arm-smmu.c 56.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
/*
 * IOMMU API for ARM architected SMMU implementations.
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
 *
 * Copyright (C) 2013 ARM Limited
 *
 * Author: Will Deacon <will.deacon@arm.com>
 *
 * This driver currently supports:
 *	- SMMUv1 and v2 implementations
 *	- Stream-matching and stream-indexing
 *	- v7/v8 long-descriptor format
 *	- Non-secure access to the SMMU
 *	- Context fault reporting
 */

#define pr_fmt(fmt) "arm-smmu: " fmt

#include <linux/delay.h>
32
#include <linux/dma-iommu.h>
33 34 35 36
#include <linux/dma-mapping.h>
#include <linux/err.h>
#include <linux/interrupt.h>
#include <linux/io.h>
37
#include <linux/io-64-nonatomic-hi-lo.h>
38
#include <linux/iommu.h>
39
#include <linux/iopoll.h>
40 41
#include <linux/module.h>
#include <linux/of.h>
42
#include <linux/of_address.h>
43
#include <linux/pci.h>
44 45 46 47 48 49
#include <linux/platform_device.h>
#include <linux/slab.h>
#include <linux/spinlock.h>

#include <linux/amba/bus.h>

50
#include "io-pgtable.h"
51 52

/* Maximum number of stream IDs assigned to a single device */
53
#define MAX_MASTER_STREAMIDS		128
54 55 56 57 58 59 60 61 62

/* Maximum number of context banks per SMMU */
#define ARM_SMMU_MAX_CBS		128

/* Maximum number of mapping groups per SMMU */
#define ARM_SMMU_MAX_SMRS		128

/* SMMU global address space */
#define ARM_SMMU_GR0(smmu)		((smmu)->base)
63
#define ARM_SMMU_GR1(smmu)		((smmu)->base + (1 << (smmu)->pgshift))
64

65 66 67 68 69 70 71 72 73 74
/*
 * SMMU global address space with conditional offset to access secure
 * aliases of non-secure registers (e.g. nsCR0: 0x400, nsGFSR: 0x448,
 * nsGFSYNR0: 0x450)
 */
#define ARM_SMMU_GR0_NS(smmu)						\
	((smmu)->base +							\
		((smmu->options & ARM_SMMU_OPT_SECURE_CFG_ACCESS)	\
			? 0x400 : 0))

75 76 77 78 79
/*
 * Some 64-bit registers only make sense to write atomically, but in such
 * cases all the data relevant to AArch32 formats lies within the lower word,
 * therefore this actually makes more sense than it might first appear.
 */
80
#ifdef CONFIG_64BIT
81
#define smmu_write_atomic_lq		writeq_relaxed
82
#else
83
#define smmu_write_atomic_lq		writel_relaxed
84 85
#endif

86 87 88 89 90 91 92 93 94 95 96
/* Configuration registers */
#define ARM_SMMU_GR0_sCR0		0x0
#define sCR0_CLIENTPD			(1 << 0)
#define sCR0_GFRE			(1 << 1)
#define sCR0_GFIE			(1 << 2)
#define sCR0_GCFGFRE			(1 << 4)
#define sCR0_GCFGFIE			(1 << 5)
#define sCR0_USFCFG			(1 << 10)
#define sCR0_VMIDPNE			(1 << 11)
#define sCR0_PTM			(1 << 12)
#define sCR0_FB				(1 << 13)
97
#define sCR0_VMID16EN			(1 << 31)
98 99 100
#define sCR0_BSU_SHIFT			14
#define sCR0_BSU_MASK			0x3

101 102 103
/* Auxiliary Configuration register */
#define ARM_SMMU_GR0_sACR		0x10

104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121
/* Identification registers */
#define ARM_SMMU_GR0_ID0		0x20
#define ARM_SMMU_GR0_ID1		0x24
#define ARM_SMMU_GR0_ID2		0x28
#define ARM_SMMU_GR0_ID3		0x2c
#define ARM_SMMU_GR0_ID4		0x30
#define ARM_SMMU_GR0_ID5		0x34
#define ARM_SMMU_GR0_ID6		0x38
#define ARM_SMMU_GR0_ID7		0x3c
#define ARM_SMMU_GR0_sGFSR		0x48
#define ARM_SMMU_GR0_sGFSYNR0		0x50
#define ARM_SMMU_GR0_sGFSYNR1		0x54
#define ARM_SMMU_GR0_sGFSYNR2		0x58

#define ID0_S1TS			(1 << 30)
#define ID0_S2TS			(1 << 29)
#define ID0_NTS				(1 << 28)
#define ID0_SMS				(1 << 27)
122
#define ID0_ATOSNS			(1 << 26)
123 124
#define ID0_PTFS_NO_AARCH32		(1 << 25)
#define ID0_PTFS_NO_AARCH32S		(1 << 24)
125 126 127
#define ID0_CTTW			(1 << 14)
#define ID0_NUMIRPT_SHIFT		16
#define ID0_NUMIRPT_MASK		0xff
128 129
#define ID0_NUMSIDB_SHIFT		9
#define ID0_NUMSIDB_MASK		0xf
130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149
#define ID0_NUMSMRG_SHIFT		0
#define ID0_NUMSMRG_MASK		0xff

#define ID1_PAGESIZE			(1 << 31)
#define ID1_NUMPAGENDXB_SHIFT		28
#define ID1_NUMPAGENDXB_MASK		7
#define ID1_NUMS2CB_SHIFT		16
#define ID1_NUMS2CB_MASK		0xff
#define ID1_NUMCB_SHIFT			0
#define ID1_NUMCB_MASK			0xff

#define ID2_OAS_SHIFT			4
#define ID2_OAS_MASK			0xf
#define ID2_IAS_SHIFT			0
#define ID2_IAS_MASK			0xf
#define ID2_UBS_SHIFT			8
#define ID2_UBS_MASK			0xf
#define ID2_PTFS_4K			(1 << 12)
#define ID2_PTFS_16K			(1 << 13)
#define ID2_PTFS_64K			(1 << 14)
150
#define ID2_VMID16			(1 << 15)
151

152 153
#define ID7_MAJOR_SHIFT			4
#define ID7_MAJOR_MASK			0xf
154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180

/* Global TLB invalidation */
#define ARM_SMMU_GR0_TLBIVMID		0x64
#define ARM_SMMU_GR0_TLBIALLNSNH	0x68
#define ARM_SMMU_GR0_TLBIALLH		0x6c
#define ARM_SMMU_GR0_sTLBGSYNC		0x70
#define ARM_SMMU_GR0_sTLBGSTATUS	0x74
#define sTLBGSTATUS_GSACTIVE		(1 << 0)
#define TLB_LOOP_TIMEOUT		1000000	/* 1s! */

/* Stream mapping registers */
#define ARM_SMMU_GR0_SMR(n)		(0x800 + ((n) << 2))
#define SMR_VALID			(1 << 31)
#define SMR_MASK_SHIFT			16
#define SMR_MASK_MASK			0x7fff
#define SMR_ID_SHIFT			0
#define SMR_ID_MASK			0x7fff

#define ARM_SMMU_GR0_S2CR(n)		(0xc00 + ((n) << 2))
#define S2CR_CBNDX_SHIFT		0
#define S2CR_CBNDX_MASK			0xff
#define S2CR_TYPE_SHIFT			16
#define S2CR_TYPE_MASK			0x3
#define S2CR_TYPE_TRANS			(0 << S2CR_TYPE_SHIFT)
#define S2CR_TYPE_BYPASS		(1 << S2CR_TYPE_SHIFT)
#define S2CR_TYPE_FAULT			(2 << S2CR_TYPE_SHIFT)

181 182 183
#define S2CR_PRIVCFG_SHIFT		24
#define S2CR_PRIVCFG_UNPRIV		(2 << S2CR_PRIVCFG_SHIFT)

184 185 186 187
/* Context bank attribute registers */
#define ARM_SMMU_GR1_CBAR(n)		(0x0 + ((n) << 2))
#define CBAR_VMID_SHIFT			0
#define CBAR_VMID_MASK			0xff
188 189 190
#define CBAR_S1_BPSHCFG_SHIFT		8
#define CBAR_S1_BPSHCFG_MASK		3
#define CBAR_S1_BPSHCFG_NSH		3
191 192 193 194 195 196 197 198 199 200 201 202 203 204 205
#define CBAR_S1_MEMATTR_SHIFT		12
#define CBAR_S1_MEMATTR_MASK		0xf
#define CBAR_S1_MEMATTR_WB		0xf
#define CBAR_TYPE_SHIFT			16
#define CBAR_TYPE_MASK			0x3
#define CBAR_TYPE_S2_TRANS		(0 << CBAR_TYPE_SHIFT)
#define CBAR_TYPE_S1_TRANS_S2_BYPASS	(1 << CBAR_TYPE_SHIFT)
#define CBAR_TYPE_S1_TRANS_S2_FAULT	(2 << CBAR_TYPE_SHIFT)
#define CBAR_TYPE_S1_TRANS_S2_TRANS	(3 << CBAR_TYPE_SHIFT)
#define CBAR_IRPTNDX_SHIFT		24
#define CBAR_IRPTNDX_MASK		0xff

#define ARM_SMMU_GR1_CBA2R(n)		(0x800 + ((n) << 2))
#define CBA2R_RW64_32BIT		(0 << 0)
#define CBA2R_RW64_64BIT		(1 << 0)
206 207
#define CBA2R_VMID_SHIFT		16
#define CBA2R_VMID_MASK			0xffff
208 209 210

/* Translation context bank */
#define ARM_SMMU_CB_BASE(smmu)		((smmu)->base + ((smmu)->size >> 1))
211
#define ARM_SMMU_CB(smmu, n)		((n) * (1 << (smmu)->pgshift))
212 213

#define ARM_SMMU_CB_SCTLR		0x0
214
#define ARM_SMMU_CB_ACTLR		0x4
215 216
#define ARM_SMMU_CB_RESUME		0x8
#define ARM_SMMU_CB_TTBCR2		0x10
217 218
#define ARM_SMMU_CB_TTBR0		0x20
#define ARM_SMMU_CB_TTBR1		0x28
219
#define ARM_SMMU_CB_TTBCR		0x30
220
#define ARM_SMMU_CB_CONTEXTIDR		0x34
221
#define ARM_SMMU_CB_S1_MAIR0		0x38
222
#define ARM_SMMU_CB_S1_MAIR1		0x3c
223
#define ARM_SMMU_CB_PAR			0x50
224
#define ARM_SMMU_CB_FSR			0x58
225
#define ARM_SMMU_CB_FAR			0x60
226
#define ARM_SMMU_CB_FSYNR0		0x68
227
#define ARM_SMMU_CB_S1_TLBIVA		0x600
228
#define ARM_SMMU_CB_S1_TLBIASID		0x610
229 230 231
#define ARM_SMMU_CB_S1_TLBIVAL		0x620
#define ARM_SMMU_CB_S2_TLBIIPAS2	0x630
#define ARM_SMMU_CB_S2_TLBIIPAS2L	0x638
232
#define ARM_SMMU_CB_ATS1PR		0x800
233
#define ARM_SMMU_CB_ATSR		0x8f0
234 235 236 237 238 239 240 241 242 243

#define SCTLR_S1_ASIDPNE		(1 << 12)
#define SCTLR_CFCFG			(1 << 7)
#define SCTLR_CFIE			(1 << 6)
#define SCTLR_CFRE			(1 << 5)
#define SCTLR_E				(1 << 4)
#define SCTLR_AFE			(1 << 2)
#define SCTLR_TRE			(1 << 1)
#define SCTLR_M				(1 << 0)

