random.c 49.9 KB
Newer Older
1
// SPDX-License-Identifier: (GPL-2.0 OR BSD-3-Clause)
L
Linus Torvalds 已提交
2
/*
3
 * Copyright (C) 2017-2022 Jason A. Donenfeld <Jason@zx2c4.com>. All Rights Reserved.
4
 * Copyright Matt Mackall <mpm@selenic.com>, 2003, 2004, 2005
5 6 7 8 9 10 11 12 13 14 15 16 17
 * Copyright Theodore Ts'o, 1994, 1995, 1996, 1997, 1998, 1999. All rights reserved.
 *
 * This driver produces cryptographically secure pseudorandom data. It is divided
 * into roughly six sections, each with a section header:
 *
 *   - Initialization and readiness waiting.
 *   - Fast key erasure RNG, the "crng".
 *   - Entropy accumulation and extraction routines.
 *   - Entropy collection routines.
 *   - Userspace reader/writer interfaces.
 *   - Sysctl interface.
 *
 * The high level overview is that there is one input pool, into which
18 19 20 21 22 23
 * various pieces of data are hashed. Prior to initialization, some of that
 * data is then "credited" as having a certain number of bits of entropy.
 * When enough bits of entropy are available, the hash is finalized and
 * handed as a key to a stream cipher that expands it indefinitely for
 * various consumers. This key is periodically refreshed as the various
 * entropy collectors, described below, add data to the input pool.
L
Linus Torvalds 已提交
24 25
 */

Y
Yangtao Li 已提交
26 27
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt

L
Linus Torvalds 已提交
28 29 30 31 32 33 34 35 36 37 38
#include <linux/utsname.h>
#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/major.h>
#include <linux/string.h>
#include <linux/fcntl.h>
#include <linux/slab.h>
#include <linux/random.h>
#include <linux/poll.h>
#include <linux/init.h>
#include <linux/fs.h>
C
Christoph Hellwig 已提交
39
#include <linux/blkdev.h>
L
Linus Torvalds 已提交
40
#include <linux/interrupt.h>
41
#include <linux/mm.h>
42
#include <linux/nodemask.h>
L
Linus Torvalds 已提交
43
#include <linux/spinlock.h>
44
#include <linux/kthread.h>
L
Linus Torvalds 已提交
45
#include <linux/percpu.h>
46
#include <linux/ptrace.h>
47
#include <linux/workqueue.h>
48
#include <linux/irq.h>
49
#include <linux/ratelimit.h>
50 51
#include <linux/syscalls.h>
#include <linux/completion.h>
52
#include <linux/uuid.h>
53
#include <linux/uaccess.h>
54
#include <linux/suspend.h>
55
#include <linux/siphash.h>
56
#include <crypto/chacha.h>
57
#include <crypto/blake2s.h>
L
Linus Torvalds 已提交
58 59
#include <asm/processor.h>
#include <asm/irq.h>
60
#include <asm/irq_regs.h>
L
Linus Torvalds 已提交
61 62
#include <asm/io.h>

63 64 65 66 67 68 69 70 71
/*********************************************************************
 *
 * Initialization and readiness waiting.
 *
 * Much of the RNG infrastructure is devoted to various dependencies
 * being able to wait until the RNG has collected enough entropy and
 * is ready for safe consumption.
 *
 *********************************************************************/
72

73
/*
74
 * crng_init is protected by base_crng->lock, and only increases
75
 * its value (from empty->early->ready).
76
 */
77 78 79 80
static enum {
	CRNG_EMPTY = 0, /* Little to no entropy collected */
	CRNG_EARLY = 1, /* At least POOL_EARLY_BITS collected */
	CRNG_READY = 2  /* Fully initialized with POOL_READY_BITS collected */
81 82 83
} crng_init __read_mostly = CRNG_EMPTY;
static DEFINE_STATIC_KEY_FALSE(crng_is_ready);
#define crng_ready() (static_branch_likely(&crng_is_ready) || crng_init >= CRNG_READY)
84
/* Various types of waiters for crng_init->CRNG_READY transition. */
85 86
static DECLARE_WAIT_QUEUE_HEAD(crng_init_wait);
static struct fasync_struct *fasync;
87 88
static DEFINE_SPINLOCK(random_ready_chain_lock);
static RAW_NOTIFIER_HEAD(random_ready_chain);
89

90
/* Control how we warn userspace. */
91 92
static struct ratelimit_state urandom_warning =
	RATELIMIT_STATE_INIT("warn_urandom_randomness", HZ, 3);
93 94
static int ratelimit_disable __read_mostly =
	IS_ENABLED(CONFIG_WARN_ALL_UNSEEDED_RANDOM);
95 96 97
module_param_named(ratelimit_disable, ratelimit_disable, int, 0644);
MODULE_PARM_DESC(ratelimit_disable, "Disable random ratelimit suppression");

98 99
/*
 * Returns whether or not the input pool has been seeded and thus guaranteed
100 101 102
 * to supply cryptographically secure random numbers. This applies to: the
 * /dev/urandom device, the get_random_bytes function, and the get_random_{u32,
 * ,u64,int,long} family of functions.
103 104 105 106 107 108 109 110 111 112
 *
 * Returns: true if the input pool has been seeded.
 *          false if the input pool has not been seeded.
 */
bool rng_is_initialized(void)
{
	return crng_ready();
}
EXPORT_SYMBOL(rng_is_initialized);

113
static void __cold crng_set_ready(struct work_struct *work)
114 115 116 117
{
	static_branch_enable(&crng_is_ready);
}

118 119 120 121 122
/* Used by wait_for_random_bytes(), and considered an entropy collector, below. */
static void try_to_generate_entropy(void);

/*
 * Wait for the input pool to be seeded and thus guaranteed to supply
123 124 125 126
 * cryptographically secure random numbers. This applies to: the /dev/urandom
 * device, the get_random_bytes function, and the get_random_{u32,u64,int,long}
 * family of functions. Using any of these functions without first calling
 * this function forfeits the guarantee of security.
127 128 129 130 131 132
 *
 * Returns: 0 if the input pool has been seeded.
 *          -ERESTARTSYS if the function was interrupted by a signal.
 */
int wait_for_random_bytes(void)
{
133
	while (!crng_ready()) {
134
		int ret;
135 136

		try_to_generate_entropy();
137 138 139
		ret = wait_event_interruptible_timeout(crng_init_wait, crng_ready(), HZ);
		if (ret)
			return ret > 0 ? 0 : ret;
140
	}
141 142 143 144 145 146 147 148 149 150 151
	return 0;
}
EXPORT_SYMBOL(wait_for_random_bytes);

/*
 * Add a callback function that will be invoked when the input
 * pool is initialised.
 *
 * returns: 0 if callback is successfully added
 *	    -EALREADY if pool is already initialised (callback not called)
 */
152
int __cold register_random_ready_notifier(struct notifier_block *nb)
153 154
{
	unsigned long flags;
155
	int ret = -EALREADY;
156 157

	if (crng_ready())
158
		return ret;
159

160 161 162 163 164
	spin_lock_irqsave(&random_ready_chain_lock, flags);
	if (!crng_ready())
		ret = raw_notifier_chain_register(&random_ready_chain, nb);
	spin_unlock_irqrestore(&random_ready_chain_lock, flags);
	return ret;
165 166 167 168 169
}

/*
 * Delete a previously registered readiness callback function.
 */
170
int __cold unregister_random_ready_notifier(struct notifier_block *nb)
171 172
{
	unsigned long flags;
173
	int ret;
174

175 176 177 178
	spin_lock_irqsave(&random_ready_chain_lock, flags);
	ret = raw_notifier_chain_unregister(&random_ready_chain, nb);
	spin_unlock_irqrestore(&random_ready_chain_lock, flags);
	return ret;
179 180
}

181
static void __cold process_random_ready_list(void)
182 183 184
{
	unsigned long flags;

185 186 187
	spin_lock_irqsave(&random_ready_chain_lock, flags);
	raw_notifier_call_chain(&random_ready_chain, 0, NULL);
	spin_unlock_irqrestore(&random_ready_chain_lock, flags);
188 189
}

190
#define warn_unseeded_randomness() \
191 192 193
	if (IS_ENABLED(CONFIG_WARN_ALL_UNSEEDED_RANDOM) && !crng_ready()) \
		printk_deferred(KERN_NOTICE "random: %s called from %pS with crng_init=%d\n", \
				__func__, (void *)_RET_IP_, crng_init)
194 195


