random.c 49.4 KB
Newer Older
1
// SPDX-License-Identifier: (GPL-2.0 OR BSD-3-Clause)
L
Linus Torvalds 已提交
2
/*
3
 * Copyright (C) 2017-2022 Jason A. Donenfeld <Jason@zx2c4.com>. All Rights Reserved.
4
 * Copyright Matt Mackall <mpm@selenic.com>, 2003, 2004, 2005
5 6 7 8 9 10 11 12 13 14 15 16 17
 * Copyright Theodore Ts'o, 1994, 1995, 1996, 1997, 1998, 1999. All rights reserved.
 *
 * This driver produces cryptographically secure pseudorandom data. It is divided
 * into roughly six sections, each with a section header:
 *
 *   - Initialization and readiness waiting.
 *   - Fast key erasure RNG, the "crng".
 *   - Entropy accumulation and extraction routines.
 *   - Entropy collection routines.
 *   - Userspace reader/writer interfaces.
 *   - Sysctl interface.
 *
 * The high level overview is that there is one input pool, into which
18 19 20 21 22 23
 * various pieces of data are hashed. Prior to initialization, some of that
 * data is then "credited" as having a certain number of bits of entropy.
 * When enough bits of entropy are available, the hash is finalized and
 * handed as a key to a stream cipher that expands it indefinitely for
 * various consumers. This key is periodically refreshed as the various
 * entropy collectors, described below, add data to the input pool.
L
Linus Torvalds 已提交
24 25
 */

Y
Yangtao Li 已提交
26 27
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt

L
Linus Torvalds 已提交
28 29 30 31 32 33 34 35 36 37 38
#include <linux/utsname.h>
#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/major.h>
#include <linux/string.h>
#include <linux/fcntl.h>
#include <linux/slab.h>
#include <linux/random.h>
#include <linux/poll.h>
#include <linux/init.h>
#include <linux/fs.h>
C
Christoph Hellwig 已提交
39
#include <linux/blkdev.h>
L
Linus Torvalds 已提交
40
#include <linux/interrupt.h>
41
#include <linux/mm.h>
42
#include <linux/nodemask.h>
L
Linus Torvalds 已提交
43
#include <linux/spinlock.h>
44
#include <linux/kthread.h>
L
Linus Torvalds 已提交
45
#include <linux/percpu.h>
46
#include <linux/ptrace.h>
47
#include <linux/workqueue.h>
48
#include <linux/irq.h>
49
#include <linux/ratelimit.h>
50 51
#include <linux/syscalls.h>
#include <linux/completion.h>
52
#include <linux/uuid.h>
53
#include <linux/uaccess.h>
54
#include <linux/suspend.h>
55
#include <linux/siphash.h>
56
#include <crypto/chacha.h>
57
#include <crypto/blake2s.h>
L
Linus Torvalds 已提交
58 59
#include <asm/processor.h>
#include <asm/irq.h>
60
#include <asm/irq_regs.h>
L
Linus Torvalds 已提交
61 62
#include <asm/io.h>

63 64 65 66 67 68 69 70 71
/*********************************************************************
 *
 * Initialization and readiness waiting.
 *
 * Much of the RNG infrastructure is devoted to various dependencies
 * being able to wait until the RNG has collected enough entropy and
 * is ready for safe consumption.
 *
 *********************************************************************/
72

73
/*
74
 * crng_init is protected by base_crng->lock, and only increases
75
 * its value (from empty->early->ready).
76
 */
77 78 79 80 81 82 83
static enum {
	CRNG_EMPTY = 0, /* Little to no entropy collected */
	CRNG_EARLY = 1, /* At least POOL_EARLY_BITS collected */
	CRNG_READY = 2  /* Fully initialized with POOL_READY_BITS collected */
} crng_init = CRNG_EMPTY;
#define crng_ready() (likely(crng_init >= CRNG_READY))
/* Various types of waiters for crng_init->CRNG_READY transition. */
84 85
static DECLARE_WAIT_QUEUE_HEAD(crng_init_wait);
static struct fasync_struct *fasync;
86 87
static DEFINE_SPINLOCK(random_ready_chain_lock);
static RAW_NOTIFIER_HEAD(random_ready_chain);
88

89
/* Control how we warn userspace. */
90 91
static struct ratelimit_state urandom_warning =
	RATELIMIT_STATE_INIT("warn_urandom_randomness", HZ, 3);
92 93
static int ratelimit_disable __read_mostly =
	IS_ENABLED(CONFIG_WARN_ALL_UNSEEDED_RANDOM);
94 95 96
module_param_named(ratelimit_disable, ratelimit_disable, int, 0644);
MODULE_PARM_DESC(ratelimit_disable, "Disable random ratelimit suppression");

97 98
/*
 * Returns whether or not the input pool has been seeded and thus guaranteed
99 100 101
 * to supply cryptographically secure random numbers. This applies to: the
 * /dev/urandom device, the get_random_bytes function, and the get_random_{u32,
 * ,u64,int,long} family of functions.
102 103 104 105 106 107 108 109 110 111 112 113 114 115 116
 *
 * Returns: true if the input pool has been seeded.
 *          false if the input pool has not been seeded.
 */
bool rng_is_initialized(void)
{
	return crng_ready();
}
EXPORT_SYMBOL(rng_is_initialized);

/* Used by wait_for_random_bytes(), and considered an entropy collector, below. */
static void try_to_generate_entropy(void);

/*
 * Wait for the input pool to be seeded and thus guaranteed to supply
117 118 119 120
 * cryptographically secure random numbers. This applies to: the /dev/urandom
 * device, the get_random_bytes function, and the get_random_{u32,u64,int,long}
 * family of functions. Using any of these functions without first calling
 * this function forfeits the guarantee of security.
121 122 123 124 125 126
 *
 * Returns: 0 if the input pool has been seeded.
 *          -ERESTARTSYS if the function was interrupted by a signal.
 */
int wait_for_random_bytes(void)
{
127
	while (!crng_ready()) {
128
		int ret;
129 130

		try_to_generate_entropy();
131 132 133
		ret = wait_event_interruptible_timeout(crng_init_wait, crng_ready(), HZ);
		if (ret)
			return ret > 0 ? 0 : ret;
134
	}
135 136 137 138 139 140 141 142 143 144 145
	return 0;
}
EXPORT_SYMBOL(wait_for_random_bytes);

/*
 * Add a callback function that will be invoked when the input
 * pool is initialised.
 *
 * returns: 0 if callback is successfully added
 *	    -EALREADY if pool is already initialised (callback not called)
 */
146
int register_random_ready_notifier(struct notifier_block *nb)
147 148
{
	unsigned long flags;
149
	int ret = -EALREADY;
150 151

	if (crng_ready())
152
		return ret;
153

154 155 156 157 158
	spin_lock_irqsave(&random_ready_chain_lock, flags);
	if (!crng_ready())
		ret = raw_notifier_chain_register(&random_ready_chain, nb);
	spin_unlock_irqrestore(&random_ready_chain_lock, flags);
	return ret;
159 160 161 162 163
}

/*
 * Delete a previously registered readiness callback function.
 */
164
int unregister_random_ready_notifier(struct notifier_block *nb)
165 166
{
	unsigned long flags;
167
	int ret;
168

169 170 171 172
	spin_lock_irqsave(&random_ready_chain_lock, flags);
	ret = raw_notifier_chain_unregister(&random_ready_chain, nb);
	spin_unlock_irqrestore(&random_ready_chain_lock, flags);
	return ret;
173 174 175 176 177 178
}

static void process_random_ready_list(void)
{
	unsigned long flags;

179 180 181
	spin_lock_irqsave(&random_ready_chain_lock, flags);
	raw_notifier_call_chain(&random_ready_chain, 0, NULL);
	spin_unlock_irqrestore(&random_ready_chain_lock, flags);
182 183
}

184 185
#define warn_unseeded_randomness() \
	_warn_unseeded_randomness(__func__, (void *)_RET_IP_)
186

187
static void _warn_unseeded_randomness(const char *func_name, void *caller)
188
{
189
	if (!IS_ENABLED(CONFIG_WARN_ALL_UNSEEDED_RANDOM) || crng_ready())
190
		return;
191 192
	printk_deferred(KERN_NOTICE "random: %s called from %pS with crng_init=%d\n",
			func_name, caller, crng_init);
193 194 195
}