244 245
#define ARM_MMU500_ACTLR_CPRE		(1 << 1)

246 247
#define ARM_MMU500_ACR_CACHE_LOCK	(1 << 26)

248 249 250 251
#define CB_PAR_F			(1 << 0)

#define ATSR_ACTIVE			(1 << 0)

252 253 254 255
#define RESUME_RETRY			(0 << 0)
#define RESUME_TERMINATE		(1 << 0)

#define TTBCR2_SEP_SHIFT		15
256
#define TTBCR2_SEP_UPSTREAM		(0x7 << TTBCR2_SEP_SHIFT)
257

258
#define TTBRn_ASID_SHIFT		48
259 260 261 262 263 264 265 266 267 268 269 270

#define FSR_MULTI			(1 << 31)
#define FSR_SS				(1 << 30)
#define FSR_UUT				(1 << 8)
#define FSR_ASF				(1 << 7)
#define FSR_TLBLKF			(1 << 6)
#define FSR_TLBMCF			(1 << 5)
#define FSR_EF				(1 << 4)
#define FSR_PF				(1 << 3)
#define FSR_AFF				(1 << 2)
#define FSR_TF				(1 << 1)

271 272 273
#define FSR_IGN				(FSR_AFF | FSR_ASF | \
					 FSR_TLBMCF | FSR_TLBLKF)
#define FSR_FAULT			(FSR_MULTI | FSR_SS | FSR_UUT | \
274
					 FSR_EF | FSR_PF | FSR_TF | FSR_IGN)
275 276 277

#define FSYNR0_WNR			(1 << 4)

278
static int force_stage;
279
module_param(force_stage, int, S_IRUGO);
280 281
MODULE_PARM_DESC(force_stage,
	"Force SMMU mappings to be installed at a particular stage of translation. A value of '1' or '2' forces the corresponding stage. All other values are ignored (i.e. no stage is forced). Note that selecting a specific stage will disable support for nested translation.");
282 283 284 285
static bool disable_bypass;
module_param(disable_bypass, bool, S_IRUGO);
MODULE_PARM_DESC(disable_bypass,
	"Disable bypass streams such that incoming transactions from devices that are not attached to an iommu domain will report an abort back to the device and will not be allowed to pass through the SMMU.");
286

287
enum arm_smmu_arch_version {
288 289
	ARM_SMMU_V1,
	ARM_SMMU_V1_64K,
290 291 292
	ARM_SMMU_V2,
};

293 294
enum arm_smmu_implementation {
	GENERIC_SMMU,
295
	ARM_MMU500,
296
	CAVIUM_SMMUV2,
297 298
};

299 300 301 302 303 304
struct arm_smmu_smr {
	u8				idx;
	u16				mask;
	u16				id;
};

305
struct arm_smmu_master_cfg {
306 307 308 309 310
	int				num_streamids;
	u16				streamids[MAX_MASTER_STREAMIDS];
	struct arm_smmu_smr		*smrs;
};

311 312 313 314 315 316
struct arm_smmu_master {
	struct device_node		*of_node;
	struct rb_node			node;
	struct arm_smmu_master_cfg	cfg;
};

317 318 319 320 321
struct arm_smmu_device {
	struct device			*dev;

	void __iomem			*base;
	unsigned long			size;
322
	unsigned long			pgshift;
323 324 325 326 327 328

#define ARM_SMMU_FEAT_COHERENT_WALK	(1 << 0)
#define ARM_SMMU_FEAT_STREAM_MATCH	(1 << 1)
#define ARM_SMMU_FEAT_TRANS_S1		(1 << 2)
#define ARM_SMMU_FEAT_TRANS_S2		(1 << 3)
#define ARM_SMMU_FEAT_TRANS_NESTED	(1 << 4)
329
#define ARM_SMMU_FEAT_TRANS_OPS		(1 << 5)
330
#define ARM_SMMU_FEAT_VMID16		(1 << 6)
331 332 333 334 335
#define ARM_SMMU_FEAT_FMT_AARCH64_4K	(1 << 7)
#define ARM_SMMU_FEAT_FMT_AARCH64_16K	(1 << 8)
#define ARM_SMMU_FEAT_FMT_AARCH64_64K	(1 << 9)
#define ARM_SMMU_FEAT_FMT_AARCH32_L	(1 << 10)
#define ARM_SMMU_FEAT_FMT_AARCH32_S	(1 << 11)
336
	u32				features;
337 338 339

#define ARM_SMMU_OPT_SECURE_CFG_ACCESS (1 << 0)
	u32				options;
340
	enum arm_smmu_arch_version	version;
341
	enum arm_smmu_implementation	model;
342 343 344 345 346 347 348 349 350

	u32				num_context_banks;
	u32				num_s2_context_banks;
	DECLARE_BITMAP(context_map, ARM_SMMU_MAX_CBS);
	atomic_t			irptndx;

	u32				num_mapping_groups;
	DECLARE_BITMAP(smr_map, ARM_SMMU_MAX_SMRS);

351 352 353
	unsigned long			va_size;
	unsigned long			ipa_size;
	unsigned long			pa_size;
354
	unsigned long			pgsize_bitmap;
355 356 357 358 359 360 361

	u32				num_global_irqs;
	u32				num_context_irqs;
	unsigned int			*irqs;

	struct list_head		list;
	struct rb_root			masters;
362 363

	u32				cavium_id_base; /* Specific to Cavium */
364 365
};

366 367 368 369 370
enum arm_smmu_context_fmt {
	ARM_SMMU_CTX_FMT_NONE,
	ARM_SMMU_CTX_FMT_AARCH64,
	ARM_SMMU_CTX_FMT_AARCH32_L,
	ARM_SMMU_CTX_FMT_AARCH32_S,
371 372 373 374 375 376
};

struct arm_smmu_cfg {
	u8				cbndx;
	u8				irptndx;
	u32				cbar;
377
	enum arm_smmu_context_fmt	fmt;
378
};
379
#define INVALID_IRPTNDX			0xff
380

381 382
#define ARM_SMMU_CB_ASID(smmu, cfg) ((u16)(smmu)->cavium_id_base + (cfg)->cbndx)
#define ARM_SMMU_CB_VMID(smmu, cfg) ((u16)(smmu)->cavium_id_base + (cfg)->cbndx + 1)
383

384 385 386 387 388 389
enum arm_smmu_domain_stage {
	ARM_SMMU_DOMAIN_S1 = 0,
	ARM_SMMU_DOMAIN_S2,
	ARM_SMMU_DOMAIN_NESTED,
};

390
struct arm_smmu_domain {
391
	struct arm_smmu_device		*smmu;
392 393
	struct io_pgtable_ops		*pgtbl_ops;
	spinlock_t			pgtbl_lock;
394
	struct arm_smmu_cfg		cfg;
395
	enum arm_smmu_domain_stage	stage;
396
	struct mutex			init_mutex; /* Protects smmu pointer */
397
	struct iommu_domain		domain;
398 399
};

400 401 402 403 404 405
struct arm_smmu_phandle_args {
	struct device_node *np;
	int args_count;
	uint32_t args[MAX_MASTER_STREAMIDS];
};

406 407 408
static DEFINE_SPINLOCK(arm_smmu_devices_lock);
static LIST_HEAD(arm_smmu_devices);

409 410 411 412 413
struct arm_smmu_option_prop {
	u32 opt;
	const char *prop;
};

414 415
static atomic_t cavium_smmu_context_count = ATOMIC_INIT(0);

416
static struct arm_smmu_option_prop arm_smmu_options[] = {
417 418 419 420
	{ ARM_SMMU_OPT_SECURE_CFG_ACCESS, "calxeda,smmu-secure-config-access" },
	{ 0, NULL},
};

421 422 423 424 425
static struct arm_smmu_domain *to_smmu_domain(struct iommu_domain *dom)
{
	return container_of(dom, struct arm_smmu_domain, domain);
}

426 427 428
static void parse_driver_options(struct arm_smmu_device *smmu)
{
	int i = 0;
429

430 431 432 433 434 435 436 437 438 439
	do {
		if (of_property_read_bool(smmu->dev->of_node,
						arm_smmu_options[i].prop)) {
			smmu->options |= arm_smmu_options[i].opt;
			dev_notice(smmu->dev, "option %s\n",
				arm_smmu_options[i].prop);
		}
	} while (arm_smmu_options[++i].opt);
}

440
static struct device_node *dev_get_dev_node(struct device *dev)
441 442 443
{
	if (dev_is_pci(dev)) {
		struct pci_bus *bus = to_pci_dev(dev)->bus;
444

445 446
		while (!pci_is_root_bus(bus))
			bus = bus->parent;
447
		return bus->bridge->parent->of_node;
448 449
	}

450
	return dev->of_node;
451 452
}

453 454 455 456 457 458 459
static struct arm_smmu_master *find_smmu_master(struct arm_smmu_device *smmu,
						struct device_node *dev_node)
{
	struct rb_node *node = smmu->masters.rb_node;

	while (node) {
		struct arm_smmu_master *master;
460

461 462 463 464 465 466 467 468 469 470 471 472 473
		master = container_of(node, struct arm_smmu_master, node);

		if (dev_node < master->of_node)
			node = node->rb_left;
		else if (dev_node > master->of_node)
			node = node->rb_right;
		else
			return master;
	}

	return NULL;
}

474
static struct arm_smmu_master_cfg *
475
find_smmu_master_cfg(struct device *dev)
476
{
477 478
	struct arm_smmu_master_cfg *cfg = NULL;
	struct iommu_group *group = iommu_group_get(dev);
479

480 481 482 483
	if (group) {
		cfg = iommu_group_get_iommudata(group);
		iommu_group_put(group);
	}
484

485
	return cfg;
486 487
}

488 489 490 491 492 493 494 495
static int insert_smmu_master(struct arm_smmu_device *smmu,
			      struct arm_smmu_master *master)
{
	struct rb_node **new, *parent;

	new = &smmu->masters.rb_node;
	parent = NULL;
	while (*new) {
496 497
		struct arm_smmu_master *this
			= container_of(*new, struct arm_smmu_master, node);
498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514

		parent = *new;
		if (master->of_node < this->of_node)
			new = &((*new)->rb_left);
		else if (master->of_node > this->of_node)
			new = &((*new)->rb_right);
		else
			return -EEXIST;
	}

	rb_link_node(&master->node, parent, new);
	rb_insert_color(&master->node, &smmu->masters);
	return 0;
}

static int register_smmu_master(struct arm_smmu_device *smmu,
				struct device *dev,
515
				struct arm_smmu_phandle_args *masterspec)
516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538
{
	int i;
	struct arm_smmu_master *master;

	master = find_smmu_master(smmu, masterspec->np);
	if (master) {
		dev_err(dev,
			"rejecting multiple registrations for master device %s\n",
			masterspec->np->name);
		return -EBUSY;
	}

	if (masterspec->args_count > MAX_MASTER_STREAMIDS) {
		dev_err(dev,
			"reached maximum number (%d) of stream IDs for master device %s\n",
			MAX_MASTER_STREAMIDS, masterspec->np->name);
		return -ENOSPC;
	}

	master = devm_kzalloc(dev, sizeof(*master), GFP_KERNEL);
	if (!master)
		return -ENOMEM;

539 540
	master->of_node			= masterspec->np;
	master->cfg.num_streamids	= masterspec->args_count;
541

542 543
	for (i = 0; i < master->cfg.num_streamids; ++i) {
		u16 streamid = masterspec->args[i];
544