196
/*********************************************************************
L
Linus Torvalds 已提交
197
 *
198
 * Fast key erasure RNG, the "crng".
L
Linus Torvalds 已提交
199
 *
200 201 202
 * These functions expand entropy from the entropy extractor into
 * long streams for external consumption using the "fast key erasure"
 * RNG described at <https://blog.cr.yp.to/20170723-random.html>.
203
 *
204 205
 * There are a few exported interfaces for use by other drivers:
 *
206
 *	void get_random_bytes(void *buf, size_t len)
207 208 209 210 211 212
 *	u32 get_random_u32()
 *	u64 get_random_u64()
 *	unsigned int get_random_int()
 *	unsigned long get_random_long()
 *
 * These interfaces will return the requested number of random bytes
213
 * into the given buffer or as a return value. This is equivalent to
214 215 216 217
 * a read from /dev/urandom. The u32, u64, int, and long family of
 * functions may be higher performance for one-off random integers,
 * because they do a bit of buffering and do not invoke reseeding
 * until the buffer is emptied.
218 219 220
 *
 *********************************************************************/

221 222 223 224
enum {
	CRNG_RESEED_START_INTERVAL = HZ,
	CRNG_RESEED_INTERVAL = 60 * HZ
};
225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244

static struct {
	u8 key[CHACHA_KEY_SIZE] __aligned(__alignof__(long));
	unsigned long birth;
	unsigned long generation;
	spinlock_t lock;
} base_crng = {
	.lock = __SPIN_LOCK_UNLOCKED(base_crng.lock)
};

struct crng {
	u8 key[CHACHA_KEY_SIZE];
	unsigned long generation;
	local_lock_t lock;
};

static DEFINE_PER_CPU(struct crng, crngs) = {
	.generation = ULONG_MAX,
	.lock = INIT_LOCAL_LOCK(crngs.lock),
};
245

246
/* Used by crng_reseed() and crng_make_state() to extract a new seed from the input pool. */
247
static void extract_entropy(void *buf, size_t len);
248

249 250
/* This extracts a new crng key from the input pool. */
static void crng_reseed(void)
251
{
252
	unsigned long flags;
253 254
	unsigned long next_gen;
	u8 key[CHACHA_KEY_SIZE];
255

256
	extract_entropy(key, sizeof(key));
257

258 259 260 261 262 263 264 265 266 267 268 269 270
	/*
	 * We copy the new key into the base_crng, overwriting the old one,
	 * and update the generation counter. We avoid hitting ULONG_MAX,
	 * because the per-cpu crngs are initialized to ULONG_MAX, so this
	 * forces new CPUs that come online to always initialize.
	 */
	spin_lock_irqsave(&base_crng.lock, flags);
	memcpy(base_crng.key, key, sizeof(base_crng.key));
	next_gen = base_crng.generation + 1;
	if (next_gen == ULONG_MAX)
		++next_gen;
	WRITE_ONCE(base_crng.generation, next_gen);
	WRITE_ONCE(base_crng.birth, jiffies);
271
	if (!static_branch_likely(&crng_is_ready))
272
		crng_init = CRNG_READY;
273 274
	spin_unlock_irqrestore(&base_crng.lock, flags);
	memzero_explicit(key, sizeof(key));
275 276
}

277
/*
278 279 280 281 282
 * This generates a ChaCha block using the provided key, and then
 * immediately overwites that key with half the block. It returns
 * the resultant ChaCha state to the user, along with the second
 * half of the block containing 32 bytes of random data that may
 * be used; random_data_len may not be greater than 32.
283 284 285 286 287 288 289
 *
 * The returned ChaCha state contains within it a copy of the old
 * key value, at index 4, so the state should always be zeroed out
 * immediately after using in order to maintain forward secrecy.
 * If the state cannot be erased in a timely manner, then it is
 * safer to set the random_data parameter to &chacha_state[4] so
 * that this function overwrites it before returning.
290 291 292 293
 */
static void crng_fast_key_erasure(u8 key[CHACHA_KEY_SIZE],
				  u32 chacha_state[CHACHA_STATE_WORDS],
				  u8 *random_data, size_t random_data_len)
294
{
295
	u8 first_block[CHACHA_BLOCK_SIZE];
296

297 298 299 300 301 302 303 304
	BUG_ON(random_data_len > 32);

	chacha_init_consts(chacha_state);
	memcpy(&chacha_state[4], key, CHACHA_KEY_SIZE);
	memset(&chacha_state[12], 0, sizeof(u32) * 4);
	chacha20_block(chacha_state, first_block);

	memcpy(key, first_block, CHACHA_KEY_SIZE);
305
	memcpy(random_data, first_block + CHACHA_KEY_SIZE, random_data_len);
306
	memzero_explicit(first_block, sizeof(first_block));
307 308
}

309
/*
310 311 312 313
 * Return whether the crng seed is considered to be sufficiently old
 * that a reseeding is needed. This happens if the last reseeding
 * was CRNG_RESEED_INTERVAL ago, or during early boot, at an interval
 * proportional to the uptime.
314 315 316 317 318 319 320 321 322 323 324
 */
static bool crng_has_old_seed(void)
{
	static bool early_boot = true;
	unsigned long interval = CRNG_RESEED_INTERVAL;

	if (unlikely(READ_ONCE(early_boot))) {
		time64_t uptime = ktime_get_seconds();
		if (uptime >= CRNG_RESEED_INTERVAL / HZ * 2)
			WRITE_ONCE(early_boot, false);
		else
325
			interval = max_t(unsigned int, CRNG_RESEED_START_INTERVAL,
326 327
					 (unsigned int)uptime / 2 * HZ);
	}
328
	return time_is_before_jiffies(READ_ONCE(base_crng.birth) + interval);
329 330
}

331
/*
332 333 334
 * This function returns a ChaCha state that you may use for generating
 * random data. It also returns up to 32 bytes on its own of random data
 * that may be used; random_data_len may not be greater than 32.
335
 */
336 337
static void crng_make_state(u32 chacha_state[CHACHA_STATE_WORDS],
			    u8 *random_data, size_t random_data_len)
338
{
339
	unsigned long flags;
340
	struct crng *crng;
341

342 343 344 345 346
	BUG_ON(random_data_len > 32);

	/*
	 * For the fast path, we check whether we're ready, unlocked first, and
	 * then re-check once locked later. In the case where we're really not
347
	 * ready, we do fast key erasure with the base_crng directly, extracting
348
	 * when crng_init is CRNG_EMPTY.
349
	 */
350
	if (!crng_ready()) {
351 352 353 354
		bool ready;

		spin_lock_irqsave(&base_crng.lock, flags);
		ready = crng_ready();
355
		if (!ready) {
356
			if (crng_init == CRNG_EMPTY)
357
				extract_entropy(base_crng.key, sizeof(base_crng.key));
358 359
			crng_fast_key_erasure(base_crng.key, chacha_state,
					      random_data, random_data_len);
360
		}
361 362 363
		spin_unlock_irqrestore(&base_crng.lock, flags);
		if (!ready)
			return;
364
	}
365 366

	/*
367 368
	 * If the base_crng is old enough, we reseed, which in turn bumps the
	 * generation counter that we check below.
369
	 */
370
	if (unlikely(crng_has_old_seed()))
371
		crng_reseed();
372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398

	local_lock_irqsave(&crngs.lock, flags);
	crng = raw_cpu_ptr(&crngs);

	/*
	 * If our per-cpu crng is older than the base_crng, then it means
	 * somebody reseeded the base_crng. In that case, we do fast key
	 * erasure on the base_crng, and use its output as the new key
	 * for our per-cpu crng. This brings us up to date with base_crng.
	 */
	if (unlikely(crng->generation != READ_ONCE(base_crng.generation))) {
		spin_lock(&base_crng.lock);
		crng_fast_key_erasure(base_crng.key, chacha_state,
				      crng->key, sizeof(crng->key));
		crng->generation = base_crng.generation;
		spin_unlock(&base_crng.lock);
	}

	/*
	 * Finally, when we've made it this far, our per-cpu crng has an up
	 * to date key, and we can do fast key erasure with it to produce
	 * some random data and a ChaCha state for the caller. All other
	 * branches of this function are "unlikely", so most of the time we
	 * should wind up here immediately.
	 */
	crng_fast_key_erasure(crng->key, chacha_state, random_data, random_data_len);
	local_unlock_irqrestore(&crngs.lock, flags);
399 400
}

401
static void _get_random_bytes(void *buf, size_t len)
402
{
403
	u32 chacha_state[CHACHA_STATE_WORDS];
404
	u8 tmp[CHACHA_BLOCK_SIZE];
405
	size_t first_block_len;
406

407
	if (!len)
408 409
		return;

410 411 412 413
	first_block_len = min_t(size_t, 32, len);
	crng_make_state(chacha_state, buf, first_block_len);
	len -= first_block_len;
	buf += first_block_len;
414

