scrub.c 108.2 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0
A
Arne Jansen 已提交
2
/*
3
 * Copyright (C) 2011, 2012 STRATO.  All rights reserved.
A
Arne Jansen 已提交
4 5 6
 */

#include <linux/blkdev.h>
7
#include <linux/ratelimit.h>
8
#include <linux/sched/mm.h>
9
#include <crypto/hash.h>
A
Arne Jansen 已提交
10
#include "ctree.h"
11
#include "discard.h"
A
Arne Jansen 已提交
12 13 14
#include "volumes.h"
#include "disk-io.h"
#include "ordered-data.h"
15
#include "transaction.h"
16
#include "backref.h"
17
#include "extent_io.h"
18
#include "dev-replace.h"
19
#include "check-integrity.h"
20
#include "rcu-string.h"
D
David Woodhouse 已提交
21
#include "raid56.h"
22
#include "block-group.h"
A
Arne Jansen 已提交
23 24 25 26 27 28 29 30 31 32 33 34 35 36

/*
 * This is only the first step towards a full-features scrub. It reads all
 * extent and super block and verifies the checksums. In case a bad checksum
 * is found or the extent cannot be read, good data will be written back if
 * any can be found.
 *
 * Future enhancements:
 *  - In case an unrepairable extent is encountered, track which files are
 *    affected and report them
 *  - track and record media errors, throw out bad devices
 *  - add a mode to also read unallocated space
 */

37
struct scrub_block;
38
struct scrub_ctx;
A
Arne Jansen 已提交
39

40 41 42 43 44 45 46 47 48
/*
 * the following three values only influence the performance.
 * The last one configures the number of parallel and outstanding I/O
 * operations. The first two values configure an upper limit for the number
 * of (dynamically allocated) pages that are added to a bio.
 */
#define SCRUB_PAGES_PER_RD_BIO	32	/* 128k per bio */
#define SCRUB_PAGES_PER_WR_BIO	32	/* 128k per bio */
#define SCRUB_BIOS_PER_SCTX	64	/* 8MB per device in flight */
49 50 51 52 53 54

/*
 * the following value times PAGE_SIZE needs to be large enough to match the
 * largest node/leaf/sector size that shall be supported.
 * Values larger than BTRFS_STRIPE_LEN are not supported.
 */
55
#define SCRUB_MAX_PAGES_PER_BLOCK	16	/* 64k per node/leaf/sector */
A
Arne Jansen 已提交
56

57
struct scrub_recover {
58
	refcount_t		refs;
59 60 61 62
	struct btrfs_bio	*bbio;
	u64			map_length;
};

A
Arne Jansen 已提交
63
struct scrub_page {
64 65
	struct scrub_block	*sblock;
	struct page		*page;
66
	struct btrfs_device	*dev;
67
	struct list_head	list;
A
Arne Jansen 已提交
68 69
	u64			flags;  /* extent flags */
	u64			generation;
70 71
	u64			logical;
	u64			physical;
72
	u64			physical_for_dev_replace;
73
	atomic_t		refs;
74 75 76 77 78
	struct {
		unsigned int	mirror_num:8;
		unsigned int	have_csum:1;
		unsigned int	io_error:1;
	};
A
Arne Jansen 已提交
79
	u8			csum[BTRFS_CSUM_SIZE];
80 81

	struct scrub_recover	*recover;
A
Arne Jansen 已提交
82 83 84 85
};

struct scrub_bio {
	int			index;
86
	struct scrub_ctx	*sctx;
87
	struct btrfs_device	*dev;
A
Arne Jansen 已提交
88
	struct bio		*bio;
89
	blk_status_t		status;
A
Arne Jansen 已提交
90 91
	u64			logical;
	u64			physical;
92 93 94 95 96
#if SCRUB_PAGES_PER_WR_BIO >= SCRUB_PAGES_PER_RD_BIO
	struct scrub_page	*pagev[SCRUB_PAGES_PER_WR_BIO];
#else
	struct scrub_page	*pagev[SCRUB_PAGES_PER_RD_BIO];
#endif
97
	int			page_count;
A
Arne Jansen 已提交
98 99 100 101
	int			next_free;
	struct btrfs_work	work;
};

102
struct scrub_block {
103
	struct scrub_page	*pagev[SCRUB_MAX_PAGES_PER_BLOCK];
104 105
	int			page_count;
	atomic_t		outstanding_pages;
106
	refcount_t		refs; /* free mem on transition to zero */
107
	struct scrub_ctx	*sctx;
108
	struct scrub_parity	*sparity;
109 110 111 112
	struct {
		unsigned int	header_error:1;
		unsigned int	checksum_error:1;
		unsigned int	no_io_error_seen:1;
113
		unsigned int	generation_error:1; /* also sets header_error */
114 115 116 117

		/* The following is for the data used to check parity */
		/* It is for the data with checksum */
		unsigned int	data_corrected:1;
118
	};
119
	struct btrfs_work	work;
120 121
};

122 123 124 125 126 127 128 129 130 131 132 133
/* Used for the chunks with parity stripe such RAID5/6 */
struct scrub_parity {
	struct scrub_ctx	*sctx;

	struct btrfs_device	*scrub_dev;

	u64			logic_start;

	u64			logic_end;

	int			nsectors;

134
	u64			stripe_len;
135

136
	refcount_t		refs;
137 138 139 140 141 142 143 144 145 146 147 148 149 150 151

	struct list_head	spages;

	/* Work of parity check and repair */
	struct btrfs_work	work;

	/* Mark the parity blocks which have data */
	unsigned long		*dbitmap;

	/*
	 * Mark the parity blocks which have data, but errors happen when
	 * read data or check data
	 */
	unsigned long		*ebitmap;

152
	unsigned long		bitmap[];
153 154
};

155
struct scrub_ctx {
156
	struct scrub_bio	*bios[SCRUB_BIOS_PER_SCTX];
157
	struct btrfs_fs_info	*fs_info;
A
Arne Jansen 已提交
158 159
	int			first_free;
	int			curr;
160 161
	atomic_t		bios_in_flight;
	atomic_t		workers_pending;
A
Arne Jansen 已提交
162 163 164 165 166
	spinlock_t		list_lock;
	wait_queue_head_t	list_wait;
	u16			csum_size;
	struct list_head	csum_list;
	atomic_t		cancel_req;
A
Arne Jansen 已提交
167
	int			readonly;
168
	int			pages_per_rd_bio;
169 170

	int			is_dev_replace;
171 172 173 174 175

	struct scrub_bio        *wr_curr_bio;
	struct mutex            wr_lock;
	int                     pages_per_wr_bio; /* <= SCRUB_PAGES_PER_WR_BIO */
	struct btrfs_device     *wr_tgtdev;
176
	bool                    flush_all_writes;
177

A
Arne Jansen 已提交
178 179 180 181 182
	/*
	 * statistics
	 */
	struct btrfs_scrub_progress stat;
	spinlock_t		stat_lock;
183 184 185 186 187 188 189 190

	/*
	 * Use a ref counter to avoid use-after-free issues. Scrub workers
	 * decrement bios_in_flight and workers_pending and then do a wakeup
	 * on the list_wait wait queue. We must ensure the main scrub task
	 * doesn't free the scrub context before or while the workers are
	 * doing the wakeup() call.
	 */
191
	refcount_t              refs;
A
Arne Jansen 已提交
192 193
};

194 195 196 197
struct scrub_warning {
	struct btrfs_path	*path;
	u64			extent_item_size;
	const char		*errstr;
D
David Sterba 已提交
198
	u64			physical;
199 200 201 202
	u64			logical;
	struct btrfs_device	*dev;
};

203 204 205 206 207 208 209
struct full_stripe_lock {
	struct rb_node node;
	u64 logical;
	u64 refs;
	struct mutex mutex;
};

210 211
static void scrub_pending_bio_inc(struct scrub_ctx *sctx);
static void scrub_pending_bio_dec(struct scrub_ctx *sctx);
212
static int scrub_handle_errored_block(struct scrub_block *sblock_to_check);
213
static int scrub_setup_recheck_block(struct scrub_block *original_sblock,
214
				     struct scrub_block *sblocks_for_recheck);
215
static void scrub_recheck_block(struct btrfs_fs_info *fs_info,
216 217
				struct scrub_block *sblock,
				int retry_failed_mirror);
218
static void scrub_recheck_block_checksum(struct scrub_block *sblock);
219
static int scrub_repair_block_from_good_copy(struct scrub_block *sblock_bad,
220
					     struct scrub_block *sblock_good);
221 222 223
static int scrub_repair_page_from_good_copy(struct scrub_block *sblock_bad,
					    struct scrub_block *sblock_good,
					    int page_num, int force_write);
224 225 226
static void scrub_write_block_to_dev_replace(struct scrub_block *sblock);
static int scrub_write_page_to_dev_replace(struct scrub_block *sblock,
					   int page_num);
227 228 229 230 231
static int scrub_checksum_data(struct scrub_block *sblock);
static int scrub_checksum_tree_block(struct scrub_block *sblock);
static int scrub_checksum_super(struct scrub_block *sblock);
static void scrub_block_get(struct scrub_block *sblock);
static void scrub_block_put(struct scrub_block *sblock);
232 233
static void scrub_page_get(struct scrub_page *spage);
static void scrub_page_put(struct scrub_page *spage);
234 235
static void scrub_parity_get(struct scrub_parity *sparity);
static void scrub_parity_put(struct scrub_parity *sparity);
236 237
static int scrub_add_page_to_rd_bio(struct scrub_ctx *sctx,
				    struct scrub_page *spage);
238
static int scrub_pages(struct scrub_ctx *sctx, u64 logical, u64 len,
239
		       u64 physical, struct btrfs_device *dev, u64 flags,
240 241
		       u64 gen, int mirror_num, u8 *csum, int force,
		       u64 physical_for_dev_replace);
242
static void scrub_bio_end_io(struct bio *bio);
243 244
static void scrub_bio_end_io_worker(struct btrfs_work *work);
static void scrub_block_complete(struct scrub_block *sblock);
245 246 247 248 249 250 251 252
static void scrub_remap_extent(struct btrfs_fs_info *fs_info,
			       u64 extent_logical, u64 extent_len,
			       u64 *extent_physical,
			       struct btrfs_device **extent_dev,
			       int *extent_mirror_num);
static int scrub_add_page_to_wr_bio(struct scrub_ctx *sctx,
				    struct scrub_page *spage);
static void scrub_wr_submit(struct scrub_ctx *sctx);
253
static void scrub_wr_bio_end_io(struct bio *bio);
254
static void scrub_wr_bio_end_io_worker(struct btrfs_work *work);
255
static void __scrub_blocked_if_needed(struct btrfs_fs_info *fs_info);
256
static void scrub_blocked_if_needed(struct btrfs_fs_info *fs_info);
257
static void scrub_put_ctx(struct scrub_ctx *sctx);
S
Stefan Behrens 已提交
258

259 260 261 262 263
static inline int scrub_is_page_on_raid56(struct scrub_page *page)
{
	return page->recover &&
	       (page->recover->bbio->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK);
}
S
Stefan Behrens 已提交
264

265 266
static void scrub_pending_bio_inc(struct scrub_ctx *sctx)
{
267
	refcount_inc(&sctx->refs);
268 269 270 271 272 273 274
	atomic_inc(&sctx->bios_in_flight);
}

static void scrub_pending_bio_dec(struct scrub_ctx *sctx)
{
	atomic_dec(&sctx->bios_in_flight);
	wake_up(&sctx->list_wait);
275
	scrub_put_ctx(sctx);
276 277
}

278
static void __scrub_blocked_if_needed(struct btrfs_fs_info *fs_info)
279 280 281 282 283 284 285 286 287
{
	while (atomic_read(&fs_info->scrub_pause_req)) {
		mutex_unlock(&fs_info->scrub_lock);
		wait_event(fs_info->scrub_pause_wait,
		   atomic_read(&fs_info->scrub_pause_req) == 0);
		mutex_lock(&fs_info->scrub_lock);
	}
}

288
static void scrub_pause_on(struct btrfs_fs_info *fs_info)
289 290 291
{
	atomic_inc(&fs_info->scrubs_paused);
	wake_up(&fs_info->scrub_pause_wait);
292
}
293

294 295
static void scrub_pause_off(struct btrfs_fs_info *fs_info)
{
296 297 298 299 300 301 302 303
	mutex_lock(&fs_info->scrub_lock);
	__scrub_blocked_if_needed(fs_info);
	atomic_dec(&fs_info->scrubs_paused);
	mutex_unlock(&fs_info->scrub_lock);

	wake_up(&fs_info->scrub_pause_wait);
}

304 305 306 307 308 309
static void scrub_blocked_if_needed(struct btrfs_fs_info *fs_info)
{
	scrub_pause_on(fs_info);
	scrub_pause_off(fs_info);
}

310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328
/*
 * Insert new full stripe lock into full stripe locks tree
 *
 * Return pointer to existing or newly inserted full_stripe_lock structure if
 * everything works well.
 * Return ERR_PTR(-ENOMEM) if we failed to allocate memory
 *
 * NOTE: caller must hold full_stripe_locks_root->lock before calling this
 * function
 */
static struct full_stripe_lock *insert_full_stripe_lock(
		struct btrfs_full_stripe_locks_tree *locks_root,
		u64 fstripe_logical)
{
	struct rb_node **p;
	struct rb_node *parent = NULL;
	struct full_stripe_lock *entry;
	struct full_stripe_lock *ret;

329
	lockdep_assert_held(&locks_root->lock);
330 331 332 333 334 335 336 337 338 339 340 341 342 343 344

	p = &locks_root->root.rb_node;
	while (*p) {
		parent = *p;
		entry = rb_entry(parent, struct full_stripe_lock, node);
		if (fstripe_logical < entry->logical) {
			p = &(*p)->rb_left;
		} else if (fstripe_logical > entry->logical) {
			p = &(*p)->rb_right;
		} else {
			entry->refs++;
			return entry;
		}
	}

345 346 347
	/*
	 * Insert new lock.
	 */
348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372
	ret = kmalloc(sizeof(*ret), GFP_KERNEL);
	if (!ret)
		return ERR_PTR(-ENOMEM);
	ret->logical = fstripe_logical;
	ret->refs = 1;
	mutex_init(&ret->mutex);

	rb_link_node(&ret->node, parent, p);
	rb_insert_color(&ret->node, &locks_root->root);
	return ret;
}

/*
 * Search for a full stripe lock of a block group
 *
 * Return pointer to existing full stripe lock if found
 * Return NULL if not found
 */
static struct full_stripe_lock *search_full_stripe_lock(
		struct btrfs_full_stripe_locks_tree *locks_root,
		u64 fstripe_logical)
{
	struct rb_node *node;
	struct full_stripe_lock *entry;

373
	lockdep_assert_held(&locks_root->lock);
374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392

	node = locks_root->root.rb_node;
	while (node) {
		entry = rb_entry(node, struct full_stripe_lock, node);
		if (fstripe_logical < entry->logical)
			node = node->rb_left;
		else if (fstripe_logical > entry->logical)
			node = node->rb_right;
		else
			return entry;
	}
	return NULL;
}

/*
 * Helper to get full stripe logical from a normal bytenr.
 *
 * Caller must ensure @cache is a RAID56 block group.
 */
393
static u64 get_full_stripe_logical(struct btrfs_block_group *cache, u64 bytenr)
394 395 396 397 398 399 400 401 402 403 404 405 406
{
	u64 ret;

	/*
	 * Due to chunk item size limit, full stripe length should not be
	 * larger than U32_MAX. Just a sanity check here.
	 */
	WARN_ON_ONCE(cache->full_stripe_len >= U32_MAX);

	/*
	 * round_down() can only handle power of 2, while RAID56 full
	 * stripe length can be 64KiB * n, so we need to manually round down.
	 */
407 408
	ret = div64_u64(bytenr - cache->start, cache->full_stripe_len) *
			cache->full_stripe_len + cache->start;
409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425
	return ret;
}

/*
 * Lock a full stripe to avoid concurrency of recovery and read
 *
 * It's only used for profiles with parities (RAID5/6), for other profiles it
 * does nothing.
 *
 * Return 0 if we locked full stripe covering @bytenr, with a mutex held.
 * So caller must call unlock_full_stripe() at the same context.
 *
 * Return <0 if encounters error.
 */
static int lock_full_stripe(struct btrfs_fs_info *fs_info, u64 bytenr,
			    bool *locked_ret)
{
426
	struct btrfs_block_group *bg_cache;
427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472
	struct btrfs_full_stripe_locks_tree *locks_root;
	struct full_stripe_lock *existing;
	u64 fstripe_start;
	int ret = 0;

	*locked_ret = false;
	bg_cache = btrfs_lookup_block_group(fs_info, bytenr);
	if (!bg_cache) {
		ASSERT(0);
		return -ENOENT;
	}

	/* Profiles not based on parity don't need full stripe lock */
	if (!(bg_cache->flags & BTRFS_BLOCK_GROUP_RAID56_MASK))
		goto out;
	locks_root = &bg_cache->full_stripe_locks_root;

	fstripe_start = get_full_stripe_logical(bg_cache, bytenr);

	/* Now insert the full stripe lock */
	mutex_lock(&locks_root->lock);
	existing = insert_full_stripe_lock(locks_root, fstripe_start);
	mutex_unlock(&locks_root->lock);
	if (IS_ERR(existing)) {
		ret = PTR_ERR(existing);
		goto out;
	}
	mutex_lock(&existing->mutex);
	*locked_ret = true;
out:
	btrfs_put_block_group(bg_cache);
	return ret;
}

/*
 * Unlock a full stripe.
 *
 * NOTE: Caller must ensure it's the same context calling corresponding
 * lock_full_stripe().
 *
 * Return 0 if we unlock full stripe without problem.
 * Return <0 for error
 */
static int unlock_full_stripe(struct btrfs_fs_info *fs_info, u64 bytenr,
			      bool locked)
{
473
	struct btrfs_block_group *bg_cache;
474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526
	struct btrfs_full_stripe_locks_tree *locks_root;
	struct full_stripe_lock *fstripe_lock;
	u64 fstripe_start;
	bool freeit = false;
	int ret = 0;

	/* If we didn't acquire full stripe lock, no need to continue */
	if (!locked)
		return 0;

	bg_cache = btrfs_lookup_block_group(fs_info, bytenr);
	if (!bg_cache) {
		ASSERT(0);
		return -ENOENT;
	}
	if (!(bg_cache->flags & BTRFS_BLOCK_GROUP_RAID56_MASK))
		goto out;

	locks_root = &bg_cache->full_stripe_locks_root;
	fstripe_start = get_full_stripe_logical(bg_cache, bytenr);

	mutex_lock(&locks_root->lock);
	fstripe_lock = search_full_stripe_lock(locks_root, fstripe_start);
	/* Unpaired unlock_full_stripe() detected */
	if (!fstripe_lock) {
		WARN_ON(1);
		ret = -ENOENT;
		mutex_unlock(&locks_root->lock);
		goto out;
	}

	if (fstripe_lock->refs == 0) {
		WARN_ON(1);
		btrfs_warn(fs_info, "full stripe lock at %llu refcount underflow",
			fstripe_lock->logical);
	} else {
		fstripe_lock->refs--;
	}

	if (fstripe_lock->refs == 0) {
		rb_erase(&fstripe_lock->node, &locks_root->root);
		freeit = true;
	}
	mutex_unlock(&locks_root->lock);

	mutex_unlock(&fstripe_lock->mutex);
	if (freeit)
		kfree(fstripe_lock);
out:
	btrfs_put_block_group(bg_cache);
	return ret;
}

527
static void scrub_free_csums(struct scrub_ctx *sctx)
A
Arne Jansen 已提交
528
{
529
	while (!list_empty(&sctx->csum_list)) {
A
Arne Jansen 已提交
530
		struct btrfs_ordered_sum *sum;
531
		sum = list_first_entry(&sctx->csum_list,
A
Arne Jansen 已提交
532 533 534 535 536 537
				       struct btrfs_ordered_sum, list);
		list_del(&sum->list);
		kfree(sum);
	}
}

538
static noinline_for_stack void scrub_free_ctx(struct scrub_ctx *sctx)
A
Arne Jansen 已提交
539 540 541
{
	int i;

542
	if (!sctx)
A
Arne Jansen 已提交
543 544
		return;

545
	/* this can happen when scrub is cancelled */
546 547
	if (sctx->curr != -1) {
		struct scrub_bio *sbio = sctx->bios[sctx->curr];
548 549

		for (i = 0; i < sbio->page_count; i++) {
550
			WARN_ON(!sbio->pagev[i]->page);
551 552 553 554 555
			scrub_block_put(sbio->pagev[i]->sblock);
		}
		bio_put(sbio->bio);
	}

