page_alloc.c 233.3 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
/*
 *  linux/mm/page_alloc.c
 *
 *  Manages the free list, the system allocates free pages here.
 *  Note that kmalloc() lives in slab.c
 *
 *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
 *  Swap reorganised 29.12.95, Stephen Tweedie
 *  Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
 *  Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
 *  Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
 *  Zone balancing, Kanoj Sarcar, SGI, Jan 2000
 *  Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
 *          (lots of bits borrowed from Ingo Molnar & Andrew Morton)
 */

#include <linux/stddef.h>
#include <linux/mm.h>
19
#include <linux/highmem.h>
L
Linus Torvalds 已提交
20 21 22
#include <linux/swap.h>
#include <linux/interrupt.h>
#include <linux/pagemap.h>
23
#include <linux/jiffies.h>
24
#include <linux/memblock.h>
L
Linus Torvalds 已提交
25
#include <linux/compiler.h>
26
#include <linux/kernel.h>
27
#include <linux/kasan.h>
L
Linus Torvalds 已提交
28 29 30 31 32
#include <linux/module.h>
#include <linux/suspend.h>
#include <linux/pagevec.h>
#include <linux/blkdev.h>
#include <linux/slab.h>
33
#include <linux/ratelimit.h>
34
#include <linux/oom.h>
L
Linus Torvalds 已提交
35 36 37 38
#include <linux/topology.h>
#include <linux/sysctl.h>
#include <linux/cpu.h>
#include <linux/cpuset.h>
39
#include <linux/memory_hotplug.h>
L
Linus Torvalds 已提交
40 41
#include <linux/nodemask.h>
#include <linux/vmalloc.h>
42
#include <linux/vmstat.h>
43
#include <linux/mempolicy.h>
44
#include <linux/memremap.h>
45
#include <linux/stop_machine.h>
46 47
#include <linux/sort.h>
#include <linux/pfn.h>
48
#include <linux/backing-dev.h>
49
#include <linux/fault-inject.h>
K
KAMEZAWA Hiroyuki 已提交
50
#include <linux/page-isolation.h>
51
#include <linux/page_ext.h>
52
#include <linux/debugobjects.h>
53
#include <linux/kmemleak.h>
54
#include <linux/compaction.h>
55
#include <trace/events/kmem.h>
56
#include <trace/events/oom.h>
57
#include <linux/prefetch.h>
58
#include <linux/mm_inline.h>
59
#include <linux/migrate.h>
60
#include <linux/hugetlb.h>
61
#include <linux/sched/rt.h>
62
#include <linux/sched/mm.h>
63
#include <linux/page_owner.h>
64
#include <linux/kthread.h>
65
#include <linux/memcontrol.h>
66
#include <linux/ftrace.h>
67
#include <linux/lockdep.h>
68
#include <linux/nmi.h>
69
#include <linux/psi.h>
L
Linus Torvalds 已提交
70

71
#include <asm/sections.h>
L
Linus Torvalds 已提交
72
#include <asm/tlbflush.h>
73
#include <asm/div64.h>
L
Linus Torvalds 已提交
74 75
#include "internal.h"

76 77
/* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
static DEFINE_MUTEX(pcp_batch_high_lock);
78
#define MIN_PERCPU_PAGELIST_FRACTION	(8)
79

80 81 82 83 84
#ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
DEFINE_PER_CPU(int, numa_node);
EXPORT_PER_CPU_SYMBOL(numa_node);
#endif

85 86
DEFINE_STATIC_KEY_TRUE(vm_numa_stat_key);

87 88 89 90 91 92 93 94 95
#ifdef CONFIG_HAVE_MEMORYLESS_NODES
/*
 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
 * defined in <linux/topology.h>.
 */
DEFINE_PER_CPU(int, _numa_mem_);		/* Kernel "local memory" node */
EXPORT_PER_CPU_SYMBOL(_numa_mem_);
96
int _node_numa_mem_[MAX_NUMNODES];
97 98
#endif

99
/* work_structs for global per-cpu drains */
100 101 102 103
struct pcpu_drain {
	struct zone *zone;
	struct work_struct work;
};
104
DEFINE_MUTEX(pcpu_drain_mutex);
105
DEFINE_PER_CPU(struct pcpu_drain, pcpu_drain);
106

107
#ifdef CONFIG_GCC_PLUGIN_LATENT_ENTROPY
108
volatile unsigned long latent_entropy __latent_entropy;
109 110 111
EXPORT_SYMBOL(latent_entropy);
#endif

L
Linus Torvalds 已提交
112
/*
113
 * Array of node states.
L
Linus Torvalds 已提交
114
 */
115 116 117 118 119 120 121
nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
	[N_POSSIBLE] = NODE_MASK_ALL,
	[N_ONLINE] = { { [0] = 1UL } },
#ifndef CONFIG_NUMA
	[N_NORMAL_MEMORY] = { { [0] = 1UL } },
#ifdef CONFIG_HIGHMEM
	[N_HIGH_MEMORY] = { { [0] = 1UL } },
122 123
#endif
	[N_MEMORY] = { { [0] = 1UL } },
124 125 126 127 128
	[N_CPU] = { { [0] = 1UL } },
#endif	/* NUMA */
};
EXPORT_SYMBOL(node_states);

129 130
atomic_long_t _totalram_pages __read_mostly;
EXPORT_SYMBOL(_totalram_pages);
131
unsigned long totalreserve_pages __read_mostly;
132
unsigned long totalcma_pages __read_mostly;
133

134
int percpu_pagelist_fraction;
135
gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
L
Linus Torvalds 已提交
136

137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154
/*
 * A cached value of the page's pageblock's migratetype, used when the page is
 * put on a pcplist. Used to avoid the pageblock migratetype lookup when
 * freeing from pcplists in most cases, at the cost of possibly becoming stale.
 * Also the migratetype set in the page does not necessarily match the pcplist
 * index, e.g. page might have MIGRATE_CMA set but be on a pcplist with any
 * other index - this ensures that it will be put on the correct CMA freelist.
 */
static inline int get_pcppage_migratetype(struct page *page)
{
	return page->index;
}

static inline void set_pcppage_migratetype(struct page *page, int migratetype)
{
	page->index = migratetype;
}

155 156 157 158 159
#ifdef CONFIG_PM_SLEEP
/*
 * The following functions are used by the suspend/hibernate code to temporarily
 * change gfp_allowed_mask in order to avoid using I/O during memory allocations
 * while devices are suspended.  To avoid races with the suspend/hibernate code,
160 161 162 163
 * they should always be called with system_transition_mutex held
 * (gfp_allowed_mask also should only be modified with system_transition_mutex
 * held, unless the suspend/hibernate code is guaranteed not to run in parallel
 * with that modification).
164
 */
165 166 167 168

static gfp_t saved_gfp_mask;

void pm_restore_gfp_mask(void)
169
{
170
	WARN_ON(!mutex_is_locked(&system_transition_mutex));
171 172 173 174
	if (saved_gfp_mask) {
		gfp_allowed_mask = saved_gfp_mask;
		saved_gfp_mask = 0;
	}
175 176
}

177
void pm_restrict_gfp_mask(void)
178
{
179
	WARN_ON(!mutex_is_locked(&system_transition_mutex));
180 181
	WARN_ON(saved_gfp_mask);
	saved_gfp_mask = gfp_allowed_mask;
182
	gfp_allowed_mask &= ~(__GFP_IO | __GFP_FS);
183
}
184 185 186

bool pm_suspended_storage(void)
{
187
	if ((gfp_allowed_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
188 189 190
		return false;
	return true;
}
191 192
#endif /* CONFIG_PM_SLEEP */

193
#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
194
unsigned int pageblock_order __read_mostly;
195 196
#endif

197
static void __free_pages_ok(struct page *page, unsigned int order);
198

L
Linus Torvalds 已提交
199 200 201 202 203 204
/*
 * results with 256, 32 in the lowmem_reserve sysctl:
 *	1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
 *	1G machine -> (16M dma, 784M normal, 224M high)
 *	NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
 *	HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
Y
Yaowei Bai 已提交
205
 *	HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA
A
Andi Kleen 已提交
206 207 208
 *
 * TBD: should special case ZONE_DMA32 machines here - in those we normally
 * don't need any ZONE_NORMAL reservation
L
Linus Torvalds 已提交
209
 */
210
int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES] = {
211
#ifdef CONFIG_ZONE_DMA
212
	[ZONE_DMA] = 256,
213
#endif
214
#ifdef CONFIG_ZONE_DMA32
215
	[ZONE_DMA32] = 256,
216
#endif
217
	[ZONE_NORMAL] = 32,
218
#ifdef CONFIG_HIGHMEM
219
	[ZONE_HIGHMEM] = 0,
220
#endif
221
	[ZONE_MOVABLE] = 0,
222
};
L
Linus Torvalds 已提交
223 224 225

EXPORT_SYMBOL(totalram_pages);

226
static char * const zone_names[MAX_NR_ZONES] = {
227
#ifdef CONFIG_ZONE_DMA
228
	 "DMA",
229
#endif
230
#ifdef CONFIG_ZONE_DMA32
231
	 "DMA32",
232
#endif
233
	 "Normal",
234
#ifdef CONFIG_HIGHMEM
M
Mel Gorman 已提交
235
	 "HighMem",
236
#endif
M
Mel Gorman 已提交
237
	 "Movable",
238 239 240
#ifdef CONFIG_ZONE_DEVICE
	 "Device",
#endif
241 242
};

243
const char * const migratetype_names[MIGRATE_TYPES] = {
244 245 246 247 248 249 250 251 252 253 254 255
	"Unmovable",
	"Movable",
	"Reclaimable",
	"HighAtomic",
#ifdef CONFIG_CMA
	"CMA",
#endif
#ifdef CONFIG_MEMORY_ISOLATION
	"Isolate",
#endif
};

256 257 258 259 260 261
compound_page_dtor * const compound_page_dtors[] = {
	NULL,
	free_compound_page,
#ifdef CONFIG_HUGETLB_PAGE
	free_huge_page,
#endif
262 263 264
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
	free_transhuge_page,
#endif
265 266
};

L
Linus Torvalds 已提交
267
int min_free_kbytes = 1024;
268
int user_min_free_kbytes = -1;
269 270 271 272 273 274 275 276 277 278 279 280
#ifdef CONFIG_DISCONTIGMEM
/*
 * DiscontigMem defines memory ranges as separate pg_data_t even if the ranges
 * are not on separate NUMA nodes. Functionally this works but with
 * watermark_boost_factor, it can reclaim prematurely as the ranges can be
 * quite small. By default, do not boost watermarks on discontigmem as in
 * many cases very high-order allocations like THP are likely to be
 * unsupported and the premature reclaim offsets the advantage of long-term
 * fragmentation avoidance.
 */
int watermark_boost_factor __read_mostly;
#else
281
int watermark_boost_factor __read_mostly = 15000;
282
#endif
283
int watermark_scale_factor = 10;
L
Linus Torvalds 已提交
284

285 286 287
static unsigned long nr_kernel_pages __initdata;
static unsigned long nr_all_pages __initdata;
static unsigned long dma_reserve __initdata;
L
Linus Torvalds 已提交
288

T
Tejun Heo 已提交
289
#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
290 291
static unsigned long arch_zone_lowest_possible_pfn[MAX_NR_ZONES] __initdata;
static unsigned long arch_zone_highest_possible_pfn[MAX_NR_ZONES] __initdata;
292
static unsigned long required_kernelcore __initdata;
293
static unsigned long required_kernelcore_percent __initdata;
294
static unsigned long required_movablecore __initdata;
295
static unsigned long required_movablecore_percent __initdata;
296
static unsigned long zone_movable_pfn[MAX_NUMNODES] __initdata;
297
static bool mirrored_kernelcore __meminitdata;
T
Tejun Heo 已提交
298 299 300 301 302

/* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
int movable_zone;
EXPORT_SYMBOL(movable_zone);
#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
303

M
Miklos Szeredi 已提交
304
#if MAX_NUMNODES > 1
305
unsigned int nr_node_ids __read_mostly = MAX_NUMNODES;
306
unsigned int nr_online_nodes __read_mostly = 1;
M
Miklos Szeredi 已提交
307
EXPORT_SYMBOL(nr_node_ids);
308
EXPORT_SYMBOL(nr_online_nodes);
M
Miklos Szeredi 已提交
309 310
#endif

311 312
int page_group_by_mobility_disabled __read_mostly;

313
#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339
/*
 * During boot we initialize deferred pages on-demand, as needed, but once
 * page_alloc_init_late() has finished, the deferred pages are all initialized,
 * and we can permanently disable that path.
 */
static DEFINE_STATIC_KEY_TRUE(deferred_pages);

/*
 * Calling kasan_free_pages() only after deferred memory initialization
 * has completed. Poisoning pages during deferred memory init will greatly
 * lengthen the process and cause problem in large memory systems as the
 * deferred pages initialization is done with interrupt disabled.
 *
 * Assuming that there will be no reference to those newly initialized
 * pages before they are ever allocated, this should have no effect on
 * KASAN memory tracking as the poison will be properly inserted at page
 * allocation time. The only corner case is when pages are allocated by
 * on-demand allocation and then freed again before the deferred pages
 * initialization is done, but this is not likely to happen.
 */
static inline void kasan_free_nondeferred_pages(struct page *page, int order)
{
	if (!static_branch_unlikely(&deferred_pages))
		kasan_free_pages(page, order);
}

340
/* Returns true if the struct page for the pfn is uninitialised */
341
static inline bool __meminit early_page_uninitialised(unsigned long pfn)
342
{
343 344 345
	int nid = early_pfn_to_nid(pfn);

	if (node_online(nid) && pfn >= NODE_DATA(nid)->first_deferred_pfn)
346 347 348 349 350 351
		return true;

	return false;
}

/*
352
 * Returns true when the remaining initialisation should be deferred until
353 354
 * later in the boot cycle when it can be parallelised.
 */
355 356
static bool __meminit
defer_init(int nid, unsigned long pfn, unsigned long end_pfn)
357
{
358 359 360 361 362 363 364 365 366 367 368
	static unsigned long prev_end_pfn, nr_initialised;

	/*
	 * prev_end_pfn static that contains the end of previous zone
	 * No need to protect because called very early in boot before smp_init.
	 */
	if (prev_end_pfn != end_pfn) {
		prev_end_pfn = end_pfn;
		nr_initialised = 0;
	}

369
	/* Always populate low zones for address-constrained allocations */
370
	if (end_pfn < pgdat_end_pfn(NODE_DATA(nid)))
371
		return false;
372 373 374 375 376

	/*
	 * We start only with one section of pages, more pages are added as
	 * needed until the rest of deferred pages are initialized.
	 */
377
	nr_initialised++;
378
	if ((nr_initialised > PAGES_PER_SECTION) &&
379 380 381
	    (pfn & (PAGES_PER_SECTION - 1)) == 0) {
		NODE_DATA(nid)->first_deferred_pfn = pfn;
		return true;
382
	}
383
	return false;
384 385
}
#else
386 387
#define kasan_free_nondeferred_pages(p, o)	kasan_free_pages(p, o)

388 389 390 391 392
static inline bool early_page_uninitialised(unsigned long pfn)
{
	return false;
}

393
static inline bool defer_init(int nid, unsigned long pfn, unsigned long end_pfn)
394
{
395
	return false;
396 397 398
}
#endif

399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478
/* Return a pointer to the bitmap storing bits affecting a block of pages */
static inline unsigned long *get_pageblock_bitmap(struct page *page,
							unsigned long pfn)
{
#ifdef CONFIG_SPARSEMEM
	return __pfn_to_section(pfn)->pageblock_flags;
#else
	return page_zone(page)->pageblock_flags;
#endif /* CONFIG_SPARSEMEM */
}

static inline int pfn_to_bitidx(struct page *page, unsigned long pfn)
{
#ifdef CONFIG_SPARSEMEM
	pfn &= (PAGES_PER_SECTION-1);
	return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
#else
	pfn = pfn - round_down(page_zone(page)->zone_start_pfn, pageblock_nr_pages);
	return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
#endif /* CONFIG_SPARSEMEM */
}

/**
 * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
 * @page: The page within the block of interest
 * @pfn: The target page frame number
 * @end_bitidx: The last bit of interest to retrieve
 * @mask: mask of bits that the caller is interested in
 *
 * Return: pageblock_bits flags
 */
static __always_inline unsigned long __get_pfnblock_flags_mask(struct page *page,
					unsigned long pfn,
					unsigned long end_bitidx,
					unsigned long mask)
{
	unsigned long *bitmap;
	unsigned long bitidx, word_bitidx;
	unsigned long word;

	bitmap = get_pageblock_bitmap(page, pfn);
	bitidx = pfn_to_bitidx(page, pfn);
	word_bitidx = bitidx / BITS_PER_LONG;
	bitidx &= (BITS_PER_LONG-1);

	word = bitmap[word_bitidx];
	bitidx += end_bitidx;
	return (word >> (BITS_PER_LONG - bitidx - 1)) & mask;
}

unsigned long get_pfnblock_flags_mask(struct page *page, unsigned long pfn,
					unsigned long end_bitidx,
					unsigned long mask)
{
	return __get_pfnblock_flags_mask(page, pfn, end_bitidx, mask);
}

static __always_inline int get_pfnblock_migratetype(struct page *page, unsigned long pfn)
{
	return __get_pfnblock_flags_mask(page, pfn, PB_migrate_end, MIGRATETYPE_MASK);
}

/**
 * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
 * @page: The page within the block of interest
 * @flags: The flags to set
 * @pfn: The target page frame number
 * @end_bitidx: The last bit of interest
 * @mask: mask of bits that the caller is interested in
 */
void set_pfnblock_flags_mask(struct page *page, unsigned long flags,
					unsigned long pfn,
					unsigned long end_bitidx,
					unsigned long mask)
{
	unsigned long *bitmap;
	unsigned long bitidx, word_bitidx;
	unsigned long old_word, word;

	BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4);
479
	BUILD_BUG_ON(MIGRATE_TYPES > (1 << PB_migratetype_bits));
480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499

	bitmap = get_pageblock_bitmap(page, pfn);
	bitidx = pfn_to_bitidx(page, pfn);
	word_bitidx = bitidx / BITS_PER_LONG;
	bitidx &= (BITS_PER_LONG-1);

	VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page), pfn), page);

	bitidx += end_bitidx;
	mask <<= (BITS_PER_LONG - bitidx - 1);
	flags <<= (BITS_PER_LONG - bitidx - 1);

	word = READ_ONCE(bitmap[word_bitidx]);
	for (;;) {
		old_word = cmpxchg(&bitmap[word_bitidx], word, (word & ~mask) | flags);
		if (word == old_word)
			break;
		word = old_word;
	}
}
500

501
void set_pageblock_migratetype(struct page *page, int migratetype)
502
{
503 504
	if (unlikely(page_group_by_mobility_disabled &&
		     migratetype < MIGRATE_PCPTYPES))
505 506
		migratetype = MIGRATE_UNMOVABLE;

507 508 509 510
	set_pageblock_flags_group(page, (unsigned long)migratetype,
					PB_migrate, PB_migrate_end);
}

N
Nick Piggin 已提交
511
#ifdef CONFIG_DEBUG_VM
512
static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
L
Linus Torvalds 已提交
513
{
514 515 516
	int ret = 0;
	unsigned seq;
	unsigned long pfn = page_to_pfn(page);
517
	unsigned long sp, start_pfn;
518

519 520
	do {
		seq = zone_span_seqbegin(zone);
521 522
		start_pfn = zone->zone_start_pfn;
		sp = zone->spanned_pages;
523
		if (!zone_spans_pfn(zone, pfn))
524 525 526
			ret = 1;
	} while (zone_span_seqretry(zone, seq));

527
	if (ret)
528 529 530
		pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
			pfn, zone_to_nid(zone), zone->name,
			start_pfn, start_pfn + sp);
531

532
	return ret;
533 534 535 536
}

static int page_is_consistent(struct zone *zone, struct page *page)
{
537
	if (!pfn_valid_within(page_to_pfn(page)))
538
		return 0;
L
Linus Torvalds 已提交
539
	if (zone != page_zone(page))
540 541 542 543 544 545 546
		return 0;

	return 1;
}
/*
 * Temporary debugging check for pages not lying within a given zone.
 */
547
static int __maybe_unused bad_range(struct zone *zone, struct page *page)
548 549
{
	if (page_outside_zone_boundaries(zone, page))
L
Linus Torvalds 已提交
550
		return 1;
551 552 553
	if (!page_is_consistent(zone, page))
		return 1;

L
Linus Torvalds 已提交
554 555
	return 0;
}
N
Nick Piggin 已提交
556
#else
557
static inline int __maybe_unused bad_range(struct zone *zone, struct page *page)
N
Nick Piggin 已提交
558 559 560 561 562
{
	return 0;
}
#endif

563 564
static void bad_page(struct page *page, const char *reason,
		unsigned long bad_flags)
L
Linus Torvalds 已提交
565
{
566 567 568 569 570 571 572 573 574 575 576 577 578 579
	static unsigned long resume;
	static unsigned long nr_shown;
	static unsigned long nr_unshown;

	/*
	 * Allow a burst of 60 reports, then keep quiet for that minute;
	 * or allow a steady drip of one report per second.
	 */
	if (nr_shown == 60) {
		if (time_before(jiffies, resume)) {
			nr_unshown++;
			goto out;
		}
		if (nr_unshown) {
580
			pr_alert(
581
			      "BUG: Bad page state: %lu messages suppressed\n",
582 583 584 585 586 587 588 589
				nr_unshown);
			nr_unshown = 0;
		}
		nr_shown = 0;
	}
	if (nr_shown++ == 0)
		resume = jiffies + 60 * HZ;

590
	pr_alert("BUG: Bad page state in process %s  pfn:%05lx\n",
591
		current->comm, page_to_pfn(page));
592 593 594 595 596
	__dump_page(page, reason);
	bad_flags &= page->flags;
	if (bad_flags)
		pr_alert("bad because of flags: %#lx(%pGp)\n",
						bad_flags, &bad_flags);
597
	dump_page_owner(page);
598

599
	print_modules();
L
Linus Torvalds 已提交
600
	dump_stack();
601
out:
602
	/* Leave bad fields for debug, except PageBuddy could make trouble */
603
	page_mapcount_reset(page); /* remove PageBuddy */
604
	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
L
Linus Torvalds 已提交
605 606 607 608 609
}

/*
 * Higher-order pages are called "compound pages".  They are structured thusly:
 *
610
 * The first PAGE_SIZE page is called the "head page" and have PG_head set.
L
Linus Torvalds 已提交
611
 *
612 613
 * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded
 * in bit 0 of page->compound_head. The rest of bits is pointer to head page.
L
Linus Torvalds 已提交
614
 *
615 616
 * The first tail page's ->compound_dtor holds the offset in array of compound
 * page destructors. See compound_page_dtors.
L
Linus Torvalds 已提交
617
 *
618
 * The first tail page's ->compound_order holds the order of allocation.
619
 * This usage means that zero-order pages may not be compound.
L
Linus Torvalds 已提交
620
 */
621

622
void free_compound_page(struct page *page)
623
{
624
	__free_pages_ok(page, compound_order(page));
625 626
}

627
void prep_compound_page(struct page *page, unsigned int order)
628 629 630 631
{
	int i;
	int nr_pages = 1 << order;

632
	set_compound_page_dtor(page, COMPOUND_PAGE_DTOR);
633 634 635 636
	set_compound_order(page, order);
	__SetPageHead(page);
	for (i = 1; i < nr_pages; i++) {
		struct page *p = page + i;
637
		set_page_count(p, 0);
638
		p->mapping = TAIL_MAPPING;
639
		set_compound_head(p, page);
640
	}
641
	atomic_set(compound_mapcount_ptr(page), -1);
642 643
}

644 645
#ifdef CONFIG_DEBUG_PAGEALLOC
unsigned int _debug_guardpage_minorder;
646 647
bool _debug_pagealloc_enabled __read_mostly
			= IS_ENABLED(CONFIG_DEBUG_PAGEALLOC_ENABLE_DEFAULT);
648
EXPORT_SYMBOL(_debug_pagealloc_enabled);
649 650
bool _debug_guardpage_enabled __read_mostly;

651 652 653 654
static int __init early_debug_pagealloc(char *buf)
{
	if (!buf)
		return -EINVAL;
655
	return kstrtobool(buf, &_debug_pagealloc_enabled);
656 657 658
}
early_param("debug_pagealloc", early_debug_pagealloc);

659 660
static bool need_debug_guardpage(void)
{
661 662 663 664
	/* If we don't use debug_pagealloc, we don't need guard page */
	if (!debug_pagealloc_enabled())
		return false;

665 666 667
	if (!debug_guardpage_minorder())
		return false;

668 669 670 671 672
	return true;
}

static void init_debug_guardpage(void)
{
673 674 675
	if (!debug_pagealloc_enabled())
		return;

676 677 678
	if (!debug_guardpage_minorder())
		return;

679 680 681 682 683 684 685
	_debug_guardpage_enabled = true;
}

struct page_ext_operations debug_guardpage_ops = {
	.need = need_debug_guardpage,
	.init = init_debug_guardpage,
};
686 687 688 689 690 691

static int __init debug_guardpage_minorder_setup(char *buf)
{
	unsigned long res;

	if (kstrtoul(buf, 10, &res) < 0 ||  res > MAX_ORDER / 2) {
692
		pr_err("Bad debug_guardpage_minorder value\n");
693 694 695
		return 0;
	}
	_debug_guardpage_minorder = res;
696
	pr_info("Setting debug_guardpage_minorder to %lu\n", res);
697 698
	return 0;
}
699
early_param("debug_guardpage_minorder", debug_guardpage_minorder_setup);
700

701
static inline bool set_page_guard(struct zone *zone, struct page *page,
702
				unsigned int order, int migratetype)
703
{
704 705 706
	struct page_ext *page_ext;

	if (!debug_guardpage_enabled())
707 708 709 710
		return false;

	if (order >= debug_guardpage_minorder())
		return false;
711 712

	page_ext = lookup_page_ext(page);
713
	if (unlikely(!page_ext))
714
		return false;
715

716 717
	__set_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);

718 719 720 721
	INIT_LIST_HEAD(&page->lru);
	set_page_private(page, order);
	/* Guard pages are not available for any usage */
	__mod_zone_freepage_state(zone, -(1 << order), migratetype);
722 723

	return true;
724 725
}

726 727
static inline void clear_page_guard(struct zone *zone, struct page *page,
				unsigned int order, int migratetype)
728
{
729 730 731 732 733 734
	struct page_ext *page_ext;

	if (!debug_guardpage_enabled())
		return;

	page_ext = lookup_page_ext(page);
735 736 737
	if (unlikely(!page_ext))
		return;

738 739
	__clear_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);

740 741 742
	set_page_private(page, 0);
	if (!is_migrate_isolate(migratetype))
		__mod_zone_freepage_state(zone, (1 << order), migratetype);
743 744
}
#else
745
struct page_ext_operations debug_guardpage_ops;
746 747
static inline bool set_page_guard(struct zone *zone, struct page *page,
			unsigned int order, int migratetype) { return false; }
748 749
static inline void clear_page_guard(struct zone *zone, struct page *page,
				unsigned int order, int migratetype) {}
750 751
#endif

752
static inline void set_page_order(struct page *page, unsigned int order)
753
{
H
Hugh Dickins 已提交
754
	set_page_private(page, order);
755
	__SetPageBuddy(page);
L
Linus Torvalds 已提交
756 757 758 759
}

static inline void rmv_page_order(struct page *page)
{
760
	__ClearPageBuddy(page);
H
Hugh Dickins 已提交
761
	set_page_private(page, 0);
L
Linus Torvalds 已提交
762 763 764 765
}

/*
 * This function checks whether a page is free && is the buddy
766
 * we can coalesce a page and its buddy if
767
 * (a) the buddy is not in a hole (check before calling!) &&
768
 * (b) the buddy is in the buddy system &&
769 770
 * (c) a page and its buddy have the same order &&
 * (d) a page and its buddy are in the same zone.
771
 *
772 773
 * For recording whether a page is in the buddy system, we set PageBuddy.
 * Setting, clearing, and testing PageBuddy is serialized by zone->lock.
L
Linus Torvalds 已提交
774
 *
775
 * For recording page's order, we use page_private(page).
L
Linus Torvalds 已提交
776
 */
777
static inline int page_is_buddy(struct page *page, struct page *buddy,
778
							unsigned int order)
L
Linus Torvalds 已提交
779
{
780
	if (page_is_guard(buddy) && page_order(buddy) == order) {
781 782 783
		if (page_zone_id(page) != page_zone_id(buddy))
			return 0;

784 785
		VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);

786 787 788
		return 1;
	}

789
	if (PageBuddy(buddy) && page_order(buddy) == order) {
790 791 792 793 794 795 796 797
		/*
		 * zone check is done late to avoid uselessly
		 * calculating zone/node ids for pages that could
		 * never merge.
		 */
		if (page_zone_id(page) != page_zone_id(buddy))
			return 0;

798 799
		VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);

800
		return 1;
801
	}
802
	return 0;
L
Linus Torvalds 已提交
803 804
}

805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855
#ifdef CONFIG_COMPACTION
static inline struct capture_control *task_capc(struct zone *zone)
{
	struct capture_control *capc = current->capture_control;

	return capc &&
		!(current->flags & PF_KTHREAD) &&
		!capc->page &&
		capc->cc->zone == zone &&
		capc->cc->direct_compaction ? capc : NULL;
}

static inline bool
compaction_capture(struct capture_control *capc, struct page *page,
		   int order, int migratetype)
{
	if (!capc || order != capc->cc->order)
		return false;

	/* Do not accidentally pollute CMA or isolated regions*/
	if (is_migrate_cma(migratetype) ||
	    is_migrate_isolate(migratetype))
		return false;

	/*
	 * Do not let lower order allocations polluate a movable pageblock.
	 * This might let an unmovable request use a reclaimable pageblock
	 * and vice-versa but no more than normal fallback logic which can
	 * have trouble finding a high-order free page.
	 */
	if (order < pageblock_order && migratetype == MIGRATE_MOVABLE)
		return false;

	capc->page = page;
	return true;
}

#else
static inline struct capture_control *task_capc(struct zone *zone)
{
	return NULL;
}

static inline bool
compaction_capture(struct capture_control *capc, struct page *page,
		   int order, int migratetype)
{
	return false;
}
#endif /* CONFIG_COMPACTION */

L
Linus Torvalds 已提交
856 857 858 859 860 861 862 863 864 865 866 867 868
/*
 * Freeing function for a buddy system allocator.
 *
 * The concept of a buddy system is to maintain direct-mapped table
 * (containing bit values) for memory blocks of various "orders".
 * The bottom level table contains the map for the smallest allocatable
 * units of memory (here, pages), and each level above it describes
 * pairs of units from the levels below, hence, "buddies".
 * At a high level, all that happens here is marking the table entry
 * at the bottom level available, and propagating the changes upward
 * as necessary, plus some accounting needed to play nicely with other
 * parts of the VM system.
 * At each level, we keep a list of pages, which are heads of continuous
869 870
 * free pages of length of (1 << order) and marked with PageBuddy.
 * Page's order is recorded in page_private(page) field.
L
Linus Torvalds 已提交
871
 * So when we are allocating or freeing one, we can derive the state of the
872 873
 * other.  That is, if we allocate a small block, and both were
 * free, the remainder of the region must be split into blocks.
L
Linus Torvalds 已提交
874
 * If a block is freed, and its buddy is also free, then this
875
 * triggers coalescing into a block of larger size.
L
Linus Torvalds 已提交
876
 *
877
 * -- nyc
L
Linus Torvalds 已提交
878 879
 */

N
Nick Piggin 已提交
880
static inline void __free_one_page(struct page *page,
881
		unsigned long pfn,
882 883
		struct zone *zone, unsigned int order,
		int migratetype)
L
Linus Torvalds 已提交
884
{
885 886
	unsigned long combined_pfn;
	unsigned long uninitialized_var(buddy_pfn);
887
	struct page *buddy;
888
	unsigned int max_order;
889
	struct capture_control *capc = task_capc(zone);
890 891

	max_order = min_t(unsigned int, MAX_ORDER, pageblock_order + 1);
L
Linus Torvalds 已提交
892

893
	VM_BUG_ON(!zone_is_initialized(zone));
894
	VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page);
L
Linus Torvalds 已提交
895

896
	VM_BUG_ON(migratetype == -1);
897
	if (likely(!is_migrate_isolate(migratetype)))
898
		__mod_zone_freepage_state(zone, 1 << order, migratetype);
899

900
	VM_BUG_ON_PAGE(pfn & ((1 << order) - 1), page);
901
	VM_BUG_ON_PAGE(bad_range(zone, page), page);
L
Linus Torvalds 已提交
902

903
continue_merging:
904
	while (order < max_order - 1) {
905 906 907 908 909
		if (compaction_capture(capc, page, order, migratetype)) {
			__mod_zone_freepage_state(zone, -(1 << order),
								migratetype);
			return;
		}
910 911
		buddy_pfn = __find_buddy_pfn(pfn, order);
		buddy = page + (buddy_pfn - pfn);
912 913 914

		if (!pfn_valid_within(buddy_pfn))
			goto done_merging;
915
		if (!page_is_buddy(page, buddy, order))
916
			goto done_merging;
917 918 919 920 921
		/*
		 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
		 * merge with it and move up one order.
		 */
		if (page_is_guard(buddy)) {
922
			clear_page_guard(zone, buddy, order, migratetype);
923 924 925 926 927
		} else {
			list_del(&buddy->lru);
			zone->free_area[order].nr_free--;
			rmv_page_order(buddy);
		}
928 929 930
		combined_pfn = buddy_pfn & pfn;
		page = page + (combined_pfn - pfn);
		pfn = combined_pfn;
L
Linus Torvalds 已提交
931 932
		order++;
	}
933 934 935 936 937 938 939 940 941 942 943 944
	if (max_order < MAX_ORDER) {
		/* If we are here, it means order is >= pageblock_order.
		 * We want to prevent merge between freepages on isolate
		 * pageblock and normal pageblock. Without this, pageblock
		 * isolation could cause incorrect freepage or CMA accounting.
		 *
		 * We don't want to hit this code for the more frequent
		 * low-order merging.
		 */
		if (unlikely(has_isolate_pageblock(zone))) {
			int buddy_mt;

945 946
			buddy_pfn = __find_buddy_pfn(pfn, order);
			buddy = page + (buddy_pfn - pfn);
947 948 949 950 951 952 953 954 955 956 957 958
			buddy_mt = get_pageblock_migratetype(buddy);

			if (migratetype != buddy_mt
					&& (is_migrate_isolate(migratetype) ||
						is_migrate_isolate(buddy_mt)))
				goto done_merging;
		}
		max_order++;
		goto continue_merging;
	}

done_merging:
L
Linus Torvalds 已提交
959
	set_page_order(page, order);
960 961 962 963 964 965 966 967 968

	/*
	 * If this is not the largest possible page, check if the buddy
	 * of the next-highest order is free. If it is, it's possible
	 * that pages are being freed that will coalesce soon. In case,
	 * that is happening, add the free page to the tail of the list
	 * so it's less likely to be used soon and more likely to be merged
	 * as a higher order page
	 */
969
	if ((order < MAX_ORDER-2) && pfn_valid_within(buddy_pfn)) {
970
		struct page *higher_page, *higher_buddy;
971 972 973 974
		combined_pfn = buddy_pfn & pfn;
		higher_page = page + (combined_pfn - pfn);
		buddy_pfn = __find_buddy_pfn(combined_pfn, order + 1);
		higher_buddy = higher_page + (buddy_pfn - combined_pfn);
975 976
		if (pfn_valid_within(buddy_pfn) &&
		    page_is_buddy(higher_page, higher_buddy, order + 1)) {
977 978 979 980 981 982 983 984
			list_add_tail(&page->lru,
				&zone->free_area[order].free_list[migratetype]);
			goto out;
		}
	}

	list_add(&page->lru, &zone->free_area[order].free_list[migratetype]);
out:
L
Linus Torvalds 已提交
985 986 987
	zone->free_area[order].nr_free++;
}

988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009
/*
 * A bad page could be due to a number of fields. Instead of multiple branches,
 * try and check multiple fields with one check. The caller must do a detailed
 * check if necessary.
 */
static inline bool page_expected_state(struct page *page,
					unsigned long check_flags)
{
	if (unlikely(atomic_read(&page->_mapcount) != -1))
		return false;

	if (unlikely((unsigned long)page->mapping |
			page_ref_count(page) |
#ifdef CONFIG_MEMCG
			(unsigned long)page->mem_cgroup |
#endif
			(page->flags & check_flags)))
		return false;

	return true;
}

1010
static void free_pages_check_bad(struct page *page)
L
Linus Torvalds 已提交
1011
{
1012 1013 1014 1015 1016
	const char *bad_reason;
	unsigned long bad_flags;

	bad_reason = NULL;
	bad_flags = 0;
1017

1018
	if (unlikely(atomic_read(&page->_mapcount) != -1))
1019 1020 1021
		bad_reason = "nonzero mapcount";
	if (unlikely(page->mapping != NULL))
		bad_reason = "non-NULL mapping";
1022
	if (unlikely(page_ref_count(page) != 0))
1023
		bad_reason = "nonzero _refcount";
1024 1025 1026 1027
	if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_FREE)) {
		bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
		bad_flags = PAGE_FLAGS_CHECK_AT_FREE;
	}
1028 1029 1030 1031
#ifdef CONFIG_MEMCG
	if (unlikely(page->mem_cgroup))
		bad_reason = "page still charged to cgroup";
#endif
1032
	bad_page(page, bad_reason, bad_flags);
1033 1034 1035 1036
}

static inline int free_pages_check(struct page *page)
{
1037
	if (likely(page_expected_state(page, PAGE_FLAGS_CHECK_AT_FREE)))
1038 1039 1040 1041
		return 0;

	/* Something has gone sideways, find it */
	free_pages_check_bad(page);
1042
	return 1;
L
Linus Torvalds 已提交
1043 1044
}

1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060
static int free_tail_pages_check(struct page *head_page, struct page *page)
{
	int ret = 1;

	/*
	 * We rely page->lru.next never has bit 0 set, unless the page
	 * is PageTail(). Let's make sure that's true even for poisoned ->lru.
	 */
	BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1);

	if (!IS_ENABLED(CONFIG_DEBUG_VM)) {
		ret = 0;
		goto out;
	}
	switch (page - head_page) {
	case 1:
1061
		/* the first tail page: ->mapping may be compound_mapcount() */
1062 1063 1064 1065 1066 1067 1068 1069
		if (unlikely(compound_mapcount(page))) {
			bad_page(page, "nonzero compound_mapcount", 0);
			goto out;
		}
		break;
	case 2:
		/*
		 * the second tail page: ->mapping is
M
Matthew Wilcox 已提交
1070
		 * deferred_list.next -- ignore value.
1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094
		 */
		break;
	default:
		if (page->mapping != TAIL_MAPPING) {
			bad_page(page, "corrupted mapping in tail page", 0);
			goto out;
		}
		break;
	}
	if (unlikely(!PageTail(page))) {
		bad_page(page, "PageTail not set", 0);
		goto out;
	}
	if (unlikely(compound_head(page) != head_page)) {
		bad_page(page, "compound_head not consistent", 0);
		goto out;
	}
	ret = 0;
out:
	page->mapping = NULL;
	clear_compound_head(page);
	return ret;
}

1095 1096
static __always_inline bool free_pages_prepare(struct page *page,
					unsigned int order, bool check_free)
1097
{
1098
	int bad = 0;
1099 1100 1101

	VM_BUG_ON_PAGE(PageTail(page), page);

1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112
	trace_mm_page_free(page, order);

	/*
	 * Check tail pages before head page information is cleared to
	 * avoid checking PageCompound for order-0 pages.
	 */
	if (unlikely(order)) {
		bool compound = PageCompound(page);
		int i;

		VM_BUG_ON_PAGE(compound && compound_order(page) != order, page);
1113

1114 1115
		if (compound)
			ClearPageDoubleMap(page);
1116 1117 1118 1119 1120 1121 1122 1123 1124 1125
		for (i = 1; i < (1 << order); i++) {
			if (compound)
				bad += free_tail_pages_check(page, page + i);
			if (unlikely(free_pages_check(page + i))) {
				bad++;
				continue;
			}
			(page + i)->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
		}
	}
1126
	if (PageMappingFlags(page))
1127
		page->mapping = NULL;
1128
	if (memcg_kmem_enabled() && PageKmemcg(page))
1129
		__memcg_kmem_uncharge(page, order);
1130 1131 1132 1133
	if (check_free)
		bad += free_pages_check(page);
	if (bad)
		return false;
1134

