intel_pstate.c 71.9 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0-only
2
/*
3
 * intel_pstate.c: Native P state management for Intel processors
4 5 6 7 8
 *
 * (C) Copyright 2012 Intel Corporation
 * Author: Dirk Brandewie <dirk.j.brandewie@intel.com>
 */

J
Joe Perches 已提交
9 10
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt

11 12 13 14 15 16 17
#include <linux/kernel.h>
#include <linux/kernel_stat.h>
#include <linux/module.h>
#include <linux/ktime.h>
#include <linux/hrtimer.h>
#include <linux/tick.h>
#include <linux/slab.h>
18
#include <linux/sched/cpufreq.h>
19 20 21 22 23 24
#include <linux/list.h>
#include <linux/cpu.h>
#include <linux/cpufreq.h>
#include <linux/sysfs.h>
#include <linux/types.h>
#include <linux/fs.h>
25
#include <linux/acpi.h>
26
#include <linux/vmalloc.h>
27
#include <linux/pm_qos.h>
28 29 30 31 32
#include <trace/events/power.h>

#include <asm/div64.h>
#include <asm/msr.h>
#include <asm/cpu_device_id.h>
33
#include <asm/cpufeature.h>
34
#include <asm/intel-family.h>
35

36
#define INTEL_PSTATE_SAMPLING_INTERVAL	(10 * NSEC_PER_MSEC)
37

38
#define INTEL_CPUFREQ_TRANSITION_LATENCY	20000
39
#define INTEL_CPUFREQ_TRANSITION_DELAY		500
40

41 42
#ifdef CONFIG_ACPI
#include <acpi/processor.h>
43
#include <acpi/cppc_acpi.h>
44 45
#endif

46
#define FRAC_BITS 8
47 48
#define int_tofp(X) ((int64_t)(X) << FRAC_BITS)
#define fp_toint(X) ((X) >> FRAC_BITS)
49

50 51
#define ONE_EIGHTH_FP ((int64_t)1 << (FRAC_BITS - 3))

52 53
#define EXT_BITS 6
#define EXT_FRAC_BITS (EXT_BITS + FRAC_BITS)
54 55
#define fp_ext_toint(X) ((X) >> EXT_FRAC_BITS)
#define int_ext_tofp(X) ((int64_t)(X) << EXT_FRAC_BITS)
56

57 58 59 60 61
static inline int32_t mul_fp(int32_t x, int32_t y)
{
	return ((int64_t)x * (int64_t)y) >> FRAC_BITS;
}

62
static inline int32_t div_fp(s64 x, s64 y)
63
{
64
	return div64_s64((int64_t)x << FRAC_BITS, y);
65 66
}

67 68 69 70 71 72 73 74 75 76 77
static inline int ceiling_fp(int32_t x)
{
	int mask, ret;

	ret = fp_toint(x);
	mask = (1 << FRAC_BITS) - 1;
	if (x & mask)
		ret += 1;
	return ret;
}

78 79 80 81 82
static inline int32_t percent_fp(int percent)
{
	return div_fp(percent, 100);
}

83 84 85 86 87 88 89 90 91 92
static inline u64 mul_ext_fp(u64 x, u64 y)
{
	return (x * y) >> EXT_FRAC_BITS;
}

static inline u64 div_ext_fp(u64 x, u64 y)
{
	return div64_u64(x << EXT_FRAC_BITS, y);
}

93 94 95 96 97
static inline int32_t percent_ext_fp(int percent)
{
	return div_ext_fp(percent, 100);
}

98 99
/**
 * struct sample -	Store performance sample
100
 * @core_avg_perf:	Ratio of APERF/MPERF which is the actual average
101 102
 *			performance during last sample period
 * @busy_scaled:	Scaled busy value which is used to calculate next
103
 *			P state. This can be different than core_avg_perf
104 105 106 107 108 109 110 111 112 113 114 115
 *			to account for cpu idle period
 * @aperf:		Difference of actual performance frequency clock count
 *			read from APERF MSR between last and current sample
 * @mperf:		Difference of maximum performance frequency clock count
 *			read from MPERF MSR between last and current sample
 * @tsc:		Difference of time stamp counter between last and
 *			current sample
 * @time:		Current time from scheduler
 *
 * This structure is used in the cpudata structure to store performance sample
 * data for choosing next P State.
 */
116
struct sample {
117
	int32_t core_avg_perf;
118
	int32_t busy_scaled;
119 120
	u64 aperf;
	u64 mperf;
121
	u64 tsc;
122
	u64 time;
123 124
};

125 126 127 128 129 130 131 132 133 134 135
/**
 * struct pstate_data - Store P state data
 * @current_pstate:	Current requested P state
 * @min_pstate:		Min P state possible for this platform
 * @max_pstate:		Max P state possible for this platform
 * @max_pstate_physical:This is physical Max P state for a processor
 *			This can be higher than the max_pstate which can
 *			be limited by platform thermal design power limits
 * @scaling:		Scaling factor to  convert frequency to cpufreq
 *			frequency units
 * @turbo_pstate:	Max Turbo P state possible for this platform
136 137
 * @max_freq:		@max_pstate frequency in cpufreq units
 * @turbo_freq:		@turbo_pstate frequency in cpufreq units
138 139 140
 *
 * Stores the per cpu model P state limits and current P state.
 */
141 142 143 144
struct pstate_data {
	int	current_pstate;
	int	min_pstate;
	int	max_pstate;
145
	int	max_pstate_physical;
146
	int	scaling;
147
	int	turbo_pstate;
148 149
	unsigned int max_freq;
	unsigned int turbo_freq;
150 151
};

152 153 154 155 156 157 158 159 160 161 162 163 164
/**
 * struct vid_data -	Stores voltage information data
 * @min:		VID data for this platform corresponding to
 *			the lowest P state
 * @max:		VID data corresponding to the highest P State.
 * @turbo:		VID data for turbo P state
 * @ratio:		Ratio of (vid max - vid min) /
 *			(max P state - Min P State)
 *
 * Stores the voltage data for DVFS (Dynamic Voltage and Frequency Scaling)
 * This data is used in Atom platforms, where in addition to target P state,
 * the voltage data needs to be specified to select next P State.
 */
165
struct vid_data {
166 167 168
	int min;
	int max;
	int turbo;
169 170 171
	int32_t ratio;
};

172 173 174
/**
 * struct global_params - Global parameters, mostly tunable via sysfs.
 * @no_turbo:		Whether or not to use turbo P-states.
175
 * @turbo_disabled:	Whether or not turbo P-states are available at all,
176 177 178
 *			based on the MSR_IA32_MISC_ENABLE value and whether or
 *			not the maximum reported turbo P-state is different from
 *			the maximum reported non-turbo one.
179
 * @turbo_disabled_mf:	The @turbo_disabled value reflected by cpuinfo.max_freq.
180 181 182 183 184 185 186 187
 * @min_perf_pct:	Minimum capacity limit in percent of the maximum turbo
 *			P-state capacity.
 * @max_perf_pct:	Maximum capacity limit in percent of the maximum turbo
 *			P-state capacity.
 */
struct global_params {
	bool no_turbo;
	bool turbo_disabled;
188
	bool turbo_disabled_mf;
189 190
	int max_perf_pct;
	int min_perf_pct;
191 192
};

193 194 195
/**
 * struct cpudata -	Per CPU instance data storage
 * @cpu:		CPU number for this instance data
196
 * @policy:		CPUFreq policy value
197
 * @update_util:	CPUFreq utility callback information
198
 * @update_util_set:	CPUFreq utility callback is set
199 200
 * @iowait_boost:	iowait-related boost fraction
 * @last_update:	Time of the last update.
201 202 203
 * @pstate:		Stores P state limits for this CPU
 * @vid:		Stores VID limits for this CPU
 * @last_sample_time:	Last Sample time
204 205 206
 * @aperf_mperf_shift:	Number of clock cycles after aperf, merf is incremented
 *			This shift is a multiplier to mperf delta to
 *			calculate CPU busy.
207 208 209 210 211 212
 * @prev_aperf:		Last APERF value read from APERF MSR
 * @prev_mperf:		Last MPERF value read from MPERF MSR
 * @prev_tsc:		Last timestamp counter (TSC) value
 * @prev_cummulative_iowait: IO Wait time difference from last and
 *			current sample
 * @sample:		Storage for storing last Sample data
213 214
 * @min_perf_ratio:	Minimum capacity in terms of PERF or HWP ratios
 * @max_perf_ratio:	Maximum capacity in terms of PERF or HWP ratios
215 216
 * @acpi_perf_data:	Stores ACPI perf information read from _PSS
 * @valid_pss_table:	Set to true for valid ACPI _PSS entries found
217 218 219
 * @epp_powersave:	Last saved HWP energy performance preference
 *			(EPP) or energy performance bias (EPB),
 *			when policy switched to performance
220
 * @epp_policy:		Last saved policy used to set EPP/EPB
221 222 223 224
 * @epp_default:	Power on default HWP energy performance
 *			preference/bias
 * @epp_saved:		Saved EPP/EPB during system suspend or CPU offline
 *			operation
225 226
 * @hwp_req_cached:	Cached value of the last HWP Request MSR
 * @hwp_cap_cached:	Cached value of the last HWP Capabilities MSR
227 228
 * @last_io_update:	Last time when IO wake flag was set
 * @sched_flags:	Store scheduler flags for possible cross CPU update
229
 * @hwp_boost_min:	Last HWP boosted min performance
230 231 232
 *
 * This structure stores per CPU instance data for all CPUs.
 */
233 234 235
struct cpudata {
	int cpu;

236
	unsigned int policy;
237
	struct update_util_data update_util;
238
	bool   update_util_set;
239 240

	struct pstate_data pstate;
241
	struct vid_data vid;
242

243
	u64	last_update;
244
	u64	last_sample_time;
245
	u64	aperf_mperf_shift;
246 247
	u64	prev_aperf;
	u64	prev_mperf;
248
	u64	prev_tsc;
249
	u64	prev_cummulative_iowait;
250
	struct sample sample;
251 252
	int32_t	min_perf_ratio;
	int32_t	max_perf_ratio;
253 254 255 256
#ifdef CONFIG_ACPI
	struct acpi_processor_performance acpi_perf_data;
	bool valid_pss_table;
#endif
257
	unsigned int iowait_boost;
258
	s16 epp_powersave;
259
	s16 epp_policy;
260 261
	s16 epp_default;
	s16 epp_saved;
262 263
	u64 hwp_req_cached;
	u64 hwp_cap_cached;
264 265
	u64 last_io_update;
	unsigned int sched_flags;
266
	u32 hwp_boost_min;
267 268 269
};

static struct cpudata **all_cpu_data;
270 271 272 273 274 275 276 277

/**
 * struct pstate_funcs - Per CPU model specific callbacks
 * @get_max:		Callback to get maximum non turbo effective P state
 * @get_max_physical:	Callback to get maximum non turbo physical P state
 * @get_min:		Callback to get minimum P state
 * @get_turbo:		Callback to get turbo P state
 * @get_scaling:	Callback to get frequency scaling factor
278
 * @get_aperf_mperf_shift: Callback to get the APERF vs MPERF frequency difference
279 280 281 282 283 284
 * @get_val:		Callback to convert P state to actual MSR write value
 * @get_vid:		Callback to get VID data for Atom platforms
 *
 * Core and Atom CPU models have different way to get P State limits. This
 * structure is used to store those callbacks.
 */
285 286
struct pstate_funcs {
	int (*get_max)(void);
287
	int (*get_max_physical)(void);
288 289
	int (*get_min)(void);
	int (*get_turbo)(void);
290
	int (*get_scaling)(void);
291
	int (*get_aperf_mperf_shift)(void);
292
	u64 (*get_val)(struct cpudata*, int pstate);
293
	void (*get_vid)(struct cpudata *);
294 295
};

296
static struct pstate_funcs pstate_funcs __read_mostly;
297

298
static int hwp_active __read_mostly;
299
static int hwp_mode_bdw __read_mostly;
300
static bool per_cpu_limits __read_mostly;
301
static bool hwp_boost __read_mostly;
302

303
static struct cpufreq_driver *intel_pstate_driver __read_mostly;
304

305 306 307
#ifdef CONFIG_ACPI
static bool acpi_ppc;
#endif
308

309
static struct global_params global;
310

311
static DEFINE_MUTEX(intel_pstate_driver_lock);
312 313
static DEFINE_MUTEX(intel_pstate_limits_lock);

314
#ifdef CONFIG_ACPI
315

316
static bool intel_pstate_acpi_pm_profile_server(void)
317 318 319 320 321
{
	if (acpi_gbl_FADT.preferred_profile == PM_ENTERPRISE_SERVER ||
	    acpi_gbl_FADT.preferred_profile == PM_PERFORMANCE_SERVER)
		return true;

322 323 324 325 326 327 328 329
	return false;
}

static bool intel_pstate_get_ppc_enable_status(void)
{
	if (intel_pstate_acpi_pm_profile_server())
		return true;

330 331 332
	return acpi_ppc;
}

333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377
#ifdef CONFIG_ACPI_CPPC_LIB

/* The work item is needed to avoid CPU hotplug locking issues */
static void intel_pstste_sched_itmt_work_fn(struct work_struct *work)
{
	sched_set_itmt_support();
}

static DECLARE_WORK(sched_itmt_work, intel_pstste_sched_itmt_work_fn);

static void intel_pstate_set_itmt_prio(int cpu)
{
	struct cppc_perf_caps cppc_perf;
	static u32 max_highest_perf = 0, min_highest_perf = U32_MAX;
	int ret;

	ret = cppc_get_perf_caps(cpu, &cppc_perf);
	if (ret)
		return;