545 546 547 548 549 550 551 552 553
		if (!(smmu->features & ARM_SMMU_FEAT_STREAM_MATCH) &&
		     (streamid >= smmu->num_mapping_groups)) {
			dev_err(dev,
				"stream ID for master device %s greater than maximum allowed (%d)\n",
				masterspec->np->name, smmu->num_mapping_groups);
			return -ERANGE;
		}
		master->cfg.streamids[i] = streamid;
	}
554 555 556
	return insert_smmu_master(smmu, master);
}

557
static struct arm_smmu_device *find_smmu_for_device(struct device *dev)
558
{
559
	struct arm_smmu_device *smmu;
560
	struct arm_smmu_master *master = NULL;
561
	struct device_node *dev_node = dev_get_dev_node(dev);
562 563

	spin_lock(&arm_smmu_devices_lock);
564
	list_for_each_entry(smmu, &arm_smmu_devices, list) {
565 566 567 568
		master = find_smmu_master(smmu, dev_node);
		if (master)
			break;
	}
569
	spin_unlock(&arm_smmu_devices_lock);
570

571
	return master ? smmu : NULL;
572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592
}

static int __arm_smmu_alloc_bitmap(unsigned long *map, int start, int end)
{
	int idx;

	do {
		idx = find_next_zero_bit(map, end, start);
		if (idx == end)
			return -ENOSPC;
	} while (test_and_set_bit(idx, map));

	return idx;
}

static void __arm_smmu_free_bitmap(unsigned long *map, int idx)
{
	clear_bit(idx, map);
}

/* Wait for any pending TLB invalidations to complete */
593
static void __arm_smmu_tlb_sync(struct arm_smmu_device *smmu)
594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610
{
	int count = 0;
	void __iomem *gr0_base = ARM_SMMU_GR0(smmu);

	writel_relaxed(0, gr0_base + ARM_SMMU_GR0_sTLBGSYNC);
	while (readl_relaxed(gr0_base + ARM_SMMU_GR0_sTLBGSTATUS)
	       & sTLBGSTATUS_GSACTIVE) {
		cpu_relax();
		if (++count == TLB_LOOP_TIMEOUT) {
			dev_err_ratelimited(smmu->dev,
			"TLB sync timed out -- SMMU may be deadlocked\n");
			return;
		}
		udelay(1);
	}
}

611 612 613 614 615 616 617
static void arm_smmu_tlb_sync(void *cookie)
{
	struct arm_smmu_domain *smmu_domain = cookie;
	__arm_smmu_tlb_sync(smmu_domain->smmu);
}

static void arm_smmu_tlb_inv_context(void *cookie)
618
{
619
	struct arm_smmu_domain *smmu_domain = cookie;
620 621
	struct arm_smmu_cfg *cfg = &smmu_domain->cfg;
	struct arm_smmu_device *smmu = smmu_domain->smmu;
622
	bool stage1 = cfg->cbar != CBAR_TYPE_S2_TRANS;
623
	void __iomem *base;
624 625 626

	if (stage1) {
		base = ARM_SMMU_CB_BASE(smmu) + ARM_SMMU_CB(smmu, cfg->cbndx);
627
		writel_relaxed(ARM_SMMU_CB_ASID(smmu, cfg),
628
			       base + ARM_SMMU_CB_S1_TLBIASID);
629 630
	} else {
		base = ARM_SMMU_GR0(smmu);
631
		writel_relaxed(ARM_SMMU_CB_VMID(smmu, cfg),
632
			       base + ARM_SMMU_GR0_TLBIVMID);
633 634
	}

635 636 637 638
	__arm_smmu_tlb_sync(smmu);
}

static void arm_smmu_tlb_inv_range_nosync(unsigned long iova, size_t size,
639
					  size_t granule, bool leaf, void *cookie)
640 641 642 643 644 645 646 647 648 649 650
{
	struct arm_smmu_domain *smmu_domain = cookie;
	struct arm_smmu_cfg *cfg = &smmu_domain->cfg;
	struct arm_smmu_device *smmu = smmu_domain->smmu;
	bool stage1 = cfg->cbar != CBAR_TYPE_S2_TRANS;
	void __iomem *reg;

	if (stage1) {
		reg = ARM_SMMU_CB_BASE(smmu) + ARM_SMMU_CB(smmu, cfg->cbndx);
		reg += leaf ? ARM_SMMU_CB_S1_TLBIVAL : ARM_SMMU_CB_S1_TLBIVA;

651
		if (cfg->fmt != ARM_SMMU_CTX_FMT_AARCH64) {
652
			iova &= ~12UL;
653
			iova |= ARM_SMMU_CB_ASID(smmu, cfg);
654 655 656 657
			do {
				writel_relaxed(iova, reg);
				iova += granule;
			} while (size -= granule);
658 659
		} else {
			iova >>= 12;
660
			iova |= (u64)ARM_SMMU_CB_ASID(smmu, cfg) << 48;
661 662 663 664
			do {
				writeq_relaxed(iova, reg);
				iova += granule >> 12;
			} while (size -= granule);
665 666 667 668 669
		}
	} else if (smmu->version == ARM_SMMU_V2) {
		reg = ARM_SMMU_CB_BASE(smmu) + ARM_SMMU_CB(smmu, cfg->cbndx);
		reg += leaf ? ARM_SMMU_CB_S2_TLBIIPAS2L :
			      ARM_SMMU_CB_S2_TLBIIPAS2;
670 671
		iova >>= 12;
		do {
672
			smmu_write_atomic_lq(iova, reg);
673 674
			iova += granule >> 12;
		} while (size -= granule);
675 676
	} else {
		reg = ARM_SMMU_GR0(smmu) + ARM_SMMU_GR0_TLBIVMID;
677
		writel_relaxed(ARM_SMMU_CB_VMID(smmu, cfg), reg);
678 679 680 681 682 683 684 685 686
	}
}

static struct iommu_gather_ops arm_smmu_gather_ops = {
	.tlb_flush_all	= arm_smmu_tlb_inv_context,
	.tlb_add_flush	= arm_smmu_tlb_inv_range_nosync,
	.tlb_sync	= arm_smmu_tlb_sync,
};

687 688
static irqreturn_t arm_smmu_context_fault(int irq, void *dev)
{
689
	u32 fsr, fsynr;
690 691
	unsigned long iova;
	struct iommu_domain *domain = dev;
692
	struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
693 694
	struct arm_smmu_cfg *cfg = &smmu_domain->cfg;
	struct arm_smmu_device *smmu = smmu_domain->smmu;
695 696
	void __iomem *cb_base;

697
	cb_base = ARM_SMMU_CB_BASE(smmu) + ARM_SMMU_CB(smmu, cfg->cbndx);
698 699 700 701 702 703
	fsr = readl_relaxed(cb_base + ARM_SMMU_CB_FSR);

	if (!(fsr & FSR_FAULT))
		return IRQ_NONE;

	fsynr = readl_relaxed(cb_base + ARM_SMMU_CB_FSYNR0);
704
	iova = readq_relaxed(cb_base + ARM_SMMU_CB_FAR);
705

706 707 708
	dev_err_ratelimited(smmu->dev,
	"Unhandled context fault: fsr=0x%x, iova=0x%08lx, fsynr=0x%x, cb=%d\n",
			    fsr, iova, fsynr, cfg->cbndx);
709

710 711
	writel(fsr, cb_base + ARM_SMMU_CB_FSR);
	return IRQ_HANDLED;
712 713 714 715 716 717
}

static irqreturn_t arm_smmu_global_fault(int irq, void *dev)
{
	u32 gfsr, gfsynr0, gfsynr1, gfsynr2;
	struct arm_smmu_device *smmu = dev;
718
	void __iomem *gr0_base = ARM_SMMU_GR0_NS(smmu);
719 720 721 722 723 724

	gfsr = readl_relaxed(gr0_base + ARM_SMMU_GR0_sGFSR);
	gfsynr0 = readl_relaxed(gr0_base + ARM_SMMU_GR0_sGFSYNR0);
	gfsynr1 = readl_relaxed(gr0_base + ARM_SMMU_GR0_sGFSYNR1);
	gfsynr2 = readl_relaxed(gr0_base + ARM_SMMU_GR0_sGFSYNR2);

725 726 727
	if (!gfsr)
		return IRQ_NONE;

728 729 730 731 732 733 734
	dev_err_ratelimited(smmu->dev,
		"Unexpected global fault, this could be serious\n");
	dev_err_ratelimited(smmu->dev,
		"\tGFSR 0x%08x, GFSYNR0 0x%08x, GFSYNR1 0x%08x, GFSYNR2 0x%08x\n",
		gfsr, gfsynr0, gfsynr1, gfsynr2);

	writel(gfsr, gr0_base + ARM_SMMU_GR0_sGFSR);
735
	return IRQ_HANDLED;
736 737
}

738 739
static void arm_smmu_init_context_bank(struct arm_smmu_domain *smmu_domain,
				       struct io_pgtable_cfg *pgtbl_cfg)
740
{
741
	u32 reg, reg2;
742
	u64 reg64;
743
	bool stage1;
744 745
	struct arm_smmu_cfg *cfg = &smmu_domain->cfg;
	struct arm_smmu_device *smmu = smmu_domain->smmu;
746
	void __iomem *cb_base, *gr1_base;
747 748

	gr1_base = ARM_SMMU_GR1(smmu);
749 750
	stage1 = cfg->cbar != CBAR_TYPE_S2_TRANS;
	cb_base = ARM_SMMU_CB_BASE(smmu) + ARM_SMMU_CB(smmu, cfg->cbndx);
751

752
	if (smmu->version > ARM_SMMU_V1) {
753 754 755 756
		if (cfg->fmt == ARM_SMMU_CTX_FMT_AARCH64)
			reg = CBA2R_RW64_64BIT;
		else
			reg = CBA2R_RW64_32BIT;
757 758
		/* 16-bit VMIDs live in CBA2R */
		if (smmu->features & ARM_SMMU_FEAT_VMID16)
759
			reg |= ARM_SMMU_CB_VMID(smmu, cfg) << CBA2R_VMID_SHIFT;
760

761 762 763
		writel_relaxed(reg, gr1_base + ARM_SMMU_GR1_CBA2R(cfg->cbndx));
	}

764
	/* CBAR */
765
	reg = cfg->cbar;
766
	if (smmu->version < ARM_SMMU_V2)
767
		reg |= cfg->irptndx << CBAR_IRPTNDX_SHIFT;
768

769 770 771 772 773 774 775
	/*
	 * Use the weakest shareability/memory types, so they are
	 * overridden by the ttbcr/pte.
	 */
	if (stage1) {
		reg |= (CBAR_S1_BPSHCFG_NSH << CBAR_S1_BPSHCFG_SHIFT) |
			(CBAR_S1_MEMATTR_WB << CBAR_S1_MEMATTR_SHIFT);
776 777
	} else if (!(smmu->features & ARM_SMMU_FEAT_VMID16)) {
		/* 8-bit VMIDs live in CBAR */
778
		reg |= ARM_SMMU_CB_VMID(smmu, cfg) << CBAR_VMID_SHIFT;
779
	}
780
	writel_relaxed(reg, gr1_base + ARM_SMMU_GR1_CBAR(cfg->cbndx));
781