415 416
	while (len) {
		if (len < CHACHA_BLOCK_SIZE) {
417
			chacha20_block(chacha_state, tmp);
418
			memcpy(buf, tmp, len);
419 420 421 422 423 424 425
			memzero_explicit(tmp, sizeof(tmp));
			break;
		}

		chacha20_block(chacha_state, buf);
		if (unlikely(chacha_state[12] == 0))
			++chacha_state[13];
426
		len -= CHACHA_BLOCK_SIZE;
427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442
		buf += CHACHA_BLOCK_SIZE;
	}

	memzero_explicit(chacha_state, sizeof(chacha_state));
}

/*
 * This function is the exported kernel interface.  It returns some
 * number of good random numbers, suitable for key generation, seeding
 * TCP sequence numbers, etc.  It does not rely on the hardware random
 * number generator.  For random bytes direct from the hardware RNG
 * (when available), use get_random_bytes_arch(). In order to ensure
 * that the randomness provided by this function is okay, the function
 * wait_for_random_bytes() should be called and return 0 at least once
 * at any point prior.
 */
443
void get_random_bytes(void *buf, size_t len)
444
{
445
	warn_unseeded_randomness();
446
	_get_random_bytes(buf, len);
447 448 449
}
EXPORT_SYMBOL(get_random_bytes);

450
static ssize_t get_random_bytes_user(void __user *ubuf, size_t len)
451
{
452
	size_t block_len, left, ret = 0;
453 454 455
	u32 chacha_state[CHACHA_STATE_WORDS];
	u8 output[CHACHA_BLOCK_SIZE];

456
	if (!len)
457 458
		return 0;

459 460 461 462 463 464 465 466 467 468 469
	/*
	 * Immediately overwrite the ChaCha key at index 4 with random
	 * bytes, in case userspace causes copy_to_user() below to sleep
	 * forever, so that we still retain forward secrecy in that case.
	 */
	crng_make_state(chacha_state, (u8 *)&chacha_state[4], CHACHA_KEY_SIZE);
	/*
	 * However, if we're doing a read of len <= 32, we don't need to
	 * use chacha_state after, so we can simply return those bytes to
	 * the user directly.
	 */
470 471
	if (len <= CHACHA_KEY_SIZE) {
		ret = len - copy_to_user(ubuf, &chacha_state[4], len);
472 473
		goto out_zero_chacha;
	}
474

475
	for (;;) {
476 477 478 479
		chacha20_block(chacha_state, output);
		if (unlikely(chacha_state[12] == 0))
			++chacha_state[13];

480 481
		block_len = min_t(size_t, len, CHACHA_BLOCK_SIZE);
		left = copy_to_user(ubuf, output, block_len);
482
		if (left) {
483
			ret += block_len - left;
484 485 486
			break;
		}

487 488 489 490
		ubuf += block_len;
		ret += block_len;
		len -= block_len;
		if (!len)
491
			break;
492 493

		BUILD_BUG_ON(PAGE_SIZE % CHACHA_BLOCK_SIZE != 0);
494
		if (ret % PAGE_SIZE == 0) {
495 496 497 498
			if (signal_pending(current))
				break;
			cond_resched();
		}
499
	}
500 501

	memzero_explicit(output, sizeof(output));
502 503
out_zero_chacha:
	memzero_explicit(chacha_state, sizeof(chacha_state));
504
	return ret ? ret : -EFAULT;
505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542
}

/*
 * Batched entropy returns random integers. The quality of the random
 * number is good as /dev/urandom. In order to ensure that the randomness
 * provided by this function is okay, the function wait_for_random_bytes()
 * should be called and return 0 at least once at any point prior.
 */
struct batched_entropy {
	union {
		/*
		 * We make this 1.5x a ChaCha block, so that we get the
		 * remaining 32 bytes from fast key erasure, plus one full
		 * block from the detached ChaCha state. We can increase
		 * the size of this later if needed so long as we keep the
		 * formula of (integer_blocks + 0.5) * CHACHA_BLOCK_SIZE.
		 */
		u64 entropy_u64[CHACHA_BLOCK_SIZE * 3 / (2 * sizeof(u64))];
		u32 entropy_u32[CHACHA_BLOCK_SIZE * 3 / (2 * sizeof(u32))];
	};
	local_lock_t lock;
	unsigned long generation;
	unsigned int position;
};


static DEFINE_PER_CPU(struct batched_entropy, batched_entropy_u64) = {
	.lock = INIT_LOCAL_LOCK(batched_entropy_u64.lock),
	.position = UINT_MAX
};

u64 get_random_u64(void)
{
	u64 ret;
	unsigned long flags;
	struct batched_entropy *batch;
	unsigned long next_gen;

543
	warn_unseeded_randomness();
544

545 546 547 548 549
	if  (!crng_ready()) {
		_get_random_bytes(&ret, sizeof(ret));
		return ret;
	}

550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580
	local_lock_irqsave(&batched_entropy_u64.lock, flags);
	batch = raw_cpu_ptr(&batched_entropy_u64);

	next_gen = READ_ONCE(base_crng.generation);
	if (batch->position >= ARRAY_SIZE(batch->entropy_u64) ||
	    next_gen != batch->generation) {
		_get_random_bytes(batch->entropy_u64, sizeof(batch->entropy_u64));
		batch->position = 0;
		batch->generation = next_gen;
	}

	ret = batch->entropy_u64[batch->position];
	batch->entropy_u64[batch->position] = 0;
	++batch->position;
	local_unlock_irqrestore(&batched_entropy_u64.lock, flags);
	return ret;
}
EXPORT_SYMBOL(get_random_u64);

static DEFINE_PER_CPU(struct batched_entropy, batched_entropy_u32) = {
	.lock = INIT_LOCAL_LOCK(batched_entropy_u32.lock),
	.position = UINT_MAX
};

u32 get_random_u32(void)
{
	u32 ret;
	unsigned long flags;
	struct batched_entropy *batch;
	unsigned long next_gen;

581
	warn_unseeded_randomness();
582

583 584 585 586 587
	if  (!crng_ready()) {
		_get_random_bytes(&ret, sizeof(ret));
		return ret;
	}

588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606
	local_lock_irqsave(&batched_entropy_u32.lock, flags);
	batch = raw_cpu_ptr(&batched_entropy_u32);

	next_gen = READ_ONCE(base_crng.generation);
	if (batch->position >= ARRAY_SIZE(batch->entropy_u32) ||
	    next_gen != batch->generation) {
		_get_random_bytes(batch->entropy_u32, sizeof(batch->entropy_u32));
		batch->position = 0;
		batch->generation = next_gen;
	}

	ret = batch->entropy_u32[batch->position];
	batch->entropy_u32[batch->position] = 0;
	++batch->position;
	local_unlock_irqrestore(&batched_entropy_u32.lock, flags);
	return ret;
}
EXPORT_SYMBOL(get_random_u32);

607 608 609 610 611
#ifdef CONFIG_SMP
/*
 * This function is called when the CPU is coming up, with entry
 * CPUHP_RANDOM_PREPARE, which comes before CPUHP_WORKQUEUE_PREP.
 */
612
int __cold random_prepare_cpu(unsigned int cpu)
613 614 615 616 617 618 619 620 621 622 623 624 625
{
	/*
	 * When the cpu comes back online, immediately invalidate both
	 * the per-cpu crng and all batches, so that we serve fresh
	 * randomness.
	 */
	per_cpu_ptr(&crngs, cpu)->generation = ULONG_MAX;
	per_cpu_ptr(&batched_entropy_u32, cpu)->position = UINT_MAX;
	per_cpu_ptr(&batched_entropy_u64, cpu)->position = UINT_MAX;
	return 0;
}
#endif

626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663
/**
 * randomize_page - Generate a random, page aligned address
 * @start:	The smallest acceptable address the caller will take.
 * @range:	The size of the area, starting at @start, within which the
 *		random address must fall.
 *
 * If @start + @range would overflow, @range is capped.
 *
 * NOTE: Historical use of randomize_range, which this replaces, presumed that
 * @start was already page aligned.  We now align it regardless.
 *
 * Return: A page aligned address within [start, start + range).  On error,
 * @start is returned.
 */
unsigned long randomize_page(unsigned long start, unsigned long range)
{
	if (!PAGE_ALIGNED(start)) {
		range -= PAGE_ALIGN(start) - start;
		start = PAGE_ALIGN(start);
	}

	if (start > ULONG_MAX - range)
		range = ULONG_MAX - start;

	range >>= PAGE_SHIFT;

	if (range == 0)
		return start;

	return start + (get_random_long() % range << PAGE_SHIFT);
}

/*
 * This function will use the architecture-specific hardware random
 * number generator if it is available. It is not recommended for
 * use. Use get_random_bytes() instead. It returns the number of
 * bytes filled in.
 */
664
size_t __must_check get_random_bytes_arch(void *buf, size_t len)
665
{
666
	size_t left = len;
667 668 669 670
	u8 *p = buf;

	while (left) {
		unsigned long v;
671
		size_t block_len = min_t(size_t, left, sizeof(unsigned long));
672 673 674 675

		if (!arch_get_random_long(&v))
			break;

