i915_gem_execbuffer.c 72.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28
/*
 * Copyright © 2008,2010 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 * Authors:
 *    Eric Anholt <eric@anholt.net>
 *    Chris Wilson <chris@chris-wilson.co.uk>
 *
 */

29
#include <linux/intel-iommu.h>
30
#include <linux/reservation.h>
31
#include <linux/sync_file.h>
32 33
#include <linux/uaccess.h>

34
#include <drm/drm_syncobj.h>
35
#include <drm/i915_drm.h>
36

37
#include "i915_drv.h"
38
#include "i915_gem_clflush.h"
39 40
#include "i915_trace.h"
#include "intel_drv.h"
41
#include "intel_frontbuffer.h"
42

43 44 45 46 47 48
enum {
	FORCE_CPU_RELOC = 1,
	FORCE_GTT_RELOC,
	FORCE_GPU_RELOC,
#define DBG_FORCE_RELOC 0 /* choose one of the above! */
};
49

50 51 52 53 54 55
#define __EXEC_OBJECT_HAS_REF		BIT(31)
#define __EXEC_OBJECT_HAS_PIN		BIT(30)
#define __EXEC_OBJECT_HAS_FENCE		BIT(29)
#define __EXEC_OBJECT_NEEDS_MAP		BIT(28)
#define __EXEC_OBJECT_NEEDS_BIAS	BIT(27)
#define __EXEC_OBJECT_INTERNAL_FLAGS	(~0u << 27) /* all of the above */
56 57 58 59
#define __EXEC_OBJECT_RESERVED (__EXEC_OBJECT_HAS_PIN | __EXEC_OBJECT_HAS_FENCE)

#define __EXEC_HAS_RELOC	BIT(31)
#define __EXEC_VALIDATED	BIT(30)
60
#define __EXEC_INTERNAL_FLAGS	(~0u << 30)
61
#define UPDATE			PIN_OFFSET_FIXED
62 63

#define BATCH_OFFSET_BIAS (256*1024)
64

65
#define __I915_EXEC_ILLEGAL_FLAGS \
66 67 68
	(__I915_EXEC_UNKNOWN_FLAGS | \
	 I915_EXEC_CONSTANTS_MASK  | \
	 I915_EXEC_RESOURCE_STREAMER)
69

70 71 72 73 74 75 76 77 78
/* Catch emission of unexpected errors for CI! */
#if IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM)
#undef EINVAL
#define EINVAL ({ \
	DRM_DEBUG_DRIVER("EINVAL at %s:%d\n", __func__, __LINE__); \
	22; \
})
#endif

79 80 81 82 83 84 85 86 87 88 89 90 91 92 93
/**
 * DOC: User command execution
 *
 * Userspace submits commands to be executed on the GPU as an instruction
 * stream within a GEM object we call a batchbuffer. This instructions may
 * refer to other GEM objects containing auxiliary state such as kernels,
 * samplers, render targets and even secondary batchbuffers. Userspace does
 * not know where in the GPU memory these objects reside and so before the
 * batchbuffer is passed to the GPU for execution, those addresses in the
 * batchbuffer and auxiliary objects are updated. This is known as relocation,
 * or patching. To try and avoid having to relocate each object on the next
 * execution, userspace is told the location of those objects in this pass,
 * but this remains just a hint as the kernel may choose a new location for
 * any object in the future.
 *
94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122
 * At the level of talking to the hardware, submitting a batchbuffer for the
 * GPU to execute is to add content to a buffer from which the HW
 * command streamer is reading.
 *
 * 1. Add a command to load the HW context. For Logical Ring Contexts, i.e.
 *    Execlists, this command is not placed on the same buffer as the
 *    remaining items.
 *
 * 2. Add a command to invalidate caches to the buffer.
 *
 * 3. Add a batchbuffer start command to the buffer; the start command is
 *    essentially a token together with the GPU address of the batchbuffer
 *    to be executed.
 *
 * 4. Add a pipeline flush to the buffer.
 *
 * 5. Add a memory write command to the buffer to record when the GPU
 *    is done executing the batchbuffer. The memory write writes the
 *    global sequence number of the request, ``i915_request::global_seqno``;
 *    the i915 driver uses the current value in the register to determine
 *    if the GPU has completed the batchbuffer.
 *
 * 6. Add a user interrupt command to the buffer. This command instructs
 *    the GPU to issue an interrupt when the command, pipeline flush and
 *    memory write are completed.
 *
 * 7. Inform the hardware of the additional commands added to the buffer
 *    (by updating the tail pointer).
 *
123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229
 * Processing an execbuf ioctl is conceptually split up into a few phases.
 *
 * 1. Validation - Ensure all the pointers, handles and flags are valid.
 * 2. Reservation - Assign GPU address space for every object
 * 3. Relocation - Update any addresses to point to the final locations
 * 4. Serialisation - Order the request with respect to its dependencies
 * 5. Construction - Construct a request to execute the batchbuffer
 * 6. Submission (at some point in the future execution)
 *
 * Reserving resources for the execbuf is the most complicated phase. We
 * neither want to have to migrate the object in the address space, nor do
 * we want to have to update any relocations pointing to this object. Ideally,
 * we want to leave the object where it is and for all the existing relocations
 * to match. If the object is given a new address, or if userspace thinks the
 * object is elsewhere, we have to parse all the relocation entries and update
 * the addresses. Userspace can set the I915_EXEC_NORELOC flag to hint that
 * all the target addresses in all of its objects match the value in the
 * relocation entries and that they all match the presumed offsets given by the
 * list of execbuffer objects. Using this knowledge, we know that if we haven't
 * moved any buffers, all the relocation entries are valid and we can skip
 * the update. (If userspace is wrong, the likely outcome is an impromptu GPU
 * hang.) The requirement for using I915_EXEC_NO_RELOC are:
 *
 *      The addresses written in the objects must match the corresponding
 *      reloc.presumed_offset which in turn must match the corresponding
 *      execobject.offset.
 *
 *      Any render targets written to in the batch must be flagged with
 *      EXEC_OBJECT_WRITE.
 *
 *      To avoid stalling, execobject.offset should match the current
 *      address of that object within the active context.
 *
 * The reservation is done is multiple phases. First we try and keep any
 * object already bound in its current location - so as long as meets the
 * constraints imposed by the new execbuffer. Any object left unbound after the
 * first pass is then fitted into any available idle space. If an object does
 * not fit, all objects are removed from the reservation and the process rerun
 * after sorting the objects into a priority order (more difficult to fit
 * objects are tried first). Failing that, the entire VM is cleared and we try
 * to fit the execbuf once last time before concluding that it simply will not
 * fit.
 *
 * A small complication to all of this is that we allow userspace not only to
 * specify an alignment and a size for the object in the address space, but
 * we also allow userspace to specify the exact offset. This objects are
 * simpler to place (the location is known a priori) all we have to do is make
 * sure the space is available.
 *
 * Once all the objects are in place, patching up the buried pointers to point
 * to the final locations is a fairly simple job of walking over the relocation
 * entry arrays, looking up the right address and rewriting the value into
 * the object. Simple! ... The relocation entries are stored in user memory
 * and so to access them we have to copy them into a local buffer. That copy
 * has to avoid taking any pagefaults as they may lead back to a GEM object
 * requiring the struct_mutex (i.e. recursive deadlock). So once again we split
 * the relocation into multiple passes. First we try to do everything within an
 * atomic context (avoid the pagefaults) which requires that we never wait. If
 * we detect that we may wait, or if we need to fault, then we have to fallback
 * to a slower path. The slowpath has to drop the mutex. (Can you hear alarm
 * bells yet?) Dropping the mutex means that we lose all the state we have
 * built up so far for the execbuf and we must reset any global data. However,
 * we do leave the objects pinned in their final locations - which is a
 * potential issue for concurrent execbufs. Once we have left the mutex, we can
 * allocate and copy all the relocation entries into a large array at our
 * leisure, reacquire the mutex, reclaim all the objects and other state and
 * then proceed to update any incorrect addresses with the objects.
 *
 * As we process the relocation entries, we maintain a record of whether the
 * object is being written to. Using NORELOC, we expect userspace to provide
 * this information instead. We also check whether we can skip the relocation
 * by comparing the expected value inside the relocation entry with the target's
 * final address. If they differ, we have to map the current object and rewrite
 * the 4 or 8 byte pointer within.
 *
 * Serialising an execbuf is quite simple according to the rules of the GEM
 * ABI. Execution within each context is ordered by the order of submission.
 * Writes to any GEM object are in order of submission and are exclusive. Reads
 * from a GEM object are unordered with respect to other reads, but ordered by
 * writes. A write submitted after a read cannot occur before the read, and
 * similarly any read submitted after a write cannot occur before the write.
 * Writes are ordered between engines such that only one write occurs at any
 * time (completing any reads beforehand) - using semaphores where available
 * and CPU serialisation otherwise. Other GEM access obey the same rules, any
 * write (either via mmaps using set-domain, or via pwrite) must flush all GPU
 * reads before starting, and any read (either using set-domain or pread) must
 * flush all GPU writes before starting. (Note we only employ a barrier before,
 * we currently rely on userspace not concurrently starting a new execution
 * whilst reading or writing to an object. This may be an advantage or not
 * depending on how much you trust userspace not to shoot themselves in the
 * foot.) Serialisation may just result in the request being inserted into
 * a DAG awaiting its turn, but most simple is to wait on the CPU until
 * all dependencies are resolved.
 *
 * After all of that, is just a matter of closing the request and handing it to
 * the hardware (well, leaving it in a queue to be executed). However, we also
 * offer the ability for batchbuffers to be run with elevated privileges so
 * that they access otherwise hidden registers. (Used to adjust L3 cache etc.)
 * Before any batch is given extra privileges we first must check that it
 * contains no nefarious instructions, we check that each instruction is from
 * our whitelist and all registers are also from an allowed list. We first
 * copy the user's batchbuffer to a shadow (so that the user doesn't have
 * access to it, either by the CPU or GPU as we scan it) and then parse each
 * instruction. If everything is ok, we set a flag telling the hardware to run
 * the batchbuffer in trusted mode, otherwise the ioctl is rejected.
 */

230
struct i915_execbuffer {
231 232 233 234
	struct drm_i915_private *i915; /** i915 backpointer */
	struct drm_file *file; /** per-file lookup tables and limits */
	struct drm_i915_gem_execbuffer2 *args; /** ioctl parameters */
	struct drm_i915_gem_exec_object2 *exec; /** ioctl execobj[] */
235 236
	struct i915_vma **vma;
	unsigned int *flags;
237 238 239 240 241

	struct intel_engine_cs *engine; /** engine to queue the request to */
	struct i915_gem_context *ctx; /** context for building the request */
	struct i915_address_space *vm; /** GTT and vma for the request */

242
	struct i915_request *request; /** our request to build */
243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258
	struct i915_vma *batch; /** identity of the batch obj/vma */

	/** actual size of execobj[] as we may extend it for the cmdparser */
	unsigned int buffer_count;

	/** list of vma not yet bound during reservation phase */
	struct list_head unbound;

	/** list of vma that have execobj.relocation_count */
	struct list_head relocs;

	/**
	 * Track the most recently used object for relocations, as we
	 * frequently have to perform multiple relocations within the same
	 * obj/page
	 */
259
	struct reloc_cache {
260 261 262
		struct drm_mm_node node; /** temporary GTT binding */
		unsigned long vaddr; /** Current kmap address */
		unsigned long page; /** Currently mapped page index */
263
		unsigned int gen; /** Cached value of INTEL_GEN */
264
		bool use_64bit_reloc : 1;
265 266 267
		bool has_llc : 1;
		bool has_fence : 1;
		bool needs_unfenced : 1;
268

269
		struct i915_request *rq;
270 271
		u32 *rq_cmd;
		unsigned int rq_size;
272
	} reloc_cache;
273 274 275 276 277 278 279 280 281 282 283 284 285 286 287

	u64 invalid_flags; /** Set of execobj.flags that are invalid */
	u32 context_flags; /** Set of execobj.flags to insert from the ctx */

	u32 batch_start_offset; /** Location within object of batch */
	u32 batch_len; /** Length of batch within object */
	u32 batch_flags; /** Flags composed for emit_bb_start() */

	/**
	 * Indicate either the size of the hastable used to resolve
	 * relocation handles, or if negative that we are using a direct
	 * index into the execobj[].
	 */
	int lut_size;
	struct hlist_head *buckets; /** ht for relocation handles */
288 289
};

290
#define exec_entry(EB, VMA) (&(EB)->exec[(VMA)->exec_flags - (EB)->flags])
291

292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310
/*
 * Used to convert any address to canonical form.
 * Starting from gen8, some commands (e.g. STATE_BASE_ADDRESS,
 * MI_LOAD_REGISTER_MEM and others, see Broadwell PRM Vol2a) require the
 * addresses to be in a canonical form:
 * "GraphicsAddress[63:48] are ignored by the HW and assumed to be in correct
 * canonical form [63:48] == [47]."
 */
#define GEN8_HIGH_ADDRESS_BIT 47
static inline u64 gen8_canonical_addr(u64 address)
{
	return sign_extend64(address, GEN8_HIGH_ADDRESS_BIT);
}

static inline u64 gen8_noncanonical_addr(u64 address)
{
	return address & GENMASK_ULL(GEN8_HIGH_ADDRESS_BIT, 0);
}