782 783
	/* TTBRs */
	if (stage1) {
784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799
		u16 asid = ARM_SMMU_CB_ASID(smmu, cfg);

		if (cfg->fmt == ARM_SMMU_CTX_FMT_AARCH32_S) {
			reg = pgtbl_cfg->arm_v7s_cfg.ttbr[0];
			writel_relaxed(reg, cb_base + ARM_SMMU_CB_TTBR0);
			reg = pgtbl_cfg->arm_v7s_cfg.ttbr[1];
			writel_relaxed(reg, cb_base + ARM_SMMU_CB_TTBR1);
			writel_relaxed(asid, cb_base + ARM_SMMU_CB_CONTEXTIDR);
		} else {
			reg64 = pgtbl_cfg->arm_lpae_s1_cfg.ttbr[0];
			reg64 |= (u64)asid << TTBRn_ASID_SHIFT;
			writeq_relaxed(reg64, cb_base + ARM_SMMU_CB_TTBR0);
			reg64 = pgtbl_cfg->arm_lpae_s1_cfg.ttbr[1];
			reg64 |= (u64)asid << TTBRn_ASID_SHIFT;
			writeq_relaxed(reg64, cb_base + ARM_SMMU_CB_TTBR1);
		}
800
	} else {
801
		reg64 = pgtbl_cfg->arm_lpae_s2_cfg.vttbr;
802
		writeq_relaxed(reg64, cb_base + ARM_SMMU_CB_TTBR0);
803
	}
804

805 806
	/* TTBCR */
	if (stage1) {
807 808 809 810 811 812 813
		if (cfg->fmt == ARM_SMMU_CTX_FMT_AARCH32_S) {
			reg = pgtbl_cfg->arm_v7s_cfg.tcr;
			reg2 = 0;
		} else {
			reg = pgtbl_cfg->arm_lpae_s1_cfg.tcr;
			reg2 = pgtbl_cfg->arm_lpae_s1_cfg.tcr >> 32;
			reg2 |= TTBCR2_SEP_UPSTREAM;
814
		}
815 816
		if (smmu->version > ARM_SMMU_V1)
			writel_relaxed(reg2, cb_base + ARM_SMMU_CB_TTBCR2);
817
	} else {
818
		reg = pgtbl_cfg->arm_lpae_s2_cfg.vtcr;
819
	}
820
	writel_relaxed(reg, cb_base + ARM_SMMU_CB_TTBCR);
821

822
	/* MAIRs (stage-1 only) */
823
	if (stage1) {
824 825 826 827 828 829 830
		if (cfg->fmt == ARM_SMMU_CTX_FMT_AARCH32_S) {
			reg = pgtbl_cfg->arm_v7s_cfg.prrr;
			reg2 = pgtbl_cfg->arm_v7s_cfg.nmrr;
		} else {
			reg = pgtbl_cfg->arm_lpae_s1_cfg.mair[0];
			reg2 = pgtbl_cfg->arm_lpae_s1_cfg.mair[1];
		}
831
		writel_relaxed(reg, cb_base + ARM_SMMU_CB_S1_MAIR0);
832
		writel_relaxed(reg2, cb_base + ARM_SMMU_CB_S1_MAIR1);
833 834 835
	}

	/* SCTLR */
836
	reg = SCTLR_CFIE | SCTLR_CFRE | SCTLR_AFE | SCTLR_TRE | SCTLR_M;
837 838 839 840 841
	if (stage1)
		reg |= SCTLR_S1_ASIDPNE;
#ifdef __BIG_ENDIAN
	reg |= SCTLR_E;
#endif
842
	writel_relaxed(reg, cb_base + ARM_SMMU_CB_SCTLR);
843 844 845
}

static int arm_smmu_init_domain_context(struct iommu_domain *domain,
846
					struct arm_smmu_device *smmu)
847
{
848
	int irq, start, ret = 0;
849 850 851 852
	unsigned long ias, oas;
	struct io_pgtable_ops *pgtbl_ops;
	struct io_pgtable_cfg pgtbl_cfg;
	enum io_pgtable_fmt fmt;
853
	struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
854
	struct arm_smmu_cfg *cfg = &smmu_domain->cfg;
855

856
	mutex_lock(&smmu_domain->init_mutex);
857 858 859
	if (smmu_domain->smmu)
		goto out_unlock;

860 861 862 863 864 865
	/* We're bypassing these SIDs, so don't allocate an actual context */
	if (domain->type == IOMMU_DOMAIN_DMA) {
		smmu_domain->smmu = smmu;
		goto out_unlock;
	}

866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888
	/*
	 * Mapping the requested stage onto what we support is surprisingly
	 * complicated, mainly because the spec allows S1+S2 SMMUs without
	 * support for nested translation. That means we end up with the
	 * following table:
	 *
	 * Requested        Supported        Actual
	 *     S1               N              S1
	 *     S1             S1+S2            S1
	 *     S1               S2             S2
	 *     S1               S1             S1
	 *     N                N              N
	 *     N              S1+S2            S2
	 *     N                S2             S2
	 *     N                S1             S1
	 *
	 * Note that you can't actually request stage-2 mappings.
	 */
	if (!(smmu->features & ARM_SMMU_FEAT_TRANS_S1))
		smmu_domain->stage = ARM_SMMU_DOMAIN_S2;
	if (!(smmu->features & ARM_SMMU_FEAT_TRANS_S2))
		smmu_domain->stage = ARM_SMMU_DOMAIN_S1;

889 890 891 892 893 894 895 896 897 898
	/*
	 * Choosing a suitable context format is even more fiddly. Until we
	 * grow some way for the caller to express a preference, and/or move
	 * the decision into the io-pgtable code where it arguably belongs,
	 * just aim for the closest thing to the rest of the system, and hope
	 * that the hardware isn't esoteric enough that we can't assume AArch64
	 * support to be a superset of AArch32 support...
	 */
	if (smmu->features & ARM_SMMU_FEAT_FMT_AARCH32_L)
		cfg->fmt = ARM_SMMU_CTX_FMT_AARCH32_L;
899 900 901 902 903
	if (IS_ENABLED(CONFIG_IOMMU_IO_PGTABLE_ARMV7S) &&
	    !IS_ENABLED(CONFIG_64BIT) && !IS_ENABLED(CONFIG_ARM_LPAE) &&
	    (smmu->features & ARM_SMMU_FEAT_FMT_AARCH32_S) &&
	    (smmu_domain->stage == ARM_SMMU_DOMAIN_S1))
		cfg->fmt = ARM_SMMU_CTX_FMT_AARCH32_S;
904 905 906 907 908 909 910 911 912 913 914
	if ((IS_ENABLED(CONFIG_64BIT) || cfg->fmt == ARM_SMMU_CTX_FMT_NONE) &&
	    (smmu->features & (ARM_SMMU_FEAT_FMT_AARCH64_64K |
			       ARM_SMMU_FEAT_FMT_AARCH64_16K |
			       ARM_SMMU_FEAT_FMT_AARCH64_4K)))
		cfg->fmt = ARM_SMMU_CTX_FMT_AARCH64;

	if (cfg->fmt == ARM_SMMU_CTX_FMT_NONE) {
		ret = -EINVAL;
		goto out_unlock;
	}

915 916 917 918
	switch (smmu_domain->stage) {
	case ARM_SMMU_DOMAIN_S1:
		cfg->cbar = CBAR_TYPE_S1_TRANS_S2_BYPASS;
		start = smmu->num_s2_context_banks;
919 920
		ias = smmu->va_size;
		oas = smmu->ipa_size;
921
		if (cfg->fmt == ARM_SMMU_CTX_FMT_AARCH64) {
922
			fmt = ARM_64_LPAE_S1;
923
		} else if (cfg->fmt == ARM_SMMU_CTX_FMT_AARCH32_L) {
924
			fmt = ARM_32_LPAE_S1;
925 926
			ias = min(ias, 32UL);
			oas = min(oas, 40UL);
927 928 929 930
		} else {
			fmt = ARM_V7S;
			ias = min(ias, 32UL);
			oas = min(oas, 32UL);
931
		}
932 933
		break;
	case ARM_SMMU_DOMAIN_NESTED:
934 935 936 937
		/*
		 * We will likely want to change this if/when KVM gets
		 * involved.
		 */
938
	case ARM_SMMU_DOMAIN_S2:
939 940
		cfg->cbar = CBAR_TYPE_S2_TRANS;
		start = 0;
941 942
		ias = smmu->ipa_size;
		oas = smmu->pa_size;
943
		if (cfg->fmt == ARM_SMMU_CTX_FMT_AARCH64) {
944
			fmt = ARM_64_LPAE_S2;
945
		} else {
946
			fmt = ARM_32_LPAE_S2;
947 948 949
			ias = min(ias, 40UL);
			oas = min(oas, 40UL);
		}
950 951 952 953
		break;
	default:
		ret = -EINVAL;
		goto out_unlock;
954 955 956 957
	}

	ret = __arm_smmu_alloc_bitmap(smmu->context_map, start,
				      smmu->num_context_banks);
958
	if (ret < 0)
959
		goto out_unlock;
960

961
	cfg->cbndx = ret;
962
	if (smmu->version < ARM_SMMU_V2) {
963 964
		cfg->irptndx = atomic_inc_return(&smmu->irptndx);
		cfg->irptndx %= smmu->num_context_irqs;
965
	} else {
966
		cfg->irptndx = cfg->cbndx;
967 968
	}

969
	pgtbl_cfg = (struct io_pgtable_cfg) {
970
		.pgsize_bitmap	= smmu->pgsize_bitmap,
971 972 973
		.ias		= ias,
		.oas		= oas,
		.tlb		= &arm_smmu_gather_ops,
974
		.iommu_dev	= smmu->dev,
975 976 977 978 979 980 981 982 983
	};

	smmu_domain->smmu = smmu;
	pgtbl_ops = alloc_io_pgtable_ops(fmt, &pgtbl_cfg, smmu_domain);
	if (!pgtbl_ops) {
		ret = -ENOMEM;
		goto out_clear_smmu;
	}

984 985
	/* Update the domain's page sizes to reflect the page table format */
	domain->pgsize_bitmap = pgtbl_cfg.pgsize_bitmap;
986

987 988 989 990 991 992 993
	/* Initialise the context bank with our page table cfg */
	arm_smmu_init_context_bank(smmu_domain, &pgtbl_cfg);

	/*
	 * Request context fault interrupt. Do this last to avoid the
	 * handler seeing a half-initialised domain state.
	 */
994
	irq = smmu->irqs[smmu->num_global_irqs + cfg->irptndx];
995 996
	ret = devm_request_irq(smmu->dev, irq, arm_smmu_context_fault,
			       IRQF_SHARED, "arm-smmu-context-fault", domain);
997
	if (ret < 0) {
998
		dev_err(smmu->dev, "failed to request context IRQ %d (%u)\n",
999 1000
			cfg->irptndx, irq);
		cfg->irptndx = INVALID_IRPTNDX;
1001 1002
	}

1003 1004 1005 1006
	mutex_unlock(&smmu_domain->init_mutex);

	/* Publish page table ops for map/unmap */
	smmu_domain->pgtbl_ops = pgtbl_ops;
1007
	return 0;
1008

1009 1010
out_clear_smmu:
	smmu_domain->smmu = NULL;
1011
out_unlock:
1012
	mutex_unlock(&smmu_domain->init_mutex);
1013 1014 1015 1016 1017
	return ret;
}

static void arm_smmu_destroy_domain_context(struct iommu_domain *domain)
{
1018
	struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1019 1020
	struct arm_smmu_device *smmu = smmu_domain->smmu;
	struct arm_smmu_cfg *cfg = &smmu_domain->cfg;
1021
	void __iomem *cb_base;
1022 1023
	int irq;

1024
	if (!smmu || domain->type == IOMMU_DOMAIN_DMA)
1025 1026
		return;

1027 1028 1029 1030
	/*
	 * Disable the context bank and free the page tables before freeing
	 * it.
	 */
1031
	cb_base = ARM_SMMU_CB_BASE(smmu) + ARM_SMMU_CB(smmu, cfg->cbndx);
1032 1033
	writel_relaxed(0, cb_base + ARM_SMMU_CB_SCTLR);

