * all the way out to memory. There's no possibility of
		 * recursion here as the SMMU table walker will not be wired
		 * through another SMMU.
		 */
		dma_map_page(smmu->dev, virt_to_page(addr), offset, size,
			     DMA_TO_DEVICE);
	}
633 634
}

635 636 637 638 639 640 641
static struct iommu_gather_ops arm_smmu_gather_ops = {
	.tlb_flush_all	= arm_smmu_tlb_inv_context,
	.tlb_add_flush	= arm_smmu_tlb_inv_range_nosync,
	.tlb_sync	= arm_smmu_tlb_sync,
	.flush_pgtable	= arm_smmu_flush_pgtable,
};

642 643 644 645 646 647 648
static irqreturn_t arm_smmu_context_fault(int irq, void *dev)
{
	int flags, ret;
	u32 fsr, far, fsynr, resume;
	unsigned long iova;
	struct iommu_domain *domain = dev;
	struct arm_smmu_domain *smmu_domain = domain->priv;
649 650
	struct arm_smmu_cfg *cfg = &smmu_domain->cfg;
	struct arm_smmu_device *smmu = smmu_domain->smmu;
651 652
	void __iomem *cb_base;

653
	cb_base = ARM_SMMU_CB_BASE(smmu) + ARM_SMMU_CB(smmu, cfg->cbndx);
654 655 656 657 658 659 660
	fsr = readl_relaxed(cb_base + ARM_SMMU_CB_FSR);

	if (!(fsr & FSR_FAULT))
		return IRQ_NONE;

	if (fsr & FSR_IGN)
		dev_err_ratelimited(smmu->dev,
661
				    "Unexpected context fault (fsr 0x%x)\n",
662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677
				    fsr);

	fsynr = readl_relaxed(cb_base + ARM_SMMU_CB_FSYNR0);
	flags = fsynr & FSYNR0_WNR ? IOMMU_FAULT_WRITE : IOMMU_FAULT_READ;

	far = readl_relaxed(cb_base + ARM_SMMU_CB_FAR_LO);
	iova = far;
#ifdef CONFIG_64BIT
	far = readl_relaxed(cb_base + ARM_SMMU_CB_FAR_HI);
	iova |= ((unsigned long)far << 32);
#endif

	if (!report_iommu_fault(domain, smmu->dev, iova, flags)) {
		ret = IRQ_HANDLED;
		resume = RESUME_RETRY;
	} else {
678 679
		dev_err_ratelimited(smmu->dev,
		    "Unhandled context fault: iova=0x%08lx, fsynr=0x%x, cb=%d\n",
680
		    iova, fsynr, cfg->cbndx);
681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698
		ret = IRQ_NONE;
		resume = RESUME_TERMINATE;
	}

	/* Clear the faulting FSR */
	writel(fsr, cb_base + ARM_SMMU_CB_FSR);

	/* Retry or terminate any stalled transactions */
	if (fsr & FSR_SS)
		writel_relaxed(resume, cb_base + ARM_SMMU_CB_RESUME);

	return ret;
}

static irqreturn_t arm_smmu_global_fault(int irq, void *dev)
{
	u32 gfsr, gfsynr0, gfsynr1, gfsynr2;
	struct arm_smmu_device *smmu = dev;
699
	void __iomem *gr0_base = ARM_SMMU_GR0_NS(smmu);
700 701 702 703 704 705

	gfsr = readl_relaxed(gr0_base + ARM_SMMU_GR0_sGFSR);
	gfsynr0 = readl_relaxed(gr0_base + ARM_SMMU_GR0_sGFSYNR0);
	gfsynr1 = readl_relaxed(gr0_base + ARM_SMMU_GR0_sGFSYNR1);
	gfsynr2 = readl_relaxed(gr0_base + ARM_SMMU_GR0_sGFSYNR2);

706 707 708
	if (!gfsr)
		return IRQ_NONE;

709 710 711 712 713 714 715
	dev_err_ratelimited(smmu->dev,
		"Unexpected global fault, this could be serious\n");
	dev_err_ratelimited(smmu->dev,
		"\tGFSR 0x%08x, GFSYNR0 0x%08x, GFSYNR1 0x%08x, GFSYNR2 0x%08x\n",
		gfsr, gfsynr0, gfsynr1, gfsynr2);

	writel(gfsr, gr0_base + ARM_SMMU_GR0_sGFSR);
716
	return IRQ_HANDLED;
717 718
}

719 720
static void arm_smmu_init_context_bank(struct arm_smmu_domain *smmu_domain,
				       struct io_pgtable_cfg *pgtbl_cfg)
721 722 723
{
	u32 reg;
	bool stage1;
724 725
	struct arm_smmu_cfg *cfg = &smmu_domain->cfg;
	struct arm_smmu_device *smmu = smmu_domain->smmu;
726 727 728 729
	void __iomem *cb_base, *gr0_base, *gr1_base;

	gr0_base = ARM_SMMU_GR0(smmu);
	gr1_base = ARM_SMMU_GR1(smmu);
730 731
	stage1 = cfg->cbar != CBAR_TYPE_S2_TRANS;
	cb_base = ARM_SMMU_CB_BASE(smmu) + ARM_SMMU_CB(smmu, cfg->cbndx);
732

733 734 735 736 737 738 739 740 741 742 743 744 745 746
	if (smmu->version > ARM_SMMU_V1) {
		/*
		 * CBA2R.
		 * *Must* be initialised before CBAR thanks to VMID16
		 * architectural oversight affected some implementations.
		 */
#ifdef CONFIG_64BIT
		reg = CBA2R_RW64_64BIT;
#else
		reg = CBA2R_RW64_32BIT;
#endif
		writel_relaxed(reg, gr1_base + ARM_SMMU_GR1_CBA2R(cfg->cbndx));
	}

747
	/* CBAR */
748
	reg = cfg->cbar;
749
	if (smmu->version == ARM_SMMU_V1)
750
		reg |= cfg->irptndx << CBAR_IRPTNDX_SHIFT;
751

752 753 754 755 756 757 758 759
	/*
	 * Use the weakest shareability/memory types, so they are
	 * overridden by the ttbcr/pte.
	 */
	if (stage1) {
		reg |= (CBAR_S1_BPSHCFG_NSH << CBAR_S1_BPSHCFG_SHIFT) |
			(CBAR_S1_MEMATTR_WB << CBAR_S1_MEMATTR_SHIFT);
	} else {
760
		reg |= ARM_SMMU_CB_VMID(cfg) << CBAR_VMID_SHIFT;
761
	}
762
	writel_relaxed(reg, gr1_base + ARM_SMMU_GR1_CBAR(cfg->cbndx));
763