311 312
static inline bool eb_use_cmdparser(const struct i915_execbuffer *eb)
{
313
	return intel_engine_needs_cmd_parser(eb->engine) && eb->batch_len;
314 315
}

316
static int eb_create(struct i915_execbuffer *eb)
317
{
318 319
	if (!(eb->args->flags & I915_EXEC_HANDLE_LUT)) {
		unsigned int size = 1 + ilog2(eb->buffer_count);
320

321 322 323 324 325 326 327 328 329 330 331
		/*
		 * Without a 1:1 association between relocation handles and
		 * the execobject[] index, we instead create a hashtable.
		 * We size it dynamically based on available memory, starting
		 * first with 1:1 assocative hash and scaling back until
		 * the allocation succeeds.
		 *
		 * Later on we use a positive lut_size to indicate we are
		 * using this hashtable, and a negative value to indicate a
		 * direct lookup.
		 */
332
		do {
333
			gfp_t flags;
334 335 336 337 338 339 340

			/* While we can still reduce the allocation size, don't
			 * raise a warning and allow the allocation to fail.
			 * On the last pass though, we want to try as hard
			 * as possible to perform the allocation and warn
			 * if it fails.
			 */
341
			flags = GFP_KERNEL;
342 343 344
			if (size > 1)
				flags |= __GFP_NORETRY | __GFP_NOWARN;

345
			eb->buckets = kzalloc(sizeof(struct hlist_head) << size,
346
					      flags);
347 348 349 350
			if (eb->buckets)
				break;
		} while (--size);

351 352
		if (unlikely(!size))
			return -ENOMEM;
353

354
		eb->lut_size = size;
355
	} else {
356
		eb->lut_size = -eb->buffer_count;
357
	}
358

359
	return 0;
360 361
}

362 363
static bool
eb_vma_misplaced(const struct drm_i915_gem_exec_object2 *entry,
364 365
		 const struct i915_vma *vma,
		 unsigned int flags)
366 367 368 369 370 371 372
{
	if (vma->node.size < entry->pad_to_size)
		return true;

	if (entry->alignment && !IS_ALIGNED(vma->node.start, entry->alignment))
		return true;

373
	if (flags & EXEC_OBJECT_PINNED &&
374 375 376
	    vma->node.start != entry->offset)
		return true;

377
	if (flags & __EXEC_OBJECT_NEEDS_BIAS &&
378 379 380
	    vma->node.start < BATCH_OFFSET_BIAS)
		return true;

381
	if (!(flags & EXEC_OBJECT_SUPPORTS_48B_ADDRESS) &&
382 383 384
	    (vma->node.start + vma->node.size - 1) >> 32)
		return true;

385 386 387 388
	if (flags & __EXEC_OBJECT_NEEDS_MAP &&
	    !i915_vma_is_map_and_fenceable(vma))
		return true;

389 390 391
	return false;
}

392
static inline bool
393
eb_pin_vma(struct i915_execbuffer *eb,
394
	   const struct drm_i915_gem_exec_object2 *entry,
395 396
	   struct i915_vma *vma)
{
397 398
	unsigned int exec_flags = *vma->exec_flags;
	u64 pin_flags;
399

400
	if (vma->node.size)
401
		pin_flags = vma->node.start;
402
	else
403
		pin_flags = entry->offset & PIN_OFFSET_MASK;
404

405 406 407
	pin_flags |= PIN_USER | PIN_NOEVICT | PIN_OFFSET_FIXED;
	if (unlikely(exec_flags & EXEC_OBJECT_NEEDS_GTT))
		pin_flags |= PIN_GLOBAL;
408

409 410
	if (unlikely(i915_vma_pin(vma, 0, 0, pin_flags)))
		return false;
411

412
	if (unlikely(exec_flags & EXEC_OBJECT_NEEDS_FENCE)) {
413
		if (unlikely(i915_vma_pin_fence(vma))) {
414
			i915_vma_unpin(vma);
415
			return false;
416 417
		}

418
		if (vma->fence)
419
			exec_flags |= __EXEC_OBJECT_HAS_FENCE;
420 421
	}

422 423
	*vma->exec_flags = exec_flags | __EXEC_OBJECT_HAS_PIN;
	return !eb_vma_misplaced(entry, vma, exec_flags);
424 425
}

426
static inline void __eb_unreserve_vma(struct i915_vma *vma, unsigned int flags)
427
{
428
	GEM_BUG_ON(!(flags & __EXEC_OBJECT_HAS_PIN));
429

430
	if (unlikely(flags & __EXEC_OBJECT_HAS_FENCE))
431
		__i915_vma_unpin_fence(vma);
432

433
	__i915_vma_unpin(vma);
434 435
}

436
static inline void
437
eb_unreserve_vma(struct i915_vma *vma, unsigned int *flags)
438
{
439
	if (!(*flags & __EXEC_OBJECT_HAS_PIN))
440
		return;
441

442 443
	__eb_unreserve_vma(vma, *flags);
	*flags &= ~__EXEC_OBJECT_RESERVED;
444 445
}

446 447 448 449
static int
eb_validate_vma(struct i915_execbuffer *eb,
		struct drm_i915_gem_exec_object2 *entry,
		struct i915_vma *vma)
450
{
451 452
	if (unlikely(entry->flags & eb->invalid_flags))
		return -EINVAL;
453

454 455 456 457 458 459 460 461
	if (unlikely(entry->alignment && !is_power_of_2(entry->alignment)))
		return -EINVAL;

	/*
	 * Offset can be used as input (EXEC_OBJECT_PINNED), reject
	 * any non-page-aligned or non-canonical addresses.
	 */
	if (unlikely(entry->flags & EXEC_OBJECT_PINNED &&
462
		     entry->offset != gen8_canonical_addr(entry->offset & I915_GTT_PAGE_MASK)))
463 464 465 466 467 468 469 470
		return -EINVAL;

	/* pad_to_size was once a reserved field, so sanitize it */
	if (entry->flags & EXEC_OBJECT_PAD_TO_SIZE) {
		if (unlikely(offset_in_page(entry->pad_to_size)))
			return -EINVAL;
	} else {
		entry->pad_to_size = 0;
471 472
	}

473
	if (unlikely(vma->exec_flags)) {
474 475 476 477 478 479 480 481 482 483 484 485
		DRM_DEBUG("Object [handle %d, index %d] appears more than once in object list\n",
			  entry->handle, (int)(entry - eb->exec));
		return -EINVAL;
	}

	/*
	 * From drm_mm perspective address space is continuous,
	 * so from this point we're always using non-canonical
	 * form internally.
	 */
	entry->offset = gen8_noncanonical_addr(entry->offset);

486 487 488 489 490 491 492 493 494 495 496 497
	if (!eb->reloc_cache.has_fence) {
		entry->flags &= ~EXEC_OBJECT_NEEDS_FENCE;
	} else {
		if ((entry->flags & EXEC_OBJECT_NEEDS_FENCE ||
		     eb->reloc_cache.needs_unfenced) &&
		    i915_gem_object_is_tiled(vma->obj))
			entry->flags |= EXEC_OBJECT_NEEDS_GTT | __EXEC_OBJECT_NEEDS_MAP;
	}

	if (!(entry->flags & EXEC_OBJECT_PINNED))
		entry->flags |= eb->context_flags;

498
	return 0;
499 500
}

501
static int
502 503 504
eb_add_vma(struct i915_execbuffer *eb,
	   unsigned int i, unsigned batch_idx,
	   struct i915_vma *vma)
505
{
506
	struct drm_i915_gem_exec_object2 *entry = &eb->exec[i];
507 508 509 510 511 512 513 514
	int err;

	GEM_BUG_ON(i915_vma_is_closed(vma));

	if (!(eb->args->flags & __EXEC_VALIDATED)) {
		err = eb_validate_vma(eb, entry, vma);
		if (unlikely(err))
			return err;
515 516
	}

517
	if (eb->lut_size > 0) {
518
		vma->exec_handle = entry->handle;
519
		hlist_add_head(&vma->exec_node,
520 521
			       &eb->buckets[hash_32(entry->handle,
						    eb->lut_size)]);
522
	}
523

524 525 526 527 528 529 530 531 532
	if (entry->relocation_count)
		list_add_tail(&vma->reloc_link, &eb->relocs);

	/*
	 * Stash a pointer from the vma to execobj, so we can query its flags,
	 * size, alignment etc as provided by the user. Also we stash a pointer
	 * to the vma inside the execobj so that we can use a direct lookup
	 * to find the right target VMA when doing relocations.
	 */
533
	eb->vma[i] = vma;
534
	eb->flags[i] = entry->flags;
535
	vma->exec_flags = &eb->flags[i];
536

537 538 539 540 541 542 543 544 545 546
	/*
	 * SNA is doing fancy tricks with compressing batch buffers, which leads
	 * to negative relocation deltas. Usually that works out ok since the
	 * relocate address is still positive, except when the batch is placed
	 * very low in the GTT. Ensure this doesn't happen.
	 *
	 * Note that actual hangs have only been observed on gen7, but for
	 * paranoia do it everywhere.
	 */
	if (i == batch_idx) {
547 548
		if (entry->relocation_count &&
		    !(eb->flags[i] & EXEC_OBJECT_PINNED))
549 550 551 552 553 554 555
			eb->flags[i] |= __EXEC_OBJECT_NEEDS_BIAS;
		if (eb->reloc_cache.has_fence)
			eb->flags[i] |= EXEC_OBJECT_NEEDS_FENCE;

		eb->batch = vma;
	}

556
	err = 0;
557
	if (eb_pin_vma(eb, entry, vma)) {
558 559 560 561
		if (entry->offset != vma->node.start) {
			entry->offset = vma->node.start | UPDATE;
			eb->args->flags |= __EXEC_HAS_RELOC;
		}
562 563 564 565 566 567
	} else {
		eb_unreserve_vma(vma, vma->exec_flags);

		list_add_tail(&vma->exec_link, &eb->unbound);
		if (drm_mm_node_allocated(&vma->node))
			err = i915_vma_unbind(vma);
568 569
		if (unlikely(err))
			vma->exec_flags = NULL;
570 571 572 573 574 575 576 577 578 579
	}
	return err;
}

static inline int use_cpu_reloc(const struct reloc_cache *cache,
				const struct drm_i915_gem_object *obj)
{
	if (!i915_gem_object_has_struct_page(obj))
		return false;

580 581 582 583 584
	if (DBG_FORCE_RELOC == FORCE_CPU_RELOC)
		return true;

	if (DBG_FORCE_RELOC == FORCE_GTT_RELOC)
		return false;
585 586 587 588 589 590 591 592 593

	return (cache->has_llc ||
		obj->cache_dirty ||
		obj->cache_level != I915_CACHE_NONE);
}

static int eb_reserve_vma(const struct i915_execbuffer *eb,
			  struct i915_vma *vma)
{
594 595 596
	struct drm_i915_gem_exec_object2 *entry = exec_entry(eb, vma);
	unsigned int exec_flags = *vma->exec_flags;
	u64 pin_flags;
597 598
	int err;

599 600 601
	pin_flags = PIN_USER | PIN_NONBLOCK;
	if (exec_flags & EXEC_OBJECT_NEEDS_GTT)
		pin_flags |= PIN_GLOBAL;
602 603 604 605 606

	/*
	 * Wa32bitGeneralStateOffset & Wa32bitInstructionBaseOffset,
	 * limit address to the first 4GBs for unflagged objects.
	 */
607 608
	if (!(exec_flags & EXEC_OBJECT_SUPPORTS_48B_ADDRESS))
		pin_flags |= PIN_ZONE_4G;
609

610 611
	if (exec_flags & __EXEC_OBJECT_NEEDS_MAP)
		pin_flags |= PIN_MAPPABLE;
612

613 614 615 616 617
	if (exec_flags & EXEC_OBJECT_PINNED) {
		pin_flags |= entry->offset | PIN_OFFSET_FIXED;
		pin_flags &= ~PIN_NONBLOCK; /* force overlapping checks */
	} else if (exec_flags & __EXEC_OBJECT_NEEDS_BIAS) {
		pin_flags |= BATCH_OFFSET_BIAS | PIN_OFFSET_BIAS;
618 619
	}

620 621 622
	err = i915_vma_pin(vma,
			   entry->pad_to_size, entry->alignment,
			   pin_flags);
623 624 625 626 627 628 629 630
	if (err)
		return err;

	if (entry->offset != vma->node.start) {
		entry->offset = vma->node.start | UPDATE;
		eb->args->flags |= __EXEC_HAS_RELOC;
	}