	/*
	 * The priorities can be set regardless of whether or not
	 * sched_set_itmt_support(true) has been called and it is valid to
	 * update them at any time after it has been called.
	 */
	sched_set_itmt_core_prio(cppc_perf.highest_perf, cpu);

	if (max_highest_perf <= min_highest_perf) {
		if (cppc_perf.highest_perf > max_highest_perf)
			max_highest_perf = cppc_perf.highest_perf;

		if (cppc_perf.highest_perf < min_highest_perf)
			min_highest_perf = cppc_perf.highest_perf;

		if (max_highest_perf > min_highest_perf) {
			/*
			 * This code can be run during CPU online under the
			 * CPU hotplug locks, so sched_set_itmt_support()
			 * cannot be called from here.  Queue up a work item
			 * to invoke it.
			 */
			schedule_work(&sched_itmt_work);
		}
	}
}
378 379 380 381 382 383 384 385 386 387

static int intel_pstate_get_cppc_guranteed(int cpu)
{
	struct cppc_perf_caps cppc_perf;
	int ret;

	ret = cppc_get_perf_caps(cpu, &cppc_perf);
	if (ret)
		return ret;

388 389 390 391
	if (cppc_perf.guaranteed_perf)
		return cppc_perf.guaranteed_perf;

	return cppc_perf.nominal_perf;
392 393
}

394
#else /* CONFIG_ACPI_CPPC_LIB */
395 396 397
static void intel_pstate_set_itmt_prio(int cpu)
{
}
398
#endif /* CONFIG_ACPI_CPPC_LIB */
399

400 401 402 403 404 405
static void intel_pstate_init_acpi_perf_limits(struct cpufreq_policy *policy)
{
	struct cpudata *cpu;
	int ret;
	int i;

406 407
	if (hwp_active) {
		intel_pstate_set_itmt_prio(policy->cpu);
408
		return;
409
	}
410

411
	if (!intel_pstate_get_ppc_enable_status())
412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453
		return;

	cpu = all_cpu_data[policy->cpu];

	ret = acpi_processor_register_performance(&cpu->acpi_perf_data,
						  policy->cpu);
	if (ret)
		return;

	/*
	 * Check if the control value in _PSS is for PERF_CTL MSR, which should
	 * guarantee that the states returned by it map to the states in our
	 * list directly.
	 */
	if (cpu->acpi_perf_data.control_register.space_id !=
						ACPI_ADR_SPACE_FIXED_HARDWARE)
		goto err;

	/*
	 * If there is only one entry _PSS, simply ignore _PSS and continue as
	 * usual without taking _PSS into account
	 */
	if (cpu->acpi_perf_data.state_count < 2)
		goto err;

	pr_debug("CPU%u - ACPI _PSS perf data\n", policy->cpu);
	for (i = 0; i < cpu->acpi_perf_data.state_count; i++) {
		pr_debug("     %cP%d: %u MHz, %u mW, 0x%x\n",
			 (i == cpu->acpi_perf_data.state ? '*' : ' '), i,
			 (u32) cpu->acpi_perf_data.states[i].core_frequency,
			 (u32) cpu->acpi_perf_data.states[i].power,
			 (u32) cpu->acpi_perf_data.states[i].control);
	}

	/*
	 * The _PSS table doesn't contain whole turbo frequency range.
	 * This just contains +1 MHZ above the max non turbo frequency,
	 * with control value corresponding to max turbo ratio. But
	 * when cpufreq set policy is called, it will call with this
	 * max frequency, which will cause a reduced performance as
	 * this driver uses real max turbo frequency as the max
	 * frequency. So correct this frequency in _PSS table to
454
	 * correct max turbo frequency based on the turbo state.
455 456
	 * Also need to convert to MHz as _PSS freq is in MHz.
	 */
457
	if (!global.turbo_disabled)
458 459 460
		cpu->acpi_perf_data.states[0].core_frequency =
					policy->cpuinfo.max_freq / 1000;
	cpu->valid_pss_table = true;
461
	pr_debug("_PPC limits will be enforced\n");
462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479

	return;

 err:
	cpu->valid_pss_table = false;
	acpi_processor_unregister_performance(policy->cpu);
}

static void intel_pstate_exit_perf_limits(struct cpufreq_policy *policy)
{
	struct cpudata *cpu;

	cpu = all_cpu_data[policy->cpu];
	if (!cpu->valid_pss_table)
		return;

	acpi_processor_unregister_performance(policy->cpu);
}
480
#else /* CONFIG_ACPI */
481
static inline void intel_pstate_init_acpi_perf_limits(struct cpufreq_policy *policy)
482 483 484
{
}

485
static inline void intel_pstate_exit_perf_limits(struct cpufreq_policy *policy)
486 487
{
}
488 489 490 491 492

static inline bool intel_pstate_acpi_pm_profile_server(void)
{
	return false;
}
493 494 495 496 497 498 499 500
#endif /* CONFIG_ACPI */

#ifndef CONFIG_ACPI_CPPC_LIB
static int intel_pstate_get_cppc_guranteed(int cpu)
{
	return -ENOTSUPP;
}
#endif /* CONFIG_ACPI_CPPC_LIB */
501

502 503 504 505 506 507 508
static inline void update_turbo_state(void)
{
	u64 misc_en;
	struct cpudata *cpu;

	cpu = all_cpu_data[0];
	rdmsrl(MSR_IA32_MISC_ENABLE, misc_en);
509
	global.turbo_disabled =
510 511 512 513
		(misc_en & MSR_IA32_MISC_ENABLE_TURBO_DISABLE ||
		 cpu->pstate.max_pstate == cpu->pstate.turbo_pstate);
}

514 515 516
static int min_perf_pct_min(void)
{
	struct cpudata *cpu = all_cpu_data[0];
517
	int turbo_pstate = cpu->pstate.turbo_pstate;
518

519
	return turbo_pstate ?
520
		(cpu->pstate.min_pstate * 100 / turbo_pstate) : 0;
521 522
}

523 524 525 526 527
static s16 intel_pstate_get_epb(struct cpudata *cpu_data)
{
	u64 epb;
	int ret;

528
	if (!boot_cpu_has(X86_FEATURE_EPB))
529 530 531 532 533 534 535 536 537 538 539 540 541
		return -ENXIO;

	ret = rdmsrl_on_cpu(cpu_data->cpu, MSR_IA32_ENERGY_PERF_BIAS, &epb);
	if (ret)
		return (s16)ret;

	return (s16)(epb & 0x0f);
}

static s16 intel_pstate_get_epp(struct cpudata *cpu_data, u64 hwp_req_data)
{
	s16 epp;

542
	if (boot_cpu_has(X86_FEATURE_HWP_EPP)) {
543 544 545 546 547 548 549 550 551 552
		/*
		 * When hwp_req_data is 0, means that caller didn't read
		 * MSR_HWP_REQUEST, so need to read and get EPP.
		 */
		if (!hwp_req_data) {
			epp = rdmsrl_on_cpu(cpu_data->cpu, MSR_HWP_REQUEST,
					    &hwp_req_data);
			if (epp)
				return epp;
		}
553
		epp = (hwp_req_data >> 24) & 0xff;
554
	} else {
555 556
		/* When there is no EPP present, HWP uses EPB settings */
		epp = intel_pstate_get_epb(cpu_data);
557
	}
558 559 560 561

	return epp;
}

562
static int intel_pstate_set_epb(int cpu, s16 pref)
563 564
{
	u64 epb;
565
	int ret;
566

567
	if (!boot_cpu_has(X86_FEATURE_EPB))
568
		return -ENXIO;
569

570 571 572
	ret = rdmsrl_on_cpu(cpu, MSR_IA32_ENERGY_PERF_BIAS, &epb);
	if (ret)
		return ret;
573 574 575

	epb = (epb & ~0x0f) | pref;
	wrmsrl_on_cpu(cpu, MSR_IA32_ENERGY_PERF_BIAS, epb);
576 577

	return 0;
578 579
}

580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598
/*
 * EPP/EPB display strings corresponding to EPP index in the
 * energy_perf_strings[]
 *	index		String
 *-------------------------------------
 *	0		default
 *	1		performance
 *	2		balance_performance
 *	3		balance_power
 *	4		power
 */
static const char * const energy_perf_strings[] = {
	"default",
	"performance",
	"balance_performance",
	"balance_power",
	"power",
	NULL
};
599 600 601 602 603 604
static const unsigned int epp_values[] = {
	HWP_EPP_PERFORMANCE,
	HWP_EPP_BALANCE_PERFORMANCE,
	HWP_EPP_BALANCE_POWERSAVE,
	HWP_EPP_POWERSAVE
};
605

606
static int intel_pstate_get_energy_pref_index(struct cpudata *cpu_data, int *raw_epp)
607 608 609 610
{
	s16 epp;
	int index = -EINVAL;

611
	*raw_epp = 0;
612 613 614 615
	epp = intel_pstate_get_epp(cpu_data, 0);
	if (epp < 0)
		return epp;

616
	if (boot_cpu_has(X86_FEATURE_HWP_EPP)) {
617 618
		if (epp == HWP_EPP_PERFORMANCE)
			return 1;
619
		if (epp == HWP_EPP_BALANCE_PERFORMANCE)
620
			return 2;
621
		if (epp == HWP_EPP_BALANCE_POWERSAVE)
622
			return 3;
623
		if (epp == HWP_EPP_POWERSAVE)
624
			return 4;
625 626
		*raw_epp = epp;
		return 0;
627
	} else if (boot_cpu_has(X86_FEATURE_EPB)) {
628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644
		/*
		 * Range:
		 *	0x00-0x03	:	Performance
		 *	0x04-0x07	:	Balance performance
		 *	0x08-0x0B	:	Balance power
		 *	0x0C-0x0F	:	Power
		 * The EPB is a 4 bit value, but our ranges restrict the
		 * value which can be set. Here only using top two bits
		 * effectively.
		 */
		index = (epp >> 2) + 1;
	}

	return index;
}

static int intel_pstate_set_energy_pref_index(struct cpudata *cpu_data,
645 646
					      int pref_index, bool use_raw,
					      u32 raw_epp)
647 648 649 650 651 652 653 654 655
{
	int epp = -EINVAL;
	int ret;

	if (!pref_index)
		epp = cpu_data->epp_default;

	mutex_lock(&intel_pstate_limits_lock);

656
	if (boot_cpu_has(X86_FEATURE_HWP_EPP)) {
657 658 659 660 661 662 663 664
		u64 value;

		ret = rdmsrl_on_cpu(cpu_data->cpu, MSR_HWP_REQUEST, &value);
		if (ret)
			goto return_pref;

		value &= ~GENMASK_ULL(31, 24);

665 666 667 668 669 670 671 672 673 674
		if (use_raw) {
			if (raw_epp > 255) {
				ret = -EINVAL;
				goto return_pref;
			}
			value |= (u64)raw_epp << 24;
			ret = wrmsrl_on_cpu(cpu_data->cpu, MSR_HWP_REQUEST, value);
			goto return_pref;
		}

675
		if (epp == -EINVAL)
676
			epp = epp_values[pref_index - 1];
677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711

		value |= (u64)epp << 24;
		ret = wrmsrl_on_cpu(cpu_data->cpu, MSR_HWP_REQUEST, value);
	} else {
		if (epp == -EINVAL)
			epp = (pref_index - 1) << 2;
		ret = intel_pstate_set_epb(cpu_data->cpu, epp);
	}
return_pref:
	mutex_unlock(&intel_pstate_limits_lock);

	return ret;
}

static ssize_t show_energy_performance_available_preferences(
				struct cpufreq_policy *policy, char *buf)
{
	int i = 0;
	int ret = 0;

	while (energy_perf_strings[i] != NULL)
		ret += sprintf(&buf[ret], "%s ", energy_perf_strings[i++]);

	ret += sprintf(&buf[ret], "\n");

	return ret;
}

cpufreq_freq_attr_ro(energy_performance_available_preferences);

static ssize_t store_energy_performance_preference(
		struct cpufreq_policy *policy, const char *buf, size_t count)
{
	struct cpudata *cpu_data = all_cpu_data[policy->cpu];
	char str_preference[21];
712
	bool raw = false;
713
	u32 epp = 0;
714
	int ret;
715 716 717 718 719

	ret = sscanf(buf, "%20s", str_preference);
	if (ret != 1)
		return -EINVAL;

720
	ret = match_string(energy_perf_strings, -1, str_preference);
721 722 723 724 725 726 727 728 729 730 731 732 733
	if (ret < 0) {
		if (!boot_cpu_has(X86_FEATURE_HWP_EPP))
			return ret;

		ret = kstrtouint(buf, 10, &epp);
		if (ret)
			return ret;

		raw = true;
	}

	ret = intel_pstate_set_energy_pref_index(cpu_data, ret, raw, epp);
	if (ret)
734
		return ret;
735

736
	return count;
737 738 739 740 741 742
}

static ssize_t show_energy_performance_preference(
				struct cpufreq_policy *policy, char *buf)
{
	struct cpudata *cpu_data = all_cpu_data[policy->cpu];
743
	int preference, raw_epp;
744

745
	preference = intel_pstate_get_energy_pref_index(cpu_data, &raw_epp);
746 747 748
	if (preference < 0)
		return preference;

749 750 751 752
	if (raw_epp)
		return  sprintf(buf, "%d\n", raw_epp);
	else
		return  sprintf(buf, "%s\n", energy_perf_strings[preference]);
753 754 755 756
}

cpufreq_freq_attr_rw(energy_performance_preference);

757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775
static ssize_t show_base_frequency(struct cpufreq_policy *policy, char *buf)
{
	struct cpudata *cpu;
	u64 cap;
	int ratio;

	ratio = intel_pstate_get_cppc_guranteed(policy->cpu);
	if (ratio <= 0) {
		rdmsrl_on_cpu(policy->cpu, MSR_HWP_CAPABILITIES, &cap);
		ratio = HWP_GUARANTEED_PERF(cap);
	}

	cpu = all_cpu_data[policy->cpu];

	return sprintf(buf, "%d\n", ratio * cpu->pstate.scaling);
}

cpufreq_freq_attr_ro(base_frequency);