676 677 678
		memcpy(p, &v, block_len);
		p += block_len;
		left -= block_len;
679 680
	}

681
	return len - left;
682 683 684
}
EXPORT_SYMBOL(get_random_bytes_arch);

685 686 687 688 689 690 691

/**********************************************************************
 *
 * Entropy accumulation and extraction routines.
 *
 * Callers may add entropy via:
 *
692
 *     static void mix_pool_bytes(const void *buf, size_t len)
693 694 695
 *
 * After which, if added entropy should be credited:
 *
696
 *     static void credit_init_bits(size_t bits)
697
 *
698
 * Finally, extract entropy via:
699
 *
700
 *     static void extract_entropy(void *buf, size_t len)
701 702 703
 *
 **********************************************************************/

704 705
enum {
	POOL_BITS = BLAKE2S_HASH_SIZE * 8,
706 707
	POOL_READY_BITS = POOL_BITS, /* When crng_init->CRNG_READY */
	POOL_EARLY_BITS = POOL_READY_BITS / 2 /* When crng_init->CRNG_EARLY */
708 709 710 711 712
};

static struct {
	struct blake2s_state hash;
	spinlock_t lock;
713
	unsigned int init_bits;
714 715 716 717 718 719 720 721
} input_pool = {
	.hash.h = { BLAKE2S_IV0 ^ (0x01010000 | BLAKE2S_HASH_SIZE),
		    BLAKE2S_IV1, BLAKE2S_IV2, BLAKE2S_IV3, BLAKE2S_IV4,
		    BLAKE2S_IV5, BLAKE2S_IV6, BLAKE2S_IV7 },
	.hash.outlen = BLAKE2S_HASH_SIZE,
	.lock = __SPIN_LOCK_UNLOCKED(input_pool.lock),
};

722
static void _mix_pool_bytes(const void *buf, size_t len)
723
{
724
	blake2s_update(&input_pool.hash, buf, len);
725
}
726 727

/*
728 729 730
 * This function adds bytes into the input pool. It does not
 * update the initialization bit counter; the caller should call
 * credit_init_bits if this is appropriate.
731
 */
732
static void mix_pool_bytes(const void *buf, size_t len)
733
{
734 735 736
	unsigned long flags;

	spin_lock_irqsave(&input_pool.lock, flags);
737
	_mix_pool_bytes(buf, len);
738
	spin_unlock_irqrestore(&input_pool.lock, flags);
739 740
}

741 742 743 744
/*
 * This is an HKDF-like construction for using the hashed collected entropy
 * as a PRF key, that's then expanded block-by-block.
 */
745
static void extract_entropy(void *buf, size_t len)
746 747
{
	unsigned long flags;
748 749 750 751 752 753 754 755 756 757 758 759
	u8 seed[BLAKE2S_HASH_SIZE], next_key[BLAKE2S_HASH_SIZE];
	struct {
		unsigned long rdseed[32 / sizeof(long)];
		size_t counter;
	} block;
	size_t i;

	for (i = 0; i < ARRAY_SIZE(block.rdseed); ++i) {
		if (!arch_get_random_seed_long(&block.rdseed[i]) &&
		    !arch_get_random_long(&block.rdseed[i]))
			block.rdseed[i] = random_get_entropy();
	}
760 761

	spin_lock_irqsave(&input_pool.lock, flags);
762 763 764 765 766 767 768 769 770

	/* seed = HASHPRF(last_key, entropy_input) */
	blake2s_final(&input_pool.hash, seed);

	/* next_key = HASHPRF(seed, RDSEED || 0) */
	block.counter = 0;
	blake2s(next_key, (u8 *)&block, seed, sizeof(next_key), sizeof(block), sizeof(seed));
	blake2s_init_key(&input_pool.hash, BLAKE2S_HASH_SIZE, next_key, sizeof(next_key));

771
	spin_unlock_irqrestore(&input_pool.lock, flags);
772 773
	memzero_explicit(next_key, sizeof(next_key));

774 775
	while (len) {
		i = min_t(size_t, len, BLAKE2S_HASH_SIZE);
776 777 778
		/* output = HASHPRF(seed, RDSEED || ++counter) */
		++block.counter;
		blake2s(buf, (u8 *)&block, seed, i, sizeof(block), sizeof(seed));
779
		len -= i;
780 781 782 783 784 785 786
		buf += i;
	}

	memzero_explicit(seed, sizeof(seed));
	memzero_explicit(&block, sizeof(block));
}

787 788 789
#define credit_init_bits(bits) if (!crng_ready()) _credit_init_bits(bits)

static void __cold _credit_init_bits(size_t bits)
790
{
791
	static struct execute_work set_ready;
792
	unsigned int new, orig, add;
793 794
	unsigned long flags;

795
	if (!bits)
796 797
		return;

798
	add = min_t(size_t, bits, POOL_BITS);
799 800

	do {
801
		orig = READ_ONCE(input_pool.init_bits);
802 803
		new = min_t(unsigned int, POOL_BITS, orig + add);
	} while (cmpxchg(&input_pool.init_bits, orig, new) != orig);
804

805 806
	if (orig < POOL_READY_BITS && new >= POOL_READY_BITS) {
		crng_reseed(); /* Sets crng_init to CRNG_READY under base_crng.lock. */
807
		execute_in_process_context(crng_set_ready, &set_ready);
808 809 810 811
		process_random_ready_list();
		wake_up_interruptible(&crng_init_wait);
		kill_fasync(&fasync, SIGIO, POLL_IN);
		pr_notice("crng init done\n");
812
		if (urandom_warning.missed)
813 814 815
			pr_notice("%d urandom warning(s) missed due to ratelimiting\n",
				  urandom_warning.missed);
	} else if (orig < POOL_EARLY_BITS && new >= POOL_EARLY_BITS) {
816
		spin_lock_irqsave(&base_crng.lock, flags);
817
		/* Check if crng_init is CRNG_EMPTY, to avoid race with crng_reseed(). */
818
		if (crng_init == CRNG_EMPTY) {
819
			extract_entropy(base_crng.key, sizeof(base_crng.key));
820
			crng_init = CRNG_EARLY;
821 822 823 824 825
		}
		spin_unlock_irqrestore(&base_crng.lock, flags);
	}
}

826 827 828 829 830 831 832 833

/**********************************************************************
 *
 * Entropy collection routines.
 *
 * The following exported functions are used for pushing entropy into
 * the above entropy accumulation routines:
 *
834 835 836 837
 *	void add_device_randomness(const void *buf, size_t len);
 *	void add_hwgenerator_randomness(const void *buf, size_t len, size_t entropy);
 *	void add_bootloader_randomness(const void *buf, size_t len);
 *	void add_vmfork_randomness(const void *unique_vm_id, size_t len);
838
 *	void add_interrupt_randomness(int irq);
839
 *	void add_input_randomness(unsigned int type, unsigned int code, unsigned int value);
840
 *	void add_disk_randomness(struct gendisk *disk);
841 842 843 844 845 846 847 848 849 850 851 852 853
 *
 * add_device_randomness() adds data to the input pool that
 * is likely to differ between two devices (or possibly even per boot).
 * This would be things like MAC addresses or serial numbers, or the
 * read-out of the RTC. This does *not* credit any actual entropy to
 * the pool, but it initializes the pool to different values for devices
 * that might otherwise be identical and have very little entropy
 * available to them (particularly common in the embedded world).
 *
 * add_hwgenerator_randomness() is for true hardware RNGs, and will credit
 * entropy as specified by the caller. If the entropy pool is full it will
 * block until more entropy is needed.
 *
854 855 856
 * add_bootloader_randomness() is called by bootloader drivers, such as EFI
 * and device tree, and credits its input depending on whether or not the
 * configuration option CONFIG_RANDOM_TRUST_BOOTLOADER is set.
857
 *
858 859 860 861
 * add_vmfork_randomness() adds a unique (but not necessarily secret) ID
 * representing the current instance of a VM to the pool, without crediting,
 * and then force-reseeds the crng so that it takes effect immediately.
 *
862 863 864 865 866
 * add_interrupt_randomness() uses the interrupt timing as random
 * inputs to the entropy pool. Using the cycle counters and the irq source
 * as inputs, it feeds the input pool roughly once a second or after 64
 * interrupts, crediting 1 bit of entropy for whichever comes first.
 *
867 868 869 870 871 872 873 874 875 876 877 878 879
 * add_input_randomness() uses the input layer interrupt timing, as well
 * as the event type information from the hardware.
 *
 * add_disk_randomness() uses what amounts to the seek time of block
 * layer request events, on a per-disk_devt basis, as input to the
 * entropy pool. Note that high-speed solid state drives with very low
 * seek times do not make for good sources of entropy, as their seek
 * times are usually fairly consistent.
 *
 * The last two routines try to estimate how many bits of entropy
 * to credit. They do this by keeping track of the first and second
 * order deltas of the event timings.
 *
880 881 882
 **********************************************************************/