196
/*********************************************************************
L
Linus Torvalds 已提交
197
 *
198
 * Fast key erasure RNG, the "crng".
L
Linus Torvalds 已提交
199
 *
200 201 202
 * These functions expand entropy from the entropy extractor into
 * long streams for external consumption using the "fast key erasure"
 * RNG described at <https://blog.cr.yp.to/20170723-random.html>.
203
 *
204 205 206 207 208 209 210 211 212
 * There are a few exported interfaces for use by other drivers:
 *
 *	void get_random_bytes(void *buf, size_t nbytes)
 *	u32 get_random_u32()
 *	u64 get_random_u64()
 *	unsigned int get_random_int()
 *	unsigned long get_random_long()
 *
 * These interfaces will return the requested number of random bytes
213
 * into the given buffer or as a return value. This is equivalent to
214 215 216 217
 * a read from /dev/urandom. The u32, u64, int, and long family of
 * functions may be higher performance for one-off random integers,
 * because they do a bit of buffering and do not invoke reseeding
 * until the buffer is emptied.
218 219 220
 *
 *********************************************************************/

221 222 223 224
enum {
	CRNG_RESEED_START_INTERVAL = HZ,
	CRNG_RESEED_INTERVAL = 60 * HZ
};
225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244

static struct {
	u8 key[CHACHA_KEY_SIZE] __aligned(__alignof__(long));
	unsigned long birth;
	unsigned long generation;
	spinlock_t lock;
} base_crng = {
	.lock = __SPIN_LOCK_UNLOCKED(base_crng.lock)
};

struct crng {
	u8 key[CHACHA_KEY_SIZE];
	unsigned long generation;
	local_lock_t lock;
};

static DEFINE_PER_CPU(struct crng, crngs) = {
	.generation = ULONG_MAX,
	.lock = INIT_LOCAL_LOCK(crngs.lock),
};
245

246
/* Used by crng_reseed() and crng_make_state() to extract a new seed from the input pool. */
247
static void extract_entropy(void *buf, size_t nbytes);
248

249 250
/* This extracts a new crng key from the input pool. */
static void crng_reseed(void)
251
{
252
	unsigned long flags;
253 254
	unsigned long next_gen;
	u8 key[CHACHA_KEY_SIZE];
255

256
	extract_entropy(key, sizeof(key));
257

258 259 260 261 262 263 264 265 266 267 268 269 270
	/*
	 * We copy the new key into the base_crng, overwriting the old one,
	 * and update the generation counter. We avoid hitting ULONG_MAX,
	 * because the per-cpu crngs are initialized to ULONG_MAX, so this
	 * forces new CPUs that come online to always initialize.
	 */
	spin_lock_irqsave(&base_crng.lock, flags);
	memcpy(base_crng.key, key, sizeof(base_crng.key));
	next_gen = base_crng.generation + 1;
	if (next_gen == ULONG_MAX)
		++next_gen;
	WRITE_ONCE(base_crng.generation, next_gen);
	WRITE_ONCE(base_crng.birth, jiffies);
271
	if (!crng_ready())
272
		crng_init = CRNG_READY;
273 274
	spin_unlock_irqrestore(&base_crng.lock, flags);
	memzero_explicit(key, sizeof(key));
275 276
}

277
/*
278 279 280 281 282
 * This generates a ChaCha block using the provided key, and then
 * immediately overwites that key with half the block. It returns
 * the resultant ChaCha state to the user, along with the second
 * half of the block containing 32 bytes of random data that may
 * be used; random_data_len may not be greater than 32.
283 284 285 286 287 288 289
 *
 * The returned ChaCha state contains within it a copy of the old
 * key value, at index 4, so the state should always be zeroed out
 * immediately after using in order to maintain forward secrecy.
 * If the state cannot be erased in a timely manner, then it is
 * safer to set the random_data parameter to &chacha_state[4] so
 * that this function overwrites it before returning.
290 291 292 293
 */
static void crng_fast_key_erasure(u8 key[CHACHA_KEY_SIZE],
				  u32 chacha_state[CHACHA_STATE_WORDS],
				  u8 *random_data, size_t random_data_len)
294
{
295
	u8 first_block[CHACHA_BLOCK_SIZE];
296

297 298 299 300 301 302 303 304
	BUG_ON(random_data_len > 32);

	chacha_init_consts(chacha_state);
	memcpy(&chacha_state[4], key, CHACHA_KEY_SIZE);
	memset(&chacha_state[12], 0, sizeof(u32) * 4);
	chacha20_block(chacha_state, first_block);

	memcpy(key, first_block, CHACHA_KEY_SIZE);
305
	memcpy(random_data, first_block + CHACHA_KEY_SIZE, random_data_len);
306
	memzero_explicit(first_block, sizeof(first_block));
307 308
}

309
/*
310 311 312 313
 * Return whether the crng seed is considered to be sufficiently old
 * that a reseeding is needed. This happens if the last reseeding
 * was CRNG_RESEED_INTERVAL ago, or during early boot, at an interval
 * proportional to the uptime.
314 315 316 317 318 319 320 321 322 323 324
 */
static bool crng_has_old_seed(void)
{
	static bool early_boot = true;
	unsigned long interval = CRNG_RESEED_INTERVAL;

	if (unlikely(READ_ONCE(early_boot))) {
		time64_t uptime = ktime_get_seconds();
		if (uptime >= CRNG_RESEED_INTERVAL / HZ * 2)
			WRITE_ONCE(early_boot, false);
		else
325
			interval = max_t(unsigned int, CRNG_RESEED_START_INTERVAL,
326 327 328 329 330
					 (unsigned int)uptime / 2 * HZ);
	}
	return time_after(jiffies, READ_ONCE(base_crng.birth) + interval);
}

331
/*
332 333 334
 * This function returns a ChaCha state that you may use for generating
 * random data. It also returns up to 32 bytes on its own of random data
 * that may be used; random_data_len may not be greater than 32.
335
 */
336 337
static void crng_make_state(u32 chacha_state[CHACHA_STATE_WORDS],
			    u8 *random_data, size_t random_data_len)
338
{
339
	unsigned long flags;
340
	struct crng *crng;
341

342 343 344 345 346
	BUG_ON(random_data_len > 32);

	/*
	 * For the fast path, we check whether we're ready, unlocked first, and
	 * then re-check once locked later. In the case where we're really not
347
	 * ready, we do fast key erasure with the base_crng directly, extracting
348
	 * when crng_init is CRNG_EMPTY.
349
	 */
350
	if (!crng_ready()) {
351 352 353 354
		bool ready;

		spin_lock_irqsave(&base_crng.lock, flags);
		ready = crng_ready();
355
		if (!ready) {
356
			if (crng_init == CRNG_EMPTY)
357
				extract_entropy(base_crng.key, sizeof(base_crng.key));
358 359
			crng_fast_key_erasure(base_crng.key, chacha_state,
					      random_data, random_data_len);
360
		}
361 362 363
		spin_unlock_irqrestore(&base_crng.lock, flags);
		if (!ready)
			return;
364
	}
365 366

	/*
367 368
	 * If the base_crng is old enough, we reseed, which in turn bumps the
	 * generation counter that we check below.
369
	 */
370
	if (unlikely(crng_has_old_seed()))
371
		crng_reseed();
372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398

	local_lock_irqsave(&crngs.lock, flags);
	crng = raw_cpu_ptr(&crngs);

	/*
	 * If our per-cpu crng is older than the base_crng, then it means
	 * somebody reseeded the base_crng. In that case, we do fast key
	 * erasure on the base_crng, and use its output as the new key
	 * for our per-cpu crng. This brings us up to date with base_crng.
	 */
	if (unlikely(crng->generation != READ_ONCE(base_crng.generation))) {
		spin_lock(&base_crng.lock);
		crng_fast_key_erasure(base_crng.key, chacha_state,
				      crng->key, sizeof(crng->key));
		crng->generation = base_crng.generation;
		spin_unlock(&base_crng.lock);
	}

	/*
	 * Finally, when we've made it this far, our per-cpu crng has an up
	 * to date key, and we can do fast key erasure with it to produce
	 * some random data and a ChaCha state for the caller. All other
	 * branches of this function are "unlikely", so most of the time we
	 * should wind up here immediately.
	 */
	crng_fast_key_erasure(crng->key, chacha_state, random_data, random_data_len);
	local_unlock_irqrestore(&crngs.lock, flags);
399 400
}