776 777 778
static struct freq_attr *hwp_cpufreq_attrs[] = {
	&energy_performance_preference,
	&energy_performance_available_preferences,
779
	&base_frequency,
780 781 782
	NULL,
};

783 784
static void intel_pstate_get_hwp_max(unsigned int cpu, int *phy_max,
				     int *current_max)
D
Dirk Brandewie 已提交
785
{
786
	u64 cap;
787

788
	rdmsrl_on_cpu(cpu, MSR_HWP_CAPABILITIES, &cap);
789
	WRITE_ONCE(all_cpu_data[cpu]->hwp_cap_cached, cap);
790
	if (global.no_turbo)
791
		*current_max = HWP_GUARANTEED_PERF(cap);
792
	else
793 794 795 796 797 798 799 800 801 802 803 804 805 806
		*current_max = HWP_HIGHEST_PERF(cap);

	*phy_max = HWP_HIGHEST_PERF(cap);
}

static void intel_pstate_hwp_set(unsigned int cpu)
{
	struct cpudata *cpu_data = all_cpu_data[cpu];
	int max, min;
	u64 value;
	s16 epp;

	max = cpu_data->max_perf_ratio;
	min = cpu_data->min_perf_ratio;
807

808 809
	if (cpu_data->policy == CPUFREQ_POLICY_PERFORMANCE)
		min = max;
810

811
	rdmsrl_on_cpu(cpu, MSR_HWP_REQUEST, &value);
D
Dirk Brandewie 已提交
812

813 814
	value &= ~HWP_MIN_PERF(~0L);
	value |= HWP_MIN_PERF(min);
815

816 817
	value &= ~HWP_MAX_PERF(~0L);
	value |= HWP_MAX_PERF(max);
818

819 820
	if (cpu_data->epp_policy == cpu_data->policy)
		goto skip_epp;
821

822
	cpu_data->epp_policy = cpu_data->policy;
823

824 825 826 827 828
	if (cpu_data->epp_saved >= 0) {
		epp = cpu_data->epp_saved;
		cpu_data->epp_saved = -EINVAL;
		goto update_epp;
	}
829

830 831 832 833 834 835
	if (cpu_data->policy == CPUFREQ_POLICY_PERFORMANCE) {
		epp = intel_pstate_get_epp(cpu_data, value);
		cpu_data->epp_powersave = epp;
		/* If EPP read was failed, then don't try to write */
		if (epp < 0)
			goto skip_epp;
836

837 838 839 840 841
		epp = 0;
	} else {
		/* skip setting EPP, when saved value is invalid */
		if (cpu_data->epp_powersave < 0)
			goto skip_epp;
842

843 844 845 846 847 848 849 850 851 852
		/*
		 * No need to restore EPP when it is not zero. This
		 * means:
		 *  - Policy is not changed
		 *  - user has manually changed
		 *  - Error reading EPB
		 */
		epp = intel_pstate_get_epp(cpu_data, value);
		if (epp)
			goto skip_epp;
853

854 855
		epp = cpu_data->epp_powersave;
	}
856
update_epp:
857
	if (boot_cpu_has(X86_FEATURE_HWP_EPP)) {
858 859 860 861
		value &= ~GENMASK_ULL(31, 24);
		value |= (u64)epp << 24;
	} else {
		intel_pstate_set_epb(cpu, epp);
D
Dirk Brandewie 已提交
862
	}
863
skip_epp:
864
	WRITE_ONCE(cpu_data->hwp_req_cached, value);
865
	wrmsrl_on_cpu(cpu, MSR_HWP_REQUEST, value);
866
}
D
Dirk Brandewie 已提交
867

868 869 870 871 872 873 874 875 876 877 878 879 880
static void intel_pstate_hwp_force_min_perf(int cpu)
{
	u64 value;
	int min_perf;

	value = all_cpu_data[cpu]->hwp_req_cached;
	value &= ~GENMASK_ULL(31, 0);
	min_perf = HWP_LOWEST_PERF(all_cpu_data[cpu]->hwp_cap_cached);

	/* Set hwp_max = hwp_min */
	value |= HWP_MAX_PERF(min_perf);
	value |= HWP_MIN_PERF(min_perf);

881
	/* Set EPP to min */
882
	if (boot_cpu_has(X86_FEATURE_HWP_EPP))
883 884 885 886 887
		value |= HWP_ENERGY_PERF_PREFERENCE(HWP_EPP_POWERSAVE);

	wrmsrl_on_cpu(cpu, MSR_HWP_REQUEST, value);
}

888 889 890 891 892 893 894 895 896 897 898 899
static int intel_pstate_hwp_save_state(struct cpufreq_policy *policy)
{
	struct cpudata *cpu_data = all_cpu_data[policy->cpu];

	if (!hwp_active)
		return 0;

	cpu_data->epp_saved = intel_pstate_get_epp(cpu_data, 0);

	return 0;
}

900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921
#define POWER_CTL_EE_ENABLE	1
#define POWER_CTL_EE_DISABLE	2

static int power_ctl_ee_state;

static void set_power_ctl_ee_state(bool input)
{
	u64 power_ctl;

	mutex_lock(&intel_pstate_driver_lock);
	rdmsrl(MSR_IA32_POWER_CTL, power_ctl);
	if (input) {
		power_ctl &= ~BIT(MSR_IA32_POWER_CTL_BIT_EE);
		power_ctl_ee_state = POWER_CTL_EE_ENABLE;
	} else {
		power_ctl |= BIT(MSR_IA32_POWER_CTL_BIT_EE);
		power_ctl_ee_state = POWER_CTL_EE_DISABLE;
	}
	wrmsrl(MSR_IA32_POWER_CTL, power_ctl);
	mutex_unlock(&intel_pstate_driver_lock);
}

922 923
static void intel_pstate_hwp_enable(struct cpudata *cpudata);

924 925
static int intel_pstate_resume(struct cpufreq_policy *policy)
{
926 927 928 929 930 931 932

	/* Only restore if the system default is changed */
	if (power_ctl_ee_state == POWER_CTL_EE_ENABLE)
		set_power_ctl_ee_state(true);
	else if (power_ctl_ee_state == POWER_CTL_EE_DISABLE)
		set_power_ctl_ee_state(false);

933 934 935
	if (!hwp_active)
		return 0;

936 937
	mutex_lock(&intel_pstate_limits_lock);

938 939 940
	if (policy->cpu == 0)
		intel_pstate_hwp_enable(all_cpu_data[policy->cpu]);

941
	all_cpu_data[policy->cpu]->epp_policy = 0;
942
	intel_pstate_hwp_set(policy->cpu);
943 944 945

	mutex_unlock(&intel_pstate_limits_lock);

946
	return 0;
947 948
}

949
static void intel_pstate_update_policies(void)
950
{
951 952 953 954
	int cpu;

	for_each_possible_cpu(cpu)
		cpufreq_update_policy(cpu);
D
Dirk Brandewie 已提交
955 956
}

957 958 959 960 961 962 963 964 965 966 967 968
static void intel_pstate_update_max_freq(unsigned int cpu)
{
	struct cpufreq_policy *policy = cpufreq_cpu_acquire(cpu);
	struct cpudata *cpudata;

	if (!policy)
		return;

	cpudata = all_cpu_data[cpu];
	policy->cpuinfo.max_freq = global.turbo_disabled_mf ?
			cpudata->pstate.max_freq : cpudata->pstate.turbo_freq;

969
	refresh_frequency_limits(policy);
970 971 972 973

	cpufreq_cpu_release(policy);
}

974 975 976 977 978 979 980 981 982
static void intel_pstate_update_limits(unsigned int cpu)
{
	mutex_lock(&intel_pstate_driver_lock);

	update_turbo_state();
	/*
	 * If turbo has been turned on or off globally, policy limits for
	 * all CPUs need to be updated to reflect that.
	 */
983 984
	if (global.turbo_disabled_mf != global.turbo_disabled) {
		global.turbo_disabled_mf = global.turbo_disabled;
985
		arch_set_max_freq_ratio(global.turbo_disabled);
986 987
		for_each_possible_cpu(cpu)
			intel_pstate_update_max_freq(cpu);
988 989 990 991 992 993 994
	} else {
		cpufreq_update_policy(cpu);
	}

	mutex_unlock(&intel_pstate_driver_lock);
}

995 996 997
/************************** sysfs begin ************************/
#define show_one(file_name, object)					\
	static ssize_t show_##file_name					\
998
	(struct kobject *kobj, struct kobj_attribute *attr, char *buf)	\
999
	{								\
1000
		return sprintf(buf, "%u\n", global.object);		\
1001 1002
	}

1003 1004 1005 1006
static ssize_t intel_pstate_show_status(char *buf);
static int intel_pstate_update_status(const char *buf, size_t size);

static ssize_t show_status(struct kobject *kobj,
1007
			   struct kobj_attribute *attr, char *buf)
1008 1009 1010 1011 1012 1013 1014 1015 1016 1017
{
	ssize_t ret;

	mutex_lock(&intel_pstate_driver_lock);
	ret = intel_pstate_show_status(buf);
	mutex_unlock(&intel_pstate_driver_lock);

	return ret;
}

1018
static ssize_t store_status(struct kobject *a, struct kobj_attribute *b,
1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030
			    const char *buf, size_t count)
{
	char *p = memchr(buf, '\n', count);
	int ret;

	mutex_lock(&intel_pstate_driver_lock);
	ret = intel_pstate_update_status(buf, p ? p - buf : count);
	mutex_unlock(&intel_pstate_driver_lock);

	return ret < 0 ? ret : count;
}

1031
static ssize_t show_turbo_pct(struct kobject *kobj,
1032
				struct kobj_attribute *attr, char *buf)
1033 1034 1035 1036 1037
{
	struct cpudata *cpu;
	int total, no_turbo, turbo_pct;
	uint32_t turbo_fp;

1038 1039
	mutex_lock(&intel_pstate_driver_lock);

1040
	if (!intel_pstate_driver) {
1041 1042 1043 1044
		mutex_unlock(&intel_pstate_driver_lock);
		return -EAGAIN;
	}

1045 1046 1047 1048
	cpu = all_cpu_data[0];

	total = cpu->pstate.turbo_pstate - cpu->pstate.min_pstate + 1;
	no_turbo = cpu->pstate.max_pstate - cpu->pstate.min_pstate + 1;
1049
	turbo_fp = div_fp(no_turbo, total);
1050
	turbo_pct = 100 - fp_toint(mul_fp(turbo_fp, int_tofp(100)));
1051 1052 1053

	mutex_unlock(&intel_pstate_driver_lock);

1054 1055 1056
	return sprintf(buf, "%u\n", turbo_pct);
}

1057
static ssize_t show_num_pstates(struct kobject *kobj,
1058
				struct kobj_attribute *attr, char *buf)
1059 1060 1061 1062
{
	struct cpudata *cpu;
	int total;

1063 1064
	mutex_lock(&intel_pstate_driver_lock);

1065
	if (!intel_pstate_driver) {
1066 1067 1068 1069
		mutex_unlock(&intel_pstate_driver_lock);
		return -EAGAIN;
	}

1070 1071
	cpu = all_cpu_data[0];
	total = cpu->pstate.turbo_pstate - cpu->pstate.min_pstate + 1;
1072 1073 1074

	mutex_unlock(&intel_pstate_driver_lock);

1075 1076 1077
	return sprintf(buf, "%u\n", total);
}

1078
static ssize_t show_no_turbo(struct kobject *kobj,
1079
			     struct kobj_attribute *attr, char *buf)
1080 1081 1082
{
	ssize_t ret;

1083 1084
	mutex_lock(&intel_pstate_driver_lock);

1085
	if (!intel_pstate_driver) {
1086 1087 1088 1089
		mutex_unlock(&intel_pstate_driver_lock);
		return -EAGAIN;
	}

1090
	update_turbo_state();
1091 1092
	if (global.turbo_disabled)
		ret = sprintf(buf, "%u\n", global.turbo_disabled);
1093
	else
1094
		ret = sprintf(buf, "%u\n", global.no_turbo);
1095

1096 1097
	mutex_unlock(&intel_pstate_driver_lock);

1098 1099 1100
	return ret;
}

1101
static ssize_t store_no_turbo(struct kobject *a, struct kobj_attribute *b,
1102
			      const char *buf, size_t count)
1103 1104 1105
{
	unsigned int input;
	int ret;
1106

1107 1108 1109
	ret = sscanf(buf, "%u", &input);
	if (ret != 1)
		return -EINVAL;
1110

1111 1112
	mutex_lock(&intel_pstate_driver_lock);

1113
	if (!intel_pstate_driver) {
1114 1115 1116 1117
		mutex_unlock(&intel_pstate_driver_lock);
		return -EAGAIN;
	}

1118 1119
	mutex_lock(&intel_pstate_limits_lock);

1120
	update_turbo_state();
1121
	if (global.turbo_disabled) {
1122
		pr_notice_once("Turbo disabled by BIOS or unavailable on processor\n");
1123
		mutex_unlock(&intel_pstate_limits_lock);
1124
		mutex_unlock(&intel_pstate_driver_lock);
1125
		return -EPERM;
1126
	}
D
Dirk Brandewie 已提交
1127

1128
	global.no_turbo = clamp_t(int, input, 0, 1);
1129

1130 1131 1132 1133 1134 1135 1136 1137 1138
	if (global.no_turbo) {
		struct cpudata *cpu = all_cpu_data[0];
		int pct = cpu->pstate.max_pstate * 100 / cpu->pstate.turbo_pstate;

		/* Squash the global minimum into the permitted range. */
		if (global.min_perf_pct > pct)
			global.min_perf_pct = pct;
	}

