i915_gem_execbuffer.c 74.1 KB
Newer Older
1
/*
2
 * SPDX-License-Identifier: MIT
3
 *
4
 * Copyright © 2008,2010 Intel Corporation
5 6
 */

7
#include <linux/intel-iommu.h>
8
#include <linux/reservation.h>
9
#include <linux/sync_file.h>
10 11
#include <linux/uaccess.h>

12
#include <drm/drm_syncobj.h>
13
#include <drm/i915_drm.h>
14

15 16
#include "display/intel_frontbuffer.h"

17
#include "gem/i915_gem_ioctls.h"
18
#include "gt/intel_context.h"
19
#include "gt/intel_gt.h"
20 21
#include "gt/intel_gt_pm.h"

22
#include "i915_gem_ioctls.h"
23
#include "i915_gem_clflush.h"
24
#include "i915_gem_context.h"
25 26 27
#include "i915_trace.h"
#include "intel_drv.h"

28 29 30 31 32 33
enum {
	FORCE_CPU_RELOC = 1,
	FORCE_GTT_RELOC,
	FORCE_GPU_RELOC,
#define DBG_FORCE_RELOC 0 /* choose one of the above! */
};
34

35 36 37 38 39 40
#define __EXEC_OBJECT_HAS_REF		BIT(31)
#define __EXEC_OBJECT_HAS_PIN		BIT(30)
#define __EXEC_OBJECT_HAS_FENCE		BIT(29)
#define __EXEC_OBJECT_NEEDS_MAP		BIT(28)
#define __EXEC_OBJECT_NEEDS_BIAS	BIT(27)
#define __EXEC_OBJECT_INTERNAL_FLAGS	(~0u << 27) /* all of the above */
41 42 43 44
#define __EXEC_OBJECT_RESERVED (__EXEC_OBJECT_HAS_PIN | __EXEC_OBJECT_HAS_FENCE)

#define __EXEC_HAS_RELOC	BIT(31)
#define __EXEC_VALIDATED	BIT(30)
45
#define __EXEC_INTERNAL_FLAGS	(~0u << 30)
46
#define UPDATE			PIN_OFFSET_FIXED
47 48

#define BATCH_OFFSET_BIAS (256*1024)
49

50
#define __I915_EXEC_ILLEGAL_FLAGS \
51 52 53
	(__I915_EXEC_UNKNOWN_FLAGS | \
	 I915_EXEC_CONSTANTS_MASK  | \
	 I915_EXEC_RESOURCE_STREAMER)
54

55 56 57 58 59 60 61 62 63
/* Catch emission of unexpected errors for CI! */
#if IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM)
#undef EINVAL
#define EINVAL ({ \
	DRM_DEBUG_DRIVER("EINVAL at %s:%d\n", __func__, __LINE__); \
	22; \
})
#endif

64 65 66 67 68 69 70 71 72 73 74 75 76 77 78
/**
 * DOC: User command execution
 *
 * Userspace submits commands to be executed on the GPU as an instruction
 * stream within a GEM object we call a batchbuffer. This instructions may
 * refer to other GEM objects containing auxiliary state such as kernels,
 * samplers, render targets and even secondary batchbuffers. Userspace does
 * not know where in the GPU memory these objects reside and so before the
 * batchbuffer is passed to the GPU for execution, those addresses in the
 * batchbuffer and auxiliary objects are updated. This is known as relocation,
 * or patching. To try and avoid having to relocate each object on the next
 * execution, userspace is told the location of those objects in this pass,
 * but this remains just a hint as the kernel may choose a new location for
 * any object in the future.
 *
79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107
 * At the level of talking to the hardware, submitting a batchbuffer for the
 * GPU to execute is to add content to a buffer from which the HW
 * command streamer is reading.
 *
 * 1. Add a command to load the HW context. For Logical Ring Contexts, i.e.
 *    Execlists, this command is not placed on the same buffer as the
 *    remaining items.
 *
 * 2. Add a command to invalidate caches to the buffer.
 *
 * 3. Add a batchbuffer start command to the buffer; the start command is
 *    essentially a token together with the GPU address of the batchbuffer
 *    to be executed.
 *
 * 4. Add a pipeline flush to the buffer.
 *
 * 5. Add a memory write command to the buffer to record when the GPU
 *    is done executing the batchbuffer. The memory write writes the
 *    global sequence number of the request, ``i915_request::global_seqno``;
 *    the i915 driver uses the current value in the register to determine
 *    if the GPU has completed the batchbuffer.
 *
 * 6. Add a user interrupt command to the buffer. This command instructs
 *    the GPU to issue an interrupt when the command, pipeline flush and
 *    memory write are completed.
 *
 * 7. Inform the hardware of the additional commands added to the buffer
 *    (by updating the tail pointer).
 *
108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214
 * Processing an execbuf ioctl is conceptually split up into a few phases.
 *
 * 1. Validation - Ensure all the pointers, handles and flags are valid.
 * 2. Reservation - Assign GPU address space for every object
 * 3. Relocation - Update any addresses to point to the final locations
 * 4. Serialisation - Order the request with respect to its dependencies
 * 5. Construction - Construct a request to execute the batchbuffer
 * 6. Submission (at some point in the future execution)
 *
 * Reserving resources for the execbuf is the most complicated phase. We
 * neither want to have to migrate the object in the address space, nor do
 * we want to have to update any relocations pointing to this object. Ideally,
 * we want to leave the object where it is and for all the existing relocations
 * to match. If the object is given a new address, or if userspace thinks the
 * object is elsewhere, we have to parse all the relocation entries and update
 * the addresses. Userspace can set the I915_EXEC_NORELOC flag to hint that
 * all the target addresses in all of its objects match the value in the
 * relocation entries and that they all match the presumed offsets given by the
 * list of execbuffer objects. Using this knowledge, we know that if we haven't
 * moved any buffers, all the relocation entries are valid and we can skip
 * the update. (If userspace is wrong, the likely outcome is an impromptu GPU
 * hang.) The requirement for using I915_EXEC_NO_RELOC are:
 *
 *      The addresses written in the objects must match the corresponding
 *      reloc.presumed_offset which in turn must match the corresponding
 *      execobject.offset.
 *
 *      Any render targets written to in the batch must be flagged with
 *      EXEC_OBJECT_WRITE.
 *
 *      To avoid stalling, execobject.offset should match the current
 *      address of that object within the active context.
 *
 * The reservation is done is multiple phases. First we try and keep any
 * object already bound in its current location - so as long as meets the
 * constraints imposed by the new execbuffer. Any object left unbound after the
 * first pass is then fitted into any available idle space. If an object does
 * not fit, all objects are removed from the reservation and the process rerun
 * after sorting the objects into a priority order (more difficult to fit
 * objects are tried first). Failing that, the entire VM is cleared and we try
 * to fit the execbuf once last time before concluding that it simply will not
 * fit.
 *
 * A small complication to all of this is that we allow userspace not only to
 * specify an alignment and a size for the object in the address space, but
 * we also allow userspace to specify the exact offset. This objects are
 * simpler to place (the location is known a priori) all we have to do is make
 * sure the space is available.
 *
 * Once all the objects are in place, patching up the buried pointers to point
 * to the final locations is a fairly simple job of walking over the relocation
 * entry arrays, looking up the right address and rewriting the value into
 * the object. Simple! ... The relocation entries are stored in user memory
 * and so to access them we have to copy them into a local buffer. That copy
 * has to avoid taking any pagefaults as they may lead back to a GEM object
 * requiring the struct_mutex (i.e. recursive deadlock). So once again we split
 * the relocation into multiple passes. First we try to do everything within an
 * atomic context (avoid the pagefaults) which requires that we never wait. If
 * we detect that we may wait, or if we need to fault, then we have to fallback
 * to a slower path. The slowpath has to drop the mutex. (Can you hear alarm
 * bells yet?) Dropping the mutex means that we lose all the state we have
 * built up so far for the execbuf and we must reset any global data. However,
 * we do leave the objects pinned in their final locations - which is a
 * potential issue for concurrent execbufs. Once we have left the mutex, we can
 * allocate and copy all the relocation entries into a large array at our
 * leisure, reacquire the mutex, reclaim all the objects and other state and
 * then proceed to update any incorrect addresses with the objects.
 *
 * As we process the relocation entries, we maintain a record of whether the
 * object is being written to. Using NORELOC, we expect userspace to provide
 * this information instead. We also check whether we can skip the relocation
 * by comparing the expected value inside the relocation entry with the target's
 * final address. If they differ, we have to map the current object and rewrite
 * the 4 or 8 byte pointer within.
 *
 * Serialising an execbuf is quite simple according to the rules of the GEM
 * ABI. Execution within each context is ordered by the order of submission.
 * Writes to any GEM object are in order of submission and are exclusive. Reads
 * from a GEM object are unordered with respect to other reads, but ordered by
 * writes. A write submitted after a read cannot occur before the read, and
 * similarly any read submitted after a write cannot occur before the write.
 * Writes are ordered between engines such that only one write occurs at any
 * time (completing any reads beforehand) - using semaphores where available
 * and CPU serialisation otherwise. Other GEM access obey the same rules, any
 * write (either via mmaps using set-domain, or via pwrite) must flush all GPU
 * reads before starting, and any read (either using set-domain or pread) must
 * flush all GPU writes before starting. (Note we only employ a barrier before,
 * we currently rely on userspace not concurrently starting a new execution
 * whilst reading or writing to an object. This may be an advantage or not
 * depending on how much you trust userspace not to shoot themselves in the
 * foot.) Serialisation may just result in the request being inserted into
 * a DAG awaiting its turn, but most simple is to wait on the CPU until
 * all dependencies are resolved.
 *
 * After all of that, is just a matter of closing the request and handing it to
 * the hardware (well, leaving it in a queue to be executed). However, we also
 * offer the ability for batchbuffers to be run with elevated privileges so
 * that they access otherwise hidden registers. (Used to adjust L3 cache etc.)
 * Before any batch is given extra privileges we first must check that it
 * contains no nefarious instructions, we check that each instruction is from
 * our whitelist and all registers are also from an allowed list. We first
 * copy the user's batchbuffer to a shadow (so that the user doesn't have
 * access to it, either by the CPU or GPU as we scan it) and then parse each
 * instruction. If everything is ok, we set a flag telling the hardware to run
 * the batchbuffer in trusted mode, otherwise the ioctl is rejected.
 */

215
struct i915_execbuffer {
216 217 218 219
	struct drm_i915_private *i915; /** i915 backpointer */
	struct drm_file *file; /** per-file lookup tables and limits */
	struct drm_i915_gem_execbuffer2 *args; /** ioctl parameters */
	struct drm_i915_gem_exec_object2 *exec; /** ioctl execobj[] */
220 221
	struct i915_vma **vma;
	unsigned int *flags;
222 223

	struct intel_engine_cs *engine; /** engine to queue the request to */
224 225
	struct intel_context *context; /* logical state for the request */
	struct i915_gem_context *gem_context; /** caller's context */
226

227
	struct i915_request *request; /** our request to build */
228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243
	struct i915_vma *batch; /** identity of the batch obj/vma */

	/** actual size of execobj[] as we may extend it for the cmdparser */
	unsigned int buffer_count;

	/** list of vma not yet bound during reservation phase */
	struct list_head unbound;

	/** list of vma that have execobj.relocation_count */
	struct list_head relocs;

	/**
	 * Track the most recently used object for relocations, as we
	 * frequently have to perform multiple relocations within the same
	 * obj/page
	 */
244
	struct reloc_cache {
245 246 247
		struct drm_mm_node node; /** temporary GTT binding */
		unsigned long vaddr; /** Current kmap address */
		unsigned long page; /** Currently mapped page index */
248
		unsigned int gen; /** Cached value of INTEL_GEN */
249
		bool use_64bit_reloc : 1;
250 251 252
		bool has_llc : 1;
		bool has_fence : 1;
		bool needs_unfenced : 1;
253

254
		struct i915_request *rq;
255 256
		u32 *rq_cmd;
		unsigned int rq_size;
257
	} reloc_cache;
258 259 260 261 262 263 264 265 266 267 268 269 270 271 272

	u64 invalid_flags; /** Set of execobj.flags that are invalid */
	u32 context_flags; /** Set of execobj.flags to insert from the ctx */

	u32 batch_start_offset; /** Location within object of batch */
	u32 batch_len; /** Length of batch within object */
	u32 batch_flags; /** Flags composed for emit_bb_start() */

	/**
	 * Indicate either the size of the hastable used to resolve
	 * relocation handles, or if negative that we are using a direct
	 * index into the execobj[].
	 */
	int lut_size;
	struct hlist_head *buckets; /** ht for relocation handles */
273 274
};

275
#define exec_entry(EB, VMA) (&(EB)->exec[(VMA)->exec_flags - (EB)->flags])
276

277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295
/*
 * Used to convert any address to canonical form.
 * Starting from gen8, some commands (e.g. STATE_BASE_ADDRESS,
 * MI_LOAD_REGISTER_MEM and others, see Broadwell PRM Vol2a) require the
 * addresses to be in a canonical form:
 * "GraphicsAddress[63:48] are ignored by the HW and assumed to be in correct
 * canonical form [63:48] == [47]."
 */
#define GEN8_HIGH_ADDRESS_BIT 47
static inline u64 gen8_canonical_addr(u64 address)
{
	return sign_extend64(address, GEN8_HIGH_ADDRESS_BIT);
}

static inline u64 gen8_noncanonical_addr(u64 address)
{
	return address & GENMASK_ULL(GEN8_HIGH_ADDRESS_BIT, 0);
}