556
	for (i = 0; i < SCRUB_BIOS_PER_SCTX; ++i) {
557
		struct scrub_bio *sbio = sctx->bios[i];
A
Arne Jansen 已提交
558 559 560 561 562 563

		if (!sbio)
			break;
		kfree(sbio);
	}

564
	kfree(sctx->wr_curr_bio);
565 566
	scrub_free_csums(sctx);
	kfree(sctx);
A
Arne Jansen 已提交
567 568
}

569 570
static void scrub_put_ctx(struct scrub_ctx *sctx)
{
571
	if (refcount_dec_and_test(&sctx->refs))
572 573 574
		scrub_free_ctx(sctx);
}

575 576
static noinline_for_stack struct scrub_ctx *scrub_setup_ctx(
		struct btrfs_fs_info *fs_info, int is_dev_replace)
A
Arne Jansen 已提交
577
{
578
	struct scrub_ctx *sctx;
A
Arne Jansen 已提交
579 580
	int		i;

581
	sctx = kzalloc(sizeof(*sctx), GFP_KERNEL);
582
	if (!sctx)
A
Arne Jansen 已提交
583
		goto nomem;
584
	refcount_set(&sctx->refs, 1);
585
	sctx->is_dev_replace = is_dev_replace;
586
	sctx->pages_per_rd_bio = SCRUB_PAGES_PER_RD_BIO;
587
	sctx->curr = -1;
588
	sctx->fs_info = fs_info;
589
	INIT_LIST_HEAD(&sctx->csum_list);
590
	for (i = 0; i < SCRUB_BIOS_PER_SCTX; ++i) {
A
Arne Jansen 已提交
591 592
		struct scrub_bio *sbio;

593
		sbio = kzalloc(sizeof(*sbio), GFP_KERNEL);
A
Arne Jansen 已提交
594 595
		if (!sbio)
			goto nomem;
596
		sctx->bios[i] = sbio;
A
Arne Jansen 已提交
597 598

		sbio->index = i;
599
		sbio->sctx = sctx;
600
		sbio->page_count = 0;
601 602
		btrfs_init_work(&sbio->work, scrub_bio_end_io_worker, NULL,
				NULL);
A
Arne Jansen 已提交
603

604
		if (i != SCRUB_BIOS_PER_SCTX - 1)
605
			sctx->bios[i]->next_free = i + 1;
606
		else
607 608 609
			sctx->bios[i]->next_free = -1;
	}
	sctx->first_free = 0;
610 611
	atomic_set(&sctx->bios_in_flight, 0);
	atomic_set(&sctx->workers_pending, 0);
612 613 614 615 616 617
	atomic_set(&sctx->cancel_req, 0);
	sctx->csum_size = btrfs_super_csum_size(fs_info->super_copy);

	spin_lock_init(&sctx->list_lock);
	spin_lock_init(&sctx->stat_lock);
	init_waitqueue_head(&sctx->list_wait);
618

619 620 621
	WARN_ON(sctx->wr_curr_bio != NULL);
	mutex_init(&sctx->wr_lock);
	sctx->wr_curr_bio = NULL;
622
	if (is_dev_replace) {
623
		WARN_ON(!fs_info->dev_replace.tgtdev);
624
		sctx->pages_per_wr_bio = SCRUB_PAGES_PER_WR_BIO;
625
		sctx->wr_tgtdev = fs_info->dev_replace.tgtdev;
626
		sctx->flush_all_writes = false;
627
	}
628

629
	return sctx;
A
Arne Jansen 已提交
630 631

nomem:
632
	scrub_free_ctx(sctx);
A
Arne Jansen 已提交
633 634 635
	return ERR_PTR(-ENOMEM);
}

636 637
static int scrub_print_warning_inode(u64 inum, u64 offset, u64 root,
				     void *warn_ctx)
638 639 640 641 642
{
	u64 isize;
	u32 nlink;
	int ret;
	int i;
643
	unsigned nofs_flag;
644 645
	struct extent_buffer *eb;
	struct btrfs_inode_item *inode_item;
646
	struct scrub_warning *swarn = warn_ctx;
647
	struct btrfs_fs_info *fs_info = swarn->dev->fs_info;
648 649 650
	struct inode_fs_paths *ipath = NULL;
	struct btrfs_root *local_root;
	struct btrfs_key root_key;
651
	struct btrfs_key key;
652 653 654 655

	root_key.objectid = root;
	root_key.type = BTRFS_ROOT_ITEM_KEY;
	root_key.offset = (u64)-1;
656
	local_root = btrfs_get_fs_root(fs_info, &root_key, true);
657 658 659 660 661
	if (IS_ERR(local_root)) {
		ret = PTR_ERR(local_root);
		goto err;
	}

662 663 664
	/*
	 * this makes the path point to (inum INODE_ITEM ioff)
	 */
665 666 667 668 669
	key.objectid = inum;
	key.type = BTRFS_INODE_ITEM_KEY;
	key.offset = 0;

	ret = btrfs_search_slot(NULL, local_root, &key, swarn->path, 0, 0);
670
	if (ret) {
671
		btrfs_put_root(local_root);
672 673 674 675 676 677 678 679 680 681 682
		btrfs_release_path(swarn->path);
		goto err;
	}

	eb = swarn->path->nodes[0];
	inode_item = btrfs_item_ptr(eb, swarn->path->slots[0],
					struct btrfs_inode_item);
	isize = btrfs_inode_size(eb, inode_item);
	nlink = btrfs_inode_nlink(eb, inode_item);
	btrfs_release_path(swarn->path);

683 684 685 686 687 688
	/*
	 * init_path might indirectly call vmalloc, or use GFP_KERNEL. Scrub
	 * uses GFP_NOFS in this context, so we keep it consistent but it does
	 * not seem to be strictly necessary.
	 */
	nofs_flag = memalloc_nofs_save();
689
	ipath = init_ipath(4096, local_root, swarn->path);
690
	memalloc_nofs_restore(nofs_flag);
691
	if (IS_ERR(ipath)) {
692
		btrfs_put_root(local_root);
693 694 695 696
		ret = PTR_ERR(ipath);
		ipath = NULL;
		goto err;
	}
697 698 699 700 701 702 703 704 705 706
	ret = paths_from_inode(inum, ipath);

	if (ret < 0)
		goto err;

	/*
	 * we deliberately ignore the bit ipath might have been too small to
	 * hold all of the paths here
	 */
	for (i = 0; i < ipath->fspath->elem_cnt; ++i)
J
Jeff Mahoney 已提交
707
		btrfs_warn_in_rcu(fs_info,
D
David Sterba 已提交
708
"%s at logical %llu on dev %s, physical %llu, root %llu, inode %llu, offset %llu, length %llu, links %u (path: %s)",
J
Jeff Mahoney 已提交
709 710
				  swarn->errstr, swarn->logical,
				  rcu_str_deref(swarn->dev->name),
D
David Sterba 已提交
711
				  swarn->physical,
J
Jeff Mahoney 已提交
712 713 714
				  root, inum, offset,
				  min(isize - offset, (u64)PAGE_SIZE), nlink,
				  (char *)(unsigned long)ipath->fspath->val[i]);
715

716
	btrfs_put_root(local_root);
717 718 719 720
	free_ipath(ipath);
	return 0;

err:
J
Jeff Mahoney 已提交
721
	btrfs_warn_in_rcu(fs_info,
D
David Sterba 已提交
722
			  "%s at logical %llu on dev %s, physical %llu, root %llu, inode %llu, offset %llu: path resolving failed with ret=%d",
J
Jeff Mahoney 已提交
723 724
			  swarn->errstr, swarn->logical,
			  rcu_str_deref(swarn->dev->name),
D
David Sterba 已提交
725
			  swarn->physical,
J
Jeff Mahoney 已提交
726
			  root, inum, offset, ret);
727 728 729 730 731

	free_ipath(ipath);
	return 0;
}

732
static void scrub_print_warning(const char *errstr, struct scrub_block *sblock)
733
{
734 735
	struct btrfs_device *dev;
	struct btrfs_fs_info *fs_info;
736 737 738 739 740
	struct btrfs_path *path;
	struct btrfs_key found_key;
	struct extent_buffer *eb;
	struct btrfs_extent_item *ei;
	struct scrub_warning swarn;
741 742 743
	unsigned long ptr = 0;
	u64 extent_item_pos;
	u64 flags = 0;
744
	u64 ref_root;
745
	u32 item_size;
746
	u8 ref_level = 0;
747
	int ret;
748

749
	WARN_ON(sblock->page_count < 1);
750
	dev = sblock->pagev[0]->dev;
751
	fs_info = sblock->sctx->fs_info;
752

753
	path = btrfs_alloc_path();
754 755
	if (!path)
		return;
756

D
David Sterba 已提交
757
	swarn.physical = sblock->pagev[0]->physical;
758
	swarn.logical = sblock->pagev[0]->logical;
759
	swarn.errstr = errstr;
760
	swarn.dev = NULL;
761

762 763
	ret = extent_from_logical(fs_info, swarn.logical, path, &found_key,
				  &flags);
764 765 766
	if (ret < 0)
		goto out;

J
Jan Schmidt 已提交
767
	extent_item_pos = swarn.logical - found_key.objectid;
768 769 770 771 772 773
	swarn.extent_item_size = found_key.offset;

	eb = path->nodes[0];
	ei = btrfs_item_ptr(eb, path->slots[0], struct btrfs_extent_item);
	item_size = btrfs_item_size_nr(eb, path->slots[0]);

774
	if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
775
		do {
776 777 778
			ret = tree_backref_for_extent(&ptr, eb, &found_key, ei,
						      item_size, &ref_root,
						      &ref_level);
779
			btrfs_warn_in_rcu(fs_info,
D
David Sterba 已提交
780
"%s at logical %llu on dev %s, physical %llu: metadata %s (level %d) in tree %llu",
J
Jeff Mahoney 已提交
781
				errstr, swarn.logical,
782
				rcu_str_deref(dev->name),
D
David Sterba 已提交
783
				swarn.physical,
784 785 786 787
				ref_level ? "node" : "leaf",
				ret < 0 ? -1 : ref_level,
				ret < 0 ? -1 : ref_root);
		} while (ret != 1);
788
		btrfs_release_path(path);
789
	} else {
790
		btrfs_release_path(path);
791
		swarn.path = path;
792
		swarn.dev = dev;
793 794
		iterate_extent_inodes(fs_info, found_key.objectid,
					extent_item_pos, 1,
795
					scrub_print_warning_inode, &swarn, false);
796 797 798 799 800 801
	}

out:
	btrfs_free_path(path);
}

802 803
static inline void scrub_get_recover(struct scrub_recover *recover)
{
804
	refcount_inc(&recover->refs);
805 806
}

807 808
static inline void scrub_put_recover(struct btrfs_fs_info *fs_info,
				     struct scrub_recover *recover)
809
{
810
	if (refcount_dec_and_test(&recover->refs)) {
811
		btrfs_bio_counter_dec(fs_info);
812
		btrfs_put_bbio(recover->bbio);
813 814 815 816
		kfree(recover);
	}
}

A
Arne Jansen 已提交
817
/*
818 819 820 821 822 823
 * scrub_handle_errored_block gets called when either verification of the
 * pages failed or the bio failed to read, e.g. with EIO. In the latter
 * case, this function handles all pages in the bio, even though only one
 * may be bad.
 * The goal of this function is to repair the errored block by using the
 * contents of one of the mirrors.
A
Arne Jansen 已提交
824
 */
825
static int scrub_handle_errored_block(struct scrub_block *sblock_to_check)
A
Arne Jansen 已提交
826
{
827
	struct scrub_ctx *sctx = sblock_to_check->sctx;
828
	struct btrfs_device *dev;
829 830 831 832 833 834 835 836 837 838 839
	struct btrfs_fs_info *fs_info;
	u64 logical;
	unsigned int failed_mirror_index;
	unsigned int is_metadata;
	unsigned int have_csum;
	struct scrub_block *sblocks_for_recheck; /* holds one for each mirror */
	struct scrub_block *sblock_bad;
	int ret;
	int mirror_index;
	int page_num;
	int success;
840
	bool full_stripe_locked;
841
	unsigned int nofs_flag;
842
	static DEFINE_RATELIMIT_STATE(_rs, DEFAULT_RATELIMIT_INTERVAL,
843 844 845
				      DEFAULT_RATELIMIT_BURST);

	BUG_ON(sblock_to_check->page_count < 1);
846
	fs_info = sctx->fs_info;
847 848 849 850 851 852 853 854 855 856 857
	if (sblock_to_check->pagev[0]->flags & BTRFS_EXTENT_FLAG_SUPER) {
		/*
		 * if we find an error in a super block, we just report it.
		 * They will get written with the next transaction commit
		 * anyway
		 */
		spin_lock(&sctx->stat_lock);
		++sctx->stat.super_errors;
		spin_unlock(&sctx->stat_lock);
		return 0;
	}
858 859 860 861
	logical = sblock_to_check->pagev[0]->logical;
	BUG_ON(sblock_to_check->pagev[0]->mirror_num < 1);
	failed_mirror_index = sblock_to_check->pagev[0]->mirror_num - 1;
	is_metadata = !(sblock_to_check->pagev[0]->flags &
862
			BTRFS_EXTENT_FLAG_DATA);
863 864
	have_csum = sblock_to_check->pagev[0]->have_csum;
	dev = sblock_to_check->pagev[0]->dev;
865

866 867 868 869 870 871 872 873 874 875
	/*
	 * We must use GFP_NOFS because the scrub task might be waiting for a
	 * worker task executing this function and in turn a transaction commit
	 * might be waiting the scrub task to pause (which needs to wait for all
	 * the worker tasks to complete before pausing).
	 * We do allocations in the workers through insert_full_stripe_lock()
	 * and scrub_add_page_to_wr_bio(), which happens down the call chain of
	 * this function.
	 */
	nofs_flag = memalloc_nofs_save();
876 877 878 879 880 881 882 883 884
	/*
	 * For RAID5/6, race can happen for a different device scrub thread.
	 * For data corruption, Parity and Data threads will both try
	 * to recovery the data.
	 * Race can lead to doubly added csum error, or even unrecoverable
	 * error.
	 */
	ret = lock_full_stripe(fs_info, logical, &full_stripe_locked);
	if (ret < 0) {
885
		memalloc_nofs_restore(nofs_flag);
886 887 888 889 890 891 892 893 894
		spin_lock(&sctx->stat_lock);
		if (ret == -ENOMEM)
			sctx->stat.malloc_errors++;
		sctx->stat.read_errors++;
		sctx->stat.uncorrectable_errors++;
		spin_unlock(&sctx->stat_lock);
		return ret;
	}

895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923
	/*
	 * read all mirrors one after the other. This includes to
	 * re-read the extent or metadata block that failed (that was
	 * the cause that this fixup code is called) another time,
	 * page by page this time in order to know which pages
	 * caused I/O errors and which ones are good (for all mirrors).
	 * It is the goal to handle the situation when more than one
	 * mirror contains I/O errors, but the errors do not
	 * overlap, i.e. the data can be repaired by selecting the
	 * pages from those mirrors without I/O error on the
	 * particular pages. One example (with blocks >= 2 * PAGE_SIZE)
	 * would be that mirror #1 has an I/O error on the first page,
	 * the second page is good, and mirror #2 has an I/O error on
	 * the second page, but the first page is good.
	 * Then the first page of the first mirror can be repaired by
	 * taking the first page of the second mirror, and the
	 * second page of the second mirror can be repaired by
	 * copying the contents of the 2nd page of the 1st mirror.
	 * One more note: if the pages of one mirror contain I/O
	 * errors, the checksum cannot be verified. In order to get
	 * the best data for repairing, the first attempt is to find
	 * a mirror without I/O errors and with a validated checksum.
	 * Only if this is not possible, the pages are picked from
	 * mirrors with I/O errors without considering the checksum.
	 * If the latter is the case, at the end, the checksum of the
	 * repaired area is verified in order to correctly maintain
	 * the statistics.
	 */

924
	sblocks_for_recheck = kcalloc(BTRFS_MAX_MIRRORS,
925
				      sizeof(*sblocks_for_recheck), GFP_KERNEL);
926
	if (!sblocks_for_recheck) {
927 928 929 930 931
		spin_lock(&sctx->stat_lock);
		sctx->stat.malloc_errors++;
		sctx->stat.read_errors++;
		sctx->stat.uncorrectable_errors++;
		spin_unlock(&sctx->stat_lock);
932
		btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS);
933
		goto out;
A
Arne Jansen 已提交
934 935
	}

936
	/* setup the context, map the logical blocks and alloc the pages */
937
	ret = scrub_setup_recheck_block(sblock_to_check, sblocks_for_recheck);
938
	if (ret) {
939 940 941 942
		spin_lock(&sctx->stat_lock);
		sctx->stat.read_errors++;
		sctx->stat.uncorrectable_errors++;
		spin_unlock(&sctx->stat_lock);
943
		btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS);
944 945 946 947
		goto out;
	}
	BUG_ON(failed_mirror_index >= BTRFS_MAX_MIRRORS);
	sblock_bad = sblocks_for_recheck + failed_mirror_index;
948

949
	/* build and submit the bios for the failed mirror, check checksums */
950
	scrub_recheck_block(fs_info, sblock_bad, 1);
A
Arne Jansen 已提交
951

952 953 954 955 956 957 958 959 960 961
	if (!sblock_bad->header_error && !sblock_bad->checksum_error &&
	    sblock_bad->no_io_error_seen) {
		/*
		 * the error disappeared after reading page by page, or
		 * the area was part of a huge bio and other parts of the
		 * bio caused I/O errors, or the block layer merged several
		 * read requests into one and the error is caused by a
		 * different bio (usually one of the two latter cases is
		 * the cause)
		 */
962 963
		spin_lock(&sctx->stat_lock);
		sctx->stat.unverified_errors++;
964
		sblock_to_check->data_corrected = 1;
965
		spin_unlock(&sctx->stat_lock);
A
Arne Jansen 已提交
966

967 968
		if (sctx->is_dev_replace)
			scrub_write_block_to_dev_replace(sblock_bad);
969
		goto out;
A
Arne Jansen 已提交
970 971
	}

972
	if (!sblock_bad->no_io_error_seen) {
973 974 975
		spin_lock(&sctx->stat_lock);
		sctx->stat.read_errors++;
		spin_unlock(&sctx->stat_lock);
976 977
		if (__ratelimit(&_rs))
			scrub_print_warning("i/o error", sblock_to_check);
978
		btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS);
979
	} else if (sblock_bad->checksum_error) {
980 981 982
		spin_lock(&sctx->stat_lock);
		sctx->stat.csum_errors++;
		spin_unlock(&sctx->stat_lock);
983 984
		if (__ratelimit(&_rs))
			scrub_print_warning("checksum error", sblock_to_check);
985
		btrfs_dev_stat_inc_and_print(dev,
986
					     BTRFS_DEV_STAT_CORRUPTION_ERRS);
987
	} else if (sblock_bad->header_error) {
988 989 990
		spin_lock(&sctx->stat_lock);
		sctx->stat.verify_errors++;
		spin_unlock(&sctx->stat_lock);
991 992 993
		if (__ratelimit(&_rs))
			scrub_print_warning("checksum/header error",
					    sblock_to_check);
994
		if (sblock_bad->generation_error)
995
			btrfs_dev_stat_inc_and_print(dev,
996 997
				BTRFS_DEV_STAT_GENERATION_ERRS);
		else
998
			btrfs_dev_stat_inc_and_print(dev,
999
				BTRFS_DEV_STAT_CORRUPTION_ERRS);
1000
	}
A
Arne Jansen 已提交
1001

1002 1003 1004 1005
	if (sctx->readonly) {
		ASSERT(!sctx->is_dev_replace);
		goto out;
	}
A
Arne Jansen 已提交
1006

1007 1008
	/*
	 * now build and submit the bios for the other mirrors, check
1009 1010
	 * checksums.
	 * First try to pick the mirror which is completely without I/O
1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021
	 * errors and also does not have a checksum error.
	 * If one is found, and if a checksum is present, the full block
	 * that is known to contain an error is rewritten. Afterwards
	 * the block is known to be corrected.
	 * If a mirror is found which is completely correct, and no
	 * checksum is present, only those pages are rewritten that had
	 * an I/O error in the block to be repaired, since it cannot be
	 * determined, which copy of the other pages is better (and it
	 * could happen otherwise that a correct page would be
	 * overwritten by a bad one).
	 */
1022
	for (mirror_index = 0; ;mirror_index++) {
1023
		struct scrub_block *sblock_other;
1024

1025 1026
		if (mirror_index == failed_mirror_index)
			continue;
1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049