static bool trust_cpu __ro_after_init = IS_ENABLED(CONFIG_RANDOM_TRUST_CPU);
883
static bool trust_bootloader __ro_after_init = IS_ENABLED(CONFIG_RANDOM_TRUST_BOOTLOADER);
884 885 886 887
static int __init parse_trust_cpu(char *arg)
{
	return kstrtobool(arg, &trust_cpu);
}
888 889 890 891
static int __init parse_trust_bootloader(char *arg)
{
	return kstrtobool(arg, &trust_bootloader);
}
892
early_param("random.trust_cpu", parse_trust_cpu);
893
early_param("random.trust_bootloader", parse_trust_bootloader);
894

895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913
static int random_pm_notification(struct notifier_block *nb, unsigned long action, void *data)
{
	unsigned long flags, entropy = random_get_entropy();

	/*
	 * Encode a representation of how long the system has been suspended,
	 * in a way that is distinct from prior system suspends.
	 */
	ktime_t stamps[] = { ktime_get(), ktime_get_boottime(), ktime_get_real() };

	spin_lock_irqsave(&input_pool.lock, flags);
	_mix_pool_bytes(&action, sizeof(action));
	_mix_pool_bytes(stamps, sizeof(stamps));
	_mix_pool_bytes(&entropy, sizeof(entropy));
	spin_unlock_irqrestore(&input_pool.lock, flags);

	if (crng_ready() && (action == PM_RESTORE_PREPARE ||
	    (action == PM_POST_SUSPEND &&
	     !IS_ENABLED(CONFIG_PM_AUTOSLEEP) && !IS_ENABLED(CONFIG_ANDROID)))) {
914
		crng_reseed();
915 916 917 918 919 920 921
		pr_notice("crng reseeded on system resumption\n");
	}
	return 0;
}

static struct notifier_block pm_notifier = { .notifier_call = random_pm_notification };

922
/*
923
 * The first collection of entropy occurs at system boot while interrupts
924 925 926 927 928
 * are still turned off. Here we push in latent entropy, RDSEED, a timestamp,
 * utsname(), and the command line. Depending on the above configuration knob,
 * RDSEED may be considered sufficient for initialization. Note that much
 * earlier setup may already have pushed entropy into the input pool by the
 * time we get here.
929
 */
930
int __init random_init(const char *command_line)
931
{
932
	ktime_t now = ktime_get_real();
933
	unsigned int i, arch_bytes;
934
	unsigned long entropy;
935

936 937 938 939 940
#if defined(LATENT_ENTROPY_PLUGIN)
	static const u8 compiletime_seed[BLAKE2S_BLOCK_SIZE] __initconst __latent_entropy;
	_mix_pool_bytes(compiletime_seed, sizeof(compiletime_seed));
#endif

941
	for (i = 0, arch_bytes = BLAKE2S_BLOCK_SIZE;
942 943 944 945 946
	     i < BLAKE2S_BLOCK_SIZE; i += sizeof(entropy)) {
		if (!arch_get_random_seed_long_early(&entropy) &&
		    !arch_get_random_long_early(&entropy)) {
			entropy = random_get_entropy();
			arch_bytes -= sizeof(entropy);
947
		}
948
		_mix_pool_bytes(&entropy, sizeof(entropy));
949
	}
950 951
	_mix_pool_bytes(&now, sizeof(now));
	_mix_pool_bytes(utsname(), sizeof(*(utsname())));
952 953
	_mix_pool_bytes(command_line, strlen(command_line));
	add_latent_entropy();
954

955 956
	if (crng_ready())
		crng_reseed();
957 958
	else if (trust_cpu)
		credit_init_bits(arch_bytes * 8);
959

960 961
	WARN_ON(register_pm_notifier(&pm_notifier));

962 963
	WARN(!random_get_entropy(), "Missing cycle counter and fallback timer; RNG "
				    "entropy collection will consequently suffer.");
964
	return 0;
965
}
966

967
/*
968 969
 * Add device- or boot-specific data to the input pool to help
 * initialize it.
970
 *
971 972 973
 * None of this adds any entropy; it is meant to avoid the problem of
 * the entropy pool having similar initial state across largely
 * identical devices.
974
 */
975
void add_device_randomness(const void *buf, size_t len)
976
{
977 978
	unsigned long entropy = random_get_entropy();
	unsigned long flags;
979

980
	spin_lock_irqsave(&input_pool.lock, flags);
981
	_mix_pool_bytes(&entropy, sizeof(entropy));
982
	_mix_pool_bytes(buf, len);
983
	spin_unlock_irqrestore(&input_pool.lock, flags);
984 985 986
}
EXPORT_SYMBOL(add_device_randomness);

987 988 989 990 991
/*
 * Interface for in-kernel drivers of true hardware RNGs.
 * Those devices may produce endless random bits and will be throttled
 * when our pool is full.
 */
992
void add_hwgenerator_randomness(const void *buf, size_t len, size_t entropy)
993
{
994
	mix_pool_bytes(buf, len);
995 996
	credit_init_bits(entropy);

997
	/*
998 999
	 * Throttle writing to once every CRNG_RESEED_INTERVAL, unless
	 * we're not yet initialized.
1000
	 */
1001 1002
	if (!kthread_should_stop() && crng_ready())
		schedule_timeout_interruptible(CRNG_RESEED_INTERVAL);
1003 1004 1005 1006
}
EXPORT_SYMBOL_GPL(add_hwgenerator_randomness);

/*
1007 1008
 * Handle random seed passed by bootloader, and credit it if
 * CONFIG_RANDOM_TRUST_BOOTLOADER is set.
1009
 */
1010
void __cold add_bootloader_randomness(const void *buf, size_t len)
1011
{
1012
	mix_pool_bytes(buf, len);
1013
	if (trust_bootloader)
1014
		credit_init_bits(len * 8);
1015 1016 1017
}
EXPORT_SYMBOL_GPL(add_bootloader_randomness);

1018
#if IS_ENABLED(CONFIG_VMGENID)
1019 1020
static BLOCKING_NOTIFIER_HEAD(vmfork_chain);

1021 1022 1023 1024 1025
/*
 * Handle a new unique VM ID, which is unique, not secret, so we
 * don't credit it, but we do immediately force a reseed after so
 * that it's used by the crng posthaste.
 */
1026
void __cold add_vmfork_randomness(const void *unique_vm_id, size_t len)
1027
{
1028
	add_device_randomness(unique_vm_id, len);
1029
	if (crng_ready()) {
1030
		crng_reseed();
1031 1032
		pr_notice("crng reseeded due to virtual machine fork\n");
	}
1033
	blocking_notifier_call_chain(&vmfork_chain, 0, NULL);
1034
}
1035
#if IS_MODULE(CONFIG_VMGENID)
1036
EXPORT_SYMBOL_GPL(add_vmfork_randomness);
1037
#endif
1038

1039
int __cold register_random_vmfork_notifier(struct notifier_block *nb)
1040 1041 1042 1043 1044
{
	return blocking_notifier_chain_register(&vmfork_chain, nb);
}
EXPORT_SYMBOL_GPL(register_random_vmfork_notifier);

1045
int __cold unregister_random_vmfork_notifier(struct notifier_block *nb)
1046 1047 1048 1049
{
	return blocking_notifier_chain_unregister(&vmfork_chain, nb);
}
EXPORT_SYMBOL_GPL(unregister_random_vmfork_notifier);
1050
#endif
1051

1052
struct fast_pool {
1053
	struct work_struct mix;
1054
	unsigned long pool[4];
1055
	unsigned long last;
1056
	unsigned int count;
1057 1058
};

1059 1060
static DEFINE_PER_CPU(struct fast_pool, irq_randomness) = {
#ifdef CONFIG_64BIT
1061 1062
#define FASTMIX_PERM SIPHASH_PERMUTATION
	.pool = { SIPHASH_CONST_0, SIPHASH_CONST_1, SIPHASH_CONST_2, SIPHASH_CONST_3 }
1063
#else
1064 1065
#define FASTMIX_PERM HSIPHASH_PERMUTATION
	.pool = { HSIPHASH_CONST_0, HSIPHASH_CONST_1, HSIPHASH_CONST_2, HSIPHASH_CONST_3 }
1066 1067 1068
#endif
};