764 765 766 767 768
	/* TTBRs */
	if (stage1) {
		reg = pgtbl_cfg->arm_lpae_s1_cfg.ttbr[0];
		writel_relaxed(reg, cb_base + ARM_SMMU_CB_TTBR0_LO);
		reg = pgtbl_cfg->arm_lpae_s1_cfg.ttbr[0] >> 32;
769
		reg |= ARM_SMMU_CB_ASID(cfg) << TTBRn_HI_ASID_SHIFT;
770
		writel_relaxed(reg, cb_base + ARM_SMMU_CB_TTBR0_HI);
771

772 773 774 775 776 777 778 779 780 781 782
		reg = pgtbl_cfg->arm_lpae_s1_cfg.ttbr[1];
		writel_relaxed(reg, cb_base + ARM_SMMU_CB_TTBR1_LO);
		reg = pgtbl_cfg->arm_lpae_s1_cfg.ttbr[1] >> 32;
		reg |= ARM_SMMU_CB_ASID(cfg) << TTBRn_HI_ASID_SHIFT;
		writel_relaxed(reg, cb_base + ARM_SMMU_CB_TTBR1_HI);
	} else {
		reg = pgtbl_cfg->arm_lpae_s2_cfg.vttbr;
		writel_relaxed(reg, cb_base + ARM_SMMU_CB_TTBR0_LO);
		reg = pgtbl_cfg->arm_lpae_s2_cfg.vttbr >> 32;
		writel_relaxed(reg, cb_base + ARM_SMMU_CB_TTBR0_HI);
	}
783

784 785 786 787 788 789 790
	/* TTBCR */
	if (stage1) {
		reg = pgtbl_cfg->arm_lpae_s1_cfg.tcr;
		writel_relaxed(reg, cb_base + ARM_SMMU_CB_TTBCR);
		if (smmu->version > ARM_SMMU_V1) {
			reg = pgtbl_cfg->arm_lpae_s1_cfg.tcr >> 32;
			switch (smmu->va_size) {
791
			case 32:
792
				reg |= (TTBCR2_ADDR_32 << TTBCR2_SEP_SHIFT);
793 794
				break;
			case 36:
795
				reg |= (TTBCR2_ADDR_36 << TTBCR2_SEP_SHIFT);
796 797
				break;
			case 40:
798
				reg |= (TTBCR2_ADDR_40 << TTBCR2_SEP_SHIFT);
799 800
				break;
			case 42:
801
				reg |= (TTBCR2_ADDR_42 << TTBCR2_SEP_SHIFT);
802 803
				break;
			case 44:
804
				reg |= (TTBCR2_ADDR_44 << TTBCR2_SEP_SHIFT);
805 806
				break;
			case 48:
807
				reg |= (TTBCR2_ADDR_48 << TTBCR2_SEP_SHIFT);
808 809
				break;
			}
810
			writel_relaxed(reg, cb_base + ARM_SMMU_CB_TTBCR2);
811 812
		}
	} else {
813 814
		reg = pgtbl_cfg->arm_lpae_s2_cfg.vtcr;
		writel_relaxed(reg, cb_base + ARM_SMMU_CB_TTBCR);
815 816
	}

817
	/* MAIRs (stage-1 only) */
818
	if (stage1) {
819
		reg = pgtbl_cfg->arm_lpae_s1_cfg.mair[0];
820
		writel_relaxed(reg, cb_base + ARM_SMMU_CB_S1_MAIR0);
821 822
		reg = pgtbl_cfg->arm_lpae_s1_cfg.mair[1];
		writel_relaxed(reg, cb_base + ARM_SMMU_CB_S1_MAIR1);
823 824 825 826 827 828 829 830 831
	}

	/* SCTLR */
	reg = SCTLR_CFCFG | SCTLR_CFIE | SCTLR_CFRE | SCTLR_M | SCTLR_EAE_SBOP;
	if (stage1)
		reg |= SCTLR_S1_ASIDPNE;
#ifdef __BIG_ENDIAN
	reg |= SCTLR_E;
#endif
832
	writel_relaxed(reg, cb_base + ARM_SMMU_CB_SCTLR);
833 834 835
}

static int arm_smmu_init_domain_context(struct iommu_domain *domain,
836
					struct arm_smmu_device *smmu)
837
{
838
	int irq, start, ret = 0;
839 840 841 842
	unsigned long ias, oas;
	struct io_pgtable_ops *pgtbl_ops;
	struct io_pgtable_cfg pgtbl_cfg;
	enum io_pgtable_fmt fmt;
843
	struct arm_smmu_domain *smmu_domain = domain->priv;
844
	struct arm_smmu_cfg *cfg = &smmu_domain->cfg;
845

846
	mutex_lock(&smmu_domain->init_mutex);
847 848 849
	if (smmu_domain->smmu)
		goto out_unlock;

850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876
	/*
	 * Mapping the requested stage onto what we support is surprisingly
	 * complicated, mainly because the spec allows S1+S2 SMMUs without
	 * support for nested translation. That means we end up with the
	 * following table:
	 *
	 * Requested        Supported        Actual
	 *     S1               N              S1
	 *     S1             S1+S2            S1
	 *     S1               S2             S2
	 *     S1               S1             S1
	 *     N                N              N
	 *     N              S1+S2            S2
	 *     N                S2             S2
	 *     N                S1             S1
	 *
	 * Note that you can't actually request stage-2 mappings.
	 */
	if (!(smmu->features & ARM_SMMU_FEAT_TRANS_S1))
		smmu_domain->stage = ARM_SMMU_DOMAIN_S2;
	if (!(smmu->features & ARM_SMMU_FEAT_TRANS_S2))
		smmu_domain->stage = ARM_SMMU_DOMAIN_S1;

	switch (smmu_domain->stage) {
	case ARM_SMMU_DOMAIN_S1:
		cfg->cbar = CBAR_TYPE_S1_TRANS_S2_BYPASS;
		start = smmu->num_s2_context_banks;
877 878 879 880 881 882
		ias = smmu->va_size;
		oas = smmu->ipa_size;
		if (IS_ENABLED(CONFIG_64BIT))
			fmt = ARM_64_LPAE_S1;
		else
			fmt = ARM_32_LPAE_S1;
883 884
		break;
	case ARM_SMMU_DOMAIN_NESTED:
885 886 887 888
		/*
		 * We will likely want to change this if/when KVM gets
		 * involved.
		 */
889
	case ARM_SMMU_DOMAIN_S2:
890 891
		cfg->cbar = CBAR_TYPE_S2_TRANS;
		start = 0;
892 893 894 895 896 897
		ias = smmu->ipa_size;
		oas = smmu->pa_size;
		if (IS_ENABLED(CONFIG_64BIT))
			fmt = ARM_64_LPAE_S2;
		else
			fmt = ARM_32_LPAE_S2;
898 899 900 901
		break;
	default:
		ret = -EINVAL;
		goto out_unlock;
902 903 904 905 906
	}

	ret = __arm_smmu_alloc_bitmap(smmu->context_map, start,
				      smmu->num_context_banks);
	if (IS_ERR_VALUE(ret))
907
		goto out_unlock;
908