		/* raid56's mirror can be more than BTRFS_MAX_MIRRORS */
		if (!scrub_is_page_on_raid56(sblock_bad->pagev[0])) {
			if (mirror_index >= BTRFS_MAX_MIRRORS)
				break;
			if (!sblocks_for_recheck[mirror_index].page_count)
				break;

			sblock_other = sblocks_for_recheck + mirror_index;
		} else {
			struct scrub_recover *r = sblock_bad->pagev[0]->recover;
			int max_allowed = r->bbio->num_stripes -
						r->bbio->num_tgtdevs;

			if (mirror_index >= max_allowed)
				break;
			if (!sblocks_for_recheck[1].page_count)
				break;

			ASSERT(failed_mirror_index == 0);
			sblock_other = sblocks_for_recheck + 1;
			sblock_other->pagev[0]->mirror_num = 1 + mirror_index;
		}
1050 1051

		/* build and submit the bios, check checksums */
1052
		scrub_recheck_block(fs_info, sblock_other, 0);
1053 1054

		if (!sblock_other->header_error &&
1055 1056
		    !sblock_other->checksum_error &&
		    sblock_other->no_io_error_seen) {
1057 1058
			if (sctx->is_dev_replace) {
				scrub_write_block_to_dev_replace(sblock_other);
1059
				goto corrected_error;
1060 1061
			} else {
				ret = scrub_repair_block_from_good_copy(
1062 1063 1064
						sblock_bad, sblock_other);
				if (!ret)
					goto corrected_error;
1065
			}
1066 1067
		}
	}
A
Arne Jansen 已提交
1068

1069 1070
	if (sblock_bad->no_io_error_seen && !sctx->is_dev_replace)
		goto did_not_correct_error;
1071 1072 1073

	/*
	 * In case of I/O errors in the area that is supposed to be
1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085
	 * repaired, continue by picking good copies of those pages.
	 * Select the good pages from mirrors to rewrite bad pages from
	 * the area to fix. Afterwards verify the checksum of the block
	 * that is supposed to be repaired. This verification step is
	 * only done for the purpose of statistic counting and for the
	 * final scrub report, whether errors remain.
	 * A perfect algorithm could make use of the checksum and try
	 * all possible combinations of pages from the different mirrors
	 * until the checksum verification succeeds. For example, when
	 * the 2nd page of mirror #1 faces I/O errors, and the 2nd page
	 * of mirror #2 is readable but the final checksum test fails,
	 * then the 2nd page of mirror #3 could be tried, whether now
1086
	 * the final checksum succeeds. But this would be a rare
1087 1088 1089 1090 1091 1092 1093 1094
	 * exception and is therefore not implemented. At least it is
	 * avoided that the good copy is overwritten.
	 * A more useful improvement would be to pick the sectors
	 * without I/O error based on sector sizes (512 bytes on legacy
	 * disks) instead of on PAGE_SIZE. Then maybe 512 byte of one
	 * mirror could be repaired by taking 512 byte of a different
	 * mirror, even if other 512 byte sectors in the same PAGE_SIZE
	 * area are unreadable.
A
Arne Jansen 已提交
1095
	 */
1096
	success = 1;
1097 1098
	for (page_num = 0; page_num < sblock_bad->page_count;
	     page_num++) {
1099
		struct scrub_page *page_bad = sblock_bad->pagev[page_num];
1100
		struct scrub_block *sblock_other = NULL;
1101

1102 1103
		/* skip no-io-error page in scrub */
		if (!page_bad->io_error && !sctx->is_dev_replace)
A
Arne Jansen 已提交
1104
			continue;
1105

1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116
		if (scrub_is_page_on_raid56(sblock_bad->pagev[0])) {
			/*
			 * In case of dev replace, if raid56 rebuild process
			 * didn't work out correct data, then copy the content
			 * in sblock_bad to make sure target device is identical
			 * to source device, instead of writing garbage data in
			 * sblock_for_recheck array to target device.
			 */
			sblock_other = NULL;
		} else if (page_bad->io_error) {
			/* try to find no-io-error page in mirrors */
1117 1118 1119 1120 1121 1122 1123 1124 1125
			for (mirror_index = 0;
			     mirror_index < BTRFS_MAX_MIRRORS &&
			     sblocks_for_recheck[mirror_index].page_count > 0;
			     mirror_index++) {
				if (!sblocks_for_recheck[mirror_index].
				    pagev[page_num]->io_error) {
					sblock_other = sblocks_for_recheck +
						       mirror_index;
					break;
1126 1127
				}
			}
1128 1129
			if (!sblock_other)
				success = 0;
I
Ilya Dryomov 已提交
1130
		}
A
Arne Jansen 已提交
1131

1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144
		if (sctx->is_dev_replace) {
			/*
			 * did not find a mirror to fetch the page
			 * from. scrub_write_page_to_dev_replace()
			 * handles this case (page->io_error), by
			 * filling the block with zeros before
			 * submitting the write request
			 */
			if (!sblock_other)
				sblock_other = sblock_bad;

			if (scrub_write_page_to_dev_replace(sblock_other,
							    page_num) != 0) {
1145
				atomic64_inc(
1146
					&fs_info->dev_replace.num_write_errors);
1147 1148 1149 1150 1151 1152 1153 1154 1155 1156
				success = 0;
			}
		} else if (sblock_other) {
			ret = scrub_repair_page_from_good_copy(sblock_bad,
							       sblock_other,
							       page_num, 0);
			if (0 == ret)
				page_bad->io_error = 0;
			else
				success = 0;
1157
		}
A
Arne Jansen 已提交
1158 1159
	}

1160
	if (success && !sctx->is_dev_replace) {
1161 1162 1163 1164 1165 1166 1167 1168 1169 1170
		if (is_metadata || have_csum) {
			/*
			 * need to verify the checksum now that all
			 * sectors on disk are repaired (the write
			 * request for data to be repaired is on its way).
			 * Just be lazy and use scrub_recheck_block()
			 * which re-reads the data before the checksum
			 * is verified, but most likely the data comes out
			 * of the page cache.
			 */
1171
			scrub_recheck_block(fs_info, sblock_bad, 1);
1172
			if (!sblock_bad->header_error &&
1173 1174 1175 1176 1177 1178 1179
			    !sblock_bad->checksum_error &&
			    sblock_bad->no_io_error_seen)
				goto corrected_error;
			else
				goto did_not_correct_error;
		} else {
corrected_error:
1180 1181
			spin_lock(&sctx->stat_lock);
			sctx->stat.corrected_errors++;
1182
			sblock_to_check->data_corrected = 1;
1183
			spin_unlock(&sctx->stat_lock);
1184 1185
			btrfs_err_rl_in_rcu(fs_info,
				"fixed up error at logical %llu on dev %s",
1186
				logical, rcu_str_deref(dev->name));
A
Arne Jansen 已提交
1187
		}
1188 1189
	} else {
did_not_correct_error:
1190 1191 1192
		spin_lock(&sctx->stat_lock);
		sctx->stat.uncorrectable_errors++;
		spin_unlock(&sctx->stat_lock);
1193 1194
		btrfs_err_rl_in_rcu(fs_info,
			"unable to fixup (regular) error at logical %llu on dev %s",
1195
			logical, rcu_str_deref(dev->name));
I
Ilya Dryomov 已提交
1196
	}
A
Arne Jansen 已提交
1197

1198 1199 1200 1201 1202 1203
out:
	if (sblocks_for_recheck) {
		for (mirror_index = 0; mirror_index < BTRFS_MAX_MIRRORS;
		     mirror_index++) {
			struct scrub_block *sblock = sblocks_for_recheck +
						     mirror_index;
1204
			struct scrub_recover *recover;
1205 1206
			int page_index;

1207 1208 1209
			for (page_index = 0; page_index < sblock->page_count;
			     page_index++) {
				sblock->pagev[page_index]->sblock = NULL;
1210 1211
				recover = sblock->pagev[page_index]->recover;
				if (recover) {
1212
					scrub_put_recover(fs_info, recover);
1213 1214 1215
					sblock->pagev[page_index]->recover =
									NULL;
				}
1216 1217
				scrub_page_put(sblock->pagev[page_index]);
			}
1218 1219 1220
		}
		kfree(sblocks_for_recheck);
	}
A
Arne Jansen 已提交
1221

1222
	ret = unlock_full_stripe(fs_info, logical, full_stripe_locked);
1223
	memalloc_nofs_restore(nofs_flag);
1224 1225
	if (ret < 0)
		return ret;
1226 1227
	return 0;
}
A
Arne Jansen 已提交
1228

1229
static inline int scrub_nr_raid_mirrors(struct btrfs_bio *bbio)
1230
{
Z
Zhao Lei 已提交
1231 1232 1233 1234 1235
	if (bbio->map_type & BTRFS_BLOCK_GROUP_RAID5)
		return 2;
	else if (bbio->map_type & BTRFS_BLOCK_GROUP_RAID6)
		return 3;
	else
1236 1237 1238
		return (int)bbio->num_stripes;
}

Z
Zhao Lei 已提交
1239 1240
static inline void scrub_stripe_index_and_offset(u64 logical, u64 map_type,
						 u64 *raid_map,
1241 1242 1243 1244 1245 1246 1247
						 u64 mapped_length,
						 int nstripes, int mirror,
						 int *stripe_index,
						 u64 *stripe_offset)
{
	int i;

1248
	if (map_type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268
		/* RAID5/6 */
		for (i = 0; i < nstripes; i++) {
			if (raid_map[i] == RAID6_Q_STRIPE ||
			    raid_map[i] == RAID5_P_STRIPE)
				continue;

			if (logical >= raid_map[i] &&
			    logical < raid_map[i] + mapped_length)
				break;
		}

		*stripe_index = i;
		*stripe_offset = logical - raid_map[i];
	} else {
		/* The other RAID type */
		*stripe_index = mirror;
		*stripe_offset = 0;
	}
}

1269
static int scrub_setup_recheck_block(struct scrub_block *original_sblock,
1270 1271
				     struct scrub_block *sblocks_for_recheck)
{
1272
	struct scrub_ctx *sctx = original_sblock->sctx;
1273
	struct btrfs_fs_info *fs_info = sctx->fs_info;
1274 1275
	u64 length = original_sblock->page_count * PAGE_SIZE;
	u64 logical = original_sblock->pagev[0]->logical;
1276 1277 1278
	u64 generation = original_sblock->pagev[0]->generation;
	u64 flags = original_sblock->pagev[0]->flags;
	u64 have_csum = original_sblock->pagev[0]->have_csum;
1279 1280 1281 1282 1283 1284
	struct scrub_recover *recover;
	struct btrfs_bio *bbio;
	u64 sublen;
	u64 mapped_length;
	u64 stripe_offset;
	int stripe_index;
1285
	int page_index = 0;
1286
	int mirror_index;
1287
	int nmirrors;
1288 1289 1290
	int ret;

	/*
1291
	 * note: the two members refs and outstanding_pages
1292 1293 1294 1295 1296
	 * are not used (and not set) in the blocks that are used for
	 * the recheck procedure
	 */

	while (length > 0) {
1297 1298 1299
		sublen = min_t(u64, length, PAGE_SIZE);
		mapped_length = sublen;
		bbio = NULL;
A
Arne Jansen 已提交
1300

1301 1302 1303 1304
		/*
		 * with a length of PAGE_SIZE, each returned stripe
		 * represents one mirror
		 */
1305
		btrfs_bio_counter_inc_blocked(fs_info);
1306
		ret = btrfs_map_sblock(fs_info, BTRFS_MAP_GET_READ_MIRRORS,
1307
				logical, &mapped_length, &bbio);
1308
		if (ret || !bbio || mapped_length < sublen) {
1309
			btrfs_put_bbio(bbio);
1310
			btrfs_bio_counter_dec(fs_info);
1311 1312
			return -EIO;
		}
A
Arne Jansen 已提交
1313

1314 1315
		recover = kzalloc(sizeof(struct scrub_recover), GFP_NOFS);
		if (!recover) {
1316
			btrfs_put_bbio(bbio);
1317
			btrfs_bio_counter_dec(fs_info);
1318 1319 1320
			return -ENOMEM;
		}

1321
		refcount_set(&recover->refs, 1);
1322 1323 1324
		recover->bbio = bbio;
		recover->map_length = mapped_length;

1325
		BUG_ON(page_index >= SCRUB_MAX_PAGES_PER_BLOCK);
1326

1327
		nmirrors = min(scrub_nr_raid_mirrors(bbio), BTRFS_MAX_MIRRORS);
Z
Zhao Lei 已提交
1328

1329
		for (mirror_index = 0; mirror_index < nmirrors;
1330 1331 1332 1333 1334
		     mirror_index++) {
			struct scrub_block *sblock;
			struct scrub_page *page;

			sblock = sblocks_for_recheck + mirror_index;
1335
			sblock->sctx = sctx;
1336

1337 1338 1339
			page = kzalloc(sizeof(*page), GFP_NOFS);
			if (!page) {
leave_nomem:
1340 1341 1342
				spin_lock(&sctx->stat_lock);
				sctx->stat.malloc_errors++;
				spin_unlock(&sctx->stat_lock);
1343
				scrub_put_recover(fs_info, recover);
1344 1345
				return -ENOMEM;
			}
1346 1347
			scrub_page_get(page);
			sblock->pagev[page_index] = page;
1348 1349 1350
			page->sblock = sblock;
			page->flags = flags;
			page->generation = generation;
1351
			page->logical = logical;
1352 1353 1354 1355 1356
			page->have_csum = have_csum;
			if (have_csum)
				memcpy(page->csum,
				       original_sblock->pagev[0]->csum,
				       sctx->csum_size);
1357

Z
Zhao Lei 已提交
1358 1359 1360
			scrub_stripe_index_and_offset(logical,
						      bbio->map_type,
						      bbio->raid_map,
1361
						      mapped_length,
1362 1363
						      bbio->num_stripes -
						      bbio->num_tgtdevs,
1364 1365 1366 1367 1368 1369 1370
						      mirror_index,
						      &stripe_index,
						      &stripe_offset);
			page->physical = bbio->stripes[stripe_index].physical +
					 stripe_offset;
			page->dev = bbio->stripes[stripe_index].dev;

1371 1372 1373 1374
			BUG_ON(page_index >= original_sblock->page_count);
			page->physical_for_dev_replace =
				original_sblock->pagev[page_index]->
				physical_for_dev_replace;
1375 1376
			/* for missing devices, dev->bdev is NULL */
			page->mirror_num = mirror_index + 1;
1377
			sblock->page_count++;
1378 1379 1380
			page->page = alloc_page(GFP_NOFS);
			if (!page->page)
				goto leave_nomem;
1381 1382 1383

			scrub_get_recover(recover);
			page->recover = recover;
1384
		}
1385
		scrub_put_recover(fs_info, recover);
1386 1387 1388 1389 1390 1391
		length -= sublen;
		logical += sublen;
		page_index++;
	}

	return 0;
I
Ilya Dryomov 已提交
1392 1393
}

1394
static void scrub_bio_wait_endio(struct bio *bio)
1395
{
1396
	complete(bio->bi_private);
1397 1398 1399 1400 1401 1402
}

static int scrub_submit_raid56_bio_wait(struct btrfs_fs_info *fs_info,
					struct bio *bio,
					struct scrub_page *page)
{
1403
	DECLARE_COMPLETION_ONSTACK(done);
1404
	int ret;
1405
	int mirror_num;
1406 1407 1408 1409 1410

	bio->bi_iter.bi_sector = page->logical >> 9;
	bio->bi_private = &done;
	bio->bi_end_io = scrub_bio_wait_endio;

1411
	mirror_num = page->sblock->pagev[0]->mirror_num;
1412
	ret = raid56_parity_recover(fs_info, bio, page->recover->bbio,
1413
				    page->recover->map_length,
1414
				    mirror_num, 0);
1415 1416 1417
	if (ret)
		return ret;

1418 1419
	wait_for_completion_io(&done);
	return blk_status_to_errno(bio->bi_status);
1420 1421
}

L
Liu Bo 已提交
1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460
static void scrub_recheck_block_on_raid56(struct btrfs_fs_info *fs_info,
					  struct scrub_block *sblock)
{
	struct scrub_page *first_page = sblock->pagev[0];
	struct bio *bio;
	int page_num;

	/* All pages in sblock belong to the same stripe on the same device. */
	ASSERT(first_page->dev);
	if (!first_page->dev->bdev)
		goto out;

	bio = btrfs_io_bio_alloc(BIO_MAX_PAGES);
	bio_set_dev(bio, first_page->dev->bdev);

	for (page_num = 0; page_num < sblock->page_count; page_num++) {
		struct scrub_page *page = sblock->pagev[page_num];

		WARN_ON(!page->page);
		bio_add_page(bio, page->page, PAGE_SIZE, 0);
	}

	if (scrub_submit_raid56_bio_wait(fs_info, bio, first_page)) {
		bio_put(bio);
		goto out;
	}

	bio_put(bio);

	scrub_recheck_block_checksum(sblock);

	return;
out:
	for (page_num = 0; page_num < sblock->page_count; page_num++)
		sblock->pagev[page_num]->io_error = 1;

	sblock->no_io_error_seen = 0;
}

1461 1462 1463 1464 1465 1466 1467
/*
 * this function will check the on disk data for checksum errors, header
 * errors and read I/O errors. If any I/O errors happen, the exact pages
 * which are errored are marked as being bad. The goal is to enable scrub
 * to take those pages that are not errored from all the mirrors so that
 * the pages that are errored in the just handled mirror can be repaired.
 */
1468
static void scrub_recheck_block(struct btrfs_fs_info *fs_info,
1469 1470
				struct scrub_block *sblock,
				int retry_failed_mirror)
I
Ilya Dryomov 已提交
1471
{
1472
	int page_num;
I
Ilya Dryomov 已提交
1473

1474
	sblock->no_io_error_seen = 1;
I
Ilya Dryomov 已提交
1475

L
Liu Bo 已提交
1476 1477 1478 1479
	/* short cut for raid56 */
	if (!retry_failed_mirror && scrub_is_page_on_raid56(sblock->pagev[0]))
		return scrub_recheck_block_on_raid56(fs_info, sblock);

1480 1481
	for (page_num = 0; page_num < sblock->page_count; page_num++) {
		struct bio *bio;
1482
		struct scrub_page *page = sblock->pagev[page_num];
1483

1484
		if (page->dev->bdev == NULL) {
1485 1486 1487 1488 1489
			page->io_error = 1;
			sblock->no_io_error_seen = 0;
			continue;
		}

1490
		WARN_ON(!page->page);
1491
		bio = btrfs_io_bio_alloc(1);
1492
		bio_set_dev(bio, page->dev->bdev);
1493

1494
		bio_add_page(bio, page->page, PAGE_SIZE, 0);
L
Liu Bo 已提交
1495 1496
		bio->bi_iter.bi_sector = page->physical >> 9;
		bio->bi_opf = REQ_OP_READ;
1497

L
Liu Bo 已提交
1498 1499 1500
		if (btrfsic_submit_bio_wait(bio)) {
			page->io_error = 1;
			sblock->no_io_error_seen = 0;
1501
		}
1502

1503 1504
		bio_put(bio);
	}
I
Ilya Dryomov 已提交
1505

1506
	if (sblock->no_io_error_seen)
1507
		scrub_recheck_block_checksum(sblock);
A
Arne Jansen 已提交
1508 1509
}

M
Miao Xie 已提交
1510 1511 1512 1513 1514 1515
static inline int scrub_check_fsid(u8 fsid[],
				   struct scrub_page *spage)
{
	struct btrfs_fs_devices *fs_devices = spage->dev->fs_devices;
	int ret;

1516
	ret = memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
M
Miao Xie 已提交
1517 1518 1519
	return !ret;
}

1520
static void scrub_recheck_block_checksum(struct scrub_block *sblock)
A
Arne Jansen 已提交
1521
{
1522 1523 1524
	sblock->header_error = 0;
	sblock->checksum_error = 0;
	sblock->generation_error = 0;
1525

1526 1527 1528 1529
	if (sblock->pagev[0]->flags & BTRFS_EXTENT_FLAG_DATA)
		scrub_checksum_data(sblock);
	else
		scrub_checksum_tree_block(sblock);
A
Arne Jansen 已提交
1530 1531
}

1532
static int scrub_repair_block_from_good_copy(struct scrub_block *sblock_bad,
1533
					     struct scrub_block *sblock_good)
1534 1535 1536
{
	int page_num;
	int ret = 0;
I
Ilya Dryomov 已提交
1537

1538 1539
	for (page_num = 0; page_num < sblock_bad->page_count; page_num++) {
		int ret_sub;
I
Ilya Dryomov 已提交
1540