1034 1035
	if (cfg->irptndx != INVALID_IRPTNDX) {
		irq = smmu->irqs[smmu->num_global_irqs + cfg->irptndx];
1036
		devm_free_irq(smmu->dev, irq, domain);
1037 1038
	}

1039
	free_io_pgtable_ops(smmu_domain->pgtbl_ops);
1040
	__arm_smmu_free_bitmap(smmu->context_map, cfg->cbndx);
1041 1042
}

1043
static struct iommu_domain *arm_smmu_domain_alloc(unsigned type)
1044 1045 1046
{
	struct arm_smmu_domain *smmu_domain;

1047
	if (type != IOMMU_DOMAIN_UNMANAGED && type != IOMMU_DOMAIN_DMA)
1048
		return NULL;
1049 1050 1051 1052 1053 1054 1055
	/*
	 * Allocate the domain and initialise some of its data structures.
	 * We can't really do anything meaningful until we've added a
	 * master.
	 */
	smmu_domain = kzalloc(sizeof(*smmu_domain), GFP_KERNEL);
	if (!smmu_domain)
1056
		return NULL;
1057

1058 1059 1060 1061 1062 1063
	if (type == IOMMU_DOMAIN_DMA &&
	    iommu_get_dma_cookie(&smmu_domain->domain)) {
		kfree(smmu_domain);
		return NULL;
	}

1064 1065
	mutex_init(&smmu_domain->init_mutex);
	spin_lock_init(&smmu_domain->pgtbl_lock);
1066 1067

	return &smmu_domain->domain;
1068 1069
}

1070
static void arm_smmu_domain_free(struct iommu_domain *domain)
1071
{
1072
	struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1073 1074 1075 1076 1077

	/*
	 * Free the domain resources. We assume that all devices have
	 * already been detached.
	 */
1078
	iommu_put_dma_cookie(domain);
1079 1080 1081 1082 1083
	arm_smmu_destroy_domain_context(domain);
	kfree(smmu_domain);
}

static int arm_smmu_master_configure_smrs(struct arm_smmu_device *smmu,
1084
					  struct arm_smmu_master_cfg *cfg)
1085 1086 1087 1088 1089 1090 1091 1092
{
	int i;
	struct arm_smmu_smr *smrs;
	void __iomem *gr0_base = ARM_SMMU_GR0(smmu);

	if (!(smmu->features & ARM_SMMU_FEAT_STREAM_MATCH))
		return 0;

1093
	if (cfg->smrs)
1094 1095
		return -EEXIST;

1096
	smrs = kmalloc_array(cfg->num_streamids, sizeof(*smrs), GFP_KERNEL);
1097
	if (!smrs) {
1098 1099
		dev_err(smmu->dev, "failed to allocate %d SMRs\n",
			cfg->num_streamids);
1100 1101 1102
		return -ENOMEM;
	}

1103
	/* Allocate the SMRs on the SMMU */
1104
	for (i = 0; i < cfg->num_streamids; ++i) {
1105 1106
		int idx = __arm_smmu_alloc_bitmap(smmu->smr_map, 0,
						  smmu->num_mapping_groups);
1107
		if (idx < 0) {
1108 1109 1110 1111 1112 1113 1114
			dev_err(smmu->dev, "failed to allocate free SMR\n");
			goto err_free_smrs;
		}

		smrs[i] = (struct arm_smmu_smr) {
			.idx	= idx,
			.mask	= 0, /* We don't currently share SMRs */
1115
			.id	= cfg->streamids[i],
1116 1117 1118 1119
		};
	}

	/* It worked! Now, poke the actual hardware */
1120
	for (i = 0; i < cfg->num_streamids; ++i) {
1121 1122 1123 1124 1125
		u32 reg = SMR_VALID | smrs[i].id << SMR_ID_SHIFT |
			  smrs[i].mask << SMR_MASK_SHIFT;
		writel_relaxed(reg, gr0_base + ARM_SMMU_GR0_SMR(smrs[i].idx));
	}

1126
	cfg->smrs = smrs;
1127 1128 1129 1130 1131 1132 1133 1134 1135 1136
	return 0;

err_free_smrs:
	while (--i >= 0)
		__arm_smmu_free_bitmap(smmu->smr_map, smrs[i].idx);
	kfree(smrs);
	return -ENOSPC;
}

static void arm_smmu_master_free_smrs(struct arm_smmu_device *smmu,
1137
				      struct arm_smmu_master_cfg *cfg)
1138 1139 1140
{
	int i;
	void __iomem *gr0_base = ARM_SMMU_GR0(smmu);
1141
	struct arm_smmu_smr *smrs = cfg->smrs;
1142

1143 1144 1145
	if (!smrs)
		return;

1146
	/* Invalidate the SMRs before freeing back to the allocator */
1147
	for (i = 0; i < cfg->num_streamids; ++i) {
1148
		u8 idx = smrs[i].idx;
1149

1150 1151 1152 1153
		writel_relaxed(~SMR_VALID, gr0_base + ARM_SMMU_GR0_SMR(idx));
		__arm_smmu_free_bitmap(smmu->smr_map, idx);
	}

1154
	cfg->smrs = NULL;
1155 1156 1157 1158
	kfree(smrs);
}

static int arm_smmu_domain_add_master(struct arm_smmu_domain *smmu_domain,
1159
				      struct arm_smmu_master_cfg *cfg)
1160 1161
{
	int i, ret;
1162
	struct arm_smmu_device *smmu = smmu_domain->smmu;
1163 1164
	void __iomem *gr0_base = ARM_SMMU_GR0(smmu);

1165 1166
	/*
	 * FIXME: This won't be needed once we have IOMMU-backed DMA ops
1167 1168 1169
	 * for all devices behind the SMMU. Note that we need to take
	 * care configuring SMRs for devices both a platform_device and
	 * and a PCI device (i.e. a PCI host controller)
1170 1171 1172 1173
	 */
	if (smmu_domain->domain.type == IOMMU_DOMAIN_DMA)
		return 0;

1174 1175 1176 1177 1178
	/* Devices in an IOMMU group may already be configured */
	ret = arm_smmu_master_configure_smrs(smmu, cfg);
	if (ret)
		return ret == -EEXIST ? 0 : ret;

1179
	for (i = 0; i < cfg->num_streamids; ++i) {
1180
		u32 idx, s2cr;
1181

1182
		idx = cfg->smrs ? cfg->smrs[i].idx : cfg->streamids[i];
1183
		s2cr = S2CR_TYPE_TRANS | S2CR_PRIVCFG_UNPRIV |
1184
		       (smmu_domain->cfg.cbndx << S2CR_CBNDX_SHIFT);
1185 1186 1187 1188 1189 1190 1191
		writel_relaxed(s2cr, gr0_base + ARM_SMMU_GR0_S2CR(idx));
	}

	return 0;
}

static void arm_smmu_domain_remove_master(struct arm_smmu_domain *smmu_domain,
1192
					  struct arm_smmu_master_cfg *cfg)
1193
{
1194
	int i;
1195
	struct arm_smmu_device *smmu = smmu_domain->smmu;
1196
	void __iomem *gr0_base = ARM_SMMU_GR0(smmu);
1197

1198 1199 1200
	/* An IOMMU group is torn down by the first device to be removed */
	if ((smmu->features & ARM_SMMU_FEAT_STREAM_MATCH) && !cfg->smrs)
		return;
1201 1202 1203 1204 1205

	/*
	 * We *must* clear the S2CR first, because freeing the SMR means
	 * that it can be re-allocated immediately.
	 */
1206 1207
	for (i = 0; i < cfg->num_streamids; ++i) {
		u32 idx = cfg->smrs ? cfg->smrs[i].idx : cfg->streamids[i];
1208
		u32 reg = disable_bypass ? S2CR_TYPE_FAULT : S2CR_TYPE_BYPASS;
1209

1210
		writel_relaxed(reg, gr0_base + ARM_SMMU_GR0_S2CR(idx));
1211 1212
	}

1213
	arm_smmu_master_free_smrs(smmu, cfg);
1214 1215
}

1216 1217 1218 1219 1220 1221 1222 1223 1224 1225
static void arm_smmu_detach_dev(struct device *dev,
				struct arm_smmu_master_cfg *cfg)
{
	struct iommu_domain *domain = dev->archdata.iommu;
	struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);

	dev->archdata.iommu = NULL;
	arm_smmu_domain_remove_master(smmu_domain, cfg);
}

1226 1227
static int arm_smmu_attach_dev(struct iommu_domain *domain, struct device *dev)
{
1228
	int ret;
1229
	struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1230
	struct arm_smmu_device *smmu;
1231
	struct arm_smmu_master_cfg *cfg;
1232

1233
	smmu = find_smmu_for_device(dev);
1234
	if (!smmu) {
1235 1236 1237 1238
		dev_err(dev, "cannot attach to SMMU, is it on the same bus?\n");
		return -ENXIO;
	}

1239 1240
	/* Ensure that the domain is finalised */
	ret = arm_smmu_init_domain_context(domain, smmu);
1241
	if (ret < 0)
1242 1243
		return ret;

1244
	/*
1245 1246
	 * Sanity check the domain. We don't support domains across
	 * different SMMUs.
1247
	 */
1248
	if (smmu_domain->smmu != smmu) {
1249 1250
		dev_err(dev,
			"cannot attach to SMMU %s whilst already attached to domain on SMMU %s\n",
1251 1252
			dev_name(smmu_domain->smmu->dev), dev_name(smmu->dev));
		return -EINVAL;
1253 1254 1255
	}

	/* Looks ok, so add the device to the domain */
1256
	cfg = find_smmu_master_cfg(dev);
1257
	if (!cfg)
1258 1259
		return -ENODEV;

1260 1261 1262 1263
	/* Detach the dev from its current domain */
	if (dev->archdata.iommu)
		arm_smmu_detach_dev(dev, cfg);

1264 1265 1266
	ret = arm_smmu_domain_add_master(smmu_domain, cfg);
	if (!ret)
		dev->archdata.iommu = domain;
1267 1268 1269 1270
	return ret;
}

static int arm_smmu_map(struct iommu_domain *domain, unsigned long iova,
1271
			phys_addr_t paddr, size_t size, int prot)
1272
{
1273 1274
	int ret;
	unsigned long flags;
1275
	struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1276
	struct io_pgtable_ops *ops= smmu_domain->pgtbl_ops;
1277

1278
	if (!ops)
1279 1280
		return -ENODEV;

1281 1282 1283 1284
	spin_lock_irqsave(&smmu_domain->pgtbl_lock, flags);
	ret = ops->map(ops, iova, paddr, size, prot);
	spin_unlock_irqrestore(&smmu_domain->pgtbl_lock, flags);
	return ret;
1285 1286 1287 1288 1289
}

static size_t arm_smmu_unmap(struct iommu_domain *domain, unsigned long iova,
			     size_t size)
{
1290 1291
	size_t ret;
	unsigned long flags;
1292
	struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1293
	struct io_pgtable_ops *ops= smmu_domain->pgtbl_ops;
1294

1295 1296 1297 1298 1299 1300 1301
	if (!ops)
		return 0;

	spin_lock_irqsave(&smmu_domain->pgtbl_lock, flags);
	ret = ops->unmap(ops, iova, size);
	spin_unlock_irqrestore(&smmu_domain->pgtbl_lock, flags);
	return ret;
1302 1303
}