401
static void _get_random_bytes(void *buf, size_t nbytes)
402
{
403
	u32 chacha_state[CHACHA_STATE_WORDS];
404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444
	u8 tmp[CHACHA_BLOCK_SIZE];
	size_t len;

	if (!nbytes)
		return;

	len = min_t(size_t, 32, nbytes);
	crng_make_state(chacha_state, buf, len);
	nbytes -= len;
	buf += len;

	while (nbytes) {
		if (nbytes < CHACHA_BLOCK_SIZE) {
			chacha20_block(chacha_state, tmp);
			memcpy(buf, tmp, nbytes);
			memzero_explicit(tmp, sizeof(tmp));
			break;
		}

		chacha20_block(chacha_state, buf);
		if (unlikely(chacha_state[12] == 0))
			++chacha_state[13];
		nbytes -= CHACHA_BLOCK_SIZE;
		buf += CHACHA_BLOCK_SIZE;
	}

	memzero_explicit(chacha_state, sizeof(chacha_state));
}

/*
 * This function is the exported kernel interface.  It returns some
 * number of good random numbers, suitable for key generation, seeding
 * TCP sequence numbers, etc.  It does not rely on the hardware random
 * number generator.  For random bytes direct from the hardware RNG
 * (when available), use get_random_bytes_arch(). In order to ensure
 * that the randomness provided by this function is okay, the function
 * wait_for_random_bytes() should be called and return 0 at least once
 * at any point prior.
 */
void get_random_bytes(void *buf, size_t nbytes)
{
445
	warn_unseeded_randomness();
446 447 448 449 450 451
	_get_random_bytes(buf, nbytes);
}
EXPORT_SYMBOL(get_random_bytes);

static ssize_t get_random_bytes_user(void __user *buf, size_t nbytes)
{
452
	size_t len, left, ret = 0;
453 454 455 456 457 458
	u32 chacha_state[CHACHA_STATE_WORDS];
	u8 output[CHACHA_BLOCK_SIZE];

	if (!nbytes)
		return 0;

459 460 461 462 463 464 465 466 467 468 469 470
	/*
	 * Immediately overwrite the ChaCha key at index 4 with random
	 * bytes, in case userspace causes copy_to_user() below to sleep
	 * forever, so that we still retain forward secrecy in that case.
	 */
	crng_make_state(chacha_state, (u8 *)&chacha_state[4], CHACHA_KEY_SIZE);
	/*
	 * However, if we're doing a read of len <= 32, we don't need to
	 * use chacha_state after, so we can simply return those bytes to
	 * the user directly.
	 */
	if (nbytes <= CHACHA_KEY_SIZE) {
471
		ret = nbytes - copy_to_user(buf, &chacha_state[4], nbytes);
472 473
		goto out_zero_chacha;
	}
474

475
	for (;;) {
476 477 478 479 480
		chacha20_block(chacha_state, output);
		if (unlikely(chacha_state[12] == 0))
			++chacha_state[13];

		len = min_t(size_t, nbytes, CHACHA_BLOCK_SIZE);
481 482 483
		left = copy_to_user(buf, output, len);
		if (left) {
			ret += len - left;
484 485 486 487 488
			break;
		}

		buf += len;
		ret += len;
489 490 491
		nbytes -= len;
		if (!nbytes)
			break;
492 493

		BUILD_BUG_ON(PAGE_SIZE % CHACHA_BLOCK_SIZE != 0);
494
		if (ret % PAGE_SIZE == 0) {
495 496 497 498
			if (signal_pending(current))
				break;
			cond_resched();
		}
499
	}
500 501

	memzero_explicit(output, sizeof(output));
502 503
out_zero_chacha:
	memzero_explicit(chacha_state, sizeof(chacha_state));
504
	return ret ? ret : -EFAULT;
505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542
}

/*
 * Batched entropy returns random integers. The quality of the random
 * number is good as /dev/urandom. In order to ensure that the randomness
 * provided by this function is okay, the function wait_for_random_bytes()
 * should be called and return 0 at least once at any point prior.
 */
struct batched_entropy {
	union {
		/*
		 * We make this 1.5x a ChaCha block, so that we get the
		 * remaining 32 bytes from fast key erasure, plus one full
		 * block from the detached ChaCha state. We can increase
		 * the size of this later if needed so long as we keep the
		 * formula of (integer_blocks + 0.5) * CHACHA_BLOCK_SIZE.
		 */
		u64 entropy_u64[CHACHA_BLOCK_SIZE * 3 / (2 * sizeof(u64))];
		u32 entropy_u32[CHACHA_BLOCK_SIZE * 3 / (2 * sizeof(u32))];
	};
	local_lock_t lock;
	unsigned long generation;
	unsigned int position;
};


static DEFINE_PER_CPU(struct batched_entropy, batched_entropy_u64) = {
	.lock = INIT_LOCAL_LOCK(batched_entropy_u64.lock),
	.position = UINT_MAX
};

u64 get_random_u64(void)
{
	u64 ret;
	unsigned long flags;
	struct batched_entropy *batch;
	unsigned long next_gen;

543
	warn_unseeded_randomness();
544

545 546 547 548 549
	if  (!crng_ready()) {
		_get_random_bytes(&ret, sizeof(ret));
		return ret;
	}

550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580
	local_lock_irqsave(&batched_entropy_u64.lock, flags);
	batch = raw_cpu_ptr(&batched_entropy_u64);

	next_gen = READ_ONCE(base_crng.generation);
	if (batch->position >= ARRAY_SIZE(batch->entropy_u64) ||
	    next_gen != batch->generation) {
		_get_random_bytes(batch->entropy_u64, sizeof(batch->entropy_u64));
		batch->position = 0;
		batch->generation = next_gen;
	}

	ret = batch->entropy_u64[batch->position];
	batch->entropy_u64[batch->position] = 0;
	++batch->position;
	local_unlock_irqrestore(&batched_entropy_u64.lock, flags);
	return ret;
}
EXPORT_SYMBOL(get_random_u64);

static DEFINE_PER_CPU(struct batched_entropy, batched_entropy_u32) = {
	.lock = INIT_LOCAL_LOCK(batched_entropy_u32.lock),
	.position = UINT_MAX
};

u32 get_random_u32(void)
{
	u32 ret;
	unsigned long flags;
	struct batched_entropy *batch;
	unsigned long next_gen;

581
	warn_unseeded_randomness();
582

583 584 585 586 587
	if  (!crng_ready()) {
		_get_random_bytes(&ret, sizeof(ret));
		return ret;
	}

588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606
	local_lock_irqsave(&batched_entropy_u32.lock, flags);
	batch = raw_cpu_ptr(&batched_entropy_u32);

	next_gen = READ_ONCE(base_crng.generation);
	if (batch->position >= ARRAY_SIZE(batch->entropy_u32) ||
	    next_gen != batch->generation) {
		_get_random_bytes(batch->entropy_u32, sizeof(batch->entropy_u32));
		batch->position = 0;
		batch->generation = next_gen;
	}

	ret = batch->entropy_u32[batch->position];
	batch->entropy_u32[batch->position] = 0;
	++batch->position;
	local_unlock_irqrestore(&batched_entropy_u32.lock, flags);
	return ret;
}
EXPORT_SYMBOL(get_random_u32);

607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625
#ifdef CONFIG_SMP
/*
 * This function is called when the CPU is coming up, with entry
 * CPUHP_RANDOM_PREPARE, which comes before CPUHP_WORKQUEUE_PREP.
 */
int random_prepare_cpu(unsigned int cpu)
{
	/*
	 * When the cpu comes back online, immediately invalidate both
	 * the per-cpu crng and all batches, so that we serve fresh
	 * randomness.
	 */
	per_cpu_ptr(&crngs, cpu)->generation = ULONG_MAX;
	per_cpu_ptr(&batched_entropy_u32, cpu)->position = UINT_MAX;
	per_cpu_ptr(&batched_entropy_u64, cpu)->position = UINT_MAX;
	return 0;
}
#endif

626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684
/**
 * randomize_page - Generate a random, page aligned address
 * @start:	The smallest acceptable address the caller will take.
 * @range:	The size of the area, starting at @start, within which the
 *		random address must fall.
 *
 * If @start + @range would overflow, @range is capped.
 *
 * NOTE: Historical use of randomize_range, which this replaces, presumed that
 * @start was already page aligned.  We now align it regardless.
 *
 * Return: A page aligned address within [start, start + range).  On error,
 * @start is returned.
 */
unsigned long randomize_page(unsigned long start, unsigned long range)
{
	if (!PAGE_ALIGNED(start)) {
		range -= PAGE_ALIGN(start) - start;
		start = PAGE_ALIGN(start);
	}

	if (start > ULONG_MAX - range)
		range = ULONG_MAX - start;

	range >>= PAGE_SHIFT;

	if (range == 0)
		return start;

	return start + (get_random_long() % range << PAGE_SHIFT);
}

/*
 * This function will use the architecture-specific hardware random
 * number generator if it is available. It is not recommended for
 * use. Use get_random_bytes() instead. It returns the number of
 * bytes filled in.
 */
size_t __must_check get_random_bytes_arch(void *buf, size_t nbytes)
{
	size_t left = nbytes;
	u8 *p = buf;

	while (left) {
		unsigned long v;
		size_t chunk = min_t(size_t, left, sizeof(unsigned long));

		if (!arch_get_random_long(&v))
			break;

		memcpy(p, &v, chunk);
		p += chunk;
		left -= chunk;
	}

	return nbytes - left;
}
EXPORT_SYMBOL(get_random_bytes_arch);