909
	cfg->cbndx = ret;
910
	if (smmu->version == ARM_SMMU_V1) {
911 912
		cfg->irptndx = atomic_inc_return(&smmu->irptndx);
		cfg->irptndx %= smmu->num_context_irqs;
913
	} else {
914
		cfg->irptndx = cfg->cbndx;
915 916
	}

917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932
	pgtbl_cfg = (struct io_pgtable_cfg) {
		.pgsize_bitmap	= arm_smmu_ops.pgsize_bitmap,
		.ias		= ias,
		.oas		= oas,
		.tlb		= &arm_smmu_gather_ops,
	};

	smmu_domain->smmu = smmu;
	pgtbl_ops = alloc_io_pgtable_ops(fmt, &pgtbl_cfg, smmu_domain);
	if (!pgtbl_ops) {
		ret = -ENOMEM;
		goto out_clear_smmu;
	}

	/* Update our support page sizes to reflect the page table format */
	arm_smmu_ops.pgsize_bitmap = pgtbl_cfg.pgsize_bitmap;
933

934 935 936 937 938 939 940
	/* Initialise the context bank with our page table cfg */
	arm_smmu_init_context_bank(smmu_domain, &pgtbl_cfg);

	/*
	 * Request context fault interrupt. Do this last to avoid the
	 * handler seeing a half-initialised domain state.
	 */
941
	irq = smmu->irqs[smmu->num_global_irqs + cfg->irptndx];
942 943 944 945
	ret = request_irq(irq, arm_smmu_context_fault, IRQF_SHARED,
			  "arm-smmu-context-fault", domain);
	if (IS_ERR_VALUE(ret)) {
		dev_err(smmu->dev, "failed to request context IRQ %d (%u)\n",
946 947
			cfg->irptndx, irq);
		cfg->irptndx = INVALID_IRPTNDX;
948 949
	}

950 951 952 953
	mutex_unlock(&smmu_domain->init_mutex);

	/* Publish page table ops for map/unmap */
	smmu_domain->pgtbl_ops = pgtbl_ops;
954
	return 0;
955

956 957
out_clear_smmu:
	smmu_domain->smmu = NULL;
958
out_unlock:
959
	mutex_unlock(&smmu_domain->init_mutex);
960 961 962 963 964 965
	return ret;
}

static void arm_smmu_destroy_domain_context(struct iommu_domain *domain)
{
	struct arm_smmu_domain *smmu_domain = domain->priv;
966 967
	struct arm_smmu_device *smmu = smmu_domain->smmu;
	struct arm_smmu_cfg *cfg = &smmu_domain->cfg;
968
	void __iomem *cb_base;
969 970 971 972 973
	int irq;

	if (!smmu)
		return;

974 975 976 977
	/*
	 * Disable the context bank and free the page tables before freeing
	 * it.
	 */
978
	cb_base = ARM_SMMU_CB_BASE(smmu) + ARM_SMMU_CB(smmu, cfg->cbndx);
979 980
	writel_relaxed(0, cb_base + ARM_SMMU_CB_SCTLR);

981 982
	if (cfg->irptndx != INVALID_IRPTNDX) {
		irq = smmu->irqs[smmu->num_global_irqs + cfg->irptndx];
983 984 985
		free_irq(irq, domain);
	}

986 987 988
	if (smmu_domain->pgtbl_ops)
		free_io_pgtable_ops(smmu_domain->pgtbl_ops);

989
	__arm_smmu_free_bitmap(smmu->context_map, cfg->cbndx);
990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004
}

static int arm_smmu_domain_init(struct iommu_domain *domain)
{
	struct arm_smmu_domain *smmu_domain;

	/*
	 * Allocate the domain and initialise some of its data structures.
	 * We can't really do anything meaningful until we've added a
	 * master.
	 */
	smmu_domain = kzalloc(sizeof(*smmu_domain), GFP_KERNEL);
	if (!smmu_domain)
		return -ENOMEM;

1005 1006
	mutex_init(&smmu_domain->init_mutex);
	spin_lock_init(&smmu_domain->pgtbl_lock);
1007 1008 1009 1010 1011 1012 1013
	domain->priv = smmu_domain;
	return 0;
}

static void arm_smmu_domain_destroy(struct iommu_domain *domain)
{
	struct arm_smmu_domain *smmu_domain = domain->priv;
1014 1015 1016 1017 1018

	/*
	 * Free the domain resources. We assume that all devices have
	 * already been detached.
	 */
1019 1020 1021 1022 1023
	arm_smmu_destroy_domain_context(domain);
	kfree(smmu_domain);
}

static int arm_smmu_master_configure_smrs(struct arm_smmu_device *smmu,
1024
					  struct arm_smmu_master_cfg *cfg)
1025 1026 1027 1028 1029 1030 1031 1032
{
	int i;
	struct arm_smmu_smr *smrs;
	void __iomem *gr0_base = ARM_SMMU_GR0(smmu);

	if (!(smmu->features & ARM_SMMU_FEAT_STREAM_MATCH))
		return 0;

1033
	if (cfg->smrs)
1034 1035
		return -EEXIST;

1036
	smrs = kmalloc_array(cfg->num_streamids, sizeof(*smrs), GFP_KERNEL);
1037
	if (!smrs) {
1038 1039
		dev_err(smmu->dev, "failed to allocate %d SMRs\n",
			cfg->num_streamids);
1040 1041 1042
		return -ENOMEM;
	}

1043
	/* Allocate the SMRs on the SMMU */
1044
	for (i = 0; i < cfg->num_streamids; ++i) {
1045 1046 1047 1048 1049 1050 1051 1052 1053 1054
		int idx = __arm_smmu_alloc_bitmap(smmu->smr_map, 0,
						  smmu->num_mapping_groups);
		if (IS_ERR_VALUE(idx)) {
			dev_err(smmu->dev, "failed to allocate free SMR\n");
			goto err_free_smrs;
		}

		smrs[i] = (struct arm_smmu_smr) {
			.idx	= idx,
			.mask	= 0, /* We don't currently share SMRs */
1055
			.id	= cfg->streamids[i],
1056 1057 1058 1059
		};
	}

	/* It worked! Now, poke the actual hardware */
1060
	for (i = 0; i < cfg->num_streamids; ++i) {
1061 1062 1063 1064 1065
		u32 reg = SMR_VALID | smrs[i].id << SMR_ID_SHIFT |
			  smrs[i].mask << SMR_MASK_SHIFT;
		writel_relaxed(reg, gr0_base + ARM_SMMU_GR0_SMR(smrs[i].idx));
	}

1066
	cfg->smrs = smrs;
1067 1068 1069 1070 1071 1072 1073 1074 1075 1076
	return 0;

err_free_smrs:
	while (--i >= 0)
		__arm_smmu_free_bitmap(smmu->smr_map, smrs[i].idx);
	kfree(smrs);
	return -ENOSPC;
}

static void arm_smmu_master_free_smrs(struct arm_smmu_device *smmu,
1077
				      struct arm_smmu_master_cfg *cfg)
1078 1079 1080
{
	int i;
	void __iomem *gr0_base = ARM_SMMU_GR0(smmu);
1081
	struct arm_smmu_smr *smrs = cfg->smrs;
1082