1541 1542
		ret_sub = scrub_repair_page_from_good_copy(sblock_bad,
							   sblock_good,
1543
							   page_num, 1);
1544 1545
		if (ret_sub)
			ret = ret_sub;
A
Arne Jansen 已提交
1546
	}
1547 1548 1549 1550 1551 1552 1553 1554

	return ret;
}

static int scrub_repair_page_from_good_copy(struct scrub_block *sblock_bad,
					    struct scrub_block *sblock_good,
					    int page_num, int force_write)
{
1555 1556
	struct scrub_page *page_bad = sblock_bad->pagev[page_num];
	struct scrub_page *page_good = sblock_good->pagev[page_num];
1557
	struct btrfs_fs_info *fs_info = sblock_bad->sctx->fs_info;
1558

1559 1560
	BUG_ON(page_bad->page == NULL);
	BUG_ON(page_good->page == NULL);
1561 1562 1563 1564 1565
	if (force_write || sblock_bad->header_error ||
	    sblock_bad->checksum_error || page_bad->io_error) {
		struct bio *bio;
		int ret;

1566
		if (!page_bad->dev->bdev) {
1567
			btrfs_warn_rl(fs_info,
J
Jeff Mahoney 已提交
1568
				"scrub_repair_page_from_good_copy(bdev == NULL) is unexpected");
1569 1570 1571
			return -EIO;
		}

1572
		bio = btrfs_io_bio_alloc(1);
1573
		bio_set_dev(bio, page_bad->dev->bdev);
1574
		bio->bi_iter.bi_sector = page_bad->physical >> 9;
D
David Sterba 已提交
1575
		bio->bi_opf = REQ_OP_WRITE;
1576 1577 1578 1579 1580

		ret = bio_add_page(bio, page_good->page, PAGE_SIZE, 0);
		if (PAGE_SIZE != ret) {
			bio_put(bio);
			return -EIO;
1581
		}
1582

1583
		if (btrfsic_submit_bio_wait(bio)) {
1584 1585
			btrfs_dev_stat_inc_and_print(page_bad->dev,
				BTRFS_DEV_STAT_WRITE_ERRS);
1586
			atomic64_inc(&fs_info->dev_replace.num_write_errors);
1587 1588 1589
			bio_put(bio);
			return -EIO;
		}
1590
		bio_put(bio);
A
Arne Jansen 已提交
1591 1592
	}

1593 1594 1595
	return 0;
}

1596 1597
static void scrub_write_block_to_dev_replace(struct scrub_block *sblock)
{
1598
	struct btrfs_fs_info *fs_info = sblock->sctx->fs_info;
1599 1600
	int page_num;

1601 1602 1603 1604 1605 1606 1607
	/*
	 * This block is used for the check of the parity on the source device,
	 * so the data needn't be written into the destination device.
	 */
	if (sblock->sparity)
		return;

1608 1609 1610 1611 1612
	for (page_num = 0; page_num < sblock->page_count; page_num++) {
		int ret;

		ret = scrub_write_page_to_dev_replace(sblock, page_num);
		if (ret)
1613
			atomic64_inc(&fs_info->dev_replace.num_write_errors);
1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625
	}
}

static int scrub_write_page_to_dev_replace(struct scrub_block *sblock,
					   int page_num)
{
	struct scrub_page *spage = sblock->pagev[page_num];

	BUG_ON(spage->page == NULL);
	if (spage->io_error) {
		void *mapped_buffer = kmap_atomic(spage->page);

1626
		clear_page(mapped_buffer);
1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638
		flush_dcache_page(spage->page);
		kunmap_atomic(mapped_buffer);
	}
	return scrub_add_page_to_wr_bio(sblock->sctx, spage);
}

static int scrub_add_page_to_wr_bio(struct scrub_ctx *sctx,
				    struct scrub_page *spage)
{
	struct scrub_bio *sbio;
	int ret;

1639
	mutex_lock(&sctx->wr_lock);
1640
again:
1641 1642
	if (!sctx->wr_curr_bio) {
		sctx->wr_curr_bio = kzalloc(sizeof(*sctx->wr_curr_bio),
1643
					      GFP_KERNEL);
1644 1645
		if (!sctx->wr_curr_bio) {
			mutex_unlock(&sctx->wr_lock);
1646 1647
			return -ENOMEM;
		}
1648 1649
		sctx->wr_curr_bio->sctx = sctx;
		sctx->wr_curr_bio->page_count = 0;
1650
	}
1651
	sbio = sctx->wr_curr_bio;
1652 1653 1654 1655 1656
	if (sbio->page_count == 0) {
		struct bio *bio;

		sbio->physical = spage->physical_for_dev_replace;
		sbio->logical = spage->logical;
1657
		sbio->dev = sctx->wr_tgtdev;
1658 1659
		bio = sbio->bio;
		if (!bio) {
1660
			bio = btrfs_io_bio_alloc(sctx->pages_per_wr_bio);
1661 1662 1663 1664 1665
			sbio->bio = bio;
		}

		bio->bi_private = sbio;
		bio->bi_end_io = scrub_wr_bio_end_io;
1666
		bio_set_dev(bio, sbio->dev->bdev);
1667
		bio->bi_iter.bi_sector = sbio->physical >> 9;
D
David Sterba 已提交
1668
		bio->bi_opf = REQ_OP_WRITE;
1669
		sbio->status = 0;
1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682
	} else if (sbio->physical + sbio->page_count * PAGE_SIZE !=
		   spage->physical_for_dev_replace ||
		   sbio->logical + sbio->page_count * PAGE_SIZE !=
		   spage->logical) {
		scrub_wr_submit(sctx);
		goto again;
	}

	ret = bio_add_page(sbio->bio, spage->page, PAGE_SIZE, 0);
	if (ret != PAGE_SIZE) {
		if (sbio->page_count < 1) {
			bio_put(sbio->bio);
			sbio->bio = NULL;
1683
			mutex_unlock(&sctx->wr_lock);
1684 1685 1686 1687 1688 1689 1690 1691 1692
			return -EIO;
		}
		scrub_wr_submit(sctx);
		goto again;
	}

	sbio->pagev[sbio->page_count] = spage;
	scrub_page_get(spage);
	sbio->page_count++;
1693
	if (sbio->page_count == sctx->pages_per_wr_bio)
1694
		scrub_wr_submit(sctx);
1695
	mutex_unlock(&sctx->wr_lock);
1696 1697 1698 1699 1700 1701 1702 1703

	return 0;
}

static void scrub_wr_submit(struct scrub_ctx *sctx)
{
	struct scrub_bio *sbio;

1704
	if (!sctx->wr_curr_bio)
1705 1706
		return;

1707 1708
	sbio = sctx->wr_curr_bio;
	sctx->wr_curr_bio = NULL;
1709
	WARN_ON(!sbio->bio->bi_disk);
1710 1711 1712 1713 1714
	scrub_pending_bio_inc(sctx);
	/* process all writes in a single worker thread. Then the block layer
	 * orders the requests before sending them to the driver which
	 * doubled the write performance on spinning disks when measured
	 * with Linux 3.5 */
1715
	btrfsic_submit_bio(sbio->bio);
1716 1717
}

1718
static void scrub_wr_bio_end_io(struct bio *bio)
1719 1720
{
	struct scrub_bio *sbio = bio->bi_private;
1721
	struct btrfs_fs_info *fs_info = sbio->dev->fs_info;
1722

1723
	sbio->status = bio->bi_status;
1724 1725
	sbio->bio = bio;

1726
	btrfs_init_work(&sbio->work, scrub_wr_bio_end_io_worker, NULL, NULL);
1727
	btrfs_queue_work(fs_info->scrub_wr_completion_workers, &sbio->work);
1728 1729 1730 1731 1732 1733 1734 1735 1736
}

static void scrub_wr_bio_end_io_worker(struct btrfs_work *work)
{
	struct scrub_bio *sbio = container_of(work, struct scrub_bio, work);
	struct scrub_ctx *sctx = sbio->sctx;
	int i;

	WARN_ON(sbio->page_count > SCRUB_PAGES_PER_WR_BIO);
1737
	if (sbio->status) {
1738
		struct btrfs_dev_replace *dev_replace =
1739
			&sbio->sctx->fs_info->dev_replace;
1740 1741 1742 1743 1744

		for (i = 0; i < sbio->page_count; i++) {
			struct scrub_page *spage = sbio->pagev[i];

			spage->io_error = 1;
1745
			atomic64_inc(&dev_replace->num_write_errors);
1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757
		}
	}

	for (i = 0; i < sbio->page_count; i++)
		scrub_page_put(sbio->pagev[i]);

	bio_put(sbio->bio);
	kfree(sbio);
	scrub_pending_bio_dec(sctx);
}

static int scrub_checksum(struct scrub_block *sblock)
1758 1759 1760 1761
{
	u64 flags;
	int ret;

1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773
	/*
	 * No need to initialize these stats currently,
	 * because this function only use return value
	 * instead of these stats value.
	 *
	 * Todo:
	 * always use stats
	 */
	sblock->header_error = 0;
	sblock->generation_error = 0;
	sblock->checksum_error = 0;

1774 1775
	WARN_ON(sblock->page_count < 1);
	flags = sblock->pagev[0]->flags;
1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786
	ret = 0;
	if (flags & BTRFS_EXTENT_FLAG_DATA)
		ret = scrub_checksum_data(sblock);
	else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)
		ret = scrub_checksum_tree_block(sblock);
	else if (flags & BTRFS_EXTENT_FLAG_SUPER)
		(void)scrub_checksum_super(sblock);
	else
		WARN_ON(1);
	if (ret)
		scrub_handle_errored_block(sblock);
1787 1788

	return ret;
A
Arne Jansen 已提交
1789 1790
}

1791
static int scrub_checksum_data(struct scrub_block *sblock)
A
Arne Jansen 已提交
1792
{
1793
	struct scrub_ctx *sctx = sblock->sctx;
1794 1795
	struct btrfs_fs_info *fs_info = sctx->fs_info;
	SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
A
Arne Jansen 已提交
1796
	u8 csum[BTRFS_CSUM_SIZE];
1797 1798 1799 1800 1801
	u8 *on_disk_csum;
	struct page *page;
	void *buffer;
	u64 len;
	int index;
A
Arne Jansen 已提交
1802

1803
	BUG_ON(sblock->page_count < 1);
1804
	if (!sblock->pagev[0]->have_csum)
A
Arne Jansen 已提交
1805 1806
		return 0;

1807 1808 1809
	shash->tfm = fs_info->csum_shash;
	crypto_shash_init(shash);

1810 1811
	on_disk_csum = sblock->pagev[0]->csum;
	page = sblock->pagev[0]->page;
1812
	buffer = kmap_atomic(page);
1813

1814
	len = sctx->fs_info->sectorsize;
1815 1816 1817 1818
	index = 0;
	for (;;) {
		u64 l = min_t(u64, len, PAGE_SIZE);

1819
		crypto_shash_update(shash, buffer, l);
1820
		kunmap_atomic(buffer);
1821 1822 1823 1824 1825
		len -= l;
		if (len == 0)
			break;
		index++;
		BUG_ON(index >= sblock->page_count);
1826 1827
		BUG_ON(!sblock->pagev[index]->page);
		page = sblock->pagev[index]->page;
1828
		buffer = kmap_atomic(page);
1829 1830
	}

1831
	crypto_shash_final(shash, csum);
1832
	if (memcmp(csum, on_disk_csum, sctx->csum_size))
1833
		sblock->checksum_error = 1;
A
Arne Jansen 已提交
1834

1835
	return sblock->checksum_error;
A
Arne Jansen 已提交
1836 1837
}

1838
static int scrub_checksum_tree_block(struct scrub_block *sblock)
A
Arne Jansen 已提交
1839
{
1840
	struct scrub_ctx *sctx = sblock->sctx;
A
Arne Jansen 已提交
1841
	struct btrfs_header *h;
1842
	struct btrfs_fs_info *fs_info = sctx->fs_info;
1843
	SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
1844 1845 1846 1847 1848 1849 1850 1851 1852
	u8 calculated_csum[BTRFS_CSUM_SIZE];
	u8 on_disk_csum[BTRFS_CSUM_SIZE];
	struct page *page;
	void *mapped_buffer;
	u64 mapped_size;
	void *p;
	u64 len;
	int index;

1853 1854 1855
	shash->tfm = fs_info->csum_shash;
	crypto_shash_init(shash);

1856
	BUG_ON(sblock->page_count < 1);
1857
	page = sblock->pagev[0]->page;
1858
	mapped_buffer = kmap_atomic(page);
1859
	h = (struct btrfs_header *)mapped_buffer;
1860
	memcpy(on_disk_csum, h->csum, sctx->csum_size);
A
Arne Jansen 已提交
1861 1862 1863 1864 1865 1866

	/*
	 * we don't use the getter functions here, as we
	 * a) don't have an extent buffer and
	 * b) the page is already kmapped
	 */
1867
	if (sblock->pagev[0]->logical != btrfs_stack_header_bytenr(h))
1868
		sblock->header_error = 1;
A
Arne Jansen 已提交
1869

1870 1871 1872 1873
	if (sblock->pagev[0]->generation != btrfs_stack_header_generation(h)) {
		sblock->header_error = 1;
		sblock->generation_error = 1;
	}
A
Arne Jansen 已提交
1874

M
Miao Xie 已提交
1875
	if (!scrub_check_fsid(h->fsid, sblock->pagev[0]))
1876
		sblock->header_error = 1;
A
Arne Jansen 已提交
1877 1878 1879

	if (memcmp(h->chunk_tree_uuid, fs_info->chunk_tree_uuid,
		   BTRFS_UUID_SIZE))
1880
		sblock->header_error = 1;
A
Arne Jansen 已提交
1881

1882
	len = sctx->fs_info->nodesize - BTRFS_CSUM_SIZE;
1883 1884 1885 1886 1887 1888
	mapped_size = PAGE_SIZE - BTRFS_CSUM_SIZE;
	p = ((u8 *)mapped_buffer) + BTRFS_CSUM_SIZE;
	index = 0;
	for (;;) {
		u64 l = min_t(u64, len, mapped_size);

1889
		crypto_shash_update(shash, p, l);
1890
		kunmap_atomic(mapped_buffer);
1891 1892 1893 1894 1895
		len -= l;
		if (len == 0)
			break;
		index++;
		BUG_ON(index >= sblock->page_count);
1896 1897
		BUG_ON(!sblock->pagev[index]->page);
		page = sblock->pagev[index]->page;
1898
		mapped_buffer = kmap_atomic(page);
1899 1900 1901 1902
		mapped_size = PAGE_SIZE;
		p = mapped_buffer;
	}

1903
	crypto_shash_final(shash, calculated_csum);
1904
	if (memcmp(calculated_csum, on_disk_csum, sctx->csum_size))
1905
		sblock->checksum_error = 1;
A
Arne Jansen 已提交
1906

1907
	return sblock->header_error || sblock->checksum_error;
A
Arne Jansen 已提交
1908 1909
}

1910
static int scrub_checksum_super(struct scrub_block *sblock)
A
Arne Jansen 已提交
1911 1912
{
	struct btrfs_super_block *s;
1913
	struct scrub_ctx *sctx = sblock->sctx;
1914 1915
	struct btrfs_fs_info *fs_info = sctx->fs_info;
	SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
1916 1917 1918 1919 1920 1921
	u8 calculated_csum[BTRFS_CSUM_SIZE];
	u8 on_disk_csum[BTRFS_CSUM_SIZE];
	struct page *page;
	void *mapped_buffer;
	u64 mapped_size;
	void *p;
1922 1923
	int fail_gen = 0;
	int fail_cor = 0;
1924 1925
	u64 len;
	int index;
A
Arne Jansen 已提交
1926

1927 1928 1929
	shash->tfm = fs_info->csum_shash;
	crypto_shash_init(shash);

1930
	BUG_ON(sblock->page_count < 1);
1931
	page = sblock->pagev[0]->page;
1932
	mapped_buffer = kmap_atomic(page);
1933
	s = (struct btrfs_super_block *)mapped_buffer;
1934
	memcpy(on_disk_csum, s->csum, sctx->csum_size);
A
Arne Jansen 已提交
1935

1936
	if (sblock->pagev[0]->logical != btrfs_super_bytenr(s))
1937
		++fail_cor;
A
Arne Jansen 已提交
1938

1939
	if (sblock->pagev[0]->generation != btrfs_super_generation(s))
1940
		++fail_gen;
A
Arne Jansen 已提交
1941

M
Miao Xie 已提交
1942
	if (!scrub_check_fsid(s->fsid, sblock->pagev[0]))
1943
		++fail_cor;
A
Arne Jansen 已提交
1944

1945 1946 1947 1948 1949 1950 1951
	len = BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE;
	mapped_size = PAGE_SIZE - BTRFS_CSUM_SIZE;
	p = ((u8 *)mapped_buffer) + BTRFS_CSUM_SIZE;
	index = 0;
	for (;;) {
		u64 l = min_t(u64, len, mapped_size);

1952
		crypto_shash_update(shash, p, l);
1953
		kunmap_atomic(mapped_buffer);
1954 1955 1956 1957 1958
		len -= l;
		if (len == 0)
			break;
		index++;
		BUG_ON(index >= sblock->page_count);
1959 1960
		BUG_ON(!sblock->pagev[index]->page);
		page = sblock->pagev[index]->page;
1961
		mapped_buffer = kmap_atomic(page);
1962 1963 1964 1965
		mapped_size = PAGE_SIZE;
		p = mapped_buffer;
	}

1966
	crypto_shash_final(shash, calculated_csum);
1967
	if (memcmp(calculated_csum, on_disk_csum, sctx->csum_size))
1968
		++fail_cor;
A
Arne Jansen 已提交
1969

1970
	if (fail_cor + fail_gen) {
A
Arne Jansen 已提交
1971 1972 1973 1974 1975
		/*
		 * if we find an error in a super block, we just report it.
		 * They will get written with the next transaction commit
		 * anyway
		 */
1976 1977 1978
		spin_lock(&sctx->stat_lock);
		++sctx->stat.super_errors;
		spin_unlock(&sctx->stat_lock);
1979
		if (fail_cor)
1980
			btrfs_dev_stat_inc_and_print(sblock->pagev[0]->dev,
1981 1982
				BTRFS_DEV_STAT_CORRUPTION_ERRS);
		else
1983
			btrfs_dev_stat_inc_and_print(sblock->pagev[0]->dev,
1984
				BTRFS_DEV_STAT_GENERATION_ERRS);
A
Arne Jansen 已提交
1985 1986
	}

1987
	return fail_cor + fail_gen;
A
Arne Jansen 已提交
1988 1989
}

1990 1991
static void scrub_block_get(struct scrub_block *sblock)
{
1992
	refcount_inc(&sblock->refs);
1993 1994 1995 1996
}

static void scrub_block_put(struct scrub_block *sblock)
{
1997
	if (refcount_dec_and_test(&sblock->refs)) {
1998 1999
		int i;

2000 2001 2002
		if (sblock->sparity)
			scrub_parity_put(sblock->sparity);

2003
		for (i = 0; i < sblock->page_count; i++)
2004
			scrub_page_put(sblock->pagev[i]);
2005 2006 2007 2008
		kfree(sblock);
	}
}

2009 2010
static void scrub_page_get(struct scrub_page *spage)
{
2011
	atomic_inc(&spage->refs);
2012 2013 2014 2015
}

static void scrub_page_put(struct scrub_page *spage)
{
2016
	if (atomic_dec_and_test(&spage->refs)) {
2017 2018 2019 2020 2021 2022
		if (spage->page)
			__free_page(spage->page);
		kfree(spage);
	}
}

2023
static void scrub_submit(struct scrub_ctx *sctx)
A
Arne Jansen 已提交
2024 2025 2026
{
	struct scrub_bio *sbio;

2027
	if (sctx->curr == -1)
S
Stefan Behrens 已提交
2028
		return;
A
Arne Jansen 已提交
2029

2030 2031
	sbio = sctx->bios[sctx->curr];
	sctx->curr = -1;
2032
	scrub_pending_bio_inc(sctx);
2033
	btrfsic_submit_bio(sbio->bio);
A
Arne Jansen 已提交
2034 2035
}

2036 2037
static int scrub_add_page_to_rd_bio(struct scrub_ctx *sctx,
				    struct scrub_page *spage)
A
Arne Jansen 已提交
2038
{
2039
	struct scrub_block *sblock = spage->sblock;
A
Arne Jansen 已提交
2040
	struct scrub_bio *sbio;
2041
	int ret;
A
Arne Jansen 已提交
2042 2043 2044 2045 2046

again:
	/*
	 * grab a fresh bio or wait for one to become available
	 */
2047 2048 2049 2050 2051 2052 2053 2054
	while (sctx->curr == -1) {
		spin_lock(&sctx->list_lock);
		sctx->curr = sctx->first_free;
		if (sctx->curr != -1) {
			sctx->first_free = sctx->bios[sctx->curr]->next_free;
			sctx->bios[sctx->curr]->next_free = -1;
			sctx->bios[sctx->curr]->page_count = 0;
			spin_unlock(&sctx->list_lock);
A
Arne Jansen 已提交
2055
		} else {
2056 2057
			spin_unlock(&sctx->list_lock);
			wait_event(sctx->list_wait, sctx->first_free != -1);
A
Arne Jansen 已提交
2058 2059
		}
	}
2060
	sbio = sctx->bios[sctx->curr];
2061
	if (sbio->page_count == 0) {
2062 2063
		struct bio *bio;