1135 1136 1137
	page_cpupid_reset_last(page);
	page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
	reset_page_owner(page, order);
1138 1139 1140

	if (!PageHighMem(page)) {
		debug_check_no_locks_freed(page_address(page),
1141
					   PAGE_SIZE << order);
1142
		debug_check_no_obj_freed(page_address(page),
1143
					   PAGE_SIZE << order);
1144
	}
1145 1146 1147
	arch_free_page(page, order);
	kernel_poison_pages(page, 1 << order, 0);
	kernel_map_pages(page, 1 << order, 0);
1148
	kasan_free_nondeferred_pages(page, order);
1149 1150 1151 1152

	return true;
}

1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168
#ifdef CONFIG_DEBUG_VM
static inline bool free_pcp_prepare(struct page *page)
{
	return free_pages_prepare(page, 0, true);
}

static inline bool bulkfree_pcp_prepare(struct page *page)
{
	return false;
}
#else
static bool free_pcp_prepare(struct page *page)
{
	return free_pages_prepare(page, 0, false);
}

1169 1170 1171 1172 1173 1174
static bool bulkfree_pcp_prepare(struct page *page)
{
	return free_pages_check(page);
}
#endif /* CONFIG_DEBUG_VM */

1175 1176 1177 1178 1179 1180 1181 1182 1183
static inline void prefetch_buddy(struct page *page)
{
	unsigned long pfn = page_to_pfn(page);
	unsigned long buddy_pfn = __find_buddy_pfn(pfn, 0);
	struct page *buddy = page + (buddy_pfn - pfn);

	prefetch(buddy);
}

L
Linus Torvalds 已提交
1184
/*
1185
 * Frees a number of pages from the PCP lists
L
Linus Torvalds 已提交
1186
 * Assumes all pages on list are in same zone, and of same order.
1187
 * count is the number of pages to free.
L
Linus Torvalds 已提交
1188 1189 1190 1191 1192 1193 1194
 *
 * If the zone was previously in an "all pages pinned" state then look to
 * see if this freeing clears that state.
 *
 * And clear the zone's pages_scanned counter, to hold off the "all pages are
 * pinned" detection logic.
 */
1195 1196
static void free_pcppages_bulk(struct zone *zone, int count,
					struct per_cpu_pages *pcp)
L
Linus Torvalds 已提交
1197
{
1198
	int migratetype = 0;
1199
	int batch_free = 0;
1200
	int prefetch_nr = 0;
1201
	bool isolated_pageblocks;
1202 1203
	struct page *page, *tmp;
	LIST_HEAD(head);
1204

1205
	while (count) {
1206 1207 1208
		struct list_head *list;

		/*
1209 1210 1211 1212 1213
		 * Remove pages from lists in a round-robin fashion. A
		 * batch_free count is maintained that is incremented when an
		 * empty list is encountered.  This is so more pages are freed
		 * off fuller lists instead of spinning excessively around empty
		 * lists
1214 1215
		 */
		do {
1216
			batch_free++;
1217 1218 1219 1220
			if (++migratetype == MIGRATE_PCPTYPES)
				migratetype = 0;
			list = &pcp->lists[migratetype];
		} while (list_empty(list));
N
Nick Piggin 已提交
1221

1222 1223
		/* This is the only non-empty list. Free them all. */
		if (batch_free == MIGRATE_PCPTYPES)
1224
			batch_free = count;
1225

1226
		do {
1227
			page = list_last_entry(list, struct page, lru);
1228
			/* must delete to avoid corrupting pcp list */
1229
			list_del(&page->lru);
1230
			pcp->count--;
1231

1232 1233 1234
			if (bulkfree_pcp_prepare(page))
				continue;

1235
			list_add_tail(&page->lru, &head);
1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247

			/*
			 * We are going to put the page back to the global
			 * pool, prefetch its buddy to speed up later access
			 * under zone->lock. It is believed the overhead of
			 * an additional test and calculating buddy_pfn here
			 * can be offset by reduced memory latency later. To
			 * avoid excessive prefetching due to large count, only
			 * prefetch buddy for the first pcp->batch nr of pages.
			 */
			if (prefetch_nr++ < pcp->batch)
				prefetch_buddy(page);
1248
		} while (--count && --batch_free && !list_empty(list));
L
Linus Torvalds 已提交
1249
	}
1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268

	spin_lock(&zone->lock);
	isolated_pageblocks = has_isolate_pageblock(zone);

	/*
	 * Use safe version since after __free_one_page(),
	 * page->lru.next will not point to original list.
	 */
	list_for_each_entry_safe(page, tmp, &head, lru) {
		int mt = get_pcppage_migratetype(page);
		/* MIGRATE_ISOLATE page should not go to pcplists */
		VM_BUG_ON_PAGE(is_migrate_isolate(mt), page);
		/* Pageblock could have been isolated meanwhile */
		if (unlikely(isolated_pageblocks))
			mt = get_pageblock_migratetype(page);

		__free_one_page(page, page_to_pfn(page), zone, 0, mt);
		trace_mm_page_pcpu_drain(page, 0, mt);
	}
1269
	spin_unlock(&zone->lock);
L
Linus Torvalds 已提交
1270 1271
}

1272 1273
static void free_one_page(struct zone *zone,
				struct page *page, unsigned long pfn,
1274
				unsigned int order,
1275
				int migratetype)
L
Linus Torvalds 已提交
1276
{
1277
	spin_lock(&zone->lock);
1278 1279 1280 1281
	if (unlikely(has_isolate_pageblock(zone) ||
		is_migrate_isolate(migratetype))) {
		migratetype = get_pfnblock_migratetype(page, pfn);
	}
1282
	__free_one_page(page, pfn, zone, order, migratetype);
1283
	spin_unlock(&zone->lock);
N
Nick Piggin 已提交
1284 1285
}

1286
static void __meminit __init_single_page(struct page *page, unsigned long pfn,
1287
				unsigned long zone, int nid)
1288
{
1289
	mm_zero_struct_page(page);
1290 1291 1292 1293
	set_page_links(page, zone, nid, pfn);
	init_page_count(page);
	page_mapcount_reset(page);
	page_cpupid_reset_last(page);
1294
	page_kasan_tag_reset(page);
1295 1296 1297 1298 1299 1300 1301 1302 1303

	INIT_LIST_HEAD(&page->lru);
#ifdef WANT_PAGE_VIRTUAL
	/* The shift won't overflow because ZONE_NORMAL is below 4G. */
	if (!is_highmem_idx(zone))
		set_page_address(page, __va(pfn << PAGE_SHIFT));
#endif
}

1304
#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1305
static void __meminit init_reserved_page(unsigned long pfn)
1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321
{
	pg_data_t *pgdat;
	int nid, zid;

	if (!early_page_uninitialised(pfn))
		return;

	nid = early_pfn_to_nid(pfn);
	pgdat = NODE_DATA(nid);

	for (zid = 0; zid < MAX_NR_ZONES; zid++) {
		struct zone *zone = &pgdat->node_zones[zid];

		if (pfn >= zone->zone_start_pfn && pfn < zone_end_pfn(zone))
			break;
	}
1322
	__init_single_page(pfn_to_page(pfn), pfn, zid, nid);
1323 1324 1325 1326 1327 1328 1329
}
#else
static inline void init_reserved_page(unsigned long pfn)
{
}
#endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */

1330 1331 1332 1333 1334 1335
/*
 * Initialised pages do not have PageReserved set. This function is
 * called for each range allocated by the bootmem allocator and
 * marks the pages PageReserved. The remaining valid pages are later
 * sent to the buddy page allocator.
 */
1336
void __meminit reserve_bootmem_region(phys_addr_t start, phys_addr_t end)
1337 1338 1339 1340
{
	unsigned long start_pfn = PFN_DOWN(start);
	unsigned long end_pfn = PFN_UP(end);

1341 1342 1343 1344 1345
	for (; start_pfn < end_pfn; start_pfn++) {
		if (pfn_valid(start_pfn)) {
			struct page *page = pfn_to_page(start_pfn);

			init_reserved_page(start_pfn);
1346 1347 1348 1349

			/* Avoid false-positive PageTail() */
			INIT_LIST_HEAD(&page->lru);

1350 1351 1352 1353 1354 1355
			/*
			 * no need for atomic set_bit because the struct
			 * page is not visible yet so nobody should
			 * access it yet.
			 */
			__SetPageReserved(page);
1356 1357
		}
	}
1358 1359
}

1360 1361
static void __free_pages_ok(struct page *page, unsigned int order)
{
1362
	unsigned long flags;
M
Minchan Kim 已提交
1363
	int migratetype;
1364
	unsigned long pfn = page_to_pfn(page);
1365

1366
	if (!free_pages_prepare(page, order, true))
1367 1368
		return;

1369
	migratetype = get_pfnblock_migratetype(page, pfn);
1370 1371
	local_irq_save(flags);
	__count_vm_events(PGFREE, 1 << order);
1372
	free_one_page(page_zone(page), page, pfn, order, migratetype);
1373
	local_irq_restore(flags);
L
Linus Torvalds 已提交
1374 1375
}

1376
void __free_pages_core(struct page *page, unsigned int order)
1377
{
1378
	unsigned int nr_pages = 1 << order;
1379
	struct page *p = page;
1380
	unsigned int loop;
1381

1382 1383 1384
	prefetchw(p);
	for (loop = 0; loop < (nr_pages - 1); loop++, p++) {
		prefetchw(p + 1);
1385 1386
		__ClearPageReserved(p);
		set_page_count(p, 0);
1387
	}
1388 1389
	__ClearPageReserved(p);
	set_page_count(p, 0);
1390

1391
	atomic_long_add(nr_pages, &page_zone(page)->managed_pages);
1392 1393
	set_page_refcounted(page);
	__free_pages(page, order);
1394 1395
}

1396 1397
#if defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) || \
	defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP)
1398

1399 1400 1401 1402
static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata;

int __meminit early_pfn_to_nid(unsigned long pfn)
{
1403
	static DEFINE_SPINLOCK(early_pfn_lock);
1404 1405
	int nid;

1406
	spin_lock(&early_pfn_lock);
1407
	nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache);
1408
	if (nid < 0)
1409
		nid = first_online_node;
1410 1411 1412
	spin_unlock(&early_pfn_lock);

	return nid;
1413 1414 1415 1416
}
#endif

#ifdef CONFIG_NODES_SPAN_OTHER_NODES
1417 1418 1419
static inline bool __meminit __maybe_unused
meminit_pfn_in_nid(unsigned long pfn, int node,
		   struct mminit_pfnnid_cache *state)
1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440
{
	int nid;

	nid = __early_pfn_to_nid(pfn, state);
	if (nid >= 0 && nid != node)
		return false;
	return true;
}

/* Only safe to use early in boot when initialisation is single-threaded */
static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
{
	return meminit_pfn_in_nid(pfn, node, &early_pfnnid_cache);
}

#else

static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
{
	return true;
}
1441 1442 1443
static inline bool __meminit  __maybe_unused
meminit_pfn_in_nid(unsigned long pfn, int node,
		   struct mminit_pfnnid_cache *state)
1444 1445 1446 1447 1448 1449
{
	return true;
}
#endif


1450
void __init memblock_free_pages(struct page *page, unsigned long pfn,
1451 1452 1453 1454
							unsigned int order)
{
	if (early_page_uninitialised(pfn))
		return;
1455
	__free_pages_core(page, order);
1456 1457
}

1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486
/*
 * Check that the whole (or subset of) a pageblock given by the interval of
 * [start_pfn, end_pfn) is valid and within the same zone, before scanning it
 * with the migration of free compaction scanner. The scanners then need to
 * use only pfn_valid_within() check for arches that allow holes within
 * pageblocks.
 *
 * Return struct page pointer of start_pfn, or NULL if checks were not passed.
 *
 * It's possible on some configurations to have a setup like node0 node1 node0
 * i.e. it's possible that all pages within a zones range of pages do not
 * belong to a single zone. We assume that a border between node0 and node1
 * can occur within a single pageblock, but not a node0 node1 node0
 * interleaving within a single pageblock. It is therefore sufficient to check
 * the first and last page of a pageblock and avoid checking each individual
 * page in a pageblock.
 */
struct page *__pageblock_pfn_to_page(unsigned long start_pfn,
				     unsigned long end_pfn, struct zone *zone)
{
	struct page *start_page;
	struct page *end_page;

	/* end_pfn is one past the range we are checking */
	end_pfn--;

	if (!pfn_valid(start_pfn) || !pfn_valid(end_pfn))
		return NULL;

1487 1488 1489
	start_page = pfn_to_online_page(start_pfn);
	if (!start_page)
		return NULL;
1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528

	if (page_zone(start_page) != zone)
		return NULL;

	end_page = pfn_to_page(end_pfn);

	/* This gives a shorter code than deriving page_zone(end_page) */
	if (page_zone_id(start_page) != page_zone_id(end_page))
		return NULL;

	return start_page;
}

void set_zone_contiguous(struct zone *zone)
{
	unsigned long block_start_pfn = zone->zone_start_pfn;
	unsigned long block_end_pfn;

	block_end_pfn = ALIGN(block_start_pfn + 1, pageblock_nr_pages);
	for (; block_start_pfn < zone_end_pfn(zone);
			block_start_pfn = block_end_pfn,
			 block_end_pfn += pageblock_nr_pages) {

		block_end_pfn = min(block_end_pfn, zone_end_pfn(zone));

		if (!__pageblock_pfn_to_page(block_start_pfn,
					     block_end_pfn, zone))
			return;
	}

	/* We confirm that there is no hole */
	zone->contiguous = true;
}

void clear_zone_contiguous(struct zone *zone)
{
	zone->contiguous = false;
}

1529
#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1530 1531
static void __init deferred_free_range(unsigned long pfn,
				       unsigned long nr_pages)
1532
{
1533 1534
	struct page *page;
	unsigned long i;
1535

1536
	if (!nr_pages)
1537 1538
		return;

1539 1540
	page = pfn_to_page(pfn);

1541
	/* Free a large naturally-aligned chunk if possible */
1542 1543
	if (nr_pages == pageblock_nr_pages &&
	    (pfn & (pageblock_nr_pages - 1)) == 0) {
1544
		set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1545
		__free_pages_core(page, pageblock_order);
1546 1547 1548
		return;
	}

1549 1550 1551
	for (i = 0; i < nr_pages; i++, page++, pfn++) {
		if ((pfn & (pageblock_nr_pages - 1)) == 0)
			set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1552
		__free_pages_core(page, 0);
1553
	}
1554 1555
}

1556 1557 1558 1559 1560 1561 1562 1563 1564
/* Completion tracking for deferred_init_memmap() threads */
static atomic_t pgdat_init_n_undone __initdata;
static __initdata DECLARE_COMPLETION(pgdat_init_all_done_comp);

static inline void __init pgdat_init_report_one_done(void)
{
	if (atomic_dec_and_test(&pgdat_init_n_undone))
		complete(&pgdat_init_all_done_comp);
}
1565

1566
/*
1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578
 * Returns true if page needs to be initialized or freed to buddy allocator.
 *
 * First we check if pfn is valid on architectures where it is possible to have
 * holes within pageblock_nr_pages. On systems where it is not possible, this
 * function is optimized out.
 *
 * Then, we check if a current large page is valid by only checking the validity
 * of the head pfn.
 *
 * Finally, meminit_pfn_in_nid is checked on systems where pfns can interleave
 * within a node: a pfn is between start and end of a node, but does not belong
 * to this memory node.
1579
 */
1580 1581 1582
static inline bool __init
deferred_pfn_valid(int nid, unsigned long pfn,
		   struct mminit_pfnnid_cache *nid_init_state)
1583
{
1584 1585 1586 1587 1588 1589 1590 1591
	if (!pfn_valid_within(pfn))
		return false;
	if (!(pfn & (pageblock_nr_pages - 1)) && !pfn_valid(pfn))
		return false;
	if (!meminit_pfn_in_nid(pfn, nid, nid_init_state))
		return false;
	return true;
}
1592

1593 1594 1595 1596 1597 1598 1599 1600 1601 1602
/*
 * Free pages to buddy allocator. Try to free aligned pages in
 * pageblock_nr_pages sizes.
 */
static void __init deferred_free_pages(int nid, int zid, unsigned long pfn,
				       unsigned long end_pfn)
{
	struct mminit_pfnnid_cache nid_init_state = { };
	unsigned long nr_pgmask = pageblock_nr_pages - 1;
	unsigned long nr_free = 0;
1603

1604 1605 1606 1607 1608 1609 1610
	for (; pfn < end_pfn; pfn++) {
		if (!deferred_pfn_valid(nid, pfn, &nid_init_state)) {
			deferred_free_range(pfn - nr_free, nr_free);
			nr_free = 0;
		} else if (!(pfn & nr_pgmask)) {
			deferred_free_range(pfn - nr_free, nr_free);
			nr_free = 1;
1611
			touch_nmi_watchdog();
1612 1613 1614 1615 1616 1617
		} else {
			nr_free++;
		}
	}
	/* Free the last block of pages to allocator */
	deferred_free_range(pfn - nr_free, nr_free);
1618 1619
}

1620 1621 1622 1623 1624 1625 1626 1627
/*
 * Initialize struct pages.  We minimize pfn page lookups and scheduler checks
 * by performing it only once every pageblock_nr_pages.
 * Return number of pages initialized.
 */
static unsigned long  __init deferred_init_pages(int nid, int zid,
						 unsigned long pfn,
						 unsigned long end_pfn)
1628 1629 1630 1631 1632 1633
{
	struct mminit_pfnnid_cache nid_init_state = { };
	unsigned long nr_pgmask = pageblock_nr_pages - 1;
	unsigned long nr_pages = 0;
	struct page *page = NULL;

1634 1635 1636
	for (; pfn < end_pfn; pfn++) {
		if (!deferred_pfn_valid(nid, pfn, &nid_init_state)) {
			page = NULL;
1637
			continue;
1638
		} else if (!page || !(pfn & nr_pgmask)) {
1639
			page = pfn_to_page(pfn);
1640
			touch_nmi_watchdog();
1641 1642
		} else {
			page++;
1643
		}
1644
		__init_single_page(page, pfn, zid, nid);
1645
		nr_pages++;
1646
	}
1647
	return (nr_pages);
1648 1649
}

1650
/* Initialise remaining memory on a node */
1651
static int __init deferred_init_memmap(void *data)
1652
{
1653 1654
	pg_data_t *pgdat = data;
	int nid = pgdat->node_id;
1655 1656
	unsigned long start = jiffies;
	unsigned long nr_pages = 0;
1657
	unsigned long spfn, epfn, first_init_pfn, flags;
1658 1659
	phys_addr_t spa, epa;
	int zid;
1660
	struct zone *zone;
1661
	const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
1662
	u64 i;
1663

1664 1665 1666 1667 1668 1669
	/* Bind memory initialisation thread to a local node if possible */
	if (!cpumask_empty(cpumask))
		set_cpus_allowed_ptr(current, cpumask);

	pgdat_resize_lock(pgdat, &flags);
	first_init_pfn = pgdat->first_deferred_pfn;
1670
	if (first_init_pfn == ULONG_MAX) {
1671
		pgdat_resize_unlock(pgdat, &flags);
1672
		pgdat_init_report_one_done();
1673 1674 1675
		return 0;
	}

1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686
	/* Sanity check boundaries */
	BUG_ON(pgdat->first_deferred_pfn < pgdat->node_start_pfn);
	BUG_ON(pgdat->first_deferred_pfn > pgdat_end_pfn(pgdat));
	pgdat->first_deferred_pfn = ULONG_MAX;

	/* Only the highest zone is deferred so find it */
	for (zid = 0; zid < MAX_NR_ZONES; zid++) {
		zone = pgdat->node_zones + zid;
		if (first_init_pfn < zone_end_pfn(zone))
			break;
	}
1687
	first_init_pfn = max(zone->zone_start_pfn, first_init_pfn);
1688

1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699
	/*
	 * Initialize and free pages. We do it in two loops: first we initialize
	 * struct page, than free to buddy allocator, because while we are
	 * freeing pages we can access pages that are ahead (computing buddy
	 * page in __free_one_page()).
	 */
	for_each_free_mem_range(i, nid, MEMBLOCK_NONE, &spa, &epa, NULL) {
		spfn = max_t(unsigned long, first_init_pfn, PFN_UP(spa));
		epfn = min_t(unsigned long, zone_end_pfn(zone), PFN_DOWN(epa));
		nr_pages += deferred_init_pages(nid, zid, spfn, epfn);
	}
1700 1701 1702
	for_each_free_mem_range(i, nid, MEMBLOCK_NONE, &spa, &epa, NULL) {
		spfn = max_t(unsigned long, first_init_pfn, PFN_UP(spa));
		epfn = min_t(unsigned long, zone_end_pfn(zone), PFN_DOWN(epa));
1703
		deferred_free_pages(nid, zid, spfn, epfn);
1704
	}
1705
	pgdat_resize_unlock(pgdat, &flags);
1706 1707 1708 1709

	/* Sanity check that the next zone really is unpopulated */
	WARN_ON(++zid < MAX_NR_ZONES && populated_zone(++zone));

1710
	pr_info("node %d initialised, %lu pages in %ums\n", nid, nr_pages,
1711
					jiffies_to_msecs(jiffies - start));
1712 1713

	pgdat_init_report_one_done();
1714 1715
	return 0;
}
1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819

/*
 * If this zone has deferred pages, try to grow it by initializing enough
 * deferred pages to satisfy the allocation specified by order, rounded up to
 * the nearest PAGES_PER_SECTION boundary.  So we're adding memory in increments
 * of SECTION_SIZE bytes by initializing struct pages in increments of
 * PAGES_PER_SECTION * sizeof(struct page) bytes.
 *
 * Return true when zone was grown, otherwise return false. We return true even
 * when we grow less than requested, to let the caller decide if there are
 * enough pages to satisfy the allocation.
 *
 * Note: We use noinline because this function is needed only during boot, and
 * it is called from a __ref function _deferred_grow_zone. This way we are
 * making sure that it is not inlined into permanent text section.
 */
static noinline bool __init
deferred_grow_zone(struct zone *zone, unsigned int order)
{
	int zid = zone_idx(zone);
	int nid = zone_to_nid(zone);
	pg_data_t *pgdat = NODE_DATA(nid);
	unsigned long nr_pages_needed = ALIGN(1 << order, PAGES_PER_SECTION);
	unsigned long nr_pages = 0;
	unsigned long first_init_pfn, spfn, epfn, t, flags;
	unsigned long first_deferred_pfn = pgdat->first_deferred_pfn;
	phys_addr_t spa, epa;
	u64 i;

	/* Only the last zone may have deferred pages */
	if (zone_end_pfn(zone) != pgdat_end_pfn(pgdat))
		return false;

	pgdat_resize_lock(pgdat, &flags);

	/*
	 * If deferred pages have been initialized while we were waiting for
	 * the lock, return true, as the zone was grown.  The caller will retry
	 * this zone.  We won't return to this function since the caller also
	 * has this static branch.
	 */
	if (!static_branch_unlikely(&deferred_pages)) {
		pgdat_resize_unlock(pgdat, &flags);
		return true;
	}

	/*
	 * If someone grew this zone while we were waiting for spinlock, return
	 * true, as there might be enough pages already.
	 */
	if (first_deferred_pfn != pgdat->first_deferred_pfn) {
		pgdat_resize_unlock(pgdat, &flags);
		return true;
	}

	first_init_pfn = max(zone->zone_start_pfn, first_deferred_pfn);

	if (first_init_pfn >= pgdat_end_pfn(pgdat)) {
		pgdat_resize_unlock(pgdat, &flags);
		return false;
	}

	for_each_free_mem_range(i, nid, MEMBLOCK_NONE, &spa, &epa, NULL) {
		spfn = max_t(unsigned long, first_init_pfn, PFN_UP(spa));
		epfn = min_t(unsigned long, zone_end_pfn(zone), PFN_DOWN(epa));

		while (spfn < epfn && nr_pages < nr_pages_needed) {
			t = ALIGN(spfn + PAGES_PER_SECTION, PAGES_PER_SECTION);
			first_deferred_pfn = min(t, epfn);
			nr_pages += deferred_init_pages(nid, zid, spfn,
							first_deferred_pfn);
			spfn = first_deferred_pfn;
		}

		if (nr_pages >= nr_pages_needed)
			break;
	}

	for_each_free_mem_range(i, nid, MEMBLOCK_NONE, &spa, &epa, NULL) {
		spfn = max_t(unsigned long, first_init_pfn, PFN_UP(spa));
		epfn = min_t(unsigned long, first_deferred_pfn, PFN_DOWN(epa));
		deferred_free_pages(nid, zid, spfn, epfn);

		if (first_deferred_pfn == epfn)
			break;
	}
	pgdat->first_deferred_pfn = first_deferred_pfn;
	pgdat_resize_unlock(pgdat, &flags);

	return nr_pages > 0;
}

/*
 * deferred_grow_zone() is __init, but it is called from
 * get_page_from_freelist() during early boot until deferred_pages permanently
 * disables this call. This is why we have refdata wrapper to avoid warning,
 * and to ensure that the function body gets unloaded.
 */
static bool __ref
_deferred_grow_zone(struct zone *zone, unsigned int order)
{
	return deferred_grow_zone(zone, order);
}

1820
#endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1821 1822 1823

void __init page_alloc_init_late(void)
{
1824 1825 1826
	struct zone *zone;

#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1827 1828
	int nid;

1829 1830
	/* There will be num_node_state(N_MEMORY) threads */
	atomic_set(&pgdat_init_n_undone, num_node_state(N_MEMORY));
1831 1832 1833 1834 1835
	for_each_node_state(nid, N_MEMORY) {
		kthread_run(deferred_init_memmap, NODE_DATA(nid), "pgdatinit%d", nid);
	}

	/* Block until all are initialised */
1836
	wait_for_completion(&pgdat_init_all_done_comp);
1837

1838 1839 1840 1841 1842 1843
	/*
	 * We initialized the rest of the deferred pages.  Permanently disable
	 * on-demand struct page initialization.
	 */
	static_branch_disable(&deferred_pages);

1844 1845
	/* Reinit limits that are based on free pages after the kernel is up */
	files_maxfiles_init();
1846
#endif
P
Pavel Tatashin 已提交
1847 1848 1849 1850
#ifdef CONFIG_ARCH_DISCARD_MEMBLOCK
	/* Discard memblock private memory */
	memblock_discard();
#endif
1851 1852 1853

	for_each_populated_zone(zone)
		set_zone_contiguous(zone);
1854 1855
}

1856
#ifdef CONFIG_CMA
1857
/* Free whole pageblock and set its migration type to MIGRATE_CMA. */
1858 1859 1860 1861 1862 1863 1864 1865
void __init init_cma_reserved_pageblock(struct page *page)
{
	unsigned i = pageblock_nr_pages;
	struct page *p = page;

	do {
		__ClearPageReserved(p);
		set_page_count(p, 0);
1866
	} while (++p, --i);
1867 1868

	set_pageblock_migratetype(page, MIGRATE_CMA);
1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882

	if (pageblock_order >= MAX_ORDER) {
		i = pageblock_nr_pages;
		p = page;
		do {
			set_page_refcounted(p);
			__free_pages(p, MAX_ORDER - 1);
			p += MAX_ORDER_NR_PAGES;
		} while (i -= MAX_ORDER_NR_PAGES);
	} else {
		set_page_refcounted(page);
		__free_pages(page, pageblock_order);
	}

1883
	adjust_managed_page_count(page, pageblock_nr_pages);
1884 1885
}
#endif
L
Linus Torvalds 已提交
1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898

/*
 * The order of subdivision here is critical for the IO subsystem.
 * Please do not alter this order without good reasons and regression
 * testing. Specifically, as large blocks of memory are subdivided,
 * the order in which smaller blocks are delivered depends on the order
 * they're subdivided in this function. This is the primary factor
 * influencing the order in which pages are delivered to the IO
 * subsystem according to empirical testing, and this is also justified
 * by considering the behavior of a buddy system containing a single
 * large block of memory acted on by a series of small allocations.
 * This behavior is a critical factor in sglist merging's success.
 *
1899
 * -- nyc
L
Linus Torvalds 已提交
1900
 */
N
Nick Piggin 已提交
1901
static inline void expand(struct zone *zone, struct page *page,
1902 1903
	int low, int high, struct free_area *area,
	int migratetype)
L
Linus Torvalds 已提交
1904 1905 1906 1907 1908 1909 1910
{
	unsigned long size = 1 << high;

	while (high > low) {
		area--;
		high--;
		size >>= 1;
1911
		VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
1912

1913 1914 1915 1916 1917 1918 1919
		/*
		 * Mark as guard pages (or page), that will allow to
		 * merge back to allocator when buddy will be freed.
		 * Corresponding page table entries will not be touched,
		 * pages will stay not present in virtual address space
		 */
		if (set_page_guard(zone, &page[size], high, migratetype))
1920
			continue;
1921

1922
		list_add(&page[size].lru, &area->free_list[migratetype]);
L
Linus Torvalds 已提交
1923 1924 1925 1926 1927
		area->nr_free++;
		set_page_order(&page[size], high);
	}
}

1928
static void check_new_page_bad(struct page *page)
L
Linus Torvalds 已提交
1929
{
1930 1931
	const char *bad_reason = NULL;
	unsigned long bad_flags = 0;
1932

1933
	if (unlikely(atomic_read(&page->_mapcount) != -1))
1934 1935 1936
		bad_reason = "nonzero mapcount";
	if (unlikely(page->mapping != NULL))
		bad_reason = "non-NULL mapping";
1937
	if (unlikely(page_ref_count(page) != 0))
1938
		bad_reason = "nonzero _count";
1939 1940 1941
	if (unlikely(page->flags & __PG_HWPOISON)) {
		bad_reason = "HWPoisoned (hardware-corrupted)";
		bad_flags = __PG_HWPOISON;
1942 1943 1944
		/* Don't complain about hwpoisoned pages */
		page_mapcount_reset(page); /* remove PageBuddy */
		return;
1945
	}
1946 1947 1948 1949
	if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_PREP)) {
		bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag set";
		bad_flags = PAGE_FLAGS_CHECK_AT_PREP;
	}
1950 1951 1952 1953
#ifdef CONFIG_MEMCG
	if (unlikely(page->mem_cgroup))
		bad_reason = "page still charged to cgroup";
#endif
1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967
	bad_page(page, bad_reason, bad_flags);
}

/*
 * This page is about to be returned from the page allocator
 */
static inline int check_new_page(struct page *page)
{
	if (likely(page_expected_state(page,
				PAGE_FLAGS_CHECK_AT_PREP|__PG_HWPOISON)))
		return 0;

	check_new_page_bad(page);
	return 1;
1968 1969
}

1970
static inline bool free_pages_prezeroed(void)
1971 1972
{
	return IS_ENABLED(CONFIG_PAGE_POISONING_ZERO) &&
1973
		page_poisoning_enabled();
1974 1975
}

1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009
#ifdef CONFIG_DEBUG_VM
static bool check_pcp_refill(struct page *page)
{
	return false;
}

static bool check_new_pcp(struct page *page)
{
	return check_new_page(page);
}
#else
static bool check_pcp_refill(struct page *page)
{
	return check_new_page(page);
}
static bool check_new_pcp(struct page *page)
{
	return false;
}
#endif /* CONFIG_DEBUG_VM */

static bool check_new_pages(struct page *page, unsigned int order)
{
	int i;
	for (i = 0; i < (1 << order); i++) {
		struct page *p = page + i;

		if (unlikely(check_new_page(p)))
			return true;
	}

	return false;
}

2010 2011 2012 2013 2014 2015 2016 2017 2018
inline void post_alloc_hook(struct page *page, unsigned int order,
				gfp_t gfp_flags)
{
	set_page_private(page, 0);
	set_page_refcounted(page);

	arch_alloc_page(page, order);
	kernel_map_pages(page, 1 << order, 1);
	kasan_alloc_pages(page, order);
Q
Qian Cai 已提交
2019
	kernel_poison_pages(page, 1 << order, 1);
2020 2021 2022
	set_page_owner(page, order, gfp_flags);
}

2023
static void prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags,
2024
							unsigned int alloc_flags)
2025 2026
{
	int i;
2027

2028
	post_alloc_hook(page, order, gfp_flags);
N
Nick Piggin 已提交
2029

2030
	if (!free_pages_prezeroed() && (gfp_flags & __GFP_ZERO))
2031 2032
		for (i = 0; i < (1 << order); i++)
			clear_highpage(page + i);
N
Nick Piggin 已提交
2033 2034 2035 2036

	if (order && (gfp_flags & __GFP_COMP))
		prep_compound_page(page, order);

2037
	/*
2038
	 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to
2039 2040 2041 2042
	 * allocate the page. The expectation is that the caller is taking
	 * steps that will free more memory. The caller should avoid the page
	 * being used for !PFMEMALLOC purposes.
	 */
2043 2044 2045 2046
	if (alloc_flags & ALLOC_NO_WATERMARKS)
		set_page_pfmemalloc(page);
	else
		clear_page_pfmemalloc(page);
L
Linus Torvalds 已提交
2047 2048
}

2049 2050 2051 2052
/*
 * Go through the free lists for the given migratetype and remove
 * the smallest available page from the freelists
 */
2053
static __always_inline
2054
struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
2055 2056 2057
						int migratetype)
{
	unsigned int current_order;
2058
	struct free_area *area;
2059 2060 2061 2062 2063
	struct page *page;

	/* Find a page of the appropriate size in the preferred list */
	for (current_order = order; current_order < MAX_ORDER; ++current_order) {
		area = &(zone->free_area[current_order]);
2064
		page = list_first_entry_or_null(&area->free_list[migratetype],
2065
							struct page, lru);
2066 2067
		if (!page)
			continue;
2068 2069 2070 2071
		list_del(&page->lru);
		rmv_page_order(page);
		area->nr_free--;
		expand(zone, page, order, current_order, area, migratetype);
2072
		set_pcppage_migratetype(page, migratetype);
2073 2074 2075 2076 2077 2078 2079
		return page;
	}

	return NULL;
}


2080 2081 2082 2083
/*
 * This array describes the order lists are fallen back to when
 * the free lists for the desirable migrate type are depleted
 */
2084
static int fallbacks[MIGRATE_TYPES][4] = {
2085 2086
	[MIGRATE_UNMOVABLE]   = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE,   MIGRATE_TYPES },
	[MIGRATE_MOVABLE]     = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_TYPES },
2087
	[MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE,   MIGRATE_MOVABLE,   MIGRATE_TYPES },
2088
#ifdef CONFIG_CMA
2089
	[MIGRATE_CMA]         = { MIGRATE_TYPES }, /* Never used */
2090
#endif
2091
#ifdef CONFIG_MEMORY_ISOLATION
2092
	[MIGRATE_ISOLATE]     = { MIGRATE_TYPES }, /* Never used */
2093
#endif
2094 2095
};

2096
#ifdef CONFIG_CMA
2097
static __always_inline struct page *__rmqueue_cma_fallback(struct zone *zone,
2098 2099 2100 2101 2102 2103 2104 2105 2106
					unsigned int order)
{
	return __rmqueue_smallest(zone, order, MIGRATE_CMA);
}
#else
static inline struct page *__rmqueue_cma_fallback(struct zone *zone,
					unsigned int order) { return NULL; }
#endif

2107 2108
/*
 * Move the free pages in a range to the free lists of the requested type.
2109
 * Note that start_page and end_pages are not aligned on a pageblock
2110 2111
 * boundary. If alignment is required, use move_freepages_block()
 */
2112
static int move_freepages(struct zone *zone,
A
Adrian Bunk 已提交
2113
			  struct page *start_page, struct page *end_page,
2114
			  int migratetype, int *num_movable)
2115 2116
{
	struct page *page;
2117
	unsigned int order;
2118
	int pages_moved = 0;
2119 2120 2121 2122 2123 2124 2125

#ifndef CONFIG_HOLES_IN_ZONE
	/*
	 * page_zone is not safe to call in this context when
	 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
	 * anyway as we check zone boundaries in move_freepages_block().
	 * Remove at a later date when no bug reports exist related to
M
Mel Gorman 已提交
2126
	 * grouping pages by mobility
2127
	 */
2128 2129 2130
	VM_BUG_ON(pfn_valid(page_to_pfn(start_page)) &&
	          pfn_valid(page_to_pfn(end_page)) &&
	          page_zone(start_page) != page_zone(end_page));
2131 2132 2133 2134 2135 2136 2137
#endif
	for (page = start_page; page <= end_page;) {
		if (!pfn_valid_within(page_to_pfn(page))) {
			page++;
			continue;
		}

2138 2139 2140
		/* Make sure we are not inadvertently changing nodes */
		VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);

2141
		if (!PageBuddy(page)) {
2142 2143 2144 2145 2146 2147 2148 2149 2150
			/*
			 * We assume that pages that could be isolated for
			 * migration are movable. But we don't actually try
			 * isolating, as that would be expensive.
			 */
			if (num_movable &&
					(PageLRU(page) || __PageMovable(page)))
				(*num_movable)++;

2151 2152 2153 2154 2155
			page++;
			continue;
		}

		order = page_order(page);
2156 2157
		list_move(&page->lru,
			  &zone->free_area[order].free_list[migratetype]);
2158
		page += 1 << order;
2159
		pages_moved += 1 << order;
2160 2161
	}

2162
	return pages_moved;
2163 2164
}

2165
int move_freepages_block(struct zone *zone, struct page *page,
2166
				int migratetype, int *num_movable)
2167 2168 2169 2170
{
	unsigned long start_pfn, end_pfn;
	struct page *start_page, *end_page;

2171 2172 2173
	if (num_movable)
		*num_movable = 0;

2174
	start_pfn = page_to_pfn(page);
2175
	start_pfn = start_pfn & ~(pageblock_nr_pages-1);
2176
	start_page = pfn_to_page(start_pfn);
2177 2178
	end_page = start_page + pageblock_nr_pages - 1;
	end_pfn = start_pfn + pageblock_nr_pages - 1;
2179 2180

	/* Do not cross zone boundaries */
2181
	if (!zone_spans_pfn(zone, start_pfn))
2182
		start_page = page;
2183
	if (!zone_spans_pfn(zone, end_pfn))
2184 2185
		return 0;

2186 2187
	return move_freepages(zone, start_page, end_page, migratetype,
								num_movable);
2188 2189
}

2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200
static void change_pageblock_range(struct page *pageblock_page,
					int start_order, int migratetype)
{
	int nr_pageblocks = 1 << (start_order - pageblock_order);

	while (nr_pageblocks--) {
		set_pageblock_migratetype(pageblock_page, migratetype);
		pageblock_page += pageblock_nr_pages;
	}
}

2201
/*
2202 2203 2204 2205 2206 2207 2208 2209 2210 2211
 * When we are falling back to another migratetype during allocation, try to
 * steal extra free pages from the same pageblocks to satisfy further
 * allocations, instead of polluting multiple pageblocks.
 *
 * If we are stealing a relatively large buddy page, it is likely there will
 * be more free pages in the pageblock, so try to steal them all. For
 * reclaimable and unmovable allocations, we steal regardless of page size,
 * as fragmentation caused by those allocations polluting movable pageblocks
 * is worse than movable allocations stealing from unmovable and reclaimable
 * pageblocks.
2212
 */
2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233
static bool can_steal_fallback(unsigned int order, int start_mt)
{
	/*
	 * Leaving this order check is intended, although there is
	 * relaxed order check in next check. The reason is that
	 * we can actually steal whole pageblock if this condition met,
	 * but, below check doesn't guarantee it and that is just heuristic
	 * so could be changed anytime.
	 */
	if (order >= pageblock_order)
		return true;

	if (order >= pageblock_order / 2 ||
		start_mt == MIGRATE_RECLAIMABLE ||
		start_mt == MIGRATE_UNMOVABLE ||
		page_group_by_mobility_disabled)
		return true;

	return false;
}

2234 2235 2236 2237 2238 2239 2240 2241 2242
static inline void boost_watermark(struct zone *zone)
{
	unsigned long max_boost;

	if (!watermark_boost_factor)
		return;

	max_boost = mult_frac(zone->_watermark[WMARK_HIGH],
			watermark_boost_factor, 10000);
2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254

	/*
	 * high watermark may be uninitialised if fragmentation occurs
	 * very early in boot so do not boost. We do not fall
	 * through and boost by pageblock_nr_pages as failing
	 * allocations that early means that reclaim is not going
	 * to help and it may even be impossible to reclaim the
	 * boosted watermark resulting in a hang.
	 */
	if (!max_boost)
		return;

