iwl-nvm-parse.c 53.3 KB
Newer Older
1 2 3 4 5 6 7
/******************************************************************************
 *
 * This file is provided under a dual BSD/GPLv2 license.  When using or
 * redistributing this file, you may do so under either license.
 *
 * GPL LICENSE SUMMARY
 *
8
 * Copyright(c) 2008 - 2014 Intel Corporation. All rights reserved.
9
 * Copyright(c) 2013 - 2015 Intel Mobile Communications GmbH
10
 * Copyright(c) 2016 - 2017 Intel Deutschland GmbH
11
 * Copyright(c) 2018 - 2019 Intel Corporation
12 13 14 15 16 17 18 19 20 21 22
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of version 2 of the GNU General Public License as
 * published by the Free Software Foundation.
 *
 * This program is distributed in the hope that it will be useful, but
 * WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * General Public License for more details.
 *
 * The full GNU General Public License is included in this distribution
23
 * in the file called COPYING.
24 25
 *
 * Contact Information:
26
 *  Intel Linux Wireless <linuxwifi@intel.com>
27 28 29 30
 * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
 *
 * BSD LICENSE
 *
31
 * Copyright(c) 2005 - 2014 Intel Corporation. All rights reserved.
32
 * Copyright(c) 2013 - 2015 Intel Mobile Communications GmbH
33
 * Copyright(c) 2016 - 2017 Intel Deutschland GmbH
34
 * Copyright(c) 2018 - 2019 Intel Corporation
35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65
 * All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 *
 *  * Redistributions of source code must retain the above copyright
 *    notice, this list of conditions and the following disclaimer.
 *  * Redistributions in binary form must reproduce the above copyright
 *    notice, this list of conditions and the following disclaimer in
 *    the documentation and/or other materials provided with the
 *    distribution.
 *  * Neither the name Intel Corporation nor the names of its
 *    contributors may be used to endorse or promote products derived
 *    from this software without specific prior written permission.
 *
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 *****************************************************************************/
#include <linux/types.h>
#include <linux/slab.h>
#include <linux/export.h>
66
#include <linux/etherdevice.h>
67
#include <linux/pci.h>
68
#include <linux/firmware.h>
69

70
#include "iwl-drv.h"
71 72
#include "iwl-modparams.h"
#include "iwl-nvm-parse.h"
73
#include "iwl-prph.h"
74 75
#include "iwl-io.h"
#include "iwl-csr.h"
76
#include "fw/acpi.h"
77
#include "fw/api/nvm-reg.h"
S
Shaul Triebitz 已提交
78 79 80
#include "fw/api/commands.h"
#include "fw/api/cmdhdr.h"
#include "fw/img.h"
81 82

/* NVM offsets (in words) definitions */
83
enum nvm_offsets {
84
	/* NVM HW-Section offset (in words) definitions */
85
	SUBSYSTEM_ID = 0x0A,
86 87
	HW_ADDR = 0x15,

88
	/* NVM SW-Section offset (in words) definitions */
89 90 91 92 93 94 95
	NVM_SW_SECTION = 0x1C0,
	NVM_VERSION = 0,
	RADIO_CFG = 1,
	SKU = 2,
	N_HW_ADDRS = 3,
	NVM_CHANNELS = 0x1E0 - NVM_SW_SECTION,

96
	/* NVM calibration section offset (in words) definitions */
97
	NVM_CALIB_SECTION = 0x2B8,
98 99 100 101
	XTAL_CALIB = 0x316 - NVM_CALIB_SECTION,

	/* NVM REGULATORY -Section offset (in words) definitions */
	NVM_CHANNELS_SDP = 0,
102 103
};

104
enum ext_nvm_offsets {
105
	/* NVM HW-Section offset (in words) definitions */
106
	MAC_ADDRESS_OVERRIDE_EXT_NVM = 1,
107 108

	/* NVM SW-Section offset (in words) definitions */
109
	NVM_VERSION_EXT_NVM = 0,
110 111 112
	N_HW_ADDRS_FAMILY_8000 = 3,

	/* NVM PHY_SKU-Section offset (in words) definitions */
113
	RADIO_CFG_FAMILY_EXT_NVM = 0,
114
	SKU_FAMILY_8000 = 2,
115

116
	/* NVM REGULATORY -Section offset (in words) definitions */
117 118 119 120
	NVM_CHANNELS_EXTENDED = 0,
	NVM_LAR_OFFSET_OLD = 0x4C7,
	NVM_LAR_OFFSET = 0x507,
	NVM_LAR_ENABLED = 0x7,
121 122
};

123 124
/* SKU Capabilities (actual values from NVM definition) */
enum nvm_sku_bits {
125 126 127 128 129
	NVM_SKU_CAP_BAND_24GHZ		= BIT(0),
	NVM_SKU_CAP_BAND_52GHZ		= BIT(1),
	NVM_SKU_CAP_11N_ENABLE		= BIT(2),
	NVM_SKU_CAP_11AC_ENABLE		= BIT(3),
	NVM_SKU_CAP_MIMO_DISABLE	= BIT(5),
130 131 132 133 134
};

/*
 * These are the channel numbers in the order that they are stored in the NVM
 */
135
static const u16 iwl_nvm_channels[] = {
136 137 138 139 140 141 142 143
	/* 2.4 GHz */
	1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14,
	/* 5 GHz */
	36, 40, 44 , 48, 52, 56, 60, 64,
	100, 104, 108, 112, 116, 120, 124, 128, 132, 136, 140, 144,
	149, 153, 157, 161, 165
};

144
static const u16 iwl_ext_nvm_channels[] = {
145
	/* 2.4 GHz */
146
	1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14,
147 148 149 150 151 152
	/* 5 GHz */
	36, 40, 44, 48, 52, 56, 60, 64, 68, 72, 76, 80, 84, 88, 92,
	96, 100, 104, 108, 112, 116, 120, 124, 128, 132, 136, 140, 144,
	149, 153, 157, 161, 165, 169, 173, 177, 181
};

153 154 155 156 157 158 159 160
static const u16 iwl_uhb_nvm_channels[] = {
	/* 2.4 GHz */
	1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14,
	/* 5 GHz */
	36, 40, 44, 48, 52, 56, 60, 64, 68, 72, 76, 80, 84, 88, 92,
	96, 100, 104, 108, 112, 116, 120, 124, 128, 132, 136, 140, 144,
	149, 153, 157, 161, 165, 169, 173, 177, 181,
	/* 6-7 GHz */
161 162 163 164
	1, 5, 9, 13, 17, 21, 25, 29, 33, 37, 41, 45, 49, 53, 57, 61, 65, 69,
	73, 77, 81, 85, 89, 93, 97, 101, 105, 109, 113, 117, 121, 125, 129,
	133, 137, 141, 145, 149, 153, 157, 161, 165, 169, 173, 177, 181, 185,
	189, 193, 197, 201, 205, 209, 213, 217, 221, 225, 229, 233
165 166
};