296 297
static inline bool eb_use_cmdparser(const struct i915_execbuffer *eb)
{
298
	return intel_engine_needs_cmd_parser(eb->engine) && eb->batch_len;
299 300
}

301
static int eb_create(struct i915_execbuffer *eb)
302
{
303 304
	if (!(eb->args->flags & I915_EXEC_HANDLE_LUT)) {
		unsigned int size = 1 + ilog2(eb->buffer_count);
305

306 307 308 309 310 311 312 313 314 315 316
		/*
		 * Without a 1:1 association between relocation handles and
		 * the execobject[] index, we instead create a hashtable.
		 * We size it dynamically based on available memory, starting
		 * first with 1:1 assocative hash and scaling back until
		 * the allocation succeeds.
		 *
		 * Later on we use a positive lut_size to indicate we are
		 * using this hashtable, and a negative value to indicate a
		 * direct lookup.
		 */
317
		do {
318
			gfp_t flags;
319 320 321 322 323 324 325

			/* While we can still reduce the allocation size, don't
			 * raise a warning and allow the allocation to fail.
			 * On the last pass though, we want to try as hard
			 * as possible to perform the allocation and warn
			 * if it fails.
			 */
326
			flags = GFP_KERNEL;
327 328 329
			if (size > 1)
				flags |= __GFP_NORETRY | __GFP_NOWARN;

330
			eb->buckets = kzalloc(sizeof(struct hlist_head) << size,
331
					      flags);
332 333 334 335
			if (eb->buckets)
				break;
		} while (--size);

336 337
		if (unlikely(!size))
			return -ENOMEM;
338

339
		eb->lut_size = size;
340
	} else {
341
		eb->lut_size = -eb->buffer_count;
342
	}
343

344
	return 0;
345 346
}

347 348
static bool
eb_vma_misplaced(const struct drm_i915_gem_exec_object2 *entry,
349 350
		 const struct i915_vma *vma,
		 unsigned int flags)
351 352 353 354 355 356 357
{
	if (vma->node.size < entry->pad_to_size)
		return true;

	if (entry->alignment && !IS_ALIGNED(vma->node.start, entry->alignment))
		return true;

358
	if (flags & EXEC_OBJECT_PINNED &&
359 360 361
	    vma->node.start != entry->offset)
		return true;

362
	if (flags & __EXEC_OBJECT_NEEDS_BIAS &&
363 364 365
	    vma->node.start < BATCH_OFFSET_BIAS)
		return true;

366
	if (!(flags & EXEC_OBJECT_SUPPORTS_48B_ADDRESS) &&
367 368 369
	    (vma->node.start + vma->node.size - 1) >> 32)
		return true;

370 371 372 373
	if (flags & __EXEC_OBJECT_NEEDS_MAP &&
	    !i915_vma_is_map_and_fenceable(vma))
		return true;

374 375 376
	return false;
}

377
static inline bool
378
eb_pin_vma(struct i915_execbuffer *eb,
379
	   const struct drm_i915_gem_exec_object2 *entry,
380 381
	   struct i915_vma *vma)
{
382 383
	unsigned int exec_flags = *vma->exec_flags;
	u64 pin_flags;
384

385
	if (vma->node.size)
386
		pin_flags = vma->node.start;
387
	else
388
		pin_flags = entry->offset & PIN_OFFSET_MASK;
389

390 391 392
	pin_flags |= PIN_USER | PIN_NOEVICT | PIN_OFFSET_FIXED;
	if (unlikely(exec_flags & EXEC_OBJECT_NEEDS_GTT))
		pin_flags |= PIN_GLOBAL;
393

394 395
	if (unlikely(i915_vma_pin(vma, 0, 0, pin_flags)))
		return false;
396

397
	if (unlikely(exec_flags & EXEC_OBJECT_NEEDS_FENCE)) {
398
		if (unlikely(i915_vma_pin_fence(vma))) {
399
			i915_vma_unpin(vma);
400
			return false;
401 402
		}

403
		if (vma->fence)
404
			exec_flags |= __EXEC_OBJECT_HAS_FENCE;
405 406
	}

407 408
	*vma->exec_flags = exec_flags | __EXEC_OBJECT_HAS_PIN;
	return !eb_vma_misplaced(entry, vma, exec_flags);
409 410
}

411
static inline void __eb_unreserve_vma(struct i915_vma *vma, unsigned int flags)
412
{
413
	GEM_BUG_ON(!(flags & __EXEC_OBJECT_HAS_PIN));
414

415
	if (unlikely(flags & __EXEC_OBJECT_HAS_FENCE))
416
		__i915_vma_unpin_fence(vma);
417

418
	__i915_vma_unpin(vma);
419 420
}

421
static inline void
422
eb_unreserve_vma(struct i915_vma *vma, unsigned int *flags)
423
{
424
	if (!(*flags & __EXEC_OBJECT_HAS_PIN))
425
		return;
426

427 428
	__eb_unreserve_vma(vma, *flags);
	*flags &= ~__EXEC_OBJECT_RESERVED;
429 430
}

431 432 433 434
static int
eb_validate_vma(struct i915_execbuffer *eb,
		struct drm_i915_gem_exec_object2 *entry,
		struct i915_vma *vma)
435
{
436 437
	if (unlikely(entry->flags & eb->invalid_flags))
		return -EINVAL;
438

439 440 441 442 443 444 445 446
	if (unlikely(entry->alignment && !is_power_of_2(entry->alignment)))
		return -EINVAL;

	/*
	 * Offset can be used as input (EXEC_OBJECT_PINNED), reject
	 * any non-page-aligned or non-canonical addresses.
	 */
	if (unlikely(entry->flags & EXEC_OBJECT_PINNED &&
447
		     entry->offset != gen8_canonical_addr(entry->offset & I915_GTT_PAGE_MASK)))
448 449 450 451 452 453 454 455
		return -EINVAL;

	/* pad_to_size was once a reserved field, so sanitize it */
	if (entry->flags & EXEC_OBJECT_PAD_TO_SIZE) {
		if (unlikely(offset_in_page(entry->pad_to_size)))
			return -EINVAL;
	} else {
		entry->pad_to_size = 0;
456 457
	}

458
	if (unlikely(vma->exec_flags)) {
459 460 461 462 463 464 465 466 467 468 469 470
		DRM_DEBUG("Object [handle %d, index %d] appears more than once in object list\n",
			  entry->handle, (int)(entry - eb->exec));
		return -EINVAL;
	}

	/*
	 * From drm_mm perspective address space is continuous,
	 * so from this point we're always using non-canonical
	 * form internally.
	 */
	entry->offset = gen8_noncanonical_addr(entry->offset);

471 472 473 474 475 476 477 478 479 480 481 482
	if (!eb->reloc_cache.has_fence) {
		entry->flags &= ~EXEC_OBJECT_NEEDS_FENCE;
	} else {
		if ((entry->flags & EXEC_OBJECT_NEEDS_FENCE ||
		     eb->reloc_cache.needs_unfenced) &&
		    i915_gem_object_is_tiled(vma->obj))
			entry->flags |= EXEC_OBJECT_NEEDS_GTT | __EXEC_OBJECT_NEEDS_MAP;
	}

	if (!(entry->flags & EXEC_OBJECT_PINNED))
		entry->flags |= eb->context_flags;

483
	return 0;
484 485
}

486
static int
487 488 489
eb_add_vma(struct i915_execbuffer *eb,
	   unsigned int i, unsigned batch_idx,
	   struct i915_vma *vma)
490
{
491
	struct drm_i915_gem_exec_object2 *entry = &eb->exec[i];
492 493 494 495 496 497 498 499
	int err;

	GEM_BUG_ON(i915_vma_is_closed(vma));

	if (!(eb->args->flags & __EXEC_VALIDATED)) {
		err = eb_validate_vma(eb, entry, vma);
		if (unlikely(err))
			return err;
500 501
	}

502
	if (eb->lut_size > 0) {
503
		vma->exec_handle = entry->handle;
504
		hlist_add_head(&vma->exec_node,
505 506
			       &eb->buckets[hash_32(entry->handle,
						    eb->lut_size)]);
507
	}
508

509 510 511 512 513 514 515 516 517
	if (entry->relocation_count)
		list_add_tail(&vma->reloc_link, &eb->relocs);

	/*
	 * Stash a pointer from the vma to execobj, so we can query its flags,
	 * size, alignment etc as provided by the user. Also we stash a pointer
	 * to the vma inside the execobj so that we can use a direct lookup
	 * to find the right target VMA when doing relocations.
	 */
518
	eb->vma[i] = vma;
519
	eb->flags[i] = entry->flags;
520
	vma->exec_flags = &eb->flags[i];
521

522 523 524 525 526 527 528 529 530 531
	/*
	 * SNA is doing fancy tricks with compressing batch buffers, which leads
	 * to negative relocation deltas. Usually that works out ok since the
	 * relocate address is still positive, except when the batch is placed
	 * very low in the GTT. Ensure this doesn't happen.
	 *
	 * Note that actual hangs have only been observed on gen7, but for
	 * paranoia do it everywhere.
	 */
	if (i == batch_idx) {
532 533
		if (entry->relocation_count &&
		    !(eb->flags[i] & EXEC_OBJECT_PINNED))
534 535 536 537 538 539 540
			eb->flags[i] |= __EXEC_OBJECT_NEEDS_BIAS;
		if (eb->reloc_cache.has_fence)
			eb->flags[i] |= EXEC_OBJECT_NEEDS_FENCE;

		eb->batch = vma;
	}

541
	err = 0;
542
	if (eb_pin_vma(eb, entry, vma)) {
543 544 545 546
		if (entry->offset != vma->node.start) {
			entry->offset = vma->node.start | UPDATE;
			eb->args->flags |= __EXEC_HAS_RELOC;
		}
547 548 549 550 551 552
	} else {
		eb_unreserve_vma(vma, vma->exec_flags);

		list_add_tail(&vma->exec_link, &eb->unbound);
		if (drm_mm_node_allocated(&vma->node))
			err = i915_vma_unbind(vma);
553 554
		if (unlikely(err))
			vma->exec_flags = NULL;
555 556 557 558 559 560 561 562 563 564
	}
	return err;
}

static inline int use_cpu_reloc(const struct reloc_cache *cache,
				const struct drm_i915_gem_object *obj)
{
	if (!i915_gem_object_has_struct_page(obj))
		return false;

565 566 567 568 569
	if (DBG_FORCE_RELOC == FORCE_CPU_RELOC)
		return true;

	if (DBG_FORCE_RELOC == FORCE_GTT_RELOC)
		return false;
570 571 572 573 574 575 576 577 578

	return (cache->has_llc ||
		obj->cache_dirty ||
		obj->cache_level != I915_CACHE_NONE);
}

static int eb_reserve_vma(const struct i915_execbuffer *eb,
			  struct i915_vma *vma)
{
579 580 581
	struct drm_i915_gem_exec_object2 *entry = exec_entry(eb, vma);
	unsigned int exec_flags = *vma->exec_flags;
	u64 pin_flags;
582 583
	int err;

584 585 586
	pin_flags = PIN_USER | PIN_NONBLOCK;
	if (exec_flags & EXEC_OBJECT_NEEDS_GTT)
		pin_flags |= PIN_GLOBAL;
587 588 589 590 591

	/*
	 * Wa32bitGeneralStateOffset & Wa32bitInstructionBaseOffset,
	 * limit address to the first 4GBs for unflagged objects.
	 */
592 593
	if (!(exec_flags & EXEC_OBJECT_SUPPORTS_48B_ADDRESS))
		pin_flags |= PIN_ZONE_4G;
594

595 596
	if (exec_flags & __EXEC_OBJECT_NEEDS_MAP)
		pin_flags |= PIN_MAPPABLE;
597

598 599 600 601 602
	if (exec_flags & EXEC_OBJECT_PINNED) {
		pin_flags |= entry->offset | PIN_OFFSET_FIXED;
		pin_flags &= ~PIN_NONBLOCK; /* force overlapping checks */
	} else if (exec_flags & __EXEC_OBJECT_NEEDS_BIAS) {
		pin_flags |= BATCH_OFFSET_BIAS | PIN_OFFSET_BIAS;
603 604
	}

605 606 607
	err = i915_vma_pin(vma,
			   entry->pad_to_size, entry->alignment,
			   pin_flags);
608 609 610 611 612 613 614 615
	if (err)
		return err;

	if (entry->offset != vma->node.start) {
		entry->offset = vma->node.start | UPDATE;
		eb->args->flags |= __EXEC_HAS_RELOC;
	}

616
	if (unlikely(exec_flags & EXEC_OBJECT_NEEDS_FENCE)) {
617
		err = i915_vma_pin_fence(vma);
618 619 620 621 622
		if (unlikely(err)) {
			i915_vma_unpin(vma);
			return err;
		}

623
		if (vma->fence)
624
			exec_flags |= __EXEC_OBJECT_HAS_FENCE;
625 626
	}

627 628
	*vma->exec_flags = exec_flags | __EXEC_OBJECT_HAS_PIN;
	GEM_BUG_ON(eb_vma_misplaced(entry, vma, exec_flags));
629

630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669
	return 0;
}

static int eb_reserve(struct i915_execbuffer *eb)
{
	const unsigned int count = eb->buffer_count;
	struct list_head last;
	struct i915_vma *vma;
	unsigned int i, pass;
	int err;