1139 1140
	mutex_unlock(&intel_pstate_limits_lock);

1141 1142
	intel_pstate_update_policies();

1143 1144
	mutex_unlock(&intel_pstate_driver_lock);

1145 1146 1147
	return count;
}

1148 1149
static struct cpufreq_driver intel_pstate;

1150
static void update_qos_request(enum freq_qos_req_type type)
1151 1152
{
	int max_state, turbo_max, freq, i, perf_pct;
1153
	struct freq_qos_request *req;
1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173
	struct cpufreq_policy *policy;

	for_each_possible_cpu(i) {
		struct cpudata *cpu = all_cpu_data[i];

		policy = cpufreq_cpu_get(i);
		if (!policy)
			continue;

		req = policy->driver_data;
		cpufreq_cpu_put(policy);

		if (!req)
			continue;

		if (hwp_active)
			intel_pstate_get_hwp_max(i, &turbo_max, &max_state);
		else
			turbo_max = cpu->pstate.turbo_pstate;

1174
		if (type == FREQ_QOS_MIN) {
1175 1176 1177 1178 1179 1180 1181 1182 1183
			perf_pct = global.min_perf_pct;
		} else {
			req++;
			perf_pct = global.max_perf_pct;
		}

		freq = DIV_ROUND_UP(turbo_max * perf_pct, 100);
		freq *= cpu->pstate.scaling;

1184
		if (freq_qos_update_request(req, freq) < 0)
1185 1186 1187 1188
			pr_warn("Failed to update freq constraint: CPU%d\n", i);
	}
}

1189
static ssize_t store_max_perf_pct(struct kobject *a, struct kobj_attribute *b,
1190
				  const char *buf, size_t count)
1191 1192 1193
{
	unsigned int input;
	int ret;
1194

1195 1196 1197 1198
	ret = sscanf(buf, "%u", &input);
	if (ret != 1)
		return -EINVAL;

1199 1200
	mutex_lock(&intel_pstate_driver_lock);

1201
	if (!intel_pstate_driver) {
1202 1203 1204 1205
		mutex_unlock(&intel_pstate_driver_lock);
		return -EAGAIN;
	}

1206 1207
	mutex_lock(&intel_pstate_limits_lock);

1208
	global.max_perf_pct = clamp_t(int, input, global.min_perf_pct, 100);
1209

1210 1211
	mutex_unlock(&intel_pstate_limits_lock);

1212 1213 1214
	if (intel_pstate_driver == &intel_pstate)
		intel_pstate_update_policies();
	else
1215
		update_qos_request(FREQ_QOS_MAX);
1216

1217 1218
	mutex_unlock(&intel_pstate_driver_lock);

1219 1220 1221
	return count;
}

1222
static ssize_t store_min_perf_pct(struct kobject *a, struct kobj_attribute *b,
1223
				  const char *buf, size_t count)
1224 1225 1226
{
	unsigned int input;
	int ret;
1227

1228 1229 1230
	ret = sscanf(buf, "%u", &input);
	if (ret != 1)
		return -EINVAL;
1231

1232 1233
	mutex_lock(&intel_pstate_driver_lock);

1234
	if (!intel_pstate_driver) {
1235 1236 1237 1238
		mutex_unlock(&intel_pstate_driver_lock);
		return -EAGAIN;
	}

1239 1240
	mutex_lock(&intel_pstate_limits_lock);

1241 1242
	global.min_perf_pct = clamp_t(int, input,
				      min_perf_pct_min(), global.max_perf_pct);
1243

1244 1245
	mutex_unlock(&intel_pstate_limits_lock);

1246 1247 1248
	if (intel_pstate_driver == &intel_pstate)
		intel_pstate_update_policies();
	else
1249
		update_qos_request(FREQ_QOS_MIN);
1250

1251 1252
	mutex_unlock(&intel_pstate_driver_lock);

1253 1254 1255
	return count;
}

1256
static ssize_t show_hwp_dynamic_boost(struct kobject *kobj,
1257
				struct kobj_attribute *attr, char *buf)
1258 1259 1260 1261
{
	return sprintf(buf, "%u\n", hwp_boost);
}

1262 1263
static ssize_t store_hwp_dynamic_boost(struct kobject *a,
				       struct kobj_attribute *b,
1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280
				       const char *buf, size_t count)
{
	unsigned int input;
	int ret;

	ret = kstrtouint(buf, 10, &input);
	if (ret)
		return ret;

	mutex_lock(&intel_pstate_driver_lock);
	hwp_boost = !!input;
	intel_pstate_update_policies();
	mutex_unlock(&intel_pstate_driver_lock);

	return count;
}

1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306
static ssize_t show_energy_efficiency(struct kobject *kobj, struct kobj_attribute *attr,
				      char *buf)
{
	u64 power_ctl;
	int enable;

	rdmsrl(MSR_IA32_POWER_CTL, power_ctl);
	enable = !!(power_ctl & BIT(MSR_IA32_POWER_CTL_BIT_EE));
	return sprintf(buf, "%d\n", !enable);
}

static ssize_t store_energy_efficiency(struct kobject *a, struct kobj_attribute *b,
				       const char *buf, size_t count)
{
	bool input;
	int ret;

	ret = kstrtobool(buf, &input);
	if (ret)
		return ret;

	set_power_ctl_ee_state(input);

	return count;
}

1307 1308 1309
show_one(max_perf_pct, max_perf_pct);
show_one(min_perf_pct, min_perf_pct);

1310
define_one_global_rw(status);
1311 1312 1313
define_one_global_rw(no_turbo);
define_one_global_rw(max_perf_pct);
define_one_global_rw(min_perf_pct);
1314
define_one_global_ro(turbo_pct);
1315
define_one_global_ro(num_pstates);
1316
define_one_global_rw(hwp_dynamic_boost);
1317
define_one_global_rw(energy_efficiency);
1318 1319

static struct attribute *intel_pstate_attributes[] = {
1320
	&status.attr,
1321
	&no_turbo.attr,
1322
	&turbo_pct.attr,
1323
	&num_pstates.attr,
1324 1325 1326
	NULL
};

1327
static const struct attribute_group intel_pstate_attr_group = {
1328 1329 1330
	.attrs = intel_pstate_attributes,
};

1331 1332
static const struct x86_cpu_id intel_pstate_cpu_ee_disable_ids[];

1333
static void __init intel_pstate_sysfs_expose_params(void)
1334
{
1335
	struct kobject *intel_pstate_kobject;
1336 1337 1338 1339
	int rc;

	intel_pstate_kobject = kobject_create_and_add("intel_pstate",
						&cpu_subsys.dev_root->kobj);
1340 1341 1342
	if (WARN_ON(!intel_pstate_kobject))
		return;

1343
	rc = sysfs_create_group(intel_pstate_kobject, &intel_pstate_attr_group);
1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359
	if (WARN_ON(rc))
		return;

	/*
	 * If per cpu limits are enforced there are no global limits, so
	 * return without creating max/min_perf_pct attributes
	 */
	if (per_cpu_limits)
		return;

	rc = sysfs_create_file(intel_pstate_kobject, &max_perf_pct.attr);
	WARN_ON(rc);

	rc = sysfs_create_file(intel_pstate_kobject, &min_perf_pct.attr);
	WARN_ON(rc);

1360 1361 1362 1363 1364
	if (hwp_active) {
		rc = sysfs_create_file(intel_pstate_kobject,
				       &hwp_dynamic_boost.attr);
		WARN_ON(rc);
	}
1365 1366 1367 1368 1369

	if (x86_match_cpu(intel_pstate_cpu_ee_disable_ids)) {
		rc = sysfs_create_file(intel_pstate_kobject, &energy_efficiency.attr);
		WARN_ON(rc);
	}
1370 1371
}
/************************** sysfs end ************************/
D
Dirk Brandewie 已提交
1372

1373
static void intel_pstate_hwp_enable(struct cpudata *cpudata)
D
Dirk Brandewie 已提交
1374
{
1375
	/* First disable HWP notification interrupt as we don't process them */
1376
	if (boot_cpu_has(X86_FEATURE_HWP_NOTIFY))
1377
		wrmsrl_on_cpu(cpudata->cpu, MSR_HWP_INTERRUPT, 0x00);
1378

1379
	wrmsrl_on_cpu(cpudata->cpu, MSR_PM_ENABLE, 0x1);
1380
	cpudata->epp_policy = 0;
1381 1382
	if (cpudata->epp_default == -EINVAL)
		cpudata->epp_default = intel_pstate_get_epp(cpudata, 0);
D
Dirk Brandewie 已提交
1383 1384
}

1385
static int atom_get_min_pstate(void)
1386 1387
{
	u64 value;
1388

1389
	rdmsrl(MSR_ATOM_CORE_RATIOS, value);
D
Dirk Brandewie 已提交
1390
	return (value >> 8) & 0x7F;
1391 1392
}

1393
static int atom_get_max_pstate(void)
1394 1395
{
	u64 value;
1396

1397
	rdmsrl(MSR_ATOM_CORE_RATIOS, value);
D
Dirk Brandewie 已提交
1398
	return (value >> 16) & 0x7F;
1399
}
1400

1401
static int atom_get_turbo_pstate(void)
1402 1403
{
	u64 value;
1404

1405
	rdmsrl(MSR_ATOM_CORE_TURBO_RATIOS, value);
D
Dirk Brandewie 已提交
1406
	return value & 0x7F;
1407 1408
}

1409
static u64 atom_get_val(struct cpudata *cpudata, int pstate)
1410 1411 1412 1413 1414
{
	u64 val;
	int32_t vid_fp;
	u32 vid;

1415
	val = (u64)pstate << 8;
1416
	if (global.no_turbo && !global.turbo_disabled)
1417 1418 1419 1420 1421 1422 1423
		val |= (u64)1 << 32;

	vid_fp = cpudata->vid.min + mul_fp(
		int_tofp(pstate - cpudata->pstate.min_pstate),
		cpudata->vid.ratio);

	vid_fp = clamp_t(int32_t, vid_fp, cpudata->vid.min, cpudata->vid.max);
1424
	vid = ceiling_fp(vid_fp);
1425

1426 1427 1428
	if (pstate > cpudata->pstate.max_pstate)
		vid = cpudata->vid.turbo;

1429
	return val | vid;
1430 1431
}

1432
static int silvermont_get_scaling(void)
1433 1434 1435
{
	u64 value;
	int i;
1436 1437 1438
	/* Defined in Table 35-6 from SDM (Sept 2015) */
	static int silvermont_freq_table[] = {
		83300, 100000, 133300, 116700, 80000};
1439 1440

	rdmsrl(MSR_FSB_FREQ, value);
1441 1442
	i = value & 0x7;
	WARN_ON(i > 4);
1443

1444 1445
	return silvermont_freq_table[i];
}
1446

1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460
static int airmont_get_scaling(void)
{
	u64 value;
	int i;
	/* Defined in Table 35-10 from SDM (Sept 2015) */
	static int airmont_freq_table[] = {
		83300, 100000, 133300, 116700, 80000,
		93300, 90000, 88900, 87500};

	rdmsrl(MSR_FSB_FREQ, value);
	i = value & 0xF;
	WARN_ON(i > 8);

	return airmont_freq_table[i];
1461 1462
}

1463
static void atom_get_vid(struct cpudata *cpudata)
1464 1465 1466
{
	u64 value;

1467
	rdmsrl(MSR_ATOM_CORE_VIDS, value);
D
Dirk Brandewie 已提交
1468 1469
	cpudata->vid.min = int_tofp((value >> 8) & 0x7f);
	cpudata->vid.max = int_tofp((value >> 16) & 0x7f);
1470 1471 1472 1473
	cpudata->vid.ratio = div_fp(
		cpudata->vid.max - cpudata->vid.min,
		int_tofp(cpudata->pstate.max_pstate -
			cpudata->pstate.min_pstate));
1474

1475
	rdmsrl(MSR_ATOM_CORE_TURBO_VIDS, value);
1476
	cpudata->vid.turbo = value & 0x7f;
1477 1478
}

1479
static int core_get_min_pstate(void)
1480 1481
{
	u64 value;
1482

1483
	rdmsrl(MSR_PLATFORM_INFO, value);
1484 1485 1486
	return (value >> 40) & 0xFF;
}

1487
static int core_get_max_pstate_physical(void)
1488 1489
{
	u64 value;
1490

1491
	rdmsrl(MSR_PLATFORM_INFO, value);
1492 1493 1494
	return (value >> 8) & 0xFF;
}

1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527
static int core_get_tdp_ratio(u64 plat_info)
{
	/* Check how many TDP levels present */
	if (plat_info & 0x600000000) {
		u64 tdp_ctrl;
		u64 tdp_ratio;
		int tdp_msr;
		int err;

		/* Get the TDP level (0, 1, 2) to get ratios */
		err = rdmsrl_safe(MSR_CONFIG_TDP_CONTROL, &tdp_ctrl);
		if (err)
			return err;

		/* TDP MSR are continuous starting at 0x648 */
		tdp_msr = MSR_CONFIG_TDP_NOMINAL + (tdp_ctrl & 0x03);
		err = rdmsrl_safe(tdp_msr, &tdp_ratio);
		if (err)
			return err;

		/* For level 1 and 2, bits[23:16] contain the ratio */
		if (tdp_ctrl & 0x03)
			tdp_ratio >>= 16;

		tdp_ratio &= 0xff; /* ratios are only 8 bits long */
		pr_debug("tdp_ratio %x\n", (int)tdp_ratio);

		return (int)tdp_ratio;
	}

	return -ENXIO;
}

1528
static int core_get_max_pstate(void)
1529
{
1530 1531 1532
	u64 tar;
	u64 plat_info;
	int max_pstate;
1533
	int tdp_ratio;
1534 1535 1536 1537 1538
	int err;

	rdmsrl(MSR_PLATFORM_INFO, plat_info);
	max_pstate = (plat_info >> 8) & 0xFF;