167 168
#define IWL_NVM_NUM_CHANNELS		ARRAY_SIZE(iwl_nvm_channels)
#define IWL_NVM_NUM_CHANNELS_EXT	ARRAY_SIZE(iwl_ext_nvm_channels)
169
#define IWL_NVM_NUM_CHANNELS_UHB	ARRAY_SIZE(iwl_uhb_nvm_channels)
170
#define NUM_2GHZ_CHANNELS		14
L
Luca Coelho 已提交
171
#define NUM_5GHZ_CHANNELS		37
172 173
#define FIRST_2GHZ_HT_MINUS		5
#define LAST_2GHZ_HT_PLUS		9
174
#define N_HW_ADDR_MASK			0xF
175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204

/* rate data (static) */
static struct ieee80211_rate iwl_cfg80211_rates[] = {
	{ .bitrate = 1 * 10, .hw_value = 0, .hw_value_short = 0, },
	{ .bitrate = 2 * 10, .hw_value = 1, .hw_value_short = 1,
	  .flags = IEEE80211_RATE_SHORT_PREAMBLE, },
	{ .bitrate = 5.5 * 10, .hw_value = 2, .hw_value_short = 2,
	  .flags = IEEE80211_RATE_SHORT_PREAMBLE, },
	{ .bitrate = 11 * 10, .hw_value = 3, .hw_value_short = 3,
	  .flags = IEEE80211_RATE_SHORT_PREAMBLE, },
	{ .bitrate = 6 * 10, .hw_value = 4, .hw_value_short = 4, },
	{ .bitrate = 9 * 10, .hw_value = 5, .hw_value_short = 5, },
	{ .bitrate = 12 * 10, .hw_value = 6, .hw_value_short = 6, },
	{ .bitrate = 18 * 10, .hw_value = 7, .hw_value_short = 7, },
	{ .bitrate = 24 * 10, .hw_value = 8, .hw_value_short = 8, },
	{ .bitrate = 36 * 10, .hw_value = 9, .hw_value_short = 9, },
	{ .bitrate = 48 * 10, .hw_value = 10, .hw_value_short = 10, },
	{ .bitrate = 54 * 10, .hw_value = 11, .hw_value_short = 11, },
};
#define RATES_24_OFFS	0
#define N_RATES_24	ARRAY_SIZE(iwl_cfg80211_rates)
#define RATES_52_OFFS	4
#define N_RATES_52	(N_RATES_24 - RATES_52_OFFS)

/**
 * enum iwl_nvm_channel_flags - channel flags in NVM
 * @NVM_CHANNEL_VALID: channel is usable for this SKU/geo
 * @NVM_CHANNEL_IBSS: usable as an IBSS channel
 * @NVM_CHANNEL_ACTIVE: active scanning allowed
 * @NVM_CHANNEL_RADAR: radar detection required
205 206 207
 * @NVM_CHANNEL_INDOOR_ONLY: only indoor use is allowed
 * @NVM_CHANNEL_GO_CONCURRENT: GO operation is allowed when connected to BSS
 *	on same channel on 2.4 or same UNII band on 5.2
208 209 210 211 212 213
 * @NVM_CHANNEL_UNIFORM: uniform spreading required
 * @NVM_CHANNEL_20MHZ: 20 MHz channel okay
 * @NVM_CHANNEL_40MHZ: 40 MHz channel okay
 * @NVM_CHANNEL_80MHZ: 80 MHz channel okay
 * @NVM_CHANNEL_160MHZ: 160 MHz channel okay
 * @NVM_CHANNEL_DC_HIGH: DC HIGH required/allowed (?)
214 215
 */
enum iwl_nvm_channel_flags {
216 217 218 219 220 221 222 223 224 225 226 227
	NVM_CHANNEL_VALID		= BIT(0),
	NVM_CHANNEL_IBSS		= BIT(1),
	NVM_CHANNEL_ACTIVE		= BIT(3),
	NVM_CHANNEL_RADAR		= BIT(4),
	NVM_CHANNEL_INDOOR_ONLY		= BIT(5),
	NVM_CHANNEL_GO_CONCURRENT	= BIT(6),
	NVM_CHANNEL_UNIFORM		= BIT(7),
	NVM_CHANNEL_20MHZ		= BIT(8),
	NVM_CHANNEL_40MHZ		= BIT(9),
	NVM_CHANNEL_80MHZ		= BIT(10),
	NVM_CHANNEL_160MHZ		= BIT(11),
	NVM_CHANNEL_DC_HIGH		= BIT(12),
228 229
};

230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245
/**
 * enum iwl_reg_capa_flags - global flags applied for the whole regulatory
 * domain.
 * @REG_CAPA_BF_CCD_LOW_BAND: Beam-forming or Cyclic Delay Diversity in the
 *	2.4Ghz band is allowed.
 * @REG_CAPA_BF_CCD_HIGH_BAND: Beam-forming or Cyclic Delay Diversity in the
 *	5Ghz band is allowed.
 * @REG_CAPA_160MHZ_ALLOWED: 11ac channel with a width of 160Mhz is allowed
 *	for this regulatory domain (valid only in 5Ghz).
 * @REG_CAPA_80MHZ_ALLOWED: 11ac channel with a width of 80Mhz is allowed
 *	for this regulatory domain (valid only in 5Ghz).
 * @REG_CAPA_MCS_8_ALLOWED: 11ac with MCS 8 is allowed.
 * @REG_CAPA_MCS_9_ALLOWED: 11ac with MCS 9 is allowed.
 * @REG_CAPA_40MHZ_FORBIDDEN: 11n channel with a width of 40Mhz is forbidden
 *	for this regulatory domain (valid only in 5Ghz).
 * @REG_CAPA_DC_HIGH_ENABLED: DC HIGH allowed.
246
 * @REG_CAPA_11AX_DISABLED: 11ax is forbidden for this regulatory domain.
247 248 249 250 251 252 253 254 255 256
 */
enum iwl_reg_capa_flags {
	REG_CAPA_BF_CCD_LOW_BAND	= BIT(0),
	REG_CAPA_BF_CCD_HIGH_BAND	= BIT(1),
	REG_CAPA_160MHZ_ALLOWED		= BIT(2),
	REG_CAPA_80MHZ_ALLOWED		= BIT(3),
	REG_CAPA_MCS_8_ALLOWED		= BIT(4),
	REG_CAPA_MCS_9_ALLOWED		= BIT(5),
	REG_CAPA_40MHZ_FORBIDDEN	= BIT(7),
	REG_CAPA_DC_HIGH_ENABLED	= BIT(9),
257
	REG_CAPA_11AX_DISABLED		= BIT(10),
258 259
};