	/*
	 * Attempt to pin all of the buffers into the GTT.
	 * This is done in 3 phases:
	 *
	 * 1a. Unbind all objects that do not match the GTT constraints for
	 *     the execbuffer (fenceable, mappable, alignment etc).
	 * 1b. Increment pin count for already bound objects.
	 * 2.  Bind new objects.
	 * 3.  Decrement pin count.
	 *
	 * This avoid unnecessary unbinding of later objects in order to make
	 * room for the earlier objects *unless* we need to defragment.
	 */

	pass = 0;
	err = 0;
	do {
		list_for_each_entry(vma, &eb->unbound, exec_link) {
			err = eb_reserve_vma(eb, vma);
			if (err)
				break;
		}
		if (err != -ENOSPC)
			return err;

		/* Resort *all* the objects into priority order */
		INIT_LIST_HEAD(&eb->unbound);
		INIT_LIST_HEAD(&last);
		for (i = 0; i < count; i++) {
670 671
			unsigned int flags = eb->flags[i];
			struct i915_vma *vma = eb->vma[i];
672

673 674
			if (flags & EXEC_OBJECT_PINNED &&
			    flags & __EXEC_OBJECT_HAS_PIN)
675 676
				continue;

677
			eb_unreserve_vma(vma, &eb->flags[i]);
678

679
			if (flags & EXEC_OBJECT_PINNED)
680
				/* Pinned must have their slot */
681
				list_add(&vma->exec_link, &eb->unbound);
682
			else if (flags & __EXEC_OBJECT_NEEDS_MAP)
683
				/* Map require the lowest 256MiB (aperture) */
684
				list_add_tail(&vma->exec_link, &eb->unbound);
685 686 687
			else if (!(flags & EXEC_OBJECT_SUPPORTS_48B_ADDRESS))
				/* Prioritise 4GiB region for restricted bo */
				list_add(&vma->exec_link, &last);
688 689 690 691 692 693 694 695 696 697 698
			else
				list_add_tail(&vma->exec_link, &last);
		}
		list_splice_tail(&last, &eb->unbound);

		switch (pass++) {
		case 0:
			break;

		case 1:
			/* Too fragmented, unbind everything and retry */
699
			err = i915_gem_evict_vm(eb->context->vm);
700 701 702 703 704 705 706 707
			if (err)
				return err;
			break;

		default:
			return -ENOSPC;
		}
	} while (1);
708
}
709

710 711
static unsigned int eb_batch_index(const struct i915_execbuffer *eb)
{
712 713 714 715
	if (eb->args->flags & I915_EXEC_BATCH_FIRST)
		return 0;
	else
		return eb->buffer_count - 1;
716 717 718 719 720 721 722
}

static int eb_select_context(struct i915_execbuffer *eb)
{
	struct i915_gem_context *ctx;

	ctx = i915_gem_context_lookup(eb->file->driver_priv, eb->args->rsvd1);
723 724
	if (unlikely(!ctx))
		return -ENOENT;
725

726
	eb->gem_context = ctx;
727
	if (ctx->vm)
728
		eb->invalid_flags |= EXEC_OBJECT_NEEDS_GTT;
729 730

	eb->context_flags = 0;
731
	if (test_bit(UCONTEXT_NO_ZEROMAP, &ctx->user_flags))
732 733 734 735 736
		eb->context_flags |= __EXEC_OBJECT_NEEDS_BIAS;

	return 0;
}

737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776
static struct i915_request *__eb_wait_for_ring(struct intel_ring *ring)
{
	struct i915_request *rq;

	/*
	 * Completely unscientific finger-in-the-air estimates for suitable
	 * maximum user request size (to avoid blocking) and then backoff.
	 */
	if (intel_ring_update_space(ring) >= PAGE_SIZE)
		return NULL;

	/*
	 * Find a request that after waiting upon, there will be at least half
	 * the ring available. The hysteresis allows us to compete for the
	 * shared ring and should mean that we sleep less often prior to
	 * claiming our resources, but not so long that the ring completely
	 * drains before we can submit our next request.
	 */
	list_for_each_entry(rq, &ring->request_list, ring_link) {
		if (__intel_ring_space(rq->postfix,
				       ring->emit, ring->size) > ring->size / 2)
			break;
	}
	if (&rq->ring_link == &ring->request_list)
		return NULL; /* weird, we will check again later for real */

	return i915_request_get(rq);
}

static int eb_wait_for_ring(const struct i915_execbuffer *eb)
{
	struct i915_request *rq;
	int ret = 0;

	/*
	 * Apply a light amount of backpressure to prevent excessive hogs
	 * from blocking waiting for space whilst holding struct_mutex and
	 * keeping all of their resources pinned.
	 */

777
	rq = __eb_wait_for_ring(eb->context->ring);
778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793
	if (rq) {
		mutex_unlock(&eb->i915->drm.struct_mutex);

		if (i915_request_wait(rq,
				      I915_WAIT_INTERRUPTIBLE,
				      MAX_SCHEDULE_TIMEOUT) < 0)
			ret = -EINTR;

		i915_request_put(rq);

		mutex_lock(&eb->i915->drm.struct_mutex);
	}

	return ret;
}

794
static int eb_lookup_vmas(struct i915_execbuffer *eb)
795
{
796
	struct radix_tree_root *handles_vma = &eb->gem_context->handles_vma;
797
	struct drm_i915_gem_object *obj;
798
	unsigned int i, batch;
799
	int err;
800

801
	if (unlikely(i915_gem_context_is_banned(eb->gem_context)))
802 803
		return -EIO;

804 805
	INIT_LIST_HEAD(&eb->relocs);
	INIT_LIST_HEAD(&eb->unbound);
806

807 808
	batch = eb_batch_index(eb);

809 810 811 812 813 814
	mutex_lock(&eb->gem_context->mutex);
	if (unlikely(i915_gem_context_is_closed(eb->gem_context))) {
		err = -ENOENT;
		goto err_ctx;
	}

815 816
	for (i = 0; i < eb->buffer_count; i++) {
		u32 handle = eb->exec[i].handle;
817
		struct i915_lut_handle *lut;
818
		struct i915_vma *vma;
819

820 821
		vma = radix_tree_lookup(handles_vma, handle);
		if (likely(vma))
822
			goto add_vma;
823

824
		obj = i915_gem_object_lookup(eb->file, handle);
825
		if (unlikely(!obj)) {
826
			err = -ENOENT;
827
			goto err_vma;
828 829
		}

830
		vma = i915_vma_instance(obj, eb->context->vm, NULL);
831
		if (IS_ERR(vma)) {
832
			err = PTR_ERR(vma);
833
			goto err_obj;
834 835
		}

836
		lut = i915_lut_handle_alloc();
837 838 839 840 841 842 843
		if (unlikely(!lut)) {
			err = -ENOMEM;
			goto err_obj;
		}

		err = radix_tree_insert(handles_vma, handle, vma);
		if (unlikely(err)) {
844
			i915_lut_handle_free(lut);
845
			goto err_obj;
846
		}
847

848 849
		/* transfer ref to lut */
		if (!atomic_fetch_inc(&vma->open_count))
850
			i915_vma_reopen(vma);
851
		lut->handle = handle;
852 853 854 855 856
		lut->ctx = eb->gem_context;

		i915_gem_object_lock(obj);
		list_add(&lut->obj_link, &obj->lut_list);
		i915_gem_object_unlock(obj);
857

858
add_vma:
859
		err = eb_add_vma(eb, i, batch, vma);
860
		if (unlikely(err))
861
			goto err_vma;
862

863 864
		GEM_BUG_ON(vma != eb->vma[i]);
		GEM_BUG_ON(vma->exec_flags != &eb->flags[i]);
865 866
		GEM_BUG_ON(drm_mm_node_allocated(&vma->node) &&
			   eb_vma_misplaced(&eb->exec[i], vma, eb->flags[i]));
867 868
	}

869 870
	mutex_unlock(&eb->gem_context->mutex);

871 872 873
	eb->args->flags |= __EXEC_VALIDATED;
	return eb_reserve(eb);

874
err_obj:
875
	i915_gem_object_put(obj);
876 877
err_vma:
	eb->vma[i] = NULL;
878 879
err_ctx:
	mutex_unlock(&eb->gem_context->mutex);
880
	return err;
881 882
}

883
static struct i915_vma *
884
eb_get_vma(const struct i915_execbuffer *eb, unsigned long handle)
885
{
886 887
	if (eb->lut_size < 0) {
		if (handle >= -eb->lut_size)
888
			return NULL;
889
		return eb->vma[handle];
890 891
	} else {
		struct hlist_head *head;
892
		struct i915_vma *vma;
893

894
		head = &eb->buckets[hash_32(handle, eb->lut_size)];
895
		hlist_for_each_entry(vma, head, exec_node) {
896 897
			if (vma->exec_handle == handle)
				return vma;
898 899 900
		}
		return NULL;
	}
901 902
}

903
static void eb_release_vmas(const struct i915_execbuffer *eb)
904
{
905 906 907 908
	const unsigned int count = eb->buffer_count;
	unsigned int i;

	for (i = 0; i < count; i++) {
909 910
		struct i915_vma *vma = eb->vma[i];
		unsigned int flags = eb->flags[i];
911

912
		if (!vma)
913
			break;
914

915 916 917
		GEM_BUG_ON(vma->exec_flags != &eb->flags[i]);
		vma->exec_flags = NULL;
		eb->vma[i] = NULL;
918

919 920
		if (flags & __EXEC_OBJECT_HAS_PIN)
			__eb_unreserve_vma(vma, flags);
921

922
		if (flags & __EXEC_OBJECT_HAS_REF)
923
			i915_vma_put(vma);
924
	}
925 926
}

927
static void eb_reset_vmas(const struct i915_execbuffer *eb)
928
{
929
	eb_release_vmas(eb);
930
	if (eb->lut_size > 0)
931 932
		memset(eb->buckets, 0,
		       sizeof(struct hlist_head) << eb->lut_size);
933 934
}

935
static void eb_destroy(const struct i915_execbuffer *eb)
936
{
937 938
	GEM_BUG_ON(eb->reloc_cache.rq);

939
	if (eb->lut_size > 0)
940
		kfree(eb->buckets);
941 942
}

943
static inline u64
944
relocation_target(const struct drm_i915_gem_relocation_entry *reloc,
945
		  const struct i915_vma *target)
946
{
947
	return gen8_canonical_addr((int)reloc->delta + target->node.start);
948 949
}

950 951
static void reloc_cache_init(struct reloc_cache *cache,
			     struct drm_i915_private *i915)
952
{
953
	cache->page = -1;
954
	cache->vaddr = 0;
955
	/* Must be a variable in the struct to allow GCC to unroll. */
956
	cache->gen = INTEL_GEN(i915);
957
	cache->has_llc = HAS_LLC(i915);
958
	cache->use_64bit_reloc = HAS_64BIT_RELOC(i915);
959 960
	cache->has_fence = cache->gen < 4;
	cache->needs_unfenced = INTEL_INFO(i915)->unfenced_needs_alignment;
961
	cache->node.allocated = false;
962 963
	cache->rq = NULL;
	cache->rq_size = 0;
964
}
965

966 967 968 969 970 971 972 973
static inline void *unmask_page(unsigned long p)
{
	return (void *)(uintptr_t)(p & PAGE_MASK);
}

static inline unsigned int unmask_flags(unsigned long p)
{
	return p & ~PAGE_MASK;
974 975
}

976 977
#define KMAP 0x4 /* after CLFLUSH_FLAGS */

978 979 980 981 982 983 984
static inline struct i915_ggtt *cache_to_ggtt(struct reloc_cache *cache)
{
	struct drm_i915_private *i915 =
		container_of(cache, struct i915_execbuffer, reloc_cache)->i915;
	return &i915->ggtt;
}

985 986 987 988
static void reloc_gpu_flush(struct reloc_cache *cache)
{
	GEM_BUG_ON(cache->rq_size >= cache->rq->batch->obj->base.size / sizeof(u32));
	cache->rq_cmd[cache->rq_size] = MI_BATCH_BUFFER_END;
989 990

	__i915_gem_object_flush_map(cache->rq->batch->obj, 0, cache->rq_size);
991
	i915_gem_object_unpin_map(cache->rq->batch->obj);
992

993
	intel_gt_chipset_flush(cache->rq->engine->gt);
994

995
	i915_request_add(cache->rq);
996 997 998
	cache->rq = NULL;
}

999
static void reloc_cache_reset(struct reloc_cache *cache)
1000
{
1001
	void *vaddr;
1002

1003 1004 1005
	if (cache->rq)
		reloc_gpu_flush(cache);

1006 1007
	if (!cache->vaddr)
		return;
1008

1009 1010 1011 1012
	vaddr = unmask_page(cache->vaddr);
	if (cache->vaddr & KMAP) {
		if (cache->vaddr & CLFLUSH_AFTER)
			mb();
1013

1014
		kunmap_atomic(vaddr);
1015
		i915_gem_object_finish_access((struct drm_i915_gem_object *)cache->node.mm);
1016
	} else {
1017
		wmb();
1018
		io_mapping_unmap_atomic((void __iomem *)vaddr);
1019
		if (cache->node.allocated) {
1020
			struct i915_ggtt *ggtt = cache_to_ggtt(cache);
1021