631
	if (unlikely(exec_flags & EXEC_OBJECT_NEEDS_FENCE)) {
632
		err = i915_vma_pin_fence(vma);
633 634 635 636 637
		if (unlikely(err)) {
			i915_vma_unpin(vma);
			return err;
		}

638
		if (vma->fence)
639
			exec_flags |= __EXEC_OBJECT_HAS_FENCE;
640 641
	}

642 643
	*vma->exec_flags = exec_flags | __EXEC_OBJECT_HAS_PIN;
	GEM_BUG_ON(eb_vma_misplaced(entry, vma, exec_flags));
644

645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684
	return 0;
}

static int eb_reserve(struct i915_execbuffer *eb)
{
	const unsigned int count = eb->buffer_count;
	struct list_head last;
	struct i915_vma *vma;
	unsigned int i, pass;
	int err;

	/*
	 * Attempt to pin all of the buffers into the GTT.
	 * This is done in 3 phases:
	 *
	 * 1a. Unbind all objects that do not match the GTT constraints for
	 *     the execbuffer (fenceable, mappable, alignment etc).
	 * 1b. Increment pin count for already bound objects.
	 * 2.  Bind new objects.
	 * 3.  Decrement pin count.
	 *
	 * This avoid unnecessary unbinding of later objects in order to make
	 * room for the earlier objects *unless* we need to defragment.
	 */

	pass = 0;
	err = 0;
	do {
		list_for_each_entry(vma, &eb->unbound, exec_link) {
			err = eb_reserve_vma(eb, vma);
			if (err)
				break;
		}
		if (err != -ENOSPC)
			return err;

		/* Resort *all* the objects into priority order */
		INIT_LIST_HEAD(&eb->unbound);
		INIT_LIST_HEAD(&last);
		for (i = 0; i < count; i++) {
685 686
			unsigned int flags = eb->flags[i];
			struct i915_vma *vma = eb->vma[i];
687

688 689
			if (flags & EXEC_OBJECT_PINNED &&
			    flags & __EXEC_OBJECT_HAS_PIN)
690 691
				continue;

692
			eb_unreserve_vma(vma, &eb->flags[i]);
693

694
			if (flags & EXEC_OBJECT_PINNED)
695
				/* Pinned must have their slot */
696
				list_add(&vma->exec_link, &eb->unbound);
697
			else if (flags & __EXEC_OBJECT_NEEDS_MAP)
698
				/* Map require the lowest 256MiB (aperture) */
699
				list_add_tail(&vma->exec_link, &eb->unbound);
700 701 702
			else if (!(flags & EXEC_OBJECT_SUPPORTS_48B_ADDRESS))
				/* Prioritise 4GiB region for restricted bo */
				list_add(&vma->exec_link, &last);
703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722
			else
				list_add_tail(&vma->exec_link, &last);
		}
		list_splice_tail(&last, &eb->unbound);

		switch (pass++) {
		case 0:
			break;

		case 1:
			/* Too fragmented, unbind everything and retry */
			err = i915_gem_evict_vm(eb->vm);
			if (err)
				return err;
			break;

		default:
			return -ENOSPC;
		}
	} while (1);
723
}
724

725 726
static unsigned int eb_batch_index(const struct i915_execbuffer *eb)
{
727 728 729 730
	if (eb->args->flags & I915_EXEC_BATCH_FIRST)
		return 0;
	else
		return eb->buffer_count - 1;
731 732 733 734 735 736 737
}

static int eb_select_context(struct i915_execbuffer *eb)
{
	struct i915_gem_context *ctx;

	ctx = i915_gem_context_lookup(eb->file->driver_priv, eb->args->rsvd1);
738 739
	if (unlikely(!ctx))
		return -ENOENT;
740

741
	eb->ctx = ctx;
742 743 744 745 746 747
	if (ctx->ppgtt) {
		eb->vm = &ctx->ppgtt->vm;
		eb->invalid_flags |= EXEC_OBJECT_NEEDS_GTT;
	} else {
		eb->vm = &eb->i915->ggtt.vm;
	}
748 749

	eb->context_flags = 0;
750
	if (test_bit(UCONTEXT_NO_ZEROMAP, &ctx->user_flags))
751 752 753 754 755
		eb->context_flags |= __EXEC_OBJECT_NEEDS_BIAS;

	return 0;
}

756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817
static struct i915_request *__eb_wait_for_ring(struct intel_ring *ring)
{
	struct i915_request *rq;

	/*
	 * Completely unscientific finger-in-the-air estimates for suitable
	 * maximum user request size (to avoid blocking) and then backoff.
	 */
	if (intel_ring_update_space(ring) >= PAGE_SIZE)
		return NULL;

	/*
	 * Find a request that after waiting upon, there will be at least half
	 * the ring available. The hysteresis allows us to compete for the
	 * shared ring and should mean that we sleep less often prior to
	 * claiming our resources, but not so long that the ring completely
	 * drains before we can submit our next request.
	 */
	list_for_each_entry(rq, &ring->request_list, ring_link) {
		if (__intel_ring_space(rq->postfix,
				       ring->emit, ring->size) > ring->size / 2)
			break;
	}
	if (&rq->ring_link == &ring->request_list)
		return NULL; /* weird, we will check again later for real */

	return i915_request_get(rq);
}

static int eb_wait_for_ring(const struct i915_execbuffer *eb)
{
	const struct intel_context *ce;
	struct i915_request *rq;
	int ret = 0;

	/*
	 * Apply a light amount of backpressure to prevent excessive hogs
	 * from blocking waiting for space whilst holding struct_mutex and
	 * keeping all of their resources pinned.
	 */

	ce = to_intel_context(eb->ctx, eb->engine);
	if (!ce->ring) /* first use, assume empty! */
		return 0;

	rq = __eb_wait_for_ring(ce->ring);
	if (rq) {
		mutex_unlock(&eb->i915->drm.struct_mutex);

		if (i915_request_wait(rq,
				      I915_WAIT_INTERRUPTIBLE,
				      MAX_SCHEDULE_TIMEOUT) < 0)
			ret = -EINTR;

		i915_request_put(rq);

		mutex_lock(&eb->i915->drm.struct_mutex);
	}

	return ret;
}

818
static int eb_lookup_vmas(struct i915_execbuffer *eb)
819
{
820
	struct radix_tree_root *handles_vma = &eb->ctx->handles_vma;
821
	struct drm_i915_gem_object *obj;
822
	unsigned int i, batch;
823
	int err;
824

825 826 827 828 829 830
	if (unlikely(i915_gem_context_is_closed(eb->ctx)))
		return -ENOENT;

	if (unlikely(i915_gem_context_is_banned(eb->ctx)))
		return -EIO;

831 832
	INIT_LIST_HEAD(&eb->relocs);
	INIT_LIST_HEAD(&eb->unbound);
833

834 835
	batch = eb_batch_index(eb);

836 837
	for (i = 0; i < eb->buffer_count; i++) {
		u32 handle = eb->exec[i].handle;
838
		struct i915_lut_handle *lut;
839
		struct i915_vma *vma;
840

841 842
		vma = radix_tree_lookup(handles_vma, handle);
		if (likely(vma))
843
			goto add_vma;
844

845
		obj = i915_gem_object_lookup(eb->file, handle);
846
		if (unlikely(!obj)) {
847
			err = -ENOENT;
848
			goto err_vma;
849 850
		}

851
		vma = i915_vma_instance(obj, eb->vm, NULL);
C
Chris Wilson 已提交
852
		if (unlikely(IS_ERR(vma))) {
853
			err = PTR_ERR(vma);
854
			goto err_obj;
855 856
		}

857 858 859 860 861 862 863 864
		lut = kmem_cache_alloc(eb->i915->luts, GFP_KERNEL);
		if (unlikely(!lut)) {
			err = -ENOMEM;
			goto err_obj;
		}

		err = radix_tree_insert(handles_vma, handle, vma);
		if (unlikely(err)) {
865
			kmem_cache_free(eb->i915->luts, lut);
866
			goto err_obj;
867
		}
868

869
		/* transfer ref to ctx */
870 871
		if (!vma->open_count++)
			i915_vma_reopen(vma);
872 873 874 875 876
		list_add(&lut->obj_link, &obj->lut_list);
		list_add(&lut->ctx_link, &eb->ctx->handles_list);
		lut->ctx = eb->ctx;
		lut->handle = handle;

877
add_vma:
878
		err = eb_add_vma(eb, i, batch, vma);
879
		if (unlikely(err))
880
			goto err_vma;
881

882 883
		GEM_BUG_ON(vma != eb->vma[i]);
		GEM_BUG_ON(vma->exec_flags != &eb->flags[i]);
884 885
		GEM_BUG_ON(drm_mm_node_allocated(&vma->node) &&
			   eb_vma_misplaced(&eb->exec[i], vma, eb->flags[i]));
886 887
	}

888 889 890
	eb->args->flags |= __EXEC_VALIDATED;
	return eb_reserve(eb);

891
err_obj:
892
	i915_gem_object_put(obj);
893 894
err_vma:
	eb->vma[i] = NULL;
895
	return err;
896 897
}

898
static struct i915_vma *
899
eb_get_vma(const struct i915_execbuffer *eb, unsigned long handle)
900
{
901 902
	if (eb->lut_size < 0) {
		if (handle >= -eb->lut_size)
903
			return NULL;
904
		return eb->vma[handle];
905 906
	} else {
		struct hlist_head *head;
907
		struct i915_vma *vma;
908

909
		head = &eb->buckets[hash_32(handle, eb->lut_size)];
910
		hlist_for_each_entry(vma, head, exec_node) {
911 912
			if (vma->exec_handle == handle)
				return vma;
913 914 915
		}
		return NULL;
	}
916 917
}

918
static void eb_release_vmas(const struct i915_execbuffer *eb)
919
{
920 921 922 923
	const unsigned int count = eb->buffer_count;
	unsigned int i;

	for (i = 0; i < count; i++) {
924 925
		struct i915_vma *vma = eb->vma[i];
		unsigned int flags = eb->flags[i];
926

927
		if (!vma)
928
			break;
929

930 931 932
		GEM_BUG_ON(vma->exec_flags != &eb->flags[i]);
		vma->exec_flags = NULL;
		eb->vma[i] = NULL;
933

934 935
		if (flags & __EXEC_OBJECT_HAS_PIN)
			__eb_unreserve_vma(vma, flags);
936

937
		if (flags & __EXEC_OBJECT_HAS_REF)
938
			i915_vma_put(vma);
939
	}
940 941
}

942
static void eb_reset_vmas(const struct i915_execbuffer *eb)
943
{
944
	eb_release_vmas(eb);
945
	if (eb->lut_size > 0)
946 947
		memset(eb->buckets, 0,
		       sizeof(struct hlist_head) << eb->lut_size);
948 949
}

950
static void eb_destroy(const struct i915_execbuffer *eb)
951
{
952 953
	GEM_BUG_ON(eb->reloc_cache.rq);

954
	if (eb->lut_size > 0)
955
		kfree(eb->buckets);
956 957
}

958
static inline u64
959
relocation_target(const struct drm_i915_gem_relocation_entry *reloc,
960
		  const struct i915_vma *target)
961
{
962
	return gen8_canonical_addr((int)reloc->delta + target->node.start);
963 964
}

965 966
static void reloc_cache_init(struct reloc_cache *cache,
			     struct drm_i915_private *i915)
967
{
968
	cache->page = -1;
969
	cache->vaddr = 0;
970
	/* Must be a variable in the struct to allow GCC to unroll. */
971
	cache->gen = INTEL_GEN(i915);
972
	cache->has_llc = HAS_LLC(i915);
973
	cache->use_64bit_reloc = HAS_64BIT_RELOC(i915);
974 975
	cache->has_fence = cache->gen < 4;
	cache->needs_unfenced = INTEL_INFO(i915)->unfenced_needs_alignment;
976
	cache->node.allocated = false;
977 978
	cache->rq = NULL;
	cache->rq_size = 0;
979
}
980

981 982 983 984 985 986 987 988
static inline void *unmask_page(unsigned long p)
{
	return (void *)(uintptr_t)(p & PAGE_MASK);
}

static inline unsigned int unmask_flags(unsigned long p)
{
	return p & ~PAGE_MASK;
989 990
}

991 992
#define KMAP 0x4 /* after CLFLUSH_FLAGS */

993 994 995 996 997 998 999
static inline struct i915_ggtt *cache_to_ggtt(struct reloc_cache *cache)
{
	struct drm_i915_private *i915 =
		container_of(cache, struct i915_execbuffer, reloc_cache)->i915;
	return &i915->ggtt;
}

1000 1001 1002 1003 1004 1005 1006
static void reloc_gpu_flush(struct reloc_cache *cache)
{
	GEM_BUG_ON(cache->rq_size >= cache->rq->batch->obj->base.size / sizeof(u32));
	cache->rq_cmd[cache->rq_size] = MI_BATCH_BUFFER_END;
	i915_gem_object_unpin_map(cache->rq->batch->obj);
	i915_gem_chipset_flush(cache->rq->i915);