260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318
/**
 * enum iwl_reg_capa_flags_v2 - global flags applied for the whole regulatory
 * domain (version 2).
 * @REG_CAPA_V2_STRADDLE_DISABLED: Straddle channels (144, 142, 138) are
 *	disabled.
 * @REG_CAPA_V2_BF_CCD_LOW_BAND: Beam-forming or Cyclic Delay Diversity in the
 *	2.4Ghz band is allowed.
 * @REG_CAPA_V2_BF_CCD_HIGH_BAND: Beam-forming or Cyclic Delay Diversity in the
 *	5Ghz band is allowed.
 * @REG_CAPA_V2_160MHZ_ALLOWED: 11ac channel with a width of 160Mhz is allowed
 *	for this regulatory domain (valid only in 5Ghz).
 * @REG_CAPA_V2_80MHZ_ALLOWED: 11ac channel with a width of 80Mhz is allowed
 *	for this regulatory domain (valid only in 5Ghz).
 * @REG_CAPA_V2_MCS_8_ALLOWED: 11ac with MCS 8 is allowed.
 * @REG_CAPA_V2_MCS_9_ALLOWED: 11ac with MCS 9 is allowed.
 * @REG_CAPA_V2_WEATHER_DISABLED: Weather radar channels (120, 124, 128, 118,
 *	126, 122) are disabled.
 * @REG_CAPA_V2_40MHZ_ALLOWED: 11n channel with a width of 40Mhz is allowed
 *	for this regulatory domain (uvalid only in 5Ghz).
 * @REG_CAPA_V2_11AX_DISABLED: 11ax is forbidden for this regulatory domain.
 */
enum iwl_reg_capa_flags_v2 {
	REG_CAPA_V2_STRADDLE_DISABLED	= BIT(0),
	REG_CAPA_V2_BF_CCD_LOW_BAND	= BIT(1),
	REG_CAPA_V2_BF_CCD_HIGH_BAND	= BIT(2),
	REG_CAPA_V2_160MHZ_ALLOWED	= BIT(3),
	REG_CAPA_V2_80MHZ_ALLOWED	= BIT(4),
	REG_CAPA_V2_MCS_8_ALLOWED	= BIT(5),
	REG_CAPA_V2_MCS_9_ALLOWED	= BIT(6),
	REG_CAPA_V2_WEATHER_DISABLED	= BIT(7),
	REG_CAPA_V2_40MHZ_ALLOWED	= BIT(8),
	REG_CAPA_V2_11AX_DISABLED	= BIT(13),
};

/*
* API v2 for reg_capa_flags is relevant from version 6 and onwards of the
* MCC update command response.
*/
#define REG_CAPA_V2_RESP_VER	6

/**
 * struct iwl_reg_capa - struct for global regulatory capabilities, Used for
 * handling the different APIs of reg_capa_flags.
 *
 * @allow_40mhz: 11n channel with a width of 40Mhz is allowed
 *	for this regulatory domain (valid only in 5Ghz).
 * @allow_80mhz: 11ac channel with a width of 80Mhz is allowed
 *	for this regulatory domain (valid only in 5Ghz).
 * @allow_160mhz: 11ac channel with a width of 160Mhz is allowed
 *	for this regulatory domain (valid only in 5Ghz).
 * @disable_11ax: 11ax is forbidden for this regulatory domain.
 */
struct iwl_reg_capa {
	u16 allow_40mhz;
	u16 allow_80mhz;
	u16 allow_160mhz;
	u16 disable_11ax;
};

319
static inline void iwl_nvm_print_channel_flags(struct device *dev, u32 level,
320
					       int chan, u32 flags)
321
{
322
#define CHECK_AND_PRINT_I(x)	\
323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348
	((flags & NVM_CHANNEL_##x) ? " " #x : "")

	if (!(flags & NVM_CHANNEL_VALID)) {
		IWL_DEBUG_DEV(dev, level, "Ch. %d: 0x%x: No traffic\n",
			      chan, flags);
		return;
	}

	/* Note: already can print up to 101 characters, 110 is the limit! */
	IWL_DEBUG_DEV(dev, level,
		      "Ch. %d: 0x%x:%s%s%s%s%s%s%s%s%s%s%s%s\n",
		      chan, flags,
		      CHECK_AND_PRINT_I(VALID),
		      CHECK_AND_PRINT_I(IBSS),
		      CHECK_AND_PRINT_I(ACTIVE),
		      CHECK_AND_PRINT_I(RADAR),
		      CHECK_AND_PRINT_I(INDOOR_ONLY),
		      CHECK_AND_PRINT_I(GO_CONCURRENT),
		      CHECK_AND_PRINT_I(UNIFORM),
		      CHECK_AND_PRINT_I(20MHZ),
		      CHECK_AND_PRINT_I(40MHZ),
		      CHECK_AND_PRINT_I(80MHZ),
		      CHECK_AND_PRINT_I(160MHZ),
		      CHECK_AND_PRINT_I(DC_HIGH));
#undef CHECK_AND_PRINT_I
}
349

350
static u32 iwl_get_channel_flags(u8 ch_num, int ch_idx, enum nl80211_band band,
351
				 u32 nvm_flags, const struct iwl_cfg *cfg)
352 353 354
{
	u32 flags = IEEE80211_CHAN_NO_HT40;

355
	if (band == NL80211_BAND_2GHZ && (nvm_flags & NVM_CHANNEL_40MHZ)) {
356 357 358 359
		if (ch_num <= LAST_2GHZ_HT_PLUS)
			flags &= ~IEEE80211_CHAN_NO_HT40PLUS;
		if (ch_num >= FIRST_2GHZ_HT_MINUS)
			flags &= ~IEEE80211_CHAN_NO_HT40MINUS;
360
	} else if (nvm_flags & NVM_CHANNEL_40MHZ) {
361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387
		if ((ch_idx - NUM_2GHZ_CHANNELS) % 2 == 0)
			flags &= ~IEEE80211_CHAN_NO_HT40PLUS;
		else
			flags &= ~IEEE80211_CHAN_NO_HT40MINUS;
	}
	if (!(nvm_flags & NVM_CHANNEL_80MHZ))
		flags |= IEEE80211_CHAN_NO_80MHZ;
	if (!(nvm_flags & NVM_CHANNEL_160MHZ))
		flags |= IEEE80211_CHAN_NO_160MHZ;

	if (!(nvm_flags & NVM_CHANNEL_IBSS))
		flags |= IEEE80211_CHAN_NO_IR;

	if (!(nvm_flags & NVM_CHANNEL_ACTIVE))
		flags |= IEEE80211_CHAN_NO_IR;

	if (nvm_flags & NVM_CHANNEL_RADAR)
		flags |= IEEE80211_CHAN_RADAR;

	if (nvm_flags & NVM_CHANNEL_INDOOR_ONLY)
		flags |= IEEE80211_CHAN_INDOOR_ONLY;