1022 1023 1024
			ggtt->vm.clear_range(&ggtt->vm,
					     cache->node.start,
					     cache->node.size);
1025 1026 1027
			drm_mm_remove_node(&cache->node);
		} else {
			i915_vma_unpin((struct i915_vma *)cache->node.mm);
1028
		}
1029
	}
1030 1031 1032

	cache->vaddr = 0;
	cache->page = -1;
1033 1034 1035 1036
}

static void *reloc_kmap(struct drm_i915_gem_object *obj,
			struct reloc_cache *cache,
1037
			unsigned long page)
1038
{
1039 1040 1041 1042 1043 1044
	void *vaddr;

	if (cache->vaddr) {
		kunmap_atomic(unmask_page(cache->vaddr));
	} else {
		unsigned int flushes;
1045
		int err;
1046

1047
		err = i915_gem_object_prepare_write(obj, &flushes);
1048 1049
		if (err)
			return ERR_PTR(err);
1050 1051 1052

		BUILD_BUG_ON(KMAP & CLFLUSH_FLAGS);
		BUILD_BUG_ON((KMAP | CLFLUSH_FLAGS) & PAGE_MASK);
1053

1054 1055 1056 1057
		cache->vaddr = flushes | KMAP;
		cache->node.mm = (void *)obj;
		if (flushes)
			mb();
1058 1059
	}

1060 1061
	vaddr = kmap_atomic(i915_gem_object_get_dirty_page(obj, page));
	cache->vaddr = unmask_flags(cache->vaddr) | (unsigned long)vaddr;
1062
	cache->page = page;
1063

1064
	return vaddr;
1065 1066
}

1067 1068
static void *reloc_iomap(struct drm_i915_gem_object *obj,
			 struct reloc_cache *cache,
1069
			 unsigned long page)
1070
{
1071
	struct i915_ggtt *ggtt = cache_to_ggtt(cache);
1072
	unsigned long offset;
1073
	void *vaddr;
1074

1075
	if (cache->vaddr) {
1076
		io_mapping_unmap_atomic((void __force __iomem *) unmask_page(cache->vaddr));
1077 1078
	} else {
		struct i915_vma *vma;
1079
		int err;
1080

1081
		if (use_cpu_reloc(cache, obj))
1082
			return NULL;
1083

1084
		i915_gem_object_lock(obj);
1085
		err = i915_gem_object_set_to_gtt_domain(obj, true);
1086
		i915_gem_object_unlock(obj);
1087 1088
		if (err)
			return ERR_PTR(err);
1089

1090
		vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0,
1091 1092 1093
					       PIN_MAPPABLE |
					       PIN_NONBLOCK |
					       PIN_NONFAULT);
1094 1095
		if (IS_ERR(vma)) {
			memset(&cache->node, 0, sizeof(cache->node));
1096
			err = drm_mm_insert_node_in_range
1097
				(&ggtt->vm.mm, &cache->node,
1098
				 PAGE_SIZE, 0, I915_COLOR_UNEVICTABLE,
1099
				 0, ggtt->mappable_end,
1100
				 DRM_MM_INSERT_LOW);
1101
			if (err) /* no inactive aperture space, use cpu reloc */
1102
				return NULL;
1103
		} else {
1104 1105
			err = i915_vma_put_fence(vma);
			if (err) {
1106
				i915_vma_unpin(vma);
1107
				return ERR_PTR(err);
1108
			}
1109

1110 1111
			cache->node.start = vma->node.start;
			cache->node.mm = (void *)vma;
1112
		}
1113
	}
1114

1115 1116
	offset = cache->node.start;
	if (cache->node.allocated) {
1117
		wmb();
1118 1119 1120
		ggtt->vm.insert_page(&ggtt->vm,
				     i915_gem_object_get_dma_address(obj, page),
				     offset, I915_CACHE_NONE, 0);
1121 1122
	} else {
		offset += page << PAGE_SHIFT;
1123 1124
	}

1125
	vaddr = (void __force *)io_mapping_map_atomic_wc(&ggtt->iomap,
1126
							 offset);
1127 1128
	cache->page = page;
	cache->vaddr = (unsigned long)vaddr;
1129

1130
	return vaddr;
1131 1132
}

1133 1134
static void *reloc_vaddr(struct drm_i915_gem_object *obj,
			 struct reloc_cache *cache,
1135
			 unsigned long page)
1136
{
1137
	void *vaddr;
1138

1139 1140 1141 1142 1143 1144 1145 1146
	if (cache->page == page) {
		vaddr = unmask_page(cache->vaddr);
	} else {
		vaddr = NULL;
		if ((cache->vaddr & KMAP) == 0)
			vaddr = reloc_iomap(obj, cache, page);
		if (!vaddr)
			vaddr = reloc_kmap(obj, cache, page);
1147 1148
	}

1149
	return vaddr;
1150 1151
}

1152
static void clflush_write32(u32 *addr, u32 value, unsigned int flushes)
1153
{
1154 1155 1156 1157 1158
	if (unlikely(flushes & (CLFLUSH_BEFORE | CLFLUSH_AFTER))) {
		if (flushes & CLFLUSH_BEFORE) {
			clflushopt(addr);
			mb();
		}
1159

1160
		*addr = value;
1161

1162 1163
		/*
		 * Writes to the same cacheline are serialised by the CPU
1164 1165 1166 1167 1168 1169 1170 1171 1172
		 * (including clflush). On the write path, we only require
		 * that it hits memory in an orderly fashion and place
		 * mb barriers at the start and end of the relocation phase
		 * to ensure ordering of clflush wrt to the system.
		 */
		if (flushes & CLFLUSH_AFTER)
			clflushopt(addr);
	} else
		*addr = value;
1173 1174
}

1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194
static int reloc_move_to_gpu(struct i915_request *rq, struct i915_vma *vma)
{
	struct drm_i915_gem_object *obj = vma->obj;
	int err;

	i915_vma_lock(vma);

	if (obj->cache_dirty & ~obj->cache_coherent)
		i915_gem_clflush_object(obj, 0);
	obj->write_domain = 0;

	err = i915_request_await_object(rq, vma->obj, true);
	if (err == 0)
		err = i915_vma_move_to_active(vma, rq, EXEC_OBJECT_WRITE);

	i915_vma_unlock(vma);

	return err;
}

1195 1196 1197 1198 1199 1200
static int __reloc_gpu_alloc(struct i915_execbuffer *eb,
			     struct i915_vma *vma,
			     unsigned int len)
{
	struct reloc_cache *cache = &eb->reloc_cache;
	struct drm_i915_gem_object *obj;
1201
	struct i915_request *rq;
1202 1203 1204 1205 1206 1207 1208 1209 1210
	struct i915_vma *batch;
	u32 *cmd;
	int err;

	obj = i915_gem_batch_pool_get(&eb->engine->batch_pool, PAGE_SIZE);
	if (IS_ERR(obj))
		return PTR_ERR(obj);

	cmd = i915_gem_object_pin_map(obj,
1211 1212 1213
				      cache->has_llc ?
				      I915_MAP_FORCE_WB :
				      I915_MAP_FORCE_WC);
1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227
	i915_gem_object_unpin_pages(obj);
	if (IS_ERR(cmd))
		return PTR_ERR(cmd);

	batch = i915_vma_instance(obj, vma->vm, NULL);
	if (IS_ERR(batch)) {
		err = PTR_ERR(batch);
		goto err_unmap;
	}

	err = i915_vma_pin(batch, 0, 0, PIN_USER | PIN_NONBLOCK);
	if (err)
		goto err_unmap;

1228
	rq = i915_request_create(eb->context);
1229 1230 1231 1232 1233
	if (IS_ERR(rq)) {
		err = PTR_ERR(rq);
		goto err_unpin;
	}

1234
	err = reloc_move_to_gpu(rq, vma);
1235 1236 1237 1238 1239 1240 1241
	if (err)
		goto err_request;

	err = eb->engine->emit_bb_start(rq,
					batch->node.start, PAGE_SIZE,
					cache->gen > 5 ? 0 : I915_DISPATCH_SECURE);
	if (err)
1242
		goto skip_request;
1243

1244
	i915_vma_lock(batch);
1245
	GEM_BUG_ON(!reservation_object_test_signaled_rcu(batch->resv, true));
1246
	err = i915_vma_move_to_active(batch, rq, 0);
1247
	i915_vma_unlock(batch);
1248 1249
	if (err)
		goto skip_request;
1250 1251

	rq->batch = batch;
1252
	i915_vma_unpin(batch);
1253 1254 1255 1256 1257 1258 1259 1260

	cache->rq = rq;
	cache->rq_cmd = cmd;
	cache->rq_size = 0;

	/* Return with batch mapping (cmd) still pinned */
	return 0;

1261 1262
skip_request:
	i915_request_skip(rq, err);
1263
err_request:
1264
	i915_request_add(rq);
1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284
err_unpin:
	i915_vma_unpin(batch);
err_unmap:
	i915_gem_object_unpin_map(obj);
	return err;
}

static u32 *reloc_gpu(struct i915_execbuffer *eb,
		      struct i915_vma *vma,
		      unsigned int len)
{
	struct reloc_cache *cache = &eb->reloc_cache;
	u32 *cmd;

	if (cache->rq_size > PAGE_SIZE/sizeof(u32) - (len + 1))
		reloc_gpu_flush(cache);

	if (unlikely(!cache->rq)) {
		int err;

1285 1286 1287 1288
		/* If we need to copy for the cmdparser, we will stall anyway */
		if (eb_use_cmdparser(eb))
			return ERR_PTR(-EWOULDBLOCK);

1289 1290 1291
		if (!intel_engine_can_store_dword(eb->engine))
			return ERR_PTR(-ENODEV);

1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302
		err = __reloc_gpu_alloc(eb, vma, len);
		if (unlikely(err))
			return ERR_PTR(err);
	}

	cmd = cache->rq_cmd + cache->rq_size;
	cache->rq_size += len;

	return cmd;
}

1303 1304
static u64
relocate_entry(struct i915_vma *vma,
1305
	       const struct drm_i915_gem_relocation_entry *reloc,
1306 1307
	       struct i915_execbuffer *eb,
	       const struct i915_vma *target)
1308
{
1309
	u64 offset = reloc->offset;
1310 1311
	u64 target_offset = relocation_target(reloc, target);
	bool wide = eb->reloc_cache.use_64bit_reloc;
1312
	void *vaddr;
1313

1314 1315
	if (!eb->reloc_cache.vaddr &&
	    (DBG_FORCE_RELOC == FORCE_GPU_RELOC ||
1316
	     !reservation_object_test_signaled_rcu(vma->resv, true))) {
1317 1318 1319 1320 1321 1322 1323 1324 1325
		const unsigned int gen = eb->reloc_cache.gen;
		unsigned int len;
		u32 *batch;
		u64 addr;

		if (wide)
			len = offset & 7 ? 8 : 5;
		else if (gen >= 4)
			len = 4;
1326
		else
1327
			len = 3;
1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372

		batch = reloc_gpu(eb, vma, len);
		if (IS_ERR(batch))
			goto repeat;

		addr = gen8_canonical_addr(vma->node.start + offset);
		if (wide) {
			if (offset & 7) {
				*batch++ = MI_STORE_DWORD_IMM_GEN4;
				*batch++ = lower_32_bits(addr);
				*batch++ = upper_32_bits(addr);
				*batch++ = lower_32_bits(target_offset);

				addr = gen8_canonical_addr(addr + 4);

				*batch++ = MI_STORE_DWORD_IMM_GEN4;
				*batch++ = lower_32_bits(addr);
				*batch++ = upper_32_bits(addr);
				*batch++ = upper_32_bits(target_offset);
			} else {
				*batch++ = (MI_STORE_DWORD_IMM_GEN4 | (1 << 21)) + 1;
				*batch++ = lower_32_bits(addr);
				*batch++ = upper_32_bits(addr);
				*batch++ = lower_32_bits(target_offset);
				*batch++ = upper_32_bits(target_offset);
			}
		} else if (gen >= 6) {
			*batch++ = MI_STORE_DWORD_IMM_GEN4;
			*batch++ = 0;
			*batch++ = addr;
			*batch++ = target_offset;
		} else if (gen >= 4) {
			*batch++ = MI_STORE_DWORD_IMM_GEN4 | MI_USE_GGTT;
			*batch++ = 0;
			*batch++ = addr;
			*batch++ = target_offset;
		} else {
			*batch++ = MI_STORE_DWORD_IMM | MI_MEM_VIRTUAL;
			*batch++ = addr;
			*batch++ = target_offset;
		}

		goto out;
	}

1373
repeat:
1374
	vaddr = reloc_vaddr(vma->obj, &eb->reloc_cache, offset >> PAGE_SHIFT);
1375 1376 1377 1378 1379
	if (IS_ERR(vaddr))
		return PTR_ERR(vaddr);

	clflush_write32(vaddr + offset_in_page(offset),
			lower_32_bits(target_offset),
1380
			eb->reloc_cache.vaddr);
1381 1382 1383 1384 1385 1386

	if (wide) {
		offset += sizeof(u32);
		target_offset >>= 32;
		wide = false;
		goto repeat;
1387 1388
	}

1389
out:
1390
	return target->node.start | UPDATE;
1391 1392
}

1393 1394 1395 1396
static u64
eb_relocate_entry(struct i915_execbuffer *eb,
		  struct i915_vma *vma,
		  const struct drm_i915_gem_relocation_entry *reloc)
1397
{
1398
	struct i915_vma *target;
1399
	int err;
1400