1007
	i915_request_add(cache->rq);
1008 1009 1010
	cache->rq = NULL;
}

1011
static void reloc_cache_reset(struct reloc_cache *cache)
1012
{
1013
	void *vaddr;
1014

1015 1016 1017
	if (cache->rq)
		reloc_gpu_flush(cache);

1018 1019
	if (!cache->vaddr)
		return;
1020

1021 1022 1023 1024
	vaddr = unmask_page(cache->vaddr);
	if (cache->vaddr & KMAP) {
		if (cache->vaddr & CLFLUSH_AFTER)
			mb();
1025

1026 1027 1028
		kunmap_atomic(vaddr);
		i915_gem_obj_finish_shmem_access((struct drm_i915_gem_object *)cache->node.mm);
	} else {
1029
		wmb();
1030
		io_mapping_unmap_atomic((void __iomem *)vaddr);
1031
		if (cache->node.allocated) {
1032
			struct i915_ggtt *ggtt = cache_to_ggtt(cache);
1033

1034 1035 1036
			ggtt->vm.clear_range(&ggtt->vm,
					     cache->node.start,
					     cache->node.size);
1037 1038 1039
			drm_mm_remove_node(&cache->node);
		} else {
			i915_vma_unpin((struct i915_vma *)cache->node.mm);
1040
		}
1041
	}
1042 1043 1044

	cache->vaddr = 0;
	cache->page = -1;
1045 1046 1047 1048
}

static void *reloc_kmap(struct drm_i915_gem_object *obj,
			struct reloc_cache *cache,
1049
			unsigned long page)
1050
{
1051 1052 1053 1054 1055 1056
	void *vaddr;

	if (cache->vaddr) {
		kunmap_atomic(unmask_page(cache->vaddr));
	} else {
		unsigned int flushes;
1057
		int err;
1058

1059 1060 1061
		err = i915_gem_obj_prepare_shmem_write(obj, &flushes);
		if (err)
			return ERR_PTR(err);
1062 1063 1064

		BUILD_BUG_ON(KMAP & CLFLUSH_FLAGS);
		BUILD_BUG_ON((KMAP | CLFLUSH_FLAGS) & PAGE_MASK);
1065

1066 1067 1068 1069
		cache->vaddr = flushes | KMAP;
		cache->node.mm = (void *)obj;
		if (flushes)
			mb();
1070 1071
	}

1072 1073
	vaddr = kmap_atomic(i915_gem_object_get_dirty_page(obj, page));
	cache->vaddr = unmask_flags(cache->vaddr) | (unsigned long)vaddr;
1074
	cache->page = page;
1075

1076
	return vaddr;
1077 1078
}

1079 1080
static void *reloc_iomap(struct drm_i915_gem_object *obj,
			 struct reloc_cache *cache,
1081
			 unsigned long page)
1082
{
1083
	struct i915_ggtt *ggtt = cache_to_ggtt(cache);
1084
	unsigned long offset;
1085
	void *vaddr;
1086

1087
	if (cache->vaddr) {
1088
		io_mapping_unmap_atomic((void __force __iomem *) unmask_page(cache->vaddr));
1089 1090
	} else {
		struct i915_vma *vma;
1091
		int err;
1092

1093
		if (use_cpu_reloc(cache, obj))
1094
			return NULL;
1095

1096 1097 1098
		err = i915_gem_object_set_to_gtt_domain(obj, true);
		if (err)
			return ERR_PTR(err);
1099

1100
		vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0,
1101 1102 1103
					       PIN_MAPPABLE |
					       PIN_NONBLOCK |
					       PIN_NONFAULT);
1104 1105
		if (IS_ERR(vma)) {
			memset(&cache->node, 0, sizeof(cache->node));
1106
			err = drm_mm_insert_node_in_range
1107
				(&ggtt->vm.mm, &cache->node,
1108
				 PAGE_SIZE, 0, I915_COLOR_UNEVICTABLE,
1109
				 0, ggtt->mappable_end,
1110
				 DRM_MM_INSERT_LOW);
1111
			if (err) /* no inactive aperture space, use cpu reloc */
1112
				return NULL;
1113
		} else {
1114 1115
			err = i915_vma_put_fence(vma);
			if (err) {
1116
				i915_vma_unpin(vma);
1117
				return ERR_PTR(err);
1118
			}
1119

1120 1121
			cache->node.start = vma->node.start;
			cache->node.mm = (void *)vma;
1122
		}
1123
	}
1124

1125 1126
	offset = cache->node.start;
	if (cache->node.allocated) {
1127
		wmb();
1128 1129 1130
		ggtt->vm.insert_page(&ggtt->vm,
				     i915_gem_object_get_dma_address(obj, page),
				     offset, I915_CACHE_NONE, 0);
1131 1132
	} else {
		offset += page << PAGE_SHIFT;
1133 1134
	}

1135
	vaddr = (void __force *)io_mapping_map_atomic_wc(&ggtt->iomap,
1136
							 offset);
1137 1138
	cache->page = page;
	cache->vaddr = (unsigned long)vaddr;
1139

1140
	return vaddr;
1141 1142
}

1143 1144
static void *reloc_vaddr(struct drm_i915_gem_object *obj,
			 struct reloc_cache *cache,
1145
			 unsigned long page)
1146
{
1147
	void *vaddr;
1148

1149 1150 1151 1152 1153 1154 1155 1156
	if (cache->page == page) {
		vaddr = unmask_page(cache->vaddr);
	} else {
		vaddr = NULL;
		if ((cache->vaddr & KMAP) == 0)
			vaddr = reloc_iomap(obj, cache, page);
		if (!vaddr)
			vaddr = reloc_kmap(obj, cache, page);
1157 1158
	}

1159
	return vaddr;
1160 1161
}

1162
static void clflush_write32(u32 *addr, u32 value, unsigned int flushes)
1163
{
1164 1165 1166 1167 1168
	if (unlikely(flushes & (CLFLUSH_BEFORE | CLFLUSH_AFTER))) {
		if (flushes & CLFLUSH_BEFORE) {
			clflushopt(addr);
			mb();
		}
1169

1170
		*addr = value;
1171

1172 1173
		/*
		 * Writes to the same cacheline are serialised by the CPU
1174 1175 1176 1177 1178 1179 1180 1181 1182
		 * (including clflush). On the write path, we only require
		 * that it hits memory in an orderly fashion and place
		 * mb barriers at the start and end of the relocation phase
		 * to ensure ordering of clflush wrt to the system.
		 */
		if (flushes & CLFLUSH_AFTER)
			clflushopt(addr);
	} else
		*addr = value;
1183 1184
}

1185 1186 1187 1188 1189 1190
static int __reloc_gpu_alloc(struct i915_execbuffer *eb,
			     struct i915_vma *vma,
			     unsigned int len)
{
	struct reloc_cache *cache = &eb->reloc_cache;
	struct drm_i915_gem_object *obj;
1191
	struct i915_request *rq;
1192 1193 1194 1195
	struct i915_vma *batch;
	u32 *cmd;
	int err;

1196 1197 1198 1199 1200 1201 1202
	if (DBG_FORCE_RELOC == FORCE_GPU_RELOC) {
		obj = vma->obj;
		if (obj->cache_dirty & ~obj->cache_coherent)
			i915_gem_clflush_object(obj, 0);
		obj->write_domain = 0;
	}

1203
	GEM_BUG_ON(vma->obj->write_domain & I915_GEM_DOMAIN_CPU);
1204 1205 1206 1207 1208 1209

	obj = i915_gem_batch_pool_get(&eb->engine->batch_pool, PAGE_SIZE);
	if (IS_ERR(obj))
		return PTR_ERR(obj);

	cmd = i915_gem_object_pin_map(obj,
1210 1211 1212
				      cache->has_llc ?
				      I915_MAP_FORCE_WB :
				      I915_MAP_FORCE_WC);
1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230
	i915_gem_object_unpin_pages(obj);
	if (IS_ERR(cmd))
		return PTR_ERR(cmd);

	err = i915_gem_object_set_to_wc_domain(obj, false);
	if (err)
		goto err_unmap;

	batch = i915_vma_instance(obj, vma->vm, NULL);
	if (IS_ERR(batch)) {
		err = PTR_ERR(batch);
		goto err_unmap;
	}

	err = i915_vma_pin(batch, 0, 0, PIN_USER | PIN_NONBLOCK);
	if (err)
		goto err_unmap;

1231
	rq = i915_request_alloc(eb->engine, eb->ctx);
1232 1233 1234 1235 1236
	if (IS_ERR(rq)) {
		err = PTR_ERR(rq);
		goto err_unpin;
	}

1237
	err = i915_request_await_object(rq, vma->obj, true);
1238 1239 1240 1241 1242 1243 1244 1245 1246
	if (err)
		goto err_request;

	err = eb->engine->emit_bb_start(rq,
					batch->node.start, PAGE_SIZE,
					cache->gen > 5 ? 0 : I915_DISPATCH_SECURE);
	if (err)
		goto err_request;

1247
	GEM_BUG_ON(!reservation_object_test_signaled_rcu(batch->resv, true));
1248 1249 1250
	err = i915_vma_move_to_active(batch, rq, 0);
	if (err)
		goto skip_request;
1251

1252 1253 1254
	err = i915_vma_move_to_active(vma, rq, EXEC_OBJECT_WRITE);
	if (err)
		goto skip_request;
1255 1256

	rq->batch = batch;
1257
	i915_vma_unpin(batch);
1258 1259 1260 1261 1262 1263 1264 1265

	cache->rq = rq;
	cache->rq_cmd = cmd;
	cache->rq_size = 0;

	/* Return with batch mapping (cmd) still pinned */
	return 0;

1266 1267
skip_request:
	i915_request_skip(rq, err);
1268
err_request:
1269
	i915_request_add(rq);
1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289
err_unpin:
	i915_vma_unpin(batch);
err_unmap:
	i915_gem_object_unpin_map(obj);
	return err;
}

static u32 *reloc_gpu(struct i915_execbuffer *eb,
		      struct i915_vma *vma,
		      unsigned int len)
{
	struct reloc_cache *cache = &eb->reloc_cache;
	u32 *cmd;

	if (cache->rq_size > PAGE_SIZE/sizeof(u32) - (len + 1))
		reloc_gpu_flush(cache);

	if (unlikely(!cache->rq)) {
		int err;

1290 1291 1292 1293
		/* If we need to copy for the cmdparser, we will stall anyway */
		if (eb_use_cmdparser(eb))
			return ERR_PTR(-EWOULDBLOCK);

1294 1295 1296
		if (!intel_engine_can_store_dword(eb->engine))
			return ERR_PTR(-ENODEV);

1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307
		err = __reloc_gpu_alloc(eb, vma, len);
		if (unlikely(err))
			return ERR_PTR(err);
	}

	cmd = cache->rq_cmd + cache->rq_size;
	cache->rq_size += len;

	return cmd;
}

1308 1309
static u64
relocate_entry(struct i915_vma *vma,
1310
	       const struct drm_i915_gem_relocation_entry *reloc,
1311 1312
	       struct i915_execbuffer *eb,
	       const struct i915_vma *target)
1313
{
1314
	u64 offset = reloc->offset;
1315 1316
	u64 target_offset = relocation_target(reloc, target);
	bool wide = eb->reloc_cache.use_64bit_reloc;
1317
	void *vaddr;
1318

1319 1320
	if (!eb->reloc_cache.vaddr &&
	    (DBG_FORCE_RELOC == FORCE_GPU_RELOC ||
1321
	     !reservation_object_test_signaled_rcu(vma->resv, true))) {
1322 1323 1324 1325 1326 1327 1328 1329 1330
		const unsigned int gen = eb->reloc_cache.gen;
		unsigned int len;
		u32 *batch;
		u64 addr;

		if (wide)
			len = offset & 7 ? 8 : 5;
		else if (gen >= 4)
			len = 4;
1331
		else
1332
			len = 3;
1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377

		batch = reloc_gpu(eb, vma, len);
		if (IS_ERR(batch))
			goto repeat;

		addr = gen8_canonical_addr(vma->node.start + offset);
		if (wide) {
			if (offset & 7) {
				*batch++ = MI_STORE_DWORD_IMM_GEN4;
				*batch++ = lower_32_bits(addr);
				*batch++ = upper_32_bits(addr);
				*batch++ = lower_32_bits(target_offset);

				addr = gen8_canonical_addr(addr + 4);