	/* Set the GO concurrent flag only in case that NO_IR is set.
	 * Otherwise it is meaningless
	 */
	if ((nvm_flags & NVM_CHANNEL_GO_CONCURRENT) &&
	    (flags & IEEE80211_CHAN_NO_IR))
388
		flags |= IEEE80211_CHAN_IR_CONCURRENT;
389 390 391 392

	return flags;
}

393 394
static enum nl80211_band iwl_nl80211_band_from_channel_idx(int ch_idx)
{
L
Luca Coelho 已提交
395 396 397 398
	if (ch_idx >= NUM_2GHZ_CHANNELS + NUM_5GHZ_CHANNELS) {
		return NL80211_BAND_6GHZ;
	}

399 400 401 402 403
	if (ch_idx >= NUM_2GHZ_CHANNELS)
		return NL80211_BAND_5GHZ;
	return NL80211_BAND_2GHZ;
}

404 405
static int iwl_init_channel_map(struct device *dev, const struct iwl_cfg *cfg,
				struct iwl_nvm_data *data,
406 407
				const void * const nvm_ch_flags,
				u32 sbands_flags, bool v4)
408 409 410 411
{
	int ch_idx;
	int n_channels = 0;
	struct ieee80211_channel *channel;
412
	u32 ch_flags;
413
	int num_of_ch;
414
	const u16 *nvm_chan;
415

416 417 418 419
	if (cfg->uhb_supported) {
		num_of_ch = IWL_NVM_NUM_CHANNELS_UHB;
		nvm_chan = iwl_uhb_nvm_channels;
	} else if (cfg->nvm_type == IWL_NVM_EXT) {
420
		num_of_ch = IWL_NVM_NUM_CHANNELS_EXT;
421 422 423 424
		nvm_chan = iwl_ext_nvm_channels;
	} else {
		num_of_ch = IWL_NVM_NUM_CHANNELS;
		nvm_chan = iwl_nvm_channels;
425
	}
426

427
	for (ch_idx = 0; ch_idx < num_of_ch; ch_idx++) {
428 429
		enum nl80211_band band =
			iwl_nl80211_band_from_channel_idx(ch_idx);
430

431 432 433 434 435 436
		if (v4)
			ch_flags =
				__le32_to_cpup((__le32 *)nvm_ch_flags + ch_idx);
		else
			ch_flags =
				__le16_to_cpup((__le16 *)nvm_ch_flags + ch_idx);
437

438 439
		if (band == NL80211_BAND_5GHZ &&
		    !data->sku_cap_band_52ghz_enable)
440
			continue;
441

442
		/* workaround to disable wide channels in 5GHz */
443
		if ((sbands_flags & IWL_NVM_SBANDS_FLAGS_NO_WIDE_IN_5GHZ) &&
444
		    band == NL80211_BAND_5GHZ) {
445 446 447 448 449
			ch_flags &= ~(NVM_CHANNEL_40MHZ |
				     NVM_CHANNEL_80MHZ |
				     NVM_CHANNEL_160MHZ);
		}

450 451 452
		if (ch_flags & NVM_CHANNEL_160MHZ)
			data->vht160_supported = true;

453 454
		if (!(sbands_flags & IWL_NVM_SBANDS_FLAGS_LAR) &&
		    !(ch_flags & NVM_CHANNEL_VALID)) {
455 456 457 458 459
			/*
			 * Channels might become valid later if lar is
			 * supported, hence we still want to add them to
			 * the list of supported channels to cfg80211.
			 */
460 461
			iwl_nvm_print_channel_flags(dev, IWL_DL_EEPROM,
						    nvm_chan[ch_idx], ch_flags);
462 463 464 465 466 467
			continue;
		}

		channel = &data->channels[n_channels];
		n_channels++;

468
		channel->hw_value = nvm_chan[ch_idx];
469
		channel->band = band;
470 471 472 473 474 475
		channel->center_freq =
			ieee80211_channel_to_frequency(
				channel->hw_value, channel->band);

		/* Initialize regulatory-based run-time data */

476 477 478 479
		/*
		 * Default value - highest tx power value.  max_power
		 * is not used in mvm, and is used for backwards compatibility
		 */
480
		channel->max_power = IWL_DEFAULT_MAX_TX_POWER;
481 482

		/* don't put limitations in case we're using LAR */
483
		if (!(sbands_flags & IWL_NVM_SBANDS_FLAGS_LAR))
484
			channel->flags = iwl_get_channel_flags(nvm_chan[ch_idx],
485
							       ch_idx, band,
486
							       ch_flags, cfg);
487 488 489
		else
			channel->flags = 0;

L
Luca Coelho 已提交
490 491 492 493 494
		/* TODO: Don't put limitations on UHB devices as we still don't
		 * have NVM for them
		 */
		if (cfg->uhb_supported)
			channel->flags = 0;
495 496 497 498
		iwl_nvm_print_channel_flags(dev, IWL_DL_EEPROM,
					    channel->hw_value, ch_flags);
		IWL_DEBUG_EEPROM(dev, "Ch. %d: %ddBm\n",
				 channel->hw_value, channel->max_power);
499 500 501 502 503
	}

	return n_channels;
}

504
static void iwl_init_vht_hw_capab(struct iwl_trans *trans,
505
				  struct iwl_nvm_data *data,
506 507
				  struct ieee80211_sta_vht_cap *vht_cap,
				  u8 tx_chains, u8 rx_chains)
508
{
509
	const struct iwl_cfg *cfg = trans->cfg;
510 511
	int num_rx_ants = num_of_ant(rx_chains);
	int num_tx_ants = num_of_ant(tx_chains);
512 513
	unsigned int max_ampdu_exponent = (cfg->max_vht_ampdu_exponent ?:
					   IEEE80211_VHT_MAX_AMPDU_1024K);
514

515 516 517 518 519
	vht_cap->vht_supported = true;

	vht_cap->cap = IEEE80211_VHT_CAP_SHORT_GI_80 |
		       IEEE80211_VHT_CAP_RXSTBC_1 |
		       IEEE80211_VHT_CAP_SU_BEAMFORMEE_CAPABLE |
520
		       3 << IEEE80211_VHT_CAP_BEAMFORMEE_STS_SHIFT |
521 522
		       max_ampdu_exponent <<
		       IEEE80211_VHT_CAP_MAX_A_MPDU_LENGTH_EXPONENT_SHIFT;
523