1401
	/* we've already hold a reference to all valid objects */
1402 1403
	target = eb_get_vma(eb, reloc->target_handle);
	if (unlikely(!target))
1404
		return -ENOENT;
1405

1406
	/* Validate that the target is in a valid r/w GPU domain */
1407
	if (unlikely(reloc->write_domain & (reloc->write_domain - 1))) {
1408
		DRM_DEBUG("reloc with multiple write domains: "
1409
			  "target %d offset %d "
1410
			  "read %08x write %08x",
1411
			  reloc->target_handle,
1412 1413 1414
			  (int) reloc->offset,
			  reloc->read_domains,
			  reloc->write_domain);
1415
		return -EINVAL;
1416
	}
1417 1418
	if (unlikely((reloc->write_domain | reloc->read_domains)
		     & ~I915_GEM_GPU_DOMAINS)) {
1419
		DRM_DEBUG("reloc with read/write non-GPU domains: "
1420
			  "target %d offset %d "
1421
			  "read %08x write %08x",
1422
			  reloc->target_handle,
1423 1424 1425
			  (int) reloc->offset,
			  reloc->read_domains,
			  reloc->write_domain);
1426
		return -EINVAL;
1427 1428
	}

1429
	if (reloc->write_domain) {
1430
		*target->exec_flags |= EXEC_OBJECT_WRITE;
1431

1432 1433 1434 1435 1436 1437 1438
		/*
		 * Sandybridge PPGTT errata: We need a global gtt mapping
		 * for MI and pipe_control writes because the gpu doesn't
		 * properly redirect them through the ppgtt for non_secure
		 * batchbuffers.
		 */
		if (reloc->write_domain == I915_GEM_DOMAIN_INSTRUCTION &&
1439
		    IS_GEN(eb->i915, 6)) {
1440 1441 1442 1443 1444 1445
			err = i915_vma_bind(target, target->obj->cache_level,
					    PIN_GLOBAL);
			if (WARN_ONCE(err,
				      "Unexpected failure to bind target VMA!"))
				return err;
		}
1446
	}
1447

1448 1449
	/*
	 * If the relocation already has the right value in it, no
1450 1451
	 * more work needs to be done.
	 */
1452 1453
	if (!DBG_FORCE_RELOC &&
	    gen8_canonical_addr(target->node.start) == reloc->presumed_offset)
1454
		return 0;
1455 1456

	/* Check that the relocation address is valid... */
1457
	if (unlikely(reloc->offset >
1458
		     vma->size - (eb->reloc_cache.use_64bit_reloc ? 8 : 4))) {
1459
		DRM_DEBUG("Relocation beyond object bounds: "
1460 1461 1462 1463
			  "target %d offset %d size %d.\n",
			  reloc->target_handle,
			  (int)reloc->offset,
			  (int)vma->size);
1464
		return -EINVAL;
1465
	}
1466
	if (unlikely(reloc->offset & 3)) {
1467
		DRM_DEBUG("Relocation not 4-byte aligned: "
1468 1469 1470
			  "target %d offset %d.\n",
			  reloc->target_handle,
			  (int)reloc->offset);
1471
		return -EINVAL;
1472 1473
	}

1474 1475 1476 1477 1478 1479
	/*
	 * If we write into the object, we need to force the synchronisation
	 * barrier, either with an asynchronous clflush or if we executed the
	 * patching using the GPU (though that should be serialised by the
	 * timeline). To be completely sure, and since we are required to
	 * do relocations we are already stalling, disable the user's opt
1480
	 * out of our synchronisation.
1481
	 */
1482
	*vma->exec_flags &= ~EXEC_OBJECT_ASYNC;
1483

1484
	/* and update the user's relocation entry */
1485
	return relocate_entry(vma, reloc, eb, target);
1486 1487
}

1488
static int eb_relocate_vma(struct i915_execbuffer *eb, struct i915_vma *vma)
1489
{
1490
#define N_RELOC(x) ((x) / sizeof(struct drm_i915_gem_relocation_entry))
1491 1492
	struct drm_i915_gem_relocation_entry stack[N_RELOC(512)];
	struct drm_i915_gem_relocation_entry __user *urelocs;
1493
	const struct drm_i915_gem_exec_object2 *entry = exec_entry(eb, vma);
1494
	unsigned int remain;
1495

1496
	urelocs = u64_to_user_ptr(entry->relocs_ptr);
1497
	remain = entry->relocation_count;
1498 1499
	if (unlikely(remain > N_RELOC(ULONG_MAX)))
		return -EINVAL;
1500

1501 1502 1503 1504 1505
	/*
	 * We must check that the entire relocation array is safe
	 * to read. However, if the array is not writable the user loses
	 * the updated relocation values.
	 */
1506
	if (unlikely(!access_ok(urelocs, remain*sizeof(*urelocs))))
1507 1508 1509 1510 1511 1512 1513
		return -EFAULT;

	do {
		struct drm_i915_gem_relocation_entry *r = stack;
		unsigned int count =
			min_t(unsigned int, remain, ARRAY_SIZE(stack));
		unsigned int copied;
1514

1515 1516
		/*
		 * This is the fast path and we cannot handle a pagefault
1517 1518 1519 1520 1521 1522 1523
		 * whilst holding the struct mutex lest the user pass in the
		 * relocations contained within a mmaped bo. For in such a case
		 * we, the page fault handler would call i915_gem_fault() and
		 * we would try to acquire the struct mutex again. Obviously
		 * this is bad and so lockdep complains vehemently.
		 */
		pagefault_disable();
1524
		copied = __copy_from_user_inatomic(r, urelocs, count * sizeof(r[0]));
1525
		pagefault_enable();
1526 1527
		if (unlikely(copied)) {
			remain = -EFAULT;
1528 1529
			goto out;
		}
1530

1531
		remain -= count;
1532
		do {
1533
			u64 offset = eb_relocate_entry(eb, vma, r);
1534

1535 1536 1537
			if (likely(offset == 0)) {
			} else if ((s64)offset < 0) {
				remain = (int)offset;
1538
				goto out;
1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561
			} else {
				/*
				 * Note that reporting an error now
				 * leaves everything in an inconsistent
				 * state as we have *already* changed
				 * the relocation value inside the
				 * object. As we have not changed the
				 * reloc.presumed_offset or will not
				 * change the execobject.offset, on the
				 * call we may not rewrite the value
				 * inside the object, leaving it
				 * dangling and causing a GPU hang. Unless
				 * userspace dynamically rebuilds the
				 * relocations on each execbuf rather than
				 * presume a static tree.
				 *
				 * We did previously check if the relocations
				 * were writable (access_ok), an error now
				 * would be a strange race with mprotect,
				 * having already demonstrated that we
				 * can read from this userspace address.
				 */
				offset = gen8_canonical_addr(offset & ~UPDATE);
1562 1563 1564 1565
				if (unlikely(__put_user(offset, &urelocs[r-stack].presumed_offset))) {
					remain = -EFAULT;
					goto out;
				}
1566
			}
1567 1568 1569
		} while (r++, --count);
		urelocs += ARRAY_SIZE(stack);
	} while (remain);
1570
out:
1571
	reloc_cache_reset(&eb->reloc_cache);
1572
	return remain;
1573 1574 1575
}

static int
1576
eb_relocate_vma_slow(struct i915_execbuffer *eb, struct i915_vma *vma)
1577
{
1578
	const struct drm_i915_gem_exec_object2 *entry = exec_entry(eb, vma);
1579 1580 1581 1582
	struct drm_i915_gem_relocation_entry *relocs =
		u64_to_ptr(typeof(*relocs), entry->relocs_ptr);
	unsigned int i;
	int err;
1583 1584

	for (i = 0; i < entry->relocation_count; i++) {
1585
		u64 offset = eb_relocate_entry(eb, vma, &relocs[i]);
1586

1587 1588 1589 1590
		if ((s64)offset < 0) {
			err = (int)offset;
			goto err;
		}
1591
	}
1592 1593 1594 1595
	err = 0;
err:
	reloc_cache_reset(&eb->reloc_cache);
	return err;
1596 1597
}

1598
static int check_relocations(const struct drm_i915_gem_exec_object2 *entry)
1599
{
1600 1601 1602
	const char __user *addr, *end;
	unsigned long size;
	char __maybe_unused c;
1603

1604 1605 1606
	size = entry->relocation_count;
	if (size == 0)
		return 0;
1607

1608 1609
	if (size > N_RELOC(ULONG_MAX))
		return -EINVAL;
1610

1611 1612
	addr = u64_to_user_ptr(entry->relocs_ptr);
	size *= sizeof(struct drm_i915_gem_relocation_entry);
1613
	if (!access_ok(addr, size))
1614
		return -EFAULT;
1615

1616 1617 1618 1619 1620
	end = addr + size;
	for (; addr < end; addr += PAGE_SIZE) {
		int err = __get_user(c, addr);
		if (err)
			return err;
1621
	}
1622
	return __get_user(c, end - 1);
1623
}
1624

1625
static int eb_copy_relocations(const struct i915_execbuffer *eb)
1626
{
1627 1628 1629
	const unsigned int count = eb->buffer_count;
	unsigned int i;
	int err;
1630

1631 1632 1633 1634 1635 1636
	for (i = 0; i < count; i++) {
		const unsigned int nreloc = eb->exec[i].relocation_count;
		struct drm_i915_gem_relocation_entry __user *urelocs;
		struct drm_i915_gem_relocation_entry *relocs;
		unsigned long size;
		unsigned long copied;
1637

1638 1639
		if (nreloc == 0)
			continue;
1640

1641 1642 1643
		err = check_relocations(&eb->exec[i]);
		if (err)
			goto err;
1644

1645 1646
		urelocs = u64_to_user_ptr(eb->exec[i].relocs_ptr);
		size = nreloc * sizeof(*relocs);
1647

1648
		relocs = kvmalloc_array(size, 1, GFP_KERNEL);
1649 1650 1651 1652
		if (!relocs) {
			err = -ENOMEM;
			goto err;
		}
1653

1654 1655 1656 1657 1658 1659 1660
		/* copy_from_user is limited to < 4GiB */
		copied = 0;
		do {
			unsigned int len =
				min_t(u64, BIT_ULL(31), size - copied);

			if (__copy_from_user((char *)relocs + copied,
1661
					     (char __user *)urelocs + copied,
1662
					     len)) {
1663
end_user:
1664
				user_access_end();
1665
end:
1666 1667 1668 1669
				kvfree(relocs);
				err = -EFAULT;
				goto err;
			}
1670

1671 1672
			copied += len;
		} while (copied < size);
1673

1674 1675 1676 1677 1678 1679 1680 1681 1682 1683
		/*
		 * As we do not update the known relocation offsets after
		 * relocating (due to the complexities in lock handling),
		 * we need to mark them as invalid now so that we force the
		 * relocation processing next time. Just in case the target
		 * object is evicted and then rebound into its old
		 * presumed_offset before the next execbuffer - if that
		 * happened we would make the mistake of assuming that the
		 * relocations were valid.
		 */
1684
		if (!user_access_begin(urelocs, size))
1685
			goto end;
1686

1687 1688 1689 1690 1691
		for (copied = 0; copied < nreloc; copied++)
			unsafe_put_user(-1,
					&urelocs[copied].presumed_offset,
					end_user);
		user_access_end();
1692

1693 1694
		eb->exec[i].relocs_ptr = (uintptr_t)relocs;
	}
1695

1696
	return 0;
1697

1698 1699 1700 1701 1702 1703 1704 1705
err:
	while (i--) {
		struct drm_i915_gem_relocation_entry *relocs =
			u64_to_ptr(typeof(*relocs), eb->exec[i].relocs_ptr);
		if (eb->exec[i].relocation_count)
			kvfree(relocs);
	}
	return err;
1706 1707
}

1708
static int eb_prefault_relocations(const struct i915_execbuffer *eb)
1709
{
1710 1711
	const unsigned int count = eb->buffer_count;
	unsigned int i;
1712

1713
	if (unlikely(i915_modparams.prefault_disable))
1714
		return 0;
1715

1716 1717
	for (i = 0; i < count; i++) {
		int err;
1718

1719 1720 1721 1722
		err = check_relocations(&eb->exec[i]);
		if (err)
			return err;
	}
1723

1724
	return 0;
1725 1726
}

1727
static noinline int eb_relocate_slow(struct i915_execbuffer *eb)
1728
{
1729
	struct drm_device *dev = &eb->i915->drm;
1730
	bool have_copy = false;
1731
	struct i915_vma *vma;
1732 1733 1734 1735 1736 1737 1738
	int err = 0;

repeat:
	if (signal_pending(current)) {
		err = -ERESTARTSYS;
		goto out;
	}
1739

1740
	/* We may process another execbuffer during the unlock... */
1741
	eb_reset_vmas(eb);
1742 1743
	mutex_unlock(&dev->struct_mutex);

1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764
	/*
	 * We take 3 passes through the slowpatch.
	 *
	 * 1 - we try to just prefault all the user relocation entries and
	 * then attempt to reuse the atomic pagefault disabled fast path again.
	 *
	 * 2 - we copy the user entries to a local buffer here outside of the
	 * local and allow ourselves to wait upon any rendering before
	 * relocations
	 *
	 * 3 - we already have a local copy of the relocation entries, but
	 * were interrupted (EAGAIN) whilst waiting for the objects, try again.
	 */
	if (!err) {
		err = eb_prefault_relocations(eb);
	} else if (!have_copy) {
		err = eb_copy_relocations(eb);
		have_copy = err == 0;
	} else {
		cond_resched();
		err = 0;
1765
	}
1766 1767 1768
	if (err) {
		mutex_lock(&dev->struct_mutex);
		goto out;
1769 1770
	}