685 686 687 688 689 690 691 692 693 694 695

/**********************************************************************
 *
 * Entropy accumulation and extraction routines.
 *
 * Callers may add entropy via:
 *
 *     static void mix_pool_bytes(const void *in, size_t nbytes)
 *
 * After which, if added entropy should be credited:
 *
696
 *     static void credit_init_bits(size_t nbits)
697
 *
698
 * Finally, extract entropy via:
699 700 701 702 703
 *
 *     static void extract_entropy(void *buf, size_t nbytes)
 *
 **********************************************************************/

704 705
enum {
	POOL_BITS = BLAKE2S_HASH_SIZE * 8,
706 707
	POOL_READY_BITS = POOL_BITS, /* When crng_init->CRNG_READY */
	POOL_EARLY_BITS = POOL_READY_BITS / 2 /* When crng_init->CRNG_EARLY */
708 709 710 711 712
};

static struct {
	struct blake2s_state hash;
	spinlock_t lock;
713
	unsigned int init_bits;
714 715 716 717 718 719 720 721
} input_pool = {
	.hash.h = { BLAKE2S_IV0 ^ (0x01010000 | BLAKE2S_HASH_SIZE),
		    BLAKE2S_IV1, BLAKE2S_IV2, BLAKE2S_IV3, BLAKE2S_IV4,
		    BLAKE2S_IV5, BLAKE2S_IV6, BLAKE2S_IV7 },
	.hash.outlen = BLAKE2S_HASH_SIZE,
	.lock = __SPIN_LOCK_UNLOCKED(input_pool.lock),
};

722 723 724 725
static void _mix_pool_bytes(const void *in, size_t nbytes)
{
	blake2s_update(&input_pool.hash, in, nbytes);
}
726 727

/*
728 729 730
 * This function adds bytes into the input pool. It does not
 * update the initialization bit counter; the caller should call
 * credit_init_bits if this is appropriate.
731
 */
732
static void mix_pool_bytes(const void *in, size_t nbytes)
733
{
734 735 736 737 738
	unsigned long flags;

	spin_lock_irqsave(&input_pool.lock, flags);
	_mix_pool_bytes(in, nbytes);
	spin_unlock_irqrestore(&input_pool.lock, flags);
739 740
}

741 742 743 744 745
/*
 * This is an HKDF-like construction for using the hashed collected entropy
 * as a PRF key, that's then expanded block-by-block.
 */
static void extract_entropy(void *buf, size_t nbytes)
746 747
{
	unsigned long flags;
748 749 750 751 752 753 754 755 756 757 758 759
	u8 seed[BLAKE2S_HASH_SIZE], next_key[BLAKE2S_HASH_SIZE];
	struct {
		unsigned long rdseed[32 / sizeof(long)];
		size_t counter;
	} block;
	size_t i;

	for (i = 0; i < ARRAY_SIZE(block.rdseed); ++i) {
		if (!arch_get_random_seed_long(&block.rdseed[i]) &&
		    !arch_get_random_long(&block.rdseed[i]))
			block.rdseed[i] = random_get_entropy();
	}
760 761

	spin_lock_irqsave(&input_pool.lock, flags);
762 763 764 765 766 767 768 769 770

	/* seed = HASHPRF(last_key, entropy_input) */
	blake2s_final(&input_pool.hash, seed);

	/* next_key = HASHPRF(seed, RDSEED || 0) */
	block.counter = 0;
	blake2s(next_key, (u8 *)&block, seed, sizeof(next_key), sizeof(block), sizeof(seed));
	blake2s_init_key(&input_pool.hash, BLAKE2S_HASH_SIZE, next_key, sizeof(next_key));

771
	spin_unlock_irqrestore(&input_pool.lock, flags);
772 773 774 775 776 777 778 779 780 781 782 783 784 785 786
	memzero_explicit(next_key, sizeof(next_key));

	while (nbytes) {
		i = min_t(size_t, nbytes, BLAKE2S_HASH_SIZE);
		/* output = HASHPRF(seed, RDSEED || ++counter) */
		++block.counter;
		blake2s(buf, (u8 *)&block, seed, i, sizeof(block), sizeof(seed));
		nbytes -= i;
		buf += i;
	}

	memzero_explicit(seed, sizeof(seed));
	memzero_explicit(&block, sizeof(block));
}

787
static void credit_init_bits(size_t nbits)
788
{
789
	unsigned int new, orig, add;
790 791
	unsigned long flags;

792
	if (crng_ready() || !nbits)
793 794 795 796 797
		return;

	add = min_t(size_t, nbits, POOL_BITS);

	do {
798
		orig = READ_ONCE(input_pool.init_bits);
799 800
		new = min_t(unsigned int, POOL_BITS, orig + add);
	} while (cmpxchg(&input_pool.init_bits, orig, new) != orig);
801

802 803 804 805 806 807
	if (orig < POOL_READY_BITS && new >= POOL_READY_BITS) {
		crng_reseed(); /* Sets crng_init to CRNG_READY under base_crng.lock. */
		process_random_ready_list();
		wake_up_interruptible(&crng_init_wait);
		kill_fasync(&fasync, SIGIO, POLL_IN);
		pr_notice("crng init done\n");
808
		if (urandom_warning.missed)
809 810 811
			pr_notice("%d urandom warning(s) missed due to ratelimiting\n",
				  urandom_warning.missed);
	} else if (orig < POOL_EARLY_BITS && new >= POOL_EARLY_BITS) {
812
		spin_lock_irqsave(&base_crng.lock, flags);
813
		/* Check if crng_init is CRNG_EMPTY, to avoid race with crng_reseed(). */
814
		if (crng_init == CRNG_EMPTY) {
815
			extract_entropy(base_crng.key, sizeof(base_crng.key));
816
			crng_init = CRNG_EARLY;
817 818 819 820 821
		}
		spin_unlock_irqrestore(&base_crng.lock, flags);
	}
}

822 823 824 825 826 827 828 829 830 831 832 833

/**********************************************************************
 *
 * Entropy collection routines.
 *
 * The following exported functions are used for pushing entropy into
 * the above entropy accumulation routines:
 *
 *	void add_device_randomness(const void *buf, size_t size);
 *	void add_hwgenerator_randomness(const void *buffer, size_t count,
 *					size_t entropy);
 *	void add_bootloader_randomness(const void *buf, size_t size);
834
 *	void add_vmfork_randomness(const void *unique_vm_id, size_t size);
835
 *	void add_interrupt_randomness(int irq);
836 837 838
 *	void add_input_randomness(unsigned int type, unsigned int code,
 *	                          unsigned int value);
 *	void add_disk_randomness(struct gendisk *disk);
839 840 841 842 843 844 845 846 847 848 849 850 851
 *
 * add_device_randomness() adds data to the input pool that
 * is likely to differ between two devices (or possibly even per boot).
 * This would be things like MAC addresses or serial numbers, or the
 * read-out of the RTC. This does *not* credit any actual entropy to
 * the pool, but it initializes the pool to different values for devices
 * that might otherwise be identical and have very little entropy
 * available to them (particularly common in the embedded world).
 *
 * add_hwgenerator_randomness() is for true hardware RNGs, and will credit
 * entropy as specified by the caller. If the entropy pool is full it will
 * block until more entropy is needed.
 *
852 853 854
 * add_bootloader_randomness() is called by bootloader drivers, such as EFI
 * and device tree, and credits its input depending on whether or not the
 * configuration option CONFIG_RANDOM_TRUST_BOOTLOADER is set.
855
 *
856 857 858 859
 * add_vmfork_randomness() adds a unique (but not necessarily secret) ID
 * representing the current instance of a VM to the pool, without crediting,
 * and then force-reseeds the crng so that it takes effect immediately.
 *
860 861 862 863 864
 * add_interrupt_randomness() uses the interrupt timing as random
 * inputs to the entropy pool. Using the cycle counters and the irq source
 * as inputs, it feeds the input pool roughly once a second or after 64
 * interrupts, crediting 1 bit of entropy for whichever comes first.
 *
865 866 867 868 869 870 871 872 873 874 875 876 877
 * add_input_randomness() uses the input layer interrupt timing, as well
 * as the event type information from the hardware.
 *
 * add_disk_randomness() uses what amounts to the seek time of block
 * layer request events, on a per-disk_devt basis, as input to the
 * entropy pool. Note that high-speed solid state drives with very low
 * seek times do not make for good sources of entropy, as their seek
 * times are usually fairly consistent.
 *
 * The last two routines try to estimate how many bits of entropy
 * to credit. They do this by keeping track of the first and second
 * order deltas of the event timings.
 *
878 879 880
 **********************************************************************/

