intel_pstate.c 69.9 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0-only
2
/*
3
 * intel_pstate.c: Native P state management for Intel processors
4 5 6 7 8
 *
 * (C) Copyright 2012 Intel Corporation
 * Author: Dirk Brandewie <dirk.j.brandewie@intel.com>
 */

J
Joe Perches 已提交
9 10
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt

11 12 13 14 15 16 17
#include <linux/kernel.h>
#include <linux/kernel_stat.h>
#include <linux/module.h>
#include <linux/ktime.h>
#include <linux/hrtimer.h>
#include <linux/tick.h>
#include <linux/slab.h>
18
#include <linux/sched/cpufreq.h>
19 20 21 22 23 24
#include <linux/list.h>
#include <linux/cpu.h>
#include <linux/cpufreq.h>
#include <linux/sysfs.h>
#include <linux/types.h>
#include <linux/fs.h>
25
#include <linux/acpi.h>
26
#include <linux/vmalloc.h>
27
#include <linux/pm_qos.h>
28 29 30 31 32
#include <trace/events/power.h>

#include <asm/div64.h>
#include <asm/msr.h>
#include <asm/cpu_device_id.h>
33
#include <asm/cpufeature.h>
34
#include <asm/intel-family.h>
35

36
#define INTEL_PSTATE_SAMPLING_INTERVAL	(10 * NSEC_PER_MSEC)
37

38
#define INTEL_CPUFREQ_TRANSITION_LATENCY	20000
39
#define INTEL_CPUFREQ_TRANSITION_DELAY		500
40

41 42
#ifdef CONFIG_ACPI
#include <acpi/processor.h>
43
#include <acpi/cppc_acpi.h>
44 45
#endif

46
#define FRAC_BITS 8
47 48
#define int_tofp(X) ((int64_t)(X) << FRAC_BITS)
#define fp_toint(X) ((X) >> FRAC_BITS)
49

50 51
#define ONE_EIGHTH_FP ((int64_t)1 << (FRAC_BITS - 3))

52 53
#define EXT_BITS 6
#define EXT_FRAC_BITS (EXT_BITS + FRAC_BITS)
54 55
#define fp_ext_toint(X) ((X) >> EXT_FRAC_BITS)
#define int_ext_tofp(X) ((int64_t)(X) << EXT_FRAC_BITS)
56

57 58 59 60 61
static inline int32_t mul_fp(int32_t x, int32_t y)
{
	return ((int64_t)x * (int64_t)y) >> FRAC_BITS;
}

62
static inline int32_t div_fp(s64 x, s64 y)
63
{
64
	return div64_s64((int64_t)x << FRAC_BITS, y);
65 66
}

67 68 69 70 71 72 73 74 75 76 77
static inline int ceiling_fp(int32_t x)
{
	int mask, ret;

	ret = fp_toint(x);
	mask = (1 << FRAC_BITS) - 1;
	if (x & mask)
		ret += 1;
	return ret;
}

78 79 80 81 82
static inline int32_t percent_fp(int percent)
{
	return div_fp(percent, 100);
}

83 84 85 86 87 88 89 90 91 92
static inline u64 mul_ext_fp(u64 x, u64 y)
{
	return (x * y) >> EXT_FRAC_BITS;
}

static inline u64 div_ext_fp(u64 x, u64 y)
{
	return div64_u64(x << EXT_FRAC_BITS, y);
}

93 94 95 96 97
static inline int32_t percent_ext_fp(int percent)
{
	return div_ext_fp(percent, 100);
}

98 99
/**
 * struct sample -	Store performance sample
100
 * @core_avg_perf:	Ratio of APERF/MPERF which is the actual average
101 102
 *			performance during last sample period
 * @busy_scaled:	Scaled busy value which is used to calculate next
103
 *			P state. This can be different than core_avg_perf
104 105 106 107 108 109 110 111 112 113 114 115
 *			to account for cpu idle period
 * @aperf:		Difference of actual performance frequency clock count
 *			read from APERF MSR between last and current sample
 * @mperf:		Difference of maximum performance frequency clock count
 *			read from MPERF MSR between last and current sample
 * @tsc:		Difference of time stamp counter between last and
 *			current sample
 * @time:		Current time from scheduler
 *
 * This structure is used in the cpudata structure to store performance sample
 * data for choosing next P State.
 */
116
struct sample {
117
	int32_t core_avg_perf;
118
	int32_t busy_scaled;
119 120
	u64 aperf;
	u64 mperf;
121
	u64 tsc;
122
	u64 time;
123 124
};

125 126 127 128 129 130 131 132 133 134 135
/**
 * struct pstate_data - Store P state data
 * @current_pstate:	Current requested P state
 * @min_pstate:		Min P state possible for this platform
 * @max_pstate:		Max P state possible for this platform
 * @max_pstate_physical:This is physical Max P state for a processor
 *			This can be higher than the max_pstate which can
 *			be limited by platform thermal design power limits
 * @scaling:		Scaling factor to  convert frequency to cpufreq
 *			frequency units
 * @turbo_pstate:	Max Turbo P state possible for this platform
136 137
 * @max_freq:		@max_pstate frequency in cpufreq units
 * @turbo_freq:		@turbo_pstate frequency in cpufreq units
138 139 140
 *
 * Stores the per cpu model P state limits and current P state.
 */
141 142 143 144
struct pstate_data {
	int	current_pstate;
	int	min_pstate;
	int	max_pstate;
145
	int	max_pstate_physical;
146
	int	scaling;
147
	int	turbo_pstate;
148 149
	unsigned int max_freq;
	unsigned int turbo_freq;
150 151
};

152 153 154 155 156 157 158 159 160 161 162 163 164
/**
 * struct vid_data -	Stores voltage information data
 * @min:		VID data for this platform corresponding to
 *			the lowest P state
 * @max:		VID data corresponding to the highest P State.
 * @turbo:		VID data for turbo P state
 * @ratio:		Ratio of (vid max - vid min) /
 *			(max P state - Min P State)
 *
 * Stores the voltage data for DVFS (Dynamic Voltage and Frequency Scaling)
 * This data is used in Atom platforms, where in addition to target P state,
 * the voltage data needs to be specified to select next P State.
 */
165
struct vid_data {
166 167 168
	int min;
	int max;
	int turbo;
169 170 171
	int32_t ratio;
};

172 173 174
/**
 * struct global_params - Global parameters, mostly tunable via sysfs.
 * @no_turbo:		Whether or not to use turbo P-states.
175
 * @turbo_disabled:	Whether or not turbo P-states are available at all,
176 177 178
 *			based on the MSR_IA32_MISC_ENABLE value and whether or
 *			not the maximum reported turbo P-state is different from
 *			the maximum reported non-turbo one.
179
 * @turbo_disabled_mf:	The @turbo_disabled value reflected by cpuinfo.max_freq.
180 181 182 183 184 185 186 187
 * @min_perf_pct:	Minimum capacity limit in percent of the maximum turbo
 *			P-state capacity.
 * @max_perf_pct:	Maximum capacity limit in percent of the maximum turbo
 *			P-state capacity.
 */
struct global_params {
	bool no_turbo;
	bool turbo_disabled;
188
	bool turbo_disabled_mf;
189 190
	int max_perf_pct;
	int min_perf_pct;
191 192
};

193 194 195
/**
 * struct cpudata -	Per CPU instance data storage
 * @cpu:		CPU number for this instance data
196
 * @policy:		CPUFreq policy value
197
 * @update_util:	CPUFreq utility callback information
198
 * @update_util_set:	CPUFreq utility callback is set
199 200
 * @iowait_boost:	iowait-related boost fraction
 * @last_update:	Time of the last update.
201 202 203
 * @pstate:		Stores P state limits for this CPU
 * @vid:		Stores VID limits for this CPU
 * @last_sample_time:	Last Sample time
204 205 206
 * @aperf_mperf_shift:	Number of clock cycles after aperf, merf is incremented
 *			This shift is a multiplier to mperf delta to
 *			calculate CPU busy.
207 208 209 210 211 212
 * @prev_aperf:		Last APERF value read from APERF MSR
 * @prev_mperf:		Last MPERF value read from MPERF MSR
 * @prev_tsc:		Last timestamp counter (TSC) value
 * @prev_cummulative_iowait: IO Wait time difference from last and
 *			current sample
 * @sample:		Storage for storing last Sample data
213 214
 * @min_perf_ratio:	Minimum capacity in terms of PERF or HWP ratios
 * @max_perf_ratio:	Maximum capacity in terms of PERF or HWP ratios
215 216
 * @acpi_perf_data:	Stores ACPI perf information read from _PSS
 * @valid_pss_table:	Set to true for valid ACPI _PSS entries found
217 218 219
 * @epp_powersave:	Last saved HWP energy performance preference
 *			(EPP) or energy performance bias (EPB),
 *			when policy switched to performance
220
 * @epp_policy:		Last saved policy used to set EPP/EPB
221 222 223 224
 * @epp_default:	Power on default HWP energy performance
 *			preference/bias
 * @epp_saved:		Saved EPP/EPB during system suspend or CPU offline
 *			operation
225 226
 * @hwp_req_cached:	Cached value of the last HWP Request MSR
 * @hwp_cap_cached:	Cached value of the last HWP Capabilities MSR
227 228
 * @last_io_update:	Last time when IO wake flag was set
 * @sched_flags:	Store scheduler flags for possible cross CPU update
229
 * @hwp_boost_min:	Last HWP boosted min performance
230 231 232
 *
 * This structure stores per CPU instance data for all CPUs.
 */
233 234 235
struct cpudata {
	int cpu;

236
	unsigned int policy;
237
	struct update_util_data update_util;
238
	bool   update_util_set;
239 240

	struct pstate_data pstate;
241
	struct vid_data vid;
242

243
	u64	last_update;
244
	u64	last_sample_time;
245
	u64	aperf_mperf_shift;
246 247
	u64	prev_aperf;
	u64	prev_mperf;
248
	u64	prev_tsc;
249
	u64	prev_cummulative_iowait;
250
	struct sample sample;
251 252
	int32_t	min_perf_ratio;
	int32_t	max_perf_ratio;
253 254 255 256
#ifdef CONFIG_ACPI
	struct acpi_processor_performance acpi_perf_data;
	bool valid_pss_table;
#endif
257
	unsigned int iowait_boost;
258
	s16 epp_powersave;
259
	s16 epp_policy;
260 261
	s16 epp_default;
	s16 epp_saved;
262 263
	u64 hwp_req_cached;
	u64 hwp_cap_cached;
264 265
	u64 last_io_update;
	unsigned int sched_flags;
266
	u32 hwp_boost_min;
267 268 269
};

static struct cpudata **all_cpu_data;
270 271 272 273 274 275 276 277 278 279 280 281 282 283

/**
 * struct pstate_funcs - Per CPU model specific callbacks
 * @get_max:		Callback to get maximum non turbo effective P state
 * @get_max_physical:	Callback to get maximum non turbo physical P state
 * @get_min:		Callback to get minimum P state
 * @get_turbo:		Callback to get turbo P state
 * @get_scaling:	Callback to get frequency scaling factor
 * @get_val:		Callback to convert P state to actual MSR write value
 * @get_vid:		Callback to get VID data for Atom platforms
 *
 * Core and Atom CPU models have different way to get P State limits. This
 * structure is used to store those callbacks.
 */
284 285
struct pstate_funcs {
	int (*get_max)(void);
286
	int (*get_max_physical)(void);
287 288
	int (*get_min)(void);
	int (*get_turbo)(void);
289
	int (*get_scaling)(void);
290
	int (*get_aperf_mperf_shift)(void);
291
	u64 (*get_val)(struct cpudata*, int pstate);
292
	void (*get_vid)(struct cpudata *);
293 294
};

295
static struct pstate_funcs pstate_funcs __read_mostly;
296

297
static int hwp_active __read_mostly;
298
static int hwp_mode_bdw __read_mostly;
299
static bool per_cpu_limits __read_mostly;
300
static bool hwp_boost __read_mostly;
301

302
static struct cpufreq_driver *intel_pstate_driver __read_mostly;
303

304 305 306
#ifdef CONFIG_ACPI
static bool acpi_ppc;
#endif
307

308
static struct global_params global;
309

310
static DEFINE_MUTEX(intel_pstate_driver_lock);
311 312
static DEFINE_MUTEX(intel_pstate_limits_lock);

313
#ifdef CONFIG_ACPI
314

315
static bool intel_pstate_acpi_pm_profile_server(void)
316 317 318 319 320
{
	if (acpi_gbl_FADT.preferred_profile == PM_ENTERPRISE_SERVER ||
	    acpi_gbl_FADT.preferred_profile == PM_PERFORMANCE_SERVER)
		return true;

321 322 323 324 325 326 327 328
	return false;
}

static bool intel_pstate_get_ppc_enable_status(void)
{
	if (intel_pstate_acpi_pm_profile_server())
		return true;

329 330 331
	return acpi_ppc;
}

332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376
#ifdef CONFIG_ACPI_CPPC_LIB

/* The work item is needed to avoid CPU hotplug locking issues */
static void intel_pstste_sched_itmt_work_fn(struct work_struct *work)
{
	sched_set_itmt_support();
}

static DECLARE_WORK(sched_itmt_work, intel_pstste_sched_itmt_work_fn);

static void intel_pstate_set_itmt_prio(int cpu)
{
	struct cppc_perf_caps cppc_perf;
	static u32 max_highest_perf = 0, min_highest_perf = U32_MAX;
	int ret;

	ret = cppc_get_perf_caps(cpu, &cppc_perf);
	if (ret)
		return;