2064 2065
		sbio->physical = spage->physical;
		sbio->logical = spage->logical;
2066
		sbio->dev = spage->dev;
2067 2068
		bio = sbio->bio;
		if (!bio) {
2069
			bio = btrfs_io_bio_alloc(sctx->pages_per_rd_bio);
2070 2071
			sbio->bio = bio;
		}
2072 2073 2074

		bio->bi_private = sbio;
		bio->bi_end_io = scrub_bio_end_io;
2075
		bio_set_dev(bio, sbio->dev->bdev);
2076
		bio->bi_iter.bi_sector = sbio->physical >> 9;
D
David Sterba 已提交
2077
		bio->bi_opf = REQ_OP_READ;
2078
		sbio->status = 0;
2079 2080 2081
	} else if (sbio->physical + sbio->page_count * PAGE_SIZE !=
		   spage->physical ||
		   sbio->logical + sbio->page_count * PAGE_SIZE !=
2082 2083
		   spage->logical ||
		   sbio->dev != spage->dev) {
2084
		scrub_submit(sctx);
A
Arne Jansen 已提交
2085 2086
		goto again;
	}
2087

2088 2089 2090 2091 2092 2093 2094 2095
	sbio->pagev[sbio->page_count] = spage;
	ret = bio_add_page(sbio->bio, spage->page, PAGE_SIZE, 0);
	if (ret != PAGE_SIZE) {
		if (sbio->page_count < 1) {
			bio_put(sbio->bio);
			sbio->bio = NULL;
			return -EIO;
		}
2096
		scrub_submit(sctx);
2097 2098 2099
		goto again;
	}

2100
	scrub_block_get(sblock); /* one for the page added to the bio */
2101 2102
	atomic_inc(&sblock->outstanding_pages);
	sbio->page_count++;
2103
	if (sbio->page_count == sctx->pages_per_rd_bio)
2104
		scrub_submit(sctx);
2105 2106 2107 2108

	return 0;
}

2109
static void scrub_missing_raid56_end_io(struct bio *bio)
2110 2111
{
	struct scrub_block *sblock = bio->bi_private;
2112
	struct btrfs_fs_info *fs_info = sblock->sctx->fs_info;
2113

2114
	if (bio->bi_status)
2115 2116
		sblock->no_io_error_seen = 0;

2117 2118
	bio_put(bio);

2119 2120 2121 2122 2123 2124 2125
	btrfs_queue_work(fs_info->scrub_workers, &sblock->work);
}

static void scrub_missing_raid56_worker(struct btrfs_work *work)
{
	struct scrub_block *sblock = container_of(work, struct scrub_block, work);
	struct scrub_ctx *sctx = sblock->sctx;
2126
	struct btrfs_fs_info *fs_info = sctx->fs_info;
2127 2128 2129 2130 2131 2132
	u64 logical;
	struct btrfs_device *dev;

	logical = sblock->pagev[0]->logical;
	dev = sblock->pagev[0]->dev;

2133
	if (sblock->no_io_error_seen)
2134
		scrub_recheck_block_checksum(sblock);
2135 2136 2137 2138 2139

	if (!sblock->no_io_error_seen) {
		spin_lock(&sctx->stat_lock);
		sctx->stat.read_errors++;
		spin_unlock(&sctx->stat_lock);
2140
		btrfs_err_rl_in_rcu(fs_info,
2141
			"IO error rebuilding logical %llu for dev %s",
2142 2143 2144 2145 2146
			logical, rcu_str_deref(dev->name));
	} else if (sblock->header_error || sblock->checksum_error) {
		spin_lock(&sctx->stat_lock);
		sctx->stat.uncorrectable_errors++;
		spin_unlock(&sctx->stat_lock);
2147
		btrfs_err_rl_in_rcu(fs_info,
2148
			"failed to rebuild valid logical %llu for dev %s",
2149 2150 2151 2152 2153
			logical, rcu_str_deref(dev->name));
	} else {
		scrub_write_block_to_dev_replace(sblock);
	}

2154
	if (sctx->is_dev_replace && sctx->flush_all_writes) {
2155
		mutex_lock(&sctx->wr_lock);
2156
		scrub_wr_submit(sctx);
2157
		mutex_unlock(&sctx->wr_lock);
2158 2159
	}

2160
	scrub_block_put(sblock);
2161 2162 2163 2164 2165 2166
	scrub_pending_bio_dec(sctx);
}

static void scrub_missing_raid56_pages(struct scrub_block *sblock)
{
	struct scrub_ctx *sctx = sblock->sctx;
2167
	struct btrfs_fs_info *fs_info = sctx->fs_info;
2168 2169
	u64 length = sblock->page_count * PAGE_SIZE;
	u64 logical = sblock->pagev[0]->logical;
2170
	struct btrfs_bio *bbio = NULL;
2171 2172 2173 2174 2175
	struct bio *bio;
	struct btrfs_raid_bio *rbio;
	int ret;
	int i;

2176
	btrfs_bio_counter_inc_blocked(fs_info);
2177
	ret = btrfs_map_sblock(fs_info, BTRFS_MAP_GET_READ_MIRRORS, logical,
2178
			&length, &bbio);
2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192
	if (ret || !bbio || !bbio->raid_map)
		goto bbio_out;

	if (WARN_ON(!sctx->is_dev_replace ||
		    !(bbio->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK))) {
		/*
		 * We shouldn't be scrubbing a missing device. Even for dev
		 * replace, we should only get here for RAID 5/6. We either
		 * managed to mount something with no mirrors remaining or
		 * there's a bug in scrub_remap_extent()/btrfs_map_block().
		 */
		goto bbio_out;
	}

2193
	bio = btrfs_io_bio_alloc(0);
2194 2195 2196 2197
	bio->bi_iter.bi_sector = logical >> 9;
	bio->bi_private = sblock;
	bio->bi_end_io = scrub_missing_raid56_end_io;

2198
	rbio = raid56_alloc_missing_rbio(fs_info, bio, bbio, length);
2199 2200 2201 2202 2203 2204 2205 2206 2207
	if (!rbio)
		goto rbio_out;

	for (i = 0; i < sblock->page_count; i++) {
		struct scrub_page *spage = sblock->pagev[i];

		raid56_add_scrub_pages(rbio, spage->page, spage->logical);
	}

2208
	btrfs_init_work(&sblock->work, scrub_missing_raid56_worker, NULL, NULL);
2209 2210 2211 2212 2213 2214 2215 2216
	scrub_block_get(sblock);
	scrub_pending_bio_inc(sctx);
	raid56_submit_missing_rbio(rbio);
	return;

rbio_out:
	bio_put(bio);
bbio_out:
2217
	btrfs_bio_counter_dec(fs_info);
2218 2219 2220 2221 2222 2223
	btrfs_put_bbio(bbio);
	spin_lock(&sctx->stat_lock);
	sctx->stat.malloc_errors++;
	spin_unlock(&sctx->stat_lock);
}

2224
static int scrub_pages(struct scrub_ctx *sctx, u64 logical, u64 len,
2225
		       u64 physical, struct btrfs_device *dev, u64 flags,
2226 2227
		       u64 gen, int mirror_num, u8 *csum, int force,
		       u64 physical_for_dev_replace)
2228 2229 2230 2231
{
	struct scrub_block *sblock;
	int index;

2232
	sblock = kzalloc(sizeof(*sblock), GFP_KERNEL);
2233
	if (!sblock) {
2234 2235 2236
		spin_lock(&sctx->stat_lock);
		sctx->stat.malloc_errors++;
		spin_unlock(&sctx->stat_lock);
2237
		return -ENOMEM;
A
Arne Jansen 已提交
2238
	}
2239

2240 2241
	/* one ref inside this function, plus one for each page added to
	 * a bio later on */
2242
	refcount_set(&sblock->refs, 1);
2243
	sblock->sctx = sctx;
2244 2245 2246
	sblock->no_io_error_seen = 1;

	for (index = 0; len > 0; index++) {
2247
		struct scrub_page *spage;
2248 2249
		u64 l = min_t(u64, len, PAGE_SIZE);

2250
		spage = kzalloc(sizeof(*spage), GFP_KERNEL);
2251 2252
		if (!spage) {
leave_nomem:
2253 2254 2255
			spin_lock(&sctx->stat_lock);
			sctx->stat.malloc_errors++;
			spin_unlock(&sctx->stat_lock);
2256
			scrub_block_put(sblock);
2257 2258
			return -ENOMEM;
		}
2259 2260 2261
		BUG_ON(index >= SCRUB_MAX_PAGES_PER_BLOCK);
		scrub_page_get(spage);
		sblock->pagev[index] = spage;
2262
		spage->sblock = sblock;
2263
		spage->dev = dev;
2264 2265 2266 2267
		spage->flags = flags;
		spage->generation = gen;
		spage->logical = logical;
		spage->physical = physical;
2268
		spage->physical_for_dev_replace = physical_for_dev_replace;
2269 2270 2271
		spage->mirror_num = mirror_num;
		if (csum) {
			spage->have_csum = 1;
2272
			memcpy(spage->csum, csum, sctx->csum_size);
2273 2274 2275 2276
		} else {
			spage->have_csum = 0;
		}
		sblock->page_count++;
2277
		spage->page = alloc_page(GFP_KERNEL);
2278 2279
		if (!spage->page)
			goto leave_nomem;
2280 2281 2282
		len -= l;
		logical += l;
		physical += l;
2283
		physical_for_dev_replace += l;
2284 2285
	}

2286
	WARN_ON(sblock->page_count == 0);
2287
	if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state)) {
2288 2289 2290 2291 2292 2293 2294 2295 2296
		/*
		 * This case should only be hit for RAID 5/6 device replace. See
		 * the comment in scrub_missing_raid56_pages() for details.
		 */
		scrub_missing_raid56_pages(sblock);
	} else {
		for (index = 0; index < sblock->page_count; index++) {
			struct scrub_page *spage = sblock->pagev[index];
			int ret;
2297

2298 2299 2300 2301 2302
			ret = scrub_add_page_to_rd_bio(sctx, spage);
			if (ret) {
				scrub_block_put(sblock);
				return ret;
			}
2303
		}
A
Arne Jansen 已提交
2304

2305 2306 2307
		if (force)
			scrub_submit(sctx);
	}
A
Arne Jansen 已提交
2308

2309 2310
	/* last one frees, either here or in bio completion for last page */
	scrub_block_put(sblock);
A
Arne Jansen 已提交
2311 2312 2313
	return 0;
}

2314
static void scrub_bio_end_io(struct bio *bio)
2315 2316
{
	struct scrub_bio *sbio = bio->bi_private;
2317
	struct btrfs_fs_info *fs_info = sbio->dev->fs_info;
2318

2319
	sbio->status = bio->bi_status;
2320 2321
	sbio->bio = bio;

2322
	btrfs_queue_work(fs_info->scrub_workers, &sbio->work);
2323 2324 2325 2326 2327
}

static void scrub_bio_end_io_worker(struct btrfs_work *work)
{
	struct scrub_bio *sbio = container_of(work, struct scrub_bio, work);
2328
	struct scrub_ctx *sctx = sbio->sctx;
2329 2330
	int i;

2331
	BUG_ON(sbio->page_count > SCRUB_PAGES_PER_RD_BIO);
2332
	if (sbio->status) {
2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352
		for (i = 0; i < sbio->page_count; i++) {
			struct scrub_page *spage = sbio->pagev[i];

			spage->io_error = 1;
			spage->sblock->no_io_error_seen = 0;
		}
	}

	/* now complete the scrub_block items that have all pages completed */
	for (i = 0; i < sbio->page_count; i++) {
		struct scrub_page *spage = sbio->pagev[i];
		struct scrub_block *sblock = spage->sblock;

		if (atomic_dec_and_test(&sblock->outstanding_pages))
			scrub_block_complete(sblock);
		scrub_block_put(sblock);
	}

	bio_put(sbio->bio);
	sbio->bio = NULL;
2353 2354 2355 2356
	spin_lock(&sctx->list_lock);
	sbio->next_free = sctx->first_free;
	sctx->first_free = sbio->index;
	spin_unlock(&sctx->list_lock);
2357

2358
	if (sctx->is_dev_replace && sctx->flush_all_writes) {
2359
		mutex_lock(&sctx->wr_lock);
2360
		scrub_wr_submit(sctx);
2361
		mutex_unlock(&sctx->wr_lock);
2362 2363
	}

2364
	scrub_pending_bio_dec(sctx);
2365 2366
}

2367 2368 2369 2370
static inline void __scrub_mark_bitmap(struct scrub_parity *sparity,
				       unsigned long *bitmap,
				       u64 start, u64 len)
{
2371
	u64 offset;
2372 2373
	u64 nsectors64;
	u32 nsectors;
2374
	int sectorsize = sparity->sctx->fs_info->sectorsize;
2375 2376 2377 2378 2379 2380 2381

	if (len >= sparity->stripe_len) {
		bitmap_set(bitmap, 0, sparity->nsectors);
		return;
	}

	start -= sparity->logic_start;
2382 2383
	start = div64_u64_rem(start, sparity->stripe_len, &offset);
	offset = div_u64(offset, sectorsize);
2384 2385 2386 2387
	nsectors64 = div_u64(len, sectorsize);

	ASSERT(nsectors64 < UINT_MAX);
	nsectors = (u32)nsectors64;
2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409

	if (offset + nsectors <= sparity->nsectors) {
		bitmap_set(bitmap, offset, nsectors);
		return;
	}

	bitmap_set(bitmap, offset, sparity->nsectors - offset);
	bitmap_set(bitmap, 0, nsectors - (sparity->nsectors - offset));
}

static inline void scrub_parity_mark_sectors_error(struct scrub_parity *sparity,
						   u64 start, u64 len)
{
	__scrub_mark_bitmap(sparity, sparity->ebitmap, start, len);
}

static inline void scrub_parity_mark_sectors_data(struct scrub_parity *sparity,
						  u64 start, u64 len)
{
	__scrub_mark_bitmap(sparity, sparity->dbitmap, start, len);
}

2410 2411
static void scrub_block_complete(struct scrub_block *sblock)
{
2412 2413
	int corrupted = 0;

2414
	if (!sblock->no_io_error_seen) {
2415
		corrupted = 1;
2416
		scrub_handle_errored_block(sblock);
2417 2418 2419 2420 2421 2422
	} else {
		/*
		 * if has checksum error, write via repair mechanism in
		 * dev replace case, otherwise write here in dev replace
		 * case.
		 */
2423 2424
		corrupted = scrub_checksum(sblock);
		if (!corrupted && sblock->sctx->is_dev_replace)
2425 2426
			scrub_write_block_to_dev_replace(sblock);
	}
2427 2428 2429 2430 2431 2432 2433 2434 2435

	if (sblock->sparity && corrupted && !sblock->data_corrected) {
		u64 start = sblock->pagev[0]->logical;
		u64 end = sblock->pagev[sblock->page_count - 1]->logical +
			  PAGE_SIZE;

		scrub_parity_mark_sectors_error(sblock->sparity,
						start, end - start);
	}
2436 2437
}

2438
static int scrub_find_csum(struct scrub_ctx *sctx, u64 logical, u8 *csum)
A
Arne Jansen 已提交
2439 2440
{
	struct btrfs_ordered_sum *sum = NULL;
2441
	unsigned long index;
A
Arne Jansen 已提交
2442 2443
	unsigned long num_sectors;

2444 2445
	while (!list_empty(&sctx->csum_list)) {
		sum = list_first_entry(&sctx->csum_list,
A
Arne Jansen 已提交
2446 2447 2448 2449 2450 2451
				       struct btrfs_ordered_sum, list);
		if (sum->bytenr > logical)
			return 0;
		if (sum->bytenr + sum->len > logical)
			break;

2452
		++sctx->stat.csum_discards;
A
Arne Jansen 已提交
2453 2454 2455 2456 2457 2458 2459
		list_del(&sum->list);
		kfree(sum);
		sum = NULL;
	}
	if (!sum)
		return 0;

2460 2461 2462
	index = div_u64(logical - sum->bytenr, sctx->fs_info->sectorsize);
	ASSERT(index < UINT_MAX);

2463
	num_sectors = sum->len / sctx->fs_info->sectorsize;
2464
	memcpy(csum, sum->sums + index * sctx->csum_size, sctx->csum_size);
2465
	if (index == num_sectors - 1) {
A
Arne Jansen 已提交
2466 2467 2468
		list_del(&sum->list);
		kfree(sum);
	}
2469
	return 1;
A
Arne Jansen 已提交
2470 2471 2472
}

/* scrub extent tries to collect up to 64 kB for each bio */
L
Liu Bo 已提交
2473 2474
static int scrub_extent(struct scrub_ctx *sctx, struct map_lookup *map,
			u64 logical, u64 len,
2475
			u64 physical, struct btrfs_device *dev, u64 flags,
2476
			u64 gen, int mirror_num, u64 physical_for_dev_replace)
A
Arne Jansen 已提交
2477 2478 2479
{
	int ret;
	u8 csum[BTRFS_CSUM_SIZE];
2480 2481 2482
	u32 blocksize;

	if (flags & BTRFS_EXTENT_FLAG_DATA) {
L
Liu Bo 已提交
2483 2484 2485 2486
		if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
			blocksize = map->stripe_len;
		else
			blocksize = sctx->fs_info->sectorsize;
2487 2488 2489 2490
		spin_lock(&sctx->stat_lock);
		sctx->stat.data_extents_scrubbed++;
		sctx->stat.data_bytes_scrubbed += len;
		spin_unlock(&sctx->stat_lock);
2491
	} else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
L
Liu Bo 已提交
2492 2493 2494 2495
		if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
			blocksize = map->stripe_len;
		else
			blocksize = sctx->fs_info->nodesize;
2496 2497 2498 2499
		spin_lock(&sctx->stat_lock);
		sctx->stat.tree_extents_scrubbed++;
		sctx->stat.tree_bytes_scrubbed += len;
		spin_unlock(&sctx->stat_lock);
2500
	} else {
2501
		blocksize = sctx->fs_info->sectorsize;
2502
		WARN_ON(1);
2503
	}
A
Arne Jansen 已提交
2504 2505

	while (len) {
2506
		u64 l = min_t(u64, len, blocksize);
A
Arne Jansen 已提交
2507 2508 2509 2510
		int have_csum = 0;

		if (flags & BTRFS_EXTENT_FLAG_DATA) {
			/* push csums to sbio */
2511
			have_csum = scrub_find_csum(sctx, logical, csum);
A
Arne Jansen 已提交
2512
			if (have_csum == 0)
2513
				++sctx->stat.no_csum;
A
Arne Jansen 已提交
2514
		}
2515
		ret = scrub_pages(sctx, logical, l, physical, dev, flags, gen,
2516 2517
				  mirror_num, have_csum ? csum : NULL, 0,
				  physical_for_dev_replace);
A
Arne Jansen 已提交
2518 2519 2520 2521 2522
		if (ret)
			return ret;
		len -= l;
		logical += l;
		physical += l;
2523
		physical_for_dev_replace += l;
A
Arne Jansen 已提交
2524 2525 2526 2527
	}
	return 0;
}

2528 2529 2530 2531 2532 2533 2534 2535 2536
static int scrub_pages_for_parity(struct scrub_parity *sparity,
				  u64 logical, u64 len,
				  u64 physical, struct btrfs_device *dev,
				  u64 flags, u64 gen, int mirror_num, u8 *csum)
{
	struct scrub_ctx *sctx = sparity->sctx;
	struct scrub_block *sblock;
	int index;

2537
	sblock = kzalloc(sizeof(*sblock), GFP_KERNEL);
2538 2539 2540 2541 2542 2543 2544 2545 2546
	if (!sblock) {
		spin_lock(&sctx->stat_lock);
		sctx->stat.malloc_errors++;
		spin_unlock(&sctx->stat_lock);
		return -ENOMEM;
	}

	/* one ref inside this function, plus one for each page added to
	 * a bio later on */
2547
	refcount_set(&sblock->refs, 1);
2548 2549 2550 2551 2552 2553 2554 2555 2556
	sblock->sctx = sctx;
	sblock->no_io_error_seen = 1;
	sblock->sparity = sparity;
	scrub_parity_get(sparity);

	for (index = 0; len > 0; index++) {
		struct scrub_page *spage;
		u64 l = min_t(u64, len, PAGE_SIZE);