1771 1772 1773
	/* A frequent cause for EAGAIN are currently unavailable client pages */
	flush_workqueue(eb->i915->mm.userptr_wq);

1774 1775
	err = i915_mutex_lock_interruptible(dev);
	if (err) {
1776
		mutex_lock(&dev->struct_mutex);
1777
		goto out;
1778 1779
	}

1780
	/* reacquire the objects */
1781 1782
	err = eb_lookup_vmas(eb);
	if (err)
1783
		goto err;
1784

1785 1786
	GEM_BUG_ON(!eb->batch);

1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798
	list_for_each_entry(vma, &eb->relocs, reloc_link) {
		if (!have_copy) {
			pagefault_disable();
			err = eb_relocate_vma(eb, vma);
			pagefault_enable();
			if (err)
				goto repeat;
		} else {
			err = eb_relocate_vma_slow(eb, vma);
			if (err)
				goto err;
		}
1799 1800
	}

1801 1802
	/*
	 * Leave the user relocations as are, this is the painfully slow path,
1803 1804 1805 1806 1807 1808
	 * and we want to avoid the complication of dropping the lock whilst
	 * having buffers reserved in the aperture and so causing spurious
	 * ENOSPC for random operations.
	 */

err:
1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829
	if (err == -EAGAIN)
		goto repeat;

out:
	if (have_copy) {
		const unsigned int count = eb->buffer_count;
		unsigned int i;

		for (i = 0; i < count; i++) {
			const struct drm_i915_gem_exec_object2 *entry =
				&eb->exec[i];
			struct drm_i915_gem_relocation_entry *relocs;

			if (!entry->relocation_count)
				continue;

			relocs = u64_to_ptr(typeof(*relocs), entry->relocs_ptr);
			kvfree(relocs);
		}
	}

1830
	return err;
1831 1832
}

1833
static int eb_relocate(struct i915_execbuffer *eb)
1834
{
1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856
	if (eb_lookup_vmas(eb))
		goto slow;

	/* The objects are in their final locations, apply the relocations. */
	if (eb->args->flags & __EXEC_HAS_RELOC) {
		struct i915_vma *vma;

		list_for_each_entry(vma, &eb->relocs, reloc_link) {
			if (eb_relocate_vma(eb, vma))
				goto slow;
		}
	}

	return 0;

slow:
	return eb_relocate_slow(eb);
}

static int eb_move_to_gpu(struct i915_execbuffer *eb)
{
	const unsigned int count = eb->buffer_count;
1857
	struct ww_acquire_ctx acquire;
1858
	unsigned int i;
1859 1860 1861
	int err = 0;

	ww_acquire_init(&acquire, &reservation_ww_class);
1862

1863
	for (i = 0; i < count; i++) {
1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894
		struct i915_vma *vma = eb->vma[i];

		err = ww_mutex_lock_interruptible(&vma->resv->lock, &acquire);
		if (!err)
			continue;

		GEM_BUG_ON(err == -EALREADY); /* No duplicate vma */

		if (err == -EDEADLK) {
			GEM_BUG_ON(i == 0);
			do {
				int j = i - 1;

				ww_mutex_unlock(&eb->vma[j]->resv->lock);

				swap(eb->flags[i], eb->flags[j]);
				swap(eb->vma[i],  eb->vma[j]);
				eb->vma[i]->exec_flags = &eb->flags[i];
			} while (--i);
			GEM_BUG_ON(vma != eb->vma[0]);
			vma->exec_flags = &eb->flags[0];

			err = ww_mutex_lock_slow_interruptible(&vma->resv->lock,
							       &acquire);
		}
		if (err)
			break;
	}
	ww_acquire_done(&acquire);

	while (i--) {
1895 1896
		unsigned int flags = eb->flags[i];
		struct i915_vma *vma = eb->vma[i];
1897
		struct drm_i915_gem_object *obj = vma->obj;
1898

1899 1900
		assert_vma_held(vma);

1901
		if (flags & EXEC_OBJECT_CAPTURE) {
1902
			struct i915_capture_list *capture;
1903 1904

			capture = kmalloc(sizeof(*capture), GFP_KERNEL);
1905 1906 1907 1908 1909
			if (capture) {
				capture->next = eb->request->capture_list;
				capture->vma = vma;
				eb->request->capture_list = capture;
			}
1910 1911
		}

1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924
		/*
		 * If the GPU is not _reading_ through the CPU cache, we need
		 * to make sure that any writes (both previous GPU writes from
		 * before a change in snooping levels and normal CPU writes)
		 * caught in that cache are flushed to main memory.
		 *
		 * We want to say
		 *   obj->cache_dirty &&
		 *   !(obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_READ)
		 * but gcc's optimiser doesn't handle that as well and emits
		 * two jumps instead of one. Maybe one day...
		 */
		if (unlikely(obj->cache_dirty & ~obj->cache_coherent)) {
1925
			if (i915_gem_clflush_object(obj, 0))
1926
				flags &= ~EXEC_OBJECT_ASYNC;
1927 1928
		}

1929 1930 1931 1932
		if (err == 0 && !(flags & EXEC_OBJECT_ASYNC)) {
			err = i915_request_await_object
				(eb->request, obj, flags & EXEC_OBJECT_WRITE);
		}
1933

1934 1935
		if (err == 0)
			err = i915_vma_move_to_active(vma, eb->request, flags);
1936

1937
		i915_vma_unlock(vma);
1938

1939 1940 1941 1942
		__eb_unreserve_vma(vma, flags);
		vma->exec_flags = NULL;

		if (unlikely(flags & __EXEC_OBJECT_HAS_REF))
1943
			i915_vma_put(vma);
1944
	}
1945 1946 1947 1948 1949
	ww_acquire_fini(&acquire);

	if (unlikely(err))
		goto err_skip;

1950
	eb->exec = NULL;
1951

1952
	/* Unconditionally flush any chipset caches (for streaming writes). */
1953
	intel_gt_chipset_flush(eb->engine->gt);
1954
	return 0;
1955 1956 1957 1958

err_skip:
	i915_request_skip(eb->request, err);
	return err;
1959 1960
}

1961
static bool i915_gem_check_execbuffer(struct drm_i915_gem_execbuffer2 *exec)
1962
{
1963
	if (exec->flags & __I915_EXEC_ILLEGAL_FLAGS)
1964 1965
		return false;

C
Chris Wilson 已提交
1966
	/* Kernel clipping was a DRI1 misfeature */
1967 1968 1969 1970
	if (!(exec->flags & I915_EXEC_FENCE_ARRAY)) {
		if (exec->num_cliprects || exec->cliprects_ptr)
			return false;
	}
C
Chris Wilson 已提交
1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982

	if (exec->DR4 == 0xffffffff) {
		DRM_DEBUG("UXA submitting garbage DR4, fixing up\n");
		exec->DR4 = 0;
	}
	if (exec->DR1 || exec->DR4)
		return false;

	if ((exec->batch_start_offset | exec->batch_len) & 0x7)
		return false;

	return true;
1983 1984
}

1985
static int i915_reset_gen7_sol_offsets(struct i915_request *rq)
1986
{
1987 1988
	u32 *cs;
	int i;
1989

1990
	if (!IS_GEN(rq->i915, 7) || rq->engine->id != RCS0) {
1991 1992 1993
		DRM_DEBUG("sol reset is gen7/rcs only\n");
		return -EINVAL;
	}
1994

1995
	cs = intel_ring_begin(rq, 4 * 2 + 2);
1996 1997
	if (IS_ERR(cs))
		return PTR_ERR(cs);
1998

1999
	*cs++ = MI_LOAD_REGISTER_IMM(4);
2000
	for (i = 0; i < 4; i++) {
2001 2002
		*cs++ = i915_mmio_reg_offset(GEN7_SO_WRITE_OFFSET(i));
		*cs++ = 0;
2003
	}
2004
	*cs++ = MI_NOOP;
2005
	intel_ring_advance(rq, cs);
2006 2007 2008 2009

	return 0;
}

2010
static struct i915_vma *eb_parse(struct i915_execbuffer *eb, bool is_master)
2011 2012
{
	struct drm_i915_gem_object *shadow_batch_obj;
2013
	struct i915_vma *vma;
2014
	int err;
2015

2016 2017
	shadow_batch_obj = i915_gem_batch_pool_get(&eb->engine->batch_pool,
						   PAGE_ALIGN(eb->batch_len));
2018
	if (IS_ERR(shadow_batch_obj))
2019
		return ERR_CAST(shadow_batch_obj);
2020

2021
	err = intel_engine_cmd_parser(eb->engine,
2022
				      eb->batch->obj,
2023
				      shadow_batch_obj,
2024 2025
				      eb->batch_start_offset,
				      eb->batch_len,
2026
				      is_master);
2027 2028
	if (err) {
		if (err == -EACCES) /* unhandled chained batch */
C
Chris Wilson 已提交
2029 2030
			vma = NULL;
		else
2031
			vma = ERR_PTR(err);
C
Chris Wilson 已提交
2032 2033
		goto out;
	}
2034

C
Chris Wilson 已提交
2035 2036 2037
	vma = i915_gem_object_ggtt_pin(shadow_batch_obj, NULL, 0, 0, 0);
	if (IS_ERR(vma))
		goto out;
C
Chris Wilson 已提交
2038

2039 2040 2041 2042 2043
	eb->vma[eb->buffer_count] = i915_vma_get(vma);
	eb->flags[eb->buffer_count] =
		__EXEC_OBJECT_HAS_PIN | __EXEC_OBJECT_HAS_REF;
	vma->exec_flags = &eb->flags[eb->buffer_count];
	eb->buffer_count++;
2044

C
Chris Wilson 已提交
2045
out:
C
Chris Wilson 已提交
2046
	i915_gem_object_unpin_pages(shadow_batch_obj);
C
Chris Wilson 已提交
2047
	return vma;
2048
}
2049

2050
static void
2051
add_to_client(struct i915_request *rq, struct drm_file *file)
2052
{
2053 2054
	rq->file_priv = file->driver_priv;
	list_add_tail(&rq->client_link, &rq->file_priv->mm.request_list);
2055 2056
}

2057
static int eb_submit(struct i915_execbuffer *eb)
2058
{
2059
	int err;
2060

2061 2062 2063
	err = eb_move_to_gpu(eb);
	if (err)
		return err;
2064

2065
	if (eb->args->flags & I915_EXEC_GEN7_SOL_RESET) {
2066 2067 2068
		err = i915_reset_gen7_sol_offsets(eb->request);
		if (err)
			return err;
2069 2070
	}

2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082
	/*
	 * After we completed waiting for other engines (using HW semaphores)
	 * then we can signal that this request/batch is ready to run. This
	 * allows us to determine if the batch is still waiting on the GPU
	 * or actually running by checking the breadcrumb.
	 */
	if (eb->engine->emit_init_breadcrumb) {
		err = eb->engine->emit_init_breadcrumb(eb->request);
		if (err)
			return err;
	}

2083
	err = eb->engine->emit_bb_start(eb->request,
2084 2085 2086
					eb->batch->node.start +
					eb->batch_start_offset,
					eb->batch_len,
2087 2088 2089
					eb->batch_flags);
	if (err)
		return err;
2090

C
Chris Wilson 已提交
2091
	return 0;
2092 2093
}

2094
/*
2095
 * Find one BSD ring to dispatch the corresponding BSD command.
2096
 * The engine index is returned.
2097
 */
2098
static unsigned int
2099 2100
gen8_dispatch_bsd_engine(struct drm_i915_private *dev_priv,
			 struct drm_file *file)
2101 2102 2103
{
	struct drm_i915_file_private *file_priv = file->driver_priv;

2104
	/* Check whether the file_priv has already selected one ring. */
2105 2106 2107
	if ((int)file_priv->bsd_engine < 0)
		file_priv->bsd_engine = atomic_fetch_xor(1,
			 &dev_priv->mm.bsd_engine_dispatch_index);
2108

2109
	return file_priv->bsd_engine;
2110 2111
}

2112
static const enum intel_engine_id user_ring_map[] = {
2113 2114 2115 2116 2117
	[I915_EXEC_DEFAULT]	= RCS0,
	[I915_EXEC_RENDER]	= RCS0,
	[I915_EXEC_BLT]		= BCS0,
	[I915_EXEC_BSD]		= VCS0,
	[I915_EXEC_VEBOX]	= VECS0
2118 2119
};

2120
static int eb_pin_context(struct i915_execbuffer *eb, struct intel_context *ce)
2121
{
2122
	int err;
2123

2124 2125 2126 2127
	/*
	 * ABI: Before userspace accesses the GPU (e.g. execbuffer), report
	 * EIO if the GPU is already wedged.
	 */
2128
	err = intel_gt_terminally_wedged(ce->engine->gt);
2129 2130 2131 2132 2133 2134 2135 2136
	if (err)
		return err;

	/*
	 * Pinning the contexts may generate requests in order to acquire
	 * GGTT space, so do this first before we reserve a seqno for
	 * ourselves.
	 */
2137 2138 2139
	err = intel_context_pin(ce);
	if (err)
		return err;
2140