2255 2256 2257 2258 2259 2260
	max_boost = max(pageblock_nr_pages, max_boost);

	zone->watermark_boost = min(zone->watermark_boost + pageblock_nr_pages,
		max_boost);
}

2261 2262 2263
/*
 * This function implements actual steal behaviour. If order is large enough,
 * we can steal whole pageblock. If not, we first move freepages in this
2264 2265 2266 2267
 * pageblock to our migratetype and determine how many already-allocated pages
 * are there in the pageblock with a compatible migratetype. If at least half
 * of pages are free or compatible, we can change migratetype of the pageblock
 * itself, so pages freed in the future will be put on the correct free list.
2268 2269
 */
static void steal_suitable_fallback(struct zone *zone, struct page *page,
2270
		unsigned int alloc_flags, int start_type, bool whole_block)
2271
{
2272
	unsigned int current_order = page_order(page);
2273
	struct free_area *area;
2274 2275 2276 2277
	int free_pages, movable_pages, alike_pages;
	int old_block_type;

	old_block_type = get_pageblock_migratetype(page);
2278

2279 2280 2281 2282
	/*
	 * This can happen due to races and we want to prevent broken
	 * highatomic accounting.
	 */
2283
	if (is_migrate_highatomic(old_block_type))
2284 2285
		goto single_page;

2286 2287 2288
	/* Take ownership for orders >= pageblock_order */
	if (current_order >= pageblock_order) {
		change_pageblock_range(page, current_order, start_type);
2289
		goto single_page;
2290 2291
	}

2292 2293 2294 2295 2296 2297 2298
	/*
	 * Boost watermarks to increase reclaim pressure to reduce the
	 * likelihood of future fallbacks. Wake kswapd now as the node
	 * may be balanced overall and kswapd will not wake naturally.
	 */
	boost_watermark(zone);
	if (alloc_flags & ALLOC_KSWAPD)
2299
		set_bit(ZONE_BOOSTED_WATERMARK, &zone->flags);
2300

2301 2302 2303 2304
	/* We are not allowed to try stealing from the whole block */
	if (!whole_block)
		goto single_page;

2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328
	free_pages = move_freepages_block(zone, page, start_type,
						&movable_pages);
	/*
	 * Determine how many pages are compatible with our allocation.
	 * For movable allocation, it's the number of movable pages which
	 * we just obtained. For other types it's a bit more tricky.
	 */
	if (start_type == MIGRATE_MOVABLE) {
		alike_pages = movable_pages;
	} else {
		/*
		 * If we are falling back a RECLAIMABLE or UNMOVABLE allocation
		 * to MOVABLE pageblock, consider all non-movable pages as
		 * compatible. If it's UNMOVABLE falling back to RECLAIMABLE or
		 * vice versa, be conservative since we can't distinguish the
		 * exact migratetype of non-movable pages.
		 */
		if (old_block_type == MIGRATE_MOVABLE)
			alike_pages = pageblock_nr_pages
						- (free_pages + movable_pages);
		else
			alike_pages = 0;
	}

2329
	/* moving whole block can fail due to zone boundary conditions */
2330
	if (!free_pages)
2331
		goto single_page;
2332

2333 2334 2335 2336 2337
	/*
	 * If a sufficient number of pages in the block are either free or of
	 * comparable migratability as our allocation, claim the whole block.
	 */
	if (free_pages + alike_pages >= (1 << (pageblock_order-1)) ||
2338 2339
			page_group_by_mobility_disabled)
		set_pageblock_migratetype(page, start_type);
2340 2341 2342 2343 2344 2345

	return;

single_page:
	area = &zone->free_area[current_order];
	list_move(&page->lru, &area->free_list[start_type]);
2346 2347
}

2348 2349 2350 2351 2352 2353 2354 2355
/*
 * Check whether there is a suitable fallback freepage with requested order.
 * If only_stealable is true, this function returns fallback_mt only if
 * we can steal other freepages all together. This would help to reduce
 * fragmentation due to mixed migratetype pages in one pageblock.
 */
int find_suitable_fallback(struct free_area *area, unsigned int order,
			int migratetype, bool only_stealable, bool *can_steal)
2356 2357 2358 2359 2360 2361 2362 2363 2364 2365
{
	int i;
	int fallback_mt;

	if (area->nr_free == 0)
		return -1;

	*can_steal = false;
	for (i = 0;; i++) {
		fallback_mt = fallbacks[migratetype][i];
2366
		if (fallback_mt == MIGRATE_TYPES)
2367 2368 2369 2370
			break;

		if (list_empty(&area->free_list[fallback_mt]))
			continue;
2371

2372 2373 2374
		if (can_steal_fallback(order, migratetype))
			*can_steal = true;

2375 2376 2377 2378 2379
		if (!only_stealable)
			return fallback_mt;

		if (*can_steal)
			return fallback_mt;
2380
	}
2381 2382

	return -1;
2383 2384
}

2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398
/*
 * Reserve a pageblock for exclusive use of high-order atomic allocations if
 * there are no empty page blocks that contain a page with a suitable order
 */
static void reserve_highatomic_pageblock(struct page *page, struct zone *zone,
				unsigned int alloc_order)
{
	int mt;
	unsigned long max_managed, flags;

	/*
	 * Limit the number reserved to 1 pageblock or roughly 1% of a zone.
	 * Check is race-prone but harmless.
	 */
2399
	max_managed = (zone_managed_pages(zone) / 100) + pageblock_nr_pages;
2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410
	if (zone->nr_reserved_highatomic >= max_managed)
		return;

	spin_lock_irqsave(&zone->lock, flags);

	/* Recheck the nr_reserved_highatomic limit under the lock */
	if (zone->nr_reserved_highatomic >= max_managed)
		goto out_unlock;

	/* Yoink! */
	mt = get_pageblock_migratetype(page);
2411 2412
	if (!is_migrate_highatomic(mt) && !is_migrate_isolate(mt)
	    && !is_migrate_cma(mt)) {
2413 2414
		zone->nr_reserved_highatomic += pageblock_nr_pages;
		set_pageblock_migratetype(page, MIGRATE_HIGHATOMIC);
2415
		move_freepages_block(zone, page, MIGRATE_HIGHATOMIC, NULL);
2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426
	}

out_unlock:
	spin_unlock_irqrestore(&zone->lock, flags);
}

/*
 * Used when an allocation is about to fail under memory pressure. This
 * potentially hurts the reliability of high-order allocations when under
 * intense memory pressure but failed atomic allocations should be easier
 * to recover from than an OOM.
2427 2428 2429
 *
 * If @force is true, try to unreserve a pageblock even though highatomic
 * pageblock is exhausted.
2430
 */
2431 2432
static bool unreserve_highatomic_pageblock(const struct alloc_context *ac,
						bool force)
2433 2434 2435 2436 2437 2438 2439
{
	struct zonelist *zonelist = ac->zonelist;
	unsigned long flags;
	struct zoneref *z;
	struct zone *zone;
	struct page *page;
	int order;
2440
	bool ret;
2441 2442 2443

	for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->high_zoneidx,
								ac->nodemask) {
2444 2445 2446 2447 2448 2449
		/*
		 * Preserve at least one pageblock unless memory pressure
		 * is really high.
		 */
		if (!force && zone->nr_reserved_highatomic <=
					pageblock_nr_pages)
2450 2451 2452 2453 2454 2455
			continue;

		spin_lock_irqsave(&zone->lock, flags);
		for (order = 0; order < MAX_ORDER; order++) {
			struct free_area *area = &(zone->free_area[order]);

2456 2457 2458 2459
			page = list_first_entry_or_null(
					&area->free_list[MIGRATE_HIGHATOMIC],
					struct page, lru);
			if (!page)
2460 2461 2462
				continue;

			/*
2463 2464 2465 2466 2467
			 * In page freeing path, migratetype change is racy so
			 * we can counter several free pages in a pageblock
			 * in this loop althoug we changed the pageblock type
			 * from highatomic to ac->migratetype. So we should
			 * adjust the count once.
2468
			 */
2469
			if (is_migrate_highatomic_page(page)) {
2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480
				/*
				 * It should never happen but changes to
				 * locking could inadvertently allow a per-cpu
				 * drain to add pages to MIGRATE_HIGHATOMIC
				 * while unreserving so be safe and watch for
				 * underflows.
				 */
				zone->nr_reserved_highatomic -= min(
						pageblock_nr_pages,
						zone->nr_reserved_highatomic);
			}
2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491

			/*
			 * Convert to ac->migratetype and avoid the normal
			 * pageblock stealing heuristics. Minimally, the caller
			 * is doing the work and needs the pages. More
			 * importantly, if the block was always converted to
			 * MIGRATE_UNMOVABLE or another type then the number
			 * of pageblocks that cannot be completely freed
			 * may increase.
			 */
			set_pageblock_migratetype(page, ac->migratetype);
2492 2493
			ret = move_freepages_block(zone, page, ac->migratetype,
									NULL);
2494 2495 2496 2497
			if (ret) {
				spin_unlock_irqrestore(&zone->lock, flags);
				return ret;
			}
2498 2499 2500
		}
		spin_unlock_irqrestore(&zone->lock, flags);
	}
2501 2502

	return false;
2503 2504
}

2505 2506 2507 2508 2509
/*
 * Try finding a free buddy page on the fallback list and put it on the free
 * list of requested migratetype, possibly along with other pages from the same
 * block, depending on fragmentation avoidance heuristics. Returns true if
 * fallback was found so that __rmqueue_smallest() can grab it.
2510 2511 2512 2513
 *
 * The use of signed ints for order and current_order is a deliberate
 * deviation from the rest of this file, to make the for loop
 * condition simpler.
2514
 */
2515
static __always_inline bool
2516 2517
__rmqueue_fallback(struct zone *zone, int order, int start_migratetype,
						unsigned int alloc_flags)
2518
{
2519
	struct free_area *area;
2520
	int current_order;
2521
	int min_order = order;
2522
	struct page *page;
2523 2524
	int fallback_mt;
	bool can_steal;
2525

2526 2527 2528 2529 2530 2531 2532 2533
	/*
	 * Do not steal pages from freelists belonging to other pageblocks
	 * i.e. orders < pageblock_order. If there are no local zones free,
	 * the zonelists will be reiterated without ALLOC_NOFRAGMENT.
	 */
	if (alloc_flags & ALLOC_NOFRAGMENT)
		min_order = pageblock_order;

2534 2535 2536 2537 2538
	/*
	 * Find the largest available free page in the other list. This roughly
	 * approximates finding the pageblock with the most free pages, which
	 * would be too costly to do exactly.
	 */
2539
	for (current_order = MAX_ORDER - 1; current_order >= min_order;
2540
				--current_order) {
2541 2542
		area = &(zone->free_area[current_order]);
		fallback_mt = find_suitable_fallback(area, current_order,
2543
				start_migratetype, false, &can_steal);
2544 2545
		if (fallback_mt == -1)
			continue;
2546

2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557
		/*
		 * We cannot steal all free pages from the pageblock and the
		 * requested migratetype is movable. In that case it's better to
		 * steal and split the smallest available page instead of the
		 * largest available page, because even if the next movable
		 * allocation falls back into a different pageblock than this
		 * one, it won't cause permanent fragmentation.
		 */
		if (!can_steal && start_migratetype == MIGRATE_MOVABLE
					&& current_order > order)
			goto find_smallest;
2558

2559 2560
		goto do_steal;
	}
2561

2562
	return false;
2563

2564 2565 2566 2567 2568 2569 2570 2571
find_smallest:
	for (current_order = order; current_order < MAX_ORDER;
							current_order++) {
		area = &(zone->free_area[current_order]);
		fallback_mt = find_suitable_fallback(area, current_order,
				start_migratetype, false, &can_steal);
		if (fallback_mt != -1)
			break;
2572 2573
	}

2574 2575 2576 2577 2578 2579 2580 2581 2582 2583
	/*
	 * This should not happen - we already found a suitable fallback
	 * when looking for the largest page.
	 */
	VM_BUG_ON(current_order == MAX_ORDER);

do_steal:
	page = list_first_entry(&area->free_list[fallback_mt],
							struct page, lru);

2584 2585
	steal_suitable_fallback(zone, page, alloc_flags, start_migratetype,
								can_steal);
2586 2587 2588 2589 2590 2591

	trace_mm_page_alloc_extfrag(page, order, current_order,
		start_migratetype, fallback_mt);

	return true;

2592 2593
}

2594
/*
L
Linus Torvalds 已提交
2595 2596 2597
 * Do the hard work of removing an element from the buddy allocator.
 * Call me with the zone->lock already held.
 */
2598
static __always_inline struct page *
2599 2600
__rmqueue(struct zone *zone, unsigned int order, int migratetype,
						unsigned int alloc_flags)
L
Linus Torvalds 已提交
2601 2602 2603
{
	struct page *page;

2604
retry:
2605
	page = __rmqueue_smallest(zone, order, migratetype);
2606
	if (unlikely(!page)) {
2607 2608 2609
		if (migratetype == MIGRATE_MOVABLE)
			page = __rmqueue_cma_fallback(zone, order);

2610 2611
		if (!page && __rmqueue_fallback(zone, order, migratetype,
								alloc_flags))
2612
			goto retry;
2613 2614
	}

2615
	trace_mm_page_alloc_zone_locked(page, order, migratetype);
2616
	return page;
L
Linus Torvalds 已提交
2617 2618
}

2619
/*
L
Linus Torvalds 已提交
2620 2621 2622 2623
 * Obtain a specified number of elements from the buddy allocator, all under
 * a single hold of the lock, for efficiency.  Add them to the supplied list.
 * Returns the number of new pages which were placed at *list.
 */
2624
static int rmqueue_bulk(struct zone *zone, unsigned int order,
2625
			unsigned long count, struct list_head *list,
2626
			int migratetype, unsigned int alloc_flags)
L
Linus Torvalds 已提交
2627
{
2628
	int i, alloced = 0;
2629

2630
	spin_lock(&zone->lock);
L
Linus Torvalds 已提交
2631
	for (i = 0; i < count; ++i) {
2632 2633
		struct page *page = __rmqueue(zone, order, migratetype,
								alloc_flags);
N
Nick Piggin 已提交
2634
		if (unlikely(page == NULL))
L
Linus Torvalds 已提交
2635
			break;
2636

2637 2638 2639
		if (unlikely(check_pcp_refill(page)))
			continue;

2640
		/*
2641 2642 2643 2644 2645 2646 2647 2648
		 * Split buddy pages returned by expand() are received here in
		 * physical page order. The page is added to the tail of
		 * caller's list. From the callers perspective, the linked list
		 * is ordered by page number under some conditions. This is
		 * useful for IO devices that can forward direction from the
		 * head, thus also in the physical page order. This is useful
		 * for IO devices that can merge IO requests if the physical
		 * pages are ordered properly.
2649
		 */
2650
		list_add_tail(&page->lru, list);
2651
		alloced++;
2652
		if (is_migrate_cma(get_pcppage_migratetype(page)))
2653 2654
			__mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
					      -(1 << order));
L
Linus Torvalds 已提交
2655
	}
2656 2657 2658 2659 2660 2661 2662

	/*
	 * i pages were removed from the buddy list even if some leak due
	 * to check_pcp_refill failing so adjust NR_FREE_PAGES based
	 * on i. Do not confuse with 'alloced' which is the number of
	 * pages added to the pcp list.
	 */
2663
	__mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
2664
	spin_unlock(&zone->lock);
2665
	return alloced;
L
Linus Torvalds 已提交
2666 2667
}

2668
#ifdef CONFIG_NUMA
2669
/*
2670 2671 2672 2673
 * Called from the vmstat counter updater to drain pagesets of this
 * currently executing processor on remote nodes after they have
 * expired.
 *
2674 2675
 * Note that this function must be called with the thread pinned to
 * a single processor.
2676
 */
2677
void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
2678 2679
{
	unsigned long flags;
2680
	int to_drain, batch;
2681

2682
	local_irq_save(flags);
2683
	batch = READ_ONCE(pcp->batch);
2684
	to_drain = min(pcp->count, batch);
2685
	if (to_drain > 0)
2686
		free_pcppages_bulk(zone, to_drain, pcp);
2687
	local_irq_restore(flags);
2688 2689 2690
}
#endif

2691
/*
2692
 * Drain pcplists of the indicated processor and zone.
2693 2694 2695 2696 2697
 *
 * The processor must either be the current processor and the
 * thread pinned to the current processor or a processor that
 * is not online.
 */
2698
static void drain_pages_zone(unsigned int cpu, struct zone *zone)
L
Linus Torvalds 已提交
2699
{
N
Nick Piggin 已提交
2700
	unsigned long flags;
2701 2702
	struct per_cpu_pageset *pset;
	struct per_cpu_pages *pcp;
L
Linus Torvalds 已提交
2703

2704 2705
	local_irq_save(flags);
	pset = per_cpu_ptr(zone->pageset, cpu);
L
Linus Torvalds 已提交
2706

2707
	pcp = &pset->pcp;
2708
	if (pcp->count)
2709 2710 2711
		free_pcppages_bulk(zone, pcp->count, pcp);
	local_irq_restore(flags);
}
2712

2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725
/*
 * Drain pcplists of all zones on the indicated processor.
 *
 * The processor must either be the current processor and the
 * thread pinned to the current processor or a processor that
 * is not online.
 */
static void drain_pages(unsigned int cpu)
{
	struct zone *zone;

	for_each_populated_zone(zone) {
		drain_pages_zone(cpu, zone);
L
Linus Torvalds 已提交
2726 2727 2728
	}
}

2729 2730
/*
 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
2731 2732 2733
 *
 * The CPU has to be pinned. When zone parameter is non-NULL, spill just
 * the single zone's pages.
2734
 */
2735
void drain_local_pages(struct zone *zone)
2736
{
2737 2738 2739 2740 2741 2742
	int cpu = smp_processor_id();

	if (zone)
		drain_pages_zone(cpu, zone);
	else
		drain_pages(cpu);
2743 2744
}

2745 2746
static void drain_local_pages_wq(struct work_struct *work)
{
2747 2748 2749 2750
	struct pcpu_drain *drain;

	drain = container_of(work, struct pcpu_drain, work);

2751 2752 2753 2754 2755 2756 2757 2758
	/*
	 * drain_all_pages doesn't use proper cpu hotplug protection so
	 * we can race with cpu offline when the WQ can move this from
	 * a cpu pinned worker to an unbound one. We can operate on a different
	 * cpu which is allright but we also have to make sure to not move to
	 * a different one.
	 */
	preempt_disable();
2759
	drain_local_pages(drain->zone);
2760
	preempt_enable();
2761 2762
}

2763
/*
2764 2765
 * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
 *
2766 2767
 * When zone parameter is non-NULL, spill just the single zone's pages.
 *
2768
 * Note that this can be extremely slow as the draining happens in a workqueue.
2769
 */
2770
void drain_all_pages(struct zone *zone)
2771
{
2772 2773 2774 2775 2776 2777 2778 2779
	int cpu;

	/*
	 * Allocate in the BSS so we wont require allocation in
	 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
	 */
	static cpumask_t cpus_with_pcps;

2780 2781 2782 2783 2784 2785 2786
	/*
	 * Make sure nobody triggers this path before mm_percpu_wq is fully
	 * initialized.
	 */
	if (WARN_ON_ONCE(!mm_percpu_wq))
		return;

2787 2788 2789 2790 2791 2792 2793 2794 2795 2796
	/*
	 * Do not drain if one is already in progress unless it's specific to
	 * a zone. Such callers are primarily CMA and memory hotplug and need
	 * the drain to be complete when the call returns.
	 */
	if (unlikely(!mutex_trylock(&pcpu_drain_mutex))) {
		if (!zone)
			return;
		mutex_lock(&pcpu_drain_mutex);
	}
2797

2798 2799 2800 2801 2802 2803 2804
	/*
	 * We don't care about racing with CPU hotplug event
	 * as offline notification will cause the notified
	 * cpu to drain that CPU pcps and on_each_cpu_mask
	 * disables preemption as part of its processing
	 */
	for_each_online_cpu(cpu) {
2805 2806
		struct per_cpu_pageset *pcp;
		struct zone *z;
2807
		bool has_pcps = false;
2808 2809

		if (zone) {
2810
			pcp = per_cpu_ptr(zone->pageset, cpu);
2811
			if (pcp->pcp.count)
2812
				has_pcps = true;
2813 2814 2815 2816 2817 2818 2819
		} else {
			for_each_populated_zone(z) {
				pcp = per_cpu_ptr(z->pageset, cpu);
				if (pcp->pcp.count) {
					has_pcps = true;
					break;
				}
2820 2821
			}
		}
2822

2823 2824 2825 2826 2827
		if (has_pcps)
			cpumask_set_cpu(cpu, &cpus_with_pcps);
		else
			cpumask_clear_cpu(cpu, &cpus_with_pcps);
	}
2828

2829
	for_each_cpu(cpu, &cpus_with_pcps) {
2830 2831 2832 2833 2834
		struct pcpu_drain *drain = per_cpu_ptr(&pcpu_drain, cpu);

		drain->zone = zone;
		INIT_WORK(&drain->work, drain_local_pages_wq);
		queue_work_on(cpu, mm_percpu_wq, &drain->work);
2835
	}
2836
	for_each_cpu(cpu, &cpus_with_pcps)
2837
		flush_work(&per_cpu_ptr(&pcpu_drain, cpu)->work);
2838 2839

	mutex_unlock(&pcpu_drain_mutex);
2840 2841
}

2842
#ifdef CONFIG_HIBERNATION
L
Linus Torvalds 已提交
2843

2844 2845 2846 2847 2848
/*
 * Touch the watchdog for every WD_PAGE_COUNT pages.
 */
#define WD_PAGE_COUNT	(128*1024)

L
Linus Torvalds 已提交
2849 2850
void mark_free_pages(struct zone *zone)
{
2851
	unsigned long pfn, max_zone_pfn, page_count = WD_PAGE_COUNT;
2852
	unsigned long flags;
2853
	unsigned int order, t;
2854
	struct page *page;
L
Linus Torvalds 已提交
2855

2856
	if (zone_is_empty(zone))
L
Linus Torvalds 已提交
2857 2858 2859
		return;

	spin_lock_irqsave(&zone->lock, flags);
2860

2861
	max_zone_pfn = zone_end_pfn(zone);
2862 2863
	for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
		if (pfn_valid(pfn)) {
2864
			page = pfn_to_page(pfn);
2865

2866 2867 2868 2869 2870
			if (!--page_count) {
				touch_nmi_watchdog();
				page_count = WD_PAGE_COUNT;
			}

2871 2872 2873
			if (page_zone(page) != zone)
				continue;

2874 2875
			if (!swsusp_page_is_forbidden(page))
				swsusp_unset_page_free(page);
2876
		}
L
Linus Torvalds 已提交
2877

2878
	for_each_migratetype_order(order, t) {
2879 2880
		list_for_each_entry(page,
				&zone->free_area[order].free_list[t], lru) {
2881
			unsigned long i;
L
Linus Torvalds 已提交
2882

2883
			pfn = page_to_pfn(page);
2884 2885 2886 2887 2888
			for (i = 0; i < (1UL << order); i++) {
				if (!--page_count) {
					touch_nmi_watchdog();
					page_count = WD_PAGE_COUNT;
				}
2889
				swsusp_set_page_free(pfn_to_page(pfn + i));
2890
			}
2891
		}
2892
	}
L
Linus Torvalds 已提交
2893 2894
	spin_unlock_irqrestore(&zone->lock, flags);
}
2895
#endif /* CONFIG_PM */
L
Linus Torvalds 已提交
2896

2897
static bool free_unref_page_prepare(struct page *page, unsigned long pfn)
L
Linus Torvalds 已提交
2898
{
2899
	int migratetype;
L
Linus Torvalds 已提交
2900

2901
	if (!free_pcp_prepare(page))
2902
		return false;
2903

2904
	migratetype = get_pfnblock_migratetype(page, pfn);
2905
	set_pcppage_migratetype(page, migratetype);
2906 2907 2908
	return true;
}

2909
static void free_unref_page_commit(struct page *page, unsigned long pfn)
2910 2911 2912 2913 2914 2915
{
	struct zone *zone = page_zone(page);
	struct per_cpu_pages *pcp;
	int migratetype;

	migratetype = get_pcppage_migratetype(page);
2916
	__count_vm_event(PGFREE);
2917

2918 2919 2920
	/*
	 * We only track unmovable, reclaimable and movable on pcp lists.
	 * Free ISOLATE pages back to the allocator because they are being
2921
	 * offlined but treat HIGHATOMIC as movable pages so we can get those
2922 2923 2924 2925
	 * areas back if necessary. Otherwise, we may have to free
	 * excessively into the page allocator
	 */
	if (migratetype >= MIGRATE_PCPTYPES) {
2926
		if (unlikely(is_migrate_isolate(migratetype))) {
2927
			free_one_page(zone, page, pfn, 0, migratetype);
2928
			return;
2929 2930 2931 2932
		}
		migratetype = MIGRATE_MOVABLE;
	}

2933
	pcp = &this_cpu_ptr(zone->pageset)->pcp;
2934
	list_add(&page->lru, &pcp->lists[migratetype]);
L
Linus Torvalds 已提交
2935
	pcp->count++;
N
Nick Piggin 已提交
2936
	if (pcp->count >= pcp->high) {
2937
		unsigned long batch = READ_ONCE(pcp->batch);
2938
		free_pcppages_bulk(zone, batch, pcp);
N
Nick Piggin 已提交
2939
	}
2940
}
2941

2942 2943 2944
/*
 * Free a 0-order page
 */
2945
void free_unref_page(struct page *page)
2946 2947 2948 2949
{
	unsigned long flags;
	unsigned long pfn = page_to_pfn(page);

2950
	if (!free_unref_page_prepare(page, pfn))
2951 2952 2953
		return;

	local_irq_save(flags);
2954
	free_unref_page_commit(page, pfn);
2955
	local_irq_restore(flags);
L
Linus Torvalds 已提交
2956 2957
}

2958 2959 2960
/*
 * Free a list of 0-order pages
 */
2961
void free_unref_page_list(struct list_head *list)
2962 2963
{
	struct page *page, *next;
2964
	unsigned long flags, pfn;
2965
	int batch_count = 0;
2966 2967 2968 2969

	/* Prepare pages for freeing */
	list_for_each_entry_safe(page, next, list, lru) {
		pfn = page_to_pfn(page);
2970
		if (!free_unref_page_prepare(page, pfn))
2971 2972 2973
			list_del(&page->lru);
		set_page_private(page, pfn);
	}
2974

2975
	local_irq_save(flags);
2976
	list_for_each_entry_safe(page, next, list, lru) {
2977 2978 2979
		unsigned long pfn = page_private(page);

		set_page_private(page, 0);
2980 2981
		trace_mm_page_free_batched(page);
		free_unref_page_commit(page, pfn);
2982 2983 2984 2985 2986 2987 2988 2989 2990 2991

		/*
		 * Guard against excessive IRQ disabled times when we get
		 * a large list of pages to free.
		 */
		if (++batch_count == SWAP_CLUSTER_MAX) {
			local_irq_restore(flags);
			batch_count = 0;
			local_irq_save(flags);
		}
2992
	}
2993
	local_irq_restore(flags);
2994 2995
}

N
Nick Piggin 已提交
2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007
/*
 * split_page takes a non-compound higher-order page, and splits it into
 * n (1<<order) sub-pages: page[0..n]
 * Each sub-page must be freed individually.
 *
 * Note: this is probably too low level an operation for use in drivers.
 * Please consult with lkml before using this in your driver.
 */
void split_page(struct page *page, unsigned int order)
{
	int i;

3008 3009
	VM_BUG_ON_PAGE(PageCompound(page), page);
	VM_BUG_ON_PAGE(!page_count(page), page);
3010

3011
	for (i = 1; i < (1 << order); i++)
3012
		set_page_refcounted(page + i);
3013
	split_page_owner(page, order);
N
Nick Piggin 已提交
3014
}
K
K. Y. Srinivasan 已提交
3015
EXPORT_SYMBOL_GPL(split_page);
N
Nick Piggin 已提交
3016

3017
int __isolate_free_page(struct page *page, unsigned int order)
3018 3019 3020
{
	unsigned long watermark;
	struct zone *zone;
3021
	int mt;
3022 3023 3024 3025

	BUG_ON(!PageBuddy(page));

	zone = page_zone(page);
3026
	mt = get_pageblock_migratetype(page);
3027

3028
	if (!is_migrate_isolate(mt)) {
3029 3030 3031 3032 3033 3034
		/*
		 * Obey watermarks as if the page was being allocated. We can
		 * emulate a high-order watermark check with a raised order-0
		 * watermark, because we already know our high-order page
		 * exists.
		 */
3035
		watermark = zone->_watermark[WMARK_MIN] + (1UL << order);
3036
		if (!zone_watermark_ok(zone, 0, watermark, 0, ALLOC_CMA))
3037 3038
			return 0;

3039
		__mod_zone_freepage_state(zone, -(1UL << order), mt);
3040
	}
3041 3042 3043 3044 3045

	/* Remove page from free list */
	list_del(&page->lru);
	zone->free_area[order].nr_free--;
	rmv_page_order(page);
3046

3047 3048 3049 3050
	/*
	 * Set the pageblock if the isolated page is at least half of a
	 * pageblock
	 */
3051 3052
	if (order >= pageblock_order - 1) {
		struct page *endpage = page + (1 << order) - 1;
3053 3054
		for (; page < endpage; page += pageblock_nr_pages) {
			int mt = get_pageblock_migratetype(page);
M
Minchan Kim 已提交
3055
			if (!is_migrate_isolate(mt) && !is_migrate_cma(mt)
3056
			    && !is_migrate_highatomic(mt))
3057 3058 3059
				set_pageblock_migratetype(page,
							  MIGRATE_MOVABLE);
		}
3060 3061
	}

3062

3063
	return 1UL << order;
3064 3065
}

3066 3067 3068 3069 3070
/*
 * Update NUMA hit/miss statistics
 *
 * Must be called with interrupts disabled.
 */
M
Michal Hocko 已提交
3071
static inline void zone_statistics(struct zone *preferred_zone, struct zone *z)
3072 3073
{
#ifdef CONFIG_NUMA
3074
	enum numa_stat_item local_stat = NUMA_LOCAL;
3075

3076 3077 3078 3079
	/* skip numa counters update if numa stats is disabled */
	if (!static_branch_likely(&vm_numa_stat_key))
		return;

3080
	if (zone_to_nid(z) != numa_node_id())
3081 3082
		local_stat = NUMA_OTHER;

3083
	if (zone_to_nid(z) == zone_to_nid(preferred_zone))
3084
		__inc_numa_state(z, NUMA_HIT);
3085
	else {
3086 3087
		__inc_numa_state(z, NUMA_MISS);
		__inc_numa_state(preferred_zone, NUMA_FOREIGN);
3088
	}
3089
	__inc_numa_state(z, local_stat);
3090 3091 3092
#endif
}

3093 3094
/* Remove page from the per-cpu list, caller must protect the list */
static struct page *__rmqueue_pcplist(struct zone *zone, int migratetype,
3095
			unsigned int alloc_flags,
M
Mel Gorman 已提交
3096
			struct per_cpu_pages *pcp,
3097 3098 3099 3100 3101 3102 3103 3104
			struct list_head *list)
{
	struct page *page;

	do {
		if (list_empty(list)) {
			pcp->count += rmqueue_bulk(zone, 0,
					pcp->batch, list,
3105
					migratetype, alloc_flags);
3106 3107 3108 3109
			if (unlikely(list_empty(list)))
				return NULL;
		}

M
Mel Gorman 已提交
3110
		page = list_first_entry(list, struct page, lru);
3111 3112 3113 3114 3115 3116 3117 3118 3119 3120
		list_del(&page->lru);
		pcp->count--;
	} while (check_new_pcp(page));

	return page;
}

/* Lock and remove page from the per-cpu list */
static struct page *rmqueue_pcplist(struct zone *preferred_zone,
			struct zone *zone, unsigned int order,
3121 3122
			gfp_t gfp_flags, int migratetype,
			unsigned int alloc_flags)
3123 3124 3125 3126
{
	struct per_cpu_pages *pcp;
	struct list_head *list;
	struct page *page;
3127
	unsigned long flags;
3128

3129
	local_irq_save(flags);
3130 3131
	pcp = &this_cpu_ptr(zone->pageset)->pcp;
	list = &pcp->lists[migratetype];
3132
	page = __rmqueue_pcplist(zone,  migratetype, alloc_flags, pcp, list);
3133 3134 3135 3136
	if (page) {
		__count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
		zone_statistics(preferred_zone, zone);
	}
3137
	local_irq_restore(flags);
3138 3139 3140
	return page;
}

L
Linus Torvalds 已提交
3141
/*
3142
 * Allocate a page from the given zone. Use pcplists for order-0 allocations.
L
Linus Torvalds 已提交
3143
 */
3144
static inline
3145
struct page *rmqueue(struct zone *preferred_zone,
3146
			struct zone *zone, unsigned int order,
3147 3148
			gfp_t gfp_flags, unsigned int alloc_flags,
			int migratetype)
L
Linus Torvalds 已提交
3149 3150
{
	unsigned long flags;
3151
	struct page *page;
L
Linus Torvalds 已提交
3152

3153
	if (likely(order == 0)) {
3154
		page = rmqueue_pcplist(preferred_zone, zone, order,
3155
				gfp_flags, migratetype, alloc_flags);
3156 3157
		goto out;
	}
3158

3159 3160 3161 3162 3163 3164
	/*
	 * We most definitely don't want callers attempting to
	 * allocate greater than order-1 page units with __GFP_NOFAIL.
	 */
	WARN_ON_ONCE((gfp_flags & __GFP_NOFAIL) && (order > 1));
	spin_lock_irqsave(&zone->lock, flags);
3165

3166 3167 3168 3169 3170 3171 3172
	do {
		page = NULL;
		if (alloc_flags & ALLOC_HARDER) {
			page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
			if (page)
				trace_mm_page_alloc_zone_locked(page, order, migratetype);
		}
N
Nick Piggin 已提交
3173
		if (!page)
3174
			page = __rmqueue(zone, order, migratetype, alloc_flags);
3175 3176 3177 3178 3179 3180
	} while (page && check_new_pages(page, order));
	spin_unlock(&zone->lock);
	if (!page)
		goto failed;
	__mod_zone_freepage_state(zone, -(1 << order),
				  get_pcppage_migratetype(page));
L
Linus Torvalds 已提交
3181

3182
	__count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
M
Michal Hocko 已提交
3183
	zone_statistics(preferred_zone, zone);
N
Nick Piggin 已提交
3184
	local_irq_restore(flags);
L
Linus Torvalds 已提交
3185

3186
out:
3187 3188 3189 3190 3191 3192
	/* Separate test+clear to avoid unnecessary atomics */
	if (test_bit(ZONE_BOOSTED_WATERMARK, &zone->flags)) {
		clear_bit(ZONE_BOOSTED_WATERMARK, &zone->flags);
		wakeup_kswapd(zone, 0, 0, zone_idx(zone));
	}

3193
	VM_BUG_ON_PAGE(page && bad_range(zone, page), page);
L
Linus Torvalds 已提交
3194
	return page;
N
Nick Piggin 已提交
3195 3196 3197 3198

failed:
	local_irq_restore(flags);
	return NULL;
L
Linus Torvalds 已提交
3199 3200
}

3201 3202
#ifdef CONFIG_FAIL_PAGE_ALLOC

3203
static struct {
3204 3205
	struct fault_attr attr;

3206
	bool ignore_gfp_highmem;
3207
	bool ignore_gfp_reclaim;
3208
	u32 min_order;
3209 3210
} fail_page_alloc = {
	.attr = FAULT_ATTR_INITIALIZER,
3211
	.ignore_gfp_reclaim = true,
3212
	.ignore_gfp_highmem = true,
3213
	.min_order = 1,
3214 3215 3216 3217 3218 3219 3220 3221
};

static int __init setup_fail_page_alloc(char *str)
{
	return setup_fault_attr(&fail_page_alloc.attr, str);
}
__setup("fail_page_alloc=", setup_fail_page_alloc);

3222
static bool __should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
3223
{
3224
	if (order < fail_page_alloc.min_order)
3225
		return false;
3226
	if (gfp_mask & __GFP_NOFAIL)
3227
		return false;
3228
	if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
3229
		return false;
3230 3231
	if (fail_page_alloc.ignore_gfp_reclaim &&
			(gfp_mask & __GFP_DIRECT_RECLAIM))
3232
		return false;
3233 3234 3235 3236 3237 3238 3239 3240

	return should_fail(&fail_page_alloc.attr, 1 << order);
}

#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS

static int __init fail_page_alloc_debugfs(void)
{
3241
	umode_t mode = S_IFREG | 0600;
3242 3243
	struct dentry *dir;

3244 3245
	dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
					&fail_page_alloc.attr);
3246

3247 3248 3249 3250 3251
	debugfs_create_bool("ignore-gfp-wait", mode, dir,
			    &fail_page_alloc.ignore_gfp_reclaim);
	debugfs_create_bool("ignore-gfp-highmem", mode, dir,
			    &fail_page_alloc.ignore_gfp_highmem);
	debugfs_create_u32("min-order", mode, dir, &fail_page_alloc.min_order);
3252

3253
	return 0;
3254 3255 3256 3257 3258 3259 3260 3261
}

late_initcall(fail_page_alloc_debugfs);

#endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */

#else /* CONFIG_FAIL_PAGE_ALLOC */

3262
static inline bool __should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
3263
{
3264
	return false;
3265 3266 3267 3268
}

#endif /* CONFIG_FAIL_PAGE_ALLOC */

3269 3270 3271 3272 3273 3274
static noinline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
{
	return __should_fail_alloc_page(gfp_mask, order);
}
ALLOW_ERROR_INJECTION(should_fail_alloc_page, TRUE);

L
Linus Torvalds 已提交
3275
/*
3276 3277 3278 3279
 * Return true if free base pages are above 'mark'. For high-order checks it
 * will return true of the order-0 watermark is reached and there is at least
 * one free page of a suitable size. Checking now avoids taking the zone lock
 * to check in the allocation paths if no pages are free.
L
Linus Torvalds 已提交
3280
 */
3281 3282 3283
bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
			 int classzone_idx, unsigned int alloc_flags,
			 long free_pages)
L
Linus Torvalds 已提交
3284
{
3285
	long min = mark;
L
Linus Torvalds 已提交
3286
	int o;
3287
	const bool alloc_harder = (alloc_flags & (ALLOC_HARDER|ALLOC_OOM));
L
Linus Torvalds 已提交
3288

3289
	/* free_pages may go negative - that's OK */
3290
	free_pages -= (1 << order) - 1;
3291

R
Rohit Seth 已提交
3292
	if (alloc_flags & ALLOC_HIGH)
L
Linus Torvalds 已提交
3293
		min -= min / 2;
3294 3295 3296 3297 3298 3299

	/*
	 * If the caller does not have rights to ALLOC_HARDER then subtract
	 * the high-atomic reserves. This will over-estimate the size of the
	 * atomic reserve but it avoids a search.
	 */
3300
	if (likely(!alloc_harder)) {
3301
		free_pages -= z->nr_reserved_highatomic;
3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314
	} else {
		/*
		 * OOM victims can try even harder than normal ALLOC_HARDER
		 * users on the grounds that it's definitely going to be in
		 * the exit path shortly and free memory. Any allocation it
		 * makes during the free path will be small and short-lived.
		 */
		if (alloc_flags & ALLOC_OOM)
			min -= min / 2;
		else
			min -= min / 4;
	}

3315

3316 3317 3318 3319 3320 3321
#ifdef CONFIG_CMA
	/* If allocation can't use CMA areas don't use free CMA pages */
	if (!(alloc_flags & ALLOC_CMA))
		free_pages -= zone_page_state(z, NR_FREE_CMA_PAGES);
#endif

3322 3323 3324 3325 3326 3327
	/*
	 * Check watermarks for an order-0 allocation request. If these
	 * are not met, then a high-order request also cannot go ahead
	 * even if a suitable page happened to be free.
	 */
	if (free_pages <= min + z->lowmem_reserve[classzone_idx])
3328
		return false;
L
Linus Torvalds 已提交
3329

3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347
	/* If this is an order-0 request then the watermark is fine */
	if (!order)
		return true;