1083 1084 1085
	if (!smrs)
		return;

1086
	/* Invalidate the SMRs before freeing back to the allocator */
1087
	for (i = 0; i < cfg->num_streamids; ++i) {
1088
		u8 idx = smrs[i].idx;
1089

1090 1091 1092 1093
		writel_relaxed(~SMR_VALID, gr0_base + ARM_SMMU_GR0_SMR(idx));
		__arm_smmu_free_bitmap(smmu->smr_map, idx);
	}

1094
	cfg->smrs = NULL;
1095 1096 1097 1098
	kfree(smrs);
}

static int arm_smmu_domain_add_master(struct arm_smmu_domain *smmu_domain,
1099
				      struct arm_smmu_master_cfg *cfg)
1100 1101
{
	int i, ret;
1102
	struct arm_smmu_device *smmu = smmu_domain->smmu;
1103 1104
	void __iomem *gr0_base = ARM_SMMU_GR0(smmu);

1105
	/* Devices in an IOMMU group may already be configured */
1106
	ret = arm_smmu_master_configure_smrs(smmu, cfg);
1107
	if (ret)
1108
		return ret == -EEXIST ? 0 : ret;
1109

1110
	for (i = 0; i < cfg->num_streamids; ++i) {
1111
		u32 idx, s2cr;
1112

1113
		idx = cfg->smrs ? cfg->smrs[i].idx : cfg->streamids[i];
1114
		s2cr = S2CR_TYPE_TRANS |
1115
		       (smmu_domain->cfg.cbndx << S2CR_CBNDX_SHIFT);
1116 1117 1118 1119 1120 1121 1122
		writel_relaxed(s2cr, gr0_base + ARM_SMMU_GR0_S2CR(idx));
	}

	return 0;
}

static void arm_smmu_domain_remove_master(struct arm_smmu_domain *smmu_domain,
1123
					  struct arm_smmu_master_cfg *cfg)
1124
{
1125
	int i;
1126
	struct arm_smmu_device *smmu = smmu_domain->smmu;
1127
	void __iomem *gr0_base = ARM_SMMU_GR0(smmu);
1128

1129 1130 1131
	/* An IOMMU group is torn down by the first device to be removed */
	if ((smmu->features & ARM_SMMU_FEAT_STREAM_MATCH) && !cfg->smrs)
		return;
1132 1133 1134 1135 1136

	/*
	 * We *must* clear the S2CR first, because freeing the SMR means
	 * that it can be re-allocated immediately.
	 */
1137 1138 1139 1140 1141 1142 1143
	for (i = 0; i < cfg->num_streamids; ++i) {
		u32 idx = cfg->smrs ? cfg->smrs[i].idx : cfg->streamids[i];

		writel_relaxed(S2CR_TYPE_BYPASS,
			       gr0_base + ARM_SMMU_GR0_S2CR(idx));
	}

1144
	arm_smmu_master_free_smrs(smmu, cfg);
1145 1146 1147 1148
}

static int arm_smmu_attach_dev(struct iommu_domain *domain, struct device *dev)
{
1149
	int ret;
1150
	struct arm_smmu_domain *smmu_domain = domain->priv;
1151
	struct arm_smmu_device *smmu;
1152
	struct arm_smmu_master_cfg *cfg;
1153

1154
	smmu = find_smmu_for_device(dev);
1155
	if (!smmu) {
1156 1157 1158 1159
		dev_err(dev, "cannot attach to SMMU, is it on the same bus?\n");
		return -ENXIO;
	}

1160 1161 1162 1163 1164
	if (dev->archdata.iommu) {
		dev_err(dev, "already attached to IOMMU domain\n");
		return -EEXIST;
	}

1165 1166 1167 1168 1169
	/* Ensure that the domain is finalised */
	ret = arm_smmu_init_domain_context(domain, smmu);
	if (IS_ERR_VALUE(ret))
		return ret;

1170
	/*
1171 1172
	 * Sanity check the domain. We don't support domains across
	 * different SMMUs.
1173
	 */
1174
	if (smmu_domain->smmu != smmu) {
1175 1176
		dev_err(dev,
			"cannot attach to SMMU %s whilst already attached to domain on SMMU %s\n",
1177 1178
			dev_name(smmu_domain->smmu->dev), dev_name(smmu->dev));
		return -EINVAL;
1179 1180 1181
	}

	/* Looks ok, so add the device to the domain */
1182
	cfg = find_smmu_master_cfg(dev);
1183
	if (!cfg)
1184 1185
		return -ENODEV;

1186 1187 1188
	ret = arm_smmu_domain_add_master(smmu_domain, cfg);
	if (!ret)
		dev->archdata.iommu = domain;
1189 1190 1191 1192 1193 1194
	return ret;
}

static void arm_smmu_detach_dev(struct iommu_domain *domain, struct device *dev)
{
	struct arm_smmu_domain *smmu_domain = domain->priv;
1195
	struct arm_smmu_master_cfg *cfg;
1196

1197
	cfg = find_smmu_master_cfg(dev);
1198 1199 1200 1201 1202
	if (!cfg)
		return;

	dev->archdata.iommu = NULL;
	arm_smmu_domain_remove_master(smmu_domain, cfg);
1203 1204 1205
}

static int arm_smmu_map(struct iommu_domain *domain, unsigned long iova,
1206
			phys_addr_t paddr, size_t size, int prot)
1207
{
1208 1209
	int ret;
	unsigned long flags;
1210
	struct arm_smmu_domain *smmu_domain = domain->priv;
1211
	struct io_pgtable_ops *ops= smmu_domain->pgtbl_ops;
1212

1213
	if (!ops)
1214 1215
		return -ENODEV;

1216 1217 1218 1219
	spin_lock_irqsave(&smmu_domain->pgtbl_lock, flags);
	ret = ops->map(ops, iova, paddr, size, prot);
	spin_unlock_irqrestore(&smmu_domain->pgtbl_lock, flags);
	return ret;
1220 1221 1222 1223 1224
}

static size_t arm_smmu_unmap(struct iommu_domain *domain, unsigned long iova,
			     size_t size)
{
1225 1226
	size_t ret;
	unsigned long flags;
1227
	struct arm_smmu_domain *smmu_domain = domain->priv;
1228
	struct io_pgtable_ops *ops= smmu_domain->pgtbl_ops;
1229

1230 1231 1232 1233 1234 1235 1236
	if (!ops)
		return 0;

	spin_lock_irqsave(&smmu_domain->pgtbl_lock, flags);
	ret = ops->unmap(ops, iova, size);
	spin_unlock_irqrestore(&smmu_domain->pgtbl_lock, flags);
	return ret;
1237 1238
}