	/*
	 * The priorities can be set regardless of whether or not
	 * sched_set_itmt_support(true) has been called and it is valid to
	 * update them at any time after it has been called.
	 */
	sched_set_itmt_core_prio(cppc_perf.highest_perf, cpu);

	if (max_highest_perf <= min_highest_perf) {
		if (cppc_perf.highest_perf > max_highest_perf)
			max_highest_perf = cppc_perf.highest_perf;

		if (cppc_perf.highest_perf < min_highest_perf)
			min_highest_perf = cppc_perf.highest_perf;

		if (max_highest_perf > min_highest_perf) {
			/*
			 * This code can be run during CPU online under the
			 * CPU hotplug locks, so sched_set_itmt_support()
			 * cannot be called from here.  Queue up a work item
			 * to invoke it.
			 */
			schedule_work(&sched_itmt_work);
		}
	}
}
377 378 379 380 381 382 383 384 385 386

static int intel_pstate_get_cppc_guranteed(int cpu)
{
	struct cppc_perf_caps cppc_perf;
	int ret;

	ret = cppc_get_perf_caps(cpu, &cppc_perf);
	if (ret)
		return ret;

387 388 389 390
	if (cppc_perf.guaranteed_perf)
		return cppc_perf.guaranteed_perf;

	return cppc_perf.nominal_perf;
391 392
}

393
#else /* CONFIG_ACPI_CPPC_LIB */
394 395 396
static void intel_pstate_set_itmt_prio(int cpu)
{
}
397
#endif /* CONFIG_ACPI_CPPC_LIB */
398

399 400 401 402 403 404
static void intel_pstate_init_acpi_perf_limits(struct cpufreq_policy *policy)
{
	struct cpudata *cpu;
	int ret;
	int i;

405 406
	if (hwp_active) {
		intel_pstate_set_itmt_prio(policy->cpu);
407
		return;
408
	}
409

410
	if (!intel_pstate_get_ppc_enable_status())
411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452
		return;

	cpu = all_cpu_data[policy->cpu];

	ret = acpi_processor_register_performance(&cpu->acpi_perf_data,
						  policy->cpu);
	if (ret)
		return;

	/*
	 * Check if the control value in _PSS is for PERF_CTL MSR, which should
	 * guarantee that the states returned by it map to the states in our
	 * list directly.
	 */
	if (cpu->acpi_perf_data.control_register.space_id !=
						ACPI_ADR_SPACE_FIXED_HARDWARE)
		goto err;

	/*
	 * If there is only one entry _PSS, simply ignore _PSS and continue as
	 * usual without taking _PSS into account
	 */
	if (cpu->acpi_perf_data.state_count < 2)
		goto err;

	pr_debug("CPU%u - ACPI _PSS perf data\n", policy->cpu);
	for (i = 0; i < cpu->acpi_perf_data.state_count; i++) {
		pr_debug("     %cP%d: %u MHz, %u mW, 0x%x\n",
			 (i == cpu->acpi_perf_data.state ? '*' : ' '), i,
			 (u32) cpu->acpi_perf_data.states[i].core_frequency,
			 (u32) cpu->acpi_perf_data.states[i].power,
			 (u32) cpu->acpi_perf_data.states[i].control);
	}

	/*
	 * The _PSS table doesn't contain whole turbo frequency range.
	 * This just contains +1 MHZ above the max non turbo frequency,
	 * with control value corresponding to max turbo ratio. But
	 * when cpufreq set policy is called, it will call with this
	 * max frequency, which will cause a reduced performance as
	 * this driver uses real max turbo frequency as the max
	 * frequency. So correct this frequency in _PSS table to
453
	 * correct max turbo frequency based on the turbo state.
454 455
	 * Also need to convert to MHz as _PSS freq is in MHz.
	 */
456
	if (!global.turbo_disabled)
457 458 459
		cpu->acpi_perf_data.states[0].core_frequency =
					policy->cpuinfo.max_freq / 1000;
	cpu->valid_pss_table = true;
460
	pr_debug("_PPC limits will be enforced\n");
461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478

	return;

 err:
	cpu->valid_pss_table = false;
	acpi_processor_unregister_performance(policy->cpu);
}

static void intel_pstate_exit_perf_limits(struct cpufreq_policy *policy)
{
	struct cpudata *cpu;

	cpu = all_cpu_data[policy->cpu];
	if (!cpu->valid_pss_table)
		return;

	acpi_processor_unregister_performance(policy->cpu);
}
479
#else /* CONFIG_ACPI */
480
static inline void intel_pstate_init_acpi_perf_limits(struct cpufreq_policy *policy)
481 482 483
{
}

484
static inline void intel_pstate_exit_perf_limits(struct cpufreq_policy *policy)
485 486
{
}
487 488 489 490 491

static inline bool intel_pstate_acpi_pm_profile_server(void)
{
	return false;
}
492 493 494 495 496 497 498 499
#endif /* CONFIG_ACPI */

#ifndef CONFIG_ACPI_CPPC_LIB
static int intel_pstate_get_cppc_guranteed(int cpu)
{
	return -ENOTSUPP;
}
#endif /* CONFIG_ACPI_CPPC_LIB */
500

501 502 503 504 505 506 507
static inline void update_turbo_state(void)
{
	u64 misc_en;
	struct cpudata *cpu;

	cpu = all_cpu_data[0];
	rdmsrl(MSR_IA32_MISC_ENABLE, misc_en);
508
	global.turbo_disabled =
509 510 511 512
		(misc_en & MSR_IA32_MISC_ENABLE_TURBO_DISABLE ||
		 cpu->pstate.max_pstate == cpu->pstate.turbo_pstate);
}

513 514 515
static int min_perf_pct_min(void)
{
	struct cpudata *cpu = all_cpu_data[0];
516
	int turbo_pstate = cpu->pstate.turbo_pstate;
517

518
	return turbo_pstate ?
519
		(cpu->pstate.min_pstate * 100 / turbo_pstate) : 0;
520 521
}

522 523 524 525 526
static s16 intel_pstate_get_epb(struct cpudata *cpu_data)
{
	u64 epb;
	int ret;

527
	if (!boot_cpu_has(X86_FEATURE_EPB))
528 529 530 531 532 533 534 535 536 537 538 539 540
		return -ENXIO;

	ret = rdmsrl_on_cpu(cpu_data->cpu, MSR_IA32_ENERGY_PERF_BIAS, &epb);
	if (ret)
		return (s16)ret;

	return (s16)(epb & 0x0f);
}

static s16 intel_pstate_get_epp(struct cpudata *cpu_data, u64 hwp_req_data)
{
	s16 epp;

541
	if (boot_cpu_has(X86_FEATURE_HWP_EPP)) {
542 543 544 545 546 547 548 549 550 551
		/*
		 * When hwp_req_data is 0, means that caller didn't read
		 * MSR_HWP_REQUEST, so need to read and get EPP.
		 */
		if (!hwp_req_data) {
			epp = rdmsrl_on_cpu(cpu_data->cpu, MSR_HWP_REQUEST,
					    &hwp_req_data);
			if (epp)
				return epp;
		}
552
		epp = (hwp_req_data >> 24) & 0xff;
553
	} else {
554 555
		/* When there is no EPP present, HWP uses EPB settings */
		epp = intel_pstate_get_epb(cpu_data);
556
	}
557 558 559 560

	return epp;
}

561
static int intel_pstate_set_epb(int cpu, s16 pref)
562 563
{
	u64 epb;
564
	int ret;
565

566
	if (!boot_cpu_has(X86_FEATURE_EPB))
567
		return -ENXIO;
568

569 570 571
	ret = rdmsrl_on_cpu(cpu, MSR_IA32_ENERGY_PERF_BIAS, &epb);
	if (ret)
		return ret;
572 573 574

	epb = (epb & ~0x0f) | pref;
	wrmsrl_on_cpu(cpu, MSR_IA32_ENERGY_PERF_BIAS, epb);
575 576

	return 0;
577 578
}

579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597
/*
 * EPP/EPB display strings corresponding to EPP index in the
 * energy_perf_strings[]
 *	index		String
 *-------------------------------------
 *	0		default
 *	1		performance
 *	2		balance_performance
 *	3		balance_power
 *	4		power
 */
static const char * const energy_perf_strings[] = {
	"default",
	"performance",
	"balance_performance",
	"balance_power",
	"power",
	NULL
};
598 599 600 601 602 603
static const unsigned int epp_values[] = {
	HWP_EPP_PERFORMANCE,
	HWP_EPP_BALANCE_PERFORMANCE,
	HWP_EPP_BALANCE_POWERSAVE,
	HWP_EPP_POWERSAVE
};
604 605 606 607 608 609 610 611 612 613

static int intel_pstate_get_energy_pref_index(struct cpudata *cpu_data)
{
	s16 epp;
	int index = -EINVAL;

	epp = intel_pstate_get_epp(cpu_data, 0);
	if (epp < 0)
		return epp;

614
	if (boot_cpu_has(X86_FEATURE_HWP_EPP)) {
615 616 617 618 619 620 621 622
		if (epp == HWP_EPP_PERFORMANCE)
			return 1;
		if (epp <= HWP_EPP_BALANCE_PERFORMANCE)
			return 2;
		if (epp <= HWP_EPP_BALANCE_POWERSAVE)
			return 3;
		else
			return 4;
623
	} else if (boot_cpu_has(X86_FEATURE_EPB)) {
624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650
		/*
		 * Range:
		 *	0x00-0x03	:	Performance
		 *	0x04-0x07	:	Balance performance
		 *	0x08-0x0B	:	Balance power
		 *	0x0C-0x0F	:	Power
		 * The EPB is a 4 bit value, but our ranges restrict the
		 * value which can be set. Here only using top two bits
		 * effectively.
		 */
		index = (epp >> 2) + 1;
	}

	return index;
}

static int intel_pstate_set_energy_pref_index(struct cpudata *cpu_data,
					      int pref_index)
{
	int epp = -EINVAL;
	int ret;

	if (!pref_index)
		epp = cpu_data->epp_default;

	mutex_lock(&intel_pstate_limits_lock);

651
	if (boot_cpu_has(X86_FEATURE_HWP_EPP)) {
652 653 654 655 656 657 658 659 660
		u64 value;

		ret = rdmsrl_on_cpu(cpu_data->cpu, MSR_HWP_REQUEST, &value);
		if (ret)
			goto return_pref;

		value &= ~GENMASK_ULL(31, 24);

		if (epp == -EINVAL)
661
			epp = epp_values[pref_index - 1];
662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696

		value |= (u64)epp << 24;
		ret = wrmsrl_on_cpu(cpu_data->cpu, MSR_HWP_REQUEST, value);
	} else {
		if (epp == -EINVAL)
			epp = (pref_index - 1) << 2;
		ret = intel_pstate_set_epb(cpu_data->cpu, epp);
	}
return_pref:
	mutex_unlock(&intel_pstate_limits_lock);

	return ret;
}

static ssize_t show_energy_performance_available_preferences(
				struct cpufreq_policy *policy, char *buf)
{
	int i = 0;
	int ret = 0;

	while (energy_perf_strings[i] != NULL)
		ret += sprintf(&buf[ret], "%s ", energy_perf_strings[i++]);

	ret += sprintf(&buf[ret], "\n");

	return ret;
}

cpufreq_freq_attr_ro(energy_performance_available_preferences);

static ssize_t store_energy_performance_preference(
		struct cpufreq_policy *policy, const char *buf, size_t count)
{
	struct cpudata *cpu_data = all_cpu_data[policy->cpu];
	char str_preference[21];
697
	int ret;
698 699 700 701 702

	ret = sscanf(buf, "%20s", str_preference);
	if (ret != 1)
		return -EINVAL;

703 704 705
	ret = match_string(energy_perf_strings, -1, str_preference);
	if (ret < 0)
		return ret;
706

707 708
	intel_pstate_set_energy_pref_index(cpu_data, ret);
	return count;
709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725
}

static ssize_t show_energy_performance_preference(
				struct cpufreq_policy *policy, char *buf)
{
	struct cpudata *cpu_data = all_cpu_data[policy->cpu];
	int preference;

	preference = intel_pstate_get_energy_pref_index(cpu_data);
	if (preference < 0)
		return preference;

	return  sprintf(buf, "%s\n", energy_perf_strings[preference]);
}

cpufreq_freq_attr_rw(energy_performance_preference);

726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744
static ssize_t show_base_frequency(struct cpufreq_policy *policy, char *buf)
{
	struct cpudata *cpu;
	u64 cap;
	int ratio;

	ratio = intel_pstate_get_cppc_guranteed(policy->cpu);
	if (ratio <= 0) {
		rdmsrl_on_cpu(policy->cpu, MSR_HWP_CAPABILITIES, &cap);
		ratio = HWP_GUARANTEED_PERF(cap);
	}

	cpu = all_cpu_data[policy->cpu];

	return sprintf(buf, "%d\n", ratio * cpu->pstate.scaling);
}

cpufreq_freq_attr_ro(base_frequency);

745 746 747
static struct freq_attr *hwp_cpufreq_attrs[] = {
	&energy_performance_preference,
	&energy_performance_available_preferences,
748
	&base_frequency,
749 750 751
	NULL,
};