524
	if (data->vht160_supported)
525 526
		vht_cap->cap |= IEEE80211_VHT_CAP_SUPP_CHAN_WIDTH_160MHZ |
				IEEE80211_VHT_CAP_SHORT_GI_160;
527

528 529 530
	if (cfg->vht_mu_mimo_supported)
		vht_cap->cap |= IEEE80211_VHT_CAP_MU_BEAMFORMEE_CAPABLE;

E
Eyal Shapira 已提交
531 532 533
	if (cfg->ht_params->ldpc)
		vht_cap->cap |= IEEE80211_VHT_CAP_RXLDPC;

534 535 536 537 538
	if (data->sku_cap_mimo_disabled) {
		num_rx_ants = 1;
		num_tx_ants = 1;
	}

539
	if (num_tx_ants > 1)
540
		vht_cap->cap |= IEEE80211_VHT_CAP_TXSTBC;
541 542
	else
		vht_cap->cap |= IEEE80211_VHT_CAP_TX_ANTENNA_PATTERN;
543

544
	switch (iwlwifi_mod_params.amsdu_size) {
545
	case IWL_AMSDU_DEF:
546
		if (trans->trans_cfg->mq_rx_supported)
547 548 549 550 551
			vht_cap->cap |=
				IEEE80211_VHT_CAP_MAX_MPDU_LENGTH_11454;
		else
			vht_cap->cap |= IEEE80211_VHT_CAP_MAX_MPDU_LENGTH_3895;
		break;
552
	case IWL_AMSDU_2K:
553
		if (trans->trans_cfg->mq_rx_supported)
554 555 556 557 558
			vht_cap->cap |=
				IEEE80211_VHT_CAP_MAX_MPDU_LENGTH_11454;
		else
			WARN(1, "RB size of 2K is not supported by this device\n");
		break;
559 560 561 562
	case IWL_AMSDU_4K:
		vht_cap->cap |= IEEE80211_VHT_CAP_MAX_MPDU_LENGTH_3895;
		break;
	case IWL_AMSDU_8K:
563
		vht_cap->cap |= IEEE80211_VHT_CAP_MAX_MPDU_LENGTH_7991;
564 565 566 567 568 569 570
		break;
	case IWL_AMSDU_12K:
		vht_cap->cap |= IEEE80211_VHT_CAP_MAX_MPDU_LENGTH_11454;
		break;
	default:
		break;
	}
571 572 573 574 575 576 577 578 579 580 581

	vht_cap->vht_mcs.rx_mcs_map =
		cpu_to_le16(IEEE80211_VHT_MCS_SUPPORT_0_9 << 0 |
			    IEEE80211_VHT_MCS_SUPPORT_0_9 << 2 |
			    IEEE80211_VHT_MCS_NOT_SUPPORTED << 4 |
			    IEEE80211_VHT_MCS_NOT_SUPPORTED << 6 |
			    IEEE80211_VHT_MCS_NOT_SUPPORTED << 8 |
			    IEEE80211_VHT_MCS_NOT_SUPPORTED << 10 |
			    IEEE80211_VHT_MCS_NOT_SUPPORTED << 12 |
			    IEEE80211_VHT_MCS_NOT_SUPPORTED << 14);

582 583
	if (num_rx_ants == 1 || cfg->rx_with_siso_diversity) {
		vht_cap->cap |= IEEE80211_VHT_CAP_RX_ANTENNA_PATTERN;
584 585 586 587 588 589
		/* this works because NOT_SUPPORTED == 3 */
		vht_cap->vht_mcs.rx_mcs_map |=
			cpu_to_le16(IEEE80211_VHT_MCS_NOT_SUPPORTED << 2);
	}

	vht_cap->vht_mcs.tx_mcs_map = vht_cap->vht_mcs.rx_mcs_map;
590 591 592

	vht_cap->vht_mcs.tx_highest |=
		cpu_to_le16(IEEE80211_VHT_EXT_NSS_BW_CAPABLE);
593 594
}