1069
/*
1070 1071 1072
 * This is [Half]SipHash-1-x, starting from an empty key. Because
 * the key is fixed, it assumes that its inputs are non-malicious,
 * and therefore this has no security on its own. s represents the
1073
 * four-word SipHash state, while v represents a two-word input.
1074
 */
1075
static void fast_mix(unsigned long s[4], unsigned long v1, unsigned long v2)
1076
{
1077
	s[3] ^= v1;
1078
	FASTMIX_PERM(s[0], s[1], s[2], s[3]);
1079 1080
	s[0] ^= v1;
	s[3] ^= v2;
1081
	FASTMIX_PERM(s[0], s[1], s[2], s[3]);
1082
	s[0] ^= v2;
1083 1084
}

1085 1086 1087 1088 1089
#ifdef CONFIG_SMP
/*
 * This function is called when the CPU has just come online, with
 * entry CPUHP_AP_RANDOM_ONLINE, just after CPUHP_AP_WORKQUEUE_ONLINE.
 */
1090
int __cold random_online_cpu(unsigned int cpu)
1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107
{
	/*
	 * During CPU shutdown and before CPU onlining, add_interrupt_
	 * randomness() may schedule mix_interrupt_randomness(), and
	 * set the MIX_INFLIGHT flag. However, because the worker can
	 * be scheduled on a different CPU during this period, that
	 * flag will never be cleared. For that reason, we zero out
	 * the flag here, which runs just after workqueues are onlined
	 * for the CPU again. This also has the effect of setting the
	 * irq randomness count to zero so that new accumulated irqs
	 * are fresh.
	 */
	per_cpu_ptr(&irq_randomness, cpu)->count = 0;
	return 0;
}
#endif

1108 1109 1110
static void mix_interrupt_randomness(struct work_struct *work)
{
	struct fast_pool *fast_pool = container_of(work, struct fast_pool, mix);
1111
	/*
1112 1113 1114 1115 1116
	 * The size of the copied stack pool is explicitly 2 longs so that we
	 * only ever ingest half of the siphash output each time, retaining
	 * the other half as the next "key" that carries over. The entropy is
	 * supposed to be sufficiently dispersed between bits so on average
	 * we don't wind up "losing" some.
1117
	 */
1118
	unsigned long pool[2];
1119
	unsigned int count;
1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131

	/* Check to see if we're running on the wrong CPU due to hotplug. */
	local_irq_disable();
	if (fast_pool != this_cpu_ptr(&irq_randomness)) {
		local_irq_enable();
		return;
	}

	/*
	 * Copy the pool to the stack so that the mixer always has a
	 * consistent view, before we reenable irqs again.
	 */
1132
	memcpy(pool, fast_pool->pool, sizeof(pool));
1133
	count = fast_pool->count;
1134
	fast_pool->count = 0;
1135 1136 1137
	fast_pool->last = jiffies;
	local_irq_enable();

1138
	mix_pool_bytes(pool, sizeof(pool));
1139
	credit_init_bits(max(1u, (count & U16_MAX) / 64));
1140

1141 1142 1143
	memzero_explicit(pool, sizeof(pool));
}

1144
void add_interrupt_randomness(int irq)
L
Linus Torvalds 已提交
1145
{
1146
	enum { MIX_INFLIGHT = 1U << 31 };
1147
	unsigned long entropy = random_get_entropy();
1148 1149
	struct fast_pool *fast_pool = this_cpu_ptr(&irq_randomness);
	struct pt_regs *regs = get_irq_regs();
1150
	unsigned int new_count;
1151

1152 1153
	fast_mix(fast_pool->pool, entropy,
		 (regs ? instruction_pointer(regs) : _RET_IP_) ^ swab(irq));
1154
	new_count = ++fast_pool->count;
1155

1156
	if (new_count & MIX_INFLIGHT)
L
Linus Torvalds 已提交
1157 1158
		return;

1159
	if (new_count < 64 && !time_is_before_jiffies(fast_pool->last + HZ))
1160
		return;
1161

1162 1163
	if (unlikely(!fast_pool->mix.func))
		INIT_WORK(&fast_pool->mix, mix_interrupt_randomness);
1164
	fast_pool->count |= MIX_INFLIGHT;
1165
	queue_work_on(raw_smp_processor_id(), system_highpri_wq, &fast_pool->mix);
L
Linus Torvalds 已提交
1166
}
1167
EXPORT_SYMBOL_GPL(add_interrupt_randomness);
L
Linus Torvalds 已提交
1168

1169 1170 1171 1172 1173 1174 1175 1176
/* There is one of these per entropy source */
struct timer_rand_state {
	unsigned long last_time;
	long last_delta, last_delta2;
};

/*
 * This function adds entropy to the entropy "pool" by using timing
1177 1178 1179 1180
 * delays. It uses the timer_rand_state structure to make an estimate
 * of how many bits of entropy this call has added to the pool. The
 * value "num" is also added to the pool; it should somehow describe
 * the type of event that just happened.
1181 1182 1183 1184 1185
 */
static void add_timer_randomness(struct timer_rand_state *state, unsigned int num)
{
	unsigned long entropy = random_get_entropy(), now = jiffies, flags;
	long delta, delta2, delta3;
1186
	unsigned int bits;
1187

1188 1189 1190 1191 1192
	/*
	 * If we're in a hard IRQ, add_interrupt_randomness() will be called
	 * sometime after, so mix into the fast pool.
	 */
	if (in_hardirq()) {
1193
		fast_mix(this_cpu_ptr(&irq_randomness)->pool, entropy, num);
1194 1195 1196 1197 1198 1199
	} else {
		spin_lock_irqsave(&input_pool.lock, flags);
		_mix_pool_bytes(&entropy, sizeof(entropy));
		_mix_pool_bytes(&num, sizeof(num));
		spin_unlock_irqrestore(&input_pool.lock, flags);
	}
1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229

	if (crng_ready())
		return;

	/*
	 * Calculate number of bits of randomness we probably added.
	 * We take into account the first, second and third-order deltas
	 * in order to make our estimate.
	 */
	delta = now - READ_ONCE(state->last_time);
	WRITE_ONCE(state->last_time, now);

	delta2 = delta - READ_ONCE(state->last_delta);
	WRITE_ONCE(state->last_delta, delta);

	delta3 = delta2 - READ_ONCE(state->last_delta2);
	WRITE_ONCE(state->last_delta2, delta2);

	if (delta < 0)
		delta = -delta;
	if (delta2 < 0)
		delta2 = -delta2;
	if (delta3 < 0)
		delta3 = -delta3;
	if (delta > delta2)
		delta = delta2;
	if (delta > delta3)
		delta = delta3;

	/*
1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240
	 * delta is now minimum absolute delta. Round down by 1 bit
	 * on general principles, and limit entropy estimate to 11 bits.
	 */
	bits = min(fls(delta >> 1), 11);

	/*
	 * As mentioned above, if we're in a hard IRQ, add_interrupt_randomness()
	 * will run after this, which uses a different crediting scheme of 1 bit
	 * per every 64 interrupts. In order to let that function do accounting
	 * close to the one in this function, we credit a full 64/64 bit per bit,
	 * and then subtract one to account for the extra one added.
1241
	 */
1242 1243 1244
	if (in_hardirq())
		this_cpu_ptr(&irq_randomness)->count += max(1u, bits * 64) - 1;
	else
1245
		_credit_init_bits(bits);
1246 1247
}

1248
void add_input_randomness(unsigned int type, unsigned int code, unsigned int value)
1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272
{
	static unsigned char last_value;
	static struct timer_rand_state input_timer_state = { INITIAL_JIFFIES };

	/* Ignore autorepeat and the like. */
	if (value == last_value)
		return;

	last_value = value;
	add_timer_randomness(&input_timer_state,
			     (type << 4) ^ code ^ (code >> 4) ^ value);
}
EXPORT_SYMBOL_GPL(add_input_randomness);

#ifdef CONFIG_BLOCK
void add_disk_randomness(struct gendisk *disk)
{
	if (!disk || !disk->random)
		return;
	/* First major is 1, so we get >= 0x200 here. */
	add_timer_randomness(disk->random, 0x100 + disk_devt(disk));
}
EXPORT_SYMBOL_GPL(add_disk_randomness);

1273
void __cold rand_initialize_disk(struct gendisk *disk)
1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288
{
	struct timer_rand_state *state;