				*batch++ = MI_STORE_DWORD_IMM_GEN4;
				*batch++ = lower_32_bits(addr);
				*batch++ = upper_32_bits(addr);
				*batch++ = upper_32_bits(target_offset);
			} else {
				*batch++ = (MI_STORE_DWORD_IMM_GEN4 | (1 << 21)) + 1;
				*batch++ = lower_32_bits(addr);
				*batch++ = upper_32_bits(addr);
				*batch++ = lower_32_bits(target_offset);
				*batch++ = upper_32_bits(target_offset);
			}
		} else if (gen >= 6) {
			*batch++ = MI_STORE_DWORD_IMM_GEN4;
			*batch++ = 0;
			*batch++ = addr;
			*batch++ = target_offset;
		} else if (gen >= 4) {
			*batch++ = MI_STORE_DWORD_IMM_GEN4 | MI_USE_GGTT;
			*batch++ = 0;
			*batch++ = addr;
			*batch++ = target_offset;
		} else {
			*batch++ = MI_STORE_DWORD_IMM | MI_MEM_VIRTUAL;
			*batch++ = addr;
			*batch++ = target_offset;
		}

		goto out;
	}

1378
repeat:
1379
	vaddr = reloc_vaddr(vma->obj, &eb->reloc_cache, offset >> PAGE_SHIFT);
1380 1381 1382 1383 1384
	if (IS_ERR(vaddr))
		return PTR_ERR(vaddr);

	clflush_write32(vaddr + offset_in_page(offset),
			lower_32_bits(target_offset),
1385
			eb->reloc_cache.vaddr);
1386 1387 1388 1389 1390 1391

	if (wide) {
		offset += sizeof(u32);
		target_offset >>= 32;
		wide = false;
		goto repeat;
1392 1393
	}

1394
out:
1395
	return target->node.start | UPDATE;
1396 1397
}

1398 1399 1400 1401
static u64
eb_relocate_entry(struct i915_execbuffer *eb,
		  struct i915_vma *vma,
		  const struct drm_i915_gem_relocation_entry *reloc)
1402
{
1403
	struct i915_vma *target;
1404
	int err;
1405

1406
	/* we've already hold a reference to all valid objects */
1407 1408
	target = eb_get_vma(eb, reloc->target_handle);
	if (unlikely(!target))
1409
		return -ENOENT;
1410

1411
	/* Validate that the target is in a valid r/w GPU domain */
1412
	if (unlikely(reloc->write_domain & (reloc->write_domain - 1))) {
1413
		DRM_DEBUG("reloc with multiple write domains: "
1414
			  "target %d offset %d "
1415
			  "read %08x write %08x",
1416
			  reloc->target_handle,
1417 1418 1419
			  (int) reloc->offset,
			  reloc->read_domains,
			  reloc->write_domain);
1420
		return -EINVAL;
1421
	}
1422 1423
	if (unlikely((reloc->write_domain | reloc->read_domains)
		     & ~I915_GEM_GPU_DOMAINS)) {
1424
		DRM_DEBUG("reloc with read/write non-GPU domains: "
1425
			  "target %d offset %d "
1426
			  "read %08x write %08x",
1427
			  reloc->target_handle,
1428 1429 1430
			  (int) reloc->offset,
			  reloc->read_domains,
			  reloc->write_domain);
1431
		return -EINVAL;
1432 1433
	}

1434
	if (reloc->write_domain) {
1435
		*target->exec_flags |= EXEC_OBJECT_WRITE;
1436

1437 1438 1439 1440 1441 1442 1443
		/*
		 * Sandybridge PPGTT errata: We need a global gtt mapping
		 * for MI and pipe_control writes because the gpu doesn't
		 * properly redirect them through the ppgtt for non_secure
		 * batchbuffers.
		 */
		if (reloc->write_domain == I915_GEM_DOMAIN_INSTRUCTION &&
1444
		    IS_GEN(eb->i915, 6)) {
1445 1446 1447 1448 1449 1450
			err = i915_vma_bind(target, target->obj->cache_level,
					    PIN_GLOBAL);
			if (WARN_ONCE(err,
				      "Unexpected failure to bind target VMA!"))
				return err;
		}
1451
	}
1452

1453 1454
	/*
	 * If the relocation already has the right value in it, no
1455 1456
	 * more work needs to be done.
	 */
1457 1458
	if (!DBG_FORCE_RELOC &&
	    gen8_canonical_addr(target->node.start) == reloc->presumed_offset)
1459
		return 0;
1460 1461

	/* Check that the relocation address is valid... */
1462
	if (unlikely(reloc->offset >
1463
		     vma->size - (eb->reloc_cache.use_64bit_reloc ? 8 : 4))) {
1464
		DRM_DEBUG("Relocation beyond object bounds: "
1465 1466 1467 1468
			  "target %d offset %d size %d.\n",
			  reloc->target_handle,
			  (int)reloc->offset,
			  (int)vma->size);
1469
		return -EINVAL;
1470
	}
1471
	if (unlikely(reloc->offset & 3)) {
1472
		DRM_DEBUG("Relocation not 4-byte aligned: "
1473 1474 1475
			  "target %d offset %d.\n",
			  reloc->target_handle,
			  (int)reloc->offset);
1476
		return -EINVAL;
1477 1478
	}

1479 1480 1481 1482 1483 1484
	/*
	 * If we write into the object, we need to force the synchronisation
	 * barrier, either with an asynchronous clflush or if we executed the
	 * patching using the GPU (though that should be serialised by the
	 * timeline). To be completely sure, and since we are required to
	 * do relocations we are already stalling, disable the user's opt
1485
	 * out of our synchronisation.
1486
	 */
1487
	*vma->exec_flags &= ~EXEC_OBJECT_ASYNC;
1488

1489
	/* and update the user's relocation entry */
1490
	return relocate_entry(vma, reloc, eb, target);
1491 1492
}

1493
static int eb_relocate_vma(struct i915_execbuffer *eb, struct i915_vma *vma)
1494
{
1495
#define N_RELOC(x) ((x) / sizeof(struct drm_i915_gem_relocation_entry))
1496 1497
	struct drm_i915_gem_relocation_entry stack[N_RELOC(512)];
	struct drm_i915_gem_relocation_entry __user *urelocs;
1498
	const struct drm_i915_gem_exec_object2 *entry = exec_entry(eb, vma);
1499
	unsigned int remain;
1500

1501
	urelocs = u64_to_user_ptr(entry->relocs_ptr);
1502
	remain = entry->relocation_count;
1503 1504
	if (unlikely(remain > N_RELOC(ULONG_MAX)))
		return -EINVAL;
1505

1506 1507 1508 1509 1510
	/*
	 * We must check that the entire relocation array is safe
	 * to read. However, if the array is not writable the user loses
	 * the updated relocation values.
	 */
1511
	if (unlikely(!access_ok(urelocs, remain*sizeof(*urelocs))))
1512 1513 1514 1515 1516 1517 1518
		return -EFAULT;

	do {
		struct drm_i915_gem_relocation_entry *r = stack;
		unsigned int count =
			min_t(unsigned int, remain, ARRAY_SIZE(stack));
		unsigned int copied;
1519

1520 1521
		/*
		 * This is the fast path and we cannot handle a pagefault
1522 1523 1524 1525 1526 1527 1528
		 * whilst holding the struct mutex lest the user pass in the
		 * relocations contained within a mmaped bo. For in such a case
		 * we, the page fault handler would call i915_gem_fault() and
		 * we would try to acquire the struct mutex again. Obviously
		 * this is bad and so lockdep complains vehemently.
		 */
		pagefault_disable();
1529
		copied = __copy_from_user_inatomic(r, urelocs, count * sizeof(r[0]));
1530
		pagefault_enable();
1531 1532
		if (unlikely(copied)) {
			remain = -EFAULT;
1533 1534
			goto out;
		}
1535

1536
		remain -= count;
1537
		do {
1538
			u64 offset = eb_relocate_entry(eb, vma, r);
1539

1540 1541 1542
			if (likely(offset == 0)) {
			} else if ((s64)offset < 0) {
				remain = (int)offset;
1543
				goto out;
1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566
			} else {
				/*
				 * Note that reporting an error now
				 * leaves everything in an inconsistent
				 * state as we have *already* changed
				 * the relocation value inside the
				 * object. As we have not changed the
				 * reloc.presumed_offset or will not
				 * change the execobject.offset, on the
				 * call we may not rewrite the value
				 * inside the object, leaving it
				 * dangling and causing a GPU hang. Unless
				 * userspace dynamically rebuilds the
				 * relocations on each execbuf rather than
				 * presume a static tree.
				 *
				 * We did previously check if the relocations
				 * were writable (access_ok), an error now
				 * would be a strange race with mprotect,
				 * having already demonstrated that we
				 * can read from this userspace address.
				 */
				offset = gen8_canonical_addr(offset & ~UPDATE);
1567 1568 1569 1570
				if (unlikely(__put_user(offset, &urelocs[r-stack].presumed_offset))) {
					remain = -EFAULT;
					goto out;
				}
1571
			}
1572 1573 1574
		} while (r++, --count);
		urelocs += ARRAY_SIZE(stack);
	} while (remain);
1575
out:
1576
	reloc_cache_reset(&eb->reloc_cache);
1577
	return remain;
1578 1579 1580
}

static int
1581
eb_relocate_vma_slow(struct i915_execbuffer *eb, struct i915_vma *vma)
1582
{
1583
	const struct drm_i915_gem_exec_object2 *entry = exec_entry(eb, vma);
1584 1585 1586 1587
	struct drm_i915_gem_relocation_entry *relocs =
		u64_to_ptr(typeof(*relocs), entry->relocs_ptr);
	unsigned int i;
	int err;
1588 1589

	for (i = 0; i < entry->relocation_count; i++) {
1590
		u64 offset = eb_relocate_entry(eb, vma, &relocs[i]);
1591

1592 1593 1594 1595
		if ((s64)offset < 0) {
			err = (int)offset;
			goto err;
		}
1596
	}
1597 1598 1599 1600
	err = 0;
err:
	reloc_cache_reset(&eb->reloc_cache);
	return err;
1601 1602
}

1603
static int check_relocations(const struct drm_i915_gem_exec_object2 *entry)
1604
{
1605 1606 1607
	const char __user *addr, *end;
	unsigned long size;
	char __maybe_unused c;
1608

1609 1610 1611
	size = entry->relocation_count;
	if (size == 0)
		return 0;
1612

1613 1614
	if (size > N_RELOC(ULONG_MAX))
		return -EINVAL;
1615

1616 1617
	addr = u64_to_user_ptr(entry->relocs_ptr);
	size *= sizeof(struct drm_i915_gem_relocation_entry);
1618
	if (!access_ok(addr, size))
1619
		return -EFAULT;
1620

1621 1622 1623 1624 1625
	end = addr + size;
	for (; addr < end; addr += PAGE_SIZE) {
		int err = __get_user(c, addr);
		if (err)
			return err;
1626
	}
1627
	return __get_user(c, end - 1);
1628
}
1629

1630
static int eb_copy_relocations(const struct i915_execbuffer *eb)
1631
{
1632 1633 1634
	const unsigned int count = eb->buffer_count;
	unsigned int i;
	int err;
1635

1636 1637 1638 1639 1640 1641
	for (i = 0; i < count; i++) {
		const unsigned int nreloc = eb->exec[i].relocation_count;
		struct drm_i915_gem_relocation_entry __user *urelocs;
		struct drm_i915_gem_relocation_entry *relocs;
		unsigned long size;
		unsigned long copied;
1642

1643 1644
		if (nreloc == 0)
			continue;
1645

1646 1647 1648
		err = check_relocations(&eb->exec[i]);
		if (err)
			goto err;
1649

1650 1651
		urelocs = u64_to_user_ptr(eb->exec[i].relocs_ptr);
		size = nreloc * sizeof(*relocs);
1652

1653
		relocs = kvmalloc_array(size, 1, GFP_KERNEL);
1654 1655 1656 1657
		if (!relocs) {
			err = -ENOMEM;
			goto err;
		}
1658

1659 1660 1661 1662 1663 1664 1665
		/* copy_from_user is limited to < 4GiB */
		copied = 0;
		do {
			unsigned int len =
				min_t(u64, BIT_ULL(31), size - copied);

			if (__copy_from_user((char *)relocs + copied,
1666
					     (char __user *)urelocs + copied,
1667
					     len)) {
1668
end_user:
1669
				user_access_end();
1670
end:
1671 1672 1673 1674
				kvfree(relocs);
				err = -EFAULT;
				goto err;
			}
1675

1676 1677
			copied += len;
		} while (copied < size);
1678

1679 1680 1681 1682 1683 1684 1685 1686 1687 1688
		/*
		 * As we do not update the known relocation offsets after
		 * relocating (due to the complexities in lock handling),
		 * we need to mark them as invalid now so that we force the
		 * relocation processing next time. Just in case the target
		 * object is evicted and then rebound into its old
		 * presumed_offset before the next execbuffer - if that
		 * happened we would make the mistake of assuming that the
		 * relocations were valid.
		 */
1689
		if (!user_access_begin(urelocs, size))
1690
			goto end;
1691

1692 1693 1694 1695 1696
		for (copied = 0; copied < nreloc; copied++)
			unsafe_put_user(-1,
					&urelocs[copied].presumed_offset,
					end_user);
		user_access_end();
1697

1698 1699
		eb->exec[i].relocs_ptr = (uintptr_t)relocs;
	}
1700

1701
	return 0;
1702

1703 1704 1705 1706 1707 1708 1709 1710
err:
	while (i--) {
		struct drm_i915_gem_relocation_entry *relocs =
			u64_to_ptr(typeof(*relocs), eb->exec[i].relocs_ptr);
		if (eb->exec[i].relocation_count)
			kvfree(relocs);
	}
	return err;
1711 1712
}