	/* For a high-order request, check at least one suitable page is free */
	for (o = order; o < MAX_ORDER; o++) {
		struct free_area *area = &z->free_area[o];
		int mt;

		if (!area->nr_free)
			continue;

		for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) {
			if (!list_empty(&area->free_list[mt]))
				return true;
		}

#ifdef CONFIG_CMA
3348 3349
		if ((alloc_flags & ALLOC_CMA) &&
		    !list_empty(&area->free_list[MIGRATE_CMA])) {
3350
			return true;
3351
		}
3352
#endif
3353 3354 3355
		if (alloc_harder &&
			!list_empty(&area->free_list[MIGRATE_HIGHATOMIC]))
			return true;
L
Linus Torvalds 已提交
3356
	}
3357
	return false;
3358 3359
}

3360
bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
3361
		      int classzone_idx, unsigned int alloc_flags)
3362 3363 3364 3365 3366
{
	return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
					zone_page_state(z, NR_FREE_PAGES));
}

3367 3368 3369 3370
static inline bool zone_watermark_fast(struct zone *z, unsigned int order,
		unsigned long mark, int classzone_idx, unsigned int alloc_flags)
{
	long free_pages = zone_page_state(z, NR_FREE_PAGES);
3371 3372 3373 3374 3375 3376 3377
	long cma_pages = 0;

#ifdef CONFIG_CMA
	/* If allocation can't use CMA areas don't use free CMA pages */
	if (!(alloc_flags & ALLOC_CMA))
		cma_pages = zone_page_state(z, NR_FREE_CMA_PAGES);
#endif
3378 3379 3380 3381 3382 3383 3384 3385

	/*
	 * Fast check for order-0 only. If this fails then the reserves
	 * need to be calculated. There is a corner case where the check
	 * passes but only the high-order atomic reserve are free. If
	 * the caller is !atomic then it'll uselessly search the free
	 * list. That corner case is then slower but it is harmless.
	 */
3386
	if (!order && (free_pages - cma_pages) > mark + z->lowmem_reserve[classzone_idx])
3387 3388 3389 3390 3391 3392
		return true;

	return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
					free_pages);
}

3393
bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
3394
			unsigned long mark, int classzone_idx)
3395 3396 3397 3398 3399 3400
{
	long free_pages = zone_page_state(z, NR_FREE_PAGES);

	if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
		free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);

3401
	return __zone_watermark_ok(z, order, mark, classzone_idx, 0,
3402
								free_pages);
L
Linus Torvalds 已提交
3403 3404
}

3405
#ifdef CONFIG_NUMA
3406 3407
static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
{
3408
	return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <=
3409
				RECLAIM_DISTANCE;
3410
}
3411
#else	/* CONFIG_NUMA */
3412 3413 3414 3415
static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
{
	return true;
}
3416 3417
#endif	/* CONFIG_NUMA */

3418 3419 3420 3421 3422 3423 3424 3425 3426
/*
 * The restriction on ZONE_DMA32 as being a suitable zone to use to avoid
 * fragmentation is subtle. If the preferred zone was HIGHMEM then
 * premature use of a lower zone may cause lowmem pressure problems that
 * are worse than fragmentation. If the next zone is ZONE_DMA then it is
 * probably too small. It only makes sense to spread allocations to avoid
 * fragmentation between the Normal and DMA32 zones.
 */
static inline unsigned int
3427
alloc_flags_nofragment(struct zone *zone, gfp_t gfp_mask)
3428
{
3429 3430 3431 3432 3433 3434
	unsigned int alloc_flags = 0;

	if (gfp_mask & __GFP_KSWAPD_RECLAIM)
		alloc_flags |= ALLOC_KSWAPD;

#ifdef CONFIG_ZONE_DMA32
3435 3436 3437
	if (!zone)
		return alloc_flags;

3438
	if (zone_idx(zone) != ZONE_NORMAL)
3439
		return alloc_flags;
3440 3441 3442 3443 3444 3445 3446 3447

	/*
	 * If ZONE_DMA32 exists, assume it is the one after ZONE_NORMAL and
	 * the pointer is within zone->zone_pgdat->node_zones[]. Also assume
	 * on UMA that if Normal is populated then so is DMA32.
	 */
	BUILD_BUG_ON(ZONE_NORMAL - ZONE_DMA32 != 1);
	if (nr_online_nodes > 1 && !populated_zone(--zone))
3448
		return alloc_flags;
3449

3450
	alloc_flags |= ALLOC_NOFRAGMENT;
3451 3452
#endif /* CONFIG_ZONE_DMA32 */
	return alloc_flags;
3453 3454
}

R
Rohit Seth 已提交
3455
/*
3456
 * get_page_from_freelist goes through the zonelist trying to allocate
R
Rohit Seth 已提交
3457 3458 3459
 * a page.
 */
static struct page *
3460 3461
get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags,
						const struct alloc_context *ac)
M
Martin Hicks 已提交
3462
{
3463
	struct zoneref *z;
3464
	struct zone *zone;
3465
	struct pglist_data *last_pgdat_dirty_limit = NULL;
3466
	bool no_fallback;
3467

3468
retry:
R
Rohit Seth 已提交
3469
	/*
3470
	 * Scan zonelist, looking for a zone with enough free.
3471
	 * See also __cpuset_node_allowed() comment in kernel/cpuset.c.
R
Rohit Seth 已提交
3472
	 */
3473 3474
	no_fallback = alloc_flags & ALLOC_NOFRAGMENT;
	z = ac->preferred_zoneref;
3475
	for_next_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
3476
								ac->nodemask) {
3477
		struct page *page;
3478 3479
		unsigned long mark;

3480 3481
		if (cpusets_enabled() &&
			(alloc_flags & ALLOC_CPUSET) &&
3482
			!__cpuset_zone_allowed(zone, gfp_mask))
3483
				continue;
3484 3485
		/*
		 * When allocating a page cache page for writing, we
3486 3487
		 * want to get it from a node that is within its dirty
		 * limit, such that no single node holds more than its
3488
		 * proportional share of globally allowed dirty pages.
3489
		 * The dirty limits take into account the node's
3490 3491 3492 3493 3494
		 * lowmem reserves and high watermark so that kswapd
		 * should be able to balance it without having to
		 * write pages from its LRU list.
		 *
		 * XXX: For now, allow allocations to potentially
3495
		 * exceed the per-node dirty limit in the slowpath
3496
		 * (spread_dirty_pages unset) before going into reclaim,
3497
		 * which is important when on a NUMA setup the allowed
3498
		 * nodes are together not big enough to reach the
3499
		 * global limit.  The proper fix for these situations
3500
		 * will require awareness of nodes in the
3501 3502
		 * dirty-throttling and the flusher threads.
		 */
3503 3504 3505 3506 3507 3508 3509 3510 3511
		if (ac->spread_dirty_pages) {
			if (last_pgdat_dirty_limit == zone->zone_pgdat)
				continue;

			if (!node_dirty_ok(zone->zone_pgdat)) {
				last_pgdat_dirty_limit = zone->zone_pgdat;
				continue;
			}
		}
R
Rohit Seth 已提交
3512

3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528
		if (no_fallback && nr_online_nodes > 1 &&
		    zone != ac->preferred_zoneref->zone) {
			int local_nid;

			/*
			 * If moving to a remote node, retry but allow
			 * fragmenting fallbacks. Locality is more important
			 * than fragmentation avoidance.
			 */
			local_nid = zone_to_nid(ac->preferred_zoneref->zone);
			if (zone_to_nid(zone) != local_nid) {
				alloc_flags &= ~ALLOC_NOFRAGMENT;
				goto retry;
			}
		}

3529
		mark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK);
3530
		if (!zone_watermark_fast(zone, order, mark,
3531
				       ac_classzone_idx(ac), alloc_flags)) {
3532 3533
			int ret;

3534 3535 3536 3537 3538 3539 3540 3541 3542 3543
#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
			/*
			 * Watermark failed for this zone, but see if we can
			 * grow this zone if it contains deferred pages.
			 */
			if (static_branch_unlikely(&deferred_pages)) {
				if (_deferred_grow_zone(zone, order))
					goto try_this_zone;
			}
#endif
3544 3545 3546 3547 3548
			/* Checked here to keep the fast path fast */
			BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
			if (alloc_flags & ALLOC_NO_WATERMARKS)
				goto try_this_zone;

3549
			if (node_reclaim_mode == 0 ||
3550
			    !zone_allows_reclaim(ac->preferred_zoneref->zone, zone))
3551 3552
				continue;

3553
			ret = node_reclaim(zone->zone_pgdat, gfp_mask, order);
3554
			switch (ret) {
3555
			case NODE_RECLAIM_NOSCAN:
3556
				/* did not scan */
3557
				continue;
3558
			case NODE_RECLAIM_FULL:
3559
				/* scanned but unreclaimable */
3560
				continue;
3561 3562
			default:
				/* did we reclaim enough */
3563
				if (zone_watermark_ok(zone, order, mark,
3564
						ac_classzone_idx(ac), alloc_flags))
3565 3566 3567
					goto try_this_zone;

				continue;
3568
			}
R
Rohit Seth 已提交
3569 3570
		}

3571
try_this_zone:
3572
		page = rmqueue(ac->preferred_zoneref->zone, zone, order,
3573
				gfp_mask, alloc_flags, ac->migratetype);
3574
		if (page) {
3575
			prep_new_page(page, order, gfp_mask, alloc_flags);
3576 3577 3578 3579 3580 3581 3582 3583

			/*
			 * If this is a high-order atomic allocation then check
			 * if the pageblock should be reserved for the future
			 */
			if (unlikely(order && (alloc_flags & ALLOC_HARDER)))
				reserve_highatomic_pageblock(page, zone, order);

3584
			return page;
3585 3586 3587 3588 3589 3590 3591 3592
		} else {
#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
			/* Try again if zone has deferred pages */
			if (static_branch_unlikely(&deferred_pages)) {
				if (_deferred_grow_zone(zone, order))
					goto try_this_zone;
			}
#endif
3593
		}
3594
	}
3595

3596 3597 3598 3599 3600 3601 3602 3603 3604
	/*
	 * It's possible on a UMA machine to get through all zones that are
	 * fragmented. If avoiding fragmentation, reset and try again.
	 */
	if (no_fallback) {
		alloc_flags &= ~ALLOC_NOFRAGMENT;
		goto retry;
	}

3605
	return NULL;
M
Martin Hicks 已提交
3606 3607
}

3608
static void warn_alloc_show_mem(gfp_t gfp_mask, nodemask_t *nodemask)
3609 3610
{
	unsigned int filter = SHOW_MEM_FILTER_NODES;
3611
	static DEFINE_RATELIMIT_STATE(show_mem_rs, HZ, 1);
3612

3613
	if (!__ratelimit(&show_mem_rs))
3614 3615 3616 3617 3618 3619 3620 3621
		return;

	/*
	 * This documents exceptions given to allocations in certain
	 * contexts that are allowed to allocate outside current's set
	 * of allowed nodes.
	 */
	if (!(gfp_mask & __GFP_NOMEMALLOC))
3622
		if (tsk_is_oom_victim(current) ||
3623 3624
		    (current->flags & (PF_MEMALLOC | PF_EXITING)))
			filter &= ~SHOW_MEM_FILTER_NODES;
3625
	if (in_interrupt() || !(gfp_mask & __GFP_DIRECT_RECLAIM))
3626 3627
		filter &= ~SHOW_MEM_FILTER_NODES;

3628
	show_mem(filter, nodemask);
3629 3630
}

3631
void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...)
3632 3633 3634 3635 3636 3637
{
	struct va_format vaf;
	va_list args;
	static DEFINE_RATELIMIT_STATE(nopage_rs, DEFAULT_RATELIMIT_INTERVAL,
				      DEFAULT_RATELIMIT_BURST);

3638
	if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs))
3639 3640
		return;

3641 3642 3643
	va_start(args, fmt);
	vaf.fmt = fmt;
	vaf.va = &args;
3644
	pr_warn("%s: %pV, mode:%#x(%pGg), nodemask=%*pbl",
M
Michal Hocko 已提交
3645 3646
			current->comm, &vaf, gfp_mask, &gfp_mask,
			nodemask_pr_args(nodemask));
3647
	va_end(args);
J
Joe Perches 已提交
3648

3649
	cpuset_print_current_mems_allowed();
3650
	pr_cont("\n");
3651
	dump_stack();
3652
	warn_alloc_show_mem(gfp_mask, nodemask);
3653 3654
}

3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674
static inline struct page *
__alloc_pages_cpuset_fallback(gfp_t gfp_mask, unsigned int order,
			      unsigned int alloc_flags,
			      const struct alloc_context *ac)
{
	struct page *page;

	page = get_page_from_freelist(gfp_mask, order,
			alloc_flags|ALLOC_CPUSET, ac);
	/*
	 * fallback to ignore cpuset restriction if our nodes
	 * are depleted
	 */
	if (!page)
		page = get_page_from_freelist(gfp_mask, order,
				alloc_flags, ac);

	return page;
}

3675 3676
static inline struct page *
__alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
3677
	const struct alloc_context *ac, unsigned long *did_some_progress)
3678
{
3679 3680 3681
	struct oom_control oc = {
		.zonelist = ac->zonelist,
		.nodemask = ac->nodemask,
3682
		.memcg = NULL,
3683 3684 3685
		.gfp_mask = gfp_mask,
		.order = order,
	};
3686 3687
	struct page *page;

3688 3689 3690
	*did_some_progress = 0;

	/*
3691 3692
	 * Acquire the oom lock.  If that fails, somebody else is
	 * making progress for us.
3693
	 */
3694
	if (!mutex_trylock(&oom_lock)) {
3695
		*did_some_progress = 1;
3696
		schedule_timeout_uninterruptible(1);
L
Linus Torvalds 已提交
3697 3698
		return NULL;
	}
3699

3700 3701 3702
	/*
	 * Go through the zonelist yet one more time, keep very high watermark
	 * here, this is only to catch a parallel oom killing, we must fail if
3703 3704 3705
	 * we're still under heavy pressure. But make sure that this reclaim
	 * attempt shall not depend on __GFP_DIRECT_RECLAIM && !__GFP_NORETRY
	 * allocation which will never fail due to oom_lock already held.
3706
	 */
3707 3708 3709
	page = get_page_from_freelist((gfp_mask | __GFP_HARDWALL) &
				      ~__GFP_DIRECT_RECLAIM, order,
				      ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac);
R
Rohit Seth 已提交
3710
	if (page)
3711 3712
		goto out;

3713 3714 3715 3716 3717 3718
	/* Coredumps can quickly deplete all memory reserves */
	if (current->flags & PF_DUMPCORE)
		goto out;
	/* The OOM killer will not help higher order allocs */
	if (order > PAGE_ALLOC_COSTLY_ORDER)
		goto out;
3719 3720 3721 3722 3723 3724 3725 3726
	/*
	 * We have already exhausted all our reclaim opportunities without any
	 * success so it is time to admit defeat. We will skip the OOM killer
	 * because it is very likely that the caller has a more reasonable
	 * fallback than shooting a random task.
	 */
	if (gfp_mask & __GFP_RETRY_MAYFAIL)
		goto out;
3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744
	/* The OOM killer does not needlessly kill tasks for lowmem */
	if (ac->high_zoneidx < ZONE_NORMAL)
		goto out;
	if (pm_suspended_storage())
		goto out;
	/*
	 * XXX: GFP_NOFS allocations should rather fail than rely on
	 * other request to make a forward progress.
	 * We are in an unfortunate situation where out_of_memory cannot
	 * do much for this context but let's try it to at least get
	 * access to memory reserved if the current task is killed (see
	 * out_of_memory). Once filesystems are ready to handle allocation
	 * failures more gracefully we should just bail out here.
	 */

	/* The OOM killer may not free memory on a specific node */
	if (gfp_mask & __GFP_THISNODE)
		goto out;
3745

3746
	/* Exhausted what can be done so it's blame time */
3747
	if (out_of_memory(&oc) || WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL)) {
3748
		*did_some_progress = 1;
3749

3750 3751 3752 3753 3754 3755
		/*
		 * Help non-failing allocations by giving them access to memory
		 * reserves
		 */
		if (gfp_mask & __GFP_NOFAIL)
			page = __alloc_pages_cpuset_fallback(gfp_mask, order,
3756 3757
					ALLOC_NO_WATERMARKS, ac);
	}
3758
out:
3759
	mutex_unlock(&oom_lock);
3760 3761 3762
	return page;
}

3763 3764 3765 3766 3767 3768
/*
 * Maximum number of compaction retries wit a progress before OOM
 * killer is consider as the only way to move forward.
 */
#define MAX_COMPACT_RETRIES 16

3769 3770 3771 3772
#ifdef CONFIG_COMPACTION
/* Try memory compaction for high-order allocations before reclaim */
static struct page *
__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
3773
		unsigned int alloc_flags, const struct alloc_context *ac,
3774
		enum compact_priority prio, enum compact_result *compact_result)
3775
{
3776
	struct page *page = NULL;
3777
	unsigned long pflags;
3778
	unsigned int noreclaim_flag;
3779 3780

	if (!order)
3781 3782
		return NULL;

3783
	psi_memstall_enter(&pflags);
3784
	noreclaim_flag = memalloc_noreclaim_save();
3785

3786
	*compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac,
3787
								prio, &page);
3788

3789
	memalloc_noreclaim_restore(noreclaim_flag);
3790
	psi_memstall_leave(&pflags);
3791

3792 3793 3794 3795 3796
	/*
	 * At least in one zone compaction wasn't deferred or skipped, so let's
	 * count a compaction stall
	 */
	count_vm_event(COMPACTSTALL);
3797

3798 3799 3800 3801 3802 3803 3804
	/* Prep a captured page if available */
	if (page)
		prep_new_page(page, order, gfp_mask, alloc_flags);

	/* Try get a page from the freelist if available */
	if (!page)
		page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
3805

3806 3807
	if (page) {
		struct zone *zone = page_zone(page);
3808

3809 3810 3811 3812 3813
		zone->compact_blockskip_flush = false;
		compaction_defer_reset(zone, order, true);
		count_vm_event(COMPACTSUCCESS);
		return page;
	}
3814

3815 3816 3817 3818 3819
	/*
	 * It's bad if compaction run occurs and fails. The most likely reason
	 * is that pages exist, but not enough to satisfy watermarks.
	 */
	count_vm_event(COMPACTFAIL);
3820

3821
	cond_resched();
3822 3823 3824

	return NULL;
}
3825

3826 3827 3828 3829
static inline bool
should_compact_retry(struct alloc_context *ac, int order, int alloc_flags,
		     enum compact_result compact_result,
		     enum compact_priority *compact_priority,
3830
		     int *compaction_retries)
3831 3832
{
	int max_retries = MAX_COMPACT_RETRIES;
3833
	int min_priority;
3834 3835 3836
	bool ret = false;
	int retries = *compaction_retries;
	enum compact_priority priority = *compact_priority;
3837 3838 3839 3840

	if (!order)
		return false;

3841 3842 3843
	if (compaction_made_progress(compact_result))
		(*compaction_retries)++;

3844 3845 3846 3847 3848
	/*
	 * compaction considers all the zone as desperately out of memory
	 * so it doesn't really make much sense to retry except when the
	 * failure could be caused by insufficient priority
	 */
3849 3850
	if (compaction_failed(compact_result))
		goto check_priority;
3851 3852 3853 3854 3855 3856 3857

	/*
	 * make sure the compaction wasn't deferred or didn't bail out early
	 * due to locks contention before we declare that we should give up.
	 * But do not retry if the given zonelist is not suitable for
	 * compaction.
	 */
3858 3859 3860 3861
	if (compaction_withdrawn(compact_result)) {
		ret = compaction_zonelist_suitable(ac, order, alloc_flags);
		goto out;
	}
3862 3863

	/*
3864
	 * !costly requests are much more important than __GFP_RETRY_MAYFAIL
3865 3866 3867 3868 3869 3870 3871 3872
	 * costly ones because they are de facto nofail and invoke OOM
	 * killer to move on while costly can fail and users are ready
	 * to cope with that. 1/4 retries is rather arbitrary but we
	 * would need much more detailed feedback from compaction to
	 * make a better decision.
	 */
	if (order > PAGE_ALLOC_COSTLY_ORDER)
		max_retries /= 4;
3873 3874 3875 3876
	if (*compaction_retries <= max_retries) {
		ret = true;
		goto out;
	}
3877

3878 3879 3880 3881 3882
	/*
	 * Make sure there are attempts at the highest priority if we exhausted
	 * all retries or failed at the lower priorities.
	 */
check_priority:
3883 3884
	min_priority = (order > PAGE_ALLOC_COSTLY_ORDER) ?
			MIN_COMPACT_COSTLY_PRIORITY : MIN_COMPACT_PRIORITY;
3885

3886
	if (*compact_priority > min_priority) {
3887 3888
		(*compact_priority)--;
		*compaction_retries = 0;
3889
		ret = true;
3890
	}
3891 3892 3893
out:
	trace_compact_retry(order, priority, compact_result, retries, max_retries, ret);
	return ret;
3894
}
3895 3896 3897
#else
static inline struct page *
__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
3898
		unsigned int alloc_flags, const struct alloc_context *ac,
3899
		enum compact_priority prio, enum compact_result *compact_result)
3900
{
3901
	*compact_result = COMPACT_SKIPPED;
3902 3903
	return NULL;
}
3904 3905

static inline bool
3906 3907
should_compact_retry(struct alloc_context *ac, unsigned int order, int alloc_flags,
		     enum compact_result compact_result,
3908
		     enum compact_priority *compact_priority,
3909
		     int *compaction_retries)
3910
{
3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928
	struct zone *zone;
	struct zoneref *z;

	if (!order || order > PAGE_ALLOC_COSTLY_ORDER)
		return false;

	/*
	 * There are setups with compaction disabled which would prefer to loop
	 * inside the allocator rather than hit the oom killer prematurely.
	 * Let's give them a good hope and keep retrying while the order-0
	 * watermarks are OK.
	 */
	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
					ac->nodemask) {
		if (zone_watermark_ok(zone, 0, min_wmark_pages(zone),
					ac_classzone_idx(ac), alloc_flags))
			return true;
	}
3929 3930
	return false;
}
3931
#endif /* CONFIG_COMPACTION */
3932

3933
#ifdef CONFIG_LOCKDEP
3934
static struct lockdep_map __fs_reclaim_map =
3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945
	STATIC_LOCKDEP_MAP_INIT("fs_reclaim", &__fs_reclaim_map);

static bool __need_fs_reclaim(gfp_t gfp_mask)
{
	gfp_mask = current_gfp_context(gfp_mask);

	/* no reclaim without waiting on it */
	if (!(gfp_mask & __GFP_DIRECT_RECLAIM))
		return false;

	/* this guy won't enter reclaim */
T
Tetsuo Handa 已提交
3946
	if (current->flags & PF_MEMALLOC)
3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958
		return false;

	/* We're only interested __GFP_FS allocations for now */
	if (!(gfp_mask & __GFP_FS))
		return false;

	if (gfp_mask & __GFP_NOLOCKDEP)
		return false;

	return true;
}

3959 3960 3961 3962 3963 3964 3965 3966 3967 3968
void __fs_reclaim_acquire(void)
{
	lock_map_acquire(&__fs_reclaim_map);
}

void __fs_reclaim_release(void)
{
	lock_map_release(&__fs_reclaim_map);
}

3969 3970 3971
void fs_reclaim_acquire(gfp_t gfp_mask)
{
	if (__need_fs_reclaim(gfp_mask))
3972
		__fs_reclaim_acquire();
3973 3974 3975 3976 3977 3978
}
EXPORT_SYMBOL_GPL(fs_reclaim_acquire);

void fs_reclaim_release(gfp_t gfp_mask)
{
	if (__need_fs_reclaim(gfp_mask))
3979
		__fs_reclaim_release();
3980 3981 3982 3983
}
EXPORT_SYMBOL_GPL(fs_reclaim_release);
#endif

3984 3985
/* Perform direct synchronous page reclaim */
static int
3986 3987
__perform_reclaim(gfp_t gfp_mask, unsigned int order,
					const struct alloc_context *ac)
3988 3989
{
	struct reclaim_state reclaim_state;
3990
	int progress;
3991
	unsigned int noreclaim_flag;
3992
	unsigned long pflags;
3993 3994 3995 3996 3997

	cond_resched();

	/* We now go into synchronous reclaim */
	cpuset_memory_pressure_bump();
3998
	psi_memstall_enter(&pflags);
3999
	fs_reclaim_acquire(gfp_mask);
4000
	noreclaim_flag = memalloc_noreclaim_save();
4001
	reclaim_state.reclaimed_slab = 0;
4002
	current->reclaim_state = &reclaim_state;
4003

4004 4005
	progress = try_to_free_pages(ac->zonelist, order, gfp_mask,
								ac->nodemask);
4006

4007
	current->reclaim_state = NULL;
4008
	memalloc_noreclaim_restore(noreclaim_flag);
4009
	fs_reclaim_release(gfp_mask);
4010
	psi_memstall_leave(&pflags);
4011 4012 4013

	cond_resched();

4014 4015 4016 4017 4018 4019
	return progress;
}

/* The really slow allocator path where we enter direct reclaim */
static inline struct page *
__alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
4020
		unsigned int alloc_flags, const struct alloc_context *ac,
4021
		unsigned long *did_some_progress)
4022 4023 4024 4025
{
	struct page *page = NULL;
	bool drained = false;

4026
	*did_some_progress = __perform_reclaim(gfp_mask, order, ac);
4027 4028
	if (unlikely(!(*did_some_progress)))
		return NULL;
4029

4030
retry:
4031
	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4032 4033 4034

	/*
	 * If an allocation failed after direct reclaim, it could be because
4035 4036
	 * pages are pinned on the per-cpu lists or in high alloc reserves.
	 * Shrink them them and try again
4037 4038
	 */
	if (!page && !drained) {
4039
		unreserve_highatomic_pageblock(ac, false);
4040
		drain_all_pages(NULL);
4041 4042 4043 4044
		drained = true;
		goto retry;
	}

4045 4046 4047
	return page;
}

4048 4049
static void wake_all_kswapds(unsigned int order, gfp_t gfp_mask,
			     const struct alloc_context *ac)
4050 4051 4052
{
	struct zoneref *z;
	struct zone *zone;
4053
	pg_data_t *last_pgdat = NULL;
4054
	enum zone_type high_zoneidx = ac->high_zoneidx;
4055

4056 4057
	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, high_zoneidx,
					ac->nodemask) {
4058
		if (last_pgdat != zone->zone_pgdat)
4059
			wakeup_kswapd(zone, gfp_mask, order, high_zoneidx);
4060 4061
		last_pgdat = zone->zone_pgdat;
	}
4062 4063
}

4064
static inline unsigned int
4065 4066
gfp_to_alloc_flags(gfp_t gfp_mask)
{
4067
	unsigned int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
L
Linus Torvalds 已提交
4068

4069
	/* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
4070
	BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
4071

4072 4073 4074 4075
	/*
	 * The caller may dip into page reserves a bit more if the caller
	 * cannot run direct reclaim, or if the caller has realtime scheduling
	 * policy or is asking for __GFP_HIGH memory.  GFP_ATOMIC requests will
4076
	 * set both ALLOC_HARDER (__GFP_ATOMIC) and ALLOC_HIGH (__GFP_HIGH).
4077
	 */
4078
	alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH);
L
Linus Torvalds 已提交
4079

4080
	if (gfp_mask & __GFP_ATOMIC) {
4081
		/*
4082 4083
		 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
		 * if it can't schedule.
4084
		 */
4085
		if (!(gfp_mask & __GFP_NOMEMALLOC))
4086
			alloc_flags |= ALLOC_HARDER;
4087
		/*
4088
		 * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the
4089
		 * comment for __cpuset_node_allowed().
4090
		 */
4091
		alloc_flags &= ~ALLOC_CPUSET;
4092
	} else if (unlikely(rt_task(current)) && !in_interrupt())
4093 4094
		alloc_flags |= ALLOC_HARDER;

4095 4096 4097
	if (gfp_mask & __GFP_KSWAPD_RECLAIM)
		alloc_flags |= ALLOC_KSWAPD;

4098 4099 4100 4101
#ifdef CONFIG_CMA
	if (gfpflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
		alloc_flags |= ALLOC_CMA;
#endif
4102 4103 4104
	return alloc_flags;
}

4105
static bool oom_reserves_allowed(struct task_struct *tsk)
4106
{
4107 4108 4109 4110 4111 4112 4113 4114
	if (!tsk_is_oom_victim(tsk))
		return false;

	/*
	 * !MMU doesn't have oom reaper so give access to memory reserves
	 * only to the thread with TIF_MEMDIE set
	 */
	if (!IS_ENABLED(CONFIG_MMU) && !test_thread_flag(TIF_MEMDIE))
4115 4116
		return false;

4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127
	return true;
}

/*
 * Distinguish requests which really need access to full memory
 * reserves from oom victims which can live with a portion of it
 */
static inline int __gfp_pfmemalloc_flags(gfp_t gfp_mask)
{
	if (unlikely(gfp_mask & __GFP_NOMEMALLOC))
		return 0;
4128
	if (gfp_mask & __GFP_MEMALLOC)
4129
		return ALLOC_NO_WATERMARKS;
4130
	if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
4131 4132 4133 4134 4135 4136 4137
		return ALLOC_NO_WATERMARKS;
	if (!in_interrupt()) {
		if (current->flags & PF_MEMALLOC)
			return ALLOC_NO_WATERMARKS;
		else if (oom_reserves_allowed(current))
			return ALLOC_OOM;
	}
4138

4139 4140 4141 4142 4143 4144
	return 0;
}

bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
{
	return !!__gfp_pfmemalloc_flags(gfp_mask);
4145 4146
}

M
Michal Hocko 已提交
4147 4148 4149
/*
 * Checks whether it makes sense to retry the reclaim to make a forward progress
 * for the given allocation request.
4150 4151 4152 4153
 *
 * We give up when we either have tried MAX_RECLAIM_RETRIES in a row
 * without success, or when we couldn't even meet the watermark if we
 * reclaimed all remaining pages on the LRU lists.
M
Michal Hocko 已提交
4154 4155 4156 4157 4158 4159
 *
 * Returns true if a retry is viable or false to enter the oom path.
 */
static inline bool
should_reclaim_retry(gfp_t gfp_mask, unsigned order,
		     struct alloc_context *ac, int alloc_flags,
4160
		     bool did_some_progress, int *no_progress_loops)
M
Michal Hocko 已提交
4161 4162 4163
{
	struct zone *zone;
	struct zoneref *z;
4164
	bool ret = false;
M
Michal Hocko 已提交
4165

4166 4167 4168 4169 4170 4171 4172 4173 4174 4175
	/*
	 * Costly allocations might have made a progress but this doesn't mean
	 * their order will become available due to high fragmentation so
	 * always increment the no progress counter for them
	 */
	if (did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER)
		*no_progress_loops = 0;
	else
		(*no_progress_loops)++;

M
Michal Hocko 已提交
4176 4177 4178 4179
	/*
	 * Make sure we converge to OOM if we cannot make any progress
	 * several times in the row.
	 */
4180 4181
	if (*no_progress_loops > MAX_RECLAIM_RETRIES) {
		/* Before OOM, exhaust highatomic_reserve */
4182
		return unreserve_highatomic_pageblock(ac, true);
4183
	}
M
Michal Hocko 已提交
4184

4185 4186 4187 4188 4189
	/*
	 * Keep reclaiming pages while there is a chance this will lead
	 * somewhere.  If none of the target zones can satisfy our allocation
	 * request even if all reclaimable pages are considered then we are
	 * screwed and have to go OOM.
M
Michal Hocko 已提交
4190 4191 4192 4193
	 */
	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
					ac->nodemask) {
		unsigned long available;
4194
		unsigned long reclaimable;
4195 4196
		unsigned long min_wmark = min_wmark_pages(zone);
		bool wmark;
M
Michal Hocko 已提交
4197

4198 4199
		available = reclaimable = zone_reclaimable_pages(zone);
		available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
M
Michal Hocko 已提交
4200 4201

		/*
4202 4203
		 * Would the allocation succeed if we reclaimed all
		 * reclaimable pages?
M
Michal Hocko 已提交
4204
		 */
4205 4206 4207 4208 4209
		wmark = __zone_watermark_ok(zone, order, min_wmark,
				ac_classzone_idx(ac), alloc_flags, available);
		trace_reclaim_retry_zone(z, order, reclaimable,
				available, min_wmark, *no_progress_loops, wmark);
		if (wmark) {
4210 4211 4212 4213 4214 4215 4216
			/*
			 * If we didn't make any progress and have a lot of
			 * dirty + writeback pages then we should wait for
			 * an IO to complete to slow down the reclaim and
			 * prevent from pre mature OOM
			 */
			if (!did_some_progress) {
4217
				unsigned long write_pending;
4218

4219 4220
				write_pending = zone_page_state_snapshot(zone,
							NR_ZONE_WRITE_PENDING);
4221

4222
				if (2 * write_pending > reclaimable) {
4223 4224 4225 4226
					congestion_wait(BLK_RW_ASYNC, HZ/10);
					return true;
				}
			}
4227

4228 4229
			ret = true;
			goto out;
M
Michal Hocko 已提交
4230 4231 4232
		}
	}

4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245
out:
	/*
	 * Memory allocation/reclaim might be called from a WQ context and the
	 * current implementation of the WQ concurrency control doesn't
	 * recognize that a particular WQ is congested if the worker thread is
	 * looping without ever sleeping. Therefore we have to do a short sleep
	 * here rather than calling cond_resched().
	 */
	if (current->flags & PF_WQ_WORKER)
		schedule_timeout_uninterruptible(1);
	else
		cond_resched();
	return ret;
M
Michal Hocko 已提交
4246 4247
}

4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280
static inline bool
check_retry_cpuset(int cpuset_mems_cookie, struct alloc_context *ac)
{
	/*
	 * It's possible that cpuset's mems_allowed and the nodemask from
	 * mempolicy don't intersect. This should be normally dealt with by
	 * policy_nodemask(), but it's possible to race with cpuset update in
	 * such a way the check therein was true, and then it became false
	 * before we got our cpuset_mems_cookie here.
	 * This assumes that for all allocations, ac->nodemask can come only
	 * from MPOL_BIND mempolicy (whose documented semantics is to be ignored
	 * when it does not intersect with the cpuset restrictions) or the
	 * caller can deal with a violated nodemask.
	 */
	if (cpusets_enabled() && ac->nodemask &&
			!cpuset_nodemask_valid_mems_allowed(ac->nodemask)) {
		ac->nodemask = NULL;
		return true;
	}

	/*
	 * When updating a task's mems_allowed or mempolicy nodemask, it is
	 * possible to race with parallel threads in such a way that our
	 * allocation can fail while the mask is being updated. If we are about
	 * to fail, check if the cpuset changed during allocation and if so,
	 * retry.
	 */
	if (read_mems_allowed_retry(cpuset_mems_cookie))
		return true;

	return false;
}

4281 4282
static inline struct page *
__alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
4283
						struct alloc_context *ac)
4284
{
4285
	bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM;
4286
	const bool costly_order = order > PAGE_ALLOC_COSTLY_ORDER;
4287
	struct page *page = NULL;
4288
	unsigned int alloc_flags;
4289
	unsigned long did_some_progress;
4290
	enum compact_priority compact_priority;
4291
	enum compact_result compact_result;
4292 4293 4294
	int compaction_retries;
	int no_progress_loops;
	unsigned int cpuset_mems_cookie;
4295
	int reserve_flags;
L
Linus Torvalds 已提交
4296

4297 4298 4299 4300 4301 4302 4303 4304
	/*
	 * We also sanity check to catch abuse of atomic reserves being used by
	 * callers that are not in atomic context.
	 */
	if (WARN_ON_ONCE((gfp_mask & (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)) ==
				(__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)))
		gfp_mask &= ~__GFP_ATOMIC;

4305 4306 4307 4308 4309
retry_cpuset:
	compaction_retries = 0;
	no_progress_loops = 0;
	compact_priority = DEF_COMPACT_PRIORITY;
	cpuset_mems_cookie = read_mems_allowed_begin();
4310 4311 4312 4313 4314 4315 4316 4317

	/*
	 * The fast path uses conservative alloc_flags to succeed only until
	 * kswapd needs to be woken up, and to avoid the cost of setting up
	 * alloc_flags precisely. So we do that now.
	 */
	alloc_flags = gfp_to_alloc_flags(gfp_mask);

4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328
	/*
	 * We need to recalculate the starting point for the zonelist iterator
	 * because we might have used different nodemask in the fast path, or
	 * there was a cpuset modification and we are retrying - otherwise we
	 * could end up iterating over non-eligible zones endlessly.
	 */
	ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
					ac->high_zoneidx, ac->nodemask);
	if (!ac->preferred_zoneref->zone)
		goto nopage;

4329
	if (alloc_flags & ALLOC_KSWAPD)
4330
		wake_all_kswapds(order, gfp_mask, ac);
4331 4332 4333 4334 4335 4336 4337 4338 4339

	/*
	 * The adjusted alloc_flags might result in immediate success, so try
	 * that first
	 */
	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
	if (page)
		goto got_pg;

4340 4341
	/*
	 * For costly allocations, try direct compaction first, as it's likely
4342 4343 4344 4345 4346 4347
	 * that we have enough base pages and don't need to reclaim. For non-
	 * movable high-order allocations, do that as well, as compaction will
	 * try prevent permanent fragmentation by migrating from blocks of the
	 * same migratetype.
	 * Don't try this for allocations that are allowed to ignore
	 * watermarks, as the ALLOC_NO_WATERMARKS attempt didn't yet happen.
4348
	 */
4349 4350 4351 4352
	if (can_direct_reclaim &&
			(costly_order ||
			   (order > 0 && ac->migratetype != MIGRATE_MOVABLE))
			&& !gfp_pfmemalloc_allowed(gfp_mask)) {
4353 4354
		page = __alloc_pages_direct_compact(gfp_mask, order,
						alloc_flags, ac,
4355
						INIT_COMPACT_PRIORITY,
4356 4357 4358 4359
						&compact_result);
		if (page)
			goto got_pg;

4360 4361 4362 4363
		/*
		 * Checks for costly allocations with __GFP_NORETRY, which
		 * includes THP page fault allocations
		 */
4364
		if (costly_order && (gfp_mask & __GFP_NORETRY)) {
4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376
			/*
			 * If compaction is deferred for high-order allocations,
			 * it is because sync compaction recently failed. If
			 * this is the case and the caller requested a THP
			 * allocation, we do not want to heavily disrupt the
			 * system, so we fail the allocation instead of entering
			 * direct reclaim.
			 */
			if (compact_result == COMPACT_DEFERRED)
				goto nopage;

			/*
4377 4378
			 * Looks like reclaim/compaction is worth trying, but
			 * sync compaction could be very expensive, so keep
4379
			 * using async compaction.
4380
			 */
4381
			compact_priority = INIT_COMPACT_PRIORITY;
4382 4383
		}
	}
4384

4385
retry:
4386
	/* Ensure kswapd doesn't accidentally go to sleep as long as we loop */
4387
	if (alloc_flags & ALLOC_KSWAPD)
4388
		wake_all_kswapds(order, gfp_mask, ac);
4389

4390 4391 4392
	reserve_flags = __gfp_pfmemalloc_flags(gfp_mask);
	if (reserve_flags)
		alloc_flags = reserve_flags;
4393

4394
	/*
4395 4396 4397
	 * Reset the nodemask and zonelist iterators if memory policies can be
	 * ignored. These allocations are high priority and system rather than
	 * user oriented.
4398
	 */
4399
	if (!(alloc_flags & ALLOC_CPUSET) || reserve_flags) {
4400
		ac->nodemask = NULL;
4401 4402 4403 4404
		ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
					ac->high_zoneidx, ac->nodemask);
	}

4405
	/* Attempt with potentially adjusted zonelist and alloc_flags */
4406
	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
R
Rohit Seth 已提交
4407 4408
	if (page)
		goto got_pg;
L
Linus Torvalds 已提交
4409

4410
	/* Caller is not willing to reclaim, we can't balance anything */
4411
	if (!can_direct_reclaim)
L
Linus Torvalds 已提交
4412 4413
		goto nopage;

4414 4415
	/* Avoid recursion of direct reclaim */
	if (current->flags & PF_MEMALLOC)
4416 4417
		goto nopage;

4418 4419 4420 4421 4422 4423 4424
	/* Try direct reclaim and then allocating */
	page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac,
							&did_some_progress);
	if (page)
		goto got_pg;