1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258
static phys_addr_t arm_smmu_iova_to_phys_hard(struct iommu_domain *domain,
					      dma_addr_t iova)
{
	struct arm_smmu_domain *smmu_domain = domain->priv;
	struct arm_smmu_device *smmu = smmu_domain->smmu;
	struct arm_smmu_cfg *cfg = &smmu_domain->cfg;
	struct io_pgtable_ops *ops= smmu_domain->pgtbl_ops;
	struct device *dev = smmu->dev;
	void __iomem *cb_base;
	u32 tmp;
	u64 phys;

	cb_base = ARM_SMMU_CB_BASE(smmu) + ARM_SMMU_CB(smmu, cfg->cbndx);

	if (smmu->version == 1) {
		u32 reg = iova & ~0xfff;
		writel_relaxed(reg, cb_base + ARM_SMMU_CB_ATS1PR_LO);
	} else {
		u32 reg = iova & ~0xfff;
		writel_relaxed(reg, cb_base + ARM_SMMU_CB_ATS1PR_LO);
1259
		reg = ((u64)iova & ~0xfff) >> 32;
1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282
		writel_relaxed(reg, cb_base + ARM_SMMU_CB_ATS1PR_HI);
	}

	if (readl_poll_timeout_atomic(cb_base + ARM_SMMU_CB_ATSR, tmp,
				      !(tmp & ATSR_ACTIVE), 5, 50)) {
		dev_err(dev,
			"iova to phys timed out on 0x%pad. Falling back to software table walk.\n",
			&iova);
		return ops->iova_to_phys(ops, iova);
	}

	phys = readl_relaxed(cb_base + ARM_SMMU_CB_PAR_LO);
	phys |= ((u64)readl_relaxed(cb_base + ARM_SMMU_CB_PAR_HI)) << 32;

	if (phys & CB_PAR_F) {
		dev_err(dev, "translation fault!\n");
		dev_err(dev, "PAR = 0x%llx\n", phys);
		return 0;
	}

	return (phys & GENMASK_ULL(39, 12)) | (iova & 0xfff);
}

1283
static phys_addr_t arm_smmu_iova_to_phys(struct iommu_domain *domain,
1284
					dma_addr_t iova)
1285
{
1286 1287
	phys_addr_t ret;
	unsigned long flags;
1288
	struct arm_smmu_domain *smmu_domain = domain->priv;
1289
	struct io_pgtable_ops *ops= smmu_domain->pgtbl_ops;
1290

1291
	if (!ops)
1292
		return 0;
1293

1294
	spin_lock_irqsave(&smmu_domain->pgtbl_lock, flags);
1295 1296 1297 1298
	if (smmu_domain->smmu->features & ARM_SMMU_FEAT_TRANS_OPS)
		ret = arm_smmu_iova_to_phys_hard(domain, iova);
	else
		ret = ops->iova_to_phys(ops, iova);
1299
	spin_unlock_irqrestore(&smmu_domain->pgtbl_lock, flags);
1300

1301
	return ret;
1302 1303
}

1304
static bool arm_smmu_capable(enum iommu_cap cap)
1305
{
1306 1307
	switch (cap) {
	case IOMMU_CAP_CACHE_COHERENCY:
1308 1309 1310 1311 1312
		/*
		 * Return true here as the SMMU can always send out coherent
		 * requests.
		 */
		return true;
1313
	case IOMMU_CAP_INTR_REMAP:
1314
		return true; /* MSIs are just memory writes */
1315 1316
	case IOMMU_CAP_NOEXEC:
		return true;
1317
	default:
1318
		return false;
1319
	}
1320 1321
}

1322 1323 1324 1325
static int __arm_smmu_get_pci_sid(struct pci_dev *pdev, u16 alias, void *data)
{
	*((u16 *)data) = alias;
	return 0; /* Continue walking */
1326 1327
}

1328 1329 1330 1331 1332
static void __arm_smmu_release_pci_iommudata(void *data)
{
	kfree(data);
}

1333 1334
static int arm_smmu_add_device(struct device *dev)
{
1335
	struct arm_smmu_device *smmu;
1336
	struct arm_smmu_master_cfg *cfg;
1337
	struct iommu_group *group;
1338
	void (*releasefn)(void *) = NULL;
1339 1340
	int ret;

1341
	smmu = find_smmu_for_device(dev);
1342
	if (!smmu)
1343 1344
		return -ENODEV;

1345 1346 1347 1348 1349 1350
	group = iommu_group_alloc();
	if (IS_ERR(group)) {
		dev_err(dev, "Failed to allocate IOMMU group\n");
		return PTR_ERR(group);
	}

1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366
	if (dev_is_pci(dev)) {
		struct pci_dev *pdev = to_pci_dev(dev);

		cfg = kzalloc(sizeof(*cfg), GFP_KERNEL);
		if (!cfg) {
			ret = -ENOMEM;
			goto out_put_group;
		}

		cfg->num_streamids = 1;
		/*
		 * Assume Stream ID == Requester ID for now.
		 * We need a way to describe the ID mappings in FDT.
		 */
		pci_for_each_dma_alias(pdev, __arm_smmu_get_pci_sid,
				       &cfg->streamids[0]);
1367
		releasefn = __arm_smmu_release_pci_iommudata;
1368
	} else {
1369 1370 1371 1372 1373 1374 1375 1376 1377
		struct arm_smmu_master *master;

		master = find_smmu_master(smmu, dev->of_node);
		if (!master) {
			ret = -ENODEV;
			goto out_put_group;
		}

		cfg = &master->cfg;
1378 1379
	}

1380
	iommu_group_set_iommudata(group, cfg, releasefn);
1381 1382
	ret = iommu_group_add_device(group, dev);

1383 1384
out_put_group:
	iommu_group_put(group);
1385
	return ret;
1386 1387 1388 1389
}

static void arm_smmu_remove_device(struct device *dev)
{
1390
	iommu_group_remove_device(dev);
1391 1392
}

1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409
static int arm_smmu_domain_get_attr(struct iommu_domain *domain,
				    enum iommu_attr attr, void *data)
{
	struct arm_smmu_domain *smmu_domain = domain->priv;

	switch (attr) {
	case DOMAIN_ATTR_NESTING:
		*(int *)data = (smmu_domain->stage == ARM_SMMU_DOMAIN_NESTED);
		return 0;
	default:
		return -ENODEV;
	}
}

static int arm_smmu_domain_set_attr(struct iommu_domain *domain,
				    enum iommu_attr attr, void *data)
{
1410
	int ret = 0;
1411 1412
	struct arm_smmu_domain *smmu_domain = domain->priv;

1413 1414
	mutex_lock(&smmu_domain->init_mutex);

1415 1416
	switch (attr) {
	case DOMAIN_ATTR_NESTING:
1417 1418 1419 1420 1421
		if (smmu_domain->smmu) {
			ret = -EPERM;
			goto out_unlock;
		}