1539 1540 1541 1542 1543 1544 1545 1546 1547
	tdp_ratio = core_get_tdp_ratio(plat_info);
	if (tdp_ratio <= 0)
		return max_pstate;

	if (hwp_active) {
		/* Turbo activation ratio is not used on HWP platforms */
		return tdp_ratio;
	}

1548 1549
	err = rdmsrl_safe(MSR_TURBO_ACTIVATION_RATIO, &tar);
	if (!err) {
1550 1551
		int tar_levels;

1552
		/* Do some sanity checking for safety */
1553 1554 1555 1556
		tar_levels = tar & 0xff;
		if (tdp_ratio - 1 == tar_levels) {
			max_pstate = tar_levels;
			pr_debug("max_pstate=TAC %x\n", max_pstate);
1557 1558
		}
	}
1559

1560
	return max_pstate;
1561 1562
}

1563
static int core_get_turbo_pstate(void)
1564 1565 1566
{
	u64 value;
	int nont, ret;
1567

1568
	rdmsrl(MSR_TURBO_RATIO_LIMIT, value);
1569
	nont = core_get_max_pstate();
1570
	ret = (value) & 255;
1571 1572 1573 1574 1575
	if (ret <= nont)
		ret = nont;
	return ret;
}

1576 1577 1578 1579 1580
static inline int core_get_scaling(void)
{
	return 100000;
}

1581
static u64 core_get_val(struct cpudata *cpudata, int pstate)
1582 1583 1584
{
	u64 val;

1585
	val = (u64)pstate << 8;
1586
	if (global.no_turbo && !global.turbo_disabled)
1587 1588
		val |= (u64)1 << 32;

1589
	return val;
1590 1591
}

1592 1593 1594 1595 1596
static int knl_get_aperf_mperf_shift(void)
{
	return 10;
}

1597 1598 1599 1600 1601
static int knl_get_turbo_pstate(void)
{
	u64 value;
	int nont, ret;

1602
	rdmsrl(MSR_TURBO_RATIO_LIMIT, value);
1603 1604 1605 1606 1607 1608 1609
	nont = core_get_max_pstate();
	ret = (((value) >> 8) & 0xFF);
	if (ret <= nont)
		ret = nont;
	return ret;
}

1610
static void intel_pstate_set_pstate(struct cpudata *cpu, int pstate)
1611
{
1612 1613
	trace_cpu_frequency(pstate * cpu->pstate.scaling, cpu->cpu);
	cpu->pstate.current_pstate = pstate;
1614 1615 1616 1617 1618 1619 1620
	/*
	 * Generally, there is no guarantee that this code will always run on
	 * the CPU being updated, so force the register update to run on the
	 * right CPU.
	 */
	wrmsrl_on_cpu(cpu->cpu, MSR_IA32_PERF_CTL,
		      pstate_funcs.get_val(cpu, pstate));
1621 1622
}

1623 1624 1625 1626 1627 1628 1629
static void intel_pstate_set_min_pstate(struct cpudata *cpu)
{
	intel_pstate_set_pstate(cpu, cpu->pstate.min_pstate);
}

static void intel_pstate_max_within_limits(struct cpudata *cpu)
{
1630
	int pstate = max(cpu->pstate.min_pstate, cpu->max_perf_ratio);
1631 1632

	update_turbo_state();
1633
	intel_pstate_set_pstate(cpu, pstate);
1634 1635
}

1636 1637
static void intel_pstate_get_cpu_pstates(struct cpudata *cpu)
{
1638 1639
	cpu->pstate.min_pstate = pstate_funcs.get_min();
	cpu->pstate.max_pstate = pstate_funcs.get_max();
1640
	cpu->pstate.max_pstate_physical = pstate_funcs.get_max_physical();
1641
	cpu->pstate.turbo_pstate = pstate_funcs.get_turbo();
1642
	cpu->pstate.scaling = pstate_funcs.get_scaling();
1643
	cpu->pstate.max_freq = cpu->pstate.max_pstate * cpu->pstate.scaling;
1644 1645 1646 1647 1648 1649 1650 1651 1652

	if (hwp_active && !hwp_mode_bdw) {
		unsigned int phy_max, current_max;

		intel_pstate_get_hwp_max(cpu->cpu, &phy_max, &current_max);
		cpu->pstate.turbo_freq = phy_max * cpu->pstate.scaling;
	} else {
		cpu->pstate.turbo_freq = cpu->pstate.turbo_pstate * cpu->pstate.scaling;
	}
1653

1654 1655 1656
	if (pstate_funcs.get_aperf_mperf_shift)
		cpu->aperf_mperf_shift = pstate_funcs.get_aperf_mperf_shift();

1657 1658
	if (pstate_funcs.get_vid)
		pstate_funcs.get_vid(cpu);
1659 1660

	intel_pstate_set_min_pstate(cpu);
1661 1662
}

1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732
/*
 * Long hold time will keep high perf limits for long time,
 * which negatively impacts perf/watt for some workloads,
 * like specpower. 3ms is based on experiements on some
 * workoads.
 */
static int hwp_boost_hold_time_ns = 3 * NSEC_PER_MSEC;

static inline void intel_pstate_hwp_boost_up(struct cpudata *cpu)
{
	u64 hwp_req = READ_ONCE(cpu->hwp_req_cached);
	u32 max_limit = (hwp_req & 0xff00) >> 8;
	u32 min_limit = (hwp_req & 0xff);
	u32 boost_level1;

	/*
	 * Cases to consider (User changes via sysfs or boot time):
	 * If, P0 (Turbo max) = P1 (Guaranteed max) = min:
	 *	No boost, return.
	 * If, P0 (Turbo max) > P1 (Guaranteed max) = min:
	 *     Should result in one level boost only for P0.
	 * If, P0 (Turbo max) = P1 (Guaranteed max) > min:
	 *     Should result in two level boost:
	 *         (min + p1)/2 and P1.
	 * If, P0 (Turbo max) > P1 (Guaranteed max) > min:
	 *     Should result in three level boost:
	 *        (min + p1)/2, P1 and P0.
	 */

	/* If max and min are equal or already at max, nothing to boost */
	if (max_limit == min_limit || cpu->hwp_boost_min >= max_limit)
		return;

	if (!cpu->hwp_boost_min)
		cpu->hwp_boost_min = min_limit;

	/* level at half way mark between min and guranteed */
	boost_level1 = (HWP_GUARANTEED_PERF(cpu->hwp_cap_cached) + min_limit) >> 1;

	if (cpu->hwp_boost_min < boost_level1)
		cpu->hwp_boost_min = boost_level1;
	else if (cpu->hwp_boost_min < HWP_GUARANTEED_PERF(cpu->hwp_cap_cached))
		cpu->hwp_boost_min = HWP_GUARANTEED_PERF(cpu->hwp_cap_cached);
	else if (cpu->hwp_boost_min == HWP_GUARANTEED_PERF(cpu->hwp_cap_cached) &&
		 max_limit != HWP_GUARANTEED_PERF(cpu->hwp_cap_cached))
		cpu->hwp_boost_min = max_limit;
	else
		return;

	hwp_req = (hwp_req & ~GENMASK_ULL(7, 0)) | cpu->hwp_boost_min;
	wrmsrl(MSR_HWP_REQUEST, hwp_req);
	cpu->last_update = cpu->sample.time;
}

static inline void intel_pstate_hwp_boost_down(struct cpudata *cpu)
{
	if (cpu->hwp_boost_min) {
		bool expired;

		/* Check if we are idle for hold time to boost down */
		expired = time_after64(cpu->sample.time, cpu->last_update +
				       hwp_boost_hold_time_ns);
		if (expired) {
			wrmsrl(MSR_HWP_REQUEST, cpu->hwp_req_cached);
			cpu->hwp_boost_min = 0;
		}
	}
	cpu->last_update = cpu->sample.time;
}

1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761
static inline void intel_pstate_update_util_hwp_local(struct cpudata *cpu,
						      u64 time)
{
	cpu->sample.time = time;

	if (cpu->sched_flags & SCHED_CPUFREQ_IOWAIT) {
		bool do_io = false;

		cpu->sched_flags = 0;
		/*
		 * Set iowait_boost flag and update time. Since IO WAIT flag
		 * is set all the time, we can't just conclude that there is
		 * some IO bound activity is scheduled on this CPU with just
		 * one occurrence. If we receive at least two in two
		 * consecutive ticks, then we treat as boost candidate.
		 */
		if (time_before64(time, cpu->last_io_update + 2 * TICK_NSEC))
			do_io = true;

		cpu->last_io_update = time;

		if (do_io)
			intel_pstate_hwp_boost_up(cpu);

	} else {
		intel_pstate_hwp_boost_down(cpu);
	}
}

1762 1763 1764
static inline void intel_pstate_update_util_hwp(struct update_util_data *data,
						u64 time, unsigned int flags)
{
1765 1766 1767 1768 1769 1770
	struct cpudata *cpu = container_of(data, struct cpudata, update_util);

	cpu->sched_flags |= flags;

	if (smp_processor_id() == cpu->cpu)
		intel_pstate_update_util_hwp_local(cpu, time);
1771 1772
}

1773
static inline void intel_pstate_calc_avg_perf(struct cpudata *cpu)
1774
{
1775
	struct sample *sample = &cpu->sample;
1776

1777
	sample->core_avg_perf = div_ext_fp(sample->aperf, sample->mperf);
1778 1779
}

1780
static inline bool intel_pstate_sample(struct cpudata *cpu, u64 time)
1781 1782
{
	u64 aperf, mperf;
1783
	unsigned long flags;
1784
	u64 tsc;
1785

1786
	local_irq_save(flags);
1787 1788
	rdmsrl(MSR_IA32_APERF, aperf);
	rdmsrl(MSR_IA32_MPERF, mperf);
1789
	tsc = rdtsc();
1790
	if (cpu->prev_mperf == mperf || cpu->prev_tsc == tsc) {
1791
		local_irq_restore(flags);
1792
		return false;
1793
	}
1794
	local_irq_restore(flags);
1795

1796
	cpu->last_sample_time = cpu->sample.time;
1797
	cpu->sample.time = time;
1798 1799
	cpu->sample.aperf = aperf;
	cpu->sample.mperf = mperf;
1800
	cpu->sample.tsc =  tsc;
1801 1802
	cpu->sample.aperf -= cpu->prev_aperf;
	cpu->sample.mperf -= cpu->prev_mperf;
1803
	cpu->sample.tsc -= cpu->prev_tsc;
1804

1805 1806
	cpu->prev_aperf = aperf;
	cpu->prev_mperf = mperf;
1807
	cpu->prev_tsc = tsc;
1808 1809 1810 1811 1812 1813 1814
	/*
	 * First time this function is invoked in a given cycle, all of the
	 * previous sample data fields are equal to zero or stale and they must
	 * be populated with meaningful numbers for things to work, so assume
	 * that sample.time will always be reset before setting the utilization
	 * update hook and make the caller skip the sample then.
	 */
1815 1816 1817 1818 1819
	if (cpu->last_sample_time) {
		intel_pstate_calc_avg_perf(cpu);
		return true;
	}
	return false;
1820 1821
}

1822 1823
static inline int32_t get_avg_frequency(struct cpudata *cpu)
{
1824
	return mul_ext_fp(cpu->sample.core_avg_perf, cpu_khz);
1825 1826
}

1827 1828
static inline int32_t get_avg_pstate(struct cpudata *cpu)
{
1829 1830
	return mul_ext_fp(cpu->pstate.max_pstate_physical,
			  cpu->sample.core_avg_perf);
1831 1832
}

1833
static inline int32_t get_target_pstate(struct cpudata *cpu)
1834 1835
{
	struct sample *sample = &cpu->sample;
1836
	int32_t busy_frac;
1837
	int target, avg_pstate;
1838

1839 1840
	busy_frac = div_fp(sample->mperf << cpu->aperf_mperf_shift,
			   sample->tsc);
1841

1842 1843
	if (busy_frac < cpu->iowait_boost)
		busy_frac = cpu->iowait_boost;
1844

1845
	sample->busy_scaled = busy_frac * 100;
1846

1847
	target = global.no_turbo || global.turbo_disabled ?
1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865
			cpu->pstate.max_pstate : cpu->pstate.turbo_pstate;
	target += target >> 2;
	target = mul_fp(target, busy_frac);
	if (target < cpu->pstate.min_pstate)
		target = cpu->pstate.min_pstate;

	/*
	 * If the average P-state during the previous cycle was higher than the
	 * current target, add 50% of the difference to the target to reduce
	 * possible performance oscillations and offset possible performance
	 * loss related to moving the workload from one CPU to another within
	 * a package/module.
	 */
	avg_pstate = get_avg_pstate(cpu);
	if (avg_pstate > target)
		target += (avg_pstate - target) >> 1;

	return target;
1866 1867
}

1868
static int intel_pstate_prepare_request(struct cpudata *cpu, int pstate)
1869
{
1870 1871
	int min_pstate = max(cpu->pstate.min_pstate, cpu->min_perf_ratio);
	int max_pstate = max(min_pstate, cpu->max_perf_ratio);
1872

1873
	return clamp_t(int, pstate, min_pstate, max_pstate);
1874 1875 1876 1877
}

static void intel_pstate_update_pstate(struct cpudata *cpu, int pstate)
{
1878 1879 1880
	if (pstate == cpu->pstate.current_pstate)
		return;

1881
	cpu->pstate.current_pstate = pstate;
1882 1883 1884
	wrmsrl(MSR_IA32_PERF_CTL, pstate_funcs.get_val(cpu, pstate));
}