	/* Try direct compaction and then allocating */
4425
	page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac,
4426
					compact_priority, &compact_result);
4427 4428
	if (page)
		goto got_pg;
4429

4430 4431
	/* Do not loop if specifically requested */
	if (gfp_mask & __GFP_NORETRY)
4432
		goto nopage;
4433

M
Michal Hocko 已提交
4434 4435
	/*
	 * Do not retry costly high order allocations unless they are
4436
	 * __GFP_RETRY_MAYFAIL
M
Michal Hocko 已提交
4437
	 */
4438
	if (costly_order && !(gfp_mask & __GFP_RETRY_MAYFAIL))
4439
		goto nopage;
M
Michal Hocko 已提交
4440 4441

	if (should_reclaim_retry(gfp_mask, order, ac, alloc_flags,
4442
				 did_some_progress > 0, &no_progress_loops))
M
Michal Hocko 已提交
4443 4444
		goto retry;

4445 4446 4447 4448 4449 4450 4451
	/*
	 * It doesn't make any sense to retry for the compaction if the order-0
	 * reclaim is not able to make any progress because the current
	 * implementation of the compaction depends on the sufficient amount
	 * of free memory (see __compaction_suitable)
	 */
	if (did_some_progress > 0 &&
4452
			should_compact_retry(ac, order, alloc_flags,
4453
				compact_result, &compact_priority,
4454
				&compaction_retries))
4455 4456
		goto retry;

4457 4458 4459

	/* Deal with possible cpuset update races before we start OOM killing */
	if (check_retry_cpuset(cpuset_mems_cookie, ac))
4460 4461
		goto retry_cpuset;

4462 4463 4464 4465 4466
	/* Reclaim has failed us, start killing things */
	page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress);
	if (page)
		goto got_pg;

4467
	/* Avoid allocations with no watermarks from looping endlessly */
4468 4469
	if (tsk_is_oom_victim(current) &&
	    (alloc_flags == ALLOC_OOM ||
4470
	     (gfp_mask & __GFP_NOMEMALLOC)))
4471 4472
		goto nopage;

4473
	/* Retry as long as the OOM killer is making progress */
M
Michal Hocko 已提交
4474 4475
	if (did_some_progress) {
		no_progress_loops = 0;
4476
		goto retry;
M
Michal Hocko 已提交
4477
	}
4478

L
Linus Torvalds 已提交
4479
nopage:
4480 4481
	/* Deal with possible cpuset update races before we fail */
	if (check_retry_cpuset(cpuset_mems_cookie, ac))
4482 4483
		goto retry_cpuset;

4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510
	/*
	 * Make sure that __GFP_NOFAIL request doesn't leak out and make sure
	 * we always retry
	 */
	if (gfp_mask & __GFP_NOFAIL) {
		/*
		 * All existing users of the __GFP_NOFAIL are blockable, so warn
		 * of any new users that actually require GFP_NOWAIT
		 */
		if (WARN_ON_ONCE(!can_direct_reclaim))
			goto fail;

		/*
		 * PF_MEMALLOC request from this context is rather bizarre
		 * because we cannot reclaim anything and only can loop waiting
		 * for somebody to do a work for us
		 */
		WARN_ON_ONCE(current->flags & PF_MEMALLOC);

		/*
		 * non failing costly orders are a hard requirement which we
		 * are not prepared for much so let's warn about these users
		 * so that we can identify them and convert them to something
		 * else.
		 */
		WARN_ON_ONCE(order > PAGE_ALLOC_COSTLY_ORDER);

4511 4512 4513 4514 4515 4516 4517 4518 4519 4520
		/*
		 * Help non-failing allocations by giving them access to memory
		 * reserves but do not use ALLOC_NO_WATERMARKS because this
		 * could deplete whole memory reserves which would just make
		 * the situation worse
		 */
		page = __alloc_pages_cpuset_fallback(gfp_mask, order, ALLOC_HARDER, ac);
		if (page)
			goto got_pg;

4521 4522 4523 4524
		cond_resched();
		goto retry;
	}
fail:
4525
	warn_alloc(gfp_mask, ac->nodemask,
4526
			"page allocation failure: order:%u", order);
L
Linus Torvalds 已提交
4527
got_pg:
4528
	return page;
L
Linus Torvalds 已提交
4529
}
4530

4531
static inline bool prepare_alloc_pages(gfp_t gfp_mask, unsigned int order,
4532
		int preferred_nid, nodemask_t *nodemask,
4533 4534
		struct alloc_context *ac, gfp_t *alloc_mask,
		unsigned int *alloc_flags)
4535
{
4536
	ac->high_zoneidx = gfp_zone(gfp_mask);
4537
	ac->zonelist = node_zonelist(preferred_nid, gfp_mask);
4538 4539
	ac->nodemask = nodemask;
	ac->migratetype = gfpflags_to_migratetype(gfp_mask);
4540

4541
	if (cpusets_enabled()) {
4542 4543 4544
		*alloc_mask |= __GFP_HARDWALL;
		if (!ac->nodemask)
			ac->nodemask = &cpuset_current_mems_allowed;
4545 4546
		else
			*alloc_flags |= ALLOC_CPUSET;
4547 4548
	}

4549 4550
	fs_reclaim_acquire(gfp_mask);
	fs_reclaim_release(gfp_mask);
4551

4552
	might_sleep_if(gfp_mask & __GFP_DIRECT_RECLAIM);
4553 4554

	if (should_fail_alloc_page(gfp_mask, order))
4555
		return false;
4556

4557 4558 4559
	if (IS_ENABLED(CONFIG_CMA) && ac->migratetype == MIGRATE_MOVABLE)
		*alloc_flags |= ALLOC_CMA;

4560 4561
	return true;
}
4562

4563
/* Determine whether to spread dirty pages and what the first usable zone */
4564
static inline void finalise_ac(gfp_t gfp_mask, struct alloc_context *ac)
4565
{
4566
	/* Dirty zone balancing only done in the fast path */
4567
	ac->spread_dirty_pages = (gfp_mask & __GFP_WRITE);
4568

4569 4570 4571 4572 4573
	/*
	 * The preferred zone is used for statistics but crucially it is
	 * also used as the starting point for the zonelist iterator. It
	 * may get reset for allocations that ignore memory policies.
	 */
4574 4575 4576 4577 4578 4579 4580 4581
	ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
					ac->high_zoneidx, ac->nodemask);
}

/*
 * This is the 'heart' of the zoned buddy allocator.
 */
struct page *
4582 4583
__alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order, int preferred_nid,
							nodemask_t *nodemask)
4584 4585 4586
{
	struct page *page;
	unsigned int alloc_flags = ALLOC_WMARK_LOW;
4587
	gfp_t alloc_mask; /* The gfp_t that was actually used for allocation */
4588 4589
	struct alloc_context ac = { };

4590 4591 4592 4593 4594 4595 4596 4597 4598
	/*
	 * There are several places where we assume that the order value is sane
	 * so bail out early if the request is out of bound.
	 */
	if (unlikely(order >= MAX_ORDER)) {
		WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
		return NULL;
	}

4599
	gfp_mask &= gfp_allowed_mask;
4600
	alloc_mask = gfp_mask;
4601
	if (!prepare_alloc_pages(gfp_mask, order, preferred_nid, nodemask, &ac, &alloc_mask, &alloc_flags))
4602 4603
		return NULL;

4604
	finalise_ac(gfp_mask, &ac);
4605

4606 4607 4608 4609
	/*
	 * Forbid the first pass from falling back to types that fragment
	 * memory until all local zones are considered.
	 */
4610
	alloc_flags |= alloc_flags_nofragment(ac.preferred_zoneref->zone, gfp_mask);
4611

4612
	/* First allocation attempt */
4613
	page = get_page_from_freelist(alloc_mask, order, alloc_flags, &ac);
4614 4615
	if (likely(page))
		goto out;
4616

4617
	/*
4618 4619 4620 4621
	 * Apply scoped allocation constraints. This is mainly about GFP_NOFS
	 * resp. GFP_NOIO which has to be inherited for all allocation requests
	 * from a particular context which has been marked by
	 * memalloc_no{fs,io}_{save,restore}.
4622
	 */
4623
	alloc_mask = current_gfp_context(gfp_mask);
4624
	ac.spread_dirty_pages = false;
4625

4626 4627 4628 4629
	/*
	 * Restore the original nodemask if it was potentially replaced with
	 * &cpuset_current_mems_allowed to optimize the fast-path attempt.
	 */
4630
	if (unlikely(ac.nodemask != nodemask))
4631
		ac.nodemask = nodemask;
4632

4633
	page = __alloc_pages_slowpath(alloc_mask, order, &ac);
4634

4635
out:
4636
	if (memcg_kmem_enabled() && (gfp_mask & __GFP_ACCOUNT) && page &&
4637
	    unlikely(__memcg_kmem_charge(page, gfp_mask, order) != 0)) {
4638 4639
		__free_pages(page, order);
		page = NULL;
4640 4641
	}

4642 4643
	trace_mm_page_alloc(page, order, alloc_mask, ac.migratetype);

4644
	return page;
L
Linus Torvalds 已提交
4645
}
4646
EXPORT_SYMBOL(__alloc_pages_nodemask);
L
Linus Torvalds 已提交
4647 4648

/*
4649 4650 4651
 * Common helper functions. Never use with __GFP_HIGHMEM because the returned
 * address cannot represent highmem pages. Use alloc_pages and then kmap if
 * you need to access high mem.
L
Linus Torvalds 已提交
4652
 */
H
Harvey Harrison 已提交
4653
unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
L
Linus Torvalds 已提交
4654
{
4655 4656
	struct page *page;

4657
	page = alloc_pages(gfp_mask & ~__GFP_HIGHMEM, order);
L
Linus Torvalds 已提交
4658 4659 4660 4661 4662 4663
	if (!page)
		return 0;
	return (unsigned long) page_address(page);
}
EXPORT_SYMBOL(__get_free_pages);

H
Harvey Harrison 已提交
4664
unsigned long get_zeroed_page(gfp_t gfp_mask)
L
Linus Torvalds 已提交
4665
{
4666
	return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
L
Linus Torvalds 已提交
4667 4668 4669
}
EXPORT_SYMBOL(get_zeroed_page);

4670
static inline void free_the_page(struct page *page, unsigned int order)
L
Linus Torvalds 已提交
4671
{
4672 4673 4674 4675
	if (order == 0)		/* Via pcp? */
		free_unref_page(page);
	else
		__free_pages_ok(page, order);
L
Linus Torvalds 已提交
4676 4677
}

4678 4679 4680 4681 4682
void __free_pages(struct page *page, unsigned int order)
{
	if (put_page_testzero(page))
		free_the_page(page, order);
}
L
Linus Torvalds 已提交
4683 4684
EXPORT_SYMBOL(__free_pages);

H
Harvey Harrison 已提交
4685
void free_pages(unsigned long addr, unsigned int order)
L
Linus Torvalds 已提交
4686 4687
{
	if (addr != 0) {
N
Nick Piggin 已提交
4688
		VM_BUG_ON(!virt_addr_valid((void *)addr));
L
Linus Torvalds 已提交
4689 4690 4691 4692 4693 4694
		__free_pages(virt_to_page((void *)addr), order);
	}
}

EXPORT_SYMBOL(free_pages);

4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705
/*
 * Page Fragment:
 *  An arbitrary-length arbitrary-offset area of memory which resides
 *  within a 0 or higher order page.  Multiple fragments within that page
 *  are individually refcounted, in the page's reference counter.
 *
 * The page_frag functions below provide a simple allocation framework for
 * page fragments.  This is used by the network stack and network device
 * drivers to provide a backing region of memory for use as either an
 * sk_buff->head, or to be used in the "frags" portion of skb_shared_info.
 */
4706 4707
static struct page *__page_frag_cache_refill(struct page_frag_cache *nc,
					     gfp_t gfp_mask)
4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726
{
	struct page *page = NULL;
	gfp_t gfp = gfp_mask;

#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
	gfp_mask |= __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY |
		    __GFP_NOMEMALLOC;
	page = alloc_pages_node(NUMA_NO_NODE, gfp_mask,
				PAGE_FRAG_CACHE_MAX_ORDER);
	nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE;
#endif
	if (unlikely(!page))
		page = alloc_pages_node(NUMA_NO_NODE, gfp, 0);

	nc->va = page ? page_address(page) : NULL;

	return page;
}

4727
void __page_frag_cache_drain(struct page *page, unsigned int count)
4728 4729 4730
{
	VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);

4731 4732
	if (page_ref_sub_and_test(page, count))
		free_the_page(page, compound_order(page));
4733
}
4734
EXPORT_SYMBOL(__page_frag_cache_drain);
4735

4736 4737
void *page_frag_alloc(struct page_frag_cache *nc,
		      unsigned int fragsz, gfp_t gfp_mask)
4738 4739 4740 4741 4742 4743 4744
{
	unsigned int size = PAGE_SIZE;
	struct page *page;
	int offset;

	if (unlikely(!nc->va)) {
refill:
4745
		page = __page_frag_cache_refill(nc, gfp_mask);
4746 4747 4748 4749 4750 4751 4752 4753 4754 4755
		if (!page)
			return NULL;

#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
		/* if size can vary use size else just use PAGE_SIZE */
		size = nc->size;
#endif
		/* Even if we own the page, we do not use atomic_set().
		 * This would break get_page_unless_zero() users.
		 */
4756
		page_ref_add(page, PAGE_FRAG_CACHE_MAX_SIZE);
4757 4758

		/* reset page count bias and offset to start of new frag */
4759
		nc->pfmemalloc = page_is_pfmemalloc(page);
4760
		nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1;
4761 4762 4763 4764 4765 4766 4767
		nc->offset = size;
	}

	offset = nc->offset - fragsz;
	if (unlikely(offset < 0)) {
		page = virt_to_page(nc->va);

4768
		if (!page_ref_sub_and_test(page, nc->pagecnt_bias))
4769 4770 4771 4772 4773 4774 4775
			goto refill;

#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
		/* if size can vary use size else just use PAGE_SIZE */
		size = nc->size;
#endif
		/* OK, page count is 0, we can safely set it */
4776
		set_page_count(page, PAGE_FRAG_CACHE_MAX_SIZE + 1);
4777 4778

		/* reset page count bias and offset to start of new frag */
4779
		nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1;
4780 4781 4782 4783 4784 4785 4786 4787
		offset = size - fragsz;
	}

	nc->pagecnt_bias--;
	nc->offset = offset;

	return nc->va + offset;
}
4788
EXPORT_SYMBOL(page_frag_alloc);
4789 4790 4791 4792

/*
 * Frees a page fragment allocated out of either a compound or order 0 page.
 */
4793
void page_frag_free(void *addr)
4794 4795 4796
{
	struct page *page = virt_to_head_page(addr);

4797 4798
	if (unlikely(put_page_testzero(page)))
		free_the_page(page, compound_order(page));
4799
}
4800
EXPORT_SYMBOL(page_frag_free);
4801

4802 4803
static void *make_alloc_exact(unsigned long addr, unsigned int order,
		size_t size)
A
Andi Kleen 已提交
4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817
{
	if (addr) {
		unsigned long alloc_end = addr + (PAGE_SIZE << order);
		unsigned long used = addr + PAGE_ALIGN(size);

		split_page(virt_to_page((void *)addr), order);
		while (used < alloc_end) {
			free_page(used);
			used += PAGE_SIZE;
		}
	}
	return (void *)addr;
}

4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829
/**
 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
 * @size: the number of bytes to allocate
 * @gfp_mask: GFP flags for the allocation
 *
 * This function is similar to alloc_pages(), except that it allocates the
 * minimum number of pages to satisfy the request.  alloc_pages() can only
 * allocate memory in power-of-two pages.
 *
 * This function is also limited by MAX_ORDER.
 *
 * Memory allocated by this function must be released by free_pages_exact().
4830 4831
 *
 * Return: pointer to the allocated area or %NULL in case of error.
4832 4833 4834 4835 4836 4837 4838
 */
void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
{
	unsigned int order = get_order(size);
	unsigned long addr;

	addr = __get_free_pages(gfp_mask, order);
A
Andi Kleen 已提交
4839
	return make_alloc_exact(addr, order, size);
4840 4841 4842
}
EXPORT_SYMBOL(alloc_pages_exact);

A
Andi Kleen 已提交
4843 4844 4845
/**
 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
 *			   pages on a node.
4846
 * @nid: the preferred node ID where memory should be allocated
A
Andi Kleen 已提交
4847 4848 4849 4850 4851
 * @size: the number of bytes to allocate
 * @gfp_mask: GFP flags for the allocation
 *
 * Like alloc_pages_exact(), but try to allocate on node nid first before falling
 * back.
4852 4853
 *
 * Return: pointer to the allocated area or %NULL in case of error.
A
Andi Kleen 已提交
4854
 */
4855
void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
A
Andi Kleen 已提交
4856
{
4857
	unsigned int order = get_order(size);
A
Andi Kleen 已提交
4858 4859 4860 4861 4862 4863
	struct page *p = alloc_pages_node(nid, gfp_mask, order);
	if (!p)
		return NULL;
	return make_alloc_exact((unsigned long)page_address(p), order, size);
}

4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882
/**
 * free_pages_exact - release memory allocated via alloc_pages_exact()
 * @virt: the value returned by alloc_pages_exact.
 * @size: size of allocation, same value as passed to alloc_pages_exact().
 *
 * Release the memory allocated by a previous call to alloc_pages_exact.
 */
void free_pages_exact(void *virt, size_t size)
{
	unsigned long addr = (unsigned long)virt;
	unsigned long end = addr + PAGE_ALIGN(size);

	while (addr < end) {
		free_page(addr);
		addr += PAGE_SIZE;
	}
}
EXPORT_SYMBOL(free_pages_exact);

4883 4884 4885 4886
/**
 * nr_free_zone_pages - count number of pages beyond high watermark
 * @offset: The zone index of the highest zone
 *
4887
 * nr_free_zone_pages() counts the number of pages which are beyond the
4888 4889
 * high watermark within all zones at or below a given zone index.  For each
 * zone, the number of pages is calculated as:
4890 4891
 *
 *     nr_free_zone_pages = managed_pages - high_pages
4892 4893
 *
 * Return: number of pages beyond high watermark.
4894
 */
4895
static unsigned long nr_free_zone_pages(int offset)
L
Linus Torvalds 已提交
4896
{
4897
	struct zoneref *z;
4898 4899
	struct zone *zone;

4900
	/* Just pick one node, since fallback list is circular */
4901
	unsigned long sum = 0;
L
Linus Torvalds 已提交
4902

4903
	struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
L
Linus Torvalds 已提交
4904

4905
	for_each_zone_zonelist(zone, z, zonelist, offset) {
4906
		unsigned long size = zone_managed_pages(zone);
4907
		unsigned long high = high_wmark_pages(zone);
4908 4909
		if (size > high)
			sum += size - high;
L
Linus Torvalds 已提交
4910 4911 4912 4913 4914
	}

	return sum;
}

4915 4916 4917 4918 4919
/**
 * nr_free_buffer_pages - count number of pages beyond high watermark
 *
 * nr_free_buffer_pages() counts the number of pages which are beyond the high
 * watermark within ZONE_DMA and ZONE_NORMAL.
4920 4921 4922
 *
 * Return: number of pages beyond high watermark within ZONE_DMA and
 * ZONE_NORMAL.
L
Linus Torvalds 已提交
4923
 */
4924
unsigned long nr_free_buffer_pages(void)
L
Linus Torvalds 已提交
4925
{
A
Al Viro 已提交
4926
	return nr_free_zone_pages(gfp_zone(GFP_USER));
L
Linus Torvalds 已提交
4927
}
4928
EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
L
Linus Torvalds 已提交
4929

4930 4931 4932 4933 4934
/**
 * nr_free_pagecache_pages - count number of pages beyond high watermark
 *
 * nr_free_pagecache_pages() counts the number of pages which are beyond the
 * high watermark within all zones.
4935 4936
 *
 * Return: number of pages beyond high watermark within all zones.
L
Linus Torvalds 已提交
4937
 */
4938
unsigned long nr_free_pagecache_pages(void)
L
Linus Torvalds 已提交
4939
{
M
Mel Gorman 已提交
4940
	return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
L
Linus Torvalds 已提交
4941
}
4942 4943

static inline void show_node(struct zone *zone)
L
Linus Torvalds 已提交
4944
{
4945
	if (IS_ENABLED(CONFIG_NUMA))
4946
		printk("Node %d ", zone_to_nid(zone));
L
Linus Torvalds 已提交
4947 4948
}

4949 4950 4951 4952 4953 4954
long si_mem_available(void)
{
	long available;
	unsigned long pagecache;
	unsigned long wmark_low = 0;
	unsigned long pages[NR_LRU_LISTS];
4955
	unsigned long reclaimable;
4956 4957 4958 4959
	struct zone *zone;
	int lru;

	for (lru = LRU_BASE; lru < NR_LRU_LISTS; lru++)
4960
		pages[lru] = global_node_page_state(NR_LRU_BASE + lru);
4961 4962

	for_each_zone(zone)
4963
		wmark_low += low_wmark_pages(zone);
4964 4965 4966 4967 4968

	/*
	 * Estimate the amount of memory available for userspace allocations,
	 * without causing swapping.
	 */
4969
	available = global_zone_page_state(NR_FREE_PAGES) - totalreserve_pages;
4970 4971 4972 4973 4974 4975 4976 4977 4978 4979 4980

	/*
	 * Not all the page cache can be freed, otherwise the system will
	 * start swapping. Assume at least half of the page cache, or the
	 * low watermark worth of cache, needs to stay.
	 */
	pagecache = pages[LRU_ACTIVE_FILE] + pages[LRU_INACTIVE_FILE];
	pagecache -= min(pagecache / 2, wmark_low);
	available += pagecache;

	/*
4981 4982 4983
	 * Part of the reclaimable slab and other kernel memory consists of
	 * items that are in use, and cannot be freed. Cap this estimate at the
	 * low watermark.
4984
	 */
4985 4986 4987
	reclaimable = global_node_page_state(NR_SLAB_RECLAIMABLE) +
			global_node_page_state(NR_KERNEL_MISC_RECLAIMABLE);
	available += reclaimable - min(reclaimable / 2, wmark_low);
4988

4989 4990 4991 4992 4993 4994
	if (available < 0)
		available = 0;
	return available;
}
EXPORT_SYMBOL_GPL(si_mem_available);

L
Linus Torvalds 已提交
4995 4996
void si_meminfo(struct sysinfo *val)
{
4997
	val->totalram = totalram_pages();
4998
	val->sharedram = global_node_page_state(NR_SHMEM);
4999
	val->freeram = global_zone_page_state(NR_FREE_PAGES);
L
Linus Torvalds 已提交
5000
	val->bufferram = nr_blockdev_pages();
5001
	val->totalhigh = totalhigh_pages();
L
Linus Torvalds 已提交
5002 5003 5004 5005 5006 5007 5008 5009 5010
	val->freehigh = nr_free_highpages();
	val->mem_unit = PAGE_SIZE;
}

EXPORT_SYMBOL(si_meminfo);

#ifdef CONFIG_NUMA
void si_meminfo_node(struct sysinfo *val, int nid)
{
5011 5012
	int zone_type;		/* needs to be signed */
	unsigned long managed_pages = 0;
5013 5014
	unsigned long managed_highpages = 0;
	unsigned long free_highpages = 0;
L
Linus Torvalds 已提交
5015 5016
	pg_data_t *pgdat = NODE_DATA(nid);

5017
	for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++)
5018
		managed_pages += zone_managed_pages(&pgdat->node_zones[zone_type]);
5019
	val->totalram = managed_pages;
5020
	val->sharedram = node_page_state(pgdat, NR_SHMEM);
5021
	val->freeram = sum_zone_node_page_state(nid, NR_FREE_PAGES);
5022
#ifdef CONFIG_HIGHMEM
5023 5024 5025 5026
	for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
		struct zone *zone = &pgdat->node_zones[zone_type];

		if (is_highmem(zone)) {
5027
			managed_highpages += zone_managed_pages(zone);
5028 5029 5030 5031 5032
			free_highpages += zone_page_state(zone, NR_FREE_PAGES);
		}
	}
	val->totalhigh = managed_highpages;
	val->freehigh = free_highpages;
5033
#else
5034 5035
	val->totalhigh = managed_highpages;
	val->freehigh = free_highpages;
5036
#endif
L
Linus Torvalds 已提交
5037 5038 5039 5040
	val->mem_unit = PAGE_SIZE;
}
#endif

5041
/*
5042 5043
 * Determine whether the node should be displayed or not, depending on whether
 * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
5044
 */
5045
static bool show_mem_node_skip(unsigned int flags, int nid, nodemask_t *nodemask)
5046 5047
{
	if (!(flags & SHOW_MEM_FILTER_NODES))
5048
		return false;
5049

5050 5051 5052 5053 5054 5055 5056 5057 5058
	/*
	 * no node mask - aka implicit memory numa policy. Do not bother with
	 * the synchronization - read_mems_allowed_begin - because we do not
	 * have to be precise here.
	 */
	if (!nodemask)
		nodemask = &cpuset_current_mems_allowed;

	return !node_isset(nid, *nodemask);
5059 5060
}

L
Linus Torvalds 已提交
5061 5062
#define K(x) ((x) << (PAGE_SHIFT-10))

5063 5064 5065 5066 5067
static void show_migration_types(unsigned char type)
{
	static const char types[MIGRATE_TYPES] = {
		[MIGRATE_UNMOVABLE]	= 'U',
		[MIGRATE_MOVABLE]	= 'M',
5068 5069
		[MIGRATE_RECLAIMABLE]	= 'E',
		[MIGRATE_HIGHATOMIC]	= 'H',
5070 5071 5072
#ifdef CONFIG_CMA
		[MIGRATE_CMA]		= 'C',
#endif
5073
#ifdef CONFIG_MEMORY_ISOLATION
5074
		[MIGRATE_ISOLATE]	= 'I',
5075
#endif
5076 5077 5078 5079 5080 5081 5082 5083 5084 5085 5086
	};
	char tmp[MIGRATE_TYPES + 1];
	char *p = tmp;
	int i;

	for (i = 0; i < MIGRATE_TYPES; i++) {
		if (type & (1 << i))
			*p++ = types[i];
	}

	*p = '\0';
5087
	printk(KERN_CONT "(%s) ", tmp);
5088 5089
}

L
Linus Torvalds 已提交
5090 5091 5092 5093
/*
 * Show free area list (used inside shift_scroll-lock stuff)
 * We also calculate the percentage fragmentation. We do this by counting the
 * memory on each free list with the exception of the first item on the list.
5094 5095 5096 5097
 *
 * Bits in @filter:
 * SHOW_MEM_FILTER_NODES: suppress nodes that are not allowed by current's
 *   cpuset.
L
Linus Torvalds 已提交
5098
 */
5099
void show_free_areas(unsigned int filter, nodemask_t *nodemask)
L
Linus Torvalds 已提交
5100
{
5101
	unsigned long free_pcp = 0;
5102
	int cpu;
L
Linus Torvalds 已提交
5103
	struct zone *zone;
M
Mel Gorman 已提交
5104
	pg_data_t *pgdat;
L
Linus Torvalds 已提交
5105

5106
	for_each_populated_zone(zone) {
5107
		if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
5108
			continue;
5109

5110 5111
		for_each_online_cpu(cpu)
			free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
L
Linus Torvalds 已提交
5112 5113
	}

K
KOSAKI Motohiro 已提交
5114 5115
	printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
		" active_file:%lu inactive_file:%lu isolated_file:%lu\n"
5116 5117
		" unevictable:%lu dirty:%lu writeback:%lu unstable:%lu\n"
		" slab_reclaimable:%lu slab_unreclaimable:%lu\n"
5118
		" mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
5119
		" free:%lu free_pcp:%lu free_cma:%lu\n",
M
Mel Gorman 已提交
5120 5121 5122 5123 5124 5125 5126
		global_node_page_state(NR_ACTIVE_ANON),
		global_node_page_state(NR_INACTIVE_ANON),
		global_node_page_state(NR_ISOLATED_ANON),
		global_node_page_state(NR_ACTIVE_FILE),
		global_node_page_state(NR_INACTIVE_FILE),
		global_node_page_state(NR_ISOLATED_FILE),
		global_node_page_state(NR_UNEVICTABLE),
5127 5128 5129
		global_node_page_state(NR_FILE_DIRTY),
		global_node_page_state(NR_WRITEBACK),
		global_node_page_state(NR_UNSTABLE_NFS),
5130 5131
		global_node_page_state(NR_SLAB_RECLAIMABLE),
		global_node_page_state(NR_SLAB_UNRECLAIMABLE),
5132
		global_node_page_state(NR_FILE_MAPPED),
5133
		global_node_page_state(NR_SHMEM),
5134 5135 5136
		global_zone_page_state(NR_PAGETABLE),
		global_zone_page_state(NR_BOUNCE),
		global_zone_page_state(NR_FREE_PAGES),
5137
		free_pcp,
5138
		global_zone_page_state(NR_FREE_CMA_PAGES));
L
Linus Torvalds 已提交
5139

M
Mel Gorman 已提交
5140
	for_each_online_pgdat(pgdat) {
5141
		if (show_mem_node_skip(filter, pgdat->node_id, nodemask))
5142 5143
			continue;

M
Mel Gorman 已提交
5144 5145 5146 5147 5148 5149 5150 5151
		printk("Node %d"
			" active_anon:%lukB"
			" inactive_anon:%lukB"
			" active_file:%lukB"
			" inactive_file:%lukB"
			" unevictable:%lukB"
			" isolated(anon):%lukB"
			" isolated(file):%lukB"
5152
			" mapped:%lukB"
5153 5154 5155 5156 5157 5158 5159 5160 5161 5162
			" dirty:%lukB"
			" writeback:%lukB"
			" shmem:%lukB"
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
			" shmem_thp: %lukB"
			" shmem_pmdmapped: %lukB"
			" anon_thp: %lukB"
#endif
			" writeback_tmp:%lukB"
			" unstable:%lukB"
M
Mel Gorman 已提交
5163 5164 5165 5166 5167 5168 5169 5170 5171 5172
			" all_unreclaimable? %s"
			"\n",
			pgdat->node_id,
			K(node_page_state(pgdat, NR_ACTIVE_ANON)),
			K(node_page_state(pgdat, NR_INACTIVE_ANON)),
			K(node_page_state(pgdat, NR_ACTIVE_FILE)),
			K(node_page_state(pgdat, NR_INACTIVE_FILE)),
			K(node_page_state(pgdat, NR_UNEVICTABLE)),
			K(node_page_state(pgdat, NR_ISOLATED_ANON)),
			K(node_page_state(pgdat, NR_ISOLATED_FILE)),
5173
			K(node_page_state(pgdat, NR_FILE_MAPPED)),
5174 5175
			K(node_page_state(pgdat, NR_FILE_DIRTY)),
			K(node_page_state(pgdat, NR_WRITEBACK)),
5176
			K(node_page_state(pgdat, NR_SHMEM)),
5177 5178 5179 5180 5181 5182 5183 5184
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
			K(node_page_state(pgdat, NR_SHMEM_THPS) * HPAGE_PMD_NR),
			K(node_page_state(pgdat, NR_SHMEM_PMDMAPPED)
					* HPAGE_PMD_NR),
			K(node_page_state(pgdat, NR_ANON_THPS) * HPAGE_PMD_NR),
#endif
			K(node_page_state(pgdat, NR_WRITEBACK_TEMP)),
			K(node_page_state(pgdat, NR_UNSTABLE_NFS)),
5185 5186
			pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES ?
				"yes" : "no");
M
Mel Gorman 已提交
5187 5188
	}

5189
	for_each_populated_zone(zone) {
L
Linus Torvalds 已提交
5190 5191
		int i;

5192
		if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
5193
			continue;
5194 5195 5196 5197 5198

		free_pcp = 0;
		for_each_online_cpu(cpu)
			free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;

L
Linus Torvalds 已提交
5199
		show_node(zone);
5200 5201
		printk(KERN_CONT
			"%s"
L
Linus Torvalds 已提交
5202 5203 5204 5205
			" free:%lukB"
			" min:%lukB"
			" low:%lukB"
			" high:%lukB"
M
Minchan Kim 已提交
5206 5207 5208 5209 5210
			" active_anon:%lukB"
			" inactive_anon:%lukB"
			" active_file:%lukB"
			" inactive_file:%lukB"
			" unevictable:%lukB"
5211
			" writepending:%lukB"
L
Linus Torvalds 已提交
5212
			" present:%lukB"
5213
			" managed:%lukB"
5214
			" mlocked:%lukB"
5215
			" kernel_stack:%lukB"
5216 5217
			" pagetables:%lukB"
			" bounce:%lukB"
5218 5219
			" free_pcp:%lukB"
			" local_pcp:%ukB"
5220
			" free_cma:%lukB"
L
Linus Torvalds 已提交
5221 5222
			"\n",
			zone->name,
5223
			K(zone_page_state(zone, NR_FREE_PAGES)),
5224 5225 5226
			K(min_wmark_pages(zone)),
			K(low_wmark_pages(zone)),
			K(high_wmark_pages(zone)),
M
Minchan Kim 已提交
5227 5228 5229 5230 5231
			K(zone_page_state(zone, NR_ZONE_ACTIVE_ANON)),
			K(zone_page_state(zone, NR_ZONE_INACTIVE_ANON)),
			K(zone_page_state(zone, NR_ZONE_ACTIVE_FILE)),
			K(zone_page_state(zone, NR_ZONE_INACTIVE_FILE)),
			K(zone_page_state(zone, NR_ZONE_UNEVICTABLE)),
5232
			K(zone_page_state(zone, NR_ZONE_WRITE_PENDING)),
L
Linus Torvalds 已提交
5233
			K(zone->present_pages),
5234
			K(zone_managed_pages(zone)),
5235
			K(zone_page_state(zone, NR_MLOCK)),
5236
			zone_page_state(zone, NR_KERNEL_STACK_KB),
5237 5238
			K(zone_page_state(zone, NR_PAGETABLE)),
			K(zone_page_state(zone, NR_BOUNCE)),
5239 5240
			K(free_pcp),
			K(this_cpu_read(zone->pageset->pcp.count)),
5241
			K(zone_page_state(zone, NR_FREE_CMA_PAGES)));
L
Linus Torvalds 已提交
5242 5243
		printk("lowmem_reserve[]:");
		for (i = 0; i < MAX_NR_ZONES; i++)
5244 5245
			printk(KERN_CONT " %ld", zone->lowmem_reserve[i]);
		printk(KERN_CONT "\n");
L
Linus Torvalds 已提交
5246 5247
	}

5248
	for_each_populated_zone(zone) {
5249 5250
		unsigned int order;
		unsigned long nr[MAX_ORDER], flags, total = 0;
5251
		unsigned char types[MAX_ORDER];
L
Linus Torvalds 已提交
5252

5253
		if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
5254
			continue;
L
Linus Torvalds 已提交
5255
		show_node(zone);
5256
		printk(KERN_CONT "%s: ", zone->name);
L
Linus Torvalds 已提交
5257 5258 5259

		spin_lock_irqsave(&zone->lock, flags);
		for (order = 0; order < MAX_ORDER; order++) {
5260 5261 5262 5263
			struct free_area *area = &zone->free_area[order];
			int type;

			nr[order] = area->nr_free;
5264
			total += nr[order] << order;
5265 5266 5267 5268 5269 5270

			types[order] = 0;
			for (type = 0; type < MIGRATE_TYPES; type++) {
				if (!list_empty(&area->free_list[type]))
					types[order] |= 1 << type;
			}
L
Linus Torvalds 已提交
5271 5272
		}
		spin_unlock_irqrestore(&zone->lock, flags);
5273
		for (order = 0; order < MAX_ORDER; order++) {
5274 5275
			printk(KERN_CONT "%lu*%lukB ",
			       nr[order], K(1UL) << order);
5276 5277 5278
			if (nr[order])
				show_migration_types(types[order]);
		}
5279
		printk(KERN_CONT "= %lukB\n", K(total));
L
Linus Torvalds 已提交
5280 5281
	}

5282 5283
	hugetlb_show_meminfo();

5284
	printk("%ld total pagecache pages\n", global_node_page_state(NR_FILE_PAGES));
5285

L
Linus Torvalds 已提交
5286 5287 5288
	show_swap_cache_info();
}

5289 5290 5291 5292 5293 5294
static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
{
	zoneref->zone = zone;
	zoneref->zone_idx = zone_idx(zone);
}

L
Linus Torvalds 已提交
5295 5296
/*
 * Builds allocation fallback zone lists.
5297 5298
 *
 * Add all populated zones of a node to the zonelist.
L
Linus Torvalds 已提交
5299
 */
5300
static int build_zonerefs_node(pg_data_t *pgdat, struct zoneref *zonerefs)
L
Linus Torvalds 已提交
5301
{
5302
	struct zone *zone;
5303
	enum zone_type zone_type = MAX_NR_ZONES;
5304
	int nr_zones = 0;
5305 5306

	do {
5307
		zone_type--;
5308
		zone = pgdat->node_zones + zone_type;
5309
		if (managed_zone(zone)) {
5310
			zoneref_set_zone(zone, &zonerefs[nr_zones++]);
5311
			check_highest_zone(zone_type);
L
Linus Torvalds 已提交
5312
		}
5313
	} while (zone_type);
5314

5315
	return nr_zones;
L
Linus Torvalds 已提交
5316 5317 5318
}

#ifdef CONFIG_NUMA
5319 5320 5321

static int __parse_numa_zonelist_order(char *s)
{
5322 5323 5324 5325 5326 5327 5328 5329
	/*
	 * We used to support different zonlists modes but they turned
	 * out to be just not useful. Let's keep the warning in place
	 * if somebody still use the cmd line parameter so that we do
	 * not fail it silently
	 */
	if (!(*s == 'd' || *s == 'D' || *s == 'n' || *s == 'N')) {
		pr_warn("Ignoring unsupported numa_zonelist_order value:  %s\n", s);
5330 5331 5332 5333 5334 5335 5336
		return -EINVAL;
	}
	return 0;
}

static __init int setup_numa_zonelist_order(char *s)
{
5337 5338 5339
	if (!s)
		return 0;

5340
	return __parse_numa_zonelist_order(s);
5341 5342 5343
}
early_param("numa_zonelist_order", setup_numa_zonelist_order);

5344 5345
char numa_zonelist_order[] = "Node";

5346 5347 5348
/*
 * sysctl handler for numa_zonelist_order
 */
5349
int numa_zonelist_order_handler(struct ctl_table *table, int write,
5350
		void __user *buffer, size_t *length,
5351 5352
		loff_t *ppos)
{
5353
	char *str;
5354 5355
	int ret;

5356 5357 5358 5359 5360
	if (!write)
		return proc_dostring(table, write, buffer, length, ppos);
	str = memdup_user_nul(buffer, 16);
	if (IS_ERR(str))
		return PTR_ERR(str);
5361

5362 5363
	ret = __parse_numa_zonelist_order(str);
	kfree(str);
5364
	return ret;
5365 5366 5367
}


5368
#define MAX_NODE_LOAD (nr_online_nodes)
5369 5370
static int node_load[MAX_NUMNODES];

L
Linus Torvalds 已提交
5371
/**
5372
 * find_next_best_node - find the next node that should appear in a given node's fallback list
L
Linus Torvalds 已提交
5373 5374 5375 5376 5377 5378 5379 5380 5381 5382
 * @node: node whose fallback list we're appending
 * @used_node_mask: nodemask_t of already used nodes
 *
 * We use a number of factors to determine which is the next node that should
 * appear on a given node's fallback list.  The node should not have appeared
 * already in @node's fallback list, and it should be the next closest node
 * according to the distance array (which contains arbitrary distance values
 * from each node to each node in the system), and should also prefer nodes
 * with no CPUs, since presumably they'll have very little allocation pressure
 * on them otherwise.
5383 5384
 *
 * Return: node id of the found node or %NUMA_NO_NODE if no node is found.
L
Linus Torvalds 已提交
5385
 */
5386
static int find_next_best_node(int node, nodemask_t *used_node_mask)
L
Linus Torvalds 已提交
5387
{
5388
	int n, val;
L
Linus Torvalds 已提交
5389
	int min_val = INT_MAX;
D
David Rientjes 已提交
5390
	int best_node = NUMA_NO_NODE;
5391
	const struct cpumask *tmp = cpumask_of_node(0);
L
Linus Torvalds 已提交
5392

5393 5394 5395 5396 5397
	/* Use the local node if we haven't already */
	if (!node_isset(node, *used_node_mask)) {
		node_set(node, *used_node_mask);
		return node;
	}
L
Linus Torvalds 已提交
5398