1304 1305 1306
static phys_addr_t arm_smmu_iova_to_phys_hard(struct iommu_domain *domain,
					      dma_addr_t iova)
{
1307
	struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1308 1309 1310 1311 1312 1313 1314
	struct arm_smmu_device *smmu = smmu_domain->smmu;
	struct arm_smmu_cfg *cfg = &smmu_domain->cfg;
	struct io_pgtable_ops *ops= smmu_domain->pgtbl_ops;
	struct device *dev = smmu->dev;
	void __iomem *cb_base;
	u32 tmp;
	u64 phys;
1315
	unsigned long va;
1316 1317 1318

	cb_base = ARM_SMMU_CB_BASE(smmu) + ARM_SMMU_CB(smmu, cfg->cbndx);

1319 1320 1321
	/* ATS1 registers can only be written atomically */
	va = iova & ~0xfffUL;
	if (smmu->version == ARM_SMMU_V2)
1322 1323
		smmu_write_atomic_lq(va, cb_base + ARM_SMMU_CB_ATS1PR);
	else /* Register is only 32-bit in v1 */
1324
		writel_relaxed(va, cb_base + ARM_SMMU_CB_ATS1PR);
1325 1326 1327 1328

	if (readl_poll_timeout_atomic(cb_base + ARM_SMMU_CB_ATSR, tmp,
				      !(tmp & ATSR_ACTIVE), 5, 50)) {
		dev_err(dev,
1329
			"iova to phys timed out on %pad. Falling back to software table walk.\n",
1330 1331 1332 1333
			&iova);
		return ops->iova_to_phys(ops, iova);
	}

1334
	phys = readq_relaxed(cb_base + ARM_SMMU_CB_PAR);
1335 1336 1337 1338 1339 1340 1341 1342 1343
	if (phys & CB_PAR_F) {
		dev_err(dev, "translation fault!\n");
		dev_err(dev, "PAR = 0x%llx\n", phys);
		return 0;
	}

	return (phys & GENMASK_ULL(39, 12)) | (iova & 0xfff);
}

1344
static phys_addr_t arm_smmu_iova_to_phys(struct iommu_domain *domain,
1345
					dma_addr_t iova)
1346
{
1347 1348
	phys_addr_t ret;
	unsigned long flags;
1349
	struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1350
	struct io_pgtable_ops *ops= smmu_domain->pgtbl_ops;
1351

1352
	if (!ops)
1353
		return 0;
1354

1355
	spin_lock_irqsave(&smmu_domain->pgtbl_lock, flags);
1356 1357
	if (smmu_domain->smmu->features & ARM_SMMU_FEAT_TRANS_OPS &&
			smmu_domain->stage == ARM_SMMU_DOMAIN_S1) {
1358
		ret = arm_smmu_iova_to_phys_hard(domain, iova);
1359
	} else {
1360
		ret = ops->iova_to_phys(ops, iova);
1361 1362
	}

1363
	spin_unlock_irqrestore(&smmu_domain->pgtbl_lock, flags);
1364

1365
	return ret;
1366 1367
}

1368
static bool arm_smmu_capable(enum iommu_cap cap)
1369
{
1370 1371
	switch (cap) {
	case IOMMU_CAP_CACHE_COHERENCY:
1372 1373 1374 1375 1376
		/*
		 * Return true here as the SMMU can always send out coherent
		 * requests.
		 */
		return true;
1377
	case IOMMU_CAP_INTR_REMAP:
1378
		return true; /* MSIs are just memory writes */
1379 1380
	case IOMMU_CAP_NOEXEC:
		return true;
1381
	default:
1382
		return false;
1383
	}
1384 1385
}

1386 1387 1388 1389
static int __arm_smmu_get_pci_sid(struct pci_dev *pdev, u16 alias, void *data)
{
	*((u16 *)data) = alias;
	return 0; /* Continue walking */
1390 1391
}

1392 1393 1394 1395 1396
static void __arm_smmu_release_pci_iommudata(void *data)
{
	kfree(data);
}

1397 1398
static int arm_smmu_init_pci_device(struct pci_dev *pdev,
				    struct iommu_group *group)
1399
{
1400
	struct arm_smmu_master_cfg *cfg;
1401 1402
	u16 sid;
	int i;
1403

1404 1405
	cfg = iommu_group_get_iommudata(group);
	if (!cfg) {
1406
		cfg = kzalloc(sizeof(*cfg), GFP_KERNEL);
1407 1408
		if (!cfg)
			return -ENOMEM;
1409

1410 1411 1412
		iommu_group_set_iommudata(group, cfg,
					  __arm_smmu_release_pci_iommudata);
	}
1413

1414 1415
	if (cfg->num_streamids >= MAX_MASTER_STREAMIDS)
		return -ENOSPC;
1416

1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428
	/*
	 * Assume Stream ID == Requester ID for now.
	 * We need a way to describe the ID mappings in FDT.
	 */
	pci_for_each_dma_alias(pdev, __arm_smmu_get_pci_sid, &sid);
	for (i = 0; i < cfg->num_streamids; ++i)
		if (cfg->streamids[i] == sid)
			break;

	/* Avoid duplicate SIDs, as this can lead to SMR conflicts */
	if (i == cfg->num_streamids)
		cfg->streamids[cfg->num_streamids++] = sid;
1429

1430
	return 0;
1431 1432
}

1433 1434
static int arm_smmu_init_platform_device(struct device *dev,
					 struct iommu_group *group)
1435 1436
{
	struct arm_smmu_device *smmu = find_smmu_for_device(dev);
1437
	struct arm_smmu_master *master;
1438 1439 1440 1441 1442 1443 1444 1445 1446

	if (!smmu)
		return -ENODEV;

	master = find_smmu_master(smmu, dev->of_node);
	if (!master)
		return -ENODEV;

	iommu_group_set_iommudata(group, &master->cfg, NULL);
1447 1448

	return 0;
1449 1450 1451 1452
}

static int arm_smmu_add_device(struct device *dev)
{
1453
	struct iommu_group *group;
1454

1455 1456 1457
	group = iommu_group_get_for_dev(dev);
	if (IS_ERR(group))
		return PTR_ERR(group);
1458

1459
	iommu_group_put(group);
1460
	return 0;
1461 1462
}

1463 1464
static void arm_smmu_remove_device(struct device *dev)
{
1465
	iommu_group_remove_device(dev);
1466 1467
}

1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493
static struct iommu_group *arm_smmu_device_group(struct device *dev)
{
	struct iommu_group *group;
	int ret;

	if (dev_is_pci(dev))
		group = pci_device_group(dev);
	else
		group = generic_device_group(dev);

	if (IS_ERR(group))
		return group;

	if (dev_is_pci(dev))
		ret = arm_smmu_init_pci_device(to_pci_dev(dev), group);
	else
		ret = arm_smmu_init_platform_device(dev, group);

	if (ret) {
		iommu_group_put(group);
		group = ERR_PTR(ret);
	}

	return group;
}

1494 1495 1496
static int arm_smmu_domain_get_attr(struct iommu_domain *domain,
				    enum iommu_attr attr, void *data)
{
1497
	struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510

	switch (attr) {
	case DOMAIN_ATTR_NESTING:
		*(int *)data = (smmu_domain->stage == ARM_SMMU_DOMAIN_NESTED);
		return 0;
	default:
		return -ENODEV;
	}
}

static int arm_smmu_domain_set_attr(struct iommu_domain *domain,
				    enum iommu_attr attr, void *data)
{
1511
	int ret = 0;
1512
	struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1513

1514 1515
	mutex_lock(&smmu_domain->init_mutex);

1516 1517
	switch (attr) {
	case DOMAIN_ATTR_NESTING:
1518 1519 1520 1521 1522
		if (smmu_domain->smmu) {
			ret = -EPERM;
			goto out_unlock;
		}

1523 1524 1525 1526 1527
		if (*(int *)data)
			smmu_domain->stage = ARM_SMMU_DOMAIN_NESTED;
		else
			smmu_domain->stage = ARM_SMMU_DOMAIN_S1;

1528
		break;
1529
	default:
1530
		ret = -ENODEV;
1531
	}
1532 1533 1534 1535

out_unlock:
	mutex_unlock(&smmu_domain->init_mutex);
	return ret;
1536 1537
}

1538
static struct iommu_ops arm_smmu_ops = {
1539
	.capable		= arm_smmu_capable,
1540 1541
	.domain_alloc		= arm_smmu_domain_alloc,
	.domain_free		= arm_smmu_domain_free,
1542 1543 1544
	.attach_dev		= arm_smmu_attach_dev,
	.map			= arm_smmu_map,
	.unmap			= arm_smmu_unmap,
1545
	.map_sg			= default_iommu_map_sg,
1546 1547 1548
	.iova_to_phys		= arm_smmu_iova_to_phys,
	.add_device		= arm_smmu_add_device,
	.remove_device		= arm_smmu_remove_device,
1549
	.device_group		= arm_smmu_device_group,
1550 1551
	.domain_get_attr	= arm_smmu_domain_get_attr,
	.domain_set_attr	= arm_smmu_domain_set_attr,
1552
	.pgsize_bitmap		= -1UL, /* Restricted during device attach */
1553 1554 1555 1556 1557
};

static void arm_smmu_device_reset(struct arm_smmu_device *smmu)
{
	void __iomem *gr0_base = ARM_SMMU_GR0(smmu);
1558
	void __iomem *cb_base;
1559
	int i = 0;
1560
	u32 reg, major;
1561

1562 1563 1564
	/* clear global FSR */
	reg = readl_relaxed(ARM_SMMU_GR0_NS(smmu) + ARM_SMMU_GR0_sGFSR);
	writel(reg, ARM_SMMU_GR0_NS(smmu) + ARM_SMMU_GR0_sGFSR);
1565

1566 1567
	/* Mark all SMRn as invalid and all S2CRn as bypass unless overridden */
	reg = disable_bypass ? S2CR_TYPE_FAULT : S2CR_TYPE_BYPASS;
1568
	for (i = 0; i < smmu->num_mapping_groups; ++i) {
1569
		writel_relaxed(0, gr0_base + ARM_SMMU_GR0_SMR(i));
1570
		writel_relaxed(reg, gr0_base + ARM_SMMU_GR0_S2CR(i));
1571 1572
	}

1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585
	/*
	 * Before clearing ARM_MMU500_ACTLR_CPRE, need to
	 * clear CACHE_LOCK bit of ACR first. And, CACHE_LOCK
	 * bit is only present in MMU-500r2 onwards.
	 */
	reg = readl_relaxed(gr0_base + ARM_SMMU_GR0_ID7);
	major = (reg >> ID7_MAJOR_SHIFT) & ID7_MAJOR_MASK;
	if ((smmu->model == ARM_MMU500) && (major >= 2)) {
		reg = readl_relaxed(gr0_base + ARM_SMMU_GR0_sACR);
		reg &= ~ARM_MMU500_ACR_CACHE_LOCK;
		writel_relaxed(reg, gr0_base + ARM_SMMU_GR0_sACR);
	}

1586 1587 1588 1589 1590
	/* Make sure all context banks are disabled and clear CB_FSR  */
	for (i = 0; i < smmu->num_context_banks; ++i) {
		cb_base = ARM_SMMU_CB_BASE(smmu) + ARM_SMMU_CB(smmu, i);
		writel_relaxed(0, cb_base + ARM_SMMU_CB_SCTLR);
		writel_relaxed(FSR_FAULT, cb_base + ARM_SMMU_CB_FSR);
1591 1592 1593 1594 1595 1596 1597 1598 1599
		/*
		 * Disable MMU-500's not-particularly-beneficial next-page
		 * prefetcher for the sake of errata #841119 and #826419.
		 */
		if (smmu->model == ARM_MMU500) {
			reg = readl_relaxed(cb_base + ARM_SMMU_CB_ACTLR);
			reg &= ~ARM_MMU500_ACTLR_CPRE;
			writel_relaxed(reg, cb_base + ARM_SMMU_CB_ACTLR);
		}
1600
	}
1601