1885
static void intel_pstate_adjust_pstate(struct cpudata *cpu)
1886
{
1887
	int from = cpu->pstate.current_pstate;
1888
	struct sample *sample;
1889
	int target_pstate;
1890

1891 1892
	update_turbo_state();

1893
	target_pstate = get_target_pstate(cpu);
1894 1895
	target_pstate = intel_pstate_prepare_request(cpu, target_pstate);
	trace_cpu_frequency(target_pstate * cpu->pstate.scaling, cpu->cpu);
1896
	intel_pstate_update_pstate(cpu, target_pstate);
1897 1898

	sample = &cpu->sample;
1899
	trace_pstate_sample(mul_ext_fp(100, sample->core_avg_perf),
1900
		fp_toint(sample->busy_scaled),
1901 1902 1903 1904 1905
		from,
		cpu->pstate.current_pstate,
		sample->mperf,
		sample->aperf,
		sample->tsc,
1906 1907
		get_avg_frequency(cpu),
		fp_toint(cpu->iowait_boost * 100));
1908 1909
}

1910
static void intel_pstate_update_util(struct update_util_data *data, u64 time,
1911
				     unsigned int flags)
1912
{
1913
	struct cpudata *cpu = container_of(data, struct cpudata, update_util);
1914 1915
	u64 delta_ns;

1916 1917 1918 1919
	/* Don't allow remote callbacks */
	if (smp_processor_id() != cpu->cpu)
		return;

1920
	delta_ns = time - cpu->last_update;
1921
	if (flags & SCHED_CPUFREQ_IOWAIT) {
1922 1923 1924
		/* Start over if the CPU may have been idle. */
		if (delta_ns > TICK_NSEC) {
			cpu->iowait_boost = ONE_EIGHTH_FP;
1925
		} else if (cpu->iowait_boost >= ONE_EIGHTH_FP) {
1926 1927 1928 1929 1930 1931
			cpu->iowait_boost <<= 1;
			if (cpu->iowait_boost > int_tofp(1))
				cpu->iowait_boost = int_tofp(1);
		} else {
			cpu->iowait_boost = ONE_EIGHTH_FP;
		}
1932 1933 1934 1935
	} else if (cpu->iowait_boost) {
		/* Clear iowait_boost if the CPU may have been idle. */
		if (delta_ns > TICK_NSEC)
			cpu->iowait_boost = 0;
1936 1937
		else
			cpu->iowait_boost >>= 1;
1938
	}
1939
	cpu->last_update = time;
1940
	delta_ns = time - cpu->sample.time;
1941
	if ((s64)delta_ns < INTEL_PSTATE_SAMPLING_INTERVAL)
1942
		return;
1943

1944 1945
	if (intel_pstate_sample(cpu, time))
		intel_pstate_adjust_pstate(cpu);
1946
}
1947

1948 1949 1950 1951 1952 1953 1954
static struct pstate_funcs core_funcs = {
	.get_max = core_get_max_pstate,
	.get_max_physical = core_get_max_pstate_physical,
	.get_min = core_get_min_pstate,
	.get_turbo = core_get_turbo_pstate,
	.get_scaling = core_get_scaling,
	.get_val = core_get_val,
1955 1956
};

1957 1958 1959 1960 1961 1962 1963 1964
static const struct pstate_funcs silvermont_funcs = {
	.get_max = atom_get_max_pstate,
	.get_max_physical = atom_get_max_pstate,
	.get_min = atom_get_min_pstate,
	.get_turbo = atom_get_turbo_pstate,
	.get_val = atom_get_val,
	.get_scaling = silvermont_get_scaling,
	.get_vid = atom_get_vid,
1965 1966
};

1967 1968 1969 1970 1971 1972 1973 1974
static const struct pstate_funcs airmont_funcs = {
	.get_max = atom_get_max_pstate,
	.get_max_physical = atom_get_max_pstate,
	.get_min = atom_get_min_pstate,
	.get_turbo = atom_get_turbo_pstate,
	.get_val = atom_get_val,
	.get_scaling = airmont_get_scaling,
	.get_vid = atom_get_vid,
1975 1976
};

1977 1978 1979 1980 1981
static const struct pstate_funcs knl_funcs = {
	.get_max = core_get_max_pstate,
	.get_max_physical = core_get_max_pstate_physical,
	.get_min = core_get_min_pstate,
	.get_turbo = knl_get_turbo_pstate,
1982
	.get_aperf_mperf_shift = knl_get_aperf_mperf_shift,
1983 1984
	.get_scaling = core_get_scaling,
	.get_val = core_get_val,
1985 1986
};

1987 1988 1989
#define X86_MATCH(model, policy)					 \
	X86_MATCH_VENDOR_FAM_MODEL_FEATURE(INTEL, 6, INTEL_FAM6_##model, \
					   X86_FEATURE_APERFMPERF, &policy)
1990 1991

static const struct x86_cpu_id intel_pstate_cpu_ids[] = {
1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012
	X86_MATCH(SANDYBRIDGE,		core_funcs),
	X86_MATCH(SANDYBRIDGE_X,	core_funcs),
	X86_MATCH(ATOM_SILVERMONT,	silvermont_funcs),
	X86_MATCH(IVYBRIDGE,		core_funcs),
	X86_MATCH(HASWELL,		core_funcs),
	X86_MATCH(BROADWELL,		core_funcs),
	X86_MATCH(IVYBRIDGE_X,		core_funcs),
	X86_MATCH(HASWELL_X,		core_funcs),
	X86_MATCH(HASWELL_L,		core_funcs),
	X86_MATCH(HASWELL_G,		core_funcs),
	X86_MATCH(BROADWELL_G,		core_funcs),
	X86_MATCH(ATOM_AIRMONT,		airmont_funcs),
	X86_MATCH(SKYLAKE_L,		core_funcs),
	X86_MATCH(BROADWELL_X,		core_funcs),
	X86_MATCH(SKYLAKE,		core_funcs),
	X86_MATCH(BROADWELL_D,		core_funcs),
	X86_MATCH(XEON_PHI_KNL,		knl_funcs),
	X86_MATCH(XEON_PHI_KNM,		knl_funcs),
	X86_MATCH(ATOM_GOLDMONT,	core_funcs),
	X86_MATCH(ATOM_GOLDMONT_PLUS,	core_funcs),
	X86_MATCH(SKYLAKE_X,		core_funcs),
2013 2014 2015 2016
	{}
};
MODULE_DEVICE_TABLE(x86cpu, intel_pstate_cpu_ids);

2017
static const struct x86_cpu_id intel_pstate_cpu_oob_ids[] __initconst = {
2018 2019 2020
	X86_MATCH(BROADWELL_D,		core_funcs),
	X86_MATCH(BROADWELL_X,		core_funcs),
	X86_MATCH(SKYLAKE_X,		core_funcs),
D
Dirk Brandewie 已提交
2021 2022 2023
	{}
};

2024
static const struct x86_cpu_id intel_pstate_cpu_ee_disable_ids[] = {
2025
	X86_MATCH(KABYLAKE,		core_funcs),
2026 2027 2028
	{}
};

2029
static const struct x86_cpu_id intel_pstate_hwp_boost_ids[] = {
2030 2031
	X86_MATCH(SKYLAKE_X,		core_funcs),
	X86_MATCH(SKYLAKE,		core_funcs),
2032 2033 2034
	{}
};

2035 2036 2037 2038
static int intel_pstate_init_cpu(unsigned int cpunum)
{
	struct cpudata *cpu;

2039 2040 2041
	cpu = all_cpu_data[cpunum];

	if (!cpu) {
2042
		cpu = kzalloc(sizeof(*cpu), GFP_KERNEL);
2043 2044 2045 2046 2047
		if (!cpu)
			return -ENOMEM;

		all_cpu_data[cpunum] = cpu;

2048 2049 2050
		cpu->epp_default = -EINVAL;
		cpu->epp_powersave = -EINVAL;
		cpu->epp_saved = -EINVAL;
2051
	}
2052 2053 2054 2055

	cpu = all_cpu_data[cpunum];

	cpu->cpu = cpunum;
2056

2057
	if (hwp_active) {
2058 2059
		const struct x86_cpu_id *id;

2060
		intel_pstate_hwp_enable(cpu);
2061 2062

		id = x86_match_cpu(intel_pstate_hwp_boost_ids);
2063
		if (id && intel_pstate_acpi_pm_profile_server())
2064
			hwp_boost = true;
2065
	}
2066

2067
	intel_pstate_get_cpu_pstates(cpu);
2068

J
Joe Perches 已提交
2069
	pr_debug("controlling: cpu %d\n", cpunum);
2070 2071 2072 2073

	return 0;
}

2074
static void intel_pstate_set_update_util_hook(unsigned int cpu_num)
2075
{
2076 2077
	struct cpudata *cpu = all_cpu_data[cpu_num];

2078
	if (hwp_active && !hwp_boost)
2079 2080
		return;

2081 2082 2083
	if (cpu->update_util_set)
		return;

2084 2085
	/* Prevent intel_pstate_update_util() from using stale data. */
	cpu->sample.time = 0;
2086
	cpufreq_add_update_util_hook(cpu_num, &cpu->update_util,
2087 2088 2089
				     (hwp_active ?
				      intel_pstate_update_util_hwp :
				      intel_pstate_update_util));
2090
	cpu->update_util_set = true;
2091 2092 2093 2094
}

static void intel_pstate_clear_update_util_hook(unsigned int cpu)
{
2095 2096 2097 2098 2099
	struct cpudata *cpu_data = all_cpu_data[cpu];

	if (!cpu_data->update_util_set)
		return;

2100
	cpufreq_remove_update_util_hook(cpu);
2101
	cpu_data->update_util_set = false;
2102
	synchronize_rcu();
2103 2104
}

2105 2106 2107 2108 2109 2110
static int intel_pstate_get_max_freq(struct cpudata *cpu)
{
	return global.turbo_disabled || global.no_turbo ?
			cpu->pstate.max_freq : cpu->pstate.turbo_freq;
}

2111 2112 2113
static void intel_pstate_update_perf_limits(struct cpudata *cpu,
					    unsigned int policy_min,
					    unsigned int policy_max)
2114
{
2115
	int max_freq = intel_pstate_get_max_freq(cpu);
2116
	int32_t max_policy_perf, min_policy_perf;
2117
	int max_state, turbo_max;
2118

2119 2120 2121 2122 2123 2124 2125 2126
	/*
	 * HWP needs some special consideration, because on BDX the
	 * HWP_REQUEST uses abstract value to represent performance
	 * rather than pure ratios.
	 */
	if (hwp_active) {
		intel_pstate_get_hwp_max(cpu->cpu, &turbo_max, &max_state);
	} else {
2127 2128
		max_state = global.no_turbo || global.turbo_disabled ?
			cpu->pstate.max_pstate : cpu->pstate.turbo_pstate;
2129 2130 2131
		turbo_max = cpu->pstate.turbo_pstate;
	}

2132 2133
	max_policy_perf = max_state * policy_max / max_freq;
	if (policy_max == policy_min) {
2134
		min_policy_perf = max_policy_perf;
2135
	} else {
2136
		min_policy_perf = max_state * policy_min / max_freq;
2137 2138
		min_policy_perf = clamp_t(int32_t, min_policy_perf,
					  0, max_policy_perf);
2139
	}
2140

2141
	pr_debug("cpu:%d max_state %d min_policy_perf:%d max_policy_perf:%d\n",
2142
		 cpu->cpu, max_state, min_policy_perf, max_policy_perf);
2143

2144
	/* Normalize user input to [min_perf, max_perf] */
2145
	if (per_cpu_limits) {
2146 2147
		cpu->min_perf_ratio = min_policy_perf;
		cpu->max_perf_ratio = max_policy_perf;
2148 2149 2150 2151
	} else {
		int32_t global_min, global_max;

		/* Global limits are in percent of the maximum turbo P-state. */
2152 2153
		global_max = DIV_ROUND_UP(turbo_max * global.max_perf_pct, 100);
		global_min = DIV_ROUND_UP(turbo_max * global.min_perf_pct, 100);
2154
		global_min = clamp_t(int32_t, global_min, 0, global_max);
2155

2156
		pr_debug("cpu:%d global_min:%d global_max:%d\n", cpu->cpu,
2157
			 global_min, global_max);
2158

2159 2160 2161 2162
		cpu->min_perf_ratio = max(min_policy_perf, global_min);
		cpu->min_perf_ratio = min(cpu->min_perf_ratio, max_policy_perf);
		cpu->max_perf_ratio = min(max_policy_perf, global_max);
		cpu->max_perf_ratio = max(min_policy_perf, cpu->max_perf_ratio);
2163

2164 2165 2166
		/* Make sure min_perf <= max_perf */
		cpu->min_perf_ratio = min(cpu->min_perf_ratio,
					  cpu->max_perf_ratio);
2167

2168
	}
2169
	pr_debug("cpu:%d max_perf_ratio:%d min_perf_ratio:%d\n", cpu->cpu,
2170 2171
		 cpu->max_perf_ratio,
		 cpu->min_perf_ratio);
2172 2173
}

2174 2175
static int intel_pstate_set_policy(struct cpufreq_policy *policy)
{
2176 2177
	struct cpudata *cpu;

2178 2179 2180
	if (!policy->cpuinfo.max_freq)
		return -ENODEV;

2181 2182 2183
	pr_debug("set_policy cpuinfo.max %u policy->max %u\n",
		 policy->cpuinfo.max_freq, policy->max);

2184
	cpu = all_cpu_data[policy->cpu];
2185 2186
	cpu->policy = policy->policy;

2187 2188
	mutex_lock(&intel_pstate_limits_lock);