5399
	for_each_node_state(n, N_MEMORY) {
L
Linus Torvalds 已提交
5400 5401 5402 5403 5404 5405 5406 5407

		/* Don't want a node to appear more than once */
		if (node_isset(n, *used_node_mask))
			continue;

		/* Use the distance array to find the distance */
		val = node_distance(node, n);

5408 5409 5410
		/* Penalize nodes under us ("prefer the next node") */
		val += (n < node);

L
Linus Torvalds 已提交
5411
		/* Give preference to headless and unused nodes */
5412 5413
		tmp = cpumask_of_node(n);
		if (!cpumask_empty(tmp))
L
Linus Torvalds 已提交
5414 5415 5416 5417 5418 5419 5420 5421 5422 5423 5424 5425 5426 5427 5428 5429 5430 5431
			val += PENALTY_FOR_NODE_WITH_CPUS;

		/* Slight preference for less loaded node */
		val *= (MAX_NODE_LOAD*MAX_NUMNODES);
		val += node_load[n];

		if (val < min_val) {
			min_val = val;
			best_node = n;
		}
	}

	if (best_node >= 0)
		node_set(best_node, *used_node_mask);

	return best_node;
}

5432 5433 5434 5435 5436 5437

/*
 * Build zonelists ordered by node and zones within node.
 * This results in maximum locality--normal zone overflows into local
 * DMA zone, if any--but risks exhausting DMA zone.
 */
5438 5439
static void build_zonelists_in_node_order(pg_data_t *pgdat, int *node_order,
		unsigned nr_nodes)
L
Linus Torvalds 已提交
5440
{
5441 5442 5443 5444 5445 5446 5447 5448 5449
	struct zoneref *zonerefs;
	int i;

	zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;

	for (i = 0; i < nr_nodes; i++) {
		int nr_zones;

		pg_data_t *node = NODE_DATA(node_order[i]);
5450

5451 5452 5453 5454 5455
		nr_zones = build_zonerefs_node(node, zonerefs);
		zonerefs += nr_zones;
	}
	zonerefs->zone = NULL;
	zonerefs->zone_idx = 0;
5456 5457
}

5458 5459 5460 5461 5462
/*
 * Build gfp_thisnode zonelists
 */
static void build_thisnode_zonelists(pg_data_t *pgdat)
{
5463 5464
	struct zoneref *zonerefs;
	int nr_zones;
5465

5466 5467 5468 5469 5470
	zonerefs = pgdat->node_zonelists[ZONELIST_NOFALLBACK]._zonerefs;
	nr_zones = build_zonerefs_node(pgdat, zonerefs);
	zonerefs += nr_zones;
	zonerefs->zone = NULL;
	zonerefs->zone_idx = 0;
5471 5472
}

5473 5474 5475 5476 5477 5478 5479 5480 5481
/*
 * Build zonelists ordered by zone and nodes within zones.
 * This results in conserving DMA zone[s] until all Normal memory is
 * exhausted, but results in overflowing to remote node while memory
 * may still exist in local DMA zone.
 */

static void build_zonelists(pg_data_t *pgdat)
{
5482 5483
	static int node_order[MAX_NUMNODES];
	int node, load, nr_nodes = 0;
L
Linus Torvalds 已提交
5484
	nodemask_t used_mask;
5485
	int local_node, prev_node;
L
Linus Torvalds 已提交
5486 5487 5488

	/* NUMA-aware ordering of nodes */
	local_node = pgdat->node_id;
5489
	load = nr_online_nodes;
L
Linus Torvalds 已提交
5490 5491
	prev_node = local_node;
	nodes_clear(used_mask);
5492 5493

	memset(node_order, 0, sizeof(node_order));
L
Linus Torvalds 已提交
5494 5495 5496 5497 5498 5499
	while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
		/*
		 * We don't want to pressure a particular node.
		 * So adding penalty to the first node in same
		 * distance group to make it round-robin.
		 */
5500 5501
		if (node_distance(local_node, node) !=
		    node_distance(local_node, prev_node))
5502 5503
			node_load[node] = load;

5504
		node_order[nr_nodes++] = node;
L
Linus Torvalds 已提交
5505 5506 5507
		prev_node = node;
		load--;
	}
5508

5509
	build_zonelists_in_node_order(pgdat, node_order, nr_nodes);
5510
	build_thisnode_zonelists(pgdat);
L
Linus Torvalds 已提交
5511 5512
}

5513 5514 5515 5516 5517 5518 5519 5520 5521
#ifdef CONFIG_HAVE_MEMORYLESS_NODES
/*
 * Return node id of node used for "local" allocations.
 * I.e., first node id of first zone in arg node's generic zonelist.
 * Used for initializing percpu 'numa_mem', which is used primarily
 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
 */
int local_memory_node(int node)
{
5522
	struct zoneref *z;
5523

5524
	z = first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
5525
				   gfp_zone(GFP_KERNEL),
5526
				   NULL);
5527
	return zone_to_nid(z->zone);
5528 5529
}
#endif
5530

5531 5532
static void setup_min_unmapped_ratio(void);
static void setup_min_slab_ratio(void);
L
Linus Torvalds 已提交
5533 5534
#else	/* CONFIG_NUMA */

5535
static void build_zonelists(pg_data_t *pgdat)
L
Linus Torvalds 已提交
5536
{
5537
	int node, local_node;
5538 5539
	struct zoneref *zonerefs;
	int nr_zones;
L
Linus Torvalds 已提交
5540 5541 5542

	local_node = pgdat->node_id;

5543 5544 5545
	zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
	nr_zones = build_zonerefs_node(pgdat, zonerefs);
	zonerefs += nr_zones;
L
Linus Torvalds 已提交
5546

5547 5548 5549 5550 5551 5552 5553 5554 5555 5556 5557
	/*
	 * Now we build the zonelist so that it contains the zones
	 * of all the other nodes.
	 * We don't want to pressure a particular node, so when
	 * building the zones for node N, we make sure that the
	 * zones coming right after the local ones are those from
	 * node N+1 (modulo N)
	 */
	for (node = local_node + 1; node < MAX_NUMNODES; node++) {
		if (!node_online(node))
			continue;
5558 5559
		nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
		zonerefs += nr_zones;
L
Linus Torvalds 已提交
5560
	}
5561 5562 5563
	for (node = 0; node < local_node; node++) {
		if (!node_online(node))
			continue;
5564 5565
		nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
		zonerefs += nr_zones;
5566 5567
	}

5568 5569
	zonerefs->zone = NULL;
	zonerefs->zone_idx = 0;
L
Linus Torvalds 已提交
5570 5571 5572 5573
}

#endif	/* CONFIG_NUMA */

5574 5575 5576 5577 5578 5579 5580 5581 5582 5583 5584 5585 5586 5587 5588 5589 5590
/*
 * Boot pageset table. One per cpu which is going to be used for all
 * zones and all nodes. The parameters will be set in such a way
 * that an item put on a list will immediately be handed over to
 * the buddy list. This is safe since pageset manipulation is done
 * with interrupts disabled.
 *
 * The boot_pagesets must be kept even after bootup is complete for
 * unused processors and/or zones. They do play a role for bootstrapping
 * hotplugged processors.
 *
 * zoneinfo_show() and maybe other functions do
 * not check if the processor is online before following the pageset pointer.
 * Other parts of the kernel may not check if the zone is available.
 */
static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
5591
static DEFINE_PER_CPU(struct per_cpu_nodestat, boot_nodestats);
5592

5593
static void __build_all_zonelists(void *data)
L
Linus Torvalds 已提交
5594
{
5595
	int nid;
5596
	int __maybe_unused cpu;
5597
	pg_data_t *self = data;
5598 5599 5600
	static DEFINE_SPINLOCK(lock);

	spin_lock(&lock);
5601

5602 5603 5604
#ifdef CONFIG_NUMA
	memset(node_load, 0, sizeof(node_load));
#endif
5605

5606 5607 5608 5609
	/*
	 * This node is hotadded and no memory is yet present.   So just
	 * building zonelists is fine - no need to touch other nodes.
	 */
5610 5611
	if (self && !node_online(self->node_id)) {
		build_zonelists(self);
5612 5613 5614
	} else {
		for_each_online_node(nid) {
			pg_data_t *pgdat = NODE_DATA(nid);
5615

5616 5617
			build_zonelists(pgdat);
		}
5618

5619 5620 5621 5622 5623 5624 5625 5626 5627
#ifdef CONFIG_HAVE_MEMORYLESS_NODES
		/*
		 * We now know the "local memory node" for each node--
		 * i.e., the node of the first zone in the generic zonelist.
		 * Set up numa_mem percpu variable for on-line cpus.  During
		 * boot, only the boot cpu should be on-line;  we'll init the
		 * secondary cpus' numa_mem as they come on-line.  During
		 * node/memory hotplug, we'll fixup all on-line cpus.
		 */
5628
		for_each_online_cpu(cpu)
5629
			set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
5630
#endif
5631
	}
5632 5633

	spin_unlock(&lock);
5634 5635
}

5636 5637 5638
static noinline void __init
build_all_zonelists_init(void)
{
5639 5640
	int cpu;

5641
	__build_all_zonelists(NULL);
5642 5643 5644 5645 5646 5647 5648 5649 5650 5651 5652 5653 5654 5655 5656 5657 5658

	/*
	 * Initialize the boot_pagesets that are going to be used
	 * for bootstrapping processors. The real pagesets for
	 * each zone will be allocated later when the per cpu
	 * allocator is available.
	 *
	 * boot_pagesets are used also for bootstrapping offline
	 * cpus if the system is already booted because the pagesets
	 * are needed to initialize allocators on a specific cpu too.
	 * F.e. the percpu allocator needs the page allocator which
	 * needs the percpu allocator in order to allocate its pagesets
	 * (a chicken-egg dilemma).
	 */
	for_each_possible_cpu(cpu)
		setup_pageset(&per_cpu(boot_pageset, cpu), 0);

5659 5660 5661 5662
	mminit_verify_zonelist();
	cpuset_init_current_mems_allowed();
}

5663 5664
/*
 * unless system_state == SYSTEM_BOOTING.
5665
 *
5666
 * __ref due to call of __init annotated helper build_all_zonelists_init
5667
 * [protected by SYSTEM_BOOTING].
5668
 */
5669
void __ref build_all_zonelists(pg_data_t *pgdat)
5670 5671
{
	if (system_state == SYSTEM_BOOTING) {
5672
		build_all_zonelists_init();
5673
	} else {
5674
		__build_all_zonelists(pgdat);
5675 5676
		/* cpuset refresh routine should be here */
	}
5677
	vm_total_pages = nr_free_pagecache_pages();
5678 5679 5680 5681 5682 5683 5684
	/*
	 * Disable grouping by mobility if the number of pages in the
	 * system is too low to allow the mechanism to work. It would be
	 * more accurate, but expensive to check per-zone. This check is
	 * made on memory-hotadd so a system can start with mobility
	 * disabled and enable it later
	 */
5685
	if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
5686 5687 5688 5689
		page_group_by_mobility_disabled = 1;
	else
		page_group_by_mobility_disabled = 0;

5690
	pr_info("Built %u zonelists, mobility grouping %s.  Total pages: %ld\n",
J
Joe Perches 已提交
5691 5692 5693
		nr_online_nodes,
		page_group_by_mobility_disabled ? "off" : "on",
		vm_total_pages);
5694
#ifdef CONFIG_NUMA
5695
	pr_info("Policy zone: %s\n", zone_names[policy_zone]);
5696
#endif
L
Linus Torvalds 已提交
5697 5698
}

5699 5700 5701 5702 5703 5704 5705 5706 5707 5708 5709 5710 5711 5712 5713 5714 5715 5716 5717 5718 5719 5720 5721 5722
/* If zone is ZONE_MOVABLE but memory is mirrored, it is an overlapped init */
static bool __meminit
overlap_memmap_init(unsigned long zone, unsigned long *pfn)
{
#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
	static struct memblock_region *r;

	if (mirrored_kernelcore && zone == ZONE_MOVABLE) {
		if (!r || *pfn >= memblock_region_memory_end_pfn(r)) {
			for_each_memblock(memory, r) {
				if (*pfn < memblock_region_memory_end_pfn(r))
					break;
			}
		}
		if (*pfn >= memblock_region_memory_base_pfn(r) &&
		    memblock_is_mirror(r)) {
			*pfn = memblock_region_memory_end_pfn(r);
			return true;
		}
	}
#endif
	return false;
}

L
Linus Torvalds 已提交
5723 5724
/*
 * Initially all pages are reserved - free ones are freed
5725
 * up by memblock_free_all() once the early boot process is
L
Linus Torvalds 已提交
5726 5727
 * done. Non-atomic initialization, single-pass.
 */
5728
void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
5729 5730
		unsigned long start_pfn, enum memmap_context context,
		struct vmem_altmap *altmap)
L
Linus Torvalds 已提交
5731
{
5732
	unsigned long pfn, end_pfn = start_pfn + size;
5733
	struct page *page;
L
Linus Torvalds 已提交
5734

5735 5736 5737
	if (highest_memmap_pfn < end_pfn - 1)
		highest_memmap_pfn = end_pfn - 1;

5738
#ifdef CONFIG_ZONE_DEVICE
5739 5740
	/*
	 * Honor reservation requested by the driver for this ZONE_DEVICE
5741 5742 5743 5744
	 * memory. We limit the total number of pages to initialize to just
	 * those that might contain the memory mapping. We will defer the
	 * ZONE_DEVICE page initialization until after we have released
	 * the hotplug lock.
5745
	 */
5746 5747 5748 5749 5750 5751 5752 5753 5754
	if (zone == ZONE_DEVICE) {
		if (!altmap)
			return;

		if (start_pfn == altmap->base_pfn)
			start_pfn += altmap->reserve;
		end_pfn = altmap->base_pfn + vmem_altmap_offset(altmap);
	}
#endif
5755

5756
	for (pfn = start_pfn; pfn < end_pfn; pfn++) {
D
Dave Hansen 已提交
5757
		/*
5758 5759
		 * There can be holes in boot-time mem_map[]s handed to this
		 * function.  They do not exist on hotplugged memory.
D
Dave Hansen 已提交
5760
		 */
5761 5762
		if (context == MEMMAP_EARLY) {
			if (!early_pfn_valid(pfn))
5763
				continue;
5764 5765 5766 5767 5768 5769
			if (!early_pfn_in_nid(pfn, nid))
				continue;
			if (overlap_memmap_init(zone, &pfn))
				continue;
			if (defer_init(nid, pfn, end_pfn))
				break;
D
Dave Hansen 已提交
5770
		}
5771

5772 5773 5774
		page = pfn_to_page(pfn);
		__init_single_page(page, pfn, zone, nid);
		if (context == MEMMAP_HOTPLUG)
5775
			__SetPageReserved(page);
5776

5777 5778 5779 5780 5781
		/*
		 * Mark the block movable so that blocks are reserved for
		 * movable at startup. This will force kernel allocations
		 * to reserve their blocks rather than leaking throughout
		 * the address space during boot when many long-lived
5782
		 * kernel allocations are made.
5783 5784 5785 5786 5787 5788 5789 5790
		 *
		 * bitmap is created for zone's valid pfn range. but memmap
		 * can be created for invalid pages (for alignment)
		 * check here not to call set_pageblock_migratetype() against
		 * pfn out of zone.
		 */
		if (!(pfn & (pageblock_nr_pages - 1))) {
			set_pageblock_migratetype(page, MIGRATE_MOVABLE);
5791
			cond_resched();
5792
		}
L
Linus Torvalds 已提交
5793 5794 5795
	}
}

5796 5797 5798 5799 5800 5801 5802 5803 5804 5805 5806 5807 5808 5809 5810 5811 5812 5813 5814 5815 5816 5817 5818 5819 5820 5821 5822 5823 5824 5825 5826 5827 5828 5829 5830 5831 5832 5833 5834 5835 5836 5837 5838 5839 5840 5841 5842 5843 5844 5845 5846 5847 5848 5849 5850 5851 5852 5853 5854 5855 5856 5857 5858 5859 5860 5861 5862 5863 5864 5865 5866 5867 5868 5869 5870
#ifdef CONFIG_ZONE_DEVICE
void __ref memmap_init_zone_device(struct zone *zone,
				   unsigned long start_pfn,
				   unsigned long size,
				   struct dev_pagemap *pgmap)
{
	unsigned long pfn, end_pfn = start_pfn + size;
	struct pglist_data *pgdat = zone->zone_pgdat;
	unsigned long zone_idx = zone_idx(zone);
	unsigned long start = jiffies;
	int nid = pgdat->node_id;

	if (WARN_ON_ONCE(!pgmap || !is_dev_zone(zone)))
		return;

	/*
	 * The call to memmap_init_zone should have already taken care
	 * of the pages reserved for the memmap, so we can just jump to
	 * the end of that region and start processing the device pages.
	 */
	if (pgmap->altmap_valid) {
		struct vmem_altmap *altmap = &pgmap->altmap;

		start_pfn = altmap->base_pfn + vmem_altmap_offset(altmap);
		size = end_pfn - start_pfn;
	}

	for (pfn = start_pfn; pfn < end_pfn; pfn++) {
		struct page *page = pfn_to_page(pfn);

		__init_single_page(page, pfn, zone_idx, nid);

		/*
		 * Mark page reserved as it will need to wait for onlining
		 * phase for it to be fully associated with a zone.
		 *
		 * We can use the non-atomic __set_bit operation for setting
		 * the flag as we are still initializing the pages.
		 */
		__SetPageReserved(page);

		/*
		 * ZONE_DEVICE pages union ->lru with a ->pgmap back
		 * pointer and hmm_data.  It is a bug if a ZONE_DEVICE
		 * page is ever freed or placed on a driver-private list.
		 */
		page->pgmap = pgmap;
		page->hmm_data = 0;

		/*
		 * Mark the block movable so that blocks are reserved for
		 * movable at startup. This will force kernel allocations
		 * to reserve their blocks rather than leaking throughout
		 * the address space during boot when many long-lived
		 * kernel allocations are made.
		 *
		 * bitmap is created for zone's valid pfn range. but memmap
		 * can be created for invalid pages (for alignment)
		 * check here not to call set_pageblock_migratetype() against
		 * pfn out of zone.
		 *
		 * Please note that MEMMAP_HOTPLUG path doesn't clear memmap
		 * because this is done early in sparse_add_one_section
		 */
		if (!(pfn & (pageblock_nr_pages - 1))) {
			set_pageblock_migratetype(page, MIGRATE_MOVABLE);
			cond_resched();
		}
	}

	pr_info("%s initialised, %lu pages in %ums\n", dev_name(pgmap->dev),
		size, jiffies_to_msecs(jiffies - start));
}

#endif
5871
static void __meminit zone_init_free_lists(struct zone *zone)
L
Linus Torvalds 已提交
5872
{
5873
	unsigned int order, t;
5874 5875
	for_each_migratetype_order(order, t) {
		INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
L
Linus Torvalds 已提交
5876 5877 5878 5879
		zone->free_area[order].nr_free = 0;
	}
}

5880 5881 5882 5883 5884
void __meminit __weak memmap_init(unsigned long size, int nid,
				  unsigned long zone, unsigned long start_pfn)
{
	memmap_init_zone(size, nid, zone, start_pfn, MEMMAP_EARLY, NULL);
}
L
Linus Torvalds 已提交
5885

5886
static int zone_batchsize(struct zone *zone)
5887
{
5888
#ifdef CONFIG_MMU
5889 5890 5891 5892
	int batch;

	/*
	 * The per-cpu-pages pools are set to around 1000th of the
5893
	 * size of the zone.
5894
	 */
5895
	batch = zone_managed_pages(zone) / 1024;
5896 5897 5898
	/* But no more than a meg. */
	if (batch * PAGE_SIZE > 1024 * 1024)
		batch = (1024 * 1024) / PAGE_SIZE;
5899 5900 5901 5902 5903
	batch /= 4;		/* We effectively *= 4 below */
	if (batch < 1)
		batch = 1;

	/*
5904 5905 5906
	 * Clamp the batch to a 2^n - 1 value. Having a power
	 * of 2 value was found to be more likely to have
	 * suboptimal cache aliasing properties in some cases.
5907
	 *
5908 5909 5910 5911
	 * For example if 2 tasks are alternately allocating
	 * batches of pages, one task can end up with a lot
	 * of pages of one half of the possible page colors
	 * and the other with pages of the other colors.
5912
	 */
5913
	batch = rounddown_pow_of_two(batch + batch/2) - 1;
5914

5915
	return batch;
5916 5917 5918 5919 5920 5921 5922 5923 5924 5925 5926 5927 5928 5929 5930 5931 5932

#else
	/* The deferral and batching of frees should be suppressed under NOMMU
	 * conditions.
	 *
	 * The problem is that NOMMU needs to be able to allocate large chunks
	 * of contiguous memory as there's no hardware page translation to
	 * assemble apparent contiguous memory from discontiguous pages.
	 *
	 * Queueing large contiguous runs of pages for batching, however,
	 * causes the pages to actually be freed in smaller chunks.  As there
	 * can be a significant delay between the individual batches being
	 * recycled, this leads to the once large chunks of space being
	 * fragmented and becoming unavailable for high-order allocations.
	 */
	return 0;
#endif
5933 5934
}

5935 5936 5937 5938 5939 5940 5941 5942 5943 5944 5945 5946 5947 5948 5949 5950 5951 5952 5953 5954 5955 5956 5957 5958 5959 5960 5961
/*
 * pcp->high and pcp->batch values are related and dependent on one another:
 * ->batch must never be higher then ->high.
 * The following function updates them in a safe manner without read side
 * locking.
 *
 * Any new users of pcp->batch and pcp->high should ensure they can cope with
 * those fields changing asynchronously (acording the the above rule).
 *
 * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
 * outside of boot time (or some other assurance that no concurrent updaters
 * exist).
 */
static void pageset_update(struct per_cpu_pages *pcp, unsigned long high,
		unsigned long batch)
{
       /* start with a fail safe value for batch */
	pcp->batch = 1;
	smp_wmb();

       /* Update high, then batch, in order */
	pcp->high = high;
	smp_wmb();

	pcp->batch = batch;
}

5962
/* a companion to pageset_set_high() */
5963 5964
static void pageset_set_batch(struct per_cpu_pageset *p, unsigned long batch)
{
5965
	pageset_update(&p->pcp, 6 * batch, max(1UL, 1 * batch));
5966 5967
}

5968
static void pageset_init(struct per_cpu_pageset *p)
5969 5970
{
	struct per_cpu_pages *pcp;
5971
	int migratetype;
5972

5973 5974
	memset(p, 0, sizeof(*p));

5975
	pcp = &p->pcp;
5976 5977
	for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
		INIT_LIST_HEAD(&pcp->lists[migratetype]);
5978 5979
}

5980 5981 5982 5983 5984 5985
static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
{
	pageset_init(p);
	pageset_set_batch(p, batch);
}

5986
/*
5987
 * pageset_set_high() sets the high water mark for hot per_cpu_pagelist
5988 5989
 * to the value high for the pageset p.
 */
5990
static void pageset_set_high(struct per_cpu_pageset *p,
5991 5992
				unsigned long high)
{
5993 5994 5995
	unsigned long batch = max(1UL, high / 4);
	if ((high / 4) > (PAGE_SHIFT * 8))
		batch = PAGE_SHIFT * 8;
5996

5997
	pageset_update(&p->pcp, high, batch);
5998 5999
}

6000 6001
static void pageset_set_high_and_batch(struct zone *zone,
				       struct per_cpu_pageset *pcp)
6002 6003
{
	if (percpu_pagelist_fraction)
6004
		pageset_set_high(pcp,
6005
			(zone_managed_pages(zone) /
6006 6007 6008 6009 6010
				percpu_pagelist_fraction));
	else
		pageset_set_batch(pcp, zone_batchsize(zone));
}

6011 6012 6013 6014 6015 6016 6017 6018
static void __meminit zone_pageset_init(struct zone *zone, int cpu)
{
	struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);

	pageset_init(pcp);
	pageset_set_high_and_batch(zone, pcp);
}

6019
void __meminit setup_zone_pageset(struct zone *zone)
6020 6021 6022
{
	int cpu;
	zone->pageset = alloc_percpu(struct per_cpu_pageset);
6023 6024
	for_each_possible_cpu(cpu)
		zone_pageset_init(zone, cpu);
6025 6026
}

6027
/*
6028 6029
 * Allocate per cpu pagesets and initialize them.
 * Before this call only boot pagesets were available.
6030
 */
6031
void __init setup_per_cpu_pageset(void)
6032
{
6033
	struct pglist_data *pgdat;
6034
	struct zone *zone;
6035

6036 6037
	for_each_populated_zone(zone)
		setup_zone_pageset(zone);
6038 6039 6040 6041

	for_each_online_pgdat(pgdat)
		pgdat->per_cpu_nodestats =
			alloc_percpu(struct per_cpu_nodestat);
6042 6043
}

6044
static __meminit void zone_pcp_init(struct zone *zone)
6045
{
6046 6047 6048 6049 6050 6051
	/*
	 * per cpu subsystem is not up at this point. The following code
	 * relies on the ability of the linker to provide the
	 * offset of a (static) per cpu variable into the per cpu area.
	 */
	zone->pageset = &boot_pageset;
6052

6053
	if (populated_zone(zone))
6054 6055 6056
		printk(KERN_DEBUG "  %s zone: %lu pages, LIFO batch:%u\n",
			zone->name, zone->present_pages,
					 zone_batchsize(zone));
6057 6058
}

6059
void __meminit init_currently_empty_zone(struct zone *zone,
6060
					unsigned long zone_start_pfn,
6061
					unsigned long size)
6062 6063
{
	struct pglist_data *pgdat = zone->zone_pgdat;
6064
	int zone_idx = zone_idx(zone) + 1;
6065

6066 6067
	if (zone_idx > pgdat->nr_zones)
		pgdat->nr_zones = zone_idx;
6068 6069 6070

	zone->zone_start_pfn = zone_start_pfn;

6071 6072 6073 6074 6075 6076
	mminit_dprintk(MMINIT_TRACE, "memmap_init",
			"Initialising map node %d zone %lu pfns %lu -> %lu\n",
			pgdat->node_id,
			(unsigned long)zone_idx(zone),
			zone_start_pfn, (zone_start_pfn + size));

6077
	zone_init_free_lists(zone);
6078
	zone->initialized = 1;
6079 6080
}

T
Tejun Heo 已提交
6081
#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
6082
#ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
6083

6084 6085 6086
/*
 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
 */
6087 6088
int __meminit __early_pfn_to_nid(unsigned long pfn,
					struct mminit_pfnnid_cache *state)
6089
{
6090
	unsigned long start_pfn, end_pfn;
6091
	int nid;
6092

6093 6094
	if (state->last_start <= pfn && pfn < state->last_end)
		return state->last_nid;
6095

6096
	nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn);
6097
	if (nid != NUMA_NO_NODE) {
6098 6099 6100
		state->last_start = start_pfn;
		state->last_end = end_pfn;
		state->last_nid = nid;
6101 6102 6103
	}

	return nid;
6104 6105 6106 6107
}
#endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */

/**
6108
 * free_bootmem_with_active_regions - Call memblock_free_early_nid for each active range
6109
 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
6110
 * @max_low_pfn: The highest PFN that will be passed to memblock_free_early_nid
6111
 *
6112 6113 6114
 * If an architecture guarantees that all ranges registered contain no holes
 * and may be freed, this this function may be used instead of calling
 * memblock_free_early_nid() manually.
6115
 */
6116
void __init free_bootmem_with_active_regions(int nid, unsigned long max_low_pfn)
6117
{
6118 6119
	unsigned long start_pfn, end_pfn;
	int i, this_nid;
6120

6121 6122 6123
	for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) {
		start_pfn = min(start_pfn, max_low_pfn);
		end_pfn = min(end_pfn, max_low_pfn);
6124

6125
		if (start_pfn < end_pfn)
6126 6127 6128
			memblock_free_early_nid(PFN_PHYS(start_pfn),
					(end_pfn - start_pfn) << PAGE_SHIFT,
					this_nid);
6129 6130 6131
	}
}

6132 6133
/**
 * sparse_memory_present_with_active_regions - Call memory_present for each active range
6134
 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
6135
 *
6136 6137
 * If an architecture guarantees that all ranges registered contain no holes and may
 * be freed, this function may be used instead of calling memory_present() manually.
6138 6139 6140
 */
void __init sparse_memory_present_with_active_regions(int nid)
{
6141 6142
	unsigned long start_pfn, end_pfn;
	int i, this_nid;
6143

6144 6145
	for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid)
		memory_present(this_nid, start_pfn, end_pfn);
6146 6147 6148 6149
}

/**
 * get_pfn_range_for_nid - Return the start and end page frames for a node
6150 6151 6152
 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
6153 6154
 *
 * It returns the start and end page frame of a node based on information
6155
 * provided by memblock_set_node(). If called for a node
6156
 * with no available memory, a warning is printed and the start and end
6157
 * PFNs will be 0.
6158
 */
6159
void __init get_pfn_range_for_nid(unsigned int nid,
6160 6161
			unsigned long *start_pfn, unsigned long *end_pfn)
{
6162
	unsigned long this_start_pfn, this_end_pfn;
6163
	int i;
6164

6165 6166 6167
	*start_pfn = -1UL;
	*end_pfn = 0;

6168 6169 6170
	for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
		*start_pfn = min(*start_pfn, this_start_pfn);
		*end_pfn = max(*end_pfn, this_end_pfn);
6171 6172
	}

6173
	if (*start_pfn == -1UL)
6174 6175 6176
		*start_pfn = 0;
}

M
Mel Gorman 已提交
6177 6178 6179 6180 6181
/*
 * This finds a zone that can be used for ZONE_MOVABLE pages. The
 * assumption is made that zones within a node are ordered in monotonic
 * increasing memory addresses so that the "highest" populated zone is used
 */
A
Adrian Bunk 已提交
6182
static void __init find_usable_zone_for_movable(void)
M
Mel Gorman 已提交
6183 6184 6185 6186 6187 6188 6189 6190 6191 6192 6193 6194 6195 6196 6197 6198 6199
{
	int zone_index;
	for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
		if (zone_index == ZONE_MOVABLE)
			continue;

		if (arch_zone_highest_possible_pfn[zone_index] >
				arch_zone_lowest_possible_pfn[zone_index])
			break;
	}

	VM_BUG_ON(zone_index == -1);
	movable_zone = zone_index;
}

/*
 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
L
Lucas De Marchi 已提交
6200
 * because it is sized independent of architecture. Unlike the other zones,
M
Mel Gorman 已提交
6201 6202 6203 6204 6205 6206 6207
 * the starting point for ZONE_MOVABLE is not fixed. It may be different
 * in each node depending on the size of each node and how evenly kernelcore
 * is distributed. This helper function adjusts the zone ranges
 * provided by the architecture for a given node by using the end of the
 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
 * zones within a node are in order of monotonic increases memory addresses
 */
6208
static void __init adjust_zone_range_for_zone_movable(int nid,
M
Mel Gorman 已提交
6209 6210 6211 6212 6213 6214 6215 6216 6217 6218 6219 6220 6221 6222
					unsigned long zone_type,
					unsigned long node_start_pfn,
					unsigned long node_end_pfn,
					unsigned long *zone_start_pfn,
					unsigned long *zone_end_pfn)
{
	/* Only adjust if ZONE_MOVABLE is on this node */
	if (zone_movable_pfn[nid]) {
		/* Size ZONE_MOVABLE */
		if (zone_type == ZONE_MOVABLE) {
			*zone_start_pfn = zone_movable_pfn[nid];
			*zone_end_pfn = min(node_end_pfn,
				arch_zone_highest_possible_pfn[movable_zone]);

6223 6224 6225 6226 6227 6228
		/* Adjust for ZONE_MOVABLE starting within this range */
		} else if (!mirrored_kernelcore &&
			*zone_start_pfn < zone_movable_pfn[nid] &&
			*zone_end_pfn > zone_movable_pfn[nid]) {
			*zone_end_pfn = zone_movable_pfn[nid];

M
Mel Gorman 已提交
6229 6230 6231 6232 6233 6234
		/* Check if this whole range is within ZONE_MOVABLE */
		} else if (*zone_start_pfn >= zone_movable_pfn[nid])
			*zone_start_pfn = *zone_end_pfn;
	}
}

6235 6236 6237 6238
/*
 * Return the number of pages a zone spans in a node, including holes
 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
 */
6239
static unsigned long __init zone_spanned_pages_in_node(int nid,
6240
					unsigned long zone_type,
6241 6242
					unsigned long node_start_pfn,
					unsigned long node_end_pfn,
6243 6244
					unsigned long *zone_start_pfn,
					unsigned long *zone_end_pfn,
6245 6246
					unsigned long *ignored)
{
6247
	/* When hotadd a new node from cpu_up(), the node should be empty */
6248 6249 6250
	if (!node_start_pfn && !node_end_pfn)
		return 0;

6251
	/* Get the start and end of the zone */
6252 6253
	*zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
	*zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
M
Mel Gorman 已提交
6254 6255
	adjust_zone_range_for_zone_movable(nid, zone_type,
				node_start_pfn, node_end_pfn,
6256
				zone_start_pfn, zone_end_pfn);
6257 6258

	/* Check that this node has pages within the zone's required range */
6259
	if (*zone_end_pfn < node_start_pfn || *zone_start_pfn > node_end_pfn)
6260 6261 6262
		return 0;

	/* Move the zone boundaries inside the node if necessary */
6263 6264
	*zone_end_pfn = min(*zone_end_pfn, node_end_pfn);
	*zone_start_pfn = max(*zone_start_pfn, node_start_pfn);
6265 6266

	/* Return the spanned pages */
6267
	return *zone_end_pfn - *zone_start_pfn;
6268 6269 6270 6271
}

/*
 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
6272
 * then all holes in the requested range will be accounted for.
6273
 */
6274
unsigned long __init __absent_pages_in_range(int nid,
6275 6276 6277
				unsigned long range_start_pfn,
				unsigned long range_end_pfn)
{
6278 6279 6280
	unsigned long nr_absent = range_end_pfn - range_start_pfn;
	unsigned long start_pfn, end_pfn;
	int i;
6281

6282 6283 6284 6285
	for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
		start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
		end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
		nr_absent -= end_pfn - start_pfn;
6286
	}
6287
	return nr_absent;
6288 6289 6290 6291 6292 6293 6294
}

/**
 * absent_pages_in_range - Return number of page frames in holes within a range
 * @start_pfn: The start PFN to start searching for holes
 * @end_pfn: The end PFN to stop searching for holes
 *
6295
 * Return: the number of pages frames in memory holes within a range.
6296 6297 6298 6299 6300 6301 6302 6303
 */
unsigned long __init absent_pages_in_range(unsigned long start_pfn,
							unsigned long end_pfn)
{
	return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
}

/* Return the number of page frames in holes in a zone on a node */
6304
static unsigned long __init zone_absent_pages_in_node(int nid,
6305
					unsigned long zone_type,
6306 6307
					unsigned long node_start_pfn,
					unsigned long node_end_pfn,
6308 6309
					unsigned long *ignored)
{
6310 6311
	unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
	unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
6312
	unsigned long zone_start_pfn, zone_end_pfn;
6313
	unsigned long nr_absent;
6314

6315
	/* When hotadd a new node from cpu_up(), the node should be empty */
6316 6317 6318
	if (!node_start_pfn && !node_end_pfn)
		return 0;

6319 6320
	zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
	zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
6321

M
Mel Gorman 已提交
6322 6323 6324
	adjust_zone_range_for_zone_movable(nid, zone_type,
			node_start_pfn, node_end_pfn,
			&zone_start_pfn, &zone_end_pfn);
6325 6326 6327 6328 6329 6330 6331
	nr_absent = __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);

	/*
	 * ZONE_MOVABLE handling.
	 * Treat pages to be ZONE_MOVABLE in ZONE_NORMAL as absent pages
	 * and vice versa.
	 */
6332 6333 6334 6335 6336 6337 6338 6339 6340 6341 6342 6343 6344 6345 6346 6347 6348
	if (mirrored_kernelcore && zone_movable_pfn[nid]) {
		unsigned long start_pfn, end_pfn;
		struct memblock_region *r;

		for_each_memblock(memory, r) {
			start_pfn = clamp(memblock_region_memory_base_pfn(r),
					  zone_start_pfn, zone_end_pfn);
			end_pfn = clamp(memblock_region_memory_end_pfn(r),
					zone_start_pfn, zone_end_pfn);

			if (zone_type == ZONE_MOVABLE &&
			    memblock_is_mirror(r))
				nr_absent += end_pfn - start_pfn;

			if (zone_type == ZONE_NORMAL &&
			    !memblock_is_mirror(r))
				nr_absent += end_pfn - start_pfn;
6349 6350 6351 6352
		}
	}

	return nr_absent;
6353
}
6354

T
Tejun Heo 已提交
6355
#else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
6356
static inline unsigned long __init zone_spanned_pages_in_node(int nid,
6357
					unsigned long zone_type,
6358 6359
					unsigned long node_start_pfn,
					unsigned long node_end_pfn,
6360 6361
					unsigned long *zone_start_pfn,
					unsigned long *zone_end_pfn,
6362 6363
					unsigned long *zones_size)
{
6364 6365 6366 6367 6368 6369 6370 6371
	unsigned int zone;

	*zone_start_pfn = node_start_pfn;
	for (zone = 0; zone < zone_type; zone++)
		*zone_start_pfn += zones_size[zone];

	*zone_end_pfn = *zone_start_pfn + zones_size[zone_type];

6372 6373 6374
	return zones_size[zone_type];
}

6375
static inline unsigned long __init zone_absent_pages_in_node(int nid,
6376
						unsigned long zone_type,
6377 6378
						unsigned long node_start_pfn,
						unsigned long node_end_pfn,
6379 6380 6381 6382 6383 6384 6385
						unsigned long *zholes_size)
{
	if (!zholes_size)
		return 0;

	return zholes_size[zone_type];
}
6386

T
Tejun Heo 已提交
6387
#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
6388

6389
static void __init calculate_node_totalpages(struct pglist_data *pgdat,
6390 6391 6392 6393
						unsigned long node_start_pfn,
						unsigned long node_end_pfn,
						unsigned long *zones_size,
						unsigned long *zholes_size)
6394
{
6395
	unsigned long realtotalpages = 0, totalpages = 0;
6396 6397
	enum zone_type i;

6398 6399
	for (i = 0; i < MAX_NR_ZONES; i++) {
		struct zone *zone = pgdat->node_zones + i;
6400
		unsigned long zone_start_pfn, zone_end_pfn;
6401
		unsigned long size, real_size;
6402

6403 6404 6405
		size = zone_spanned_pages_in_node(pgdat->node_id, i,
						  node_start_pfn,
						  node_end_pfn,
6406 6407
						  &zone_start_pfn,
						  &zone_end_pfn,
6408 6409
						  zones_size);
		real_size = size - zone_absent_pages_in_node(pgdat->node_id, i,
6410 6411
						  node_start_pfn, node_end_pfn,
						  zholes_size);
6412 6413 6414 6415
		if (size)
			zone->zone_start_pfn = zone_start_pfn;
		else
			zone->zone_start_pfn = 0;
6416 6417 6418 6419 6420 6421 6422 6423
		zone->spanned_pages = size;
		zone->present_pages = real_size;

		totalpages += size;
		realtotalpages += real_size;
	}

	pgdat->node_spanned_pages = totalpages;
6424 6425 6426 6427 6428
	pgdat->node_present_pages = realtotalpages;
	printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
							realtotalpages);
}

6429 6430 6431
#ifndef CONFIG_SPARSEMEM
/*
 * Calculate the size of the zone->blockflags rounded to an unsigned long
6432 6433
 * Start by making sure zonesize is a multiple of pageblock_order by rounding
 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
6434 6435 6436
 * round what is now in bits to nearest long in bits, then return it in
 * bytes.
 */
6437
static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize)
6438 6439 6440
{
	unsigned long usemapsize;