1422 1423 1424 1425 1426
		if (*(int *)data)
			smmu_domain->stage = ARM_SMMU_DOMAIN_NESTED;
		else
			smmu_domain->stage = ARM_SMMU_DOMAIN_S1;

1427
		break;
1428
	default:
1429
		ret = -ENODEV;
1430
	}
1431 1432 1433 1434

out_unlock:
	mutex_unlock(&smmu_domain->init_mutex);
	return ret;
1435 1436
}

1437
static struct iommu_ops arm_smmu_ops = {
1438 1439 1440 1441 1442 1443 1444
	.capable		= arm_smmu_capable,
	.domain_init		= arm_smmu_domain_init,
	.domain_destroy		= arm_smmu_domain_destroy,
	.attach_dev		= arm_smmu_attach_dev,
	.detach_dev		= arm_smmu_detach_dev,
	.map			= arm_smmu_map,
	.unmap			= arm_smmu_unmap,
1445
	.map_sg			= default_iommu_map_sg,
1446 1447 1448 1449 1450
	.iova_to_phys		= arm_smmu_iova_to_phys,
	.add_device		= arm_smmu_add_device,
	.remove_device		= arm_smmu_remove_device,
	.domain_get_attr	= arm_smmu_domain_get_attr,
	.domain_set_attr	= arm_smmu_domain_set_attr,
1451
	.pgsize_bitmap		= -1UL, /* Restricted during device attach */
1452 1453 1454 1455 1456
};

static void arm_smmu_device_reset(struct arm_smmu_device *smmu)
{
	void __iomem *gr0_base = ARM_SMMU_GR0(smmu);
1457
	void __iomem *cb_base;
1458
	int i = 0;
1459 1460
	u32 reg;

1461 1462 1463
	/* clear global FSR */
	reg = readl_relaxed(ARM_SMMU_GR0_NS(smmu) + ARM_SMMU_GR0_sGFSR);
	writel(reg, ARM_SMMU_GR0_NS(smmu) + ARM_SMMU_GR0_sGFSR);
1464 1465 1466

	/* Mark all SMRn as invalid and all S2CRn as bypass */
	for (i = 0; i < smmu->num_mapping_groups; ++i) {
1467
		writel_relaxed(0, gr0_base + ARM_SMMU_GR0_SMR(i));
1468 1469
		writel_relaxed(S2CR_TYPE_BYPASS,
			gr0_base + ARM_SMMU_GR0_S2CR(i));
1470 1471
	}

1472 1473 1474 1475 1476 1477
	/* Make sure all context banks are disabled and clear CB_FSR  */
	for (i = 0; i < smmu->num_context_banks; ++i) {
		cb_base = ARM_SMMU_CB_BASE(smmu) + ARM_SMMU_CB(smmu, i);
		writel_relaxed(0, cb_base + ARM_SMMU_CB_SCTLR);
		writel_relaxed(FSR_FAULT, cb_base + ARM_SMMU_CB_FSR);
	}
1478

1479 1480 1481 1482
	/* Invalidate the TLB, just in case */
	writel_relaxed(0, gr0_base + ARM_SMMU_GR0_TLBIALLH);
	writel_relaxed(0, gr0_base + ARM_SMMU_GR0_TLBIALLNSNH);

1483
	reg = readl_relaxed(ARM_SMMU_GR0_NS(smmu) + ARM_SMMU_GR0_sCR0);
1484

1485
	/* Enable fault reporting */
1486
	reg |= (sCR0_GFRE | sCR0_GFIE | sCR0_GCFGFRE | sCR0_GCFGFIE);
1487 1488

	/* Disable TLB broadcasting. */
1489
	reg |= (sCR0_VMIDPNE | sCR0_PTM);
1490 1491

	/* Enable client access, but bypass when no mapping is found */
1492
	reg &= ~(sCR0_CLIENTPD | sCR0_USFCFG);
1493 1494

	/* Disable forced broadcasting */
1495
	reg &= ~sCR0_FB;
1496 1497

	/* Don't upgrade barriers */
1498
	reg &= ~(sCR0_BSU_MASK << sCR0_BSU_SHIFT);
1499 1500

	/* Push the button */
1501
	__arm_smmu_tlb_sync(smmu);
1502
	writel(reg, ARM_SMMU_GR0_NS(smmu) + ARM_SMMU_GR0_sCR0);
1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534
}

static int arm_smmu_id_size_to_bits(int size)
{
	switch (size) {
	case 0:
		return 32;
	case 1:
		return 36;
	case 2:
		return 40;
	case 3:
		return 42;
	case 4:
		return 44;
	case 5:
	default:
		return 48;
	}
}

static int arm_smmu_device_cfg_probe(struct arm_smmu_device *smmu)
{
	unsigned long size;
	void __iomem *gr0_base = ARM_SMMU_GR0(smmu);
	u32 id;

	dev_notice(smmu->dev, "probing hardware configuration...\n");
	dev_notice(smmu->dev, "SMMUv%d with:\n", smmu->version);

	/* ID0 */
	id = readl_relaxed(gr0_base + ARM_SMMU_GR0_ID0);
1535 1536 1537 1538 1539 1540 1541

	/* Restrict available stages based on module parameter */
	if (force_stage == 1)
		id &= ~(ID0_S2TS | ID0_NTS);
	else if (force_stage == 2)
		id &= ~(ID0_S1TS | ID0_NTS);

1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557
	if (id & ID0_S1TS) {
		smmu->features |= ARM_SMMU_FEAT_TRANS_S1;
		dev_notice(smmu->dev, "\tstage 1 translation\n");
	}

	if (id & ID0_S2TS) {
		smmu->features |= ARM_SMMU_FEAT_TRANS_S2;
		dev_notice(smmu->dev, "\tstage 2 translation\n");
	}

	if (id & ID0_NTS) {
		smmu->features |= ARM_SMMU_FEAT_TRANS_NESTED;
		dev_notice(smmu->dev, "\tnested translation\n");
	}

	if (!(smmu->features &
1558
		(ARM_SMMU_FEAT_TRANS_S1 | ARM_SMMU_FEAT_TRANS_S2))) {
1559 1560 1561 1562
		dev_err(smmu->dev, "\tno translation support!\n");
		return -ENODEV;
	}

1563 1564 1565 1566 1567
	if (smmu->version == 1 || (!(id & ID0_ATOSNS) && (id & ID0_S1TS))) {
		smmu->features |= ARM_SMMU_FEAT_TRANS_OPS;
		dev_notice(smmu->dev, "\taddress translation ops\n");
	}