	/*
	 * If kzalloc returns null, we just won't use that entropy
	 * source.
	 */
	state = kzalloc(sizeof(struct timer_rand_state), GFP_KERNEL);
	if (state) {
		state->last_time = INITIAL_JIFFIES;
		disk->random = state;
	}
}
#endif

1289 1290 1291 1292 1293 1294
struct entropy_timer_state {
	unsigned long entropy;
	struct timer_list timer;
	unsigned int samples, samples_per_bit;
};

1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307
/*
 * Each time the timer fires, we expect that we got an unpredictable
 * jump in the cycle counter. Even if the timer is running on another
 * CPU, the timer activity will be touching the stack of the CPU that is
 * generating entropy..
 *
 * Note that we don't re-arm the timer in the timer itself - we are
 * happy to be scheduled away, since that just makes the load more
 * complex, but we do not want the timer to keep ticking unless the
 * entropy loop is running.
 *
 * So the re-arming always happens in the entropy loop itself.
 */
1308
static void __cold entropy_timer(struct timer_list *timer)
1309
{
1310 1311 1312
	struct entropy_timer_state *state = container_of(timer, struct entropy_timer_state, timer);

	if (++state->samples == state->samples_per_bit) {
1313
		credit_init_bits(1);
1314 1315
		state->samples = 0;
	}
1316 1317 1318 1319 1320 1321
}

/*
 * If we have an actual cycle counter, see if we can
 * generate enough entropy with timing noise
 */
1322
static void __cold try_to_generate_entropy(void)
1323
{
1324 1325 1326 1327
	enum { NUM_TRIAL_SAMPLES = 8192, MAX_SAMPLES_PER_BIT = 32 };
	struct entropy_timer_state stack;
	unsigned int i, num_different = 0;
	unsigned long last = random_get_entropy();
1328

1329 1330 1331 1332 1333 1334 1335 1336
	for (i = 0; i < NUM_TRIAL_SAMPLES - 1; ++i) {
		stack.entropy = random_get_entropy();
		if (stack.entropy != last)
			++num_different;
		last = stack.entropy;
	}
	stack.samples_per_bit = DIV_ROUND_UP(NUM_TRIAL_SAMPLES, num_different + 1);
	if (stack.samples_per_bit > MAX_SAMPLES_PER_BIT)
1337 1338
		return;

1339
	stack.samples = 0;
1340
	timer_setup_on_stack(&stack.timer, entropy_timer, 0);
1341
	while (!crng_ready() && !signal_pending(current)) {
1342
		if (!timer_pending(&stack.timer))
1343
			mod_timer(&stack.timer, jiffies + 1);
1344
		mix_pool_bytes(&stack.entropy, sizeof(stack.entropy));
1345
		schedule();
1346
		stack.entropy = random_get_entropy();
1347 1348 1349 1350
	}

	del_timer_sync(&stack.timer);
	destroy_timer_on_stack(&stack.timer);
1351
	mix_pool_bytes(&stack.entropy, sizeof(stack.entropy));
1352 1353
}

1354 1355 1356 1357 1358 1359 1360 1361

/**********************************************************************
 *
 * Userspace reader/writer interfaces.
 *
 * getrandom(2) is the primary modern interface into the RNG and should
 * be used in preference to anything else.
 *
1362 1363 1364 1365 1366 1367 1368 1369
 * Reading from /dev/random has the same functionality as calling
 * getrandom(2) with flags=0. In earlier versions, however, it had
 * vastly different semantics and should therefore be avoided, to
 * prevent backwards compatibility issues.
 *
 * Reading from /dev/urandom has the same functionality as calling
 * getrandom(2) with flags=GRND_INSECURE. Because it does not block
 * waiting for the RNG to be ready, it should not be used.
1370 1371 1372 1373
 *
 * Writing to either /dev/random or /dev/urandom adds entropy to
 * the input pool but does not credit it.
 *
1374 1375
 * Polling on /dev/random indicates when the RNG is initialized, on
 * the read side, and when it wants new entropy, on the write side.
1376 1377 1378 1379 1380 1381 1382
 *
 * Both /dev/random and /dev/urandom have the same set of ioctls for
 * adding entropy, getting the entropy count, zeroing the count, and
 * reseeding the crng.
 *
 **********************************************************************/

1383
SYSCALL_DEFINE3(getrandom, char __user *, ubuf, size_t, len, unsigned int, flags)
L
Linus Torvalds 已提交
1384
{
1385 1386
	if (flags & ~(GRND_NONBLOCK | GRND_RANDOM | GRND_INSECURE))
		return -EINVAL;
1387

1388 1389 1390 1391 1392 1393
	/*
	 * Requesting insecure and blocking randomness at the same time makes
	 * no sense.
	 */
	if ((flags & (GRND_INSECURE | GRND_RANDOM)) == (GRND_INSECURE | GRND_RANDOM))
		return -EINVAL;
1394

1395 1396
	if (len > INT_MAX)
		len = INT_MAX;
L
Linus Torvalds 已提交
1397

1398
	if (!crng_ready() && !(flags & GRND_INSECURE)) {
1399
		int ret;
1400

1401 1402 1403 1404 1405 1406
		if (flags & GRND_NONBLOCK)
			return -EAGAIN;
		ret = wait_for_random_bytes();
		if (unlikely(ret))
			return ret;
	}
1407
	return get_random_bytes_user(ubuf, len);
1408 1409
}

1410
static __poll_t random_poll(struct file *file, poll_table *wait)
L
Linus Torvalds 已提交
1411
{
1412
	poll_wait(file, &crng_init_wait, wait);
1413
	return crng_ready() ? EPOLLIN | EPOLLRDNORM : EPOLLOUT | EPOLLWRNORM;
L
Linus Torvalds 已提交
1414 1415
}

1416
static int write_pool(const char __user *ubuf, size_t len)
L
Linus Torvalds 已提交
1417
{
1418
	size_t block_len;
1419
	int ret = 0;
1420
	u8 block[BLAKE2S_BLOCK_SIZE];
L
Linus Torvalds 已提交
1421

1422 1423 1424
	while (len) {
		block_len = min(len, sizeof(block));
		if (copy_from_user(block, ubuf, block_len)) {
1425 1426 1427
			ret = -EFAULT;
			goto out;
		}
1428 1429 1430
		len -= block_len;
		ubuf += block_len;
		mix_pool_bytes(block, block_len);
1431
		cond_resched();
L
Linus Torvalds 已提交
1432
	}
1433

1434 1435 1436
out:
	memzero_explicit(block, sizeof(block));
	return ret;
1437 1438
}

1439 1440
static ssize_t random_write(struct file *file, const char __user *ubuf,
			    size_t len, loff_t *ppos)
1441
{
1442
	int ret;
1443

1444
	ret = write_pool(ubuf, len);
1445 1446 1447
	if (ret)
		return ret;

1448
	return (ssize_t)len;
L
Linus Torvalds 已提交
1449 1450
}

1451 1452
static ssize_t urandom_read(struct file *file, char __user *ubuf,
			    size_t len, loff_t *ppos)
1453 1454 1455
{
	static int maxwarn = 10;

1456 1457 1458 1459 1460 1461 1462
	/*
	 * Opportunistically attempt to initialize the RNG on platforms that
	 * have fast cycle counters, but don't (for now) require it to succeed.
	 */
	if (!crng_ready())
		try_to_generate_entropy();

1463 1464 1465 1466 1467
	if (!crng_ready()) {
		if (!ratelimit_disable && maxwarn <= 0)
			++urandom_warning.missed;
		else if (ratelimit_disable || __ratelimit(&urandom_warning)) {
			--maxwarn;
1468
			pr_notice("%s: uninitialized urandom read (%zd bytes read)\n",
1469
				  current->comm, len);
1470
		}
1471 1472
	}

1473
	return get_random_bytes_user(ubuf, len);
1474 1475
}

1476 1477
static ssize_t random_read(struct file *file, char __user *ubuf,
			   size_t len, loff_t *ppos)
1478 1479 1480 1481 1482 1483
{
	int ret;

	ret = wait_for_random_bytes();
	if (ret != 0)
		return ret;
1484
	return get_random_bytes_user(ubuf, len);
1485 1486
}