595
static const struct ieee80211_sband_iftype_data iwl_he_capa[] = {
596 597 598 599 600 601 602 603 604 605 606 607
	{
		.types_mask = BIT(NL80211_IFTYPE_STATION),
		.he_cap = {
			.has_he = true,
			.he_cap_elem = {
				.mac_cap_info[0] =
					IEEE80211_HE_MAC_CAP0_HTC_HE |
					IEEE80211_HE_MAC_CAP0_TWT_REQ,
				.mac_cap_info[1] =
					IEEE80211_HE_MAC_CAP1_TF_MAC_PAD_DUR_16US |
					IEEE80211_HE_MAC_CAP1_MULTI_TID_AGG_RX_QOS_8,
				.mac_cap_info[2] =
608
					IEEE80211_HE_MAC_CAP2_32BIT_BA_BITMAP,
609 610 611 612 613 614 615 616 617
				.mac_cap_info[3] =
					IEEE80211_HE_MAC_CAP3_OMI_CONTROL |
					IEEE80211_HE_MAC_CAP3_MAX_AMPDU_LEN_EXP_VHT_2,
				.mac_cap_info[4] =
					IEEE80211_HE_MAC_CAP4_AMDSU_IN_AMPDU |
					IEEE80211_HE_MAC_CAP4_MULTI_TID_AGG_TX_QOS_B39,
				.mac_cap_info[5] =
					IEEE80211_HE_MAC_CAP5_MULTI_TID_AGG_TX_QOS_B40 |
					IEEE80211_HE_MAC_CAP5_MULTI_TID_AGG_TX_QOS_B41 |
L
Liad Kaufman 已提交
618 619 620
					IEEE80211_HE_MAC_CAP5_UL_2x996_TONE_RU |
					IEEE80211_HE_MAC_CAP5_HE_DYNAMIC_SM_PS |
					IEEE80211_HE_MAC_CAP5_HT_VHT_TRIG_FRAME_RX,
621 622 623 624 625 626 627
				.phy_cap_info[0] =
					IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_40MHZ_IN_2G |
					IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_40MHZ_80MHZ_IN_5G |
					IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_160MHZ_IN_5G,
				.phy_cap_info[1] =
					IEEE80211_HE_PHY_CAP1_PREAMBLE_PUNC_RX_MASK |
					IEEE80211_HE_PHY_CAP1_DEVICE_CLASS_A |
L
Liad Kaufman 已提交
628
					IEEE80211_HE_PHY_CAP1_LDPC_CODING_IN_PAYLOAD,
629
				.phy_cap_info[2] =
L
Liad Kaufman 已提交
630
					IEEE80211_HE_PHY_CAP2_NDP_4x_LTF_AND_3_2US,
631
				.phy_cap_info[3] =
L
Liad Kaufman 已提交
632
					IEEE80211_HE_PHY_CAP3_DCM_MAX_CONST_TX_NO_DCM |
633
					IEEE80211_HE_PHY_CAP3_DCM_MAX_TX_NSS_1 |
L
Liad Kaufman 已提交
634
					IEEE80211_HE_PHY_CAP3_DCM_MAX_CONST_RX_NO_DCM |
635 636 637 638 639 640 641
					IEEE80211_HE_PHY_CAP3_DCM_MAX_RX_NSS_1,
				.phy_cap_info[4] =
					IEEE80211_HE_PHY_CAP4_SU_BEAMFORMEE |
					IEEE80211_HE_PHY_CAP4_BEAMFORMEE_MAX_STS_ABOVE_80MHZ_8 |
					IEEE80211_HE_PHY_CAP4_BEAMFORMEE_MAX_STS_UNDER_80MHZ_8,
				.phy_cap_info[5] =
					IEEE80211_HE_PHY_CAP5_BEAMFORMEE_NUM_SND_DIM_UNDER_80MHZ_2 |
L
Liad Kaufman 已提交
642
					IEEE80211_HE_PHY_CAP5_BEAMFORMEE_NUM_SND_DIM_ABOVE_80MHZ_2,
643 644 645 646 647 648 649 650 651 652 653
				.phy_cap_info[6] =
					IEEE80211_HE_PHY_CAP6_PPE_THRESHOLD_PRESENT,
				.phy_cap_info[7] =
					IEEE80211_HE_PHY_CAP7_POWER_BOOST_FACTOR_AR |
					IEEE80211_HE_PHY_CAP7_HE_SU_MU_PPDU_4XLTF_AND_08_US_GI |
					IEEE80211_HE_PHY_CAP7_MAX_NC_1,
				.phy_cap_info[8] =
					IEEE80211_HE_PHY_CAP8_HE_ER_SU_PPDU_4XLTF_AND_08_US_GI |
					IEEE80211_HE_PHY_CAP8_20MHZ_IN_40MHZ_HE_PPDU_IN_2G |
					IEEE80211_HE_PHY_CAP8_20MHZ_IN_160MHZ_HE_PPDU |
					IEEE80211_HE_PHY_CAP8_80MHZ_IN_160MHZ_HE_PPDU |
L
Liad Kaufman 已提交
654
					IEEE80211_HE_PHY_CAP8_DCM_MAX_RU_2x996,
655 656 657
				.phy_cap_info[9] =
					IEEE80211_HE_PHY_CAP9_NON_TRIGGERED_CQI_FEEDBACK |
					IEEE80211_HE_PHY_CAP9_RX_FULL_BW_SU_USING_MU_WITH_COMP_SIGB |
L
Liad Kaufman 已提交
658 659
					IEEE80211_HE_PHY_CAP9_RX_FULL_BW_SU_USING_MU_WITH_NON_COMP_SIGB |
					IEEE80211_HE_PHY_CAP9_NOMIMAL_PKT_PADDING_RESERVED,
660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678
			},
			/*
			 * Set default Tx/Rx HE MCS NSS Support field.
			 * Indicate support for up to 2 spatial streams and all
			 * MCS, without any special cases
			 */
			.he_mcs_nss_supp = {
				.rx_mcs_80 = cpu_to_le16(0xfffa),
				.tx_mcs_80 = cpu_to_le16(0xfffa),
				.rx_mcs_160 = cpu_to_le16(0xfffa),
				.tx_mcs_160 = cpu_to_le16(0xfffa),
				.rx_mcs_80p80 = cpu_to_le16(0xffff),
				.tx_mcs_80p80 = cpu_to_le16(0xffff),
			},
			/*
			 * Set default PPE thresholds, with PPET16 set to 0,
			 * PPET8 set to 7
			 */
			.ppe_thres = {0x61, 0x1c, 0xc7, 0x71},
679
		},
680 681 682 683 684 685 686
	},
	{
		.types_mask = BIT(NL80211_IFTYPE_AP),
		.he_cap = {
			.has_he = true,
			.he_cap_elem = {
				.mac_cap_info[0] =
687
					IEEE80211_HE_MAC_CAP0_HTC_HE,
688 689 690 691
				.mac_cap_info[1] =
					IEEE80211_HE_MAC_CAP1_TF_MAC_PAD_DUR_16US |
					IEEE80211_HE_MAC_CAP1_MULTI_TID_AGG_RX_QOS_8,
				.mac_cap_info[2] =
692
					IEEE80211_HE_MAC_CAP2_BSR,
693 694 695 696 697
				.mac_cap_info[3] =
					IEEE80211_HE_MAC_CAP3_OMI_CONTROL |
					IEEE80211_HE_MAC_CAP3_MAX_AMPDU_LEN_EXP_VHT_2,
				.mac_cap_info[4] =
					IEEE80211_HE_MAC_CAP4_AMDSU_IN_AMPDU,
L
Liad Kaufman 已提交
698 699
				.mac_cap_info[5] =
					IEEE80211_HE_MAC_CAP5_UL_2x996_TONE_RU,
700 701 702 703 704
				.phy_cap_info[0] =
					IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_40MHZ_IN_2G |
					IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_40MHZ_80MHZ_IN_5G |
					IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_160MHZ_IN_5G,
				.phy_cap_info[1] =
L
Liad Kaufman 已提交
705
					IEEE80211_HE_PHY_CAP1_LDPC_CODING_IN_PAYLOAD,
706
				.phy_cap_info[2] =
L
Liad Kaufman 已提交
707
					IEEE80211_HE_PHY_CAP2_NDP_4x_LTF_AND_3_2US,
708
				.phy_cap_info[3] =
L
Liad Kaufman 已提交
709
					IEEE80211_HE_PHY_CAP3_DCM_MAX_CONST_TX_NO_DCM |
710
					IEEE80211_HE_PHY_CAP3_DCM_MAX_TX_NSS_1 |
L
Liad Kaufman 已提交
711
					IEEE80211_HE_PHY_CAP3_DCM_MAX_CONST_RX_NO_DCM |
712 713 714 715 716 717 718
					IEEE80211_HE_PHY_CAP3_DCM_MAX_RX_NSS_1,
				.phy_cap_info[4] =
					IEEE80211_HE_PHY_CAP4_SU_BEAMFORMEE |
					IEEE80211_HE_PHY_CAP4_BEAMFORMEE_MAX_STS_ABOVE_80MHZ_8 |
					IEEE80211_HE_PHY_CAP4_BEAMFORMEE_MAX_STS_UNDER_80MHZ_8,
				.phy_cap_info[5] =
					IEEE80211_HE_PHY_CAP5_BEAMFORMEE_NUM_SND_DIM_UNDER_80MHZ_2 |
L
Liad Kaufman 已提交
719
					IEEE80211_HE_PHY_CAP5_BEAMFORMEE_NUM_SND_DIM_ABOVE_80MHZ_2,
720 721 722 723 724 725 726 727 728 729
				.phy_cap_info[6] =
					IEEE80211_HE_PHY_CAP6_PPE_THRESHOLD_PRESENT,
				.phy_cap_info[7] =
					IEEE80211_HE_PHY_CAP7_HE_SU_MU_PPDU_4XLTF_AND_08_US_GI |
					IEEE80211_HE_PHY_CAP7_MAX_NC_1,
				.phy_cap_info[8] =
					IEEE80211_HE_PHY_CAP8_HE_ER_SU_PPDU_4XLTF_AND_08_US_GI |
					IEEE80211_HE_PHY_CAP8_20MHZ_IN_40MHZ_HE_PPDU_IN_2G |
					IEEE80211_HE_PHY_CAP8_20MHZ_IN_160MHZ_HE_PPDU |
					IEEE80211_HE_PHY_CAP8_80MHZ_IN_160MHZ_HE_PPDU |
L
Liad Kaufman 已提交
730
					IEEE80211_HE_PHY_CAP8_DCM_MAX_RU_2x996,
731 732
				.phy_cap_info[9] =
					IEEE80211_HE_PHY_CAP9_RX_FULL_BW_SU_USING_MU_WITH_COMP_SIGB |
L
Liad Kaufman 已提交
733 734
					IEEE80211_HE_PHY_CAP9_RX_FULL_BW_SU_USING_MU_WITH_NON_COMP_SIGB |
					IEEE80211_HE_PHY_CAP9_NOMIMAL_PKT_PADDING_RESERVED,
735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753
			},
			/*
			 * Set default Tx/Rx HE MCS NSS Support field.
			 * Indicate support for up to 2 spatial streams and all
			 * MCS, without any special cases
			 */
			.he_mcs_nss_supp = {
				.rx_mcs_80 = cpu_to_le16(0xfffa),
				.tx_mcs_80 = cpu_to_le16(0xfffa),
				.rx_mcs_160 = cpu_to_le16(0xfffa),
				.tx_mcs_160 = cpu_to_le16(0xfffa),
				.rx_mcs_80p80 = cpu_to_le16(0xffff),
				.tx_mcs_80p80 = cpu_to_le16(0xffff),
			},
			/*
			 * Set default PPE thresholds, with PPET16 set to 0,
			 * PPET8 set to 7
			 */
			.ppe_thres = {0x61, 0x1c, 0xc7, 0x71},
754 755 756 757
		},
	},
};