1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601
	if (id & ID0_CTTW) {
		smmu->features |= ARM_SMMU_FEAT_COHERENT_WALK;
		dev_notice(smmu->dev, "\tcoherent table walk\n");
	}

	if (id & ID0_SMS) {
		u32 smr, sid, mask;

		smmu->features |= ARM_SMMU_FEAT_STREAM_MATCH;
		smmu->num_mapping_groups = (id >> ID0_NUMSMRG_SHIFT) &
					   ID0_NUMSMRG_MASK;
		if (smmu->num_mapping_groups == 0) {
			dev_err(smmu->dev,
				"stream-matching supported, but no SMRs present!\n");
			return -ENODEV;
		}

		smr = SMR_MASK_MASK << SMR_MASK_SHIFT;
		smr |= (SMR_ID_MASK << SMR_ID_SHIFT);
		writel_relaxed(smr, gr0_base + ARM_SMMU_GR0_SMR(0));
		smr = readl_relaxed(gr0_base + ARM_SMMU_GR0_SMR(0));

		mask = (smr >> SMR_MASK_SHIFT) & SMR_MASK_MASK;
		sid = (smr >> SMR_ID_SHIFT) & SMR_ID_MASK;
		if ((mask & sid) != sid) {
			dev_err(smmu->dev,
				"SMR mask bits (0x%x) insufficient for ID field (0x%x)\n",
				mask, sid);
			return -ENODEV;
		}

		dev_notice(smmu->dev,
			   "\tstream matching with %u register groups, mask 0x%x",
			   smmu->num_mapping_groups, mask);
1602 1603 1604
	} else {
		smmu->num_mapping_groups = (id >> ID0_NUMSIDB_SHIFT) &
					   ID0_NUMSIDB_MASK;
1605 1606 1607 1608
	}

	/* ID1 */
	id = readl_relaxed(gr0_base + ARM_SMMU_GR0_ID1);
1609
	smmu->pgshift = (id & ID1_PAGESIZE) ? 16 : 12;
1610

1611
	/* Check for size mismatch of SMMU address space from mapped region */
1612
	size = 1 << (((id >> ID1_NUMPAGENDXB_SHIFT) & ID1_NUMPAGENDXB_MASK) + 1);
1613
	size *= 2 << smmu->pgshift;
1614
	if (smmu->size != size)
1615 1616 1617
		dev_warn(smmu->dev,
			"SMMU address space size (0x%lx) differs from mapped region size (0x%lx)!\n",
			size, smmu->size);
1618

1619
	smmu->num_s2_context_banks = (id >> ID1_NUMS2CB_SHIFT) & ID1_NUMS2CB_MASK;
1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630
	smmu->num_context_banks = (id >> ID1_NUMCB_SHIFT) & ID1_NUMCB_MASK;
	if (smmu->num_s2_context_banks > smmu->num_context_banks) {
		dev_err(smmu->dev, "impossible number of S2 context banks!\n");
		return -ENODEV;
	}
	dev_notice(smmu->dev, "\t%u context banks (%u stage-2 only)\n",
		   smmu->num_context_banks, smmu->num_s2_context_banks);

	/* ID2 */
	id = readl_relaxed(gr0_base + ARM_SMMU_GR0_ID2);
	size = arm_smmu_id_size_to_bits((id >> ID2_IAS_SHIFT) & ID2_IAS_MASK);
1631
	smmu->ipa_size = size;
1632

1633
	/* The output mask is also applied for bypass */
1634
	size = arm_smmu_id_size_to_bits((id >> ID2_OAS_SHIFT) & ID2_OAS_MASK);
1635
	smmu->pa_size = size;
1636

1637 1638 1639 1640 1641 1642 1643 1644 1645
	/*
	 * What the page table walker can address actually depends on which
	 * descriptor format is in use, but since a) we don't know that yet,
	 * and b) it can vary per context bank, this will have to do...
	 */
	if (dma_set_mask_and_coherent(smmu->dev, DMA_BIT_MASK(size)))
		dev_warn(smmu->dev,
			 "failed to set DMA mask for table walker\n");

1646
	if (smmu->version == ARM_SMMU_V1) {
1647 1648
		smmu->va_size = smmu->ipa_size;
		size = SZ_4K | SZ_2M | SZ_1G;
1649 1650
	} else {
		size = (id >> ID2_UBS_SHIFT) & ID2_UBS_MASK;
1651 1652 1653
		smmu->va_size = arm_smmu_id_size_to_bits(size);
#ifndef CONFIG_64BIT
		smmu->va_size = min(32UL, smmu->va_size);
1654
#endif
1655 1656 1657 1658 1659 1660 1661
		size = 0;
		if (id & ID2_PTFS_4K)
			size |= SZ_4K | SZ_2M | SZ_1G;
		if (id & ID2_PTFS_16K)
			size |= SZ_16K | SZ_32M;
		if (id & ID2_PTFS_64K)
			size |= SZ_64K | SZ_512M;
1662 1663
	}

1664 1665 1666
	arm_smmu_ops.pgsize_bitmap &= size;
	dev_notice(smmu->dev, "\tSupported page sizes: 0x%08lx\n", size);

1667 1668
	if (smmu->features & ARM_SMMU_FEAT_TRANS_S1)
		dev_notice(smmu->dev, "\tStage-1: %lu-bit VA -> %lu-bit IPA\n",
1669
			   smmu->va_size, smmu->ipa_size);
1670 1671 1672

	if (smmu->features & ARM_SMMU_FEAT_TRANS_S2)
		dev_notice(smmu->dev, "\tStage-2: %lu-bit IPA -> %lu-bit PA\n",
1673
			   smmu->ipa_size, smmu->pa_size);
1674

1675 1676 1677
	return 0;
}

1678
static const struct of_device_id arm_smmu_of_match[] = {
1679 1680 1681
	{ .compatible = "arm,smmu-v1", .data = (void *)ARM_SMMU_V1 },
	{ .compatible = "arm,smmu-v2", .data = (void *)ARM_SMMU_V2 },
	{ .compatible = "arm,mmu-400", .data = (void *)ARM_SMMU_V1 },
R
Robin Murphy 已提交
1682
	{ .compatible = "arm,mmu-401", .data = (void *)ARM_SMMU_V1 },
1683 1684 1685 1686 1687
	{ .compatible = "arm,mmu-500", .data = (void *)ARM_SMMU_V2 },
	{ },
};
MODULE_DEVICE_TABLE(of, arm_smmu_of_match);

1688 1689
static int arm_smmu_device_dt_probe(struct platform_device *pdev)
{
1690
	const struct of_device_id *of_id;
1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704
	struct resource *res;
	struct arm_smmu_device *smmu;
	struct device *dev = &pdev->dev;
	struct rb_node *node;
	struct of_phandle_args masterspec;
	int num_irqs, i, err;

	smmu = devm_kzalloc(dev, sizeof(*smmu), GFP_KERNEL);
	if (!smmu) {
		dev_err(dev, "failed to allocate arm_smmu_device\n");
		return -ENOMEM;
	}
	smmu->dev = dev;

1705 1706 1707
	of_id = of_match_node(arm_smmu_of_match, dev->of_node);
	smmu->version = (enum arm_smmu_arch_version)of_id->data;