6441
	zonesize += zone_start_pfn & (pageblock_nr_pages-1);
6442 6443
	usemapsize = roundup(zonesize, pageblock_nr_pages);
	usemapsize = usemapsize >> pageblock_order;
6444 6445 6446 6447 6448 6449
	usemapsize *= NR_PAGEBLOCK_BITS;
	usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));

	return usemapsize / 8;
}

P
Pavel Tatashin 已提交
6450
static void __ref setup_usemap(struct pglist_data *pgdat,
6451 6452 6453
				struct zone *zone,
				unsigned long zone_start_pfn,
				unsigned long zonesize)
6454
{
6455
	unsigned long usemapsize = usemap_size(zone_start_pfn, zonesize);
6456
	zone->pageblock_flags = NULL;
6457
	if (usemapsize) {
6458
		zone->pageblock_flags =
6459 6460
			memblock_alloc_node(usemapsize, SMP_CACHE_BYTES,
					    pgdat->node_id);
6461 6462 6463 6464
		if (!zone->pageblock_flags)
			panic("Failed to allocate %ld bytes for zone %s pageblock flags on node %d\n",
			      usemapsize, zone->name, pgdat->node_id);
	}
6465 6466
}
#else
6467 6468
static inline void setup_usemap(struct pglist_data *pgdat, struct zone *zone,
				unsigned long zone_start_pfn, unsigned long zonesize) {}
6469 6470
#endif /* CONFIG_SPARSEMEM */

6471
#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
6472

6473
/* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
6474
void __init set_pageblock_order(void)
6475
{
6476 6477
	unsigned int order;

6478 6479 6480 6481
	/* Check that pageblock_nr_pages has not already been setup */
	if (pageblock_order)
		return;

6482 6483 6484 6485 6486
	if (HPAGE_SHIFT > PAGE_SHIFT)
		order = HUGETLB_PAGE_ORDER;
	else
		order = MAX_ORDER - 1;

6487 6488
	/*
	 * Assume the largest contiguous order of interest is a huge page.
6489 6490
	 * This value may be variable depending on boot parameters on IA64 and
	 * powerpc.
6491 6492 6493 6494 6495
	 */
	pageblock_order = order;
}
#else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */

6496 6497
/*
 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
6498 6499 6500
 * is unused as pageblock_order is set at compile-time. See
 * include/linux/pageblock-flags.h for the values of pageblock_order based on
 * the kernel config
6501
 */
6502
void __init set_pageblock_order(void)
6503 6504
{
}
6505 6506 6507

#endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */

6508
static unsigned long __init calc_memmap_size(unsigned long spanned_pages,
P
Pavel Tatashin 已提交
6509
						unsigned long present_pages)
6510 6511 6512 6513 6514 6515 6516 6517
{
	unsigned long pages = spanned_pages;

	/*
	 * Provide a more accurate estimation if there are holes within
	 * the zone and SPARSEMEM is in use. If there are holes within the
	 * zone, each populated memory region may cost us one or two extra
	 * memmap pages due to alignment because memmap pages for each
6518
	 * populated regions may not be naturally aligned on page boundary.
6519 6520 6521 6522 6523 6524 6525 6526 6527
	 * So the (present_pages >> 4) heuristic is a tradeoff for that.
	 */
	if (spanned_pages > present_pages + (present_pages >> 4) &&
	    IS_ENABLED(CONFIG_SPARSEMEM))
		pages = present_pages;

	return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT;
}

6528 6529 6530 6531 6532 6533 6534 6535 6536 6537 6538 6539 6540 6541 6542 6543 6544 6545 6546 6547
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
static void pgdat_init_split_queue(struct pglist_data *pgdat)
{
	spin_lock_init(&pgdat->split_queue_lock);
	INIT_LIST_HEAD(&pgdat->split_queue);
	pgdat->split_queue_len = 0;
}
#else
static void pgdat_init_split_queue(struct pglist_data *pgdat) {}
#endif

#ifdef CONFIG_COMPACTION
static void pgdat_init_kcompactd(struct pglist_data *pgdat)
{
	init_waitqueue_head(&pgdat->kcompactd_wait);
}
#else
static void pgdat_init_kcompactd(struct pglist_data *pgdat) {}
#endif

6548
static void __meminit pgdat_init_internals(struct pglist_data *pgdat)
L
Linus Torvalds 已提交
6549
{
6550
	pgdat_resize_init(pgdat);
6551 6552 6553 6554

	pgdat_init_split_queue(pgdat);
	pgdat_init_kcompactd(pgdat);

L
Linus Torvalds 已提交
6555
	init_waitqueue_head(&pgdat->kswapd_wait);
6556
	init_waitqueue_head(&pgdat->pfmemalloc_wait);
6557

6558
	pgdat_page_ext_init(pgdat);
6559
	spin_lock_init(&pgdat->lru_lock);
6560
	lruvec_init(node_lruvec(pgdat));
6561 6562 6563 6564 6565
}

static void __meminit zone_init_internals(struct zone *zone, enum zone_type idx, int nid,
							unsigned long remaining_pages)
{
6566
	atomic_long_set(&zone->managed_pages, remaining_pages);
6567 6568 6569 6570 6571 6572 6573 6574 6575 6576 6577 6578 6579 6580 6581 6582 6583 6584 6585 6586 6587 6588 6589 6590 6591 6592 6593 6594 6595 6596 6597 6598 6599 6600 6601 6602 6603 6604 6605 6606
	zone_set_nid(zone, nid);
	zone->name = zone_names[idx];
	zone->zone_pgdat = NODE_DATA(nid);
	spin_lock_init(&zone->lock);
	zone_seqlock_init(zone);
	zone_pcp_init(zone);
}

/*
 * Set up the zone data structures
 * - init pgdat internals
 * - init all zones belonging to this node
 *
 * NOTE: this function is only called during memory hotplug
 */
#ifdef CONFIG_MEMORY_HOTPLUG
void __ref free_area_init_core_hotplug(int nid)
{
	enum zone_type z;
	pg_data_t *pgdat = NODE_DATA(nid);

	pgdat_init_internals(pgdat);
	for (z = 0; z < MAX_NR_ZONES; z++)
		zone_init_internals(&pgdat->node_zones[z], z, nid, 0);
}
#endif

/*
 * Set up the zone data structures:
 *   - mark all pages reserved
 *   - mark all memory queues empty
 *   - clear the memory bitmaps
 *
 * NOTE: pgdat should get zeroed by caller.
 * NOTE: this function is only called during early init.
 */
static void __init free_area_init_core(struct pglist_data *pgdat)
{
	enum zone_type j;
	int nid = pgdat->node_id;
6607

6608
	pgdat_init_internals(pgdat);
6609 6610
	pgdat->per_cpu_nodestats = &boot_nodestats;

L
Linus Torvalds 已提交
6611 6612
	for (j = 0; j < MAX_NR_ZONES; j++) {
		struct zone *zone = pgdat->node_zones + j;
6613
		unsigned long size, freesize, memmap_pages;
6614
		unsigned long zone_start_pfn = zone->zone_start_pfn;
L
Linus Torvalds 已提交
6615

6616
		size = zone->spanned_pages;
6617
		freesize = zone->present_pages;
L
Linus Torvalds 已提交
6618

6619
		/*
6620
		 * Adjust freesize so that it accounts for how much memory
6621 6622 6623
		 * is used by this zone for memmap. This affects the watermark
		 * and per-cpu initialisations
		 */
6624
		memmap_pages = calc_memmap_size(size, freesize);
6625 6626 6627 6628 6629 6630 6631 6632
		if (!is_highmem_idx(j)) {
			if (freesize >= memmap_pages) {
				freesize -= memmap_pages;
				if (memmap_pages)
					printk(KERN_DEBUG
					       "  %s zone: %lu pages used for memmap\n",
					       zone_names[j], memmap_pages);
			} else
6633
				pr_warn("  %s zone: %lu pages exceeds freesize %lu\n",
6634 6635
					zone_names[j], memmap_pages, freesize);
		}
6636

6637
		/* Account for reserved pages */
6638 6639
		if (j == 0 && freesize > dma_reserve) {
			freesize -= dma_reserve;
Y
Yinghai Lu 已提交
6640
			printk(KERN_DEBUG "  %s zone: %lu pages reserved\n",
6641
					zone_names[0], dma_reserve);
6642 6643
		}

6644
		if (!is_highmem_idx(j))
6645
			nr_kernel_pages += freesize;
6646 6647 6648
		/* Charge for highmem memmap if there are enough kernel pages */
		else if (nr_kernel_pages > memmap_pages * 2)
			nr_kernel_pages -= memmap_pages;
6649
		nr_all_pages += freesize;
L
Linus Torvalds 已提交
6650

6651 6652 6653 6654 6655
		/*
		 * Set an approximate value for lowmem here, it will be adjusted
		 * when the bootmem allocator frees pages into the buddy system.
		 * And all highmem pages will be managed by the buddy system.
		 */
6656
		zone_init_internals(zone, j, nid, freesize);
6657

6658
		if (!size)
L
Linus Torvalds 已提交
6659 6660
			continue;

6661
		set_pageblock_order();
6662 6663
		setup_usemap(pgdat, zone, zone_start_pfn, size);
		init_currently_empty_zone(zone, zone_start_pfn, size);
6664
		memmap_init(size, nid, j, zone_start_pfn);
L
Linus Torvalds 已提交
6665 6666 6667
	}
}

6668
#ifdef CONFIG_FLAT_NODE_MEM_MAP
6669
static void __ref alloc_node_mem_map(struct pglist_data *pgdat)
L
Linus Torvalds 已提交
6670
{
6671
	unsigned long __maybe_unused start = 0;
L
Laura Abbott 已提交
6672 6673
	unsigned long __maybe_unused offset = 0;

L
Linus Torvalds 已提交
6674 6675 6676 6677
	/* Skip empty nodes */
	if (!pgdat->node_spanned_pages)
		return;

6678 6679
	start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
	offset = pgdat->node_start_pfn - start;
L
Linus Torvalds 已提交
6680 6681
	/* ia64 gets its own node_mem_map, before this, without bootmem */
	if (!pgdat->node_mem_map) {
6682
		unsigned long size, end;
A
Andy Whitcroft 已提交
6683 6684
		struct page *map;

6685 6686 6687 6688 6689
		/*
		 * The zone's endpoints aren't required to be MAX_ORDER
		 * aligned but the node_mem_map endpoints must be in order
		 * for the buddy allocator to function correctly.
		 */
6690
		end = pgdat_end_pfn(pgdat);
6691 6692
		end = ALIGN(end, MAX_ORDER_NR_PAGES);
		size =  (end - start) * sizeof(struct page);
6693 6694
		map = memblock_alloc_node(size, SMP_CACHE_BYTES,
					  pgdat->node_id);
6695 6696 6697
		if (!map)
			panic("Failed to allocate %ld bytes for node %d memory map\n",
			      size, pgdat->node_id);
L
Laura Abbott 已提交
6698
		pgdat->node_mem_map = map + offset;
L
Linus Torvalds 已提交
6699
	}
6700 6701 6702
	pr_debug("%s: node %d, pgdat %08lx, node_mem_map %08lx\n",
				__func__, pgdat->node_id, (unsigned long)pgdat,
				(unsigned long)pgdat->node_mem_map);
6703
#ifndef CONFIG_NEED_MULTIPLE_NODES
L
Linus Torvalds 已提交
6704 6705 6706
	/*
	 * With no DISCONTIG, the global mem_map is just set as node 0's
	 */
6707
	if (pgdat == NODE_DATA(0)) {
L
Linus Torvalds 已提交
6708
		mem_map = NODE_DATA(0)->node_mem_map;
L
Laura Abbott 已提交
6709
#if defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) || defined(CONFIG_FLATMEM)
6710
		if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
L
Laura Abbott 已提交
6711
			mem_map -= offset;
T
Tejun Heo 已提交
6712
#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
6713
	}
L
Linus Torvalds 已提交
6714 6715
#endif
}
6716 6717 6718
#else
static void __ref alloc_node_mem_map(struct pglist_data *pgdat) { }
#endif /* CONFIG_FLAT_NODE_MEM_MAP */
L
Linus Torvalds 已提交
6719

6720 6721 6722 6723 6724 6725 6726 6727 6728
#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
static inline void pgdat_set_deferred_range(pg_data_t *pgdat)
{
	pgdat->first_deferred_pfn = ULONG_MAX;
}
#else
static inline void pgdat_set_deferred_range(pg_data_t *pgdat) {}
#endif

6729
void __init free_area_init_node(int nid, unsigned long *zones_size,
P
Pavel Tatashin 已提交
6730 6731
				   unsigned long node_start_pfn,
				   unsigned long *zholes_size)
L
Linus Torvalds 已提交
6732
{
6733
	pg_data_t *pgdat = NODE_DATA(nid);
6734 6735
	unsigned long start_pfn = 0;
	unsigned long end_pfn = 0;
6736

6737
	/* pg_data_t should be reset to zero when it's allocated */
6738
	WARN_ON(pgdat->nr_zones || pgdat->kswapd_classzone_idx);
6739

L
Linus Torvalds 已提交
6740 6741
	pgdat->node_id = nid;
	pgdat->node_start_pfn = node_start_pfn;
6742
	pgdat->per_cpu_nodestats = NULL;
6743 6744
#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
	get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
6745
	pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid,
6746 6747
		(u64)start_pfn << PAGE_SHIFT,
		end_pfn ? ((u64)end_pfn << PAGE_SHIFT) - 1 : 0);
6748 6749
#else
	start_pfn = node_start_pfn;
6750 6751 6752
#endif
	calculate_node_totalpages(pgdat, start_pfn, end_pfn,
				  zones_size, zholes_size);
L
Linus Torvalds 已提交
6753 6754

	alloc_node_mem_map(pgdat);
6755
	pgdat_set_deferred_range(pgdat);
L
Linus Torvalds 已提交
6756

6757
	free_area_init_core(pgdat);
L
Linus Torvalds 已提交
6758 6759
}

M
Mike Rapoport 已提交
6760
#if !defined(CONFIG_FLAT_NODE_MEM_MAP)
6761 6762 6763 6764 6765 6766 6767 6768 6769 6770 6771 6772 6773 6774 6775 6776 6777 6778 6779 6780 6781 6782
/*
 * Zero all valid struct pages in range [spfn, epfn), return number of struct
 * pages zeroed
 */
static u64 zero_pfn_range(unsigned long spfn, unsigned long epfn)
{
	unsigned long pfn;
	u64 pgcnt = 0;

	for (pfn = spfn; pfn < epfn; pfn++) {
		if (!pfn_valid(ALIGN_DOWN(pfn, pageblock_nr_pages))) {
			pfn = ALIGN_DOWN(pfn, pageblock_nr_pages)
				+ pageblock_nr_pages - 1;
			continue;
		}
		mm_zero_struct_page(pfn_to_page(pfn));
		pgcnt++;
	}

	return pgcnt;
}

6783 6784 6785 6786 6787 6788
/*
 * Only struct pages that are backed by physical memory are zeroed and
 * initialized by going through __init_single_page(). But, there are some
 * struct pages which are reserved in memblock allocator and their fields
 * may be accessed (for example page_to_pfn() on some configuration accesses
 * flags). We must explicitly zero those struct pages.
6789 6790 6791 6792 6793
 *
 * This function also addresses a similar issue where struct pages are left
 * uninitialized because the physical address range is not covered by
 * memblock.memory or memblock.reserved. That could happen when memblock
 * layout is manually configured via memmap=.
6794
 */
6795
void __init zero_resv_unavail(void)
6796 6797 6798
{
	phys_addr_t start, end;
	u64 i, pgcnt;
6799
	phys_addr_t next = 0;
6800 6801

	/*
6802
	 * Loop through unavailable ranges not covered by memblock.memory.
6803 6804
	 */
	pgcnt = 0;
6805 6806
	for_each_mem_range(i, &memblock.memory, NULL,
			NUMA_NO_NODE, MEMBLOCK_NONE, &start, &end, NULL) {
6807 6808
		if (next < start)
			pgcnt += zero_pfn_range(PFN_DOWN(next), PFN_UP(start));
6809 6810
		next = end;
	}
6811
	pgcnt += zero_pfn_range(PFN_DOWN(next), max_pfn);
6812

6813 6814 6815 6816 6817
	/*
	 * Struct pages that do not have backing memory. This could be because
	 * firmware is using some of this memory, or for some other reasons.
	 */
	if (pgcnt)
6818
		pr_info("Zeroed struct page in unavailable ranges: %lld pages", pgcnt);
6819
}
M
Mike Rapoport 已提交
6820
#endif /* !CONFIG_FLAT_NODE_MEM_MAP */
6821

T
Tejun Heo 已提交
6822
#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
M
Miklos Szeredi 已提交
6823 6824 6825 6826 6827

#if MAX_NUMNODES > 1
/*
 * Figure out the number of possible node ids.
 */
6828
void __init setup_nr_node_ids(void)
M
Miklos Szeredi 已提交
6829
{
6830
	unsigned int highest;
M
Miklos Szeredi 已提交
6831

6832
	highest = find_last_bit(node_possible_map.bits, MAX_NUMNODES);
M
Miklos Szeredi 已提交
6833 6834 6835 6836
	nr_node_ids = highest + 1;
}
#endif

6837 6838 6839 6840 6841 6842 6843 6844 6845 6846 6847 6848 6849 6850 6851 6852
/**
 * node_map_pfn_alignment - determine the maximum internode alignment
 *
 * This function should be called after node map is populated and sorted.
 * It calculates the maximum power of two alignment which can distinguish
 * all the nodes.
 *
 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)).  If the
 * nodes are shifted by 256MiB, 256MiB.  Note that if only the last node is
 * shifted, 1GiB is enough and this function will indicate so.
 *
 * This is used to test whether pfn -> nid mapping of the chosen memory
 * model has fine enough granularity to avoid incorrect mapping for the
 * populated node map.
 *
6853
 * Return: the determined alignment in pfn's.  0 if there is no alignment
6854 6855 6856 6857 6858
 * requirement (single node).
 */
unsigned long __init node_map_pfn_alignment(void)
{
	unsigned long accl_mask = 0, last_end = 0;
6859
	unsigned long start, end, mask;
6860
	int last_nid = NUMA_NO_NODE;
6861
	int i, nid;
6862

6863
	for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
6864 6865 6866 6867 6868 6869 6870 6871 6872 6873 6874 6875 6876 6877 6878 6879 6880 6881 6882 6883 6884 6885 6886
		if (!start || last_nid < 0 || last_nid == nid) {
			last_nid = nid;
			last_end = end;
			continue;
		}

		/*
		 * Start with a mask granular enough to pin-point to the
		 * start pfn and tick off bits one-by-one until it becomes
		 * too coarse to separate the current node from the last.
		 */
		mask = ~((1 << __ffs(start)) - 1);
		while (mask && last_end <= (start & (mask << 1)))
			mask <<= 1;

		/* accumulate all internode masks */
		accl_mask |= mask;
	}

	/* convert mask to number of pages */
	return ~accl_mask + 1;
}

6887
/* Find the lowest pfn for a node */
A
Adrian Bunk 已提交
6888
static unsigned long __init find_min_pfn_for_node(int nid)
6889
{
6890
	unsigned long min_pfn = ULONG_MAX;
6891 6892
	unsigned long start_pfn;
	int i;
6893

6894 6895
	for_each_mem_pfn_range(i, nid, &start_pfn, NULL, NULL)
		min_pfn = min(min_pfn, start_pfn);
6896

6897
	if (min_pfn == ULONG_MAX) {
6898
		pr_warn("Could not find start_pfn for node %d\n", nid);
6899 6900 6901 6902
		return 0;
	}

	return min_pfn;
6903 6904 6905 6906 6907
}

/**
 * find_min_pfn_with_active_regions - Find the minimum PFN registered
 *
6908
 * Return: the minimum PFN based on information provided via
6909
 * memblock_set_node().
6910 6911 6912 6913 6914 6915
 */
unsigned long __init find_min_pfn_with_active_regions(void)
{
	return find_min_pfn_for_node(MAX_NUMNODES);
}

6916 6917 6918
/*
 * early_calculate_totalpages()
 * Sum pages in active regions for movable zone.
6919
 * Populate N_MEMORY for calculating usable_nodes.
6920
 */
A
Adrian Bunk 已提交
6921
static unsigned long __init early_calculate_totalpages(void)
6922 6923
{
	unsigned long totalpages = 0;
6924 6925 6926 6927 6928
	unsigned long start_pfn, end_pfn;
	int i, nid;

	for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
		unsigned long pages = end_pfn - start_pfn;
6929

6930 6931
		totalpages += pages;
		if (pages)
6932
			node_set_state(nid, N_MEMORY);
6933
	}
6934
	return totalpages;
6935 6936
}

M
Mel Gorman 已提交
6937 6938 6939 6940 6941 6942
/*
 * Find the PFN the Movable zone begins in each node. Kernel memory
 * is spread evenly between nodes as long as the nodes have enough
 * memory. When they don't, some nodes will have more kernelcore than
 * others
 */
6943
static void __init find_zone_movable_pfns_for_nodes(void)
M
Mel Gorman 已提交
6944 6945 6946 6947
{
	int i, nid;
	unsigned long usable_startpfn;
	unsigned long kernelcore_node, kernelcore_remaining;
6948
	/* save the state before borrow the nodemask */
6949
	nodemask_t saved_node_state = node_states[N_MEMORY];
6950
	unsigned long totalpages = early_calculate_totalpages();
6951
	int usable_nodes = nodes_weight(node_states[N_MEMORY]);
E
Emil Medve 已提交
6952
	struct memblock_region *r;
6953 6954 6955 6956 6957 6958 6959 6960 6961

	/* Need to find movable_zone earlier when movable_node is specified. */
	find_usable_zone_for_movable();

	/*
	 * If movable_node is specified, ignore kernelcore and movablecore
	 * options.
	 */
	if (movable_node_is_enabled()) {
E
Emil Medve 已提交
6962 6963
		for_each_memblock(memory, r) {
			if (!memblock_is_hotpluggable(r))
6964 6965
				continue;

E
Emil Medve 已提交
6966
			nid = r->nid;
6967

E
Emil Medve 已提交
6968
			usable_startpfn = PFN_DOWN(r->base);
6969 6970 6971 6972 6973 6974 6975
			zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
				min(usable_startpfn, zone_movable_pfn[nid]) :
				usable_startpfn;
		}

		goto out2;
	}
M
Mel Gorman 已提交
6976

6977 6978 6979 6980 6981 6982 6983 6984 6985 6986 6987 6988 6989 6990 6991 6992 6993 6994 6995 6996 6997 6998 6999 7000 7001 7002 7003 7004 7005 7006
	/*
	 * If kernelcore=mirror is specified, ignore movablecore option
	 */
	if (mirrored_kernelcore) {
		bool mem_below_4gb_not_mirrored = false;

		for_each_memblock(memory, r) {
			if (memblock_is_mirror(r))
				continue;

			nid = r->nid;

			usable_startpfn = memblock_region_memory_base_pfn(r);

			if (usable_startpfn < 0x100000) {
				mem_below_4gb_not_mirrored = true;
				continue;
			}

			zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
				min(usable_startpfn, zone_movable_pfn[nid]) :
				usable_startpfn;
		}

		if (mem_below_4gb_not_mirrored)
			pr_warn("This configuration results in unmirrored kernel memory.");

		goto out2;
	}

7007
	/*
7008 7009 7010 7011 7012 7013 7014 7015 7016 7017 7018 7019
	 * If kernelcore=nn% or movablecore=nn% was specified, calculate the
	 * amount of necessary memory.
	 */
	if (required_kernelcore_percent)
		required_kernelcore = (totalpages * 100 * required_kernelcore_percent) /
				       10000UL;
	if (required_movablecore_percent)
		required_movablecore = (totalpages * 100 * required_movablecore_percent) /
					10000UL;

	/*
	 * If movablecore= was specified, calculate what size of
7020 7021 7022 7023 7024 7025 7026 7027 7028 7029 7030 7031 7032 7033 7034
	 * kernelcore that corresponds so that memory usable for
	 * any allocation type is evenly spread. If both kernelcore
	 * and movablecore are specified, then the value of kernelcore
	 * will be used for required_kernelcore if it's greater than
	 * what movablecore would have allowed.
	 */
	if (required_movablecore) {
		unsigned long corepages;

		/*
		 * Round-up so that ZONE_MOVABLE is at least as large as what
		 * was requested by the user
		 */
		required_movablecore =
			roundup(required_movablecore, MAX_ORDER_NR_PAGES);
7035
		required_movablecore = min(totalpages, required_movablecore);
7036 7037 7038 7039 7040
		corepages = totalpages - required_movablecore;

		required_kernelcore = max(required_kernelcore, corepages);
	}

7041 7042 7043 7044 7045
	/*
	 * If kernelcore was not specified or kernelcore size is larger
	 * than totalpages, there is no ZONE_MOVABLE.
	 */
	if (!required_kernelcore || required_kernelcore >= totalpages)
7046
		goto out;
M
Mel Gorman 已提交
7047 7048 7049 7050 7051 7052 7053

	/* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
	usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];

restart:
	/* Spread kernelcore memory as evenly as possible throughout nodes */
	kernelcore_node = required_kernelcore / usable_nodes;
7054
	for_each_node_state(nid, N_MEMORY) {
7055 7056
		unsigned long start_pfn, end_pfn;

M
Mel Gorman 已提交
7057 7058 7059 7060 7061 7062 7063 7064 7065 7066 7067 7068 7069 7070 7071 7072
		/*
		 * Recalculate kernelcore_node if the division per node
		 * now exceeds what is necessary to satisfy the requested
		 * amount of memory for the kernel
		 */
		if (required_kernelcore < kernelcore_node)
			kernelcore_node = required_kernelcore / usable_nodes;

		/*
		 * As the map is walked, we track how much memory is usable
		 * by the kernel using kernelcore_remaining. When it is
		 * 0, the rest of the node is usable by ZONE_MOVABLE
		 */
		kernelcore_remaining = kernelcore_node;

		/* Go through each range of PFNs within this node */
7073
		for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
M
Mel Gorman 已提交
7074 7075
			unsigned long size_pages;

7076
			start_pfn = max(start_pfn, zone_movable_pfn[nid]);
M
Mel Gorman 已提交
7077 7078 7079 7080 7081 7082 7083 7084 7085 7086 7087 7088 7089 7090 7091 7092 7093 7094 7095 7096 7097 7098 7099 7100 7101 7102 7103 7104 7105 7106 7107 7108 7109 7110 7111 7112 7113 7114 7115 7116 7117 7118
			if (start_pfn >= end_pfn)
				continue;

			/* Account for what is only usable for kernelcore */
			if (start_pfn < usable_startpfn) {
				unsigned long kernel_pages;
				kernel_pages = min(end_pfn, usable_startpfn)
								- start_pfn;

				kernelcore_remaining -= min(kernel_pages,
							kernelcore_remaining);
				required_kernelcore -= min(kernel_pages,
							required_kernelcore);

				/* Continue if range is now fully accounted */
				if (end_pfn <= usable_startpfn) {

					/*
					 * Push zone_movable_pfn to the end so
					 * that if we have to rebalance
					 * kernelcore across nodes, we will
					 * not double account here
					 */
					zone_movable_pfn[nid] = end_pfn;
					continue;
				}
				start_pfn = usable_startpfn;
			}

			/*
			 * The usable PFN range for ZONE_MOVABLE is from
			 * start_pfn->end_pfn. Calculate size_pages as the
			 * number of pages used as kernelcore
			 */
			size_pages = end_pfn - start_pfn;
			if (size_pages > kernelcore_remaining)
				size_pages = kernelcore_remaining;
			zone_movable_pfn[nid] = start_pfn + size_pages;

			/*
			 * Some kernelcore has been met, update counts and
			 * break if the kernelcore for this node has been
7119
			 * satisfied
M
Mel Gorman 已提交
7120 7121 7122 7123 7124 7125 7126 7127 7128 7129 7130 7131 7132
			 */
			required_kernelcore -= min(required_kernelcore,
								size_pages);
			kernelcore_remaining -= size_pages;
			if (!kernelcore_remaining)
				break;
		}
	}

	/*
	 * If there is still required_kernelcore, we do another pass with one
	 * less node in the count. This will push zone_movable_pfn[nid] further
	 * along on the nodes that still have memory until kernelcore is
7133
	 * satisfied
M
Mel Gorman 已提交
7134 7135 7136 7137 7138
	 */
	usable_nodes--;
	if (usable_nodes && required_kernelcore > usable_nodes)
		goto restart;

7139
out2:
M
Mel Gorman 已提交
7140 7141 7142 7143
	/* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
	for (nid = 0; nid < MAX_NUMNODES; nid++)
		zone_movable_pfn[nid] =
			roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
7144

7145
out:
7146
	/* restore the node_state */
7147
	node_states[N_MEMORY] = saved_node_state;
M
Mel Gorman 已提交
7148 7149
}

7150 7151
/* Any regular or high memory on that node ? */
static void check_for_memory(pg_data_t *pgdat, int nid)
7152 7153 7154
{
	enum zone_type zone_type;

7155
	for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
7156
		struct zone *zone = &pgdat->node_zones[zone_type];
7157
		if (populated_zone(zone)) {
7158 7159 7160
			if (IS_ENABLED(CONFIG_HIGHMEM))
				node_set_state(nid, N_HIGH_MEMORY);
			if (zone_type <= ZONE_NORMAL)
7161
				node_set_state(nid, N_NORMAL_MEMORY);
7162 7163
			break;
		}
7164 7165 7166
	}
}

7167 7168
/**
 * free_area_init_nodes - Initialise all pg_data_t and zone data
7169
 * @max_zone_pfn: an array of max PFNs for each zone
7170 7171
 *
 * This will call free_area_init_node() for each active node in the system.
7172
 * Using the page ranges provided by memblock_set_node(), the size of each
7173 7174 7175 7176 7177 7178 7179 7180 7181
 * zone in each node and their holes is calculated. If the maximum PFN
 * between two adjacent zones match, it is assumed that the zone is empty.
 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
 * starts where the previous one ended. For example, ZONE_DMA32 starts
 * at arch_max_dma_pfn.
 */
void __init free_area_init_nodes(unsigned long *max_zone_pfn)
{
7182 7183
	unsigned long start_pfn, end_pfn;
	int i, nid;
7184

7185 7186 7187 7188 7189
	/* Record where the zone boundaries are */
	memset(arch_zone_lowest_possible_pfn, 0,
				sizeof(arch_zone_lowest_possible_pfn));
	memset(arch_zone_highest_possible_pfn, 0,
				sizeof(arch_zone_highest_possible_pfn));
7190 7191 7192 7193

	start_pfn = find_min_pfn_with_active_regions();

	for (i = 0; i < MAX_NR_ZONES; i++) {
M
Mel Gorman 已提交
7194 7195
		if (i == ZONE_MOVABLE)
			continue;
7196 7197 7198 7199 7200 7201

		end_pfn = max(max_zone_pfn[i], start_pfn);
		arch_zone_lowest_possible_pfn[i] = start_pfn;
		arch_zone_highest_possible_pfn[i] = end_pfn;

		start_pfn = end_pfn;
7202
	}
M
Mel Gorman 已提交
7203 7204 7205

	/* Find the PFNs that ZONE_MOVABLE begins at in each node */
	memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
7206
	find_zone_movable_pfns_for_nodes();
7207 7208

	/* Print out the zone ranges */
7209
	pr_info("Zone ranges:\n");
M
Mel Gorman 已提交
7210 7211 7212
	for (i = 0; i < MAX_NR_ZONES; i++) {
		if (i == ZONE_MOVABLE)
			continue;
7213
		pr_info("  %-8s ", zone_names[i]);
7214 7215
		if (arch_zone_lowest_possible_pfn[i] ==
				arch_zone_highest_possible_pfn[i])
7216
			pr_cont("empty\n");
7217
		else
7218 7219 7220 7221
			pr_cont("[mem %#018Lx-%#018Lx]\n",
				(u64)arch_zone_lowest_possible_pfn[i]
					<< PAGE_SHIFT,
				((u64)arch_zone_highest_possible_pfn[i]
7222
					<< PAGE_SHIFT) - 1);
M
Mel Gorman 已提交
7223 7224 7225
	}

	/* Print out the PFNs ZONE_MOVABLE begins at in each node */
7226
	pr_info("Movable zone start for each node\n");
M
Mel Gorman 已提交
7227 7228
	for (i = 0; i < MAX_NUMNODES; i++) {
		if (zone_movable_pfn[i])
7229 7230
			pr_info("  Node %d: %#018Lx\n", i,
			       (u64)zone_movable_pfn[i] << PAGE_SHIFT);
M
Mel Gorman 已提交
7231
	}
7232

7233
	/* Print out the early node map */
7234
	pr_info("Early memory node ranges\n");
7235
	for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid)
7236 7237 7238
		pr_info("  node %3d: [mem %#018Lx-%#018Lx]\n", nid,
			(u64)start_pfn << PAGE_SHIFT,
			((u64)end_pfn << PAGE_SHIFT) - 1);
7239 7240

	/* Initialise every node */
7241
	mminit_verify_pageflags_layout();
7242
	setup_nr_node_ids();
7243
	zero_resv_unavail();
7244 7245
	for_each_online_node(nid) {
		pg_data_t *pgdat = NODE_DATA(nid);
7246
		free_area_init_node(nid, NULL,
7247
				find_min_pfn_for_node(nid), NULL);
7248 7249 7250

		/* Any memory on that node */
		if (pgdat->node_present_pages)
7251 7252
			node_set_state(nid, N_MEMORY);
		check_for_memory(pgdat, nid);
7253 7254
	}
}
M
Mel Gorman 已提交
7255

7256 7257
static int __init cmdline_parse_core(char *p, unsigned long *core,
				     unsigned long *percent)
M
Mel Gorman 已提交
7258 7259
{
	unsigned long long coremem;
7260 7261
	char *endptr;

M
Mel Gorman 已提交
7262 7263 7264
	if (!p)
		return -EINVAL;

7265 7266 7267 7268 7269
	/* Value may be a percentage of total memory, otherwise bytes */
	coremem = simple_strtoull(p, &endptr, 0);
	if (*endptr == '%') {
		/* Paranoid check for percent values greater than 100 */
		WARN_ON(coremem > 100);
M
Mel Gorman 已提交
7270

7271 7272 7273 7274 7275
		*percent = coremem;
	} else {
		coremem = memparse(p, &p);
		/* Paranoid check that UL is enough for the coremem value */
		WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
M
Mel Gorman 已提交
7276

7277 7278 7279
		*core = coremem >> PAGE_SHIFT;
		*percent = 0UL;
	}
M
Mel Gorman 已提交
7280 7281
	return 0;
}
M
Mel Gorman 已提交
7282

7283 7284 7285 7286 7287 7288
/*
 * kernelcore=size sets the amount of memory for use for allocations that
 * cannot be reclaimed or migrated.
 */
static int __init cmdline_parse_kernelcore(char *p)
{
7289 7290 7291 7292 7293 7294
	/* parse kernelcore=mirror */
	if (parse_option_str(p, "mirror")) {
		mirrored_kernelcore = true;
		return 0;
	}

7295 7296
	return cmdline_parse_core(p, &required_kernelcore,
				  &required_kernelcore_percent);
7297 7298 7299 7300 7301 7302 7303 7304
}

/*
 * movablecore=size sets the amount of memory for use for allocations that
 * can be reclaimed or migrated.
 */
static int __init cmdline_parse_movablecore(char *p)
{
7305 7306
	return cmdline_parse_core(p, &required_movablecore,
				  &required_movablecore_percent);
7307 7308
}

M
Mel Gorman 已提交
7309
early_param("kernelcore", cmdline_parse_kernelcore);
7310
early_param("movablecore", cmdline_parse_movablecore);
M
Mel Gorman 已提交
7311

T
Tejun Heo 已提交
7312
#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
7313

7314 7315
void adjust_managed_page_count(struct page *page, long count)
{
7316
	atomic_long_add(count, &page_zone(page)->managed_pages);
7317
	totalram_pages_add(count);
7318 7319
#ifdef CONFIG_HIGHMEM
	if (PageHighMem(page))
7320
		totalhigh_pages_add(count);
7321
#endif
7322
}
7323
EXPORT_SYMBOL(adjust_managed_page_count);
7324

7325
unsigned long free_reserved_area(void *start, void *end, int poison, const char *s)
7326
{
7327 7328
	void *pos;
	unsigned long pages = 0;
7329

7330 7331 7332
	start = (void *)PAGE_ALIGN((unsigned long)start);
	end = (void *)((unsigned long)end & PAGE_MASK);
	for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
7333 7334 7335 7336 7337 7338 7339 7340 7341 7342 7343
		struct page *page = virt_to_page(pos);
		void *direct_map_addr;

		/*
		 * 'direct_map_addr' might be different from 'pos'
		 * because some architectures' virt_to_page()
		 * work with aliases.  Getting the direct map
		 * address ensures that we get a _writeable_
		 * alias for the memset().
		 */
		direct_map_addr = page_address(page);
7344
		if ((unsigned int)poison <= 0xFF)
7345 7346 7347
			memset(direct_map_addr, poison, PAGE_SIZE);

		free_reserved_page(page);
7348 7349 7350
	}

	if (pages && s)
7351 7352
		pr_info("Freeing %s memory: %ldK\n",
			s, pages << (PAGE_SHIFT - 10));
7353 7354 7355 7356

	return pages;
}

7357 7358 7359 7360
#ifdef	CONFIG_HIGHMEM
void free_highmem_page(struct page *page)
{
	__free_reserved_page(page);
7361
	totalram_pages_inc();
7362
	atomic_long_inc(&page_zone(page)->managed_pages);
7363
	totalhigh_pages_inc();
7364 7365 7366
}
#endif

7367 7368 7369 7370 7371 7372 7373 7374 7375 7376 7377 7378 7379 7380 7381 7382 7383 7384 7385 7386 7387 7388

void __init mem_init_print_info(const char *str)
{
	unsigned long physpages, codesize, datasize, rosize, bss_size;
	unsigned long init_code_size, init_data_size;

	physpages = get_num_physpages();
	codesize = _etext - _stext;
	datasize = _edata - _sdata;
	rosize = __end_rodata - __start_rodata;
	bss_size = __bss_stop - __bss_start;
	init_data_size = __init_end - __init_begin;
	init_code_size = _einittext - _sinittext;

	/*
	 * Detect special cases and adjust section sizes accordingly:
	 * 1) .init.* may be embedded into .data sections
	 * 2) .init.text.* may be out of [__init_begin, __init_end],
	 *    please refer to arch/tile/kernel/vmlinux.lds.S.
	 * 3) .rodata.* may be embedded into .text or .data sections.
	 */
#define adj_init_size(start, end, size, pos, adj) \
7389 7390 7391 7392
	do { \
		if (start <= pos && pos < end && size > adj) \
			size -= adj; \
	} while (0)
7393 7394 7395 7396 7397 7398 7399 7400 7401 7402

	adj_init_size(__init_begin, __init_end, init_data_size,
		     _sinittext, init_code_size);
	adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size);
	adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size);
	adj_init_size(_stext, _etext, codesize, __start_rodata, rosize);
	adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize);

#undef	adj_init_size

J
Joe Perches 已提交
7403
	pr_info("Memory: %luK/%luK available (%luK kernel code, %luK rwdata, %luK rodata, %luK init, %luK bss, %luK reserved, %luK cma-reserved"
7404
#ifdef	CONFIG_HIGHMEM
J
Joe Perches 已提交
7405
		", %luK highmem"
7406
#endif
J
Joe Perches 已提交
7407 7408 7409 7410 7411
		"%s%s)\n",
		nr_free_pages() << (PAGE_SHIFT - 10),
		physpages << (PAGE_SHIFT - 10),
		codesize >> 10, datasize >> 10, rosize >> 10,
		(init_data_size + init_code_size) >> 10, bss_size >> 10,
7412
		(physpages - totalram_pages() - totalcma_pages) << (PAGE_SHIFT - 10),
J
Joe Perches 已提交
7413
		totalcma_pages << (PAGE_SHIFT - 10),
7414
#ifdef	CONFIG_HIGHMEM
7415
		totalhigh_pages() << (PAGE_SHIFT - 10),
7416
#endif
J
Joe Perches 已提交
7417
		str ? ", " : "", str ? str : "");
7418 7419
}

7420
/**
7421 7422
 * set_dma_reserve - set the specified number of pages reserved in the first zone
 * @new_dma_reserve: The number of pages to mark reserved
7423
 *
7424
 * The per-cpu batchsize and zone watermarks are determined by managed_pages.
7425 7426
 * In the DMA zone, a significant percentage may be consumed by kernel image
 * and other unfreeable allocations which can skew the watermarks badly. This
7427 7428 7429
 * function may optionally be used to account for unfreeable pages in the
 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
 * smaller per-cpu batchsize.
7430 7431 7432 7433 7434 7435
 */
void __init set_dma_reserve(unsigned long new_dma_reserve)
{
	dma_reserve = new_dma_reserve;
}