1713
static int eb_prefault_relocations(const struct i915_execbuffer *eb)
1714
{
1715 1716
	const unsigned int count = eb->buffer_count;
	unsigned int i;
1717

1718
	if (unlikely(i915_modparams.prefault_disable))
1719
		return 0;
1720

1721 1722
	for (i = 0; i < count; i++) {
		int err;
1723

1724 1725 1726 1727
		err = check_relocations(&eb->exec[i]);
		if (err)
			return err;
	}
1728

1729
	return 0;
1730 1731
}

1732
static noinline int eb_relocate_slow(struct i915_execbuffer *eb)
1733
{
1734
	struct drm_device *dev = &eb->i915->drm;
1735
	bool have_copy = false;
1736
	struct i915_vma *vma;
1737 1738 1739 1740 1741 1742 1743
	int err = 0;

repeat:
	if (signal_pending(current)) {
		err = -ERESTARTSYS;
		goto out;
	}
1744

1745
	/* We may process another execbuffer during the unlock... */
1746
	eb_reset_vmas(eb);
1747 1748
	mutex_unlock(&dev->struct_mutex);

1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769
	/*
	 * We take 3 passes through the slowpatch.
	 *
	 * 1 - we try to just prefault all the user relocation entries and
	 * then attempt to reuse the atomic pagefault disabled fast path again.
	 *
	 * 2 - we copy the user entries to a local buffer here outside of the
	 * local and allow ourselves to wait upon any rendering before
	 * relocations
	 *
	 * 3 - we already have a local copy of the relocation entries, but
	 * were interrupted (EAGAIN) whilst waiting for the objects, try again.
	 */
	if (!err) {
		err = eb_prefault_relocations(eb);
	} else if (!have_copy) {
		err = eb_copy_relocations(eb);
		have_copy = err == 0;
	} else {
		cond_resched();
		err = 0;
1770
	}
1771 1772 1773
	if (err) {
		mutex_lock(&dev->struct_mutex);
		goto out;
1774 1775
	}

1776 1777 1778
	/* A frequent cause for EAGAIN are currently unavailable client pages */
	flush_workqueue(eb->i915->mm.userptr_wq);

1779 1780
	err = i915_mutex_lock_interruptible(dev);
	if (err) {
1781
		mutex_lock(&dev->struct_mutex);
1782
		goto out;
1783 1784
	}

1785
	/* reacquire the objects */
1786 1787
	err = eb_lookup_vmas(eb);
	if (err)
1788
		goto err;
1789

1790 1791
	GEM_BUG_ON(!eb->batch);

1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803
	list_for_each_entry(vma, &eb->relocs, reloc_link) {
		if (!have_copy) {
			pagefault_disable();
			err = eb_relocate_vma(eb, vma);
			pagefault_enable();
			if (err)
				goto repeat;
		} else {
			err = eb_relocate_vma_slow(eb, vma);
			if (err)
				goto err;
		}
1804 1805
	}

1806 1807
	/*
	 * Leave the user relocations as are, this is the painfully slow path,
1808 1809 1810 1811 1812 1813
	 * and we want to avoid the complication of dropping the lock whilst
	 * having buffers reserved in the aperture and so causing spurious
	 * ENOSPC for random operations.
	 */

err:
1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834
	if (err == -EAGAIN)
		goto repeat;

out:
	if (have_copy) {
		const unsigned int count = eb->buffer_count;
		unsigned int i;

		for (i = 0; i < count; i++) {
			const struct drm_i915_gem_exec_object2 *entry =
				&eb->exec[i];
			struct drm_i915_gem_relocation_entry *relocs;

			if (!entry->relocation_count)
				continue;

			relocs = u64_to_ptr(typeof(*relocs), entry->relocs_ptr);
			kvfree(relocs);
		}
	}

1835
	return err;
1836 1837
}

1838
static int eb_relocate(struct i915_execbuffer *eb)
1839
{
1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863
	if (eb_lookup_vmas(eb))
		goto slow;

	/* The objects are in their final locations, apply the relocations. */
	if (eb->args->flags & __EXEC_HAS_RELOC) {
		struct i915_vma *vma;

		list_for_each_entry(vma, &eb->relocs, reloc_link) {
			if (eb_relocate_vma(eb, vma))
				goto slow;
		}
	}

	return 0;

slow:
	return eb_relocate_slow(eb);
}

static int eb_move_to_gpu(struct i915_execbuffer *eb)
{
	const unsigned int count = eb->buffer_count;
	unsigned int i;
	int err;
1864

1865
	for (i = 0; i < count; i++) {
1866 1867
		unsigned int flags = eb->flags[i];
		struct i915_vma *vma = eb->vma[i];
1868
		struct drm_i915_gem_object *obj = vma->obj;
1869

1870
		if (flags & EXEC_OBJECT_CAPTURE) {
1871
			struct i915_capture_list *capture;
1872 1873 1874 1875 1876

			capture = kmalloc(sizeof(*capture), GFP_KERNEL);
			if (unlikely(!capture))
				return -ENOMEM;

1877
			capture->next = eb->request->capture_list;
1878
			capture->vma = eb->vma[i];
1879
			eb->request->capture_list = capture;
1880 1881
		}

1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894
		/*
		 * If the GPU is not _reading_ through the CPU cache, we need
		 * to make sure that any writes (both previous GPU writes from
		 * before a change in snooping levels and normal CPU writes)
		 * caught in that cache are flushed to main memory.
		 *
		 * We want to say
		 *   obj->cache_dirty &&
		 *   !(obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_READ)
		 * but gcc's optimiser doesn't handle that as well and emits
		 * two jumps instead of one. Maybe one day...
		 */
		if (unlikely(obj->cache_dirty & ~obj->cache_coherent)) {
1895
			if (i915_gem_clflush_object(obj, 0))
1896
				flags &= ~EXEC_OBJECT_ASYNC;
1897 1898
		}

1899 1900
		if (flags & EXEC_OBJECT_ASYNC)
			continue;
1901

1902
		err = i915_request_await_object
1903
			(eb->request, obj, flags & EXEC_OBJECT_WRITE);
1904 1905 1906 1907 1908
		if (err)
			return err;
	}

	for (i = 0; i < count; i++) {
1909 1910 1911
		unsigned int flags = eb->flags[i];
		struct i915_vma *vma = eb->vma[i];

1912 1913 1914 1915 1916
		err = i915_vma_move_to_active(vma, eb->request, flags);
		if (unlikely(err)) {
			i915_request_skip(eb->request, err);
			return err;
		}
1917

1918 1919 1920 1921
		__eb_unreserve_vma(vma, flags);
		vma->exec_flags = NULL;

		if (unlikely(flags & __EXEC_OBJECT_HAS_REF))
1922
			i915_vma_put(vma);
1923
	}
1924
	eb->exec = NULL;
1925

1926
	/* Unconditionally flush any chipset caches (for streaming writes). */
1927
	i915_gem_chipset_flush(eb->i915);
1928

1929
	return 0;
1930 1931
}

1932
static bool i915_gem_check_execbuffer(struct drm_i915_gem_execbuffer2 *exec)
1933
{
1934
	if (exec->flags & __I915_EXEC_ILLEGAL_FLAGS)
1935 1936
		return false;

C
Chris Wilson 已提交
1937
	/* Kernel clipping was a DRI1 misfeature */
1938 1939 1940 1941
	if (!(exec->flags & I915_EXEC_FENCE_ARRAY)) {
		if (exec->num_cliprects || exec->cliprects_ptr)
			return false;
	}
C
Chris Wilson 已提交
1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953

	if (exec->DR4 == 0xffffffff) {
		DRM_DEBUG("UXA submitting garbage DR4, fixing up\n");
		exec->DR4 = 0;
	}
	if (exec->DR1 || exec->DR4)
		return false;

	if ((exec->batch_start_offset | exec->batch_len) & 0x7)
		return false;

	return true;
1954 1955
}

1956
static int i915_reset_gen7_sol_offsets(struct i915_request *rq)
1957
{
1958 1959
	u32 *cs;
	int i;
1960

1961
	if (!IS_GEN(rq->i915, 7) || rq->engine->id != RCS) {
1962 1963 1964
		DRM_DEBUG("sol reset is gen7/rcs only\n");
		return -EINVAL;
	}
1965

1966
	cs = intel_ring_begin(rq, 4 * 2 + 2);
1967 1968
	if (IS_ERR(cs))
		return PTR_ERR(cs);
1969

1970
	*cs++ = MI_LOAD_REGISTER_IMM(4);
1971
	for (i = 0; i < 4; i++) {
1972 1973
		*cs++ = i915_mmio_reg_offset(GEN7_SO_WRITE_OFFSET(i));
		*cs++ = 0;
1974
	}
1975
	*cs++ = MI_NOOP;
1976
	intel_ring_advance(rq, cs);
1977 1978 1979 1980

	return 0;
}

1981
static struct i915_vma *eb_parse(struct i915_execbuffer *eb, bool is_master)
1982 1983
{
	struct drm_i915_gem_object *shadow_batch_obj;
1984
	struct i915_vma *vma;
1985
	int err;
1986

1987 1988
	shadow_batch_obj = i915_gem_batch_pool_get(&eb->engine->batch_pool,
						   PAGE_ALIGN(eb->batch_len));
1989
	if (IS_ERR(shadow_batch_obj))
1990
		return ERR_CAST(shadow_batch_obj);
1991

1992
	err = intel_engine_cmd_parser(eb->engine,
1993
				      eb->batch->obj,
1994
				      shadow_batch_obj,
1995 1996
				      eb->batch_start_offset,
				      eb->batch_len,
1997
				      is_master);
1998 1999
	if (err) {
		if (err == -EACCES) /* unhandled chained batch */
C
Chris Wilson 已提交
2000 2001
			vma = NULL;
		else
2002
			vma = ERR_PTR(err);
C
Chris Wilson 已提交
2003 2004
		goto out;
	}
2005

C
Chris Wilson 已提交
2006 2007 2008
	vma = i915_gem_object_ggtt_pin(shadow_batch_obj, NULL, 0, 0, 0);
	if (IS_ERR(vma))
		goto out;
C
Chris Wilson 已提交
2009

2010 2011 2012 2013 2014
	eb->vma[eb->buffer_count] = i915_vma_get(vma);
	eb->flags[eb->buffer_count] =
		__EXEC_OBJECT_HAS_PIN | __EXEC_OBJECT_HAS_REF;
	vma->exec_flags = &eb->flags[eb->buffer_count];
	eb->buffer_count++;
2015

C
Chris Wilson 已提交
2016
out:
C
Chris Wilson 已提交
2017
	i915_gem_object_unpin_pages(shadow_batch_obj);
C
Chris Wilson 已提交
2018
	return vma;
2019
}
2020

2021
static void
2022
add_to_client(struct i915_request *rq, struct drm_file *file)
2023
{
2024 2025
	rq->file_priv = file->driver_priv;
	list_add_tail(&rq->client_link, &rq->file_priv->mm.request_list);
2026 2027
}

2028
static int eb_submit(struct i915_execbuffer *eb)
2029
{
2030
	int err;
2031

2032 2033 2034
	err = eb_move_to_gpu(eb);
	if (err)
		return err;
2035

2036
	if (eb->args->flags & I915_EXEC_GEN7_SOL_RESET) {
2037 2038 2039
		err = i915_reset_gen7_sol_offsets(eb->request);
		if (err)
			return err;
2040 2041
	}

2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053
	/*
	 * After we completed waiting for other engines (using HW semaphores)
	 * then we can signal that this request/batch is ready to run. This
	 * allows us to determine if the batch is still waiting on the GPU
	 * or actually running by checking the breadcrumb.
	 */
	if (eb->engine->emit_init_breadcrumb) {
		err = eb->engine->emit_init_breadcrumb(eb->request);
		if (err)
			return err;
	}

2054
	err = eb->engine->emit_bb_start(eb->request,
2055 2056 2057
					eb->batch->node.start +
					eb->batch_start_offset,
					eb->batch_len,
2058 2059 2060
					eb->batch_flags);
	if (err)
		return err;
2061

C
Chris Wilson 已提交
2062
	return 0;
2063 2064
}

2065
/*
2066
 * Find one BSD ring to dispatch the corresponding BSD command.
2067
 * The engine index is returned.
2068
 */
2069
static unsigned int
2070 2071
gen8_dispatch_bsd_engine(struct drm_i915_private *dev_priv,
			 struct drm_file *file)
2072 2073 2074
{
	struct drm_i915_file_private *file_priv = file->driver_priv;

2075
	/* Check whether the file_priv has already selected one ring. */
2076 2077 2078
	if ((int)file_priv->bsd_engine < 0)
		file_priv->bsd_engine = atomic_fetch_xor(1,
			 &dev_priv->mm.bsd_engine_dispatch_index);
2079