752 753
static void intel_pstate_get_hwp_max(unsigned int cpu, int *phy_max,
				     int *current_max)
D
Dirk Brandewie 已提交
754
{
755
	u64 cap;
756

757
	rdmsrl_on_cpu(cpu, MSR_HWP_CAPABILITIES, &cap);
758
	WRITE_ONCE(all_cpu_data[cpu]->hwp_cap_cached, cap);
759
	if (global.no_turbo)
760
		*current_max = HWP_GUARANTEED_PERF(cap);
761
	else
762 763 764 765 766 767 768 769 770 771 772 773 774 775
		*current_max = HWP_HIGHEST_PERF(cap);

	*phy_max = HWP_HIGHEST_PERF(cap);
}

static void intel_pstate_hwp_set(unsigned int cpu)
{
	struct cpudata *cpu_data = all_cpu_data[cpu];
	int max, min;
	u64 value;
	s16 epp;

	max = cpu_data->max_perf_ratio;
	min = cpu_data->min_perf_ratio;
776

777 778
	if (cpu_data->policy == CPUFREQ_POLICY_PERFORMANCE)
		min = max;
779

780
	rdmsrl_on_cpu(cpu, MSR_HWP_REQUEST, &value);
D
Dirk Brandewie 已提交
781

782 783
	value &= ~HWP_MIN_PERF(~0L);
	value |= HWP_MIN_PERF(min);
784

785 786
	value &= ~HWP_MAX_PERF(~0L);
	value |= HWP_MAX_PERF(max);
787

788 789
	if (cpu_data->epp_policy == cpu_data->policy)
		goto skip_epp;
790

791
	cpu_data->epp_policy = cpu_data->policy;
792

793 794 795 796 797
	if (cpu_data->epp_saved >= 0) {
		epp = cpu_data->epp_saved;
		cpu_data->epp_saved = -EINVAL;
		goto update_epp;
	}
798

799 800 801 802 803 804
	if (cpu_data->policy == CPUFREQ_POLICY_PERFORMANCE) {
		epp = intel_pstate_get_epp(cpu_data, value);
		cpu_data->epp_powersave = epp;
		/* If EPP read was failed, then don't try to write */
		if (epp < 0)
			goto skip_epp;
805

806 807 808 809 810
		epp = 0;
	} else {
		/* skip setting EPP, when saved value is invalid */
		if (cpu_data->epp_powersave < 0)
			goto skip_epp;
811

812 813 814 815 816 817 818 819 820 821
		/*
		 * No need to restore EPP when it is not zero. This
		 * means:
		 *  - Policy is not changed
		 *  - user has manually changed
		 *  - Error reading EPB
		 */
		epp = intel_pstate_get_epp(cpu_data, value);
		if (epp)
			goto skip_epp;
822

823 824
		epp = cpu_data->epp_powersave;
	}
825
update_epp:
826
	if (boot_cpu_has(X86_FEATURE_HWP_EPP)) {
827 828 829 830
		value &= ~GENMASK_ULL(31, 24);
		value |= (u64)epp << 24;
	} else {
		intel_pstate_set_epb(cpu, epp);
D
Dirk Brandewie 已提交
831
	}
832
skip_epp:
833
	WRITE_ONCE(cpu_data->hwp_req_cached, value);
834
	wrmsrl_on_cpu(cpu, MSR_HWP_REQUEST, value);
835
}
D
Dirk Brandewie 已提交
836

837 838 839 840 841 842 843 844 845 846 847 848 849
static void intel_pstate_hwp_force_min_perf(int cpu)
{
	u64 value;
	int min_perf;

	value = all_cpu_data[cpu]->hwp_req_cached;
	value &= ~GENMASK_ULL(31, 0);
	min_perf = HWP_LOWEST_PERF(all_cpu_data[cpu]->hwp_cap_cached);

	/* Set hwp_max = hwp_min */
	value |= HWP_MAX_PERF(min_perf);
	value |= HWP_MIN_PERF(min_perf);

850
	/* Set EPP to min */
851
	if (boot_cpu_has(X86_FEATURE_HWP_EPP))
852 853 854 855 856
		value |= HWP_ENERGY_PERF_PREFERENCE(HWP_EPP_POWERSAVE);

	wrmsrl_on_cpu(cpu, MSR_HWP_REQUEST, value);
}

857 858 859 860 861 862 863 864 865 866 867 868
static int intel_pstate_hwp_save_state(struct cpufreq_policy *policy)
{
	struct cpudata *cpu_data = all_cpu_data[policy->cpu];

	if (!hwp_active)
		return 0;

	cpu_data->epp_saved = intel_pstate_get_epp(cpu_data, 0);

	return 0;
}

869 870
static void intel_pstate_hwp_enable(struct cpudata *cpudata);

871 872 873 874 875
static int intel_pstate_resume(struct cpufreq_policy *policy)
{
	if (!hwp_active)
		return 0;

876 877
	mutex_lock(&intel_pstate_limits_lock);

878 879 880
	if (policy->cpu == 0)
		intel_pstate_hwp_enable(all_cpu_data[policy->cpu]);

881
	all_cpu_data[policy->cpu]->epp_policy = 0;
882
	intel_pstate_hwp_set(policy->cpu);
883 884 885

	mutex_unlock(&intel_pstate_limits_lock);

886
	return 0;
887 888
}

889
static void intel_pstate_update_policies(void)
890
{
891 892 893 894
	int cpu;

	for_each_possible_cpu(cpu)
		cpufreq_update_policy(cpu);
D
Dirk Brandewie 已提交
895 896
}

897 898 899 900 901 902 903 904 905 906 907 908
static void intel_pstate_update_max_freq(unsigned int cpu)
{
	struct cpufreq_policy *policy = cpufreq_cpu_acquire(cpu);
	struct cpudata *cpudata;

	if (!policy)
		return;

	cpudata = all_cpu_data[cpu];
	policy->cpuinfo.max_freq = global.turbo_disabled_mf ?
			cpudata->pstate.max_freq : cpudata->pstate.turbo_freq;

909
	refresh_frequency_limits(policy);
910 911 912 913

	cpufreq_cpu_release(policy);
}

914 915 916 917 918 919 920 921 922
static void intel_pstate_update_limits(unsigned int cpu)
{
	mutex_lock(&intel_pstate_driver_lock);

	update_turbo_state();
	/*
	 * If turbo has been turned on or off globally, policy limits for
	 * all CPUs need to be updated to reflect that.
	 */
923 924
	if (global.turbo_disabled_mf != global.turbo_disabled) {
		global.turbo_disabled_mf = global.turbo_disabled;
925
		arch_set_max_freq_ratio(global.turbo_disabled);
926 927
		for_each_possible_cpu(cpu)
			intel_pstate_update_max_freq(cpu);
928 929 930 931 932 933 934
	} else {
		cpufreq_update_policy(cpu);
	}

	mutex_unlock(&intel_pstate_driver_lock);
}

935 936 937
/************************** sysfs begin ************************/
#define show_one(file_name, object)					\
	static ssize_t show_##file_name					\
938
	(struct kobject *kobj, struct kobj_attribute *attr, char *buf)	\
939
	{								\
940
		return sprintf(buf, "%u\n", global.object);		\
941 942
	}

943 944 945 946
static ssize_t intel_pstate_show_status(char *buf);
static int intel_pstate_update_status(const char *buf, size_t size);

static ssize_t show_status(struct kobject *kobj,
947
			   struct kobj_attribute *attr, char *buf)
948 949 950 951 952 953 954 955 956 957
{
	ssize_t ret;

	mutex_lock(&intel_pstate_driver_lock);
	ret = intel_pstate_show_status(buf);
	mutex_unlock(&intel_pstate_driver_lock);

	return ret;
}

958
static ssize_t store_status(struct kobject *a, struct kobj_attribute *b,
959 960 961 962 963 964 965 966 967 968 969 970
			    const char *buf, size_t count)
{
	char *p = memchr(buf, '\n', count);
	int ret;

	mutex_lock(&intel_pstate_driver_lock);
	ret = intel_pstate_update_status(buf, p ? p - buf : count);
	mutex_unlock(&intel_pstate_driver_lock);

	return ret < 0 ? ret : count;
}

971
static ssize_t show_turbo_pct(struct kobject *kobj,
972
				struct kobj_attribute *attr, char *buf)
973 974 975 976 977
{
	struct cpudata *cpu;
	int total, no_turbo, turbo_pct;
	uint32_t turbo_fp;

978 979
	mutex_lock(&intel_pstate_driver_lock);

980
	if (!intel_pstate_driver) {
981 982 983 984
		mutex_unlock(&intel_pstate_driver_lock);
		return -EAGAIN;
	}

985 986 987 988
	cpu = all_cpu_data[0];

	total = cpu->pstate.turbo_pstate - cpu->pstate.min_pstate + 1;
	no_turbo = cpu->pstate.max_pstate - cpu->pstate.min_pstate + 1;
989
	turbo_fp = div_fp(no_turbo, total);
990
	turbo_pct = 100 - fp_toint(mul_fp(turbo_fp, int_tofp(100)));
991 992 993

	mutex_unlock(&intel_pstate_driver_lock);

994 995 996
	return sprintf(buf, "%u\n", turbo_pct);
}

997
static ssize_t show_num_pstates(struct kobject *kobj,
998
				struct kobj_attribute *attr, char *buf)
999 1000 1001 1002
{
	struct cpudata *cpu;
	int total;

1003 1004
	mutex_lock(&intel_pstate_driver_lock);

1005
	if (!intel_pstate_driver) {
1006 1007 1008 1009
		mutex_unlock(&intel_pstate_driver_lock);
		return -EAGAIN;
	}

1010 1011
	cpu = all_cpu_data[0];
	total = cpu->pstate.turbo_pstate - cpu->pstate.min_pstate + 1;
1012 1013 1014

	mutex_unlock(&intel_pstate_driver_lock);

1015 1016 1017
	return sprintf(buf, "%u\n", total);
}

1018
static ssize_t show_no_turbo(struct kobject *kobj,
1019
			     struct kobj_attribute *attr, char *buf)
1020 1021 1022
{
	ssize_t ret;

1023 1024
	mutex_lock(&intel_pstate_driver_lock);

1025
	if (!intel_pstate_driver) {
1026 1027 1028 1029
		mutex_unlock(&intel_pstate_driver_lock);
		return -EAGAIN;
	}

1030
	update_turbo_state();
1031 1032
	if (global.turbo_disabled)
		ret = sprintf(buf, "%u\n", global.turbo_disabled);
1033
	else
1034
		ret = sprintf(buf, "%u\n", global.no_turbo);
1035

1036 1037
	mutex_unlock(&intel_pstate_driver_lock);

1038 1039 1040
	return ret;
}

1041
static ssize_t store_no_turbo(struct kobject *a, struct kobj_attribute *b,
1042
			      const char *buf, size_t count)
1043 1044 1045
{
	unsigned int input;
	int ret;
1046

1047 1048 1049
	ret = sscanf(buf, "%u", &input);
	if (ret != 1)
		return -EINVAL;
1050

1051 1052
	mutex_lock(&intel_pstate_driver_lock);

1053
	if (!intel_pstate_driver) {
1054 1055 1056 1057
		mutex_unlock(&intel_pstate_driver_lock);
		return -EAGAIN;
	}

1058 1059
	mutex_lock(&intel_pstate_limits_lock);

1060
	update_turbo_state();
1061
	if (global.turbo_disabled) {
1062
		pr_notice_once("Turbo disabled by BIOS or unavailable on processor\n");
1063
		mutex_unlock(&intel_pstate_limits_lock);
1064
		mutex_unlock(&intel_pstate_driver_lock);
1065
		return -EPERM;
1066
	}
D
Dirk Brandewie 已提交
1067

1068
	global.no_turbo = clamp_t(int, input, 0, 1);
1069

1070 1071 1072 1073 1074 1075 1076 1077 1078
	if (global.no_turbo) {
		struct cpudata *cpu = all_cpu_data[0];
		int pct = cpu->pstate.max_pstate * 100 / cpu->pstate.turbo_pstate;

		/* Squash the global minimum into the permitted range. */
		if (global.min_perf_pct > pct)
			global.min_perf_pct = pct;
	}

1079 1080
	mutex_unlock(&intel_pstate_limits_lock);

1081 1082
	intel_pstate_update_policies();

1083 1084
	mutex_unlock(&intel_pstate_driver_lock);

1085 1086 1087
	return count;
}

1088 1089
static struct cpufreq_driver intel_pstate;

1090
static void update_qos_request(enum freq_qos_req_type type)
1091 1092
{
	int max_state, turbo_max, freq, i, perf_pct;
1093
	struct freq_qos_request *req;
1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113
	struct cpufreq_policy *policy;

	for_each_possible_cpu(i) {
		struct cpudata *cpu = all_cpu_data[i];

		policy = cpufreq_cpu_get(i);
		if (!policy)
			continue;

		req = policy->driver_data;
		cpufreq_cpu_put(policy);

		if (!req)
			continue;

		if (hwp_active)
			intel_pstate_get_hwp_max(i, &turbo_max, &max_state);
		else
			turbo_max = cpu->pstate.turbo_pstate;

1114
		if (type == FREQ_QOS_MIN) {
1115 1116 1117 1118 1119 1120 1121 1122 1123
			perf_pct = global.min_perf_pct;
		} else {
			req++;
			perf_pct = global.max_perf_pct;
		}

		freq = DIV_ROUND_UP(turbo_max * perf_pct, 100);
		freq *= cpu->pstate.scaling;