2141
	eb->engine = ce->engine;
2142 2143 2144 2145 2146 2147 2148 2149
	eb->context = ce;
	return 0;
}

static void eb_unpin_context(struct i915_execbuffer *eb)
{
	intel_context_unpin(eb->context);
}
2150

2151 2152 2153 2154
static unsigned int
eb_select_legacy_ring(struct i915_execbuffer *eb,
		      struct drm_file *file,
		      struct drm_i915_gem_execbuffer2 *args)
2155
{
2156
	struct drm_i915_private *i915 = eb->i915;
2157 2158
	unsigned int user_ring_id = args->flags & I915_EXEC_RING_MASK;

2159 2160
	if (user_ring_id != I915_EXEC_BSD &&
	    (args->flags & I915_EXEC_BSD_MASK)) {
2161 2162
		DRM_DEBUG("execbuf with non bsd ring but with invalid "
			  "bsd dispatch flags: %d\n", (int)(args->flags));
2163
		return -1;
2164 2165
	}

2166
	if (user_ring_id == I915_EXEC_BSD && HAS_ENGINE(i915, VCS1)) {
2167 2168 2169
		unsigned int bsd_idx = args->flags & I915_EXEC_BSD_MASK;

		if (bsd_idx == I915_EXEC_BSD_DEFAULT) {
2170
			bsd_idx = gen8_dispatch_bsd_engine(i915, file);
2171 2172
		} else if (bsd_idx >= I915_EXEC_BSD_RING1 &&
			   bsd_idx <= I915_EXEC_BSD_RING2) {
2173
			bsd_idx >>= I915_EXEC_BSD_SHIFT;
2174 2175 2176 2177
			bsd_idx--;
		} else {
			DRM_DEBUG("execbuf with unknown bsd ring: %u\n",
				  bsd_idx);
2178
			return -1;
2179 2180
		}

2181
		return _VCS(bsd_idx);
2182 2183
	}

2184 2185 2186
	if (user_ring_id >= ARRAY_SIZE(user_ring_map)) {
		DRM_DEBUG("execbuf with unknown ring: %u\n", user_ring_id);
		return -1;
2187 2188
	}

2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200
	return user_ring_map[user_ring_id];
}

static int
eb_select_engine(struct i915_execbuffer *eb,
		 struct drm_file *file,
		 struct drm_i915_gem_execbuffer2 *args)
{
	struct intel_context *ce;
	unsigned int idx;
	int err;

2201 2202 2203 2204
	if (i915_gem_context_user_engines(eb->gem_context))
		idx = args->flags & I915_EXEC_RING_MASK;
	else
		idx = eb_select_legacy_ring(eb, file, args);
2205 2206 2207 2208 2209 2210 2211 2212 2213

	ce = i915_gem_context_get_engine(eb->gem_context, idx);
	if (IS_ERR(ce))
		return PTR_ERR(ce);

	err = eb_pin_context(eb, ce);
	intel_context_put(ce);

	return err;
2214 2215
}

2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227
static void
__free_fence_array(struct drm_syncobj **fences, unsigned int n)
{
	while (n--)
		drm_syncobj_put(ptr_mask_bits(fences[n], 2));
	kvfree(fences);
}

static struct drm_syncobj **
get_fence_array(struct drm_i915_gem_execbuffer2 *args,
		struct drm_file *file)
{
2228
	const unsigned long nfences = args->num_cliprects;
2229 2230
	struct drm_i915_gem_exec_fence __user *user;
	struct drm_syncobj **fences;
2231
	unsigned long n;
2232 2233 2234 2235 2236
	int err;

	if (!(args->flags & I915_EXEC_FENCE_ARRAY))
		return NULL;

2237 2238 2239 2240 2241
	/* Check multiplication overflow for access_ok() and kvmalloc_array() */
	BUILD_BUG_ON(sizeof(size_t) > sizeof(unsigned long));
	if (nfences > min_t(unsigned long,
			    ULONG_MAX / sizeof(*user),
			    SIZE_MAX / sizeof(*fences)))
2242 2243 2244
		return ERR_PTR(-EINVAL);

	user = u64_to_user_ptr(args->cliprects_ptr);
2245
	if (!access_ok(user, nfences * sizeof(*user)))
2246 2247
		return ERR_PTR(-EFAULT);

2248
	fences = kvmalloc_array(nfences, sizeof(*fences),
2249
				__GFP_NOWARN | GFP_KERNEL);
2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261
	if (!fences)
		return ERR_PTR(-ENOMEM);

	for (n = 0; n < nfences; n++) {
		struct drm_i915_gem_exec_fence fence;
		struct drm_syncobj *syncobj;

		if (__copy_from_user(&fence, user++, sizeof(fence))) {
			err = -EFAULT;
			goto err;
		}

2262 2263 2264 2265 2266
		if (fence.flags & __I915_EXEC_FENCE_UNKNOWN_FLAGS) {
			err = -EINVAL;
			goto err;
		}

2267 2268 2269 2270 2271 2272 2273
		syncobj = drm_syncobj_find(file, fence.handle);
		if (!syncobj) {
			DRM_DEBUG("Invalid syncobj handle provided\n");
			err = -ENOENT;
			goto err;
		}

2274 2275 2276
		BUILD_BUG_ON(~(ARCH_KMALLOC_MINALIGN - 1) &
			     ~__I915_EXEC_FENCE_UNKNOWN_FLAGS);

2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311
		fences[n] = ptr_pack_bits(syncobj, fence.flags, 2);
	}

	return fences;

err:
	__free_fence_array(fences, n);
	return ERR_PTR(err);
}

static void
put_fence_array(struct drm_i915_gem_execbuffer2 *args,
		struct drm_syncobj **fences)
{
	if (fences)
		__free_fence_array(fences, args->num_cliprects);
}

static int
await_fence_array(struct i915_execbuffer *eb,
		  struct drm_syncobj **fences)
{
	const unsigned int nfences = eb->args->num_cliprects;
	unsigned int n;
	int err;

	for (n = 0; n < nfences; n++) {
		struct drm_syncobj *syncobj;
		struct dma_fence *fence;
		unsigned int flags;

		syncobj = ptr_unpack_bits(fences[n], &flags, 2);
		if (!(flags & I915_EXEC_FENCE_WAIT))
			continue;

J
Jason Ekstrand 已提交
2312
		fence = drm_syncobj_fence_get(syncobj);
2313 2314 2315
		if (!fence)
			return -EINVAL;

2316
		err = i915_request_await_dma_fence(eb->request, fence);
2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340
		dma_fence_put(fence);
		if (err < 0)
			return err;
	}

	return 0;
}

static void
signal_fence_array(struct i915_execbuffer *eb,
		   struct drm_syncobj **fences)
{
	const unsigned int nfences = eb->args->num_cliprects;
	struct dma_fence * const fence = &eb->request->fence;
	unsigned int n;

	for (n = 0; n < nfences; n++) {
		struct drm_syncobj *syncobj;
		unsigned int flags;

		syncobj = ptr_unpack_bits(fences[n], &flags, 2);
		if (!(flags & I915_EXEC_FENCE_SIGNAL))
			continue;

2341
		drm_syncobj_replace_fence(syncobj, fence);
2342 2343 2344
	}
}

2345
static int
2346
i915_gem_do_execbuffer(struct drm_device *dev,
2347 2348
		       struct drm_file *file,
		       struct drm_i915_gem_execbuffer2 *args,
2349 2350
		       struct drm_i915_gem_exec_object2 *exec,
		       struct drm_syncobj **fences)
2351
{
2352
	struct i915_execbuffer eb;
2353
	struct dma_fence *in_fence = NULL;
2354
	struct dma_fence *exec_fence = NULL;
2355 2356
	struct sync_file *out_fence = NULL;
	int out_fence_fd = -1;
2357
	int err;
2358

2359
	BUILD_BUG_ON(__EXEC_INTERNAL_FLAGS & ~__I915_EXEC_ILLEGAL_FLAGS);
2360 2361
	BUILD_BUG_ON(__EXEC_OBJECT_INTERNAL_FLAGS &
		     ~__EXEC_OBJECT_UNKNOWN_FLAGS);
2362

2363 2364 2365
	eb.i915 = to_i915(dev);
	eb.file = file;
	eb.args = args;
2366
	if (DBG_FORCE_RELOC || !(args->flags & I915_EXEC_NO_RELOC))
2367
		args->flags |= __EXEC_HAS_RELOC;
2368

2369
	eb.exec = exec;
2370 2371
	eb.vma = (struct i915_vma **)(exec + args->buffer_count + 1);
	eb.vma[0] = NULL;
2372 2373
	eb.flags = (unsigned int *)(eb.vma + args->buffer_count + 1);

2374
	eb.invalid_flags = __EXEC_OBJECT_UNKNOWN_FLAGS;
2375 2376
	reloc_cache_init(&eb.reloc_cache, eb.i915);

2377
	eb.buffer_count = args->buffer_count;
2378 2379 2380
	eb.batch_start_offset = args->batch_start_offset;
	eb.batch_len = args->batch_len;

2381
	eb.batch_flags = 0;
2382
	if (args->flags & I915_EXEC_SECURE) {
2383
		if (!drm_is_current_master(file) || !capable(CAP_SYS_ADMIN))
2384 2385
		    return -EPERM;

2386
		eb.batch_flags |= I915_DISPATCH_SECURE;
2387
	}
2388
	if (args->flags & I915_EXEC_IS_PINNED)
2389
		eb.batch_flags |= I915_DISPATCH_PINNED;
2390

2391 2392
	if (args->flags & I915_EXEC_FENCE_IN) {
		in_fence = sync_file_get_fence(lower_32_bits(args->rsvd2));
2393 2394
		if (!in_fence)
			return -EINVAL;
2395 2396
	}

2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409
	if (args->flags & I915_EXEC_FENCE_SUBMIT) {
		if (in_fence) {
			err = -EINVAL;
			goto err_in_fence;
		}

		exec_fence = sync_file_get_fence(lower_32_bits(args->rsvd2));
		if (!exec_fence) {
			err = -EINVAL;
			goto err_in_fence;
		}
	}

2410 2411 2412
	if (args->flags & I915_EXEC_FENCE_OUT) {
		out_fence_fd = get_unused_fd_flags(O_CLOEXEC);
		if (out_fence_fd < 0) {
2413
			err = out_fence_fd;
2414
			goto err_exec_fence;
2415 2416 2417
		}
	}

2418 2419 2420 2421 2422
	err = eb_create(&eb);
	if (err)
		goto err_out_fence;

	GEM_BUG_ON(!eb.lut_size);
2423

2424 2425 2426 2427
	err = eb_select_context(&eb);
	if (unlikely(err))
		goto err_destroy;

2428 2429
	/*
	 * Take a local wakeref for preparing to dispatch the execbuf as
2430 2431 2432 2433 2434
	 * we expect to access the hardware fairly frequently in the
	 * process. Upon first dispatch, we acquire another prolonged
	 * wakeref that we hold until the GPU has been idle for at least
	 * 100ms.
	 */
2435
	intel_gt_pm_get(&eb.i915->gt);
2436

2437 2438 2439
	err = i915_mutex_lock_interruptible(dev);
	if (err)
		goto err_rpm;
2440

2441
	err = eb_select_engine(&eb, file, args);
2442 2443 2444
	if (unlikely(err))
		goto err_unlock;

2445 2446 2447 2448
	err = eb_wait_for_ring(&eb); /* may temporarily drop struct_mutex */
	if (unlikely(err))
		goto err_engine;

2449
	err = eb_relocate(&eb);
2450
	if (err) {
2451 2452 2453 2454 2455 2456 2457 2458 2459
		/*
		 * If the user expects the execobject.offset and
		 * reloc.presumed_offset to be an exact match,
		 * as for using NO_RELOC, then we cannot update
		 * the execobject.offset until we have completed
		 * relocation.
		 */
		args->flags &= ~__EXEC_HAS_RELOC;
		goto err_vma;
2460
	}
2461

2462
	if (unlikely(*eb.batch->exec_flags & EXEC_OBJECT_WRITE)) {
2463
		DRM_DEBUG("Attempting to use self-modifying batch buffer\n");
2464 2465
		err = -EINVAL;
		goto err_vma;
2466
	}
2467 2468
	if (eb.batch_start_offset > eb.batch->size ||
	    eb.batch_len > eb.batch->size - eb.batch_start_offset) {
2469
		DRM_DEBUG("Attempting to use out-of-bounds batch\n");
2470 2471
		err = -EINVAL;
		goto err_vma;
2472
	}
2473

2474
	if (eb_use_cmdparser(&eb)) {
2475 2476
		struct i915_vma *vma;

2477
		vma = eb_parse(&eb, drm_is_current_master(file));
2478
		if (IS_ERR(vma)) {
2479 2480
			err = PTR_ERR(vma);
			goto err_vma;
2481
		}
2482

2483
		if (vma) {
2484 2485 2486 2487 2488 2489 2490 2491 2492
			/*
			 * Batch parsed and accepted:
			 *
			 * Set the DISPATCH_SECURE bit to remove the NON_SECURE
			 * bit from MI_BATCH_BUFFER_START commands issued in
			 * the dispatch_execbuffer implementations. We
			 * specifically don't want that set on batches the
			 * command parser has accepted.
			 */
2493
			eb.batch_flags |= I915_DISPATCH_SECURE;
2494 2495
			eb.batch_start_offset = 0;
			eb.batch = vma;
2496
		}
2497 2498
	}