1602 1603 1604 1605
	/* Invalidate the TLB, just in case */
	writel_relaxed(0, gr0_base + ARM_SMMU_GR0_TLBIALLH);
	writel_relaxed(0, gr0_base + ARM_SMMU_GR0_TLBIALLNSNH);

1606
	reg = readl_relaxed(ARM_SMMU_GR0_NS(smmu) + ARM_SMMU_GR0_sCR0);
1607

1608
	/* Enable fault reporting */
1609
	reg |= (sCR0_GFRE | sCR0_GFIE | sCR0_GCFGFRE | sCR0_GCFGFIE);
1610 1611

	/* Disable TLB broadcasting. */
1612
	reg |= (sCR0_VMIDPNE | sCR0_PTM);
1613

1614 1615 1616 1617 1618 1619
	/* Enable client access, handling unmatched streams as appropriate */
	reg &= ~sCR0_CLIENTPD;
	if (disable_bypass)
		reg |= sCR0_USFCFG;
	else
		reg &= ~sCR0_USFCFG;
1620 1621

	/* Disable forced broadcasting */
1622
	reg &= ~sCR0_FB;
1623 1624

	/* Don't upgrade barriers */
1625
	reg &= ~(sCR0_BSU_MASK << sCR0_BSU_SHIFT);
1626

1627 1628 1629
	if (smmu->features & ARM_SMMU_FEAT_VMID16)
		reg |= sCR0_VMID16EN;

1630
	/* Push the button */
1631
	__arm_smmu_tlb_sync(smmu);
1632
	writel(reg, ARM_SMMU_GR0_NS(smmu) + ARM_SMMU_GR0_sCR0);
1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658
}

static int arm_smmu_id_size_to_bits(int size)
{
	switch (size) {
	case 0:
		return 32;
	case 1:
		return 36;
	case 2:
		return 40;
	case 3:
		return 42;
	case 4:
		return 44;
	case 5:
	default:
		return 48;
	}
}

static int arm_smmu_device_cfg_probe(struct arm_smmu_device *smmu)
{
	unsigned long size;
	void __iomem *gr0_base = ARM_SMMU_GR0(smmu);
	u32 id;
1659
	bool cttw_dt, cttw_reg;
1660 1661

	dev_notice(smmu->dev, "probing hardware configuration...\n");
1662 1663
	dev_notice(smmu->dev, "SMMUv%d with:\n",
			smmu->version == ARM_SMMU_V2 ? 2 : 1);
1664 1665 1666

	/* ID0 */
	id = readl_relaxed(gr0_base + ARM_SMMU_GR0_ID0);
1667 1668 1669 1670 1671 1672 1673

	/* Restrict available stages based on module parameter */
	if (force_stage == 1)
		id &= ~(ID0_S2TS | ID0_NTS);
	else if (force_stage == 2)
		id &= ~(ID0_S1TS | ID0_NTS);

1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689
	if (id & ID0_S1TS) {
		smmu->features |= ARM_SMMU_FEAT_TRANS_S1;
		dev_notice(smmu->dev, "\tstage 1 translation\n");
	}

	if (id & ID0_S2TS) {
		smmu->features |= ARM_SMMU_FEAT_TRANS_S2;
		dev_notice(smmu->dev, "\tstage 2 translation\n");
	}

	if (id & ID0_NTS) {
		smmu->features |= ARM_SMMU_FEAT_TRANS_NESTED;
		dev_notice(smmu->dev, "\tnested translation\n");
	}

	if (!(smmu->features &
1690
		(ARM_SMMU_FEAT_TRANS_S1 | ARM_SMMU_FEAT_TRANS_S2))) {
1691 1692 1693 1694
		dev_err(smmu->dev, "\tno translation support!\n");
		return -ENODEV;
	}

1695 1696
	if ((id & ID0_S1TS) &&
		((smmu->version < ARM_SMMU_V2) || !(id & ID0_ATOSNS))) {
1697 1698 1699 1700
		smmu->features |= ARM_SMMU_FEAT_TRANS_OPS;
		dev_notice(smmu->dev, "\taddress translation ops\n");
	}

1701 1702 1703 1704 1705 1706 1707 1708 1709
	/*
	 * In order for DMA API calls to work properly, we must defer to what
	 * the DT says about coherency, regardless of what the hardware claims.
	 * Fortunately, this also opens up a workaround for systems where the
	 * ID register value has ended up configured incorrectly.
	 */
	cttw_dt = of_dma_is_coherent(smmu->dev->of_node);
	cttw_reg = !!(id & ID0_CTTW);
	if (cttw_dt)
1710
		smmu->features |= ARM_SMMU_FEAT_COHERENT_WALK;
1711 1712 1713 1714 1715 1716
	if (cttw_dt || cttw_reg)
		dev_notice(smmu->dev, "\t%scoherent table walk\n",
			   cttw_dt ? "" : "non-");
	if (cttw_dt != cttw_reg)
		dev_notice(smmu->dev,
			   "\t(IDR0.CTTW overridden by dma-coherent property)\n");
1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746

	if (id & ID0_SMS) {
		u32 smr, sid, mask;

		smmu->features |= ARM_SMMU_FEAT_STREAM_MATCH;
		smmu->num_mapping_groups = (id >> ID0_NUMSMRG_SHIFT) &
					   ID0_NUMSMRG_MASK;
		if (smmu->num_mapping_groups == 0) {
			dev_err(smmu->dev,
				"stream-matching supported, but no SMRs present!\n");
			return -ENODEV;
		}

		smr = SMR_MASK_MASK << SMR_MASK_SHIFT;
		smr |= (SMR_ID_MASK << SMR_ID_SHIFT);
		writel_relaxed(smr, gr0_base + ARM_SMMU_GR0_SMR(0));
		smr = readl_relaxed(gr0_base + ARM_SMMU_GR0_SMR(0));

		mask = (smr >> SMR_MASK_SHIFT) & SMR_MASK_MASK;
		sid = (smr >> SMR_ID_SHIFT) & SMR_ID_MASK;
		if ((mask & sid) != sid) {
			dev_err(smmu->dev,
				"SMR mask bits (0x%x) insufficient for ID field (0x%x)\n",
				mask, sid);
			return -ENODEV;
		}

		dev_notice(smmu->dev,
			   "\tstream matching with %u register groups, mask 0x%x",
			   smmu->num_mapping_groups, mask);
1747 1748 1749
	} else {
		smmu->num_mapping_groups = (id >> ID0_NUMSIDB_SHIFT) &
					   ID0_NUMSIDB_MASK;
1750 1751
	}

1752 1753 1754 1755 1756 1757
	if (smmu->version < ARM_SMMU_V2 || !(id & ID0_PTFS_NO_AARCH32)) {
		smmu->features |= ARM_SMMU_FEAT_FMT_AARCH32_L;
		if (!(id & ID0_PTFS_NO_AARCH32S))
			smmu->features |= ARM_SMMU_FEAT_FMT_AARCH32_S;
	}

1758 1759
	/* ID1 */
	id = readl_relaxed(gr0_base + ARM_SMMU_GR0_ID1);
1760
	smmu->pgshift = (id & ID1_PAGESIZE) ? 16 : 12;
1761

1762
	/* Check for size mismatch of SMMU address space from mapped region */
1763
	size = 1 << (((id >> ID1_NUMPAGENDXB_SHIFT) & ID1_NUMPAGENDXB_MASK) + 1);
1764
	size *= 2 << smmu->pgshift;
1765
	if (smmu->size != size)
1766 1767 1768
		dev_warn(smmu->dev,
			"SMMU address space size (0x%lx) differs from mapped region size (0x%lx)!\n",
			size, smmu->size);
1769

1770
	smmu->num_s2_context_banks = (id >> ID1_NUMS2CB_SHIFT) & ID1_NUMS2CB_MASK;
1771 1772 1773 1774 1775 1776 1777
	smmu->num_context_banks = (id >> ID1_NUMCB_SHIFT) & ID1_NUMCB_MASK;
	if (smmu->num_s2_context_banks > smmu->num_context_banks) {
		dev_err(smmu->dev, "impossible number of S2 context banks!\n");
		return -ENODEV;
	}
	dev_notice(smmu->dev, "\t%u context banks (%u stage-2 only)\n",
		   smmu->num_context_banks, smmu->num_s2_context_banks);
1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788
	/*
	 * Cavium CN88xx erratum #27704.
	 * Ensure ASID and VMID allocation is unique across all SMMUs in
	 * the system.
	 */
	if (smmu->model == CAVIUM_SMMUV2) {
		smmu->cavium_id_base =
			atomic_add_return(smmu->num_context_banks,
					  &cavium_smmu_context_count);
		smmu->cavium_id_base -= smmu->num_context_banks;
	}
1789 1790 1791 1792

	/* ID2 */
	id = readl_relaxed(gr0_base + ARM_SMMU_GR0_ID2);
	size = arm_smmu_id_size_to_bits((id >> ID2_IAS_SHIFT) & ID2_IAS_MASK);
1793
	smmu->ipa_size = size;
1794

1795
	/* The output mask is also applied for bypass */
1796
	size = arm_smmu_id_size_to_bits((id >> ID2_OAS_SHIFT) & ID2_OAS_MASK);
1797
	smmu->pa_size = size;
1798

1799 1800 1801
	if (id & ID2_VMID16)
		smmu->features |= ARM_SMMU_FEAT_VMID16;

1802 1803 1804 1805 1806 1807 1808 1809 1810
	/*
	 * What the page table walker can address actually depends on which
	 * descriptor format is in use, but since a) we don't know that yet,
	 * and b) it can vary per context bank, this will have to do...
	 */
	if (dma_set_mask_and_coherent(smmu->dev, DMA_BIT_MASK(size)))
		dev_warn(smmu->dev,
			 "failed to set DMA mask for table walker\n");

1811
	if (smmu->version < ARM_SMMU_V2) {
1812
		smmu->va_size = smmu->ipa_size;
1813 1814
		if (smmu->version == ARM_SMMU_V1_64K)
			smmu->features |= ARM_SMMU_FEAT_FMT_AARCH64_64K;
1815 1816
	} else {
		size = (id >> ID2_UBS_SHIFT) & ID2_UBS_MASK;
1817 1818
		smmu->va_size = arm_smmu_id_size_to_bits(size);
		if (id & ID2_PTFS_4K)
1819
			smmu->features |= ARM_SMMU_FEAT_FMT_AARCH64_4K;
1820
		if (id & ID2_PTFS_16K)
1821
			smmu->features |= ARM_SMMU_FEAT_FMT_AARCH64_16K;
1822
		if (id & ID2_PTFS_64K)
1823
			smmu->features |= ARM_SMMU_FEAT_FMT_AARCH64_64K;
1824 1825
	}