1124
		if (freq_qos_update_request(req, freq) < 0)
1125 1126 1127 1128
			pr_warn("Failed to update freq constraint: CPU%d\n", i);
	}
}

1129
static ssize_t store_max_perf_pct(struct kobject *a, struct kobj_attribute *b,
1130
				  const char *buf, size_t count)
1131 1132 1133
{
	unsigned int input;
	int ret;
1134

1135 1136 1137 1138
	ret = sscanf(buf, "%u", &input);
	if (ret != 1)
		return -EINVAL;

1139 1140
	mutex_lock(&intel_pstate_driver_lock);

1141
	if (!intel_pstate_driver) {
1142 1143 1144 1145
		mutex_unlock(&intel_pstate_driver_lock);
		return -EAGAIN;
	}

1146 1147
	mutex_lock(&intel_pstate_limits_lock);

1148
	global.max_perf_pct = clamp_t(int, input, global.min_perf_pct, 100);
1149

1150 1151
	mutex_unlock(&intel_pstate_limits_lock);

1152 1153 1154
	if (intel_pstate_driver == &intel_pstate)
		intel_pstate_update_policies();
	else
1155
		update_qos_request(FREQ_QOS_MAX);
1156

1157 1158
	mutex_unlock(&intel_pstate_driver_lock);

1159 1160 1161
	return count;
}

1162
static ssize_t store_min_perf_pct(struct kobject *a, struct kobj_attribute *b,
1163
				  const char *buf, size_t count)
1164 1165 1166
{
	unsigned int input;
	int ret;
1167

1168 1169 1170
	ret = sscanf(buf, "%u", &input);
	if (ret != 1)
		return -EINVAL;
1171

1172 1173
	mutex_lock(&intel_pstate_driver_lock);

1174
	if (!intel_pstate_driver) {
1175 1176 1177 1178
		mutex_unlock(&intel_pstate_driver_lock);
		return -EAGAIN;
	}

1179 1180
	mutex_lock(&intel_pstate_limits_lock);

1181 1182
	global.min_perf_pct = clamp_t(int, input,
				      min_perf_pct_min(), global.max_perf_pct);
1183

1184 1185
	mutex_unlock(&intel_pstate_limits_lock);

1186 1187 1188
	if (intel_pstate_driver == &intel_pstate)
		intel_pstate_update_policies();
	else
1189
		update_qos_request(FREQ_QOS_MIN);
1190

1191 1192
	mutex_unlock(&intel_pstate_driver_lock);

1193 1194 1195
	return count;
}

1196
static ssize_t show_hwp_dynamic_boost(struct kobject *kobj,
1197
				struct kobj_attribute *attr, char *buf)
1198 1199 1200 1201
{
	return sprintf(buf, "%u\n", hwp_boost);
}

1202 1203
static ssize_t store_hwp_dynamic_boost(struct kobject *a,
				       struct kobj_attribute *b,
1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220
				       const char *buf, size_t count)
{
	unsigned int input;
	int ret;

	ret = kstrtouint(buf, 10, &input);
	if (ret)
		return ret;

	mutex_lock(&intel_pstate_driver_lock);
	hwp_boost = !!input;
	intel_pstate_update_policies();
	mutex_unlock(&intel_pstate_driver_lock);

	return count;
}

1221 1222 1223
show_one(max_perf_pct, max_perf_pct);
show_one(min_perf_pct, min_perf_pct);

1224
define_one_global_rw(status);
1225 1226 1227
define_one_global_rw(no_turbo);
define_one_global_rw(max_perf_pct);
define_one_global_rw(min_perf_pct);
1228
define_one_global_ro(turbo_pct);
1229
define_one_global_ro(num_pstates);
1230
define_one_global_rw(hwp_dynamic_boost);
1231 1232

static struct attribute *intel_pstate_attributes[] = {
1233
	&status.attr,
1234
	&no_turbo.attr,
1235
	&turbo_pct.attr,
1236
	&num_pstates.attr,
1237 1238 1239
	NULL
};

1240
static const struct attribute_group intel_pstate_attr_group = {
1241 1242 1243
	.attrs = intel_pstate_attributes,
};

1244
static void __init intel_pstate_sysfs_expose_params(void)
1245
{
1246
	struct kobject *intel_pstate_kobject;
1247 1248 1249 1250
	int rc;

	intel_pstate_kobject = kobject_create_and_add("intel_pstate",
						&cpu_subsys.dev_root->kobj);
1251 1252 1253
	if (WARN_ON(!intel_pstate_kobject))
		return;

1254
	rc = sysfs_create_group(intel_pstate_kobject, &intel_pstate_attr_group);
1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270
	if (WARN_ON(rc))
		return;

	/*
	 * If per cpu limits are enforced there are no global limits, so
	 * return without creating max/min_perf_pct attributes
	 */
	if (per_cpu_limits)
		return;

	rc = sysfs_create_file(intel_pstate_kobject, &max_perf_pct.attr);
	WARN_ON(rc);

	rc = sysfs_create_file(intel_pstate_kobject, &min_perf_pct.attr);
	WARN_ON(rc);

1271 1272 1273 1274 1275
	if (hwp_active) {
		rc = sysfs_create_file(intel_pstate_kobject,
				       &hwp_dynamic_boost.attr);
		WARN_ON(rc);
	}
1276 1277
}
/************************** sysfs end ************************/
D
Dirk Brandewie 已提交
1278

1279
static void intel_pstate_hwp_enable(struct cpudata *cpudata)
D
Dirk Brandewie 已提交
1280
{
1281
	/* First disable HWP notification interrupt as we don't process them */
1282
	if (boot_cpu_has(X86_FEATURE_HWP_NOTIFY))
1283
		wrmsrl_on_cpu(cpudata->cpu, MSR_HWP_INTERRUPT, 0x00);
1284

1285
	wrmsrl_on_cpu(cpudata->cpu, MSR_PM_ENABLE, 0x1);
1286
	cpudata->epp_policy = 0;
1287 1288
	if (cpudata->epp_default == -EINVAL)
		cpudata->epp_default = intel_pstate_get_epp(cpudata, 0);
D
Dirk Brandewie 已提交
1289 1290
}

1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309
#define MSR_IA32_POWER_CTL_BIT_EE	19

/* Disable energy efficiency optimization */
static void intel_pstate_disable_ee(int cpu)
{
	u64 power_ctl;
	int ret;

	ret = rdmsrl_on_cpu(cpu, MSR_IA32_POWER_CTL, &power_ctl);
	if (ret)
		return;

	if (!(power_ctl & BIT(MSR_IA32_POWER_CTL_BIT_EE))) {
		pr_info("Disabling energy efficiency optimization\n");
		power_ctl |= BIT(MSR_IA32_POWER_CTL_BIT_EE);
		wrmsrl_on_cpu(cpu, MSR_IA32_POWER_CTL, power_ctl);
	}
}

1310
static int atom_get_min_pstate(void)
1311 1312
{
	u64 value;
1313

1314
	rdmsrl(MSR_ATOM_CORE_RATIOS, value);
D
Dirk Brandewie 已提交
1315
	return (value >> 8) & 0x7F;
1316 1317
}

1318
static int atom_get_max_pstate(void)
1319 1320
{
	u64 value;
1321

1322
	rdmsrl(MSR_ATOM_CORE_RATIOS, value);
D
Dirk Brandewie 已提交
1323
	return (value >> 16) & 0x7F;
1324
}
1325

1326
static int atom_get_turbo_pstate(void)
1327 1328
{
	u64 value;
1329

1330
	rdmsrl(MSR_ATOM_CORE_TURBO_RATIOS, value);
D
Dirk Brandewie 已提交
1331
	return value & 0x7F;
1332 1333
}

1334
static u64 atom_get_val(struct cpudata *cpudata, int pstate)
1335 1336 1337 1338 1339
{
	u64 val;
	int32_t vid_fp;
	u32 vid;

1340
	val = (u64)pstate << 8;
1341
	if (global.no_turbo && !global.turbo_disabled)
1342 1343 1344 1345 1346 1347 1348
		val |= (u64)1 << 32;

	vid_fp = cpudata->vid.min + mul_fp(
		int_tofp(pstate - cpudata->pstate.min_pstate),
		cpudata->vid.ratio);

	vid_fp = clamp_t(int32_t, vid_fp, cpudata->vid.min, cpudata->vid.max);
1349
	vid = ceiling_fp(vid_fp);
1350

1351 1352 1353
	if (pstate > cpudata->pstate.max_pstate)
		vid = cpudata->vid.turbo;

1354
	return val | vid;
1355 1356
}

1357
static int silvermont_get_scaling(void)
1358 1359 1360
{
	u64 value;
	int i;
1361 1362 1363
	/* Defined in Table 35-6 from SDM (Sept 2015) */
	static int silvermont_freq_table[] = {
		83300, 100000, 133300, 116700, 80000};
1364 1365

	rdmsrl(MSR_FSB_FREQ, value);
1366 1367
	i = value & 0x7;
	WARN_ON(i > 4);
1368

1369 1370
	return silvermont_freq_table[i];
}
1371

1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385
static int airmont_get_scaling(void)
{
	u64 value;
	int i;
	/* Defined in Table 35-10 from SDM (Sept 2015) */
	static int airmont_freq_table[] = {
		83300, 100000, 133300, 116700, 80000,
		93300, 90000, 88900, 87500};

	rdmsrl(MSR_FSB_FREQ, value);
	i = value & 0xF;
	WARN_ON(i > 8);

	return airmont_freq_table[i];
1386 1387
}

1388
static void atom_get_vid(struct cpudata *cpudata)
1389 1390 1391
{
	u64 value;

1392
	rdmsrl(MSR_ATOM_CORE_VIDS, value);
D
Dirk Brandewie 已提交
1393 1394
	cpudata->vid.min = int_tofp((value >> 8) & 0x7f);
	cpudata->vid.max = int_tofp((value >> 16) & 0x7f);
1395 1396 1397 1398
	cpudata->vid.ratio = div_fp(
		cpudata->vid.max - cpudata->vid.min,
		int_tofp(cpudata->pstate.max_pstate -
			cpudata->pstate.min_pstate));
1399

1400
	rdmsrl(MSR_ATOM_CORE_TURBO_VIDS, value);
1401
	cpudata->vid.turbo = value & 0x7f;
1402 1403
}

1404
static int core_get_min_pstate(void)
1405 1406
{
	u64 value;
1407

1408
	rdmsrl(MSR_PLATFORM_INFO, value);
1409 1410 1411
	return (value >> 40) & 0xFF;
}

1412
static int core_get_max_pstate_physical(void)
1413 1414
{
	u64 value;
1415

1416
	rdmsrl(MSR_PLATFORM_INFO, value);
1417 1418 1419
	return (value >> 8) & 0xFF;
}

1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452
static int core_get_tdp_ratio(u64 plat_info)
{
	/* Check how many TDP levels present */
	if (plat_info & 0x600000000) {
		u64 tdp_ctrl;
		u64 tdp_ratio;
		int tdp_msr;
		int err;

		/* Get the TDP level (0, 1, 2) to get ratios */
		err = rdmsrl_safe(MSR_CONFIG_TDP_CONTROL, &tdp_ctrl);
		if (err)
			return err;

		/* TDP MSR are continuous starting at 0x648 */
		tdp_msr = MSR_CONFIG_TDP_NOMINAL + (tdp_ctrl & 0x03);
		err = rdmsrl_safe(tdp_msr, &tdp_ratio);
		if (err)
			return err;

		/* For level 1 and 2, bits[23:16] contain the ratio */
		if (tdp_ctrl & 0x03)
			tdp_ratio >>= 16;

		tdp_ratio &= 0xff; /* ratios are only 8 bits long */
		pr_debug("tdp_ratio %x\n", (int)tdp_ratio);

		return (int)tdp_ratio;
	}

	return -ENXIO;
}

1453
static int core_get_max_pstate(void)
1454
{
1455 1456 1457
	u64 tar;
	u64 plat_info;
	int max_pstate;
1458
	int tdp_ratio;
1459 1460 1461 1462 1463
	int err;

	rdmsrl(MSR_PLATFORM_INFO, plat_info);
	max_pstate = (plat_info >> 8) & 0xFF;

1464 1465 1466 1467 1468 1469 1470 1471 1472
	tdp_ratio = core_get_tdp_ratio(plat_info);
	if (tdp_ratio <= 0)
		return max_pstate;

	if (hwp_active) {
		/* Turbo activation ratio is not used on HWP platforms */
		return tdp_ratio;
	}

1473 1474
	err = rdmsrl_safe(MSR_TURBO_ACTIVATION_RATIO, &tar);
	if (!err) {
1475 1476
		int tar_levels;

1477
		/* Do some sanity checking for safety */
1478 1479 1480 1481
		tar_levels = tar & 0xff;
		if (tdp_ratio - 1 == tar_levels) {
			max_pstate = tar_levels;
			pr_debug("max_pstate=TAC %x\n", max_pstate);
1482 1483
		}
	}
1484

1485
	return max_pstate;
1486 1487
}

1488
static int core_get_turbo_pstate(void)
1489 1490 1491
{
	u64 value;
	int nont, ret;
1492

1493
	rdmsrl(MSR_TURBO_RATIO_LIMIT, value);
1494
	nont = core_get_max_pstate();
1495
	ret = (value) & 255;
1496 1497 1498 1499 1500
	if (ret <= nont)
		ret = nont;
	return ret;
}