2557
		spage = kzalloc(sizeof(*spage), GFP_KERNEL);
2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586
		if (!spage) {
leave_nomem:
			spin_lock(&sctx->stat_lock);
			sctx->stat.malloc_errors++;
			spin_unlock(&sctx->stat_lock);
			scrub_block_put(sblock);
			return -ENOMEM;
		}
		BUG_ON(index >= SCRUB_MAX_PAGES_PER_BLOCK);
		/* For scrub block */
		scrub_page_get(spage);
		sblock->pagev[index] = spage;
		/* For scrub parity */
		scrub_page_get(spage);
		list_add_tail(&spage->list, &sparity->spages);
		spage->sblock = sblock;
		spage->dev = dev;
		spage->flags = flags;
		spage->generation = gen;
		spage->logical = logical;
		spage->physical = physical;
		spage->mirror_num = mirror_num;
		if (csum) {
			spage->have_csum = 1;
			memcpy(spage->csum, csum, sctx->csum_size);
		} else {
			spage->have_csum = 0;
		}
		sblock->page_count++;
2587
		spage->page = alloc_page(GFP_KERNEL);
2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621
		if (!spage->page)
			goto leave_nomem;
		len -= l;
		logical += l;
		physical += l;
	}

	WARN_ON(sblock->page_count == 0);
	for (index = 0; index < sblock->page_count; index++) {
		struct scrub_page *spage = sblock->pagev[index];
		int ret;

		ret = scrub_add_page_to_rd_bio(sctx, spage);
		if (ret) {
			scrub_block_put(sblock);
			return ret;
		}
	}

	/* last one frees, either here or in bio completion for last page */
	scrub_block_put(sblock);
	return 0;
}

static int scrub_extent_for_parity(struct scrub_parity *sparity,
				   u64 logical, u64 len,
				   u64 physical, struct btrfs_device *dev,
				   u64 flags, u64 gen, int mirror_num)
{
	struct scrub_ctx *sctx = sparity->sctx;
	int ret;
	u8 csum[BTRFS_CSUM_SIZE];
	u32 blocksize;

2622
	if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state)) {
2623 2624 2625 2626
		scrub_parity_mark_sectors_error(sparity, logical, len);
		return 0;
	}

2627
	if (flags & BTRFS_EXTENT_FLAG_DATA) {
L
Liu Bo 已提交
2628
		blocksize = sparity->stripe_len;
2629
	} else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
L
Liu Bo 已提交
2630
		blocksize = sparity->stripe_len;
2631
	} else {
2632
		blocksize = sctx->fs_info->sectorsize;
2633 2634 2635 2636 2637 2638 2639 2640 2641
		WARN_ON(1);
	}

	while (len) {
		u64 l = min_t(u64, len, blocksize);
		int have_csum = 0;

		if (flags & BTRFS_EXTENT_FLAG_DATA) {
			/* push csums to sbio */
2642
			have_csum = scrub_find_csum(sctx, logical, csum);
2643 2644 2645 2646 2647 2648 2649 2650
			if (have_csum == 0)
				goto skip;
		}
		ret = scrub_pages_for_parity(sparity, logical, l, physical, dev,
					     flags, gen, mirror_num,
					     have_csum ? csum : NULL);
		if (ret)
			return ret;
2651
skip:
2652 2653 2654 2655 2656 2657 2658
		len -= l;
		logical += l;
		physical += l;
	}
	return 0;
}

2659 2660 2661 2662 2663 2664 2665 2666
/*
 * Given a physical address, this will calculate it's
 * logical offset. if this is a parity stripe, it will return
 * the most left data stripe's logical offset.
 *
 * return 0 if it is a data stripe, 1 means parity stripe.
 */
static int get_raid56_logic_offset(u64 physical, int num,
2667 2668
				   struct map_lookup *map, u64 *offset,
				   u64 *stripe_start)
2669 2670 2671 2672 2673
{
	int i;
	int j = 0;
	u64 stripe_nr;
	u64 last_offset;
2674 2675
	u32 stripe_index;
	u32 rot;
2676
	const int data_stripes = nr_data_stripes(map);
2677

2678
	last_offset = (physical - map->stripes[num].physical) * data_stripes;
2679 2680 2681
	if (stripe_start)
		*stripe_start = last_offset;

2682
	*offset = last_offset;
2683
	for (i = 0; i < data_stripes; i++) {
2684 2685
		*offset = last_offset + i * map->stripe_len;

2686
		stripe_nr = div64_u64(*offset, map->stripe_len);
2687
		stripe_nr = div_u64(stripe_nr, data_stripes);
2688 2689

		/* Work out the disk rotation on this stripe-set */
2690
		stripe_nr = div_u64_rem(stripe_nr, map->num_stripes, &rot);
2691 2692
		/* calculate which stripe this data locates */
		rot += i;
2693
		stripe_index = rot % map->num_stripes;
2694 2695 2696 2697 2698 2699 2700 2701 2702
		if (stripe_index == num)
			return 0;
		if (stripe_index < num)
			j++;
	}
	*offset = last_offset + j * map->stripe_len;
	return 1;
}

2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724
static void scrub_free_parity(struct scrub_parity *sparity)
{
	struct scrub_ctx *sctx = sparity->sctx;
	struct scrub_page *curr, *next;
	int nbits;

	nbits = bitmap_weight(sparity->ebitmap, sparity->nsectors);
	if (nbits) {
		spin_lock(&sctx->stat_lock);
		sctx->stat.read_errors += nbits;
		sctx->stat.uncorrectable_errors += nbits;
		spin_unlock(&sctx->stat_lock);
	}

	list_for_each_entry_safe(curr, next, &sparity->spages, list) {
		list_del_init(&curr->list);
		scrub_page_put(curr);
	}

	kfree(sparity);
}

2725 2726 2727 2728 2729 2730 2731 2732 2733 2734
static void scrub_parity_bio_endio_worker(struct btrfs_work *work)
{
	struct scrub_parity *sparity = container_of(work, struct scrub_parity,
						    work);
	struct scrub_ctx *sctx = sparity->sctx;

	scrub_free_parity(sparity);
	scrub_pending_bio_dec(sctx);
}

2735
static void scrub_parity_bio_endio(struct bio *bio)
2736 2737
{
	struct scrub_parity *sparity = (struct scrub_parity *)bio->bi_private;
2738
	struct btrfs_fs_info *fs_info = sparity->sctx->fs_info;
2739

2740
	if (bio->bi_status)
2741 2742 2743 2744
		bitmap_or(sparity->ebitmap, sparity->ebitmap, sparity->dbitmap,
			  sparity->nsectors);

	bio_put(bio);
2745

2746 2747
	btrfs_init_work(&sparity->work, scrub_parity_bio_endio_worker, NULL,
			NULL);
2748
	btrfs_queue_work(fs_info->scrub_parity_workers, &sparity->work);
2749 2750 2751 2752 2753
}

static void scrub_parity_check_and_repair(struct scrub_parity *sparity)
{
	struct scrub_ctx *sctx = sparity->sctx;
2754
	struct btrfs_fs_info *fs_info = sctx->fs_info;
2755 2756 2757 2758 2759 2760 2761 2762 2763 2764
	struct bio *bio;
	struct btrfs_raid_bio *rbio;
	struct btrfs_bio *bbio = NULL;
	u64 length;
	int ret;

	if (!bitmap_andnot(sparity->dbitmap, sparity->dbitmap, sparity->ebitmap,
			   sparity->nsectors))
		goto out;

2765
	length = sparity->logic_end - sparity->logic_start;
2766 2767

	btrfs_bio_counter_inc_blocked(fs_info);
2768
	ret = btrfs_map_sblock(fs_info, BTRFS_MAP_WRITE, sparity->logic_start,
2769
			       &length, &bbio);
2770
	if (ret || !bbio || !bbio->raid_map)
2771 2772
		goto bbio_out;

2773
	bio = btrfs_io_bio_alloc(0);
2774 2775 2776 2777
	bio->bi_iter.bi_sector = sparity->logic_start >> 9;
	bio->bi_private = sparity;
	bio->bi_end_io = scrub_parity_bio_endio;

2778
	rbio = raid56_parity_alloc_scrub_rbio(fs_info, bio, bbio,
2779
					      length, sparity->scrub_dev,
2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791
					      sparity->dbitmap,
					      sparity->nsectors);
	if (!rbio)
		goto rbio_out;

	scrub_pending_bio_inc(sctx);
	raid56_parity_submit_scrub_rbio(rbio);
	return;

rbio_out:
	bio_put(bio);
bbio_out:
2792
	btrfs_bio_counter_dec(fs_info);
2793
	btrfs_put_bbio(bbio);
2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804
	bitmap_or(sparity->ebitmap, sparity->ebitmap, sparity->dbitmap,
		  sparity->nsectors);
	spin_lock(&sctx->stat_lock);
	sctx->stat.malloc_errors++;
	spin_unlock(&sctx->stat_lock);
out:
	scrub_free_parity(sparity);
}

static inline int scrub_calc_parity_bitmap_len(int nsectors)
{
2805
	return DIV_ROUND_UP(nsectors, BITS_PER_LONG) * sizeof(long);
2806 2807 2808 2809
}

static void scrub_parity_get(struct scrub_parity *sparity)
{
2810
	refcount_inc(&sparity->refs);
2811 2812 2813 2814
}

static void scrub_parity_put(struct scrub_parity *sparity)
{
2815
	if (!refcount_dec_and_test(&sparity->refs))
2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827
		return;

	scrub_parity_check_and_repair(sparity);
}

static noinline_for_stack int scrub_raid56_parity(struct scrub_ctx *sctx,
						  struct map_lookup *map,
						  struct btrfs_device *sdev,
						  struct btrfs_path *path,
						  u64 logic_start,
						  u64 logic_end)
{
2828
	struct btrfs_fs_info *fs_info = sctx->fs_info;
2829 2830 2831
	struct btrfs_root *root = fs_info->extent_root;
	struct btrfs_root *csum_root = fs_info->csum_root;
	struct btrfs_extent_item *extent;
2832
	struct btrfs_bio *bbio = NULL;
2833 2834 2835 2836 2837 2838 2839 2840 2841
	u64 flags;
	int ret;
	int slot;
	struct extent_buffer *l;
	struct btrfs_key key;
	u64 generation;
	u64 extent_logical;
	u64 extent_physical;
	u64 extent_len;
2842
	u64 mapped_length;
2843 2844 2845 2846 2847 2848 2849
	struct btrfs_device *extent_dev;
	struct scrub_parity *sparity;
	int nsectors;
	int bitmap_len;
	int extent_mirror_num;
	int stop_loop = 0;

2850
	nsectors = div_u64(map->stripe_len, fs_info->sectorsize);
2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866
	bitmap_len = scrub_calc_parity_bitmap_len(nsectors);
	sparity = kzalloc(sizeof(struct scrub_parity) + 2 * bitmap_len,
			  GFP_NOFS);
	if (!sparity) {
		spin_lock(&sctx->stat_lock);
		sctx->stat.malloc_errors++;
		spin_unlock(&sctx->stat_lock);
		return -ENOMEM;
	}

	sparity->stripe_len = map->stripe_len;
	sparity->nsectors = nsectors;
	sparity->sctx = sctx;
	sparity->scrub_dev = sdev;
	sparity->logic_start = logic_start;
	sparity->logic_end = logic_end;
2867
	refcount_set(&sparity->refs, 1);
2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915
	INIT_LIST_HEAD(&sparity->spages);
	sparity->dbitmap = sparity->bitmap;
	sparity->ebitmap = (void *)sparity->bitmap + bitmap_len;

	ret = 0;
	while (logic_start < logic_end) {
		if (btrfs_fs_incompat(fs_info, SKINNY_METADATA))
			key.type = BTRFS_METADATA_ITEM_KEY;
		else
			key.type = BTRFS_EXTENT_ITEM_KEY;
		key.objectid = logic_start;
		key.offset = (u64)-1;

		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
		if (ret < 0)
			goto out;

		if (ret > 0) {
			ret = btrfs_previous_extent_item(root, path, 0);
			if (ret < 0)
				goto out;
			if (ret > 0) {
				btrfs_release_path(path);
				ret = btrfs_search_slot(NULL, root, &key,
							path, 0, 0);
				if (ret < 0)
					goto out;
			}
		}

		stop_loop = 0;
		while (1) {
			u64 bytes;

			l = path->nodes[0];
			slot = path->slots[0];
			if (slot >= btrfs_header_nritems(l)) {
				ret = btrfs_next_leaf(root, path);
				if (ret == 0)
					continue;
				if (ret < 0)
					goto out;

				stop_loop = 1;
				break;
			}
			btrfs_item_key_to_cpu(l, &key, slot);

2916 2917 2918 2919
			if (key.type != BTRFS_EXTENT_ITEM_KEY &&
			    key.type != BTRFS_METADATA_ITEM_KEY)
				goto next;

2920
			if (key.type == BTRFS_METADATA_ITEM_KEY)
2921
				bytes = fs_info->nodesize;
2922 2923 2924 2925 2926 2927
			else
				bytes = key.offset;

			if (key.objectid + bytes <= logic_start)
				goto next;

2928
			if (key.objectid >= logic_end) {
2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940
				stop_loop = 1;
				break;
			}

			while (key.objectid >= logic_start + map->stripe_len)
				logic_start += map->stripe_len;

			extent = btrfs_item_ptr(l, slot,
						struct btrfs_extent_item);
			flags = btrfs_extent_flags(l, extent);
			generation = btrfs_extent_generation(l, extent);

2941 2942 2943 2944
			if ((flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) &&
			    (key.objectid < logic_start ||
			     key.objectid + bytes >
			     logic_start + map->stripe_len)) {
J
Jeff Mahoney 已提交
2945 2946
				btrfs_err(fs_info,
					  "scrub: tree block %llu spanning stripes, ignored. logical=%llu",
2947
					  key.objectid, logic_start);
2948 2949 2950
				spin_lock(&sctx->stat_lock);
				sctx->stat.uncorrectable_errors++;
				spin_unlock(&sctx->stat_lock);
2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969
				goto next;
			}
again:
			extent_logical = key.objectid;
			extent_len = bytes;

			if (extent_logical < logic_start) {
				extent_len -= logic_start - extent_logical;
				extent_logical = logic_start;
			}

			if (extent_logical + extent_len >
			    logic_start + map->stripe_len)
				extent_len = logic_start + map->stripe_len -
					     extent_logical;

			scrub_parity_mark_sectors_data(sparity, extent_logical,
						       extent_len);

2970
			mapped_length = extent_len;
2971
			bbio = NULL;
2972 2973 2974
			ret = btrfs_map_block(fs_info, BTRFS_MAP_READ,
					extent_logical, &mapped_length, &bbio,
					0);
2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986
			if (!ret) {
				if (!bbio || mapped_length < extent_len)
					ret = -EIO;
			}
			if (ret) {
				btrfs_put_bbio(bbio);
				goto out;
			}
			extent_physical = bbio->stripes[0].physical;
			extent_mirror_num = bbio->mirror_num;
			extent_dev = bbio->stripes[0].dev;
			btrfs_put_bbio(bbio);
2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000

			ret = btrfs_lookup_csums_range(csum_root,
						extent_logical,
						extent_logical + extent_len - 1,
						&sctx->csum_list, 1);
			if (ret)
				goto out;

			ret = scrub_extent_for_parity(sparity, extent_logical,
						      extent_len,
						      extent_physical,
						      extent_dev, flags,
						      generation,
						      extent_mirror_num);
3001 3002 3003

			scrub_free_csums(sctx);

3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034
			if (ret)
				goto out;

			if (extent_logical + extent_len <
			    key.objectid + bytes) {
				logic_start += map->stripe_len;

				if (logic_start >= logic_end) {
					stop_loop = 1;
					break;
				}

				if (logic_start < key.objectid + bytes) {
					cond_resched();
					goto again;
				}
			}
next:
			path->slots[0]++;
		}

		btrfs_release_path(path);

		if (stop_loop)
			break;

		logic_start += map->stripe_len;
	}
out:
	if (ret < 0)
		scrub_parity_mark_sectors_error(sparity, logic_start,
3035
						logic_end - logic_start);
3036 3037
	scrub_parity_put(sparity);
	scrub_submit(sctx);
3038
	mutex_lock(&sctx->wr_lock);
3039
	scrub_wr_submit(sctx);
3040
	mutex_unlock(&sctx->wr_lock);
3041 3042 3043 3044 3045

	btrfs_release_path(path);
	return ret < 0 ? ret : 0;
}

3046
static noinline_for_stack int scrub_stripe(struct scrub_ctx *sctx,
3047 3048
					   struct map_lookup *map,
					   struct btrfs_device *scrub_dev,
3049 3050
					   int num, u64 base, u64 length,
					   struct btrfs_block_group *cache)
A
Arne Jansen 已提交
3051
{
3052
	struct btrfs_path *path, *ppath;
3053
	struct btrfs_fs_info *fs_info = sctx->fs_info;
A
Arne Jansen 已提交
3054 3055 3056
	struct btrfs_root *root = fs_info->extent_root;
	struct btrfs_root *csum_root = fs_info->csum_root;
	struct btrfs_extent_item *extent;
3057
	struct blk_plug plug;
A
Arne Jansen 已提交
3058 3059 3060 3061 3062 3063 3064
	u64 flags;
	int ret;
	int slot;
	u64 nstripes;
	struct extent_buffer *l;
	u64 physical;
	u64 logical;
L
Liu Bo 已提交
3065
	u64 logic_end;
3066
	u64 physical_end;
A
Arne Jansen 已提交
3067
	u64 generation;
3068
	int mirror_num;
A
Arne Jansen 已提交
3069 3070
	struct reada_control *reada1;
	struct reada_control *reada2;
3071
	struct btrfs_key key;
A
Arne Jansen 已提交
3072
	struct btrfs_key key_end;
A
Arne Jansen 已提交
3073 3074
	u64 increment = map->stripe_len;
	u64 offset;
3075 3076 3077
	u64 extent_logical;
	u64 extent_physical;
	u64 extent_len;
3078 3079
	u64 stripe_logical;
	u64 stripe_end;
3080 3081
	struct btrfs_device *extent_dev;
	int extent_mirror_num;
3082
	int stop_loop = 0;
D
David Woodhouse 已提交
3083

3084
	physical = map->stripes[num].physical;
A
Arne Jansen 已提交
3085
	offset = 0;
3086
	nstripes = div64_u64(length, map->stripe_len);
A
Arne Jansen 已提交
3087 3088 3089
	if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
		offset = map->stripe_len * num;
		increment = map->stripe_len * map->num_stripes;
3090
		mirror_num = 1;
A
Arne Jansen 已提交
3091 3092 3093 3094
	} else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
		int factor = map->num_stripes / map->sub_stripes;
		offset = map->stripe_len * (num / map->sub_stripes);
		increment = map->stripe_len * factor;
3095
		mirror_num = num % map->sub_stripes + 1;
3096
	} else if (map->type & BTRFS_BLOCK_GROUP_RAID1_MASK) {
A
Arne Jansen 已提交
3097
		increment = map->stripe_len;
3098
		mirror_num = num % map->num_stripes + 1;
A
Arne Jansen 已提交
3099 3100
	} else if (map->type & BTRFS_BLOCK_GROUP_DUP) {
		increment = map->stripe_len;
3101
		mirror_num = num % map->num_stripes + 1;
3102
	} else if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
3103
		get_raid56_logic_offset(physical, num, map, &offset, NULL);
3104 3105
		increment = map->stripe_len * nr_data_stripes(map);
		mirror_num = 1;
A
Arne Jansen 已提交
3106 3107
	} else {
		increment = map->stripe_len;
3108
		mirror_num = 1;
A
Arne Jansen 已提交
3109 3110 3111 3112 3113 3114
	}

	path = btrfs_alloc_path();
	if (!path)
		return -ENOMEM;

3115 3116
	ppath = btrfs_alloc_path();
	if (!ppath) {
3117
		btrfs_free_path(path);
3118 3119 3120
		return -ENOMEM;
	}

3121 3122 3123 3124 3125
	/*
	 * work on commit root. The related disk blocks are static as
	 * long as COW is applied. This means, it is save to rewrite
	 * them to repair disk errors without any race conditions
	 */
A
Arne Jansen 已提交
3126 3127 3128
	path->search_commit_root = 1;
	path->skip_locking = 1;

3129 3130
	ppath->search_commit_root = 1;
	ppath->skip_locking = 1;
A
Arne Jansen 已提交
3131
	/*
A
Arne Jansen 已提交
3132 3133 3134
	 * trigger the readahead for extent tree csum tree and wait for
	 * completion. During readahead, the scrub is officially paused
	 * to not hold off transaction commits
A
Arne Jansen 已提交
3135 3136
	 */
	logical = base + offset;
3137
	physical_end = physical + nstripes * map->stripe_len;
3138
	if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
3139
		get_raid56_logic_offset(physical_end, num,
3140
					map, &logic_end, NULL);
3141 3142 3143 3144
		logic_end += base;
	} else {
		logic_end = logical + increment * nstripes;
	}
3145
	wait_event(sctx->list_wait,
3146
		   atomic_read(&sctx->bios_in_flight) == 0);
3147
	scrub_blocked_if_needed(fs_info);
A
Arne Jansen 已提交
3148 3149