L
Luca Coelho 已提交
758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803
static void iwl_init_he_6ghz_capa(struct iwl_trans *trans,
				  struct iwl_nvm_data *data,
				  struct ieee80211_supported_band *sband,
				  u8 tx_chains, u8 rx_chains)
{
	struct ieee80211_sta_ht_cap ht_cap;
	struct ieee80211_sta_vht_cap vht_cap = {};
	struct ieee80211_sband_iftype_data *iftype_data;
	u16 he_6ghz_capa = 0;
	u32 exp;
	int i;

	if (sband->band != NL80211_BAND_6GHZ)
		return;

	/* grab HT/VHT capabilities and calculate HE 6 GHz capabilities */
	iwl_init_ht_hw_capab(trans, data, &ht_cap, NL80211_BAND_5GHZ,
			     tx_chains, rx_chains);
	WARN_ON(!ht_cap.ht_supported);
	iwl_init_vht_hw_capab(trans, data, &vht_cap, tx_chains, rx_chains);
	WARN_ON(!vht_cap.vht_supported);

	he_6ghz_capa |=
		u16_encode_bits(ht_cap.ampdu_density,
				IEEE80211_HE_6GHZ_CAP_MIN_MPDU_START);
	exp = u32_get_bits(vht_cap.cap,
			   IEEE80211_VHT_CAP_MAX_A_MPDU_LENGTH_EXPONENT_MASK);
	he_6ghz_capa |=
		u16_encode_bits(exp, IEEE80211_HE_6GHZ_CAP_MAX_AMPDU_LEN_EXP);
	exp = u32_get_bits(vht_cap.cap, IEEE80211_VHT_CAP_MAX_MPDU_MASK);
	he_6ghz_capa |=
		u16_encode_bits(exp, IEEE80211_HE_6GHZ_CAP_MAX_MPDU_LEN);
	/* we don't support extended_ht_cap_info anywhere, so no RD_RESPONDER */
	if (vht_cap.cap & IEEE80211_VHT_CAP_TX_ANTENNA_PATTERN)
		he_6ghz_capa |= IEEE80211_HE_6GHZ_CAP_TX_ANTPAT_CONS;
	if (vht_cap.cap & IEEE80211_VHT_CAP_RX_ANTENNA_PATTERN)
		he_6ghz_capa |= IEEE80211_HE_6GHZ_CAP_RX_ANTPAT_CONS;

	IWL_DEBUG_EEPROM(trans->dev, "he_6ghz_capa=0x%x\n", he_6ghz_capa);

	/* we know it's writable - we set it before ourselves */
	iftype_data = (void *)sband->iftype_data;
	for (i = 0; i < sband->n_iftype_data; i++)
		iftype_data[i].he_6ghz_capa.capa = cpu_to_le16(he_6ghz_capa);
}

804 805 806
static void iwl_init_he_hw_capab(struct iwl_trans *trans,
				 struct iwl_nvm_data *data,
				 struct ieee80211_supported_band *sband,
807 808
				 u8 tx_chains, u8 rx_chains)
{
809 810 811 812 813 814 815 816 817 818 819 820 821 822
	struct ieee80211_sband_iftype_data *iftype_data;

	/* should only initialize once */
	if (WARN_ON(sband->iftype_data))
		return;

	BUILD_BUG_ON(sizeof(data->iftd.low) != sizeof(iwl_he_capa));
	BUILD_BUG_ON(sizeof(data->iftd.high) != sizeof(iwl_he_capa));

	switch (sband->band) {
	case NL80211_BAND_2GHZ:
		iftype_data = data->iftd.low;
		break;
	case NL80211_BAND_5GHZ:
L
Luca Coelho 已提交
823
	case NL80211_BAND_6GHZ:
824 825 826 827 828 829 830 831 832 833
		iftype_data = data->iftd.high;
		break;
	default:
		WARN_ON(1);
		return;
	}

	memcpy(iftype_data, iwl_he_capa, sizeof(iwl_he_capa));

	sband->iftype_data = iftype_data;
834
	sband->n_iftype_data = ARRAY_SIZE(iwl_he_capa);
835 836 837