1501 1502 1503 1504 1505
static inline int core_get_scaling(void)
{
	return 100000;
}

1506
static u64 core_get_val(struct cpudata *cpudata, int pstate)
1507 1508 1509
{
	u64 val;

1510
	val = (u64)pstate << 8;
1511
	if (global.no_turbo && !global.turbo_disabled)
1512 1513
		val |= (u64)1 << 32;

1514
	return val;
1515 1516
}

1517 1518 1519 1520 1521
static int knl_get_aperf_mperf_shift(void)
{
	return 10;
}

1522 1523 1524 1525 1526
static int knl_get_turbo_pstate(void)
{
	u64 value;
	int nont, ret;

1527
	rdmsrl(MSR_TURBO_RATIO_LIMIT, value);
1528 1529 1530 1531 1532 1533 1534
	nont = core_get_max_pstate();
	ret = (((value) >> 8) & 0xFF);
	if (ret <= nont)
		ret = nont;
	return ret;
}

1535
static void intel_pstate_set_pstate(struct cpudata *cpu, int pstate)
1536
{
1537 1538
	trace_cpu_frequency(pstate * cpu->pstate.scaling, cpu->cpu);
	cpu->pstate.current_pstate = pstate;
1539 1540 1541 1542 1543 1544 1545
	/*
	 * Generally, there is no guarantee that this code will always run on
	 * the CPU being updated, so force the register update to run on the
	 * right CPU.
	 */
	wrmsrl_on_cpu(cpu->cpu, MSR_IA32_PERF_CTL,
		      pstate_funcs.get_val(cpu, pstate));
1546 1547
}

1548 1549 1550 1551 1552 1553 1554
static void intel_pstate_set_min_pstate(struct cpudata *cpu)
{
	intel_pstate_set_pstate(cpu, cpu->pstate.min_pstate);
}

static void intel_pstate_max_within_limits(struct cpudata *cpu)
{
1555
	int pstate = max(cpu->pstate.min_pstate, cpu->max_perf_ratio);
1556 1557

	update_turbo_state();
1558
	intel_pstate_set_pstate(cpu, pstate);
1559 1560
}

1561 1562
static void intel_pstate_get_cpu_pstates(struct cpudata *cpu)
{
1563 1564
	cpu->pstate.min_pstate = pstate_funcs.get_min();
	cpu->pstate.max_pstate = pstate_funcs.get_max();
1565
	cpu->pstate.max_pstate_physical = pstate_funcs.get_max_physical();
1566
	cpu->pstate.turbo_pstate = pstate_funcs.get_turbo();
1567
	cpu->pstate.scaling = pstate_funcs.get_scaling();
1568
	cpu->pstate.max_freq = cpu->pstate.max_pstate * cpu->pstate.scaling;
1569 1570 1571 1572 1573 1574 1575 1576 1577

	if (hwp_active && !hwp_mode_bdw) {
		unsigned int phy_max, current_max;

		intel_pstate_get_hwp_max(cpu->cpu, &phy_max, &current_max);
		cpu->pstate.turbo_freq = phy_max * cpu->pstate.scaling;
	} else {
		cpu->pstate.turbo_freq = cpu->pstate.turbo_pstate * cpu->pstate.scaling;
	}
1578

1579 1580 1581
	if (pstate_funcs.get_aperf_mperf_shift)
		cpu->aperf_mperf_shift = pstate_funcs.get_aperf_mperf_shift();

1582 1583
	if (pstate_funcs.get_vid)
		pstate_funcs.get_vid(cpu);
1584 1585

	intel_pstate_set_min_pstate(cpu);
1586 1587
}

1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657
/*
 * Long hold time will keep high perf limits for long time,
 * which negatively impacts perf/watt for some workloads,
 * like specpower. 3ms is based on experiements on some
 * workoads.
 */
static int hwp_boost_hold_time_ns = 3 * NSEC_PER_MSEC;

static inline void intel_pstate_hwp_boost_up(struct cpudata *cpu)
{
	u64 hwp_req = READ_ONCE(cpu->hwp_req_cached);
	u32 max_limit = (hwp_req & 0xff00) >> 8;
	u32 min_limit = (hwp_req & 0xff);
	u32 boost_level1;

	/*
	 * Cases to consider (User changes via sysfs or boot time):
	 * If, P0 (Turbo max) = P1 (Guaranteed max) = min:
	 *	No boost, return.
	 * If, P0 (Turbo max) > P1 (Guaranteed max) = min:
	 *     Should result in one level boost only for P0.
	 * If, P0 (Turbo max) = P1 (Guaranteed max) > min:
	 *     Should result in two level boost:
	 *         (min + p1)/2 and P1.
	 * If, P0 (Turbo max) > P1 (Guaranteed max) > min:
	 *     Should result in three level boost:
	 *        (min + p1)/2, P1 and P0.
	 */

	/* If max and min are equal or already at max, nothing to boost */
	if (max_limit == min_limit || cpu->hwp_boost_min >= max_limit)
		return;

	if (!cpu->hwp_boost_min)
		cpu->hwp_boost_min = min_limit;

	/* level at half way mark between min and guranteed */
	boost_level1 = (HWP_GUARANTEED_PERF(cpu->hwp_cap_cached) + min_limit) >> 1;

	if (cpu->hwp_boost_min < boost_level1)
		cpu->hwp_boost_min = boost_level1;
	else if (cpu->hwp_boost_min < HWP_GUARANTEED_PERF(cpu->hwp_cap_cached))
		cpu->hwp_boost_min = HWP_GUARANTEED_PERF(cpu->hwp_cap_cached);
	else if (cpu->hwp_boost_min == HWP_GUARANTEED_PERF(cpu->hwp_cap_cached) &&
		 max_limit != HWP_GUARANTEED_PERF(cpu->hwp_cap_cached))
		cpu->hwp_boost_min = max_limit;
	else
		return;

	hwp_req = (hwp_req & ~GENMASK_ULL(7, 0)) | cpu->hwp_boost_min;
	wrmsrl(MSR_HWP_REQUEST, hwp_req);
	cpu->last_update = cpu->sample.time;
}

static inline void intel_pstate_hwp_boost_down(struct cpudata *cpu)
{
	if (cpu->hwp_boost_min) {
		bool expired;

		/* Check if we are idle for hold time to boost down */
		expired = time_after64(cpu->sample.time, cpu->last_update +
				       hwp_boost_hold_time_ns);
		if (expired) {
			wrmsrl(MSR_HWP_REQUEST, cpu->hwp_req_cached);
			cpu->hwp_boost_min = 0;
		}
	}
	cpu->last_update = cpu->sample.time;
}

1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686
static inline void intel_pstate_update_util_hwp_local(struct cpudata *cpu,
						      u64 time)
{
	cpu->sample.time = time;

	if (cpu->sched_flags & SCHED_CPUFREQ_IOWAIT) {
		bool do_io = false;

		cpu->sched_flags = 0;
		/*
		 * Set iowait_boost flag and update time. Since IO WAIT flag
		 * is set all the time, we can't just conclude that there is
		 * some IO bound activity is scheduled on this CPU with just
		 * one occurrence. If we receive at least two in two
		 * consecutive ticks, then we treat as boost candidate.
		 */
		if (time_before64(time, cpu->last_io_update + 2 * TICK_NSEC))
			do_io = true;

		cpu->last_io_update = time;

		if (do_io)
			intel_pstate_hwp_boost_up(cpu);

	} else {
		intel_pstate_hwp_boost_down(cpu);
	}
}

1687 1688 1689
static inline void intel_pstate_update_util_hwp(struct update_util_data *data,
						u64 time, unsigned int flags)
{
1690 1691 1692 1693 1694 1695
	struct cpudata *cpu = container_of(data, struct cpudata, update_util);

	cpu->sched_flags |= flags;

	if (smp_processor_id() == cpu->cpu)
		intel_pstate_update_util_hwp_local(cpu, time);
1696 1697
}

1698
static inline void intel_pstate_calc_avg_perf(struct cpudata *cpu)
1699
{
1700
	struct sample *sample = &cpu->sample;
1701

1702
	sample->core_avg_perf = div_ext_fp(sample->aperf, sample->mperf);
1703 1704
}

1705
static inline bool intel_pstate_sample(struct cpudata *cpu, u64 time)
1706 1707
{
	u64 aperf, mperf;
1708
	unsigned long flags;
1709
	u64 tsc;
1710

1711
	local_irq_save(flags);
1712 1713
	rdmsrl(MSR_IA32_APERF, aperf);
	rdmsrl(MSR_IA32_MPERF, mperf);
1714
	tsc = rdtsc();
1715
	if (cpu->prev_mperf == mperf || cpu->prev_tsc == tsc) {
1716
		local_irq_restore(flags);
1717
		return false;
1718
	}
1719
	local_irq_restore(flags);
1720

1721
	cpu->last_sample_time = cpu->sample.time;
1722
	cpu->sample.time = time;
1723 1724
	cpu->sample.aperf = aperf;
	cpu->sample.mperf = mperf;
1725
	cpu->sample.tsc =  tsc;
1726 1727
	cpu->sample.aperf -= cpu->prev_aperf;
	cpu->sample.mperf -= cpu->prev_mperf;
1728
	cpu->sample.tsc -= cpu->prev_tsc;
1729

1730 1731
	cpu->prev_aperf = aperf;
	cpu->prev_mperf = mperf;
1732
	cpu->prev_tsc = tsc;
1733 1734 1735 1736 1737 1738 1739
	/*
	 * First time this function is invoked in a given cycle, all of the
	 * previous sample data fields are equal to zero or stale and they must
	 * be populated with meaningful numbers for things to work, so assume
	 * that sample.time will always be reset before setting the utilization
	 * update hook and make the caller skip the sample then.
	 */
1740 1741 1742 1743 1744
	if (cpu->last_sample_time) {
		intel_pstate_calc_avg_perf(cpu);
		return true;
	}
	return false;
1745 1746
}

1747 1748
static inline int32_t get_avg_frequency(struct cpudata *cpu)
{
1749
	return mul_ext_fp(cpu->sample.core_avg_perf, cpu_khz);
1750 1751
}

1752 1753
static inline int32_t get_avg_pstate(struct cpudata *cpu)
{
1754 1755
	return mul_ext_fp(cpu->pstate.max_pstate_physical,
			  cpu->sample.core_avg_perf);
1756 1757
}

1758
static inline int32_t get_target_pstate(struct cpudata *cpu)
1759 1760
{
	struct sample *sample = &cpu->sample;
1761
	int32_t busy_frac;
1762
	int target, avg_pstate;
1763

1764 1765
	busy_frac = div_fp(sample->mperf << cpu->aperf_mperf_shift,
			   sample->tsc);
1766

1767 1768
	if (busy_frac < cpu->iowait_boost)
		busy_frac = cpu->iowait_boost;
1769

1770
	sample->busy_scaled = busy_frac * 100;
1771

1772
	target = global.no_turbo || global.turbo_disabled ?
1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790
			cpu->pstate.max_pstate : cpu->pstate.turbo_pstate;
	target += target >> 2;
	target = mul_fp(target, busy_frac);
	if (target < cpu->pstate.min_pstate)
		target = cpu->pstate.min_pstate;

	/*
	 * If the average P-state during the previous cycle was higher than the
	 * current target, add 50% of the difference to the target to reduce
	 * possible performance oscillations and offset possible performance
	 * loss related to moving the workload from one CPU to another within
	 * a package/module.
	 */
	avg_pstate = get_avg_pstate(cpu);
	if (avg_pstate > target)
		target += (avg_pstate - target) >> 1;

	return target;
1791 1792
}

1793
static int intel_pstate_prepare_request(struct cpudata *cpu, int pstate)
1794
{
1795 1796
	int min_pstate = max(cpu->pstate.min_pstate, cpu->min_perf_ratio);
	int max_pstate = max(min_pstate, cpu->max_perf_ratio);
1797

1798
	return clamp_t(int, pstate, min_pstate, max_pstate);
1799 1800 1801 1802
}

static void intel_pstate_update_pstate(struct cpudata *cpu, int pstate)
{
1803 1804 1805
	if (pstate == cpu->pstate.current_pstate)
		return;

1806
	cpu->pstate.current_pstate = pstate;
1807 1808 1809
	wrmsrl(MSR_IA32_PERF_CTL, pstate_funcs.get_val(cpu, pstate));
}

1810
static void intel_pstate_adjust_pstate(struct cpudata *cpu)
1811
{
1812
	int from = cpu->pstate.current_pstate;
1813
	struct sample *sample;
1814
	int target_pstate;
1815

1816 1817
	update_turbo_state();

1818
	target_pstate = get_target_pstate(cpu);
1819 1820
	target_pstate = intel_pstate_prepare_request(cpu, target_pstate);
	trace_cpu_frequency(target_pstate * cpu->pstate.scaling, cpu->cpu);
1821
	intel_pstate_update_pstate(cpu, target_pstate);
1822 1823

	sample = &cpu->sample;
1824
	trace_pstate_sample(mul_ext_fp(100, sample->core_avg_perf),
1825
		fp_toint(sample->busy_scaled),
1826 1827 1828 1829 1830
		from,
		cpu->pstate.current_pstate,
		sample->mperf,
		sample->aperf,
		sample->tsc,
1831 1832
		get_avg_frequency(cpu),
		fp_toint(cpu->iowait_boost * 100));
1833 1834
}