static bool trust_cpu __ro_after_init = IS_ENABLED(CONFIG_RANDOM_TRUST_CPU);
881
static bool trust_bootloader __ro_after_init = IS_ENABLED(CONFIG_RANDOM_TRUST_BOOTLOADER);
882 883 884 885
static int __init parse_trust_cpu(char *arg)
{
	return kstrtobool(arg, &trust_cpu);
}
886 887 888 889
static int __init parse_trust_bootloader(char *arg)
{
	return kstrtobool(arg, &trust_bootloader);
}
890
early_param("random.trust_cpu", parse_trust_cpu);
891
early_param("random.trust_bootloader", parse_trust_bootloader);
892

893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911
static int random_pm_notification(struct notifier_block *nb, unsigned long action, void *data)
{
	unsigned long flags, entropy = random_get_entropy();

	/*
	 * Encode a representation of how long the system has been suspended,
	 * in a way that is distinct from prior system suspends.
	 */
	ktime_t stamps[] = { ktime_get(), ktime_get_boottime(), ktime_get_real() };

	spin_lock_irqsave(&input_pool.lock, flags);
	_mix_pool_bytes(&action, sizeof(action));
	_mix_pool_bytes(stamps, sizeof(stamps));
	_mix_pool_bytes(&entropy, sizeof(entropy));
	spin_unlock_irqrestore(&input_pool.lock, flags);

	if (crng_ready() && (action == PM_RESTORE_PREPARE ||
	    (action == PM_POST_SUSPEND &&
	     !IS_ENABLED(CONFIG_PM_AUTOSLEEP) && !IS_ENABLED(CONFIG_ANDROID)))) {
912
		crng_reseed();
913 914 915 916 917 918 919
		pr_notice("crng reseeded on system resumption\n");
	}
	return 0;
}

static struct notifier_block pm_notifier = { .notifier_call = random_pm_notification };

920
/*
921 922 923 924 925
 * The first collection of entropy occurs at system boot while interrupts
 * are still turned off. Here we push in RDSEED, a timestamp, and utsname().
 * Depending on the above configuration knob, RDSEED may be considered
 * sufficient for initialization. Note that much earlier setup may already
 * have pushed entropy into the input pool by the time we get here.
926
 */
927
int __init rand_initialize(void)
928
{
929 930 931 932
	size_t i;
	ktime_t now = ktime_get_real();
	bool arch_init = true;
	unsigned long rv;
933

934 935 936 937 938
#if defined(LATENT_ENTROPY_PLUGIN)
	static const u8 compiletime_seed[BLAKE2S_BLOCK_SIZE] __initconst __latent_entropy;
	_mix_pool_bytes(compiletime_seed, sizeof(compiletime_seed));
#endif

939 940 941 942 943 944
	for (i = 0; i < BLAKE2S_BLOCK_SIZE; i += sizeof(rv)) {
		if (!arch_get_random_seed_long_early(&rv) &&
		    !arch_get_random_long_early(&rv)) {
			rv = random_get_entropy();
			arch_init = false;
		}
945
		_mix_pool_bytes(&rv, sizeof(rv));
946
	}
947 948
	_mix_pool_bytes(&now, sizeof(now));
	_mix_pool_bytes(utsname(), sizeof(*(utsname())));
949

950 951 952 953
	if (crng_ready())
		crng_reseed();
	else if (arch_init && trust_cpu)
		credit_init_bits(BLAKE2S_BLOCK_SIZE * 8);
954

955 956
	WARN_ON(register_pm_notifier(&pm_notifier));

957 958
	WARN(!random_get_entropy(), "Missing cycle counter and fallback timer; RNG "
				    "entropy collection will consequently suffer.");
959
	return 0;
960
}
961

962
/*
963 964
 * Add device- or boot-specific data to the input pool to help
 * initialize it.
965
 *
966 967 968
 * None of this adds any entropy; it is meant to avoid the problem of
 * the entropy pool having similar initial state across largely
 * identical devices.
969
 */
970
void add_device_randomness(const void *buf, size_t size)
971
{
972 973
	unsigned long entropy = random_get_entropy();
	unsigned long flags;
974

975
	spin_lock_irqsave(&input_pool.lock, flags);
976
	_mix_pool_bytes(&entropy, sizeof(entropy));
977
	_mix_pool_bytes(buf, size);
978
	spin_unlock_irqrestore(&input_pool.lock, flags);
979 980 981
}
EXPORT_SYMBOL(add_device_randomness);

982 983 984 985 986 987 988 989
/*
 * Interface for in-kernel drivers of true hardware RNGs.
 * Those devices may produce endless random bits and will be throttled
 * when our pool is full.
 */
void add_hwgenerator_randomness(const void *buffer, size_t count,
				size_t entropy)
{
990 991 992
	mix_pool_bytes(buffer, count);
	credit_init_bits(entropy);

993
	/*
994 995
	 * Throttle writing to once every CRNG_RESEED_INTERVAL, unless
	 * we're not yet initialized.
996
	 */
997 998
	if (!kthread_should_stop() && crng_ready())
		schedule_timeout_interruptible(CRNG_RESEED_INTERVAL);
999 1000 1001 1002
}
EXPORT_SYMBOL_GPL(add_hwgenerator_randomness);

/*
1003 1004
 * Handle random seed passed by bootloader, and credit it if
 * CONFIG_RANDOM_TRUST_BOOTLOADER is set.
1005 1006 1007
 */
void add_bootloader_randomness(const void *buf, size_t size)
{
1008
	mix_pool_bytes(buf, size);
1009
	if (trust_bootloader)
1010
		credit_init_bits(size * 8);
1011 1012 1013
}
EXPORT_SYMBOL_GPL(add_bootloader_randomness);

1014
#if IS_ENABLED(CONFIG_VMGENID)
1015 1016
static BLOCKING_NOTIFIER_HEAD(vmfork_chain);

1017 1018 1019 1020 1021 1022 1023 1024 1025
/*
 * Handle a new unique VM ID, which is unique, not secret, so we
 * don't credit it, but we do immediately force a reseed after so
 * that it's used by the crng posthaste.
 */
void add_vmfork_randomness(const void *unique_vm_id, size_t size)
{
	add_device_randomness(unique_vm_id, size);
	if (crng_ready()) {
1026
		crng_reseed();
1027 1028
		pr_notice("crng reseeded due to virtual machine fork\n");
	}
1029
	blocking_notifier_call_chain(&vmfork_chain, 0, NULL);
1030
}
1031
#if IS_MODULE(CONFIG_VMGENID)
1032
EXPORT_SYMBOL_GPL(add_vmfork_randomness);
1033
#endif
1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045

int register_random_vmfork_notifier(struct notifier_block *nb)
{
	return blocking_notifier_chain_register(&vmfork_chain, nb);
}
EXPORT_SYMBOL_GPL(register_random_vmfork_notifier);

int unregister_random_vmfork_notifier(struct notifier_block *nb)
{
	return blocking_notifier_chain_unregister(&vmfork_chain, nb);
}
EXPORT_SYMBOL_GPL(unregister_random_vmfork_notifier);
1046
#endif
1047

1048
struct fast_pool {
1049
	struct work_struct mix;
1050
	unsigned long pool[4];
1051
	unsigned long last;
1052
	unsigned int count;
1053 1054
};

1055 1056
static DEFINE_PER_CPU(struct fast_pool, irq_randomness) = {
#ifdef CONFIG_64BIT
1057 1058
#define FASTMIX_PERM SIPHASH_PERMUTATION
	.pool = { SIPHASH_CONST_0, SIPHASH_CONST_1, SIPHASH_CONST_2, SIPHASH_CONST_3 }
1059
#else
1060 1061
#define FASTMIX_PERM HSIPHASH_PERMUTATION
	.pool = { HSIPHASH_CONST_0, HSIPHASH_CONST_1, HSIPHASH_CONST_2, HSIPHASH_CONST_3 }
1062 1063 1064
#endif
};