2080
	return file_priv->bsd_engine;
2081 2082
}

2083 2084
#define I915_USER_RINGS (4)

2085
static const enum intel_engine_id user_ring_map[I915_USER_RINGS + 1] = {
2086 2087 2088 2089 2090 2091 2092
	[I915_EXEC_DEFAULT]	= RCS,
	[I915_EXEC_RENDER]	= RCS,
	[I915_EXEC_BLT]		= BCS,
	[I915_EXEC_BSD]		= VCS,
	[I915_EXEC_VEBOX]	= VECS
};

2093 2094 2095 2096
static struct intel_engine_cs *
eb_select_engine(struct drm_i915_private *dev_priv,
		 struct drm_file *file,
		 struct drm_i915_gem_execbuffer2 *args)
2097 2098
{
	unsigned int user_ring_id = args->flags & I915_EXEC_RING_MASK;
2099
	struct intel_engine_cs *engine;
2100 2101 2102

	if (user_ring_id > I915_USER_RINGS) {
		DRM_DEBUG("execbuf with unknown ring: %u\n", user_ring_id);
2103
		return NULL;
2104 2105 2106 2107 2108 2109
	}

	if ((user_ring_id != I915_EXEC_BSD) &&
	    ((args->flags & I915_EXEC_BSD_MASK) != 0)) {
		DRM_DEBUG("execbuf with non bsd ring but with invalid "
			  "bsd dispatch flags: %d\n", (int)(args->flags));
2110
		return NULL;
2111 2112 2113 2114 2115 2116
	}

	if (user_ring_id == I915_EXEC_BSD && HAS_BSD2(dev_priv)) {
		unsigned int bsd_idx = args->flags & I915_EXEC_BSD_MASK;

		if (bsd_idx == I915_EXEC_BSD_DEFAULT) {
2117
			bsd_idx = gen8_dispatch_bsd_engine(dev_priv, file);
2118 2119
		} else if (bsd_idx >= I915_EXEC_BSD_RING1 &&
			   bsd_idx <= I915_EXEC_BSD_RING2) {
2120
			bsd_idx >>= I915_EXEC_BSD_SHIFT;
2121 2122 2123 2124
			bsd_idx--;
		} else {
			DRM_DEBUG("execbuf with unknown bsd ring: %u\n",
				  bsd_idx);
2125
			return NULL;
2126 2127
		}

2128
		engine = dev_priv->engine[_VCS(bsd_idx)];
2129
	} else {
2130
		engine = dev_priv->engine[user_ring_map[user_ring_id]];
2131 2132
	}

2133
	if (!engine) {
2134
		DRM_DEBUG("execbuf with invalid ring: %u\n", user_ring_id);
2135
		return NULL;
2136 2137
	}

2138
	return engine;
2139 2140
}

2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152
static void
__free_fence_array(struct drm_syncobj **fences, unsigned int n)
{
	while (n--)
		drm_syncobj_put(ptr_mask_bits(fences[n], 2));
	kvfree(fences);
}

static struct drm_syncobj **
get_fence_array(struct drm_i915_gem_execbuffer2 *args,
		struct drm_file *file)
{
2153
	const unsigned long nfences = args->num_cliprects;
2154 2155
	struct drm_i915_gem_exec_fence __user *user;
	struct drm_syncobj **fences;
2156
	unsigned long n;
2157 2158 2159 2160 2161
	int err;

	if (!(args->flags & I915_EXEC_FENCE_ARRAY))
		return NULL;

2162 2163 2164 2165 2166
	/* Check multiplication overflow for access_ok() and kvmalloc_array() */
	BUILD_BUG_ON(sizeof(size_t) > sizeof(unsigned long));
	if (nfences > min_t(unsigned long,
			    ULONG_MAX / sizeof(*user),
			    SIZE_MAX / sizeof(*fences)))
2167 2168 2169
		return ERR_PTR(-EINVAL);

	user = u64_to_user_ptr(args->cliprects_ptr);
2170
	if (!access_ok(user, nfences * sizeof(*user)))
2171 2172
		return ERR_PTR(-EFAULT);

2173
	fences = kvmalloc_array(nfences, sizeof(*fences),
2174
				__GFP_NOWARN | GFP_KERNEL);
2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186
	if (!fences)
		return ERR_PTR(-ENOMEM);

	for (n = 0; n < nfences; n++) {
		struct drm_i915_gem_exec_fence fence;
		struct drm_syncobj *syncobj;

		if (__copy_from_user(&fence, user++, sizeof(fence))) {
			err = -EFAULT;
			goto err;
		}

2187 2188 2189 2190 2191
		if (fence.flags & __I915_EXEC_FENCE_UNKNOWN_FLAGS) {
			err = -EINVAL;
			goto err;
		}

2192 2193 2194 2195 2196 2197 2198
		syncobj = drm_syncobj_find(file, fence.handle);
		if (!syncobj) {
			DRM_DEBUG("Invalid syncobj handle provided\n");
			err = -ENOENT;
			goto err;
		}

2199 2200 2201
		BUILD_BUG_ON(~(ARCH_KMALLOC_MINALIGN - 1) &
			     ~__I915_EXEC_FENCE_UNKNOWN_FLAGS);

2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236
		fences[n] = ptr_pack_bits(syncobj, fence.flags, 2);
	}

	return fences;

err:
	__free_fence_array(fences, n);
	return ERR_PTR(err);
}

static void
put_fence_array(struct drm_i915_gem_execbuffer2 *args,
		struct drm_syncobj **fences)
{
	if (fences)
		__free_fence_array(fences, args->num_cliprects);
}

static int
await_fence_array(struct i915_execbuffer *eb,
		  struct drm_syncobj **fences)
{
	const unsigned int nfences = eb->args->num_cliprects;
	unsigned int n;
	int err;

	for (n = 0; n < nfences; n++) {
		struct drm_syncobj *syncobj;
		struct dma_fence *fence;
		unsigned int flags;

		syncobj = ptr_unpack_bits(fences[n], &flags, 2);
		if (!(flags & I915_EXEC_FENCE_WAIT))
			continue;

J
Jason Ekstrand 已提交
2237
		fence = drm_syncobj_fence_get(syncobj);
2238 2239 2240
		if (!fence)
			return -EINVAL;

2241
		err = i915_request_await_dma_fence(eb->request, fence);
2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265
		dma_fence_put(fence);
		if (err < 0)
			return err;
	}

	return 0;
}

static void
signal_fence_array(struct i915_execbuffer *eb,
		   struct drm_syncobj **fences)
{
	const unsigned int nfences = eb->args->num_cliprects;
	struct dma_fence * const fence = &eb->request->fence;
	unsigned int n;

	for (n = 0; n < nfences; n++) {
		struct drm_syncobj *syncobj;
		unsigned int flags;

		syncobj = ptr_unpack_bits(fences[n], &flags, 2);
		if (!(flags & I915_EXEC_FENCE_SIGNAL))
			continue;

2266
		drm_syncobj_replace_fence(syncobj, fence);
2267 2268 2269
	}
}

2270
static int
2271
i915_gem_do_execbuffer(struct drm_device *dev,
2272 2273
		       struct drm_file *file,
		       struct drm_i915_gem_execbuffer2 *args,
2274 2275
		       struct drm_i915_gem_exec_object2 *exec,
		       struct drm_syncobj **fences)
2276
{
2277
	struct i915_execbuffer eb;
2278 2279
	struct dma_fence *in_fence = NULL;
	struct sync_file *out_fence = NULL;
2280
	intel_wakeref_t wakeref;
2281
	int out_fence_fd = -1;
2282
	int err;
2283

2284
	BUILD_BUG_ON(__EXEC_INTERNAL_FLAGS & ~__I915_EXEC_ILLEGAL_FLAGS);
2285 2286
	BUILD_BUG_ON(__EXEC_OBJECT_INTERNAL_FLAGS &
		     ~__EXEC_OBJECT_UNKNOWN_FLAGS);
2287

2288 2289 2290
	eb.i915 = to_i915(dev);
	eb.file = file;
	eb.args = args;
2291
	if (DBG_FORCE_RELOC || !(args->flags & I915_EXEC_NO_RELOC))
2292
		args->flags |= __EXEC_HAS_RELOC;
2293

2294
	eb.exec = exec;
2295 2296
	eb.vma = (struct i915_vma **)(exec + args->buffer_count + 1);
	eb.vma[0] = NULL;
2297 2298
	eb.flags = (unsigned int *)(eb.vma + args->buffer_count + 1);

2299
	eb.invalid_flags = __EXEC_OBJECT_UNKNOWN_FLAGS;
2300 2301
	reloc_cache_init(&eb.reloc_cache, eb.i915);

2302
	eb.buffer_count = args->buffer_count;
2303 2304 2305
	eb.batch_start_offset = args->batch_start_offset;
	eb.batch_len = args->batch_len;

2306
	eb.batch_flags = 0;
2307
	if (args->flags & I915_EXEC_SECURE) {
2308
		if (!drm_is_current_master(file) || !capable(CAP_SYS_ADMIN))
2309 2310
		    return -EPERM;

2311
		eb.batch_flags |= I915_DISPATCH_SECURE;
2312
	}
2313
	if (args->flags & I915_EXEC_IS_PINNED)
2314
		eb.batch_flags |= I915_DISPATCH_PINNED;
2315

2316 2317
	eb.engine = eb_select_engine(eb.i915, file, args);
	if (!eb.engine)
2318 2319
		return -EINVAL;

2320 2321
	if (args->flags & I915_EXEC_FENCE_IN) {
		in_fence = sync_file_get_fence(lower_32_bits(args->rsvd2));
2322 2323
		if (!in_fence)
			return -EINVAL;
2324 2325 2326 2327 2328
	}

	if (args->flags & I915_EXEC_FENCE_OUT) {
		out_fence_fd = get_unused_fd_flags(O_CLOEXEC);
		if (out_fence_fd < 0) {
2329
			err = out_fence_fd;
2330
			goto err_in_fence;
2331 2332 2333
		}
	}

2334 2335 2336 2337 2338
	err = eb_create(&eb);
	if (err)
		goto err_out_fence;

	GEM_BUG_ON(!eb.lut_size);
2339

2340 2341 2342 2343
	err = eb_select_context(&eb);
	if (unlikely(err))
		goto err_destroy;

2344 2345
	/*
	 * Take a local wakeref for preparing to dispatch the execbuf as
2346 2347 2348 2349 2350
	 * we expect to access the hardware fairly frequently in the
	 * process. Upon first dispatch, we acquire another prolonged
	 * wakeref that we hold until the GPU has been idle for at least
	 * 100ms.
	 */
2351
	wakeref = intel_runtime_pm_get(eb.i915);
2352

2353 2354 2355
	err = i915_mutex_lock_interruptible(dev);
	if (err)
		goto err_rpm;
2356

2357 2358 2359 2360
	err = eb_wait_for_ring(&eb); /* may temporarily drop struct_mutex */
	if (unlikely(err))
		goto err_unlock;

2361
	err = eb_relocate(&eb);
2362
	if (err) {
2363 2364 2365 2366 2367 2368 2369 2370 2371
		/*
		 * If the user expects the execobject.offset and
		 * reloc.presumed_offset to be an exact match,
		 * as for using NO_RELOC, then we cannot update
		 * the execobject.offset until we have completed
		 * relocation.
		 */
		args->flags &= ~__EXEC_HAS_RELOC;
		goto err_vma;
2372
	}
2373

2374
	if (unlikely(*eb.batch->exec_flags & EXEC_OBJECT_WRITE)) {
2375
		DRM_DEBUG("Attempting to use self-modifying batch buffer\n");
2376 2377
		err = -EINVAL;
		goto err_vma;
2378
	}
2379 2380
	if (eb.batch_start_offset > eb.batch->size ||
	    eb.batch_len > eb.batch->size - eb.batch_start_offset) {
2381
		DRM_DEBUG("Attempting to use out-of-bounds batch\n");
2382 2383
		err = -EINVAL;
		goto err_vma;
2384
	}
2385

2386
	if (eb_use_cmdparser(&eb)) {
2387 2388
		struct i915_vma *vma;

2389
		vma = eb_parse(&eb, drm_is_current_master(file));
2390
		if (IS_ERR(vma)) {
2391 2392
			err = PTR_ERR(vma);
			goto err_vma;
2393
		}
2394

2395
		if (vma) {
2396 2397 2398 2399 2400 2401 2402 2403 2404
			/*
			 * Batch parsed and accepted:
			 *
			 * Set the DISPATCH_SECURE bit to remove the NON_SECURE
			 * bit from MI_BATCH_BUFFER_START commands issued in
			 * the dispatch_execbuffer implementations. We
			 * specifically don't want that set on batches the
			 * command parser has accepted.
			 */
2405
			eb.batch_flags |= I915_DISPATCH_SECURE;
2406 2407
			eb.batch_start_offset = 0;
			eb.batch = vma;
2408
		}
2409 2410
	}