1835
static void intel_pstate_update_util(struct update_util_data *data, u64 time,
1836
				     unsigned int flags)
1837
{
1838
	struct cpudata *cpu = container_of(data, struct cpudata, update_util);
1839 1840
	u64 delta_ns;

1841 1842 1843 1844
	/* Don't allow remote callbacks */
	if (smp_processor_id() != cpu->cpu)
		return;

1845
	delta_ns = time - cpu->last_update;
1846
	if (flags & SCHED_CPUFREQ_IOWAIT) {
1847 1848 1849
		/* Start over if the CPU may have been idle. */
		if (delta_ns > TICK_NSEC) {
			cpu->iowait_boost = ONE_EIGHTH_FP;
1850
		} else if (cpu->iowait_boost >= ONE_EIGHTH_FP) {
1851 1852 1853 1854 1855 1856
			cpu->iowait_boost <<= 1;
			if (cpu->iowait_boost > int_tofp(1))
				cpu->iowait_boost = int_tofp(1);
		} else {
			cpu->iowait_boost = ONE_EIGHTH_FP;
		}
1857 1858 1859 1860
	} else if (cpu->iowait_boost) {
		/* Clear iowait_boost if the CPU may have been idle. */
		if (delta_ns > TICK_NSEC)
			cpu->iowait_boost = 0;
1861 1862
		else
			cpu->iowait_boost >>= 1;
1863
	}
1864
	cpu->last_update = time;
1865
	delta_ns = time - cpu->sample.time;
1866
	if ((s64)delta_ns < INTEL_PSTATE_SAMPLING_INTERVAL)
1867
		return;
1868

1869 1870
	if (intel_pstate_sample(cpu, time))
		intel_pstate_adjust_pstate(cpu);
1871
}
1872

1873 1874 1875 1876 1877 1878 1879
static struct pstate_funcs core_funcs = {
	.get_max = core_get_max_pstate,
	.get_max_physical = core_get_max_pstate_physical,
	.get_min = core_get_min_pstate,
	.get_turbo = core_get_turbo_pstate,
	.get_scaling = core_get_scaling,
	.get_val = core_get_val,
1880 1881
};

1882 1883 1884 1885 1886 1887 1888 1889
static const struct pstate_funcs silvermont_funcs = {
	.get_max = atom_get_max_pstate,
	.get_max_physical = atom_get_max_pstate,
	.get_min = atom_get_min_pstate,
	.get_turbo = atom_get_turbo_pstate,
	.get_val = atom_get_val,
	.get_scaling = silvermont_get_scaling,
	.get_vid = atom_get_vid,
1890 1891
};

1892 1893 1894 1895 1896 1897 1898 1899
static const struct pstate_funcs airmont_funcs = {
	.get_max = atom_get_max_pstate,
	.get_max_physical = atom_get_max_pstate,
	.get_min = atom_get_min_pstate,
	.get_turbo = atom_get_turbo_pstate,
	.get_val = atom_get_val,
	.get_scaling = airmont_get_scaling,
	.get_vid = atom_get_vid,
1900 1901
};

1902 1903 1904 1905 1906
static const struct pstate_funcs knl_funcs = {
	.get_max = core_get_max_pstate,
	.get_max_physical = core_get_max_pstate_physical,
	.get_min = core_get_min_pstate,
	.get_turbo = knl_get_turbo_pstate,
1907
	.get_aperf_mperf_shift = knl_get_aperf_mperf_shift,
1908 1909
	.get_scaling = core_get_scaling,
	.get_val = core_get_val,
1910 1911
};

1912 1913 1914
#define X86_MATCH(model, policy)					 \
	X86_MATCH_VENDOR_FAM_MODEL_FEATURE(INTEL, 6, INTEL_FAM6_##model, \
					   X86_FEATURE_APERFMPERF, &policy)
1915 1916

static const struct x86_cpu_id intel_pstate_cpu_ids[] = {
1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937
	X86_MATCH(SANDYBRIDGE,		core_funcs),
	X86_MATCH(SANDYBRIDGE_X,	core_funcs),
	X86_MATCH(ATOM_SILVERMONT,	silvermont_funcs),
	X86_MATCH(IVYBRIDGE,		core_funcs),
	X86_MATCH(HASWELL,		core_funcs),
	X86_MATCH(BROADWELL,		core_funcs),
	X86_MATCH(IVYBRIDGE_X,		core_funcs),
	X86_MATCH(HASWELL_X,		core_funcs),
	X86_MATCH(HASWELL_L,		core_funcs),
	X86_MATCH(HASWELL_G,		core_funcs),
	X86_MATCH(BROADWELL_G,		core_funcs),
	X86_MATCH(ATOM_AIRMONT,		airmont_funcs),
	X86_MATCH(SKYLAKE_L,		core_funcs),
	X86_MATCH(BROADWELL_X,		core_funcs),
	X86_MATCH(SKYLAKE,		core_funcs),
	X86_MATCH(BROADWELL_D,		core_funcs),
	X86_MATCH(XEON_PHI_KNL,		knl_funcs),
	X86_MATCH(XEON_PHI_KNM,		knl_funcs),
	X86_MATCH(ATOM_GOLDMONT,	core_funcs),
	X86_MATCH(ATOM_GOLDMONT_PLUS,	core_funcs),
	X86_MATCH(SKYLAKE_X,		core_funcs),
1938 1939 1940 1941
	{}
};
MODULE_DEVICE_TABLE(x86cpu, intel_pstate_cpu_ids);

1942
static const struct x86_cpu_id intel_pstate_cpu_oob_ids[] __initconst = {
1943 1944 1945
	X86_MATCH(BROADWELL_D,		core_funcs),
	X86_MATCH(BROADWELL_X,		core_funcs),
	X86_MATCH(SKYLAKE_X,		core_funcs),
D
Dirk Brandewie 已提交
1946 1947 1948
	{}
};

1949
static const struct x86_cpu_id intel_pstate_cpu_ee_disable_ids[] = {
1950
	X86_MATCH(KABYLAKE,		core_funcs),
1951 1952 1953
	{}
};

1954
static const struct x86_cpu_id intel_pstate_hwp_boost_ids[] = {
1955 1956
	X86_MATCH(SKYLAKE_X,		core_funcs),
	X86_MATCH(SKYLAKE,		core_funcs),
1957 1958 1959
	{}
};

1960 1961 1962 1963
static int intel_pstate_init_cpu(unsigned int cpunum)
{
	struct cpudata *cpu;

1964 1965 1966
	cpu = all_cpu_data[cpunum];

	if (!cpu) {
1967
		cpu = kzalloc(sizeof(*cpu), GFP_KERNEL);
1968 1969 1970 1971 1972
		if (!cpu)
			return -ENOMEM;

		all_cpu_data[cpunum] = cpu;

1973 1974 1975
		cpu->epp_default = -EINVAL;
		cpu->epp_powersave = -EINVAL;
		cpu->epp_saved = -EINVAL;
1976
	}
1977 1978 1979 1980

	cpu = all_cpu_data[cpunum];

	cpu->cpu = cpunum;
1981

1982
	if (hwp_active) {
1983 1984 1985 1986 1987 1988
		const struct x86_cpu_id *id;

		id = x86_match_cpu(intel_pstate_cpu_ee_disable_ids);
		if (id)
			intel_pstate_disable_ee(cpunum);

1989
		intel_pstate_hwp_enable(cpu);
1990 1991

		id = x86_match_cpu(intel_pstate_hwp_boost_ids);
1992
		if (id && intel_pstate_acpi_pm_profile_server())
1993
			hwp_boost = true;
1994
	}
1995

1996
	intel_pstate_get_cpu_pstates(cpu);
1997

J
Joe Perches 已提交
1998
	pr_debug("controlling: cpu %d\n", cpunum);
1999 2000 2001 2002

	return 0;
}

2003
static void intel_pstate_set_update_util_hook(unsigned int cpu_num)
2004
{
2005 2006
	struct cpudata *cpu = all_cpu_data[cpu_num];

2007
	if (hwp_active && !hwp_boost)
2008 2009
		return;

2010 2011 2012
	if (cpu->update_util_set)
		return;

2013 2014
	/* Prevent intel_pstate_update_util() from using stale data. */
	cpu->sample.time = 0;
2015
	cpufreq_add_update_util_hook(cpu_num, &cpu->update_util,
2016 2017 2018
				     (hwp_active ?
				      intel_pstate_update_util_hwp :
				      intel_pstate_update_util));
2019
	cpu->update_util_set = true;
2020 2021 2022 2023
}

static void intel_pstate_clear_update_util_hook(unsigned int cpu)
{
2024 2025 2026 2027 2028
	struct cpudata *cpu_data = all_cpu_data[cpu];

	if (!cpu_data->update_util_set)
		return;

2029
	cpufreq_remove_update_util_hook(cpu);
2030
	cpu_data->update_util_set = false;
2031
	synchronize_rcu();
2032 2033
}

2034 2035 2036 2037 2038 2039
static int intel_pstate_get_max_freq(struct cpudata *cpu)
{
	return global.turbo_disabled || global.no_turbo ?
			cpu->pstate.max_freq : cpu->pstate.turbo_freq;
}

2040 2041 2042
static void intel_pstate_update_perf_limits(struct cpudata *cpu,
					    unsigned int policy_min,
					    unsigned int policy_max)
2043
{
2044
	int max_freq = intel_pstate_get_max_freq(cpu);
2045
	int32_t max_policy_perf, min_policy_perf;
2046
	int max_state, turbo_max;
2047

2048 2049 2050 2051 2052 2053 2054 2055
	/*
	 * HWP needs some special consideration, because on BDX the
	 * HWP_REQUEST uses abstract value to represent performance
	 * rather than pure ratios.
	 */
	if (hwp_active) {
		intel_pstate_get_hwp_max(cpu->cpu, &turbo_max, &max_state);
	} else {
2056 2057
		max_state = global.no_turbo || global.turbo_disabled ?
			cpu->pstate.max_pstate : cpu->pstate.turbo_pstate;
2058 2059 2060
		turbo_max = cpu->pstate.turbo_pstate;
	}

2061 2062
	max_policy_perf = max_state * policy_max / max_freq;
	if (policy_max == policy_min) {
2063
		min_policy_perf = max_policy_perf;
2064
	} else {
2065
		min_policy_perf = max_state * policy_min / max_freq;
2066 2067
		min_policy_perf = clamp_t(int32_t, min_policy_perf,
					  0, max_policy_perf);
2068
	}
2069

2070
	pr_debug("cpu:%d max_state %d min_policy_perf:%d max_policy_perf:%d\n",
2071
		 cpu->cpu, max_state, min_policy_perf, max_policy_perf);
2072

2073
	/* Normalize user input to [min_perf, max_perf] */
2074
	if (per_cpu_limits) {
2075 2076
		cpu->min_perf_ratio = min_policy_perf;
		cpu->max_perf_ratio = max_policy_perf;
2077 2078 2079 2080
	} else {
		int32_t global_min, global_max;

		/* Global limits are in percent of the maximum turbo P-state. */
2081 2082
		global_max = DIV_ROUND_UP(turbo_max * global.max_perf_pct, 100);
		global_min = DIV_ROUND_UP(turbo_max * global.min_perf_pct, 100);
2083
		global_min = clamp_t(int32_t, global_min, 0, global_max);
2084

2085
		pr_debug("cpu:%d global_min:%d global_max:%d\n", cpu->cpu,
2086
			 global_min, global_max);
2087

2088 2089 2090 2091
		cpu->min_perf_ratio = max(min_policy_perf, global_min);
		cpu->min_perf_ratio = min(cpu->min_perf_ratio, max_policy_perf);
		cpu->max_perf_ratio = min(max_policy_perf, global_max);
		cpu->max_perf_ratio = max(min_policy_perf, cpu->max_perf_ratio);
2092

2093 2094 2095
		/* Make sure min_perf <= max_perf */
		cpu->min_perf_ratio = min(cpu->min_perf_ratio,
					  cpu->max_perf_ratio);
2096

2097
	}
2098
	pr_debug("cpu:%d max_perf_ratio:%d min_perf_ratio:%d\n", cpu->cpu,
2099 2100
		 cpu->max_perf_ratio,
		 cpu->min_perf_ratio);
2101 2102
}

2103 2104
static int intel_pstate_set_policy(struct cpufreq_policy *policy)
{
2105 2106
	struct cpudata *cpu;

2107 2108 2109
	if (!policy->cpuinfo.max_freq)
		return -ENODEV;

2110 2111 2112
	pr_debug("set_policy cpuinfo.max %u policy->max %u\n",
		 policy->cpuinfo.max_freq, policy->max);

2113
	cpu = all_cpu_data[policy->cpu];
2114 2115
	cpu->policy = policy->policy;

2116 2117
	mutex_lock(&intel_pstate_limits_lock);

2118
	intel_pstate_update_perf_limits(cpu, policy->min, policy->max);
2119

2120
	if (cpu->policy == CPUFREQ_POLICY_PERFORMANCE) {
2121 2122 2123 2124 2125 2126
		/*
		 * NOHZ_FULL CPUs need this as the governor callback may not
		 * be invoked on them.
		 */
		intel_pstate_clear_update_util_hook(policy->cpu);
		intel_pstate_max_within_limits(cpu);
2127 2128
	} else {
		intel_pstate_set_update_util_hook(policy->cpu);
2129 2130
	}