	/* FIXME it might be better to start readahead at commit root */
3150 3151 3152
	key.objectid = logical;
	key.type = BTRFS_EXTENT_ITEM_KEY;
	key.offset = (u64)0;
3153
	key_end.objectid = logic_end;
3154 3155
	key_end.type = BTRFS_METADATA_ITEM_KEY;
	key_end.offset = (u64)-1;
3156
	reada1 = btrfs_reada_add(root, &key, &key_end);
A
Arne Jansen 已提交
3157

3158 3159 3160
	key.objectid = BTRFS_EXTENT_CSUM_OBJECTID;
	key.type = BTRFS_EXTENT_CSUM_KEY;
	key.offset = logical;
A
Arne Jansen 已提交
3161 3162
	key_end.objectid = BTRFS_EXTENT_CSUM_OBJECTID;
	key_end.type = BTRFS_EXTENT_CSUM_KEY;
3163
	key_end.offset = logic_end;
3164
	reada2 = btrfs_reada_add(csum_root, &key, &key_end);
A
Arne Jansen 已提交
3165 3166 3167 3168 3169 3170

	if (!IS_ERR(reada1))
		btrfs_reada_wait(reada1);
	if (!IS_ERR(reada2))
		btrfs_reada_wait(reada2);

A
Arne Jansen 已提交
3171 3172 3173 3174 3175

	/*
	 * collect all data csums for the stripe to avoid seeking during
	 * the scrub. This might currently (crc32) end up to be about 1MB
	 */
3176
	blk_start_plug(&plug);
A
Arne Jansen 已提交
3177 3178 3179 3180 3181

	/*
	 * now find all extents for each stripe and scrub them
	 */
	ret = 0;
3182
	while (physical < physical_end) {
A
Arne Jansen 已提交
3183 3184 3185 3186
		/*
		 * canceled?
		 */
		if (atomic_read(&fs_info->scrub_cancel_req) ||
3187
		    atomic_read(&sctx->cancel_req)) {
A
Arne Jansen 已提交
3188 3189 3190 3191 3192 3193 3194 3195
			ret = -ECANCELED;
			goto out;
		}
		/*
		 * check to see if we have to pause
		 */
		if (atomic_read(&fs_info->scrub_pause_req)) {
			/* push queued extents */
3196
			sctx->flush_all_writes = true;
3197
			scrub_submit(sctx);
3198
			mutex_lock(&sctx->wr_lock);
3199
			scrub_wr_submit(sctx);
3200
			mutex_unlock(&sctx->wr_lock);
3201
			wait_event(sctx->list_wait,
3202
				   atomic_read(&sctx->bios_in_flight) == 0);
3203
			sctx->flush_all_writes = false;
3204
			scrub_blocked_if_needed(fs_info);
A
Arne Jansen 已提交
3205 3206
		}

3207 3208 3209 3210 3211 3212
		if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
			ret = get_raid56_logic_offset(physical, num, map,
						      &logical,
						      &stripe_logical);
			logical += base;
			if (ret) {
3213
				/* it is parity strip */
3214
				stripe_logical += base;
3215
				stripe_end = stripe_logical + increment;
3216 3217 3218 3219 3220 3221 3222 3223 3224
				ret = scrub_raid56_parity(sctx, map, scrub_dev,
							  ppath, stripe_logical,
							  stripe_end);
				if (ret)
					goto out;
				goto skip;
			}
		}

3225 3226 3227 3228
		if (btrfs_fs_incompat(fs_info, SKINNY_METADATA))
			key.type = BTRFS_METADATA_ITEM_KEY;
		else
			key.type = BTRFS_EXTENT_ITEM_KEY;
A
Arne Jansen 已提交
3229
		key.objectid = logical;
L
Liu Bo 已提交
3230
		key.offset = (u64)-1;
A
Arne Jansen 已提交
3231 3232 3233 3234

		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
		if (ret < 0)
			goto out;
3235

3236
		if (ret > 0) {
3237
			ret = btrfs_previous_extent_item(root, path, 0);
A
Arne Jansen 已提交
3238 3239
			if (ret < 0)
				goto out;
3240 3241 3242 3243 3244 3245 3246 3247 3248
			if (ret > 0) {
				/* there's no smaller item, so stick with the
				 * larger one */
				btrfs_release_path(path);
				ret = btrfs_search_slot(NULL, root, &key,
							path, 0, 0);
				if (ret < 0)
					goto out;
			}
A
Arne Jansen 已提交
3249 3250
		}

L
Liu Bo 已提交
3251
		stop_loop = 0;
A
Arne Jansen 已提交
3252
		while (1) {
3253 3254
			u64 bytes;

A
Arne Jansen 已提交
3255 3256 3257 3258 3259 3260 3261 3262 3263
			l = path->nodes[0];
			slot = path->slots[0];
			if (slot >= btrfs_header_nritems(l)) {
				ret = btrfs_next_leaf(root, path);
				if (ret == 0)
					continue;
				if (ret < 0)
					goto out;

L
Liu Bo 已提交
3264
				stop_loop = 1;
A
Arne Jansen 已提交
3265 3266 3267 3268
				break;
			}
			btrfs_item_key_to_cpu(l, &key, slot);

3269 3270 3271 3272
			if (key.type != BTRFS_EXTENT_ITEM_KEY &&
			    key.type != BTRFS_METADATA_ITEM_KEY)
				goto next;

3273
			if (key.type == BTRFS_METADATA_ITEM_KEY)
3274
				bytes = fs_info->nodesize;
3275 3276 3277 3278
			else
				bytes = key.offset;

			if (key.objectid + bytes <= logical)
A
Arne Jansen 已提交
3279 3280
				goto next;

L
Liu Bo 已提交
3281 3282 3283 3284 3285 3286
			if (key.objectid >= logical + map->stripe_len) {
				/* out of this device extent */
				if (key.objectid >= logic_end)
					stop_loop = 1;
				break;
			}
A
Arne Jansen 已提交
3287

3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301
			/*
			 * If our block group was removed in the meanwhile, just
			 * stop scrubbing since there is no point in continuing.
			 * Continuing would prevent reusing its device extents
			 * for new block groups for a long time.
			 */
			spin_lock(&cache->lock);
			if (cache->removed) {
				spin_unlock(&cache->lock);
				ret = 0;
				goto out;
			}
			spin_unlock(&cache->lock);

A
Arne Jansen 已提交
3302 3303 3304 3305 3306
			extent = btrfs_item_ptr(l, slot,
						struct btrfs_extent_item);
			flags = btrfs_extent_flags(l, extent);
			generation = btrfs_extent_generation(l, extent);

3307 3308 3309 3310
			if ((flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) &&
			    (key.objectid < logical ||
			     key.objectid + bytes >
			     logical + map->stripe_len)) {
3311
				btrfs_err(fs_info,
J
Jeff Mahoney 已提交
3312
					   "scrub: tree block %llu spanning stripes, ignored. logical=%llu",
3313
				       key.objectid, logical);
3314 3315 3316
				spin_lock(&sctx->stat_lock);
				sctx->stat.uncorrectable_errors++;
				spin_unlock(&sctx->stat_lock);
A
Arne Jansen 已提交
3317 3318 3319
				goto next;
			}

L
Liu Bo 已提交
3320 3321 3322 3323
again:
			extent_logical = key.objectid;
			extent_len = bytes;

A
Arne Jansen 已提交
3324 3325 3326
			/*
			 * trim extent to this stripe
			 */
L
Liu Bo 已提交
3327 3328 3329
			if (extent_logical < logical) {
				extent_len -= logical - extent_logical;
				extent_logical = logical;
A
Arne Jansen 已提交
3330
			}
L
Liu Bo 已提交
3331
			if (extent_logical + extent_len >
A
Arne Jansen 已提交
3332
			    logical + map->stripe_len) {
L
Liu Bo 已提交
3333 3334
				extent_len = logical + map->stripe_len -
					     extent_logical;
A
Arne Jansen 已提交
3335 3336
			}

L
Liu Bo 已提交
3337
			extent_physical = extent_logical - logical + physical;
3338 3339
			extent_dev = scrub_dev;
			extent_mirror_num = mirror_num;
3340
			if (sctx->is_dev_replace)
3341 3342 3343 3344
				scrub_remap_extent(fs_info, extent_logical,
						   extent_len, &extent_physical,
						   &extent_dev,
						   &extent_mirror_num);
L
Liu Bo 已提交
3345

3346 3347 3348 3349 3350 3351 3352 3353
			if (flags & BTRFS_EXTENT_FLAG_DATA) {
				ret = btrfs_lookup_csums_range(csum_root,
						extent_logical,
						extent_logical + extent_len - 1,
						&sctx->csum_list, 1);
				if (ret)
					goto out;
			}
L
Liu Bo 已提交
3354

L
Liu Bo 已提交
3355
			ret = scrub_extent(sctx, map, extent_logical, extent_len,
3356 3357
					   extent_physical, extent_dev, flags,
					   generation, extent_mirror_num,
3358
					   extent_logical - logical + physical);
3359 3360 3361

			scrub_free_csums(sctx);

A
Arne Jansen 已提交
3362 3363 3364
			if (ret)
				goto out;

L
Liu Bo 已提交
3365 3366
			if (extent_logical + extent_len <
			    key.objectid + bytes) {
3367
				if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
3368 3369 3370 3371
					/*
					 * loop until we find next data stripe
					 * or we have finished all stripes.
					 */
3372 3373 3374 3375 3376 3377 3378 3379 3380 3381
loop:
					physical += map->stripe_len;
					ret = get_raid56_logic_offset(physical,
							num, map, &logical,
							&stripe_logical);
					logical += base;

					if (ret && physical < physical_end) {
						stripe_logical += base;
						stripe_end = stripe_logical +
3382
								increment;
3383 3384 3385 3386 3387 3388 3389 3390
						ret = scrub_raid56_parity(sctx,
							map, scrub_dev, ppath,
							stripe_logical,
							stripe_end);
						if (ret)
							goto out;
						goto loop;
					}
3391 3392 3393 3394
				} else {
					physical += map->stripe_len;
					logical += increment;
				}
L
Liu Bo 已提交
3395 3396 3397 3398 3399
				if (logical < key.objectid + bytes) {
					cond_resched();
					goto again;
				}

3400
				if (physical >= physical_end) {
L
Liu Bo 已提交
3401 3402 3403 3404
					stop_loop = 1;
					break;
				}
			}
A
Arne Jansen 已提交
3405 3406 3407
next:
			path->slots[0]++;
		}
C
Chris Mason 已提交
3408
		btrfs_release_path(path);
3409
skip:
A
Arne Jansen 已提交
3410 3411
		logical += increment;
		physical += map->stripe_len;
3412
		spin_lock(&sctx->stat_lock);
L
Liu Bo 已提交
3413 3414 3415 3416 3417
		if (stop_loop)
			sctx->stat.last_physical = map->stripes[num].physical +
						   length;
		else
			sctx->stat.last_physical = physical;
3418
		spin_unlock(&sctx->stat_lock);
L
Liu Bo 已提交
3419 3420
		if (stop_loop)
			break;
A
Arne Jansen 已提交
3421
	}
3422
out:
A
Arne Jansen 已提交
3423
	/* push queued extents */
3424
	scrub_submit(sctx);
3425
	mutex_lock(&sctx->wr_lock);
3426
	scrub_wr_submit(sctx);
3427
	mutex_unlock(&sctx->wr_lock);
A
Arne Jansen 已提交
3428

3429
	blk_finish_plug(&plug);
A
Arne Jansen 已提交
3430
	btrfs_free_path(path);
3431
	btrfs_free_path(ppath);
A
Arne Jansen 已提交
3432 3433 3434
	return ret < 0 ? ret : 0;
}

3435
static noinline_for_stack int scrub_chunk(struct scrub_ctx *sctx,
3436 3437
					  struct btrfs_device *scrub_dev,
					  u64 chunk_offset, u64 length,
3438
					  u64 dev_offset,
3439
					  struct btrfs_block_group *cache)
A
Arne Jansen 已提交
3440
{
3441
	struct btrfs_fs_info *fs_info = sctx->fs_info;
3442
	struct extent_map_tree *map_tree = &fs_info->mapping_tree;
A
Arne Jansen 已提交
3443 3444 3445
	struct map_lookup *map;
	struct extent_map *em;
	int i;
3446
	int ret = 0;
A
Arne Jansen 已提交
3447

3448 3449 3450
	read_lock(&map_tree->lock);
	em = lookup_extent_mapping(map_tree, chunk_offset, 1);
	read_unlock(&map_tree->lock);
A
Arne Jansen 已提交
3451

3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463
	if (!em) {
		/*
		 * Might have been an unused block group deleted by the cleaner
		 * kthread or relocation.
		 */
		spin_lock(&cache->lock);
		if (!cache->removed)
			ret = -EINVAL;
		spin_unlock(&cache->lock);

		return ret;
	}
A
Arne Jansen 已提交
3464

3465
	map = em->map_lookup;
A
Arne Jansen 已提交
3466 3467 3468 3469 3470 3471 3472
	if (em->start != chunk_offset)
		goto out;

	if (em->len < length)
		goto out;

	for (i = 0; i < map->num_stripes; ++i) {
3473
		if (map->stripes[i].dev->bdev == scrub_dev->bdev &&
3474
		    map->stripes[i].physical == dev_offset) {
3475
			ret = scrub_stripe(sctx, map, scrub_dev, i,
3476
					   chunk_offset, length, cache);
A
Arne Jansen 已提交
3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487
			if (ret)
				goto out;
		}
	}
out:
	free_extent_map(em);

	return ret;
}

static noinline_for_stack
3488
int scrub_enumerate_chunks(struct scrub_ctx *sctx,
3489
			   struct btrfs_device *scrub_dev, u64 start, u64 end)
A
Arne Jansen 已提交
3490 3491 3492
{
	struct btrfs_dev_extent *dev_extent = NULL;
	struct btrfs_path *path;
3493 3494
	struct btrfs_fs_info *fs_info = sctx->fs_info;
	struct btrfs_root *root = fs_info->dev_root;
A
Arne Jansen 已提交
3495 3496
	u64 length;
	u64 chunk_offset;
3497
	int ret = 0;
3498
	int ro_set;
A
Arne Jansen 已提交
3499 3500 3501 3502
	int slot;
	struct extent_buffer *l;
	struct btrfs_key key;
	struct btrfs_key found_key;
3503
	struct btrfs_block_group *cache;
3504
	struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;
A
Arne Jansen 已提交
3505 3506 3507 3508 3509

	path = btrfs_alloc_path();
	if (!path)
		return -ENOMEM;

3510
	path->reada = READA_FORWARD;
A
Arne Jansen 已提交
3511 3512 3513
	path->search_commit_root = 1;
	path->skip_locking = 1;

3514
	key.objectid = scrub_dev->devid;
A
Arne Jansen 已提交
3515 3516 3517 3518 3519 3520
	key.offset = 0ull;
	key.type = BTRFS_DEV_EXTENT_KEY;

	while (1) {
		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
		if (ret < 0)
3521 3522 3523 3524 3525
			break;
		if (ret > 0) {
			if (path->slots[0] >=
			    btrfs_header_nritems(path->nodes[0])) {
				ret = btrfs_next_leaf(root, path);
3526 3527 3528 3529
				if (ret < 0)
					break;
				if (ret > 0) {
					ret = 0;
3530
					break;
3531 3532 3533
				}
			} else {
				ret = 0;
3534 3535
			}
		}
A
Arne Jansen 已提交
3536 3537 3538 3539 3540 3541

		l = path->nodes[0];
		slot = path->slots[0];

		btrfs_item_key_to_cpu(l, &found_key, slot);

3542
		if (found_key.objectid != scrub_dev->devid)
A
Arne Jansen 已提交
3543 3544
			break;

3545
		if (found_key.type != BTRFS_DEV_EXTENT_KEY)
A
Arne Jansen 已提交
3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556
			break;

		if (found_key.offset >= end)
			break;

		if (found_key.offset < key.offset)
			break;

		dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
		length = btrfs_dev_extent_length(l, dev_extent);

3557 3558
		if (found_key.offset + length <= start)
			goto skip;
A
Arne Jansen 已提交
3559 3560 3561 3562 3563 3564 3565 3566

		chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent);

		/*
		 * get a reference on the corresponding block group to prevent
		 * the chunk from going away while we scrub it
		 */
		cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3567 3568 3569 3570 3571 3572

		/* some chunks are removed but not committed to disk yet,
		 * continue scrubbing */
		if (!cache)
			goto skip;

3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586
		/*
		 * Make sure that while we are scrubbing the corresponding block
		 * group doesn't get its logical address and its device extents
		 * reused for another block group, which can possibly be of a
		 * different type and different profile. We do this to prevent
		 * false error detections and crashes due to bogus attempts to
		 * repair extents.
		 */
		spin_lock(&cache->lock);
		if (cache->removed) {
			spin_unlock(&cache->lock);
			btrfs_put_block_group(cache);
			goto skip;
		}
3587
		btrfs_freeze_block_group(cache);
3588 3589
		spin_unlock(&cache->lock);

3590 3591 3592 3593 3594 3595 3596 3597 3598
		/*
		 * we need call btrfs_inc_block_group_ro() with scrubs_paused,
		 * to avoid deadlock caused by:
		 * btrfs_inc_block_group_ro()
		 * -> btrfs_wait_for_commit()
		 * -> btrfs_commit_transaction()
		 * -> btrfs_scrub_pause()
		 */
		scrub_pause_on(fs_info);
3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616

		/*
		 * Don't do chunk preallocation for scrub.
		 *
		 * This is especially important for SYSTEM bgs, or we can hit
		 * -EFBIG from btrfs_finish_chunk_alloc() like:
		 * 1. The only SYSTEM bg is marked RO.
		 *    Since SYSTEM bg is small, that's pretty common.
		 * 2. New SYSTEM bg will be allocated
		 *    Due to regular version will allocate new chunk.
		 * 3. New SYSTEM bg is empty and will get cleaned up
		 *    Before cleanup really happens, it's marked RO again.
		 * 4. Empty SYSTEM bg get scrubbed
		 *    We go back to 2.
		 *
		 * This can easily boost the amount of SYSTEM chunks if cleaner
		 * thread can't be triggered fast enough, and use up all space
		 * of btrfs_super_block::sys_chunk_array
3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628
		 *
		 * While for dev replace, we need to try our best to mark block
		 * group RO, to prevent race between:
		 * - Write duplication
		 *   Contains latest data
		 * - Scrub copy
		 *   Contains data from commit tree
		 *
		 * If target block group is not marked RO, nocow writes can
		 * be overwritten by scrub copy, causing data corruption.
		 * So for dev-replace, it's not allowed to continue if a block
		 * group is not RO.
3629
		 */
3630
		ret = btrfs_inc_block_group_ro(cache, sctx->is_dev_replace);
3631 3632
		if (ret == 0) {
			ro_set = 1;
3633
		} else if (ret == -ENOSPC && !sctx->is_dev_replace) {
3634 3635 3636
			/*
			 * btrfs_inc_block_group_ro return -ENOSPC when it
			 * failed in creating new chunk for metadata.
3637
			 * It is not a problem for scrub, because
3638 3639 3640 3641 3642
			 * metadata are always cowed, and our scrub paused
			 * commit_transactions.
			 */
			ro_set = 0;
		} else {
J
Jeff Mahoney 已提交
3643
			btrfs_warn(fs_info,
3644
				   "failed setting block group ro: %d", ret);
3645
			btrfs_unfreeze_block_group(cache);
3646
			btrfs_put_block_group(cache);
3647
			scrub_pause_off(fs_info);
3648 3649 3650
			break;
		}

3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662
		/*
		 * Now the target block is marked RO, wait for nocow writes to
		 * finish before dev-replace.
		 * COW is fine, as COW never overwrites extents in commit tree.
		 */
		if (sctx->is_dev_replace) {
			btrfs_wait_nocow_writers(cache);
			btrfs_wait_ordered_roots(fs_info, U64_MAX, cache->start,
					cache->length);
		}

		scrub_pause_off(fs_info);
3663
		down_write(&dev_replace->rwsem);
3664 3665 3666
		dev_replace->cursor_right = found_key.offset + length;
		dev_replace->cursor_left = found_key.offset;
		dev_replace->item_needs_writeback = 1;
3667 3668
		up_write(&dev_replace->rwsem);

3669
		ret = scrub_chunk(sctx, scrub_dev, chunk_offset, length,
3670
				  found_key.offset, cache);
3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681