M
Matt Mackall 已提交
1487
static long random_ioctl(struct file *f, unsigned int cmd, unsigned long arg)
L
Linus Torvalds 已提交
1488 1489 1490 1491 1492 1493 1494
{
	int size, ent_count;
	int __user *p = (int __user *)arg;
	int retval;

	switch (cmd) {
	case RNDGETENTCNT:
1495
		/* Inherently racy, no point locking. */
1496
		if (put_user(input_pool.init_bits, p))
L
Linus Torvalds 已提交
1497 1498 1499 1500 1501 1502 1503
			return -EFAULT;
		return 0;
	case RNDADDTOENTCNT:
		if (!capable(CAP_SYS_ADMIN))
			return -EPERM;
		if (get_user(ent_count, p))
			return -EFAULT;
1504 1505
		if (ent_count < 0)
			return -EINVAL;
1506
		credit_init_bits(ent_count);
1507
		return 0;
L
Linus Torvalds 已提交
1508 1509 1510 1511 1512 1513 1514 1515 1516
	case RNDADDENTROPY:
		if (!capable(CAP_SYS_ADMIN))
			return -EPERM;
		if (get_user(ent_count, p++))
			return -EFAULT;
		if (ent_count < 0)
			return -EINVAL;
		if (get_user(size, p++))
			return -EFAULT;
1517
		retval = write_pool((const char __user *)p, size);
L
Linus Torvalds 已提交
1518 1519
		if (retval < 0)
			return retval;
1520
		credit_init_bits(ent_count);
1521
		return 0;
L
Linus Torvalds 已提交
1522 1523
	case RNDZAPENTCNT:
	case RNDCLEARPOOL:
1524
		/* No longer has any effect. */
L
Linus Torvalds 已提交
1525 1526 1527
		if (!capable(CAP_SYS_ADMIN))
			return -EPERM;
		return 0;
1528 1529 1530
	case RNDRESEEDCRNG:
		if (!capable(CAP_SYS_ADMIN))
			return -EPERM;
1531
		if (!crng_ready())
1532
			return -ENODATA;
1533
		crng_reseed();
1534
		return 0;
L
Linus Torvalds 已提交
1535 1536 1537 1538 1539
	default:
		return -EINVAL;
	}
}

1540 1541 1542 1543 1544
static int random_fasync(int fd, struct file *filp, int on)
{
	return fasync_helper(fd, filp, on, &fasync);
}

1545
const struct file_operations random_fops = {
1546
	.read = random_read,
L
Linus Torvalds 已提交
1547
	.write = random_write,
1548
	.poll = random_poll,
M
Matt Mackall 已提交
1549
	.unlocked_ioctl = random_ioctl,
1550
	.compat_ioctl = compat_ptr_ioctl,
1551
	.fasync = random_fasync,
1552
	.llseek = noop_llseek,
L
Linus Torvalds 已提交
1553 1554
};

1555 1556 1557 1558 1559 1560 1561 1562 1563
const struct file_operations urandom_fops = {
	.read = urandom_read,
	.write = random_write,
	.unlocked_ioctl = random_ioctl,
	.compat_ioctl = compat_ptr_ioctl,
	.fasync = random_fasync,
	.llseek = noop_llseek,
};

1564

L
Linus Torvalds 已提交
1565 1566
/********************************************************************
 *
1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584
 * Sysctl interface.
 *
 * These are partly unused legacy knobs with dummy values to not break
 * userspace and partly still useful things. They are usually accessible
 * in /proc/sys/kernel/random/ and are as follows:
 *
 * - boot_id - a UUID representing the current boot.
 *
 * - uuid - a random UUID, different each time the file is read.
 *
 * - poolsize - the number of bits of entropy that the input pool can
 *   hold, tied to the POOL_BITS constant.
 *
 * - entropy_avail - the number of bits of entropy currently in the
 *   input pool. Always <= poolsize.
 *
 * - write_wakeup_threshold - the amount of entropy in the input pool
 *   below which write polls to /dev/random will unblock, requesting
1585
 *   more entropy, tied to the POOL_READY_BITS constant. It is writable
1586 1587 1588
 *   to avoid breaking old userspaces, but writing to it does not
 *   change any behavior of the RNG.
 *
1589
 * - urandom_min_reseed_secs - fixed to the value CRNG_RESEED_INTERVAL.
1590 1591
 *   It is writable to avoid breaking old userspaces, but writing
 *   to it does not change any behavior of the RNG.
L
Linus Torvalds 已提交
1592 1593 1594 1595 1596 1597 1598
 *
 ********************************************************************/

#ifdef CONFIG_SYSCTL

#include <linux/sysctl.h>

1599
static int sysctl_random_min_urandom_seed = CRNG_RESEED_INTERVAL / HZ;
1600
static int sysctl_random_write_wakeup_bits = POOL_READY_BITS;
1601
static int sysctl_poolsize = POOL_BITS;
1602
static u8 sysctl_bootid[UUID_SIZE];
L
Linus Torvalds 已提交
1603 1604

/*
G
Greg Price 已提交
1605
 * This function is used to return both the bootid UUID, and random
1606
 * UUID. The difference is in whether table->data is NULL; if it is,
L
Linus Torvalds 已提交
1607 1608
 * then a new UUID is generated and returned to the user.
 */
1609
static int proc_do_uuid(struct ctl_table *table, int write, void *buf,
1610
			size_t *lenp, loff_t *ppos)
L
Linus Torvalds 已提交
1611
{
1612 1613 1614 1615 1616 1617 1618 1619 1620
	u8 tmp_uuid[UUID_SIZE], *uuid;
	char uuid_string[UUID_STRING_LEN + 1];
	struct ctl_table fake_table = {
		.data = uuid_string,
		.maxlen = UUID_STRING_LEN
	};

	if (write)
		return -EPERM;
L
Linus Torvalds 已提交
1621 1622 1623 1624 1625

	uuid = table->data;
	if (!uuid) {
		uuid = tmp_uuid;
		generate_random_uuid(uuid);
1626 1627 1628 1629 1630 1631 1632 1633
	} else {
		static DEFINE_SPINLOCK(bootid_spinlock);

		spin_lock(&bootid_spinlock);
		if (!uuid[8])
			generate_random_uuid(uuid);
		spin_unlock(&bootid_spinlock);
	}
L
Linus Torvalds 已提交
1634

1635
	snprintf(uuid_string, sizeof(uuid_string), "%pU", uuid);
1636
	return proc_dostring(&fake_table, 0, buf, lenp, ppos);
L
Linus Torvalds 已提交
1637 1638
}

1639
/* The same as proc_dointvec, but writes don't change anything. */
1640
static int proc_do_rointvec(struct ctl_table *table, int write, void *buf,
1641 1642
			    size_t *lenp, loff_t *ppos)
{
1643
	return write ? 0 : proc_dointvec(table, 0, buf, lenp, ppos);
1644 1645
}

1646
static struct ctl_table random_table[] = {
L
Linus Torvalds 已提交
1647 1648 1649 1650 1651
	{
		.procname	= "poolsize",
		.data		= &sysctl_poolsize,
		.maxlen		= sizeof(int),
		.mode		= 0444,
1652
		.proc_handler	= proc_dointvec,
L
Linus Torvalds 已提交
1653 1654 1655
	},
	{
		.procname	= "entropy_avail",
1656
		.data		= &input_pool.init_bits,
L
Linus Torvalds 已提交
1657 1658
		.maxlen		= sizeof(int),
		.mode		= 0444,
1659
		.proc_handler	= proc_dointvec,
L
Linus Torvalds 已提交
1660 1661 1662
	},
	{
		.procname	= "write_wakeup_threshold",
1663
		.data		= &sysctl_random_write_wakeup_bits,
L
Linus Torvalds 已提交
1664 1665
		.maxlen		= sizeof(int),
		.mode		= 0644,
1666
		.proc_handler	= proc_do_rointvec,
L
Linus Torvalds 已提交
1667
	},
1668 1669
	{
		.procname	= "urandom_min_reseed_secs",
1670
		.data		= &sysctl_random_min_urandom_seed,
1671 1672
		.maxlen		= sizeof(int),
		.mode		= 0644,
1673
		.proc_handler	= proc_do_rointvec,
1674
	},
L
Linus Torvalds 已提交
1675 1676 1677 1678
	{
		.procname	= "boot_id",
		.data		= &sysctl_bootid,
		.mode		= 0444,
1679
		.proc_handler	= proc_do_uuid,
L
Linus Torvalds 已提交
1680 1681 1682 1683
	},
	{
		.procname	= "uuid",
		.mode		= 0444,
1684
		.proc_handler	= proc_do_uuid,
L
Linus Torvalds 已提交
1685
	},
1686
	{ }
L
Linus Torvalds 已提交
1687
};
1688 1689

/*
1690 1691
 * random_init() is called before sysctl_init(),
 * so we cannot call register_sysctl_init() in random_init()
1692 1693 1694 1695 1696 1697 1698
 */
static int __init random_sysctls_init(void)
{
	register_sysctl_init("kernel/random", random_table);
	return 0;
}
device_initcall(random_sysctls_init);
1699
#endif