2131 2132 2133 2134 2135 2136 2137 2138
	if (hwp_active) {
		/*
		 * When hwp_boost was active before and dynamically it
		 * was turned off, in that case we need to clear the
		 * update util hook.
		 */
		if (!hwp_boost)
			intel_pstate_clear_update_util_hook(policy->cpu);
2139
		intel_pstate_hwp_set(policy->cpu);
2140
	}
D
Dirk Brandewie 已提交
2141

2142 2143
	mutex_unlock(&intel_pstate_limits_lock);

2144 2145 2146
	return 0;
}

2147 2148
static void intel_pstate_adjust_policy_max(struct cpudata *cpu,
					   struct cpufreq_policy_data *policy)
2149
{
2150 2151
	if (!hwp_active &&
	    cpu->pstate.max_pstate_physical > cpu->pstate.max_pstate &&
2152 2153 2154 2155 2156 2157 2158
	    policy->max < policy->cpuinfo.max_freq &&
	    policy->max > cpu->pstate.max_freq) {
		pr_debug("policy->max > max non turbo frequency\n");
		policy->max = policy->cpuinfo.max_freq;
	}
}

2159 2160
static void intel_pstate_verify_cpu_policy(struct cpudata *cpu,
					   struct cpufreq_policy_data *policy)
2161
{
2162
	update_turbo_state();
2163 2164
	cpufreq_verify_within_limits(policy, policy->cpuinfo.min_freq,
				     intel_pstate_get_max_freq(cpu));
2165

2166
	intel_pstate_adjust_policy_max(cpu, policy);
2167 2168 2169 2170 2171
}

static int intel_pstate_verify_policy(struct cpufreq_policy_data *policy)
{
	intel_pstate_verify_cpu_policy(all_cpu_data[policy->cpu], policy);
2172

2173 2174 2175
	return 0;
}

2176 2177 2178 2179 2180
static void intel_cpufreq_stop_cpu(struct cpufreq_policy *policy)
{
	intel_pstate_set_min_pstate(all_cpu_data[policy->cpu]);
}

2181
static void intel_pstate_stop_cpu(struct cpufreq_policy *policy)
2182
{
2183
	pr_debug("CPU %d exiting\n", policy->cpu);
2184

2185
	intel_pstate_clear_update_util_hook(policy->cpu);
2186
	if (hwp_active) {
2187
		intel_pstate_hwp_save_state(policy);
2188 2189
		intel_pstate_hwp_force_min_perf(policy->cpu);
	} else {
2190
		intel_cpufreq_stop_cpu(policy);
2191
	}
2192
}
2193

2194 2195 2196
static int intel_pstate_cpu_exit(struct cpufreq_policy *policy)
{
	intel_pstate_exit_perf_limits(policy);
2197

2198
	policy->fast_switch_possible = false;
D
Dirk Brandewie 已提交
2199

2200
	return 0;
2201 2202
}

2203
static int __intel_pstate_cpu_init(struct cpufreq_policy *policy)
2204 2205
{
	struct cpudata *cpu;
2206
	int rc;
2207 2208 2209 2210 2211 2212 2213

	rc = intel_pstate_init_cpu(policy->cpu);
	if (rc)
		return rc;

	cpu = all_cpu_data[policy->cpu];

2214 2215
	cpu->max_perf_ratio = 0xFF;
	cpu->min_perf_ratio = 0;
2216

2217 2218
	policy->min = cpu->pstate.min_pstate * cpu->pstate.scaling;
	policy->max = cpu->pstate.turbo_pstate * cpu->pstate.scaling;
2219 2220

	/* cpuinfo and default policy values */
2221
	policy->cpuinfo.min_freq = cpu->pstate.min_pstate * cpu->pstate.scaling;
2222
	update_turbo_state();
2223
	global.turbo_disabled_mf = global.turbo_disabled;
2224
	policy->cpuinfo.max_freq = global.turbo_disabled ?
2225 2226 2227
			cpu->pstate.max_pstate : cpu->pstate.turbo_pstate;
	policy->cpuinfo.max_freq *= cpu->pstate.scaling;

2228 2229 2230 2231 2232 2233 2234 2235 2236
	if (hwp_active) {
		unsigned int max_freq;

		max_freq = global.turbo_disabled ?
			cpu->pstate.max_freq : cpu->pstate.turbo_freq;
		if (max_freq < policy->cpuinfo.max_freq)
			policy->cpuinfo.max_freq = max_freq;
	}

2237
	intel_pstate_init_acpi_perf_limits(policy);
2238

2239 2240
	policy->fast_switch_possible = true;

2241 2242 2243
	return 0;
}

2244
static int intel_pstate_cpu_init(struct cpufreq_policy *policy)
2245
{
2246 2247 2248 2249 2250
	int ret = __intel_pstate_cpu_init(policy);

	if (ret)
		return ret;

2251 2252 2253 2254 2255
	/*
	 * Set the policy to powersave to provide a valid fallback value in case
	 * the default cpufreq governor is neither powersave nor performance.
	 */
	policy->policy = CPUFREQ_POLICY_POWERSAVE;
2256 2257 2258 2259

	return 0;
}

2260
static struct cpufreq_driver intel_pstate = {
2261 2262 2263
	.flags		= CPUFREQ_CONST_LOOPS,
	.verify		= intel_pstate_verify_policy,
	.setpolicy	= intel_pstate_set_policy,
2264
	.suspend	= intel_pstate_hwp_save_state,
2265
	.resume		= intel_pstate_resume,
2266
	.init		= intel_pstate_cpu_init,
2267
	.exit		= intel_pstate_cpu_exit,
2268
	.stop_cpu	= intel_pstate_stop_cpu,
2269
	.update_limits	= intel_pstate_update_limits,
2270 2271 2272
	.name		= "intel_pstate",
};

2273
static int intel_cpufreq_verify_policy(struct cpufreq_policy_data *policy)
2274 2275 2276
{
	struct cpudata *cpu = all_cpu_data[policy->cpu];

2277
	intel_pstate_verify_cpu_policy(cpu, policy);
2278
	intel_pstate_update_perf_limits(cpu, policy->min, policy->max);
2279

2280 2281 2282
	return 0;
}

2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320
/* Use of trace in passive mode:
 *
 * In passive mode the trace core_busy field (also known as the
 * performance field, and lablelled as such on the graphs; also known as
 * core_avg_perf) is not needed and so is re-assigned to indicate if the
 * driver call was via the normal or fast switch path. Various graphs
 * output from the intel_pstate_tracer.py utility that include core_busy
 * (or performance or core_avg_perf) have a fixed y-axis from 0 to 100%,
 * so we use 10 to indicate the the normal path through the driver, and
 * 90 to indicate the fast switch path through the driver.
 * The scaled_busy field is not used, and is set to 0.
 */

#define	INTEL_PSTATE_TRACE_TARGET 10
#define	INTEL_PSTATE_TRACE_FAST_SWITCH 90

static void intel_cpufreq_trace(struct cpudata *cpu, unsigned int trace_type, int old_pstate)
{
	struct sample *sample;

	if (!trace_pstate_sample_enabled())
		return;

	if (!intel_pstate_sample(cpu, ktime_get()))
		return;

	sample = &cpu->sample;
	trace_pstate_sample(trace_type,
		0,
		old_pstate,
		cpu->pstate.current_pstate,
		sample->mperf,
		sample->aperf,
		sample->tsc,
		get_avg_frequency(cpu),
		fp_toint(cpu->iowait_boost * 100));
}

2321 2322 2323 2324 2325 2326
static int intel_cpufreq_target(struct cpufreq_policy *policy,
				unsigned int target_freq,
				unsigned int relation)
{
	struct cpudata *cpu = all_cpu_data[policy->cpu];
	struct cpufreq_freqs freqs;
2327
	int target_pstate, old_pstate;
2328

2329 2330
	update_turbo_state();

2331
	freqs.old = policy->cur;
2332
	freqs.new = target_freq;
2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346

	cpufreq_freq_transition_begin(policy, &freqs);
	switch (relation) {
	case CPUFREQ_RELATION_L:
		target_pstate = DIV_ROUND_UP(freqs.new, cpu->pstate.scaling);
		break;
	case CPUFREQ_RELATION_H:
		target_pstate = freqs.new / cpu->pstate.scaling;
		break;
	default:
		target_pstate = DIV_ROUND_CLOSEST(freqs.new, cpu->pstate.scaling);
		break;
	}
	target_pstate = intel_pstate_prepare_request(cpu, target_pstate);
2347
	old_pstate = cpu->pstate.current_pstate;
2348 2349 2350 2351 2352
	if (target_pstate != cpu->pstate.current_pstate) {
		cpu->pstate.current_pstate = target_pstate;
		wrmsrl_on_cpu(policy->cpu, MSR_IA32_PERF_CTL,
			      pstate_funcs.get_val(cpu, target_pstate));
	}
2353
	freqs.new = target_pstate * cpu->pstate.scaling;
2354
	intel_cpufreq_trace(cpu, INTEL_PSTATE_TRACE_TARGET, old_pstate);
2355 2356 2357 2358 2359 2360 2361 2362 2363
	cpufreq_freq_transition_end(policy, &freqs, false);

	return 0;
}

static unsigned int intel_cpufreq_fast_switch(struct cpufreq_policy *policy,
					      unsigned int target_freq)
{
	struct cpudata *cpu = all_cpu_data[policy->cpu];
2364
	int target_pstate, old_pstate;
2365

2366 2367
	update_turbo_state();

2368
	target_pstate = DIV_ROUND_UP(target_freq, cpu->pstate.scaling);
2369
	target_pstate = intel_pstate_prepare_request(cpu, target_pstate);
2370
	old_pstate = cpu->pstate.current_pstate;
2371
	intel_pstate_update_pstate(cpu, target_pstate);
2372
	intel_cpufreq_trace(cpu, INTEL_PSTATE_TRACE_FAST_SWITCH, old_pstate);
2373
	return target_pstate * cpu->pstate.scaling;
2374 2375 2376 2377
}

static int intel_cpufreq_cpu_init(struct cpufreq_policy *policy)
{
2378
	int max_state, turbo_max, min_freq, max_freq, ret;
2379
	struct freq_qos_request *req;
2380 2381 2382 2383 2384 2385
	struct cpudata *cpu;
	struct device *dev;

	dev = get_cpu_device(policy->cpu);
	if (!dev)
		return -ENODEV;
2386

2387
	ret = __intel_pstate_cpu_init(policy);
2388 2389 2390 2391
	if (ret)
		return ret;

	policy->cpuinfo.transition_latency = INTEL_CPUFREQ_TRANSITION_LATENCY;
2392
	policy->transition_delay_us = INTEL_CPUFREQ_TRANSITION_DELAY;
2393 2394 2395
	/* This reflects the intel_pstate_get_cpu_pstates() setting. */
	policy->cur = policy->cpuinfo.min_freq;

2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413
	req = kcalloc(2, sizeof(*req), GFP_KERNEL);
	if (!req) {
		ret = -ENOMEM;
		goto pstate_exit;
	}

	cpu = all_cpu_data[policy->cpu];

	if (hwp_active)
		intel_pstate_get_hwp_max(policy->cpu, &turbo_max, &max_state);
	else
		turbo_max = cpu->pstate.turbo_pstate;

	min_freq = DIV_ROUND_UP(turbo_max * global.min_perf_pct, 100);
	min_freq *= cpu->pstate.scaling;
	max_freq = DIV_ROUND_UP(turbo_max * global.max_perf_pct, 100);
	max_freq *= cpu->pstate.scaling;

2414 2415
	ret = freq_qos_add_request(&policy->constraints, req, FREQ_QOS_MIN,
				   min_freq);
2416 2417 2418 2419 2420
	if (ret < 0) {
		dev_err(dev, "Failed to add min-freq constraint (%d)\n", ret);
		goto free_req;
	}

2421 2422
	ret = freq_qos_add_request(&policy->constraints, req + 1, FREQ_QOS_MAX,
				   max_freq);
2423 2424 2425 2426 2427 2428 2429
	if (ret < 0) {
		dev_err(dev, "Failed to add max-freq constraint (%d)\n", ret);
		goto remove_min_req;
	}

	policy->driver_data = req;

2430
	return 0;
2431 2432

remove_min_req:
2433
	freq_qos_remove_request(req);
2434 2435 2436 2437 2438 2439 2440 2441 2442 2443
free_req:
	kfree(req);
pstate_exit:
	intel_pstate_exit_perf_limits(policy);

	return ret;
}

static int intel_cpufreq_cpu_exit(struct cpufreq_policy *policy)
{
2444
	struct freq_qos_request *req;
2445 2446 2447

	req = policy->driver_data;

2448 2449
	freq_qos_remove_request(req + 1);
	freq_qos_remove_request(req);
2450 2451 2452
	kfree(req);

	return intel_pstate_cpu_exit(policy);
2453 2454 2455 2456 2457 2458 2459 2460
}

static struct cpufreq_driver intel_cpufreq = {
	.flags		= CPUFREQ_CONST_LOOPS,
	.verify		= intel_cpufreq_verify_policy,
	.target		= intel_cpufreq_target,
	.fast_switch	= intel_cpufreq_fast_switch,
	.init		= intel_cpufreq_cpu_init,
2461
	.exit		= intel_cpufreq_cpu_exit,
2462
	.stop_cpu	= intel_cpufreq_stop_cpu,
2463
	.update_limits	= intel_pstate_update_limits,
2464 2465 2466
	.name		= "intel_cpufreq",
};