1065
/*
1066 1067 1068
 * This is [Half]SipHash-1-x, starting from an empty key. Because
 * the key is fixed, it assumes that its inputs are non-malicious,
 * and therefore this has no security on its own. s represents the
1069
 * four-word SipHash state, while v represents a two-word input.
1070
 */
1071
static void fast_mix(unsigned long s[4], unsigned long v1, unsigned long v2)
1072
{
1073
	s[3] ^= v1;
1074
	FASTMIX_PERM(s[0], s[1], s[2], s[3]);
1075 1076
	s[0] ^= v1;
	s[3] ^= v2;
1077
	FASTMIX_PERM(s[0], s[1], s[2], s[3]);
1078
	s[0] ^= v2;
1079 1080
}

1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103
#ifdef CONFIG_SMP
/*
 * This function is called when the CPU has just come online, with
 * entry CPUHP_AP_RANDOM_ONLINE, just after CPUHP_AP_WORKQUEUE_ONLINE.
 */
int random_online_cpu(unsigned int cpu)
{
	/*
	 * During CPU shutdown and before CPU onlining, add_interrupt_
	 * randomness() may schedule mix_interrupt_randomness(), and
	 * set the MIX_INFLIGHT flag. However, because the worker can
	 * be scheduled on a different CPU during this period, that
	 * flag will never be cleared. For that reason, we zero out
	 * the flag here, which runs just after workqueues are onlined
	 * for the CPU again. This also has the effect of setting the
	 * irq randomness count to zero so that new accumulated irqs
	 * are fresh.
	 */
	per_cpu_ptr(&irq_randomness, cpu)->count = 0;
	return 0;
}
#endif

1104 1105 1106
static void mix_interrupt_randomness(struct work_struct *work)
{
	struct fast_pool *fast_pool = container_of(work, struct fast_pool, mix);
1107
	/*
1108 1109 1110 1111 1112
	 * The size of the copied stack pool is explicitly 2 longs so that we
	 * only ever ingest half of the siphash output each time, retaining
	 * the other half as the next "key" that carries over. The entropy is
	 * supposed to be sufficiently dispersed between bits so on average
	 * we don't wind up "losing" some.
1113
	 */
1114
	unsigned long pool[2];
1115
	unsigned int count;
1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127

	/* Check to see if we're running on the wrong CPU due to hotplug. */
	local_irq_disable();
	if (fast_pool != this_cpu_ptr(&irq_randomness)) {
		local_irq_enable();
		return;
	}

	/*
	 * Copy the pool to the stack so that the mixer always has a
	 * consistent view, before we reenable irqs again.
	 */
1128
	memcpy(pool, fast_pool->pool, sizeof(pool));
1129
	count = fast_pool->count;
1130
	fast_pool->count = 0;
1131 1132 1133
	fast_pool->last = jiffies;
	local_irq_enable();

1134
	mix_pool_bytes(pool, sizeof(pool));
1135
	credit_init_bits(max(1u, (count & U16_MAX) / 64));
1136

1137 1138 1139
	memzero_explicit(pool, sizeof(pool));
}

1140
void add_interrupt_randomness(int irq)
L
Linus Torvalds 已提交
1141
{
1142
	enum { MIX_INFLIGHT = 1U << 31 };
1143
	unsigned long entropy = random_get_entropy();
1144 1145
	struct fast_pool *fast_pool = this_cpu_ptr(&irq_randomness);
	struct pt_regs *regs = get_irq_regs();
1146
	unsigned int new_count;
1147

1148 1149
	fast_mix(fast_pool->pool, entropy,
		 (regs ? instruction_pointer(regs) : _RET_IP_) ^ swab(irq));
1150
	new_count = ++fast_pool->count;
1151

1152
	if (new_count & MIX_INFLIGHT)
L
Linus Torvalds 已提交
1153 1154
		return;

1155
	if (new_count < 64 && !time_is_before_jiffies(fast_pool->last + HZ))
1156
		return;
1157

1158 1159
	if (unlikely(!fast_pool->mix.func))
		INIT_WORK(&fast_pool->mix, mix_interrupt_randomness);
1160
	fast_pool->count |= MIX_INFLIGHT;
1161
	queue_work_on(raw_smp_processor_id(), system_highpri_wq, &fast_pool->mix);
L
Linus Torvalds 已提交
1162
}
1163
EXPORT_SYMBOL_GPL(add_interrupt_randomness);
L
Linus Torvalds 已提交
1164

1165 1166 1167 1168 1169 1170 1171 1172
/* There is one of these per entropy source */
struct timer_rand_state {
	unsigned long last_time;
	long last_delta, last_delta2;
};

/*
 * This function adds entropy to the entropy "pool" by using timing
1173 1174 1175 1176
 * delays. It uses the timer_rand_state structure to make an estimate
 * of how many bits of entropy this call has added to the pool. The
 * value "num" is also added to the pool; it should somehow describe
 * the type of event that just happened.
1177 1178 1179 1180 1181
 */
static void add_timer_randomness(struct timer_rand_state *state, unsigned int num)
{
	unsigned long entropy = random_get_entropy(), now = jiffies, flags;
	long delta, delta2, delta3;
1182
	unsigned int bits;
1183

1184 1185 1186 1187 1188
	/*
	 * If we're in a hard IRQ, add_interrupt_randomness() will be called
	 * sometime after, so mix into the fast pool.
	 */
	if (in_hardirq()) {
1189
		fast_mix(this_cpu_ptr(&irq_randomness)->pool, entropy, num);
1190 1191 1192 1193 1194 1195
	} else {
		spin_lock_irqsave(&input_pool.lock, flags);
		_mix_pool_bytes(&entropy, sizeof(entropy));
		_mix_pool_bytes(&num, sizeof(num));
		spin_unlock_irqrestore(&input_pool.lock, flags);
	}
1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225

	if (crng_ready())
		return;

	/*
	 * Calculate number of bits of randomness we probably added.
	 * We take into account the first, second and third-order deltas
	 * in order to make our estimate.
	 */
	delta = now - READ_ONCE(state->last_time);
	WRITE_ONCE(state->last_time, now);

	delta2 = delta - READ_ONCE(state->last_delta);
	WRITE_ONCE(state->last_delta, delta);

	delta3 = delta2 - READ_ONCE(state->last_delta2);
	WRITE_ONCE(state->last_delta2, delta2);

	if (delta < 0)
		delta = -delta;
	if (delta2 < 0)
		delta2 = -delta2;
	if (delta3 < 0)
		delta3 = -delta3;
	if (delta > delta2)
		delta = delta2;
	if (delta > delta3)
		delta = delta3;

	/*
1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236
	 * delta is now minimum absolute delta. Round down by 1 bit
	 * on general principles, and limit entropy estimate to 11 bits.
	 */
	bits = min(fls(delta >> 1), 11);

	/*
	 * As mentioned above, if we're in a hard IRQ, add_interrupt_randomness()
	 * will run after this, which uses a different crediting scheme of 1 bit
	 * per every 64 interrupts. In order to let that function do accounting
	 * close to the one in this function, we credit a full 64/64 bit per bit,
	 * and then subtract one to account for the extra one added.
1237
	 */
1238 1239 1240 1241
	if (in_hardirq())
		this_cpu_ptr(&irq_randomness)->count += max(1u, bits * 64) - 1;
	else
		credit_init_bits(bits);
1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285
}

void add_input_randomness(unsigned int type, unsigned int code,
			  unsigned int value)
{
	static unsigned char last_value;
	static struct timer_rand_state input_timer_state = { INITIAL_JIFFIES };

	/* Ignore autorepeat and the like. */
	if (value == last_value)
		return;

	last_value = value;
	add_timer_randomness(&input_timer_state,
			     (type << 4) ^ code ^ (code >> 4) ^ value);
}
EXPORT_SYMBOL_GPL(add_input_randomness);

#ifdef CONFIG_BLOCK
void add_disk_randomness(struct gendisk *disk)
{
	if (!disk || !disk->random)
		return;
	/* First major is 1, so we get >= 0x200 here. */
	add_timer_randomness(disk->random, 0x100 + disk_devt(disk));
}
EXPORT_SYMBOL_GPL(add_disk_randomness);

void rand_initialize_disk(struct gendisk *disk)
{
	struct timer_rand_state *state;