L
Linus Torvalds 已提交
7436 7437
void __init free_area_init(unsigned long *zones_size)
{
7438
	zero_resv_unavail();
7439
	free_area_init_node(0, zones_size,
L
Linus Torvalds 已提交
7440 7441 7442
			__pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
}

7443
static int page_alloc_cpu_dead(unsigned int cpu)
L
Linus Torvalds 已提交
7444 7445
{

7446 7447
	lru_add_drain_cpu(cpu);
	drain_pages(cpu);
7448

7449 7450 7451 7452 7453 7454 7455
	/*
	 * Spill the event counters of the dead processor
	 * into the current processors event counters.
	 * This artificially elevates the count of the current
	 * processor.
	 */
	vm_events_fold_cpu(cpu);
7456

7457 7458 7459 7460 7461 7462 7463 7464 7465
	/*
	 * Zero the differential counters of the dead processor
	 * so that the vm statistics are consistent.
	 *
	 * This is only okay since the processor is dead and cannot
	 * race with what we are doing.
	 */
	cpu_vm_stats_fold(cpu);
	return 0;
L
Linus Torvalds 已提交
7466 7467 7468 7469
}

void __init page_alloc_init(void)
{
7470 7471 7472 7473 7474 7475
	int ret;

	ret = cpuhp_setup_state_nocalls(CPUHP_PAGE_ALLOC_DEAD,
					"mm/page_alloc:dead", NULL,
					page_alloc_cpu_dead);
	WARN_ON(ret < 0);
L
Linus Torvalds 已提交
7476 7477
}

7478
/*
7479
 * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio
7480 7481 7482 7483 7484 7485
 *	or min_free_kbytes changes.
 */
static void calculate_totalreserve_pages(void)
{
	struct pglist_data *pgdat;
	unsigned long reserve_pages = 0;
7486
	enum zone_type i, j;
7487 7488

	for_each_online_pgdat(pgdat) {
7489 7490 7491

		pgdat->totalreserve_pages = 0;

7492 7493
		for (i = 0; i < MAX_NR_ZONES; i++) {
			struct zone *zone = pgdat->node_zones + i;
7494
			long max = 0;
7495
			unsigned long managed_pages = zone_managed_pages(zone);
7496 7497 7498 7499 7500 7501 7502

			/* Find valid and maximum lowmem_reserve in the zone */
			for (j = i; j < MAX_NR_ZONES; j++) {
				if (zone->lowmem_reserve[j] > max)
					max = zone->lowmem_reserve[j];
			}

7503 7504
			/* we treat the high watermark as reserved pages. */
			max += high_wmark_pages(zone);
7505

7506 7507
			if (max > managed_pages)
				max = managed_pages;
7508

7509
			pgdat->totalreserve_pages += max;
7510

7511 7512 7513 7514 7515 7516
			reserve_pages += max;
		}
	}
	totalreserve_pages = reserve_pages;
}

L
Linus Torvalds 已提交
7517 7518
/*
 * setup_per_zone_lowmem_reserve - called whenever
7519
 *	sysctl_lowmem_reserve_ratio changes.  Ensures that each zone
L
Linus Torvalds 已提交
7520 7521 7522 7523 7524 7525
 *	has a correct pages reserved value, so an adequate number of
 *	pages are left in the zone after a successful __alloc_pages().
 */
static void setup_per_zone_lowmem_reserve(void)
{
	struct pglist_data *pgdat;
7526
	enum zone_type j, idx;
L
Linus Torvalds 已提交
7527

7528
	for_each_online_pgdat(pgdat) {
L
Linus Torvalds 已提交
7529 7530
		for (j = 0; j < MAX_NR_ZONES; j++) {
			struct zone *zone = pgdat->node_zones + j;
7531
			unsigned long managed_pages = zone_managed_pages(zone);
L
Linus Torvalds 已提交
7532 7533 7534

			zone->lowmem_reserve[j] = 0;

7535 7536
			idx = j;
			while (idx) {
L
Linus Torvalds 已提交
7537 7538
				struct zone *lower_zone;

7539
				idx--;
L
Linus Torvalds 已提交
7540
				lower_zone = pgdat->node_zones + idx;
7541 7542 7543 7544 7545 7546 7547 7548

				if (sysctl_lowmem_reserve_ratio[idx] < 1) {
					sysctl_lowmem_reserve_ratio[idx] = 0;
					lower_zone->lowmem_reserve[j] = 0;
				} else {
					lower_zone->lowmem_reserve[j] =
						managed_pages / sysctl_lowmem_reserve_ratio[idx];
				}
7549
				managed_pages += zone_managed_pages(lower_zone);
L
Linus Torvalds 已提交
7550 7551 7552
			}
		}
	}
7553 7554 7555

	/* update totalreserve_pages */
	calculate_totalreserve_pages();
L
Linus Torvalds 已提交
7556 7557
}

7558
static void __setup_per_zone_wmarks(void)
L
Linus Torvalds 已提交
7559 7560 7561 7562 7563 7564 7565 7566 7567
{
	unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
	unsigned long lowmem_pages = 0;
	struct zone *zone;
	unsigned long flags;

	/* Calculate total number of !ZONE_HIGHMEM pages */
	for_each_zone(zone) {
		if (!is_highmem(zone))
7568
			lowmem_pages += zone_managed_pages(zone);
L
Linus Torvalds 已提交
7569 7570 7571
	}

	for_each_zone(zone) {
7572 7573
		u64 tmp;

7574
		spin_lock_irqsave(&zone->lock, flags);
7575
		tmp = (u64)pages_min * zone_managed_pages(zone);
7576
		do_div(tmp, lowmem_pages);
L
Linus Torvalds 已提交
7577 7578
		if (is_highmem(zone)) {
			/*
N
Nick Piggin 已提交
7579 7580 7581 7582
			 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
			 * need highmem pages, so cap pages_min to a small
			 * value here.
			 *
7583
			 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
W
Wei Yang 已提交
7584
			 * deltas control async page reclaim, and so should
N
Nick Piggin 已提交
7585
			 * not be capped for highmem.
L
Linus Torvalds 已提交
7586
			 */
7587
			unsigned long min_pages;
L
Linus Torvalds 已提交
7588

7589
			min_pages = zone_managed_pages(zone) / 1024;
7590
			min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
7591
			zone->_watermark[WMARK_MIN] = min_pages;
L
Linus Torvalds 已提交
7592
		} else {
N
Nick Piggin 已提交
7593 7594
			/*
			 * If it's a lowmem zone, reserve a number of pages
L
Linus Torvalds 已提交
7595 7596
			 * proportionate to the zone's size.
			 */
7597
			zone->_watermark[WMARK_MIN] = tmp;
L
Linus Torvalds 已提交
7598 7599
		}

7600 7601 7602 7603 7604 7605
		/*
		 * Set the kswapd watermarks distance according to the
		 * scale factor in proportion to available memory, but
		 * ensure a minimum size on small systems.
		 */
		tmp = max_t(u64, tmp >> 2,
7606
			    mult_frac(zone_managed_pages(zone),
7607 7608
				      watermark_scale_factor, 10000));

7609 7610
		zone->_watermark[WMARK_LOW]  = min_wmark_pages(zone) + tmp;
		zone->_watermark[WMARK_HIGH] = min_wmark_pages(zone) + tmp * 2;
7611
		zone->watermark_boost = 0;
7612

7613
		spin_unlock_irqrestore(&zone->lock, flags);
L
Linus Torvalds 已提交
7614
	}
7615 7616 7617

	/* update totalreserve_pages */
	calculate_totalreserve_pages();
L
Linus Torvalds 已提交
7618 7619
}

7620 7621 7622 7623 7624 7625 7626 7627 7628
/**
 * setup_per_zone_wmarks - called when min_free_kbytes changes
 * or when memory is hot-{added|removed}
 *
 * Ensures that the watermark[min,low,high] values for each zone are set
 * correctly with respect to min_free_kbytes.
 */
void setup_per_zone_wmarks(void)
{
7629 7630 7631
	static DEFINE_SPINLOCK(lock);

	spin_lock(&lock);
7632
	__setup_per_zone_wmarks();
7633
	spin_unlock(&lock);
7634 7635
}

L
Linus Torvalds 已提交
7636 7637 7638 7639 7640 7641 7642
/*
 * Initialise min_free_kbytes.
 *
 * For small machines we want it small (128k min).  For large machines
 * we want it large (64MB max).  But it is not linear, because network
 * bandwidth does not increase linearly with machine size.  We use
 *
7643
 *	min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
L
Linus Torvalds 已提交
7644 7645 7646 7647 7648 7649 7650 7651 7652 7653 7654 7655 7656 7657 7658 7659
 *	min_free_kbytes = sqrt(lowmem_kbytes * 16)
 *
 * which yields
 *
 * 16MB:	512k
 * 32MB:	724k
 * 64MB:	1024k
 * 128MB:	1448k
 * 256MB:	2048k
 * 512MB:	2896k
 * 1024MB:	4096k
 * 2048MB:	5792k
 * 4096MB:	8192k
 * 8192MB:	11584k
 * 16384MB:	16384k
 */
7660
int __meminit init_per_zone_wmark_min(void)
L
Linus Torvalds 已提交
7661 7662
{
	unsigned long lowmem_kbytes;
7663
	int new_min_free_kbytes;
L
Linus Torvalds 已提交
7664 7665

	lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
7666 7667 7668 7669 7670 7671 7672 7673 7674 7675 7676 7677
	new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);

	if (new_min_free_kbytes > user_min_free_kbytes) {
		min_free_kbytes = new_min_free_kbytes;
		if (min_free_kbytes < 128)
			min_free_kbytes = 128;
		if (min_free_kbytes > 65536)
			min_free_kbytes = 65536;
	} else {
		pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
				new_min_free_kbytes, user_min_free_kbytes);
	}
7678
	setup_per_zone_wmarks();
7679
	refresh_zone_stat_thresholds();
L
Linus Torvalds 已提交
7680
	setup_per_zone_lowmem_reserve();
7681 7682 7683 7684 7685 7686

#ifdef CONFIG_NUMA
	setup_min_unmapped_ratio();
	setup_min_slab_ratio();
#endif

L
Linus Torvalds 已提交
7687 7688
	return 0;
}
7689
core_initcall(init_per_zone_wmark_min)
L
Linus Torvalds 已提交
7690 7691

/*
7692
 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
L
Linus Torvalds 已提交
7693 7694 7695
 *	that we can call two helper functions whenever min_free_kbytes
 *	changes.
 */
7696
int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write,
7697
	void __user *buffer, size_t *length, loff_t *ppos)
L
Linus Torvalds 已提交
7698
{
7699 7700 7701 7702 7703 7704
	int rc;

	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
	if (rc)
		return rc;

7705 7706
	if (write) {
		user_min_free_kbytes = min_free_kbytes;
7707
		setup_per_zone_wmarks();
7708
	}
L
Linus Torvalds 已提交
7709 7710 7711
	return 0;
}

7712 7713 7714 7715 7716 7717 7718 7719 7720 7721 7722 7723
int watermark_boost_factor_sysctl_handler(struct ctl_table *table, int write,
	void __user *buffer, size_t *length, loff_t *ppos)
{
	int rc;

	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
	if (rc)
		return rc;

	return 0;
}

7724 7725 7726 7727 7728 7729 7730 7731 7732 7733 7734 7735 7736 7737 7738
int watermark_scale_factor_sysctl_handler(struct ctl_table *table, int write,
	void __user *buffer, size_t *length, loff_t *ppos)
{
	int rc;

	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
	if (rc)
		return rc;

	if (write)
		setup_per_zone_wmarks();

	return 0;
}

7739
#ifdef CONFIG_NUMA
7740
static void setup_min_unmapped_ratio(void)
7741
{
7742
	pg_data_t *pgdat;
7743 7744
	struct zone *zone;

7745
	for_each_online_pgdat(pgdat)
7746
		pgdat->min_unmapped_pages = 0;
7747

7748
	for_each_zone(zone)
7749 7750
		zone->zone_pgdat->min_unmapped_pages += (zone_managed_pages(zone) *
						         sysctl_min_unmapped_ratio) / 100;
7751
}
7752

7753 7754

int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write,
7755
	void __user *buffer, size_t *length, loff_t *ppos)
7756 7757 7758
{
	int rc;

7759
	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7760 7761 7762
	if (rc)
		return rc;

7763 7764 7765 7766 7767 7768 7769 7770 7771 7772
	setup_min_unmapped_ratio();

	return 0;
}

static void setup_min_slab_ratio(void)
{
	pg_data_t *pgdat;
	struct zone *zone;

7773 7774 7775
	for_each_online_pgdat(pgdat)
		pgdat->min_slab_pages = 0;

7776
	for_each_zone(zone)
7777 7778
		zone->zone_pgdat->min_slab_pages += (zone_managed_pages(zone) *
						     sysctl_min_slab_ratio) / 100;
7779 7780 7781 7782 7783 7784 7785 7786 7787 7788 7789 7790 7791
}

int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write,
	void __user *buffer, size_t *length, loff_t *ppos)
{
	int rc;

	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
	if (rc)
		return rc;

	setup_min_slab_ratio();

7792 7793
	return 0;
}
7794 7795
#endif

L
Linus Torvalds 已提交
7796 7797 7798 7799 7800 7801
/*
 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
 *	proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
 *	whenever sysctl_lowmem_reserve_ratio changes.
 *
 * The reserve ratio obviously has absolutely no relation with the
7802
 * minimum watermarks. The lowmem reserve ratio can only make sense
L
Linus Torvalds 已提交
7803 7804
 * if in function of the boot time zone sizes.
 */
7805
int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write,
7806
	void __user *buffer, size_t *length, loff_t *ppos)
L
Linus Torvalds 已提交
7807
{
7808
	proc_dointvec_minmax(table, write, buffer, length, ppos);
L
Linus Torvalds 已提交
7809 7810 7811 7812
	setup_per_zone_lowmem_reserve();
	return 0;
}

7813 7814
/*
 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
7815 7816
 * cpu.  It is the fraction of total pages in each zone that a hot per cpu
 * pagelist can have before it gets flushed back to buddy allocator.
7817
 */
7818
int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *table, int write,
7819
	void __user *buffer, size_t *length, loff_t *ppos)
7820 7821
{
	struct zone *zone;
7822
	int old_percpu_pagelist_fraction;
7823 7824
	int ret;

7825 7826 7827
	mutex_lock(&pcp_batch_high_lock);
	old_percpu_pagelist_fraction = percpu_pagelist_fraction;

7828
	ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
7829 7830 7831 7832 7833 7834 7835 7836 7837 7838 7839 7840 7841 7842
	if (!write || ret < 0)
		goto out;

	/* Sanity checking to avoid pcp imbalance */
	if (percpu_pagelist_fraction &&
	    percpu_pagelist_fraction < MIN_PERCPU_PAGELIST_FRACTION) {
		percpu_pagelist_fraction = old_percpu_pagelist_fraction;
		ret = -EINVAL;
		goto out;
	}

	/* No change? */
	if (percpu_pagelist_fraction == old_percpu_pagelist_fraction)
		goto out;
7843

7844
	for_each_populated_zone(zone) {
7845 7846
		unsigned int cpu;

7847
		for_each_possible_cpu(cpu)
7848 7849
			pageset_set_high_and_batch(zone,
					per_cpu_ptr(zone->pageset, cpu));
7850
	}
7851
out:
7852
	mutex_unlock(&pcp_batch_high_lock);
7853
	return ret;
7854 7855
}

7856
#ifdef CONFIG_NUMA
7857
int hashdist = HASHDIST_DEFAULT;
L
Linus Torvalds 已提交
7858 7859 7860 7861 7862 7863 7864 7865 7866 7867 7868

static int __init set_hashdist(char *str)
{
	if (!str)
		return 0;
	hashdist = simple_strtoul(str, &str, 0);
	return 1;
}
__setup("hashdist=", set_hashdist);
#endif

7869 7870 7871 7872 7873 7874 7875 7876 7877 7878 7879
#ifndef __HAVE_ARCH_RESERVED_KERNEL_PAGES
/*
 * Returns the number of pages that arch has reserved but
 * is not known to alloc_large_system_hash().
 */
static unsigned long __init arch_reserved_kernel_pages(void)
{
	return 0;
}
#endif

P
Pavel Tatashin 已提交
7880 7881 7882 7883 7884 7885 7886 7887 7888 7889 7890 7891 7892 7893 7894
/*
 * Adaptive scale is meant to reduce sizes of hash tables on large memory
 * machines. As memory size is increased the scale is also increased but at
 * slower pace.  Starting from ADAPT_SCALE_BASE (64G), every time memory
 * quadruples the scale is increased by one, which means the size of hash table
 * only doubles, instead of quadrupling as well.
 * Because 32-bit systems cannot have large physical memory, where this scaling
 * makes sense, it is disabled on such platforms.
 */
#if __BITS_PER_LONG > 32
#define ADAPT_SCALE_BASE	(64ul << 30)
#define ADAPT_SCALE_SHIFT	2
#define ADAPT_SCALE_NPAGES	(ADAPT_SCALE_BASE >> PAGE_SHIFT)
#endif

L
Linus Torvalds 已提交
7895 7896 7897 7898 7899 7900 7901 7902 7903 7904 7905 7906 7907
/*
 * allocate a large system hash table from bootmem
 * - it is assumed that the hash table must contain an exact power-of-2
 *   quantity of entries
 * - limit is the number of hash buckets, not the total allocation size
 */
void *__init alloc_large_system_hash(const char *tablename,
				     unsigned long bucketsize,
				     unsigned long numentries,
				     int scale,
				     int flags,
				     unsigned int *_hash_shift,
				     unsigned int *_hash_mask,
7908 7909
				     unsigned long low_limit,
				     unsigned long high_limit)
L
Linus Torvalds 已提交
7910
{
7911
	unsigned long long max = high_limit;
L
Linus Torvalds 已提交
7912 7913
	unsigned long log2qty, size;
	void *table = NULL;
7914
	gfp_t gfp_flags;
L
Linus Torvalds 已提交
7915 7916 7917 7918

	/* allow the kernel cmdline to have a say */
	if (!numentries) {
		/* round applicable memory size up to nearest megabyte */
A
Andrew Morton 已提交
7919
		numentries = nr_kernel_pages;
7920
		numentries -= arch_reserved_kernel_pages();
7921 7922 7923 7924

		/* It isn't necessary when PAGE_SIZE >= 1MB */
		if (PAGE_SHIFT < 20)
			numentries = round_up(numentries, (1<<20)/PAGE_SIZE);
L
Linus Torvalds 已提交
7925

P
Pavel Tatashin 已提交
7926 7927 7928 7929 7930 7931 7932 7933 7934 7935
#if __BITS_PER_LONG > 32
		if (!high_limit) {
			unsigned long adapt;

			for (adapt = ADAPT_SCALE_NPAGES; adapt < numentries;
			     adapt <<= ADAPT_SCALE_SHIFT)
				scale++;
		}
#endif

L
Linus Torvalds 已提交
7936 7937 7938 7939 7940
		/* limit to 1 bucket per 2^scale bytes of low memory */
		if (scale > PAGE_SHIFT)
			numentries >>= (scale - PAGE_SHIFT);
		else
			numentries <<= (PAGE_SHIFT - scale);
7941 7942

		/* Make sure we've got at least a 0-order allocation.. */
7943 7944 7945 7946 7947 7948 7949 7950
		if (unlikely(flags & HASH_SMALL)) {
			/* Makes no sense without HASH_EARLY */
			WARN_ON(!(flags & HASH_EARLY));
			if (!(numentries >> *_hash_shift)) {
				numentries = 1UL << *_hash_shift;
				BUG_ON(!numentries);
			}
		} else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
7951
			numentries = PAGE_SIZE / bucketsize;
L
Linus Torvalds 已提交
7952
	}
7953
	numentries = roundup_pow_of_two(numentries);
L
Linus Torvalds 已提交
7954 7955 7956 7957 7958 7959

	/* limit allocation size to 1/16 total memory by default */
	if (max == 0) {
		max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
		do_div(max, bucketsize);
	}
7960
	max = min(max, 0x80000000ULL);
L
Linus Torvalds 已提交
7961

7962 7963
	if (numentries < low_limit)
		numentries = low_limit;
L
Linus Torvalds 已提交
7964 7965 7966
	if (numentries > max)
		numentries = max;

7967
	log2qty = ilog2(numentries);
L
Linus Torvalds 已提交
7968

7969
	gfp_flags = (flags & HASH_ZERO) ? GFP_ATOMIC | __GFP_ZERO : GFP_ATOMIC;
L
Linus Torvalds 已提交
7970 7971
	do {
		size = bucketsize << log2qty;
7972 7973
		if (flags & HASH_EARLY) {
			if (flags & HASH_ZERO)
7974
				table = memblock_alloc(size, SMP_CACHE_BYTES);
7975
			else
7976 7977
				table = memblock_alloc_raw(size,
							   SMP_CACHE_BYTES);
7978
		} else if (hashdist) {
7979
			table = __vmalloc(size, gfp_flags, PAGE_KERNEL);
7980
		} else {
7981 7982
			/*
			 * If bucketsize is not a power-of-two, we may free
7983 7984
			 * some pages at the end of hash table which
			 * alloc_pages_exact() automatically does
7985
			 */
7986
			if (get_order(size) < MAX_ORDER) {
7987 7988
				table = alloc_pages_exact(size, gfp_flags);
				kmemleak_alloc(table, size, 1, gfp_flags);
7989
			}
L
Linus Torvalds 已提交
7990 7991 7992 7993 7994 7995
		}
	} while (!table && size > PAGE_SIZE && --log2qty);

	if (!table)
		panic("Failed to allocate %s hash table\n", tablename);

7996 7997
	pr_info("%s hash table entries: %ld (order: %d, %lu bytes)\n",
		tablename, 1UL << log2qty, ilog2(size) - PAGE_SHIFT, size);
L
Linus Torvalds 已提交
7998 7999 8000 8001 8002 8003 8004 8005

	if (_hash_shift)
		*_hash_shift = log2qty;
	if (_hash_mask)
		*_hash_mask = (1 << log2qty) - 1;

	return table;
}
8006

K
KAMEZAWA Hiroyuki 已提交
8007
/*
8008 8009 8010
 * This function checks whether pageblock includes unmovable pages or not.
 * If @count is not zero, it is okay to include less @count unmovable pages
 *
8011
 * PageLRU check without isolation or lru_lock could race so that
8012 8013 8014
 * MIGRATE_MOVABLE block might include unmovable pages. And __PageMovable
 * check without lock_page also may miss some movable non-lru pages at
 * race condition. So you can't expect this function should be exact.
K
KAMEZAWA Hiroyuki 已提交
8015
 */
8016
bool has_unmovable_pages(struct zone *zone, struct page *page, int count,
8017
			 int migratetype, int flags)
8018
{
8019 8020 8021 8022
	unsigned long found;
	unsigned long iter = 0;
	unsigned long pfn = page_to_pfn(page);
	const char *reason = "unmovable page";
8023

8024
	/*
8025 8026 8027 8028 8029
	 * TODO we could make this much more efficient by not checking every
	 * page in the range if we know all of them are in MOVABLE_ZONE and
	 * that the movable zone guarantees that pages are migratable but
	 * the later is not the case right now unfortunatelly. E.g. movablecore
	 * can still lead to having bootmem allocations in zone_movable.
8030 8031
	 */

8032 8033 8034 8035 8036 8037 8038 8039 8040 8041 8042 8043
	if (is_migrate_cma_page(page)) {
		/*
		 * CMA allocations (alloc_contig_range) really need to mark
		 * isolate CMA pageblocks even when they are not movable in fact
		 * so consider them movable here.
		 */
		if (is_migrate_cma(migratetype))
			return false;

		reason = "CMA page";
		goto unmovable;
	}
8044

8045
	for (found = 0; iter < pageblock_nr_pages; iter++) {
8046 8047
		unsigned long check = pfn + iter;

8048
		if (!pfn_valid_within(check))
8049
			continue;
8050

8051
		page = pfn_to_page(check);
8052

8053
		if (PageReserved(page))
8054
			goto unmovable;
8055

8056 8057 8058 8059 8060 8061 8062 8063
		/*
		 * If the zone is movable and we have ruled out all reserved
		 * pages then it should be reasonably safe to assume the rest
		 * is movable.
		 */
		if (zone_idx(zone) == ZONE_MOVABLE)
			continue;

8064 8065
		/*
		 * Hugepages are not in LRU lists, but they're movable.
W
Wei Yang 已提交
8066
		 * We need not scan over tail pages because we don't
8067 8068 8069
		 * handle each tail page individually in migration.
		 */
		if (PageHuge(page)) {
8070 8071
			struct page *head = compound_head(page);
			unsigned int skip_pages;
8072

8073
			if (!hugepage_migration_supported(page_hstate(head)))
8074 8075
				goto unmovable;

8076 8077
			skip_pages = (1 << compound_order(head)) - (page - head);
			iter += skip_pages - 1;
8078 8079 8080
			continue;
		}

8081 8082 8083 8084
		/*
		 * We can't use page_count without pin a page
		 * because another CPU can free compound page.
		 * This check already skips compound tails of THP
8085
		 * because their page->_refcount is zero at all time.
8086
		 */
8087
		if (!page_ref_count(page)) {
8088 8089 8090 8091
			if (PageBuddy(page))
				iter += (1 << page_order(page)) - 1;
			continue;
		}
8092

8093 8094 8095 8096
		/*
		 * The HWPoisoned page may be not in buddy system, and
		 * page_count() is not 0.
		 */
8097
		if ((flags & SKIP_HWPOISON) && PageHWPoison(page))
8098 8099
			continue;

8100 8101 8102
		if (__PageMovable(page))
			continue;

8103 8104 8105
		if (!PageLRU(page))
			found++;
		/*
8106 8107 8108
		 * If there are RECLAIMABLE pages, we need to check
		 * it.  But now, memory offline itself doesn't call
		 * shrink_node_slabs() and it still to be fixed.
8109 8110 8111 8112 8113 8114 8115 8116 8117 8118
		 */
		/*
		 * If the page is not RAM, page_count()should be 0.
		 * we don't need more check. This is an _used_ not-movable page.
		 *
		 * The problematic thing here is PG_reserved pages. PG_reserved
		 * is set to both of a memory hole page and a _used_ kernel
		 * page at boot.
		 */
		if (found > count)
8119
			goto unmovable;
8120
	}
8121
	return false;
8122 8123
unmovable:
	WARN_ON_ONCE(zone_idx(zone) == ZONE_MOVABLE);
8124
	if (flags & REPORT_FAILURE)
8125
		dump_page(pfn_to_page(pfn + iter), reason);
8126
	return true;
8127 8128
}

8129
#if (defined(CONFIG_MEMORY_ISOLATION) && defined(CONFIG_COMPACTION)) || defined(CONFIG_CMA)
8130 8131 8132 8133 8134 8135 8136 8137 8138 8139 8140 8141 8142 8143

static unsigned long pfn_max_align_down(unsigned long pfn)
{
	return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES,
			     pageblock_nr_pages) - 1);
}

static unsigned long pfn_max_align_up(unsigned long pfn)
{
	return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES,
				pageblock_nr_pages));
}

/* [start, end) must belong to a single zone. */
8144 8145
static int __alloc_contig_migrate_range(struct compact_control *cc,
					unsigned long start, unsigned long end)
8146 8147
{
	/* This function is based on compact_zone() from compaction.c. */
8148
	unsigned long nr_reclaimed;
8149 8150 8151 8152
	unsigned long pfn = start;
	unsigned int tries = 0;
	int ret = 0;

8153
	migrate_prep();
8154

8155
	while (pfn < end || !list_empty(&cc->migratepages)) {
8156 8157 8158 8159 8160
		if (fatal_signal_pending(current)) {
			ret = -EINTR;
			break;
		}

8161 8162
		if (list_empty(&cc->migratepages)) {
			cc->nr_migratepages = 0;
8163
			pfn = isolate_migratepages_range(cc, pfn, end);
8164 8165 8166 8167 8168 8169 8170 8171 8172 8173
			if (!pfn) {
				ret = -EINTR;
				break;
			}
			tries = 0;
		} else if (++tries == 5) {
			ret = ret < 0 ? ret : -EBUSY;
			break;
		}

8174 8175 8176
		nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
							&cc->migratepages);
		cc->nr_migratepages -= nr_reclaimed;
8177

8178
		ret = migrate_pages(&cc->migratepages, alloc_migrate_target,
8179
				    NULL, 0, cc->mode, MR_CONTIG_RANGE);
8180
	}
8181 8182 8183 8184 8185
	if (ret < 0) {
		putback_movable_pages(&cc->migratepages);
		return ret;
	}
	return 0;
8186 8187 8188 8189 8190 8191
}

/**
 * alloc_contig_range() -- tries to allocate given range of pages
 * @start:	start PFN to allocate
 * @end:	one-past-the-last PFN to allocate
8192 8193 8194 8195
 * @migratetype:	migratetype of the underlaying pageblocks (either
 *			#MIGRATE_MOVABLE or #MIGRATE_CMA).  All pageblocks
 *			in range must have the same migratetype and it must
 *			be either of the two.
8196
 * @gfp_mask:	GFP mask to use during compaction
8197 8198
 *
 * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
8199
 * aligned.  The PFN range must belong to a single zone.
8200
 *
8201 8202 8203
 * The first thing this routine does is attempt to MIGRATE_ISOLATE all
 * pageblocks in the range.  Once isolated, the pageblocks should not
 * be modified by others.
8204
 *
8205
 * Return: zero on success or negative error code.  On success all
8206 8207 8208
 * pages which PFN is in [start, end) are allocated for the caller and
 * need to be freed with free_contig_range().
 */
8209
int alloc_contig_range(unsigned long start, unsigned long end,
8210
		       unsigned migratetype, gfp_t gfp_mask)
8211 8212
{
	unsigned long outer_start, outer_end;
8213 8214
	unsigned int order;
	int ret = 0;
8215

8216 8217 8218 8219
	struct compact_control cc = {
		.nr_migratepages = 0,
		.order = -1,
		.zone = page_zone(pfn_to_page(start)),
8220
		.mode = MIGRATE_SYNC,
8221
		.ignore_skip_hint = true,
8222
		.no_set_skip_hint = true,
8223
		.gfp_mask = current_gfp_context(gfp_mask),
8224 8225 8226
	};
	INIT_LIST_HEAD(&cc.migratepages);

8227 8228 8229 8230 8231 8232 8233 8234 8235 8236 8237 8238 8239 8240 8241 8242 8243 8244 8245 8246 8247 8248 8249 8250 8251
	/*
	 * What we do here is we mark all pageblocks in range as
	 * MIGRATE_ISOLATE.  Because pageblock and max order pages may
	 * have different sizes, and due to the way page allocator
	 * work, we align the range to biggest of the two pages so
	 * that page allocator won't try to merge buddies from
	 * different pageblocks and change MIGRATE_ISOLATE to some
	 * other migration type.
	 *
	 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
	 * migrate the pages from an unaligned range (ie. pages that
	 * we are interested in).  This will put all the pages in
	 * range back to page allocator as MIGRATE_ISOLATE.
	 *
	 * When this is done, we take the pages in range from page
	 * allocator removing them from the buddy system.  This way
	 * page allocator will never consider using them.
	 *
	 * This lets us mark the pageblocks back as
	 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
	 * aligned range but not in the unaligned, original range are
	 * put back to page allocator so that buddy can use them.
	 */

	ret = start_isolate_page_range(pfn_max_align_down(start),
8252
				       pfn_max_align_up(end), migratetype, 0);
8253
	if (ret < 0)
8254
		return ret;
8255

8256 8257
	/*
	 * In case of -EBUSY, we'd like to know which page causes problem.
8258 8259 8260 8261 8262 8263 8264
	 * So, just fall through. test_pages_isolated() has a tracepoint
	 * which will report the busy page.
	 *
	 * It is possible that busy pages could become available before
	 * the call to test_pages_isolated, and the range will actually be
	 * allocated.  So, if we fall through be sure to clear ret so that
	 * -EBUSY is not accidentally used or returned to caller.
8265
	 */
8266
	ret = __alloc_contig_migrate_range(&cc, start, end);
8267
	if (ret && ret != -EBUSY)
8268
		goto done;
8269
	ret =0;
8270 8271 8272 8273 8274 8275 8276 8277 8278 8279 8280 8281 8282 8283 8284 8285 8286 8287 8288 8289 8290 8291 8292 8293

	/*
	 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
	 * aligned blocks that are marked as MIGRATE_ISOLATE.  What's
	 * more, all pages in [start, end) are free in page allocator.
	 * What we are going to do is to allocate all pages from
	 * [start, end) (that is remove them from page allocator).
	 *
	 * The only problem is that pages at the beginning and at the
	 * end of interesting range may be not aligned with pages that
	 * page allocator holds, ie. they can be part of higher order
	 * pages.  Because of this, we reserve the bigger range and
	 * once this is done free the pages we are not interested in.
	 *
	 * We don't have to hold zone->lock here because the pages are
	 * isolated thus they won't get removed from buddy.
	 */

	lru_add_drain_all();

	order = 0;
	outer_start = start;
	while (!PageBuddy(pfn_to_page(outer_start))) {
		if (++order >= MAX_ORDER) {
8294 8295
			outer_start = start;
			break;
8296 8297 8298 8299
		}
		outer_start &= ~0UL << order;
	}

8300 8301 8302 8303 8304 8305 8306 8307 8308 8309 8310 8311 8312
	if (outer_start != start) {
		order = page_order(pfn_to_page(outer_start));

		/*
		 * outer_start page could be small order buddy page and
		 * it doesn't include start page. Adjust outer_start
		 * in this case to report failed page properly
		 * on tracepoint in test_pages_isolated()
		 */
		if (outer_start + (1UL << order) <= start)
			outer_start = start;
	}

8313
	/* Make sure the range is really isolated. */
8314
	if (test_pages_isolated(outer_start, end, false)) {
8315
		pr_info_ratelimited("%s: [%lx, %lx) PFNs busy\n",
8316
			__func__, outer_start, end);
8317 8318 8319 8320
		ret = -EBUSY;
		goto done;
	}

8321
	/* Grab isolated pages from freelists. */
8322
	outer_end = isolate_freepages_range(&cc, outer_start, end);
8323 8324 8325 8326 8327 8328 8329 8330 8331 8332 8333 8334 8335
	if (!outer_end) {
		ret = -EBUSY;
		goto done;
	}

	/* Free head and tail (if any) */
	if (start != outer_start)
		free_contig_range(outer_start, start - outer_start);
	if (end != outer_end)
		free_contig_range(end, outer_end - end);

done:
	undo_isolate_page_range(pfn_max_align_down(start),
8336
				pfn_max_align_up(end), migratetype);
8337 8338 8339 8340 8341
	return ret;
}

void free_contig_range(unsigned long pfn, unsigned nr_pages)
{
8342 8343 8344 8345 8346 8347 8348 8349 8350
	unsigned int count = 0;

	for (; nr_pages--; pfn++) {
		struct page *page = pfn_to_page(pfn);

		count += page_count(page) != 1;
		__free_page(page);
	}
	WARN(count != 0, "%d pages are still in use!\n", count);
8351 8352 8353
}
#endif

8354
#ifdef CONFIG_MEMORY_HOTPLUG
8355 8356 8357 8358
/*
 * The zone indicated has a new number of managed_pages; batch sizes and percpu
 * page high values need to be recalulated.
 */
8359 8360
void __meminit zone_pcp_update(struct zone *zone)
{
8361
	unsigned cpu;
8362
	mutex_lock(&pcp_batch_high_lock);
8363
	for_each_possible_cpu(cpu)
8364 8365
		pageset_set_high_and_batch(zone,
				per_cpu_ptr(zone->pageset, cpu));
8366
	mutex_unlock(&pcp_batch_high_lock);
8367 8368 8369
}
#endif

8370 8371 8372
void zone_pcp_reset(struct zone *zone)
{
	unsigned long flags;
8373 8374
	int cpu;
	struct per_cpu_pageset *pset;
8375 8376 8377 8378

	/* avoid races with drain_pages()  */
	local_irq_save(flags);
	if (zone->pageset != &boot_pageset) {
8379 8380 8381 8382
		for_each_online_cpu(cpu) {
			pset = per_cpu_ptr(zone->pageset, cpu);
			drain_zonestat(zone, pset);
		}
8383 8384 8385 8386 8387 8388
		free_percpu(zone->pageset);
		zone->pageset = &boot_pageset;
	}
	local_irq_restore(flags);
}

8389
#ifdef CONFIG_MEMORY_HOTREMOVE
K
KAMEZAWA Hiroyuki 已提交
8390
/*
8391 8392
 * All pages in the range must be in a single zone and isolated
 * before calling this.
K
KAMEZAWA Hiroyuki 已提交
8393 8394 8395 8396 8397 8398
 */
void
__offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
{
	struct page *page;
	struct zone *zone;
8399
	unsigned int order, i;
K
KAMEZAWA Hiroyuki 已提交
8400 8401 8402 8403 8404 8405 8406 8407
	unsigned long pfn;
	unsigned long flags;
	/* find the first valid pfn */
	for (pfn = start_pfn; pfn < end_pfn; pfn++)
		if (pfn_valid(pfn))
			break;
	if (pfn == end_pfn)
		return;
8408
	offline_mem_sections(pfn, end_pfn);
K
KAMEZAWA Hiroyuki 已提交
8409 8410 8411 8412 8413 8414 8415 8416 8417
	zone = page_zone(pfn_to_page(pfn));
	spin_lock_irqsave(&zone->lock, flags);
	pfn = start_pfn;
	while (pfn < end_pfn) {
		if (!pfn_valid(pfn)) {
			pfn++;
			continue;
		}
		page = pfn_to_page(pfn);
8418 8419 8420 8421 8422 8423 8424 8425 8426 8427
		/*
		 * The HWPoisoned page may be not in buddy system, and
		 * page_count() is not 0.
		 */
		if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
			pfn++;
			SetPageReserved(page);
			continue;
		}

K
KAMEZAWA Hiroyuki 已提交
8428 8429 8430 8431
		BUG_ON(page_count(page));
		BUG_ON(!PageBuddy(page));
		order = page_order(page);
#ifdef CONFIG_DEBUG_VM
8432 8433
		pr_info("remove from free list %lx %d %lx\n",
			pfn, 1 << order, end_pfn);
K
KAMEZAWA Hiroyuki 已提交
8434 8435 8436 8437 8438 8439 8440 8441 8442 8443 8444
#endif
		list_del(&page->lru);
		rmv_page_order(page);
		zone->free_area[order].nr_free--;
		for (i = 0; i < (1 << order); i++)
			SetPageReserved((page+i));
		pfn += (1 << order);
	}
	spin_unlock_irqrestore(&zone->lock, flags);
}
#endif
8445 8446 8447 8448 8449 8450

bool is_free_buddy_page(struct page *page)
{
	struct zone *zone = page_zone(page);
	unsigned long pfn = page_to_pfn(page);
	unsigned long flags;
8451
	unsigned int order;
8452 8453 8454 8455 8456 8457 8458 8459 8460 8461 8462 8463

	spin_lock_irqsave(&zone->lock, flags);
	for (order = 0; order < MAX_ORDER; order++) {
		struct page *page_head = page - (pfn & ((1 << order) - 1));

		if (PageBuddy(page_head) && page_order(page_head) >= order)
			break;
	}
	spin_unlock_irqrestore(&zone->lock, flags);

	return order < MAX_ORDER;
}
8464 8465 8466 8467 8468 8469 8470 8471 8472 8473 8474 8475 8476 8477 8478 8479 8480 8481 8482 8483 8484 8485 8486 8487 8488 8489 8490 8491 8492 8493

#ifdef CONFIG_MEMORY_FAILURE
/*
 * Set PG_hwpoison flag if a given page is confirmed to be a free page.  This
 * test is performed under the zone lock to prevent a race against page
 * allocation.
 */
bool set_hwpoison_free_buddy_page(struct page *page)
{
	struct zone *zone = page_zone(page);
	unsigned long pfn = page_to_pfn(page);
	unsigned long flags;
	unsigned int order;
	bool hwpoisoned = false;

	spin_lock_irqsave(&zone->lock, flags);
	for (order = 0; order < MAX_ORDER; order++) {
		struct page *page_head = page - (pfn & ((1 << order) - 1));

		if (PageBuddy(page_head) && page_order(page_head) >= order) {
			if (!TestSetPageHWPoison(page))
				hwpoisoned = true;
			break;
		}
	}
	spin_unlock_irqrestore(&zone->lock, flags);

	return hwpoisoned;
}
#endif