2189
	intel_pstate_update_perf_limits(cpu, policy->min, policy->max);
2190

2191
	if (cpu->policy == CPUFREQ_POLICY_PERFORMANCE) {
2192 2193 2194 2195 2196 2197
		/*
		 * NOHZ_FULL CPUs need this as the governor callback may not
		 * be invoked on them.
		 */
		intel_pstate_clear_update_util_hook(policy->cpu);
		intel_pstate_max_within_limits(cpu);
2198 2199
	} else {
		intel_pstate_set_update_util_hook(policy->cpu);
2200 2201
	}

2202 2203 2204 2205 2206 2207 2208 2209
	if (hwp_active) {
		/*
		 * When hwp_boost was active before and dynamically it
		 * was turned off, in that case we need to clear the
		 * update util hook.
		 */
		if (!hwp_boost)
			intel_pstate_clear_update_util_hook(policy->cpu);
2210
		intel_pstate_hwp_set(policy->cpu);
2211
	}
D
Dirk Brandewie 已提交
2212

2213 2214
	mutex_unlock(&intel_pstate_limits_lock);

2215 2216 2217
	return 0;
}

2218 2219
static void intel_pstate_adjust_policy_max(struct cpudata *cpu,
					   struct cpufreq_policy_data *policy)
2220
{
2221 2222
	if (!hwp_active &&
	    cpu->pstate.max_pstate_physical > cpu->pstate.max_pstate &&
2223 2224 2225 2226 2227 2228 2229
	    policy->max < policy->cpuinfo.max_freq &&
	    policy->max > cpu->pstate.max_freq) {
		pr_debug("policy->max > max non turbo frequency\n");
		policy->max = policy->cpuinfo.max_freq;
	}
}

2230 2231
static void intel_pstate_verify_cpu_policy(struct cpudata *cpu,
					   struct cpufreq_policy_data *policy)
2232
{
2233
	update_turbo_state();
2234 2235
	cpufreq_verify_within_limits(policy, policy->cpuinfo.min_freq,
				     intel_pstate_get_max_freq(cpu));
2236

2237
	intel_pstate_adjust_policy_max(cpu, policy);
2238 2239 2240 2241 2242
}

static int intel_pstate_verify_policy(struct cpufreq_policy_data *policy)
{
	intel_pstate_verify_cpu_policy(all_cpu_data[policy->cpu], policy);
2243

2244 2245 2246
	return 0;
}

2247 2248 2249 2250 2251
static void intel_cpufreq_stop_cpu(struct cpufreq_policy *policy)
{
	intel_pstate_set_min_pstate(all_cpu_data[policy->cpu]);
}

2252
static void intel_pstate_stop_cpu(struct cpufreq_policy *policy)
2253
{
2254
	pr_debug("CPU %d exiting\n", policy->cpu);
2255

2256
	intel_pstate_clear_update_util_hook(policy->cpu);
2257
	if (hwp_active) {
2258
		intel_pstate_hwp_save_state(policy);
2259 2260
		intel_pstate_hwp_force_min_perf(policy->cpu);
	} else {
2261
		intel_cpufreq_stop_cpu(policy);
2262
	}
2263
}
2264

2265 2266 2267
static int intel_pstate_cpu_exit(struct cpufreq_policy *policy)
{
	intel_pstate_exit_perf_limits(policy);
2268

2269
	policy->fast_switch_possible = false;
D
Dirk Brandewie 已提交
2270

2271
	return 0;
2272 2273
}

2274
static int __intel_pstate_cpu_init(struct cpufreq_policy *policy)
2275 2276
{
	struct cpudata *cpu;
2277
	int rc;
2278 2279 2280 2281 2282 2283 2284

	rc = intel_pstate_init_cpu(policy->cpu);
	if (rc)
		return rc;

	cpu = all_cpu_data[policy->cpu];

2285 2286
	cpu->max_perf_ratio = 0xFF;
	cpu->min_perf_ratio = 0;
2287

2288 2289
	policy->min = cpu->pstate.min_pstate * cpu->pstate.scaling;
	policy->max = cpu->pstate.turbo_pstate * cpu->pstate.scaling;
2290 2291

	/* cpuinfo and default policy values */
2292
	policy->cpuinfo.min_freq = cpu->pstate.min_pstate * cpu->pstate.scaling;
2293
	update_turbo_state();
2294
	global.turbo_disabled_mf = global.turbo_disabled;
2295
	policy->cpuinfo.max_freq = global.turbo_disabled ?
2296 2297 2298
			cpu->pstate.max_pstate : cpu->pstate.turbo_pstate;
	policy->cpuinfo.max_freq *= cpu->pstate.scaling;

2299 2300 2301 2302 2303 2304 2305 2306 2307
	if (hwp_active) {
		unsigned int max_freq;

		max_freq = global.turbo_disabled ?
			cpu->pstate.max_freq : cpu->pstate.turbo_freq;
		if (max_freq < policy->cpuinfo.max_freq)
			policy->cpuinfo.max_freq = max_freq;
	}

2308
	intel_pstate_init_acpi_perf_limits(policy);
2309

2310 2311
	policy->fast_switch_possible = true;

2312 2313 2314
	return 0;
}

2315
static int intel_pstate_cpu_init(struct cpufreq_policy *policy)
2316
{
2317 2318 2319 2320 2321
	int ret = __intel_pstate_cpu_init(policy);

	if (ret)
		return ret;

2322 2323 2324 2325 2326
	/*
	 * Set the policy to powersave to provide a valid fallback value in case
	 * the default cpufreq governor is neither powersave nor performance.
	 */
	policy->policy = CPUFREQ_POLICY_POWERSAVE;
2327 2328 2329 2330

	return 0;
}

2331
static struct cpufreq_driver intel_pstate = {
2332 2333 2334
	.flags		= CPUFREQ_CONST_LOOPS,
	.verify		= intel_pstate_verify_policy,
	.setpolicy	= intel_pstate_set_policy,
2335
	.suspend	= intel_pstate_hwp_save_state,
2336
	.resume		= intel_pstate_resume,
2337
	.init		= intel_pstate_cpu_init,
2338
	.exit		= intel_pstate_cpu_exit,
2339
	.stop_cpu	= intel_pstate_stop_cpu,
2340
	.update_limits	= intel_pstate_update_limits,
2341 2342 2343
	.name		= "intel_pstate",
};

2344
static int intel_cpufreq_verify_policy(struct cpufreq_policy_data *policy)
2345 2346 2347
{
	struct cpudata *cpu = all_cpu_data[policy->cpu];

2348
	intel_pstate_verify_cpu_policy(cpu, policy);
2349
	intel_pstate_update_perf_limits(cpu, policy->min, policy->max);
2350

2351 2352 2353
	return 0;
}

2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391
/* Use of trace in passive mode:
 *
 * In passive mode the trace core_busy field (also known as the
 * performance field, and lablelled as such on the graphs; also known as
 * core_avg_perf) is not needed and so is re-assigned to indicate if the
 * driver call was via the normal or fast switch path. Various graphs
 * output from the intel_pstate_tracer.py utility that include core_busy
 * (or performance or core_avg_perf) have a fixed y-axis from 0 to 100%,
 * so we use 10 to indicate the the normal path through the driver, and
 * 90 to indicate the fast switch path through the driver.
 * The scaled_busy field is not used, and is set to 0.
 */

#define	INTEL_PSTATE_TRACE_TARGET 10
#define	INTEL_PSTATE_TRACE_FAST_SWITCH 90

static void intel_cpufreq_trace(struct cpudata *cpu, unsigned int trace_type, int old_pstate)
{
	struct sample *sample;

	if (!trace_pstate_sample_enabled())
		return;

	if (!intel_pstate_sample(cpu, ktime_get()))
		return;

	sample = &cpu->sample;
	trace_pstate_sample(trace_type,
		0,
		old_pstate,
		cpu->pstate.current_pstate,
		sample->mperf,
		sample->aperf,
		sample->tsc,
		get_avg_frequency(cpu),
		fp_toint(cpu->iowait_boost * 100));
}

2392 2393 2394 2395 2396 2397
static int intel_cpufreq_target(struct cpufreq_policy *policy,
				unsigned int target_freq,
				unsigned int relation)
{
	struct cpudata *cpu = all_cpu_data[policy->cpu];
	struct cpufreq_freqs freqs;
2398
	int target_pstate, old_pstate;
2399

2400 2401
	update_turbo_state();

2402
	freqs.old = policy->cur;
2403
	freqs.new = target_freq;
2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417

	cpufreq_freq_transition_begin(policy, &freqs);
	switch (relation) {
	case CPUFREQ_RELATION_L:
		target_pstate = DIV_ROUND_UP(freqs.new, cpu->pstate.scaling);
		break;
	case CPUFREQ_RELATION_H:
		target_pstate = freqs.new / cpu->pstate.scaling;
		break;
	default:
		target_pstate = DIV_ROUND_CLOSEST(freqs.new, cpu->pstate.scaling);
		break;
	}
	target_pstate = intel_pstate_prepare_request(cpu, target_pstate);
2418
	old_pstate = cpu->pstate.current_pstate;
2419 2420 2421 2422 2423
	if (target_pstate != cpu->pstate.current_pstate) {
		cpu->pstate.current_pstate = target_pstate;
		wrmsrl_on_cpu(policy->cpu, MSR_IA32_PERF_CTL,
			      pstate_funcs.get_val(cpu, target_pstate));
	}
2424
	freqs.new = target_pstate * cpu->pstate.scaling;
2425
	intel_cpufreq_trace(cpu, INTEL_PSTATE_TRACE_TARGET, old_pstate);
2426 2427 2428 2429 2430 2431 2432 2433 2434
	cpufreq_freq_transition_end(policy, &freqs, false);

	return 0;
}

static unsigned int intel_cpufreq_fast_switch(struct cpufreq_policy *policy,
					      unsigned int target_freq)
{
	struct cpudata *cpu = all_cpu_data[policy->cpu];
2435
	int target_pstate, old_pstate;
2436

2437 2438
	update_turbo_state();

2439
	target_pstate = DIV_ROUND_UP(target_freq, cpu->pstate.scaling);
2440
	target_pstate = intel_pstate_prepare_request(cpu, target_pstate);
2441
	old_pstate = cpu->pstate.current_pstate;
2442
	intel_pstate_update_pstate(cpu, target_pstate);
2443
	intel_cpufreq_trace(cpu, INTEL_PSTATE_TRACE_FAST_SWITCH, old_pstate);
2444
	return target_pstate * cpu->pstate.scaling;
2445 2446 2447 2448
}

static int intel_cpufreq_cpu_init(struct cpufreq_policy *policy)
{
2449
	int max_state, turbo_max, min_freq, max_freq, ret;
2450
	struct freq_qos_request *req;
2451 2452 2453 2454 2455 2456
	struct cpudata *cpu;
	struct device *dev;

	dev = get_cpu_device(policy->cpu);
	if (!dev)
		return -ENODEV;
2457

2458
	ret = __intel_pstate_cpu_init(policy);
2459 2460 2461 2462
	if (ret)
		return ret;

	policy->cpuinfo.transition_latency = INTEL_CPUFREQ_TRANSITION_LATENCY;
2463
	policy->transition_delay_us = INTEL_CPUFREQ_TRANSITION_DELAY;
2464 2465 2466
	/* This reflects the intel_pstate_get_cpu_pstates() setting. */
	policy->cur = policy->cpuinfo.min_freq;

2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484
	req = kcalloc(2, sizeof(*req), GFP_KERNEL);
	if (!req) {
		ret = -ENOMEM;
		goto pstate_exit;
	}

	cpu = all_cpu_data[policy->cpu];

	if (hwp_active)
		intel_pstate_get_hwp_max(policy->cpu, &turbo_max, &max_state);
	else
		turbo_max = cpu->pstate.turbo_pstate;

	min_freq = DIV_ROUND_UP(turbo_max * global.min_perf_pct, 100);
	min_freq *= cpu->pstate.scaling;
	max_freq = DIV_ROUND_UP(turbo_max * global.max_perf_pct, 100);
	max_freq *= cpu->pstate.scaling;

2485 2486
	ret = freq_qos_add_request(&policy->constraints, req, FREQ_QOS_MIN,
				   min_freq);
2487 2488 2489 2490 2491
	if (ret < 0) {
		dev_err(dev, "Failed to add min-freq constraint (%d)\n", ret);
		goto free_req;
	}

2492 2493
	ret = freq_qos_add_request(&policy->constraints, req + 1, FREQ_QOS_MAX,
				   max_freq);
2494 2495 2496 2497 2498 2499 2500
	if (ret < 0) {
		dev_err(dev, "Failed to add max-freq constraint (%d)\n", ret);
		goto remove_min_req;
	}

	policy->driver_data = req;

2501
	return 0;
2502 2503

remove_min_req:
2504
	freq_qos_remove_request(req);
2505 2506 2507 2508 2509 2510 2511 2512 2513 2514
free_req:
	kfree(req);
pstate_exit:
	intel_pstate_exit_perf_limits(policy);

	return ret;
}

static int intel_cpufreq_cpu_exit(struct cpufreq_policy *policy)
{
2515
	struct freq_qos_request *req;
2516 2517 2518

	req = policy->driver_data;

2519 2520
	freq_qos_remove_request(req + 1);
	freq_qos_remove_request(req);
2521 2522 2523
	kfree(req);

	return intel_pstate_cpu_exit(policy);
2524 2525 2526 2527 2528 2529 2530 2531
}

static struct cpufreq_driver intel_cpufreq = {
	.flags		= CPUFREQ_CONST_LOOPS,
	.verify		= intel_cpufreq_verify_policy,
	.target		= intel_cpufreq_target,
	.fast_switch	= intel_cpufreq_fast_switch,
	.init		= intel_cpufreq_cpu_init,
2532
	.exit		= intel_cpufreq_cpu_exit,
2533
	.stop_cpu	= intel_cpufreq_stop_cpu,
2534
	.update_limits	= intel_pstate_update_limits,
2535 2536 2537
	.name		= "intel_cpufreq",
};