	/*
	 * If kzalloc returns null, we just won't use that entropy
	 * source.
	 */
	state = kzalloc(sizeof(struct timer_rand_state), GFP_KERNEL);
	if (state) {
		state->last_time = INITIAL_JIFFIES;
		disk->random = state;
	}
}
#endif

1286 1287 1288 1289 1290 1291
struct entropy_timer_state {
	unsigned long entropy;
	struct timer_list timer;
	unsigned int samples, samples_per_bit;
};

1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304
/*
 * Each time the timer fires, we expect that we got an unpredictable
 * jump in the cycle counter. Even if the timer is running on another
 * CPU, the timer activity will be touching the stack of the CPU that is
 * generating entropy..
 *
 * Note that we don't re-arm the timer in the timer itself - we are
 * happy to be scheduled away, since that just makes the load more
 * complex, but we do not want the timer to keep ticking unless the
 * entropy loop is running.
 *
 * So the re-arming always happens in the entropy loop itself.
 */
1305
static void entropy_timer(struct timer_list *timer)
1306
{
1307 1308 1309
	struct entropy_timer_state *state = container_of(timer, struct entropy_timer_state, timer);

	if (++state->samples == state->samples_per_bit) {
1310
		credit_init_bits(1);
1311 1312
		state->samples = 0;
	}
1313 1314 1315 1316 1317 1318 1319 1320
}

/*
 * If we have an actual cycle counter, see if we can
 * generate enough entropy with timing noise
 */
static void try_to_generate_entropy(void)
{
1321 1322 1323 1324
	enum { NUM_TRIAL_SAMPLES = 8192, MAX_SAMPLES_PER_BIT = 32 };
	struct entropy_timer_state stack;
	unsigned int i, num_different = 0;
	unsigned long last = random_get_entropy();
1325

1326 1327 1328 1329 1330 1331 1332 1333
	for (i = 0; i < NUM_TRIAL_SAMPLES - 1; ++i) {
		stack.entropy = random_get_entropy();
		if (stack.entropy != last)
			++num_different;
		last = stack.entropy;
	}
	stack.samples_per_bit = DIV_ROUND_UP(NUM_TRIAL_SAMPLES, num_different + 1);
	if (stack.samples_per_bit > MAX_SAMPLES_PER_BIT)
1334 1335
		return;

1336
	stack.samples = 0;
1337
	timer_setup_on_stack(&stack.timer, entropy_timer, 0);
1338
	while (!crng_ready() && !signal_pending(current)) {
1339
		if (!timer_pending(&stack.timer))
1340
			mod_timer(&stack.timer, jiffies + 1);
1341
		mix_pool_bytes(&stack.entropy, sizeof(stack.entropy));
1342
		schedule();
1343
		stack.entropy = random_get_entropy();
1344 1345 1346 1347
	}

	del_timer_sync(&stack.timer);
	destroy_timer_on_stack(&stack.timer);
1348
	mix_pool_bytes(&stack.entropy, sizeof(stack.entropy));
1349 1350
}

1351 1352 1353 1354 1355 1356 1357 1358

/**********************************************************************
 *
 * Userspace reader/writer interfaces.
 *
 * getrandom(2) is the primary modern interface into the RNG and should
 * be used in preference to anything else.
 *
1359 1360 1361 1362 1363 1364 1365 1366
 * Reading from /dev/random has the same functionality as calling
 * getrandom(2) with flags=0. In earlier versions, however, it had
 * vastly different semantics and should therefore be avoided, to
 * prevent backwards compatibility issues.
 *
 * Reading from /dev/urandom has the same functionality as calling
 * getrandom(2) with flags=GRND_INSECURE. Because it does not block
 * waiting for the RNG to be ready, it should not be used.
1367 1368 1369 1370
 *
 * Writing to either /dev/random or /dev/urandom adds entropy to
 * the input pool but does not credit it.
 *
1371 1372
 * Polling on /dev/random indicates when the RNG is initialized, on
 * the read side, and when it wants new entropy, on the write side.
1373 1374 1375 1376 1377 1378 1379 1380 1381
 *
 * Both /dev/random and /dev/urandom have the same set of ioctls for
 * adding entropy, getting the entropy count, zeroing the count, and
 * reseeding the crng.
 *
 **********************************************************************/

SYSCALL_DEFINE3(getrandom, char __user *, buf, size_t, count, unsigned int,
		flags)
L
Linus Torvalds 已提交
1382
{
1383 1384
	if (flags & ~(GRND_NONBLOCK | GRND_RANDOM | GRND_INSECURE))
		return -EINVAL;
1385

1386 1387 1388 1389 1390 1391
	/*
	 * Requesting insecure and blocking randomness at the same time makes
	 * no sense.
	 */
	if ((flags & (GRND_INSECURE | GRND_RANDOM)) == (GRND_INSECURE | GRND_RANDOM))
		return -EINVAL;
1392

1393 1394
	if (count > INT_MAX)
		count = INT_MAX;
L
Linus Torvalds 已提交
1395

1396 1397
	if (!(flags & GRND_INSECURE) && !crng_ready()) {
		int ret;
1398

1399 1400 1401 1402 1403 1404 1405
		if (flags & GRND_NONBLOCK)
			return -EAGAIN;
		ret = wait_for_random_bytes();
		if (unlikely(ret))
			return ret;
	}
	return get_random_bytes_user(buf, count);
1406 1407
}

1408
static __poll_t random_poll(struct file *file, poll_table *wait)
L
Linus Torvalds 已提交
1409
{
1410
	poll_wait(file, &crng_init_wait, wait);
1411
	return crng_ready() ? EPOLLIN | EPOLLRDNORM : EPOLLOUT | EPOLLWRNORM;
L
Linus Torvalds 已提交
1412 1413
}

1414
static int write_pool(const char __user *ubuf, size_t count)
L
Linus Torvalds 已提交
1415
{
1416
	size_t len;
1417
	int ret = 0;
1418
	u8 block[BLAKE2S_BLOCK_SIZE];
L
Linus Torvalds 已提交
1419

1420 1421
	while (count) {
		len = min(count, sizeof(block));
1422 1423 1424 1425
		if (copy_from_user(block, ubuf, len)) {
			ret = -EFAULT;
			goto out;
		}
1426 1427 1428
		count -= len;
		ubuf += len;
		mix_pool_bytes(block, len);
1429
		cond_resched();
L
Linus Torvalds 已提交
1430
	}
1431

1432 1433 1434
out:
	memzero_explicit(block, sizeof(block));
	return ret;
1435 1436
}

1437 1438
static ssize_t random_write(struct file *file, const char __user *buffer,
			    size_t count, loff_t *ppos)
1439
{
1440
	int ret;
1441

1442
	ret = write_pool(buffer, count);
1443 1444 1445 1446
	if (ret)
		return ret;

	return (ssize_t)count;
L
Linus Torvalds 已提交
1447 1448
}

1449 1450 1451 1452 1453
static ssize_t urandom_read(struct file *file, char __user *buf, size_t nbytes,
			    loff_t *ppos)
{
	static int maxwarn = 10;

1454 1455 1456 1457 1458 1459 1460
	/*
	 * Opportunistically attempt to initialize the RNG on platforms that
	 * have fast cycle counters, but don't (for now) require it to succeed.
	 */
	if (!crng_ready())
		try_to_generate_entropy();

1461 1462 1463 1464 1465
	if (!crng_ready()) {
		if (!ratelimit_disable && maxwarn <= 0)
			++urandom_warning.missed;
		else if (ratelimit_disable || __ratelimit(&urandom_warning)) {
			--maxwarn;
1466 1467
			pr_notice("%s: uninitialized urandom read (%zd bytes read)\n",
				  current->comm, nbytes);
1468
		}
1469 1470 1471 1472 1473
	}

	return get_random_bytes_user(buf, nbytes);
}

1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484
static ssize_t random_read(struct file *file, char __user *buf, size_t nbytes,
			   loff_t *ppos)
{
	int ret;

	ret = wait_for_random_bytes();
	if (ret != 0)
		return ret;
	return get_random_bytes_user(buf, nbytes);
}