		/*
		 * flush, submit all pending read and write bios, afterwards
		 * wait for them.
		 * Note that in the dev replace case, a read request causes
		 * write requests that are submitted in the read completion
		 * worker. Therefore in the current situation, it is required
		 * that all write requests are flushed, so that all read and
		 * write requests are really completed when bios_in_flight
		 * changes to 0.
		 */
3682
		sctx->flush_all_writes = true;
3683
		scrub_submit(sctx);
3684
		mutex_lock(&sctx->wr_lock);
3685
		scrub_wr_submit(sctx);
3686
		mutex_unlock(&sctx->wr_lock);
3687 3688 3689

		wait_event(sctx->list_wait,
			   atomic_read(&sctx->bios_in_flight) == 0);
3690 3691

		scrub_pause_on(fs_info);
3692 3693 3694 3695 3696 3697

		/*
		 * must be called before we decrease @scrub_paused.
		 * make sure we don't block transaction commit while
		 * we are waiting pending workers finished.
		 */
3698 3699
		wait_event(sctx->list_wait,
			   atomic_read(&sctx->workers_pending) == 0);
3700
		sctx->flush_all_writes = false;
3701

3702
		scrub_pause_off(fs_info);
3703

3704
		down_write(&dev_replace->rwsem);
3705 3706
		dev_replace->cursor_left = dev_replace->cursor_right;
		dev_replace->item_needs_writeback = 1;
3707
		up_write(&dev_replace->rwsem);
3708

3709
		if (ro_set)
3710
			btrfs_dec_block_group_ro(cache);
3711

3712 3713 3714 3715 3716 3717 3718 3719 3720
		/*
		 * We might have prevented the cleaner kthread from deleting
		 * this block group if it was already unused because we raced
		 * and set it to RO mode first. So add it back to the unused
		 * list, otherwise it might not ever be deleted unless a manual
		 * balance is triggered or it becomes used and unused again.
		 */
		spin_lock(&cache->lock);
		if (!cache->removed && !cache->ro && cache->reserved == 0 &&
3721
		    cache->used == 0) {
3722
			spin_unlock(&cache->lock);
3723 3724 3725 3726 3727
			if (btrfs_test_opt(fs_info, DISCARD_ASYNC))
				btrfs_discard_queue_work(&fs_info->discard_ctl,
							 cache);
			else
				btrfs_mark_bg_unused(cache);
3728 3729 3730 3731
		} else {
			spin_unlock(&cache->lock);
		}

3732
		btrfs_unfreeze_block_group(cache);
A
Arne Jansen 已提交
3733 3734 3735
		btrfs_put_block_group(cache);
		if (ret)
			break;
3736
		if (sctx->is_dev_replace &&
3737
		    atomic64_read(&dev_replace->num_write_errors) > 0) {
3738 3739 3740 3741 3742 3743 3744
			ret = -EIO;
			break;
		}
		if (sctx->stat.malloc_errors > 0) {
			ret = -ENOMEM;
			break;
		}
3745
skip:
A
Arne Jansen 已提交
3746
		key.offset = found_key.offset + length;
C
Chris Mason 已提交
3747
		btrfs_release_path(path);
A
Arne Jansen 已提交
3748 3749 3750
	}

	btrfs_free_path(path);
3751

3752
	return ret;
A
Arne Jansen 已提交
3753 3754
}

3755 3756
static noinline_for_stack int scrub_supers(struct scrub_ctx *sctx,
					   struct btrfs_device *scrub_dev)
A
Arne Jansen 已提交
3757 3758 3759 3760 3761
{
	int	i;
	u64	bytenr;
	u64	gen;
	int	ret;
3762
	struct btrfs_fs_info *fs_info = sctx->fs_info;
A
Arne Jansen 已提交
3763

3764
	if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
3765 3766
		return -EIO;

3767
	/* Seed devices of a new filesystem has their own generation. */
3768
	if (scrub_dev->fs_devices != fs_info->fs_devices)
3769 3770
		gen = scrub_dev->generation;
	else
3771
		gen = fs_info->last_trans_committed;
A
Arne Jansen 已提交
3772 3773 3774

	for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
		bytenr = btrfs_sb_offset(i);
3775 3776
		if (bytenr + BTRFS_SUPER_INFO_SIZE >
		    scrub_dev->commit_total_bytes)
A
Arne Jansen 已提交
3777 3778
			break;

3779
		ret = scrub_pages(sctx, bytenr, BTRFS_SUPER_INFO_SIZE, bytenr,
3780
				  scrub_dev, BTRFS_EXTENT_FLAG_SUPER, gen, i,
3781
				  NULL, 1, bytenr);
A
Arne Jansen 已提交
3782 3783 3784
		if (ret)
			return ret;
	}
3785
	wait_event(sctx->list_wait, atomic_read(&sctx->bios_in_flight) == 0);
A
Arne Jansen 已提交
3786 3787 3788 3789 3790 3791 3792

	return 0;
}

/*
 * get a reference count on fs_info->scrub_workers. start worker if necessary
 */
3793 3794
static noinline_for_stack int scrub_workers_get(struct btrfs_fs_info *fs_info,
						int is_dev_replace)
A
Arne Jansen 已提交
3795
{
3796
	unsigned int flags = WQ_FREEZABLE | WQ_UNBOUND;
3797
	int max_active = fs_info->thread_pool_size;
A
Arne Jansen 已提交
3798

3799 3800
	lockdep_assert_held(&fs_info->scrub_lock);

3801
	if (refcount_read(&fs_info->scrub_workers_refcnt) == 0) {
3802
		ASSERT(fs_info->scrub_workers == NULL);
3803 3804
		fs_info->scrub_workers = btrfs_alloc_workqueue(fs_info, "scrub",
				flags, is_dev_replace ? 1 : max_active, 4);
3805 3806 3807
		if (!fs_info->scrub_workers)
			goto fail_scrub_workers;

3808
		ASSERT(fs_info->scrub_wr_completion_workers == NULL);
3809
		fs_info->scrub_wr_completion_workers =
3810
			btrfs_alloc_workqueue(fs_info, "scrubwrc", flags,
3811
					      max_active, 2);
3812 3813 3814
		if (!fs_info->scrub_wr_completion_workers)
			goto fail_scrub_wr_completion_workers;

3815
		ASSERT(fs_info->scrub_parity_workers == NULL);
3816
		fs_info->scrub_parity_workers =
3817
			btrfs_alloc_workqueue(fs_info, "scrubparity", flags,
3818
					      max_active, 2);
3819 3820
		if (!fs_info->scrub_parity_workers)
			goto fail_scrub_parity_workers;
3821 3822 3823 3824

		refcount_set(&fs_info->scrub_workers_refcnt, 1);
	} else {
		refcount_inc(&fs_info->scrub_workers_refcnt);
A
Arne Jansen 已提交
3825
	}
3826 3827 3828 3829 3830 3831 3832 3833
	return 0;

fail_scrub_parity_workers:
	btrfs_destroy_workqueue(fs_info->scrub_wr_completion_workers);
fail_scrub_wr_completion_workers:
	btrfs_destroy_workqueue(fs_info->scrub_workers);
fail_scrub_workers:
	return -ENOMEM;
A
Arne Jansen 已提交
3834 3835
}

3836 3837
int btrfs_scrub_dev(struct btrfs_fs_info *fs_info, u64 devid, u64 start,
		    u64 end, struct btrfs_scrub_progress *progress,
3838
		    int readonly, int is_dev_replace)
A
Arne Jansen 已提交
3839
{
3840
	struct scrub_ctx *sctx;
A
Arne Jansen 已提交
3841 3842
	int ret;
	struct btrfs_device *dev;
3843
	unsigned int nofs_flag;
3844 3845 3846
	struct btrfs_workqueue *scrub_workers = NULL;
	struct btrfs_workqueue *scrub_wr_comp = NULL;
	struct btrfs_workqueue *scrub_parity = NULL;
A
Arne Jansen 已提交
3847

3848
	if (btrfs_fs_closing(fs_info))
3849
		return -EAGAIN;
A
Arne Jansen 已提交
3850

3851
	if (fs_info->nodesize > BTRFS_STRIPE_LEN) {
3852 3853 3854 3855 3856
		/*
		 * in this case scrub is unable to calculate the checksum
		 * the way scrub is implemented. Do not handle this
		 * situation at all because it won't ever happen.
		 */
3857 3858
		btrfs_err(fs_info,
			   "scrub: size assumption nodesize <= BTRFS_STRIPE_LEN (%d <= %d) fails",
3859 3860
		       fs_info->nodesize,
		       BTRFS_STRIPE_LEN);
3861 3862 3863
		return -EINVAL;
	}

3864
	if (fs_info->sectorsize != PAGE_SIZE) {
3865
		/* not supported for data w/o checksums */
3866
		btrfs_err_rl(fs_info,
J
Jeff Mahoney 已提交
3867
			   "scrub: size assumption sectorsize != PAGE_SIZE (%d != %lu) fails",
3868
		       fs_info->sectorsize, PAGE_SIZE);
A
Arne Jansen 已提交
3869 3870 3871
		return -EINVAL;
	}

3872
	if (fs_info->nodesize >
3873
	    PAGE_SIZE * SCRUB_MAX_PAGES_PER_BLOCK ||
3874
	    fs_info->sectorsize > PAGE_SIZE * SCRUB_MAX_PAGES_PER_BLOCK) {
3875 3876 3877 3878
		/*
		 * would exhaust the array bounds of pagev member in
		 * struct scrub_block
		 */
J
Jeff Mahoney 已提交
3879 3880
		btrfs_err(fs_info,
			  "scrub: size assumption nodesize and sectorsize <= SCRUB_MAX_PAGES_PER_BLOCK (%d <= %d && %d <= %d) fails",
3881
		       fs_info->nodesize,
3882
		       SCRUB_MAX_PAGES_PER_BLOCK,
3883
		       fs_info->sectorsize,
3884 3885 3886 3887
		       SCRUB_MAX_PAGES_PER_BLOCK);
		return -EINVAL;
	}

3888 3889 3890 3891
	/* Allocate outside of device_list_mutex */
	sctx = scrub_setup_ctx(fs_info, is_dev_replace);
	if (IS_ERR(sctx))
		return PTR_ERR(sctx);
A
Arne Jansen 已提交
3892

3893
	mutex_lock(&fs_info->fs_devices->device_list_mutex);
3894
	dev = btrfs_find_device(fs_info->fs_devices, devid, NULL, NULL, true);
3895 3896
	if (!dev || (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state) &&
		     !is_dev_replace)) {
3897
		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3898 3899
		ret = -ENODEV;
		goto out_free_ctx;
A
Arne Jansen 已提交
3900 3901
	}

3902 3903
	if (!is_dev_replace && !readonly &&
	    !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state)) {
3904
		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3905 3906
		btrfs_err_in_rcu(fs_info, "scrub: device %s is not writable",
				rcu_str_deref(dev->name));
3907 3908
		ret = -EROFS;
		goto out_free_ctx;
3909 3910
	}

3911
	mutex_lock(&fs_info->scrub_lock);
3912
	if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
3913
	    test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &dev->dev_state)) {
A
Arne Jansen 已提交
3914
		mutex_unlock(&fs_info->scrub_lock);
3915
		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3916 3917
		ret = -EIO;
		goto out_free_ctx;
A
Arne Jansen 已提交
3918 3919
	}

3920
	down_read(&fs_info->dev_replace.rwsem);
3921
	if (dev->scrub_ctx ||
3922 3923
	    (!is_dev_replace &&
	     btrfs_dev_replace_is_ongoing(&fs_info->dev_replace))) {
3924
		up_read(&fs_info->dev_replace.rwsem);
A
Arne Jansen 已提交
3925
		mutex_unlock(&fs_info->scrub_lock);
3926
		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3927 3928
		ret = -EINPROGRESS;
		goto out_free_ctx;
A
Arne Jansen 已提交
3929
	}
3930
	up_read(&fs_info->dev_replace.rwsem);
3931 3932 3933 3934 3935

	ret = scrub_workers_get(fs_info, is_dev_replace);
	if (ret) {
		mutex_unlock(&fs_info->scrub_lock);
		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3936
		goto out_free_ctx;
3937 3938
	}

3939
	sctx->readonly = readonly;
3940
	dev->scrub_ctx = sctx;
3941
	mutex_unlock(&fs_info->fs_devices->device_list_mutex);
A
Arne Jansen 已提交
3942

3943 3944 3945 3946
	/*
	 * checking @scrub_pause_req here, we can avoid
	 * race between committing transaction and scrubbing.
	 */
3947
	__scrub_blocked_if_needed(fs_info);
A
Arne Jansen 已提交
3948 3949 3950
	atomic_inc(&fs_info->scrubs_running);
	mutex_unlock(&fs_info->scrub_lock);

3951 3952 3953 3954 3955 3956 3957 3958 3959 3960
	/*
	 * In order to avoid deadlock with reclaim when there is a transaction
	 * trying to pause scrub, make sure we use GFP_NOFS for all the
	 * allocations done at btrfs_scrub_pages() and scrub_pages_for_parity()
	 * invoked by our callees. The pausing request is done when the
	 * transaction commit starts, and it blocks the transaction until scrub
	 * is paused (done at specific points at scrub_stripe() or right above
	 * before incrementing fs_info->scrubs_running).
	 */
	nofs_flag = memalloc_nofs_save();
3961
	if (!is_dev_replace) {
3962
		btrfs_info(fs_info, "scrub: started on devid %llu", devid);
3963 3964 3965 3966
		/*
		 * by holding device list mutex, we can
		 * kick off writing super in log tree sync.
		 */
3967
		mutex_lock(&fs_info->fs_devices->device_list_mutex);
3968
		ret = scrub_supers(sctx, dev);
3969
		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3970
	}
A
Arne Jansen 已提交
3971 3972

	if (!ret)
3973
		ret = scrub_enumerate_chunks(sctx, dev, start, end);
3974
	memalloc_nofs_restore(nofs_flag);
A
Arne Jansen 已提交
3975

3976
	wait_event(sctx->list_wait, atomic_read(&sctx->bios_in_flight) == 0);
A
Arne Jansen 已提交
3977 3978 3979
	atomic_dec(&fs_info->scrubs_running);
	wake_up(&fs_info->scrub_pause_wait);

3980
	wait_event(sctx->list_wait, atomic_read(&sctx->workers_pending) == 0);
3981

A
Arne Jansen 已提交
3982
	if (progress)
3983
		memcpy(progress, &sctx->stat, sizeof(*progress));
A
Arne Jansen 已提交
3984

3985 3986 3987 3988
	if (!is_dev_replace)
		btrfs_info(fs_info, "scrub: %s on devid %llu with status: %d",
			ret ? "not finished" : "finished", devid, ret);

A
Arne Jansen 已提交
3989
	mutex_lock(&fs_info->scrub_lock);
3990
	dev->scrub_ctx = NULL;
3991
	if (refcount_dec_and_test(&fs_info->scrub_workers_refcnt)) {
3992 3993 3994
		scrub_workers = fs_info->scrub_workers;
		scrub_wr_comp = fs_info->scrub_wr_completion_workers;
		scrub_parity = fs_info->scrub_parity_workers;
3995 3996 3997 3998

		fs_info->scrub_workers = NULL;
		fs_info->scrub_wr_completion_workers = NULL;
		fs_info->scrub_parity_workers = NULL;
3999
	}
A
Arne Jansen 已提交
4000 4001
	mutex_unlock(&fs_info->scrub_lock);

4002 4003 4004
	btrfs_destroy_workqueue(scrub_workers);
	btrfs_destroy_workqueue(scrub_wr_comp);
	btrfs_destroy_workqueue(scrub_parity);
4005
	scrub_put_ctx(sctx);
A
Arne Jansen 已提交
4006

4007 4008 4009 4010 4011
	return ret;

out_free_ctx:
	scrub_free_ctx(sctx);

A
Arne Jansen 已提交
4012 4013 4014
	return ret;
}

4015
void btrfs_scrub_pause(struct btrfs_fs_info *fs_info)
A
Arne Jansen 已提交
4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029
{
	mutex_lock(&fs_info->scrub_lock);
	atomic_inc(&fs_info->scrub_pause_req);
	while (atomic_read(&fs_info->scrubs_paused) !=
	       atomic_read(&fs_info->scrubs_running)) {
		mutex_unlock(&fs_info->scrub_lock);
		wait_event(fs_info->scrub_pause_wait,
			   atomic_read(&fs_info->scrubs_paused) ==
			   atomic_read(&fs_info->scrubs_running));
		mutex_lock(&fs_info->scrub_lock);
	}
	mutex_unlock(&fs_info->scrub_lock);
}

4030
void btrfs_scrub_continue(struct btrfs_fs_info *fs_info)
A
Arne Jansen 已提交
4031 4032 4033 4034 4035
{
	atomic_dec(&fs_info->scrub_pause_req);
	wake_up(&fs_info->scrub_pause_wait);
}

4036
int btrfs_scrub_cancel(struct btrfs_fs_info *fs_info)
A
Arne Jansen 已提交
4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056
{
	mutex_lock(&fs_info->scrub_lock);
	if (!atomic_read(&fs_info->scrubs_running)) {
		mutex_unlock(&fs_info->scrub_lock);
		return -ENOTCONN;
	}

	atomic_inc(&fs_info->scrub_cancel_req);
	while (atomic_read(&fs_info->scrubs_running)) {
		mutex_unlock(&fs_info->scrub_lock);
		wait_event(fs_info->scrub_pause_wait,
			   atomic_read(&fs_info->scrubs_running) == 0);
		mutex_lock(&fs_info->scrub_lock);
	}
	atomic_dec(&fs_info->scrub_cancel_req);
	mutex_unlock(&fs_info->scrub_lock);

	return 0;
}

4057
int btrfs_scrub_cancel_dev(struct btrfs_device *dev)
4058
{
4059
	struct btrfs_fs_info *fs_info = dev->fs_info;
4060
	struct scrub_ctx *sctx;
A
Arne Jansen 已提交
4061 4062

	mutex_lock(&fs_info->scrub_lock);
4063
	sctx = dev->scrub_ctx;
4064
	if (!sctx) {
A
Arne Jansen 已提交
4065 4066 4067
		mutex_unlock(&fs_info->scrub_lock);
		return -ENOTCONN;
	}
4068
	atomic_inc(&sctx->cancel_req);
4069
	while (dev->scrub_ctx) {
A
Arne Jansen 已提交
4070 4071
		mutex_unlock(&fs_info->scrub_lock);
		wait_event(fs_info->scrub_pause_wait,
4072
			   dev->scrub_ctx == NULL);
A
Arne Jansen 已提交
4073 4074 4075 4076 4077 4078
		mutex_lock(&fs_info->scrub_lock);
	}
	mutex_unlock(&fs_info->scrub_lock);

	return 0;
}
S
Stefan Behrens 已提交
4079

4080
int btrfs_scrub_progress(struct btrfs_fs_info *fs_info, u64 devid,
A
Arne Jansen 已提交
4081 4082 4083
			 struct btrfs_scrub_progress *progress)
{
	struct btrfs_device *dev;
4084
	struct scrub_ctx *sctx = NULL;
A
Arne Jansen 已提交
4085

4086
	mutex_lock(&fs_info->fs_devices->device_list_mutex);
4087
	dev = btrfs_find_device(fs_info->fs_devices, devid, NULL, NULL, true);
A
Arne Jansen 已提交
4088
	if (dev)
4089
		sctx = dev->scrub_ctx;
4090 4091
	if (sctx)
		memcpy(progress, &sctx->stat, sizeof(*progress));
4092
	mutex_unlock(&fs_info->fs_devices->device_list_mutex);
A
Arne Jansen 已提交
4093

4094
	return dev ? (sctx ? 0 : -ENOTCONN) : -ENODEV;
A
Arne Jansen 已提交
4095
}
4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107

static void scrub_remap_extent(struct btrfs_fs_info *fs_info,
			       u64 extent_logical, u64 extent_len,
			       u64 *extent_physical,
			       struct btrfs_device **extent_dev,
			       int *extent_mirror_num)
{
	u64 mapped_length;
	struct btrfs_bio *bbio = NULL;
	int ret;

	mapped_length = extent_len;
4108
	ret = btrfs_map_block(fs_info, BTRFS_MAP_READ, extent_logical,
4109 4110 4111
			      &mapped_length, &bbio, 0);
	if (ret || !bbio || mapped_length < extent_len ||
	    !bbio->stripes[0].dev->bdev) {
4112
		btrfs_put_bbio(bbio);
4113 4114 4115 4116 4117 4118
		return;
	}

	*extent_physical = bbio->stripes[0].physical;
	*extent_mirror_num = bbio->mirror_num;
	*extent_dev = bbio->stripes[0].dev;
4119
	btrfs_put_bbio(bbio);
4120
}