2499 2500
	if (eb.batch_len == 0)
		eb.batch_len = eb.batch->size - eb.batch_start_offset;
2501

2502 2503
	/*
	 * snb/ivb/vlv conflate the "batch in ppgtt" bit with the "non-secure
2504
	 * batch" bit. Hence we need to pin secure batches into the global gtt.
B
Ben Widawsky 已提交
2505
	 * hsw should have this fixed, but bdw mucks it up again. */
2506
	if (eb.batch_flags & I915_DISPATCH_SECURE) {
C
Chris Wilson 已提交
2507
		struct i915_vma *vma;
2508

2509 2510 2511 2512 2513 2514
		/*
		 * So on first glance it looks freaky that we pin the batch here
		 * outside of the reservation loop. But:
		 * - The batch is already pinned into the relevant ppgtt, so we
		 *   already have the backing storage fully allocated.
		 * - No other BO uses the global gtt (well contexts, but meh),
2515
		 *   so we don't really have issues with multiple objects not
2516 2517 2518
		 *   fitting due to fragmentation.
		 * So this is actually safe.
		 */
2519
		vma = i915_gem_object_ggtt_pin(eb.batch->obj, NULL, 0, 0, 0);
C
Chris Wilson 已提交
2520
		if (IS_ERR(vma)) {
2521 2522
			err = PTR_ERR(vma);
			goto err_vma;
C
Chris Wilson 已提交
2523
		}
2524

2525
		eb.batch = vma;
2526
	}
2527

2528 2529 2530
	/* All GPU relocation batches must be submitted prior to the user rq */
	GEM_BUG_ON(eb.reloc_cache.rq);

2531
	/* Allocate a request for this batch buffer nice and early. */
2532
	eb.request = i915_request_create(eb.context);
2533
	if (IS_ERR(eb.request)) {
2534
		err = PTR_ERR(eb.request);
2535
		goto err_batch_unpin;
2536
	}
2537

2538
	if (in_fence) {
2539
		err = i915_request_await_dma_fence(eb.request, in_fence);
2540
		if (err < 0)
2541 2542 2543
			goto err_request;
	}

2544 2545 2546 2547 2548 2549 2550
	if (exec_fence) {
		err = i915_request_await_execution(eb.request, exec_fence,
						   eb.engine->bond_execute);
		if (err < 0)
			goto err_request;
	}

2551 2552 2553 2554 2555 2556
	if (fences) {
		err = await_fence_array(&eb, fences);
		if (err)
			goto err_request;
	}

2557
	if (out_fence_fd != -1) {
2558
		out_fence = sync_file_create(&eb.request->fence);
2559
		if (!out_fence) {
2560
			err = -ENOMEM;
2561 2562 2563 2564
			goto err_request;
		}
	}

2565 2566
	/*
	 * Whilst this request exists, batch_obj will be on the
2567 2568 2569 2570 2571
	 * active_list, and so will hold the active reference. Only when this
	 * request is retired will the the batch_obj be moved onto the
	 * inactive_list and lose its active reference. Hence we do not need
	 * to explicitly hold another reference here.
	 */
2572
	eb.request->batch = eb.batch;
2573

2574
	trace_i915_request_queue(eb.request, eb.batch_flags);
2575
	err = eb_submit(&eb);
2576
err_request:
2577
	add_to_client(eb.request, file);
2578
	i915_request_add(eb.request);
2579

2580 2581 2582
	if (fences)
		signal_fence_array(&eb, fences);

2583
	if (out_fence) {
2584
		if (err == 0) {
2585
			fd_install(out_fence_fd, out_fence->file);
2586
			args->rsvd2 &= GENMASK_ULL(31, 0); /* keep in-fence */
2587 2588 2589 2590 2591 2592
			args->rsvd2 |= (u64)out_fence_fd << 32;
			out_fence_fd = -1;
		} else {
			fput(out_fence->file);
		}
	}
2593

2594
err_batch_unpin:
2595
	if (eb.batch_flags & I915_DISPATCH_SECURE)
2596
		i915_vma_unpin(eb.batch);
2597 2598 2599
err_vma:
	if (eb.exec)
		eb_release_vmas(&eb);
2600 2601
err_engine:
	eb_unpin_context(&eb);
2602
err_unlock:
2603
	mutex_unlock(&dev->struct_mutex);
2604
err_rpm:
2605
	intel_gt_pm_put(&eb.i915->gt);
2606
	i915_gem_context_put(eb.gem_context);
2607
err_destroy:
2608
	eb_destroy(&eb);
2609
err_out_fence:
2610 2611
	if (out_fence_fd != -1)
		put_unused_fd(out_fence_fd);
2612 2613
err_exec_fence:
	dma_fence_put(exec_fence);
2614
err_in_fence:
2615
	dma_fence_put(in_fence);
2616
	return err;
2617 2618
}

2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638
static size_t eb_element_size(void)
{
	return (sizeof(struct drm_i915_gem_exec_object2) +
		sizeof(struct i915_vma *) +
		sizeof(unsigned int));
}

static bool check_buffer_count(size_t count)
{
	const size_t sz = eb_element_size();

	/*
	 * When using LUT_HANDLE, we impose a limit of INT_MAX for the lookup
	 * array size (see eb_create()). Otherwise, we can accept an array as
	 * large as can be addressed (though use large arrays at your peril)!
	 */

	return !(count < 1 || count > INT_MAX || count > SIZE_MAX / sz - 1);
}

2639 2640 2641 2642 2643
/*
 * Legacy execbuffer just creates an exec2 list from the original exec object
 * list array and passes it to the real function.
 */
int
2644 2645
i915_gem_execbuffer_ioctl(struct drm_device *dev, void *data,
			  struct drm_file *file)
2646 2647 2648 2649 2650
{
	struct drm_i915_gem_execbuffer *args = data;
	struct drm_i915_gem_execbuffer2 exec2;
	struct drm_i915_gem_exec_object *exec_list = NULL;
	struct drm_i915_gem_exec_object2 *exec2_list = NULL;
2651
	const size_t count = args->buffer_count;
2652 2653
	unsigned int i;
	int err;
2654

2655 2656
	if (!check_buffer_count(count)) {
		DRM_DEBUG("execbuf2 with %zd buffers\n", count);
2657 2658 2659
		return -EINVAL;
	}

2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673
	exec2.buffers_ptr = args->buffers_ptr;
	exec2.buffer_count = args->buffer_count;
	exec2.batch_start_offset = args->batch_start_offset;
	exec2.batch_len = args->batch_len;
	exec2.DR1 = args->DR1;
	exec2.DR4 = args->DR4;
	exec2.num_cliprects = args->num_cliprects;
	exec2.cliprects_ptr = args->cliprects_ptr;
	exec2.flags = I915_EXEC_RENDER;
	i915_execbuffer2_set_context_id(exec2, 0);

	if (!i915_gem_check_execbuffer(&exec2))
		return -EINVAL;

2674
	/* Copy in the exec list from userland */
2675
	exec_list = kvmalloc_array(count, sizeof(*exec_list),
2676
				   __GFP_NOWARN | GFP_KERNEL);
2677
	exec2_list = kvmalloc_array(count + 1, eb_element_size(),
2678
				    __GFP_NOWARN | GFP_KERNEL);
2679
	if (exec_list == NULL || exec2_list == NULL) {
2680
		DRM_DEBUG("Failed to allocate exec list for %d buffers\n",
2681
			  args->buffer_count);
M
Michal Hocko 已提交
2682 2683
		kvfree(exec_list);
		kvfree(exec2_list);
2684 2685
		return -ENOMEM;
	}
2686
	err = copy_from_user(exec_list,
2687
			     u64_to_user_ptr(args->buffers_ptr),
2688
			     sizeof(*exec_list) * count);
2689
	if (err) {
2690
		DRM_DEBUG("copy %d exec entries failed %d\n",
2691
			  args->buffer_count, err);
M
Michal Hocko 已提交
2692 2693
		kvfree(exec_list);
		kvfree(exec2_list);
2694 2695 2696 2697 2698 2699 2700 2701 2702
		return -EFAULT;
	}

	for (i = 0; i < args->buffer_count; i++) {
		exec2_list[i].handle = exec_list[i].handle;
		exec2_list[i].relocation_count = exec_list[i].relocation_count;
		exec2_list[i].relocs_ptr = exec_list[i].relocs_ptr;
		exec2_list[i].alignment = exec_list[i].alignment;
		exec2_list[i].offset = exec_list[i].offset;
2703
		if (INTEL_GEN(to_i915(dev)) < 4)
2704 2705 2706 2707 2708
			exec2_list[i].flags = EXEC_OBJECT_NEEDS_FENCE;
		else
			exec2_list[i].flags = 0;
	}

2709
	err = i915_gem_do_execbuffer(dev, file, &exec2, exec2_list, NULL);
2710
	if (exec2.flags & __EXEC_HAS_RELOC) {
2711
		struct drm_i915_gem_exec_object __user *user_exec_list =
2712
			u64_to_user_ptr(args->buffers_ptr);
2713

2714
		/* Copy the new buffer offsets back to the user's exec list. */
2715
		for (i = 0; i < args->buffer_count; i++) {
2716 2717 2718
			if (!(exec2_list[i].offset & UPDATE))
				continue;

2719
			exec2_list[i].offset =
2720 2721 2722 2723 2724
				gen8_canonical_addr(exec2_list[i].offset & PIN_OFFSET_MASK);
			exec2_list[i].offset &= PIN_OFFSET_MASK;
			if (__copy_to_user(&user_exec_list[i].offset,
					   &exec2_list[i].offset,
					   sizeof(user_exec_list[i].offset)))
2725
				break;
2726 2727 2728
		}
	}

M
Michal Hocko 已提交
2729 2730
	kvfree(exec_list);
	kvfree(exec2_list);
2731
	return err;
2732 2733 2734
}

int
2735 2736
i915_gem_execbuffer2_ioctl(struct drm_device *dev, void *data,
			   struct drm_file *file)
2737 2738
{
	struct drm_i915_gem_execbuffer2 *args = data;
2739
	struct drm_i915_gem_exec_object2 *exec2_list;
2740
	struct drm_syncobj **fences = NULL;
2741
	const size_t count = args->buffer_count;
2742
	int err;
2743

2744 2745
	if (!check_buffer_count(count)) {
		DRM_DEBUG("execbuf2 with %zd buffers\n", count);
2746 2747 2748
		return -EINVAL;
	}

2749 2750 2751 2752
	if (!i915_gem_check_execbuffer(args))
		return -EINVAL;

	/* Allocate an extra slot for use by the command parser */
2753
	exec2_list = kvmalloc_array(count + 1, eb_element_size(),
2754
				    __GFP_NOWARN | GFP_KERNEL);
2755
	if (exec2_list == NULL) {
2756 2757
		DRM_DEBUG("Failed to allocate exec list for %zd buffers\n",
			  count);
2758 2759
		return -ENOMEM;
	}
2760 2761
	if (copy_from_user(exec2_list,
			   u64_to_user_ptr(args->buffers_ptr),
2762 2763
			   sizeof(*exec2_list) * count)) {
		DRM_DEBUG("copy %zd exec entries failed\n", count);
M
Michal Hocko 已提交
2764
		kvfree(exec2_list);
2765 2766 2767
		return -EFAULT;
	}

2768 2769 2770 2771 2772 2773 2774 2775 2776
	if (args->flags & I915_EXEC_FENCE_ARRAY) {
		fences = get_fence_array(args, file);
		if (IS_ERR(fences)) {
			kvfree(exec2_list);
			return PTR_ERR(fences);
		}
	}

	err = i915_gem_do_execbuffer(dev, file, args, exec2_list, fences);
2777 2778 2779 2780 2781 2782 2783 2784

	/*
	 * Now that we have begun execution of the batchbuffer, we ignore
	 * any new error after this point. Also given that we have already
	 * updated the associated relocations, we try to write out the current
	 * object locations irrespective of any error.
	 */
	if (args->flags & __EXEC_HAS_RELOC) {
2785
		struct drm_i915_gem_exec_object2 __user *user_exec_list =
2786 2787
			u64_to_user_ptr(args->buffers_ptr);
		unsigned int i;
2788

2789
		/* Copy the new buffer offsets back to the user's exec list. */
2790 2791 2792 2793 2794 2795 2796 2797
		/*
		 * Note: count * sizeof(*user_exec_list) does not overflow,
		 * because we checked 'count' in check_buffer_count().
		 *
		 * And this range already got effectively checked earlier
		 * when we did the "copy_from_user()" above.
		 */
		if (!user_access_begin(user_exec_list, count * sizeof(*user_exec_list)))
2798
			goto end;
2799

2800
		for (i = 0; i < args->buffer_count; i++) {
2801 2802 2803
			if (!(exec2_list[i].offset & UPDATE))
				continue;

2804
			exec2_list[i].offset =
2805 2806 2807 2808
				gen8_canonical_addr(exec2_list[i].offset & PIN_OFFSET_MASK);
			unsafe_put_user(exec2_list[i].offset,
					&user_exec_list[i].offset,
					end_user);
2809
		}
2810 2811
end_user:
		user_access_end();
2812
end:;
2813 2814
	}

2815
	args->flags &= ~__I915_EXEC_UNKNOWN_FLAGS;
2816
	put_fence_array(args, fences);
M
Michal Hocko 已提交
2817
	kvfree(exec2_list);
2818
	return err;
2819
}