M
Matt Mackall 已提交
1485
static long random_ioctl(struct file *f, unsigned int cmd, unsigned long arg)
L
Linus Torvalds 已提交
1486 1487 1488 1489 1490 1491 1492
{
	int size, ent_count;
	int __user *p = (int __user *)arg;
	int retval;

	switch (cmd) {
	case RNDGETENTCNT:
1493
		/* Inherently racy, no point locking. */
1494
		if (put_user(input_pool.init_bits, p))
L
Linus Torvalds 已提交
1495 1496 1497 1498 1499 1500 1501
			return -EFAULT;
		return 0;
	case RNDADDTOENTCNT:
		if (!capable(CAP_SYS_ADMIN))
			return -EPERM;
		if (get_user(ent_count, p))
			return -EFAULT;
1502 1503
		if (ent_count < 0)
			return -EINVAL;
1504
		credit_init_bits(ent_count);
1505
		return 0;
L
Linus Torvalds 已提交
1506 1507 1508 1509 1510 1511 1512 1513 1514
	case RNDADDENTROPY:
		if (!capable(CAP_SYS_ADMIN))
			return -EPERM;
		if (get_user(ent_count, p++))
			return -EFAULT;
		if (ent_count < 0)
			return -EINVAL;
		if (get_user(size, p++))
			return -EFAULT;
1515
		retval = write_pool((const char __user *)p, size);
L
Linus Torvalds 已提交
1516 1517
		if (retval < 0)
			return retval;
1518
		credit_init_bits(ent_count);
1519
		return 0;
L
Linus Torvalds 已提交
1520 1521
	case RNDZAPENTCNT:
	case RNDCLEARPOOL:
1522
		/* No longer has any effect. */
L
Linus Torvalds 已提交
1523 1524 1525
		if (!capable(CAP_SYS_ADMIN))
			return -EPERM;
		return 0;
1526 1527 1528
	case RNDRESEEDCRNG:
		if (!capable(CAP_SYS_ADMIN))
			return -EPERM;
1529
		if (!crng_ready())
1530
			return -ENODATA;
1531
		crng_reseed();
1532
		return 0;
L
Linus Torvalds 已提交
1533 1534 1535 1536 1537
	default:
		return -EINVAL;
	}
}

1538 1539 1540 1541 1542
static int random_fasync(int fd, struct file *filp, int on)
{
	return fasync_helper(fd, filp, on, &fasync);
}

1543
const struct file_operations random_fops = {
1544
	.read = random_read,
L
Linus Torvalds 已提交
1545
	.write = random_write,
1546
	.poll = random_poll,
M
Matt Mackall 已提交
1547
	.unlocked_ioctl = random_ioctl,
1548
	.compat_ioctl = compat_ptr_ioctl,
1549
	.fasync = random_fasync,
1550
	.llseek = noop_llseek,
L
Linus Torvalds 已提交
1551 1552
};

1553 1554 1555 1556 1557 1558 1559 1560 1561
const struct file_operations urandom_fops = {
	.read = urandom_read,
	.write = random_write,
	.unlocked_ioctl = random_ioctl,
	.compat_ioctl = compat_ptr_ioctl,
	.fasync = random_fasync,
	.llseek = noop_llseek,
};

1562

L
Linus Torvalds 已提交
1563 1564
/********************************************************************
 *
1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582
 * Sysctl interface.
 *
 * These are partly unused legacy knobs with dummy values to not break
 * userspace and partly still useful things. They are usually accessible
 * in /proc/sys/kernel/random/ and are as follows:
 *
 * - boot_id - a UUID representing the current boot.
 *
 * - uuid - a random UUID, different each time the file is read.
 *
 * - poolsize - the number of bits of entropy that the input pool can
 *   hold, tied to the POOL_BITS constant.
 *
 * - entropy_avail - the number of bits of entropy currently in the
 *   input pool. Always <= poolsize.
 *
 * - write_wakeup_threshold - the amount of entropy in the input pool
 *   below which write polls to /dev/random will unblock, requesting
1583
 *   more entropy, tied to the POOL_READY_BITS constant. It is writable
1584 1585 1586
 *   to avoid breaking old userspaces, but writing to it does not
 *   change any behavior of the RNG.
 *
1587
 * - urandom_min_reseed_secs - fixed to the value CRNG_RESEED_INTERVAL.
1588 1589
 *   It is writable to avoid breaking old userspaces, but writing
 *   to it does not change any behavior of the RNG.
L
Linus Torvalds 已提交
1590 1591 1592 1593 1594 1595 1596
 *
 ********************************************************************/

#ifdef CONFIG_SYSCTL

#include <linux/sysctl.h>

1597
static int sysctl_random_min_urandom_seed = CRNG_RESEED_INTERVAL / HZ;
1598
static int sysctl_random_write_wakeup_bits = POOL_READY_BITS;
1599
static int sysctl_poolsize = POOL_BITS;
1600
static u8 sysctl_bootid[UUID_SIZE];
L
Linus Torvalds 已提交
1601 1602

/*
G
Greg Price 已提交
1603
 * This function is used to return both the bootid UUID, and random
1604
 * UUID. The difference is in whether table->data is NULL; if it is,
L
Linus Torvalds 已提交
1605 1606
 * then a new UUID is generated and returned to the user.
 */
1607 1608
static int proc_do_uuid(struct ctl_table *table, int write, void *buffer,
			size_t *lenp, loff_t *ppos)
L
Linus Torvalds 已提交
1609
{
1610 1611 1612 1613 1614 1615 1616 1617 1618
	u8 tmp_uuid[UUID_SIZE], *uuid;
	char uuid_string[UUID_STRING_LEN + 1];
	struct ctl_table fake_table = {
		.data = uuid_string,
		.maxlen = UUID_STRING_LEN
	};

	if (write)
		return -EPERM;
L
Linus Torvalds 已提交
1619 1620 1621 1622 1623

	uuid = table->data;
	if (!uuid) {
		uuid = tmp_uuid;
		generate_random_uuid(uuid);
1624 1625 1626 1627 1628 1629 1630 1631
	} else {
		static DEFINE_SPINLOCK(bootid_spinlock);

		spin_lock(&bootid_spinlock);
		if (!uuid[8])
			generate_random_uuid(uuid);
		spin_unlock(&bootid_spinlock);
	}
L
Linus Torvalds 已提交
1632

1633 1634
	snprintf(uuid_string, sizeof(uuid_string), "%pU", uuid);
	return proc_dostring(&fake_table, 0, buffer, lenp, ppos);
L
Linus Torvalds 已提交
1635 1636
}

1637 1638 1639 1640 1641 1642 1643
/* The same as proc_dointvec, but writes don't change anything. */
static int proc_do_rointvec(struct ctl_table *table, int write, void *buffer,
			    size_t *lenp, loff_t *ppos)
{
	return write ? 0 : proc_dointvec(table, 0, buffer, lenp, ppos);
}

1644
static struct ctl_table random_table[] = {
L
Linus Torvalds 已提交
1645 1646 1647 1648 1649
	{
		.procname	= "poolsize",
		.data		= &sysctl_poolsize,
		.maxlen		= sizeof(int),
		.mode		= 0444,
1650
		.proc_handler	= proc_dointvec,
L
Linus Torvalds 已提交
1651 1652 1653
	},
	{
		.procname	= "entropy_avail",
1654
		.data		= &input_pool.init_bits,
L
Linus Torvalds 已提交
1655 1656
		.maxlen		= sizeof(int),
		.mode		= 0444,
1657
		.proc_handler	= proc_dointvec,
L
Linus Torvalds 已提交
1658 1659 1660
	},
	{
		.procname	= "write_wakeup_threshold",
1661
		.data		= &sysctl_random_write_wakeup_bits,
L
Linus Torvalds 已提交
1662 1663
		.maxlen		= sizeof(int),
		.mode		= 0644,
1664
		.proc_handler	= proc_do_rointvec,
L
Linus Torvalds 已提交
1665
	},
1666 1667
	{
		.procname	= "urandom_min_reseed_secs",
1668
		.data		= &sysctl_random_min_urandom_seed,
1669 1670
		.maxlen		= sizeof(int),
		.mode		= 0644,
1671
		.proc_handler	= proc_do_rointvec,
1672
	},
L
Linus Torvalds 已提交
1673 1674 1675 1676
	{
		.procname	= "boot_id",
		.data		= &sysctl_bootid,
		.mode		= 0444,
1677
		.proc_handler	= proc_do_uuid,
L
Linus Torvalds 已提交
1678 1679 1680 1681
	},
	{
		.procname	= "uuid",
		.mode		= 0444,
1682
		.proc_handler	= proc_do_uuid,
L
Linus Torvalds 已提交
1683
	},
1684
	{ }
L
Linus Torvalds 已提交
1685
};
1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696

/*
 * rand_initialize() is called before sysctl_init(),
 * so we cannot call register_sysctl_init() in rand_initialize()
 */
static int __init random_sysctls_init(void)
{
	register_sysctl_init("kernel/random", random_table);
	return 0;
}
device_initcall(random_sysctls_init);
1697
#endif