2467
static struct cpufreq_driver *default_driver = &intel_pstate;
2468

2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483
static void intel_pstate_driver_cleanup(void)
{
	unsigned int cpu;

	get_online_cpus();
	for_each_online_cpu(cpu) {
		if (all_cpu_data[cpu]) {
			if (intel_pstate_driver == &intel_pstate)
				intel_pstate_clear_update_util_hook(cpu);

			kfree(all_cpu_data[cpu]);
			all_cpu_data[cpu] = NULL;
		}
	}
	put_online_cpus();
2484
	intel_pstate_driver = NULL;
2485 2486
}

2487
static int intel_pstate_register_driver(struct cpufreq_driver *driver)
2488 2489 2490
{
	int ret;

2491 2492
	memset(&global, 0, sizeof(global));
	global.max_perf_pct = 100;
2493

2494
	intel_pstate_driver = driver;
2495 2496 2497 2498 2499 2500
	ret = cpufreq_register_driver(intel_pstate_driver);
	if (ret) {
		intel_pstate_driver_cleanup();
		return ret;
	}

2501 2502
	global.min_perf_pct = min_perf_pct_min();

2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518
	return 0;
}

static int intel_pstate_unregister_driver(void)
{
	if (hwp_active)
		return -EBUSY;

	cpufreq_unregister_driver(intel_pstate_driver);
	intel_pstate_driver_cleanup();

	return 0;
}

static ssize_t intel_pstate_show_status(char *buf)
{
2519
	if (!intel_pstate_driver)
2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530
		return sprintf(buf, "off\n");

	return sprintf(buf, "%s\n", intel_pstate_driver == &intel_pstate ?
					"active" : "passive");
}

static int intel_pstate_update_status(const char *buf, size_t size)
{
	int ret;

	if (size == 3 && !strncmp(buf, "off", size))
2531
		return intel_pstate_driver ?
2532 2533 2534
			intel_pstate_unregister_driver() : -EINVAL;

	if (size == 6 && !strncmp(buf, "active", size)) {
2535
		if (intel_pstate_driver) {
2536 2537 2538 2539 2540 2541 2542 2543
			if (intel_pstate_driver == &intel_pstate)
				return 0;

			ret = intel_pstate_unregister_driver();
			if (ret)
				return ret;
		}

2544
		return intel_pstate_register_driver(&intel_pstate);
2545 2546 2547
	}

	if (size == 7 && !strncmp(buf, "passive", size)) {
2548
		if (intel_pstate_driver) {
2549
			if (intel_pstate_driver == &intel_cpufreq)
2550 2551 2552 2553 2554 2555 2556
				return 0;

			ret = intel_pstate_unregister_driver();
			if (ret)
				return ret;
		}

2557
		return intel_pstate_register_driver(&intel_cpufreq);
2558 2559 2560 2561 2562
	}

	return -EINVAL;
}

2563 2564 2565
static int no_load __initdata;
static int no_hwp __initdata;
static int hwp_only __initdata;
2566
static unsigned int force_load __initdata;
2567

2568
static int __init intel_pstate_msrs_not_valid(void)
2569
{
2570
	if (!pstate_funcs.get_max() ||
2571 2572
	    !pstate_funcs.get_min() ||
	    !pstate_funcs.get_turbo())
2573 2574 2575 2576
		return -ENODEV;

	return 0;
}
2577

2578
static void __init copy_cpu_funcs(struct pstate_funcs *funcs)
2579 2580
{
	pstate_funcs.get_max   = funcs->get_max;
2581
	pstate_funcs.get_max_physical = funcs->get_max_physical;
2582 2583
	pstate_funcs.get_min   = funcs->get_min;
	pstate_funcs.get_turbo = funcs->get_turbo;
2584
	pstate_funcs.get_scaling = funcs->get_scaling;
2585
	pstate_funcs.get_val   = funcs->get_val;
2586
	pstate_funcs.get_vid   = funcs->get_vid;
2587
	pstate_funcs.get_aperf_mperf_shift = funcs->get_aperf_mperf_shift;
2588 2589
}

2590
#ifdef CONFIG_ACPI
2591

2592
static bool __init intel_pstate_no_acpi_pss(void)
2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617
{
	int i;

	for_each_possible_cpu(i) {
		acpi_status status;
		union acpi_object *pss;
		struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
		struct acpi_processor *pr = per_cpu(processors, i);

		if (!pr)
			continue;

		status = acpi_evaluate_object(pr->handle, "_PSS", NULL, &buffer);
		if (ACPI_FAILURE(status))
			continue;

		pss = buffer.pointer;
		if (pss && pss->type == ACPI_TYPE_PACKAGE) {
			kfree(pss);
			return false;
		}

		kfree(pss);
	}

2618
	pr_debug("ACPI _PSS not found\n");
2619 2620 2621
	return true;
}

2622 2623 2624 2625 2626 2627 2628
static bool __init intel_pstate_no_acpi_pcch(void)
{
	acpi_status status;
	acpi_handle handle;

	status = acpi_get_handle(NULL, "\\_SB", &handle);
	if (ACPI_FAILURE(status))
2629 2630 2631 2632
		goto not_found;

	if (acpi_has_method(handle, "PCCH"))
		return false;
2633

2634 2635 2636
not_found:
	pr_debug("ACPI PCCH not found\n");
	return true;
2637 2638
}

2639
static bool __init intel_pstate_has_acpi_ppc(void)
2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650
{
	int i;

	for_each_possible_cpu(i) {
		struct acpi_processor *pr = per_cpu(processors, i);

		if (!pr)
			continue;
		if (acpi_has_method(pr->handle, "_PPC"))
			return true;
	}
2651
	pr_debug("ACPI _PPC not found\n");
2652 2653 2654 2655 2656 2657 2658 2659
	return false;
}

enum {
	PSS,
	PPC,
};

2660
/* Hardware vendor-specific info that has its own power management modes */
2661
static struct acpi_platform_list plat_info[] __initdata = {
2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676
	{"HP    ", "ProLiant", 0, ACPI_SIG_FADT, all_versions, NULL, PSS},
	{"ORACLE", "X4-2    ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
	{"ORACLE", "X4-2L   ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
	{"ORACLE", "X4-2B   ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
	{"ORACLE", "X3-2    ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
	{"ORACLE", "X3-2L   ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
	{"ORACLE", "X3-2B   ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
	{"ORACLE", "X4470M2 ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
	{"ORACLE", "X4270M3 ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
	{"ORACLE", "X4270M2 ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
	{"ORACLE", "X4170M2 ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
	{"ORACLE", "X4170 M3", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
	{"ORACLE", "X4275 M3", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
	{"ORACLE", "X6-2    ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
	{"ORACLE", "Sudbury ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
2677
	{ } /* End */
2678 2679
};

2680
static bool __init intel_pstate_platform_pwr_mgmt_exists(void)
2681
{
D
Dirk Brandewie 已提交
2682 2683
	const struct x86_cpu_id *id;
	u64 misc_pwr;
2684
	int idx;
D
Dirk Brandewie 已提交
2685 2686 2687 2688

	id = x86_match_cpu(intel_pstate_cpu_oob_ids);
	if (id) {
		rdmsrl(MSR_MISC_PWR_MGMT, misc_pwr);
2689 2690
		if (misc_pwr & (1 << 8)) {
			pr_debug("Bit 8 in the MISC_PWR_MGMT MSR set\n");
D
Dirk Brandewie 已提交
2691
			return true;
2692
		}
D
Dirk Brandewie 已提交
2693
	}
2694

2695 2696
	idx = acpi_match_platform_list(plat_info);
	if (idx < 0)
2697 2698
		return false;

2699 2700
	switch (plat_info[idx].data) {
	case PSS:
2701 2702 2703 2704
		if (!intel_pstate_no_acpi_pss())
			return false;

		return intel_pstate_no_acpi_pcch();
2705 2706
	case PPC:
		return intel_pstate_has_acpi_ppc() && !force_load;
2707 2708 2709 2710
	}

	return false;
}
2711 2712 2713 2714 2715 2716 2717 2718 2719 2720

static void intel_pstate_request_control_from_smm(void)
{
	/*
	 * It may be unsafe to request P-states control from SMM if _PPC support
	 * has not been enabled.
	 */
	if (acpi_ppc)
		acpi_processor_pstate_control();
}
2721 2722
#else /* CONFIG_ACPI not enabled */
static inline bool intel_pstate_platform_pwr_mgmt_exists(void) { return false; }
2723
static inline bool intel_pstate_has_acpi_ppc(void) { return false; }
2724
static inline void intel_pstate_request_control_from_smm(void) {}
2725 2726
#endif /* CONFIG_ACPI */

2727 2728
#define INTEL_PSTATE_HWP_BROADWELL	0x01

2729 2730
#define X86_MATCH_HWP(model, hwp_mode)					\
	X86_MATCH_VENDOR_FAM_MODEL_FEATURE(INTEL, 6, INTEL_FAM6_##model, \
2731
					   X86_FEATURE_HWP, hwp_mode)
2732

2733
static const struct x86_cpu_id hwp_support_ids[] __initconst = {
2734 2735 2736
	X86_MATCH_HWP(BROADWELL_X,	INTEL_PSTATE_HWP_BROADWELL),
	X86_MATCH_HWP(BROADWELL_D,	INTEL_PSTATE_HWP_BROADWELL),
	X86_MATCH_HWP(ANY,		0),
2737 2738 2739
	{}
};

2740 2741
static int __init intel_pstate_init(void)
{
2742
	const struct x86_cpu_id *id;
2743
	int rc;
2744

2745 2746 2747
	if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL)
		return -ENODEV;

2748 2749 2750
	if (no_load)
		return -ENODEV;

2751 2752
	id = x86_match_cpu(hwp_support_ids);
	if (id) {
2753
		copy_cpu_funcs(&core_funcs);
2754
		if (!no_hwp) {
2755
			hwp_active++;
2756
			hwp_mode_bdw = id->driver_data;
2757 2758 2759 2760 2761
			intel_pstate.attr = hwp_cpufreq_attrs;
			goto hwp_cpu_matched;
		}
	} else {
		id = x86_match_cpu(intel_pstate_cpu_ids);
2762
		if (!id) {
2763
			pr_info("CPU model not supported\n");
2764
			return -ENODEV;
2765
		}
2766

2767
		copy_cpu_funcs((struct pstate_funcs *)id->driver_data);
2768
	}
2769

2770 2771
	if (intel_pstate_msrs_not_valid()) {
		pr_info("Invalid MSRs\n");
2772
		return -ENODEV;
2773
	}
2774

2775 2776 2777 2778 2779
hwp_cpu_matched:
	/*
	 * The Intel pstate driver will be ignored if the platform
	 * firmware has its own power management modes.
	 */
2780 2781
	if (intel_pstate_platform_pwr_mgmt_exists()) {
		pr_info("P-states controlled by the platform\n");
2782
		return -ENODEV;
2783
	}
2784

2785 2786 2787
	if (!hwp_active && hwp_only)
		return -ENOTSUPP;

J
Joe Perches 已提交
2788
	pr_info("Intel P-state driver initializing\n");
2789

2790
	all_cpu_data = vzalloc(array_size(sizeof(void *), num_possible_cpus()));
2791 2792 2793
	if (!all_cpu_data)
		return -ENOMEM;

2794 2795
	intel_pstate_request_control_from_smm();

2796
	intel_pstate_sysfs_expose_params();
2797

2798
	mutex_lock(&intel_pstate_driver_lock);
2799
	rc = intel_pstate_register_driver(default_driver);
2800
	mutex_unlock(&intel_pstate_driver_lock);
2801 2802
	if (rc)
		return rc;
2803

2804
	if (hwp_active)
J
Joe Perches 已提交
2805
		pr_info("HWP enabled\n");
2806

2807
	return 0;
2808 2809 2810
}
device_initcall(intel_pstate_init);

2811 2812 2813 2814 2815
static int __init intel_pstate_setup(char *str)
{
	if (!str)
		return -EINVAL;

2816
	if (!strcmp(str, "disable")) {
2817
		no_load = 1;
2818 2819
	} else if (!strcmp(str, "passive")) {
		pr_info("Passive mode enabled\n");
2820
		default_driver = &intel_cpufreq;
2821 2822
		no_hwp = 1;
	}
2823
	if (!strcmp(str, "no_hwp")) {
J
Joe Perches 已提交
2824
		pr_info("HWP disabled\n");
D
Dirk Brandewie 已提交
2825
		no_hwp = 1;
2826
	}
2827 2828
	if (!strcmp(str, "force"))
		force_load = 1;
2829 2830
	if (!strcmp(str, "hwp_only"))
		hwp_only = 1;
2831 2832
	if (!strcmp(str, "per_cpu_perf_limits"))
		per_cpu_limits = true;
2833 2834 2835 2836 2837 2838

#ifdef CONFIG_ACPI
	if (!strcmp(str, "support_acpi_ppc"))
		acpi_ppc = true;
#endif

2839 2840 2841 2842
	return 0;
}
early_param("intel_pstate", intel_pstate_setup);

2843 2844 2845
MODULE_AUTHOR("Dirk Brandewie <dirk.j.brandewie@intel.com>");
MODULE_DESCRIPTION("'intel_pstate' - P state driver Intel Core processors");
MODULE_LICENSE("GPL");