2411 2412
	if (eb.batch_len == 0)
		eb.batch_len = eb.batch->size - eb.batch_start_offset;
2413

2414 2415
	/*
	 * snb/ivb/vlv conflate the "batch in ppgtt" bit with the "non-secure
2416
	 * batch" bit. Hence we need to pin secure batches into the global gtt.
B
Ben Widawsky 已提交
2417
	 * hsw should have this fixed, but bdw mucks it up again. */
2418
	if (eb.batch_flags & I915_DISPATCH_SECURE) {
C
Chris Wilson 已提交
2419
		struct i915_vma *vma;
2420

2421 2422 2423 2424 2425 2426
		/*
		 * So on first glance it looks freaky that we pin the batch here
		 * outside of the reservation loop. But:
		 * - The batch is already pinned into the relevant ppgtt, so we
		 *   already have the backing storage fully allocated.
		 * - No other BO uses the global gtt (well contexts, but meh),
2427
		 *   so we don't really have issues with multiple objects not
2428 2429 2430
		 *   fitting due to fragmentation.
		 * So this is actually safe.
		 */
2431
		vma = i915_gem_object_ggtt_pin(eb.batch->obj, NULL, 0, 0, 0);
C
Chris Wilson 已提交
2432
		if (IS_ERR(vma)) {
2433 2434
			err = PTR_ERR(vma);
			goto err_vma;
C
Chris Wilson 已提交
2435
		}
2436

2437
		eb.batch = vma;
2438
	}
2439

2440 2441 2442
	/* All GPU relocation batches must be submitted prior to the user rq */
	GEM_BUG_ON(eb.reloc_cache.rq);

2443
	/* Allocate a request for this batch buffer nice and early. */
2444
	eb.request = i915_request_alloc(eb.engine, eb.ctx);
2445
	if (IS_ERR(eb.request)) {
2446
		err = PTR_ERR(eb.request);
2447
		goto err_batch_unpin;
2448
	}
2449

2450
	if (in_fence) {
2451
		err = i915_request_await_dma_fence(eb.request, in_fence);
2452
		if (err < 0)
2453 2454 2455
			goto err_request;
	}

2456 2457 2458 2459 2460 2461
	if (fences) {
		err = await_fence_array(&eb, fences);
		if (err)
			goto err_request;
	}

2462
	if (out_fence_fd != -1) {
2463
		out_fence = sync_file_create(&eb.request->fence);
2464
		if (!out_fence) {
2465
			err = -ENOMEM;
2466 2467 2468 2469
			goto err_request;
		}
	}

2470 2471
	/*
	 * Whilst this request exists, batch_obj will be on the
2472 2473 2474 2475 2476
	 * active_list, and so will hold the active reference. Only when this
	 * request is retired will the the batch_obj be moved onto the
	 * inactive_list and lose its active reference. Hence we do not need
	 * to explicitly hold another reference here.
	 */
2477
	eb.request->batch = eb.batch;
2478

2479
	trace_i915_request_queue(eb.request, eb.batch_flags);
2480
	err = eb_submit(&eb);
2481
err_request:
2482
	i915_request_add(eb.request);
2483
	add_to_client(eb.request, file);
2484

2485 2486 2487
	if (fences)
		signal_fence_array(&eb, fences);

2488
	if (out_fence) {
2489
		if (err == 0) {
2490
			fd_install(out_fence_fd, out_fence->file);
2491
			args->rsvd2 &= GENMASK_ULL(31, 0); /* keep in-fence */
2492 2493 2494 2495 2496 2497
			args->rsvd2 |= (u64)out_fence_fd << 32;
			out_fence_fd = -1;
		} else {
			fput(out_fence->file);
		}
	}
2498

2499
err_batch_unpin:
2500
	if (eb.batch_flags & I915_DISPATCH_SECURE)
2501
		i915_vma_unpin(eb.batch);
2502 2503 2504
err_vma:
	if (eb.exec)
		eb_release_vmas(&eb);
2505
err_unlock:
2506
	mutex_unlock(&dev->struct_mutex);
2507
err_rpm:
2508
	intel_runtime_pm_put(eb.i915, wakeref);
2509 2510
	i915_gem_context_put(eb.ctx);
err_destroy:
2511
	eb_destroy(&eb);
2512
err_out_fence:
2513 2514
	if (out_fence_fd != -1)
		put_unused_fd(out_fence_fd);
2515
err_in_fence:
2516
	dma_fence_put(in_fence);
2517
	return err;
2518 2519
}

2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539
static size_t eb_element_size(void)
{
	return (sizeof(struct drm_i915_gem_exec_object2) +
		sizeof(struct i915_vma *) +
		sizeof(unsigned int));
}

static bool check_buffer_count(size_t count)
{
	const size_t sz = eb_element_size();

	/*
	 * When using LUT_HANDLE, we impose a limit of INT_MAX for the lookup
	 * array size (see eb_create()). Otherwise, we can accept an array as
	 * large as can be addressed (though use large arrays at your peril)!
	 */

	return !(count < 1 || count > INT_MAX || count > SIZE_MAX / sz - 1);
}

2540 2541 2542 2543 2544
/*
 * Legacy execbuffer just creates an exec2 list from the original exec object
 * list array and passes it to the real function.
 */
int
2545 2546
i915_gem_execbuffer_ioctl(struct drm_device *dev, void *data,
			  struct drm_file *file)
2547 2548 2549 2550 2551
{
	struct drm_i915_gem_execbuffer *args = data;
	struct drm_i915_gem_execbuffer2 exec2;
	struct drm_i915_gem_exec_object *exec_list = NULL;
	struct drm_i915_gem_exec_object2 *exec2_list = NULL;
2552
	const size_t count = args->buffer_count;
2553 2554
	unsigned int i;
	int err;
2555

2556 2557
	if (!check_buffer_count(count)) {
		DRM_DEBUG("execbuf2 with %zd buffers\n", count);
2558 2559 2560
		return -EINVAL;
	}

2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574
	exec2.buffers_ptr = args->buffers_ptr;
	exec2.buffer_count = args->buffer_count;
	exec2.batch_start_offset = args->batch_start_offset;
	exec2.batch_len = args->batch_len;
	exec2.DR1 = args->DR1;
	exec2.DR4 = args->DR4;
	exec2.num_cliprects = args->num_cliprects;
	exec2.cliprects_ptr = args->cliprects_ptr;
	exec2.flags = I915_EXEC_RENDER;
	i915_execbuffer2_set_context_id(exec2, 0);

	if (!i915_gem_check_execbuffer(&exec2))
		return -EINVAL;

2575
	/* Copy in the exec list from userland */
2576
	exec_list = kvmalloc_array(count, sizeof(*exec_list),
2577
				   __GFP_NOWARN | GFP_KERNEL);
2578
	exec2_list = kvmalloc_array(count + 1, eb_element_size(),
2579
				    __GFP_NOWARN | GFP_KERNEL);
2580
	if (exec_list == NULL || exec2_list == NULL) {
2581
		DRM_DEBUG("Failed to allocate exec list for %d buffers\n",
2582
			  args->buffer_count);
M
Michal Hocko 已提交
2583 2584
		kvfree(exec_list);
		kvfree(exec2_list);
2585 2586
		return -ENOMEM;
	}
2587
	err = copy_from_user(exec_list,
2588
			     u64_to_user_ptr(args->buffers_ptr),
2589
			     sizeof(*exec_list) * count);
2590
	if (err) {
2591
		DRM_DEBUG("copy %d exec entries failed %d\n",
2592
			  args->buffer_count, err);
M
Michal Hocko 已提交
2593 2594
		kvfree(exec_list);
		kvfree(exec2_list);
2595 2596 2597 2598 2599 2600 2601 2602 2603
		return -EFAULT;
	}

	for (i = 0; i < args->buffer_count; i++) {
		exec2_list[i].handle = exec_list[i].handle;
		exec2_list[i].relocation_count = exec_list[i].relocation_count;
		exec2_list[i].relocs_ptr = exec_list[i].relocs_ptr;
		exec2_list[i].alignment = exec_list[i].alignment;
		exec2_list[i].offset = exec_list[i].offset;
2604
		if (INTEL_GEN(to_i915(dev)) < 4)
2605 2606 2607 2608 2609
			exec2_list[i].flags = EXEC_OBJECT_NEEDS_FENCE;
		else
			exec2_list[i].flags = 0;
	}

2610
	err = i915_gem_do_execbuffer(dev, file, &exec2, exec2_list, NULL);
2611
	if (exec2.flags & __EXEC_HAS_RELOC) {
2612
		struct drm_i915_gem_exec_object __user *user_exec_list =
2613
			u64_to_user_ptr(args->buffers_ptr);
2614

2615
		/* Copy the new buffer offsets back to the user's exec list. */
2616
		for (i = 0; i < args->buffer_count; i++) {
2617 2618 2619
			if (!(exec2_list[i].offset & UPDATE))
				continue;

2620
			exec2_list[i].offset =
2621 2622 2623 2624 2625
				gen8_canonical_addr(exec2_list[i].offset & PIN_OFFSET_MASK);
			exec2_list[i].offset &= PIN_OFFSET_MASK;
			if (__copy_to_user(&user_exec_list[i].offset,
					   &exec2_list[i].offset,
					   sizeof(user_exec_list[i].offset)))
2626
				break;
2627 2628 2629
		}
	}

M
Michal Hocko 已提交
2630 2631
	kvfree(exec_list);
	kvfree(exec2_list);
2632
	return err;
2633 2634 2635
}

int
2636 2637
i915_gem_execbuffer2_ioctl(struct drm_device *dev, void *data,
			   struct drm_file *file)
2638 2639
{
	struct drm_i915_gem_execbuffer2 *args = data;
2640
	struct drm_i915_gem_exec_object2 *exec2_list;
2641
	struct drm_syncobj **fences = NULL;
2642
	const size_t count = args->buffer_count;
2643
	int err;
2644

2645 2646
	if (!check_buffer_count(count)) {
		DRM_DEBUG("execbuf2 with %zd buffers\n", count);
2647 2648 2649
		return -EINVAL;
	}

2650 2651 2652 2653
	if (!i915_gem_check_execbuffer(args))
		return -EINVAL;

	/* Allocate an extra slot for use by the command parser */
2654
	exec2_list = kvmalloc_array(count + 1, eb_element_size(),
2655
				    __GFP_NOWARN | GFP_KERNEL);
2656
	if (exec2_list == NULL) {
2657 2658
		DRM_DEBUG("Failed to allocate exec list for %zd buffers\n",
			  count);
2659 2660
		return -ENOMEM;
	}
2661 2662
	if (copy_from_user(exec2_list,
			   u64_to_user_ptr(args->buffers_ptr),
2663 2664
			   sizeof(*exec2_list) * count)) {
		DRM_DEBUG("copy %zd exec entries failed\n", count);
M
Michal Hocko 已提交
2665
		kvfree(exec2_list);
2666 2667 2668
		return -EFAULT;
	}

2669 2670 2671 2672 2673 2674 2675 2676 2677
	if (args->flags & I915_EXEC_FENCE_ARRAY) {
		fences = get_fence_array(args, file);
		if (IS_ERR(fences)) {
			kvfree(exec2_list);
			return PTR_ERR(fences);
		}
	}

	err = i915_gem_do_execbuffer(dev, file, args, exec2_list, fences);
2678 2679 2680 2681 2682 2683 2684 2685

	/*
	 * Now that we have begun execution of the batchbuffer, we ignore
	 * any new error after this point. Also given that we have already
	 * updated the associated relocations, we try to write out the current
	 * object locations irrespective of any error.
	 */
	if (args->flags & __EXEC_HAS_RELOC) {
2686
		struct drm_i915_gem_exec_object2 __user *user_exec_list =
2687 2688
			u64_to_user_ptr(args->buffers_ptr);
		unsigned int i;
2689

2690
		/* Copy the new buffer offsets back to the user's exec list. */
2691 2692 2693 2694 2695 2696 2697 2698
		/*
		 * Note: count * sizeof(*user_exec_list) does not overflow,
		 * because we checked 'count' in check_buffer_count().
		 *
		 * And this range already got effectively checked earlier
		 * when we did the "copy_from_user()" above.
		 */
		if (!user_access_begin(user_exec_list, count * sizeof(*user_exec_list)))
2699
			goto end;
2700

2701
		for (i = 0; i < args->buffer_count; i++) {
2702 2703 2704
			if (!(exec2_list[i].offset & UPDATE))
				continue;

2705
			exec2_list[i].offset =
2706 2707 2708 2709
				gen8_canonical_addr(exec2_list[i].offset & PIN_OFFSET_MASK);
			unsafe_put_user(exec2_list[i].offset,
					&user_exec_list[i].offset,
					end_user);
2710
		}
2711 2712
end_user:
		user_access_end();
2713
end:;
2714 2715
	}

2716
	args->flags &= ~__I915_EXEC_UNKNOWN_FLAGS;
2717
	put_fence_array(args, fences);
M
Michal Hocko 已提交
2718
	kvfree(exec2_list);
2719
	return err;
2720
}