2538
static struct cpufreq_driver *default_driver = &intel_pstate;
2539

2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554
static void intel_pstate_driver_cleanup(void)
{
	unsigned int cpu;

	get_online_cpus();
	for_each_online_cpu(cpu) {
		if (all_cpu_data[cpu]) {
			if (intel_pstate_driver == &intel_pstate)
				intel_pstate_clear_update_util_hook(cpu);

			kfree(all_cpu_data[cpu]);
			all_cpu_data[cpu] = NULL;
		}
	}
	put_online_cpus();
2555
	intel_pstate_driver = NULL;
2556 2557
}

2558
static int intel_pstate_register_driver(struct cpufreq_driver *driver)
2559 2560 2561
{
	int ret;

2562 2563
	memset(&global, 0, sizeof(global));
	global.max_perf_pct = 100;
2564

2565
	intel_pstate_driver = driver;
2566 2567 2568 2569 2570 2571
	ret = cpufreq_register_driver(intel_pstate_driver);
	if (ret) {
		intel_pstate_driver_cleanup();
		return ret;
	}

2572 2573
	global.min_perf_pct = min_perf_pct_min();

2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589
	return 0;
}

static int intel_pstate_unregister_driver(void)
{
	if (hwp_active)
		return -EBUSY;

	cpufreq_unregister_driver(intel_pstate_driver);
	intel_pstate_driver_cleanup();

	return 0;
}

static ssize_t intel_pstate_show_status(char *buf)
{
2590
	if (!intel_pstate_driver)
2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601
		return sprintf(buf, "off\n");

	return sprintf(buf, "%s\n", intel_pstate_driver == &intel_pstate ?
					"active" : "passive");
}

static int intel_pstate_update_status(const char *buf, size_t size)
{
	int ret;

	if (size == 3 && !strncmp(buf, "off", size))
2602
		return intel_pstate_driver ?
2603 2604 2605
			intel_pstate_unregister_driver() : -EINVAL;

	if (size == 6 && !strncmp(buf, "active", size)) {
2606
		if (intel_pstate_driver) {
2607 2608 2609 2610 2611 2612 2613 2614
			if (intel_pstate_driver == &intel_pstate)
				return 0;

			ret = intel_pstate_unregister_driver();
			if (ret)
				return ret;
		}

2615
		return intel_pstate_register_driver(&intel_pstate);
2616 2617 2618
	}

	if (size == 7 && !strncmp(buf, "passive", size)) {
2619
		if (intel_pstate_driver) {
2620
			if (intel_pstate_driver == &intel_cpufreq)
2621 2622 2623 2624 2625 2626 2627
				return 0;

			ret = intel_pstate_unregister_driver();
			if (ret)
				return ret;
		}

2628
		return intel_pstate_register_driver(&intel_cpufreq);
2629 2630 2631 2632 2633
	}

	return -EINVAL;
}

2634 2635 2636
static int no_load __initdata;
static int no_hwp __initdata;
static int hwp_only __initdata;
2637
static unsigned int force_load __initdata;
2638

2639
static int __init intel_pstate_msrs_not_valid(void)
2640
{
2641
	if (!pstate_funcs.get_max() ||
2642 2643
	    !pstate_funcs.get_min() ||
	    !pstate_funcs.get_turbo())
2644 2645 2646 2647
		return -ENODEV;

	return 0;
}
2648

2649
static void __init copy_cpu_funcs(struct pstate_funcs *funcs)
2650 2651
{
	pstate_funcs.get_max   = funcs->get_max;
2652
	pstate_funcs.get_max_physical = funcs->get_max_physical;
2653 2654
	pstate_funcs.get_min   = funcs->get_min;
	pstate_funcs.get_turbo = funcs->get_turbo;
2655
	pstate_funcs.get_scaling = funcs->get_scaling;
2656
	pstate_funcs.get_val   = funcs->get_val;
2657
	pstate_funcs.get_vid   = funcs->get_vid;
2658
	pstate_funcs.get_aperf_mperf_shift = funcs->get_aperf_mperf_shift;
2659 2660
}

2661
#ifdef CONFIG_ACPI
2662

2663
static bool __init intel_pstate_no_acpi_pss(void)
2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688
{
	int i;

	for_each_possible_cpu(i) {
		acpi_status status;
		union acpi_object *pss;
		struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
		struct acpi_processor *pr = per_cpu(processors, i);

		if (!pr)
			continue;

		status = acpi_evaluate_object(pr->handle, "_PSS", NULL, &buffer);
		if (ACPI_FAILURE(status))
			continue;

		pss = buffer.pointer;
		if (pss && pss->type == ACPI_TYPE_PACKAGE) {
			kfree(pss);
			return false;
		}

		kfree(pss);
	}

2689
	pr_debug("ACPI _PSS not found\n");
2690 2691 2692
	return true;
}

2693 2694 2695 2696 2697 2698 2699
static bool __init intel_pstate_no_acpi_pcch(void)
{
	acpi_status status;
	acpi_handle handle;

	status = acpi_get_handle(NULL, "\\_SB", &handle);
	if (ACPI_FAILURE(status))
2700 2701 2702 2703
		goto not_found;

	if (acpi_has_method(handle, "PCCH"))
		return false;
2704

2705 2706 2707
not_found:
	pr_debug("ACPI PCCH not found\n");
	return true;
2708 2709
}

2710
static bool __init intel_pstate_has_acpi_ppc(void)
2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721
{
	int i;

	for_each_possible_cpu(i) {
		struct acpi_processor *pr = per_cpu(processors, i);

		if (!pr)
			continue;
		if (acpi_has_method(pr->handle, "_PPC"))
			return true;
	}
2722
	pr_debug("ACPI _PPC not found\n");
2723 2724 2725 2726 2727 2728 2729 2730
	return false;
}

enum {
	PSS,
	PPC,
};

2731
/* Hardware vendor-specific info that has its own power management modes */
2732
static struct acpi_platform_list plat_info[] __initdata = {
2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747
	{"HP    ", "ProLiant", 0, ACPI_SIG_FADT, all_versions, NULL, PSS},
	{"ORACLE", "X4-2    ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
	{"ORACLE", "X4-2L   ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
	{"ORACLE", "X4-2B   ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
	{"ORACLE", "X3-2    ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
	{"ORACLE", "X3-2L   ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
	{"ORACLE", "X3-2B   ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
	{"ORACLE", "X4470M2 ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
	{"ORACLE", "X4270M3 ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
	{"ORACLE", "X4270M2 ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
	{"ORACLE", "X4170M2 ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
	{"ORACLE", "X4170 M3", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
	{"ORACLE", "X4275 M3", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
	{"ORACLE", "X6-2    ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
	{"ORACLE", "Sudbury ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
2748
	{ } /* End */
2749 2750
};

2751 2752
#define BITMASK_OOB	(BIT(8) | BIT(18))

2753
static bool __init intel_pstate_platform_pwr_mgmt_exists(void)
2754
{
D
Dirk Brandewie 已提交
2755 2756
	const struct x86_cpu_id *id;
	u64 misc_pwr;
2757
	int idx;
D
Dirk Brandewie 已提交
2758 2759 2760 2761

	id = x86_match_cpu(intel_pstate_cpu_oob_ids);
	if (id) {
		rdmsrl(MSR_MISC_PWR_MGMT, misc_pwr);
2762 2763 2764
		if (misc_pwr & BITMASK_OOB) {
			pr_debug("Bit 8 or 18 in the MISC_PWR_MGMT MSR set\n");
			pr_debug("P states are controlled in Out of Band mode by the firmware/hardware\n");
D
Dirk Brandewie 已提交
2765
			return true;
2766
		}
D
Dirk Brandewie 已提交
2767
	}
2768

2769 2770
	idx = acpi_match_platform_list(plat_info);
	if (idx < 0)
2771 2772
		return false;

2773 2774
	switch (plat_info[idx].data) {
	case PSS:
2775 2776 2777 2778
		if (!intel_pstate_no_acpi_pss())
			return false;

		return intel_pstate_no_acpi_pcch();
2779 2780
	case PPC:
		return intel_pstate_has_acpi_ppc() && !force_load;
2781 2782 2783 2784
	}

	return false;
}
2785 2786 2787 2788 2789 2790 2791 2792 2793 2794

static void intel_pstate_request_control_from_smm(void)
{
	/*
	 * It may be unsafe to request P-states control from SMM if _PPC support
	 * has not been enabled.
	 */
	if (acpi_ppc)
		acpi_processor_pstate_control();
}
2795 2796
#else /* CONFIG_ACPI not enabled */
static inline bool intel_pstate_platform_pwr_mgmt_exists(void) { return false; }
2797
static inline bool intel_pstate_has_acpi_ppc(void) { return false; }
2798
static inline void intel_pstate_request_control_from_smm(void) {}
2799 2800
#endif /* CONFIG_ACPI */

2801 2802
#define INTEL_PSTATE_HWP_BROADWELL	0x01

2803 2804
#define X86_MATCH_HWP(model, hwp_mode)					\
	X86_MATCH_VENDOR_FAM_MODEL_FEATURE(INTEL, 6, INTEL_FAM6_##model, \
2805
					   X86_FEATURE_HWP, hwp_mode)
2806

2807
static const struct x86_cpu_id hwp_support_ids[] __initconst = {
2808 2809 2810
	X86_MATCH_HWP(BROADWELL_X,	INTEL_PSTATE_HWP_BROADWELL),
	X86_MATCH_HWP(BROADWELL_D,	INTEL_PSTATE_HWP_BROADWELL),
	X86_MATCH_HWP(ANY,		0),
2811 2812 2813
	{}
};

2814 2815
static int __init intel_pstate_init(void)
{
2816
	const struct x86_cpu_id *id;
2817
	int rc;
2818

2819 2820 2821
	if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL)
		return -ENODEV;

2822 2823 2824
	if (no_load)
		return -ENODEV;

2825 2826
	id = x86_match_cpu(hwp_support_ids);
	if (id) {
2827
		copy_cpu_funcs(&core_funcs);
2828
		if (!no_hwp) {
2829
			hwp_active++;
2830
			hwp_mode_bdw = id->driver_data;
2831 2832 2833 2834 2835
			intel_pstate.attr = hwp_cpufreq_attrs;
			goto hwp_cpu_matched;
		}
	} else {
		id = x86_match_cpu(intel_pstate_cpu_ids);
2836
		if (!id) {
2837
			pr_info("CPU model not supported\n");
2838
			return -ENODEV;
2839
		}
2840

2841
		copy_cpu_funcs((struct pstate_funcs *)id->driver_data);
2842
	}
2843

2844 2845
	if (intel_pstate_msrs_not_valid()) {
		pr_info("Invalid MSRs\n");
2846
		return -ENODEV;
2847
	}
2848 2849
	/* Without HWP start in the passive mode. */
	default_driver = &intel_cpufreq;
2850

2851 2852 2853 2854 2855
hwp_cpu_matched:
	/*
	 * The Intel pstate driver will be ignored if the platform
	 * firmware has its own power management modes.
	 */
2856 2857
	if (intel_pstate_platform_pwr_mgmt_exists()) {
		pr_info("P-states controlled by the platform\n");
2858
		return -ENODEV;
2859
	}
2860

2861 2862 2863
	if (!hwp_active && hwp_only)
		return -ENOTSUPP;

J
Joe Perches 已提交
2864
	pr_info("Intel P-state driver initializing\n");
2865

2866
	all_cpu_data = vzalloc(array_size(sizeof(void *), num_possible_cpus()));
2867 2868 2869
	if (!all_cpu_data)
		return -ENOMEM;

2870 2871
	intel_pstate_request_control_from_smm();

2872
	intel_pstate_sysfs_expose_params();
2873

2874
	mutex_lock(&intel_pstate_driver_lock);
2875
	rc = intel_pstate_register_driver(default_driver);
2876
	mutex_unlock(&intel_pstate_driver_lock);
2877 2878
	if (rc)
		return rc;
2879

2880 2881 2882 2883 2884 2885 2886 2887 2888
	if (hwp_active) {
		const struct x86_cpu_id *id;

		id = x86_match_cpu(intel_pstate_cpu_ee_disable_ids);
		if (id) {
			set_power_ctl_ee_state(false);
			pr_info("Disabling energy efficiency optimization\n");
		}

J
Joe Perches 已提交
2889
		pr_info("HWP enabled\n");
2890
	}
2891

2892
	return 0;
2893 2894 2895
}
device_initcall(intel_pstate_init);

2896 2897 2898 2899 2900
static int __init intel_pstate_setup(char *str)
{
	if (!str)
		return -EINVAL;

2901
	if (!strcmp(str, "disable")) {
2902
		no_load = 1;
2903
	} else if (!strcmp(str, "passive")) {
2904
		default_driver = &intel_cpufreq;
2905 2906
		no_hwp = 1;
	}
2907
	if (!strcmp(str, "no_hwp")) {
J
Joe Perches 已提交
2908
		pr_info("HWP disabled\n");
D
Dirk Brandewie 已提交
2909
		no_hwp = 1;
2910
	}
2911 2912
	if (!strcmp(str, "force"))
		force_load = 1;
2913 2914
	if (!strcmp(str, "hwp_only"))
		hwp_only = 1;
2915 2916
	if (!strcmp(str, "per_cpu_perf_limits"))
		per_cpu_limits = true;
2917 2918 2919 2920 2921 2922

#ifdef CONFIG_ACPI
	if (!strcmp(str, "support_acpi_ppc"))
		acpi_ppc = true;
#endif

2923 2924 2925 2926
	return 0;
}
early_param("intel_pstate", intel_pstate_setup);

2927 2928 2929
MODULE_AUTHOR("Dirk Brandewie <dirk.j.brandewie@intel.com>");
MODULE_DESCRIPTION("'intel_pstate' - P state driver Intel Core processors");
MODULE_LICENSE("GPL");