1826 1827
	/* Now we've corralled the various formats, what'll it do? */
	if (smmu->features & ARM_SMMU_FEAT_FMT_AARCH32_S)
1828
		smmu->pgsize_bitmap |= SZ_4K | SZ_64K | SZ_1M | SZ_16M;
1829 1830
	if (smmu->features &
	    (ARM_SMMU_FEAT_FMT_AARCH32_L | ARM_SMMU_FEAT_FMT_AARCH64_4K))
1831
		smmu->pgsize_bitmap |= SZ_4K | SZ_2M | SZ_1G;
1832
	if (smmu->features & ARM_SMMU_FEAT_FMT_AARCH64_16K)
1833
		smmu->pgsize_bitmap |= SZ_16K | SZ_32M;
1834
	if (smmu->features & ARM_SMMU_FEAT_FMT_AARCH64_64K)
1835 1836 1837 1838 1839 1840 1841 1842
		smmu->pgsize_bitmap |= SZ_64K | SZ_512M;

	if (arm_smmu_ops.pgsize_bitmap == -1UL)
		arm_smmu_ops.pgsize_bitmap = smmu->pgsize_bitmap;
	else
		arm_smmu_ops.pgsize_bitmap |= smmu->pgsize_bitmap;
	dev_notice(smmu->dev, "\tSupported page sizes: 0x%08lx\n",
		   smmu->pgsize_bitmap);
1843

1844

1845 1846
	if (smmu->features & ARM_SMMU_FEAT_TRANS_S1)
		dev_notice(smmu->dev, "\tStage-1: %lu-bit VA -> %lu-bit IPA\n",
1847
			   smmu->va_size, smmu->ipa_size);
1848 1849 1850

	if (smmu->features & ARM_SMMU_FEAT_TRANS_S2)
		dev_notice(smmu->dev, "\tStage-2: %lu-bit IPA -> %lu-bit PA\n",
1851
			   smmu->ipa_size, smmu->pa_size);
1852

1853 1854 1855
	return 0;
}

1856 1857 1858 1859 1860 1861 1862 1863 1864 1865
struct arm_smmu_match_data {
	enum arm_smmu_arch_version version;
	enum arm_smmu_implementation model;
};

#define ARM_SMMU_MATCH_DATA(name, ver, imp)	\
static struct arm_smmu_match_data name = { .version = ver, .model = imp }

ARM_SMMU_MATCH_DATA(smmu_generic_v1, ARM_SMMU_V1, GENERIC_SMMU);
ARM_SMMU_MATCH_DATA(smmu_generic_v2, ARM_SMMU_V2, GENERIC_SMMU);
1866
ARM_SMMU_MATCH_DATA(arm_mmu401, ARM_SMMU_V1_64K, GENERIC_SMMU);
1867
ARM_SMMU_MATCH_DATA(arm_mmu500, ARM_SMMU_V2, ARM_MMU500);
1868
ARM_SMMU_MATCH_DATA(cavium_smmuv2, ARM_SMMU_V2, CAVIUM_SMMUV2);
1869

1870
static const struct of_device_id arm_smmu_of_match[] = {
1871 1872 1873
	{ .compatible = "arm,smmu-v1", .data = &smmu_generic_v1 },
	{ .compatible = "arm,smmu-v2", .data = &smmu_generic_v2 },
	{ .compatible = "arm,mmu-400", .data = &smmu_generic_v1 },
1874
	{ .compatible = "arm,mmu-401", .data = &arm_mmu401 },
1875
	{ .compatible = "arm,mmu-500", .data = &arm_mmu500 },
1876
	{ .compatible = "cavium,smmu-v2", .data = &cavium_smmuv2 },
1877 1878 1879 1880
	{ },
};
MODULE_DEVICE_TABLE(of, arm_smmu_of_match);

1881 1882
static int arm_smmu_device_dt_probe(struct platform_device *pdev)
{
1883
	const struct of_device_id *of_id;
1884
	const struct arm_smmu_match_data *data;
1885 1886 1887 1888
	struct resource *res;
	struct arm_smmu_device *smmu;
	struct device *dev = &pdev->dev;
	struct rb_node *node;
1889 1890
	struct of_phandle_iterator it;
	struct arm_smmu_phandle_args *masterspec;
1891 1892 1893 1894 1895 1896 1897 1898 1899
	int num_irqs, i, err;

	smmu = devm_kzalloc(dev, sizeof(*smmu), GFP_KERNEL);
	if (!smmu) {
		dev_err(dev, "failed to allocate arm_smmu_device\n");
		return -ENOMEM;
	}
	smmu->dev = dev;

1900
	of_id = of_match_node(arm_smmu_of_match, dev->of_node);
1901 1902 1903
	data = of_id->data;
	smmu->version = data->version;
	smmu->model = data->model;
1904

1905
	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1906 1907 1908
	smmu->base = devm_ioremap_resource(dev, res);
	if (IS_ERR(smmu->base))
		return PTR_ERR(smmu->base);
1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923
	smmu->size = resource_size(res);

	if (of_property_read_u32(dev->of_node, "#global-interrupts",
				 &smmu->num_global_irqs)) {
		dev_err(dev, "missing #global-interrupts property\n");
		return -ENODEV;
	}

	num_irqs = 0;
	while ((res = platform_get_resource(pdev, IORESOURCE_IRQ, num_irqs))) {
		num_irqs++;
		if (num_irqs > smmu->num_global_irqs)
			smmu->num_context_irqs++;
	}

1924 1925 1926 1927
	if (!smmu->num_context_irqs) {
		dev_err(dev, "found %d interrupts but expected at least %d\n",
			num_irqs, smmu->num_global_irqs + 1);
		return -ENODEV;
1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938
	}

	smmu->irqs = devm_kzalloc(dev, sizeof(*smmu->irqs) * num_irqs,
				  GFP_KERNEL);
	if (!smmu->irqs) {
		dev_err(dev, "failed to allocate %d irqs\n", num_irqs);
		return -ENOMEM;
	}

	for (i = 0; i < num_irqs; ++i) {
		int irq = platform_get_irq(pdev, i);
1939

1940 1941 1942 1943 1944 1945 1946
		if (irq < 0) {
			dev_err(dev, "failed to get irq index %d\n", i);
			return -ENODEV;
		}
		smmu->irqs[i] = irq;
	}

1947 1948 1949 1950
	err = arm_smmu_device_cfg_probe(smmu);
	if (err)
		return err;

1951 1952
	i = 0;
	smmu->masters = RB_ROOT;
1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967

	err = -ENOMEM;
	/* No need to zero the memory for masterspec */
	masterspec = kmalloc(sizeof(*masterspec), GFP_KERNEL);
	if (!masterspec)
		goto out_put_masters;

	of_for_each_phandle(&it, err, dev->of_node,
			    "mmu-masters", "#stream-id-cells", 0) {
		int count = of_phandle_iterator_args(&it, masterspec->args,
						     MAX_MASTER_STREAMIDS);
		masterspec->np		= of_node_get(it.node);
		masterspec->args_count	= count;

		err = register_smmu_master(smmu, dev, masterspec);
1968 1969
		if (err) {
			dev_err(dev, "failed to add master %s\n",
1970 1971
				masterspec->np->name);
			kfree(masterspec);
1972 1973 1974 1975 1976
			goto out_put_masters;
		}

		i++;
	}
1977

1978 1979
	dev_notice(dev, "registered %d master devices\n", i);

1980 1981
	kfree(masterspec);

1982 1983
	parse_driver_options(smmu);

1984
	if (smmu->version == ARM_SMMU_V2 &&
1985 1986 1987 1988
	    smmu->num_context_banks != smmu->num_context_irqs) {
		dev_err(dev,
			"found only %d context interrupt(s) but %d required\n",
			smmu->num_context_irqs, smmu->num_context_banks);
1989
		err = -ENODEV;
1990
		goto out_put_masters;
1991 1992 1993
	}

	for (i = 0; i < smmu->num_global_irqs; ++i) {
1994 1995 1996 1997 1998
		err = devm_request_irq(smmu->dev, smmu->irqs[i],
				       arm_smmu_global_fault,
				       IRQF_SHARED,
				       "arm-smmu global fault",
				       smmu);
1999 2000 2001
		if (err) {
			dev_err(dev, "failed to request global IRQ %d (%u)\n",
				i, smmu->irqs[i]);
2002
			goto out_put_masters;
2003 2004 2005 2006 2007 2008 2009
		}
	}

	INIT_LIST_HEAD(&smmu->list);
	spin_lock(&arm_smmu_devices_lock);
	list_add(&smmu->list, &arm_smmu_devices);
	spin_unlock(&arm_smmu_devices_lock);
2010 2011

	arm_smmu_device_reset(smmu);
2012 2013 2014 2015
	return 0;

out_put_masters:
	for (node = rb_first(&smmu->masters); node; node = rb_next(node)) {
2016 2017
		struct arm_smmu_master *master
			= container_of(node, struct arm_smmu_master, node);
2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043
		of_node_put(master->of_node);
	}

	return err;
}

static int arm_smmu_device_remove(struct platform_device *pdev)
{
	struct device *dev = &pdev->dev;
	struct arm_smmu_device *curr, *smmu = NULL;
	struct rb_node *node;

	spin_lock(&arm_smmu_devices_lock);
	list_for_each_entry(curr, &arm_smmu_devices, list) {
		if (curr->dev == dev) {
			smmu = curr;
			list_del(&smmu->list);
			break;
		}
	}
	spin_unlock(&arm_smmu_devices_lock);

	if (!smmu)
		return -ENODEV;

	for (node = rb_first(&smmu->masters); node; node = rb_next(node)) {
2044 2045
		struct arm_smmu_master *master
			= container_of(node, struct arm_smmu_master, node);
2046 2047 2048
		of_node_put(master->of_node);
	}

2049
	if (!bitmap_empty(smmu->context_map, ARM_SMMU_MAX_CBS))
2050 2051 2052
		dev_err(dev, "removing device with active domains!\n");

	/* Turn the thing off */
2053
	writel(sCR0_CLIENTPD, ARM_SMMU_GR0_NS(smmu) + ARM_SMMU_GR0_sCR0);
2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067
	return 0;
}

static struct platform_driver arm_smmu_driver = {
	.driver	= {
		.name		= "arm-smmu",
		.of_match_table	= of_match_ptr(arm_smmu_of_match),
	},
	.probe	= arm_smmu_device_dt_probe,
	.remove	= arm_smmu_device_remove,
};

static int __init arm_smmu_init(void)
{
2068
	struct device_node *np;
2069 2070
	int ret;

2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081
	/*
	 * Play nice with systems that don't have an ARM SMMU by checking that
	 * an ARM SMMU exists in the system before proceeding with the driver
	 * and IOMMU bus operation registration.
	 */
	np = of_find_matching_node(NULL, arm_smmu_of_match);
	if (!np)
		return 0;

	of_node_put(np);

2082 2083 2084 2085 2086
	ret = platform_driver_register(&arm_smmu_driver);
	if (ret)
		return ret;

	/* Oh, for a proper bus abstraction */
2087
	if (!iommu_present(&platform_bus_type))
2088 2089
		bus_set_iommu(&platform_bus_type, &arm_smmu_ops);

2090
#ifdef CONFIG_ARM_AMBA
2091
	if (!iommu_present(&amba_bustype))
2092
		bus_set_iommu(&amba_bustype, &arm_smmu_ops);
2093
#endif
2094

2095
#ifdef CONFIG_PCI
2096 2097
	if (!iommu_present(&pci_bus_type)) {
		pci_request_acs();
2098
		bus_set_iommu(&pci_bus_type, &arm_smmu_ops);
2099
	}
2100 2101
#endif

2102 2103 2104 2105 2106 2107 2108 2109
	return 0;
}

static void __exit arm_smmu_exit(void)
{
	return platform_driver_unregister(&arm_smmu_driver);
}

2110
subsys_initcall(arm_smmu_init);
2111 2112 2113 2114 2115
module_exit(arm_smmu_exit);

MODULE_DESCRIPTION("IOMMU API for ARM architected SMMU implementations");
MODULE_AUTHOR("Will Deacon <will.deacon@arm.com>");
MODULE_LICENSE("GPL v2");