1708
	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1709 1710 1711
	smmu->base = devm_ioremap_resource(dev, res);
	if (IS_ERR(smmu->base))
		return PTR_ERR(smmu->base);
1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726
	smmu->size = resource_size(res);

	if (of_property_read_u32(dev->of_node, "#global-interrupts",
				 &smmu->num_global_irqs)) {
		dev_err(dev, "missing #global-interrupts property\n");
		return -ENODEV;
	}

	num_irqs = 0;
	while ((res = platform_get_resource(pdev, IORESOURCE_IRQ, num_irqs))) {
		num_irqs++;
		if (num_irqs > smmu->num_global_irqs)
			smmu->num_context_irqs++;
	}

1727 1728 1729 1730
	if (!smmu->num_context_irqs) {
		dev_err(dev, "found %d interrupts but expected at least %d\n",
			num_irqs, smmu->num_global_irqs + 1);
		return -ENODEV;
1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741
	}

	smmu->irqs = devm_kzalloc(dev, sizeof(*smmu->irqs) * num_irqs,
				  GFP_KERNEL);
	if (!smmu->irqs) {
		dev_err(dev, "failed to allocate %d irqs\n", num_irqs);
		return -ENOMEM;
	}

	for (i = 0; i < num_irqs; ++i) {
		int irq = platform_get_irq(pdev, i);
1742

1743 1744 1745 1746 1747 1748 1749
		if (irq < 0) {
			dev_err(dev, "failed to get irq index %d\n", i);
			return -ENODEV;
		}
		smmu->irqs[i] = irq;
	}

1750 1751 1752 1753
	err = arm_smmu_device_cfg_probe(smmu);
	if (err)
		return err;

1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769
	i = 0;
	smmu->masters = RB_ROOT;
	while (!of_parse_phandle_with_args(dev->of_node, "mmu-masters",
					   "#stream-id-cells", i,
					   &masterspec)) {
		err = register_smmu_master(smmu, dev, &masterspec);
		if (err) {
			dev_err(dev, "failed to add master %s\n",
				masterspec.np->name);
			goto out_put_masters;
		}

		i++;
	}
	dev_notice(dev, "registered %d master devices\n", i);

1770 1771
	parse_driver_options(smmu);

1772
	if (smmu->version > ARM_SMMU_V1 &&
1773 1774 1775 1776
	    smmu->num_context_banks != smmu->num_context_irqs) {
		dev_err(dev,
			"found only %d context interrupt(s) but %d required\n",
			smmu->num_context_irqs, smmu->num_context_banks);
1777
		err = -ENODEV;
1778
		goto out_put_masters;
1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797
	}

	for (i = 0; i < smmu->num_global_irqs; ++i) {
		err = request_irq(smmu->irqs[i],
				  arm_smmu_global_fault,
				  IRQF_SHARED,
				  "arm-smmu global fault",
				  smmu);
		if (err) {
			dev_err(dev, "failed to request global IRQ %d (%u)\n",
				i, smmu->irqs[i]);
			goto out_free_irqs;
		}
	}

	INIT_LIST_HEAD(&smmu->list);
	spin_lock(&arm_smmu_devices_lock);
	list_add(&smmu->list, &arm_smmu_devices);
	spin_unlock(&arm_smmu_devices_lock);
1798 1799

	arm_smmu_device_reset(smmu);
1800 1801 1802 1803 1804 1805 1806 1807
	return 0;

out_free_irqs:
	while (i--)
		free_irq(smmu->irqs[i], smmu);

out_put_masters:
	for (node = rb_first(&smmu->masters); node; node = rb_next(node)) {
1808 1809
		struct arm_smmu_master *master
			= container_of(node, struct arm_smmu_master, node);
1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836
		of_node_put(master->of_node);
	}

	return err;
}

static int arm_smmu_device_remove(struct platform_device *pdev)
{
	int i;
	struct device *dev = &pdev->dev;
	struct arm_smmu_device *curr, *smmu = NULL;
	struct rb_node *node;

	spin_lock(&arm_smmu_devices_lock);
	list_for_each_entry(curr, &arm_smmu_devices, list) {
		if (curr->dev == dev) {
			smmu = curr;
			list_del(&smmu->list);
			break;
		}
	}
	spin_unlock(&arm_smmu_devices_lock);

	if (!smmu)
		return -ENODEV;

	for (node = rb_first(&smmu->masters); node; node = rb_next(node)) {
1837 1838
		struct arm_smmu_master *master
			= container_of(node, struct arm_smmu_master, node);
1839 1840 1841
		of_node_put(master->of_node);
	}

1842
	if (!bitmap_empty(smmu->context_map, ARM_SMMU_MAX_CBS))
1843 1844 1845 1846 1847 1848
		dev_err(dev, "removing device with active domains!\n");

	for (i = 0; i < smmu->num_global_irqs; ++i)
		free_irq(smmu->irqs[i], smmu);

	/* Turn the thing off */
1849
	writel(sCR0_CLIENTPD, ARM_SMMU_GR0_NS(smmu) + ARM_SMMU_GR0_sCR0);
1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863
	return 0;
}

static struct platform_driver arm_smmu_driver = {
	.driver	= {
		.name		= "arm-smmu",
		.of_match_table	= of_match_ptr(arm_smmu_of_match),
	},
	.probe	= arm_smmu_device_dt_probe,
	.remove	= arm_smmu_device_remove,
};

static int __init arm_smmu_init(void)
{
1864
	struct device_node *np;
1865 1866
	int ret;

1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877
	/*
	 * Play nice with systems that don't have an ARM SMMU by checking that
	 * an ARM SMMU exists in the system before proceeding with the driver
	 * and IOMMU bus operation registration.
	 */
	np = of_find_matching_node(NULL, arm_smmu_of_match);
	if (!np)
		return 0;

	of_node_put(np);

1878 1879 1880 1881 1882
	ret = platform_driver_register(&arm_smmu_driver);
	if (ret)
		return ret;

	/* Oh, for a proper bus abstraction */
1883
	if (!iommu_present(&platform_bus_type))
1884 1885
		bus_set_iommu(&platform_bus_type, &arm_smmu_ops);

1886
#ifdef CONFIG_ARM_AMBA
1887
	if (!iommu_present(&amba_bustype))
1888
		bus_set_iommu(&amba_bustype, &arm_smmu_ops);
1889
#endif
1890

1891 1892 1893 1894 1895
#ifdef CONFIG_PCI
	if (!iommu_present(&pci_bus_type))
		bus_set_iommu(&pci_bus_type, &arm_smmu_ops);
#endif

1896 1897 1898 1899 1900 1901 1902 1903
	return 0;
}

static void __exit arm_smmu_exit(void)
{
	return platform_driver_unregister(&arm_smmu_driver);
}

1904
subsys_initcall(arm_smmu_init);
1905 1906 1907 1908 1909
module_exit(arm_smmu_exit);

MODULE_DESCRIPTION("IOMMU API for ARM architected SMMU implementations");
MODULE_AUTHOR("Will Deacon <will.deacon@arm.com>");
MODULE_LICENSE("GPL v2");