	/* If not 2x2, we need to indicate 1x1 in the Midamble RX Max NSTS */
	if ((tx_chains & rx_chains) != ANT_AB) {
838 839 840
		int i;

		for (i = 0; i < sband->n_iftype_data; i++) {
841
			iftype_data[i].he_cap.he_cap_elem.phy_cap_info[1] &=
842
				~IEEE80211_HE_PHY_CAP1_MIDAMBLE_RX_TX_MAX_NSTS;
843
			iftype_data[i].he_cap.he_cap_elem.phy_cap_info[2] &=
844
				~IEEE80211_HE_PHY_CAP2_MIDAMBLE_RX_TX_MAX_NSTS;
845
			iftype_data[i].he_cap.he_cap_elem.phy_cap_info[7] &=
846 847
				~IEEE80211_HE_PHY_CAP7_MAX_NC_MASK;
		}
848
	}
L
Luca Coelho 已提交
849
	iwl_init_he_6ghz_capa(trans, data, sband, tx_chains, rx_chains);
850 851
}

852
static void iwl_init_sbands(struct iwl_trans *trans,
S
Shaul Triebitz 已提交
853
			    struct iwl_nvm_data *data,
854 855
			    const void *nvm_ch_flags, u8 tx_chains,
			    u8 rx_chains, u32 sbands_flags, bool v4)
856
{
857 858
	struct device *dev = trans->dev;
	const struct iwl_cfg *cfg = trans->cfg;
859
	int n_channels;
860 861 862
	int n_used = 0;
	struct ieee80211_supported_band *sband;

863
	n_channels = iwl_init_channel_map(dev, cfg, data, nvm_ch_flags,
864
					  sbands_flags, v4);
865 866
	sband = &data->bands[NL80211_BAND_2GHZ];
	sband->band = NL80211_BAND_2GHZ;
867 868 869
	sband->bitrates = &iwl_cfg80211_rates[RATES_24_OFFS];
	sband->n_bitrates = N_RATES_24;
	n_used += iwl_init_sband_channels(data, sband, n_channels,
870
					  NL80211_BAND_2GHZ);
871
	iwl_init_ht_hw_capab(trans, data, &sband->ht_cap, NL80211_BAND_2GHZ,
872
			     tx_chains, rx_chains);
873

874
	if (data->sku_cap_11ax_enable && !iwlwifi_mod_params.disable_11ax)
875
		iwl_init_he_hw_capab(trans, data, sband, tx_chains, rx_chains);
876

877 878
	sband = &data->bands[NL80211_BAND_5GHZ];
	sband->band = NL80211_BAND_5GHZ;
879 880 881
	sband->bitrates = &iwl_cfg80211_rates[RATES_52_OFFS];
	sband->n_bitrates = N_RATES_52;
	n_used += iwl_init_sband_channels(data, sband, n_channels,
882
					  NL80211_BAND_5GHZ);
883
	iwl_init_ht_hw_capab(trans, data, &sband->ht_cap, NL80211_BAND_5GHZ,
884
			     tx_chains, rx_chains);
885
	if (data->sku_cap_11ac_enable && !iwlwifi_mod_params.disable_11ac)
886
		iwl_init_vht_hw_capab(trans, data, &sband->vht_cap,
887
				      tx_chains, rx_chains);
888

889
	if (data->sku_cap_11ax_enable && !iwlwifi_mod_params.disable_11ax)
890
		iwl_init_he_hw_capab(trans, data, sband, tx_chains, rx_chains);
891

L
Luca Coelho 已提交
892 893 894 895 896 897 898 899 900 901 902 903 904
	/* 6GHz band. */
	sband = &data->bands[NL80211_BAND_6GHZ];
	sband->band = NL80211_BAND_6GHZ;
	/* use the same rates as 5GHz band */
	sband->bitrates = &iwl_cfg80211_rates[RATES_52_OFFS];
	sband->n_bitrates = N_RATES_52;
	n_used += iwl_init_sband_channels(data, sband, n_channels,
					  NL80211_BAND_6GHZ);

	if (data->sku_cap_11ax_enable && !iwlwifi_mod_params.disable_11ax)
		iwl_init_he_hw_capab(trans, data, sband, tx_chains, rx_chains);
	else
		sband->n_channels = 0;
905 906 907 908 909
	if (n_channels != n_used)
		IWL_ERR_DEV(dev, "NVM: used only %d of %d channels\n",
			    n_used, n_channels);
}

910 911
static int iwl_get_sku(const struct iwl_cfg *cfg, const __le16 *nvm_sw,
		       const __le16 *phy_sku)
912
{
913
	if (cfg->nvm_type != IWL_NVM_EXT)
914
		return le16_to_cpup(nvm_sw + SKU);
915

916
	return le32_to_cpup((__le32 *)(phy_sku + SKU_FAMILY_8000));
917 918
}

919
static int iwl_get_nvm_version(const struct iwl_cfg *cfg, const __le16 *nvm_sw)
920
{
921
	if (cfg->nvm_type != IWL_NVM_EXT)
922 923 924
		return le16_to_cpup(nvm_sw + NVM_VERSION);
	else
		return le32_to_cpup((__le32 *)(nvm_sw +
925
					       NVM_VERSION_EXT_NVM));
926 927
}

928 929
static int iwl_get_radio_cfg(const struct iwl_cfg *cfg, const __le16 *nvm_sw,
			     const __le16 *phy_sku)
930
{
931
	if (cfg->nvm_type != IWL_NVM_EXT)
932
		return le16_to_cpup(nvm_sw + RADIO_CFG);
933

934
	return le32_to_cpup((__le32 *)(phy_sku + RADIO_CFG_FAMILY_EXT_NVM));
935

936 937
}

938
static int iwl_get_n_hw_addrs(const struct iwl_cfg *cfg, const __le16 *nvm_sw)
939
{
940 941
	int n_hw_addr;

942
	if (cfg->nvm_type != IWL_NVM_EXT)
943
		return le16_to_cpup(nvm_sw + N_HW_ADDRS);
944

945
	n_hw_addr = le32_to_cpup((__le32 *)(nvm_sw + N_HW_ADDRS_FAMILY_8000));
946 947

	return n_hw_addr & N_HW_ADDR_MASK;
948 949 950 951 952 953
}

static void iwl_set_radio_cfg(const struct iwl_cfg *cfg,
			      struct iwl_nvm_data *data,
			      u32 radio_cfg)
{
954
	if (cfg->nvm_type != IWL_NVM_EXT) {
955 956 957 958 959 960 961 962
		data->radio_cfg_type = NVM_RF_CFG_TYPE_MSK(radio_cfg);
		data->radio_cfg_step = NVM_RF_CFG_STEP_MSK(radio_cfg);
		data->radio_cfg_dash = NVM_RF_CFG_DASH_MSK(radio_cfg);
		data->radio_cfg_pnum = NVM_RF_CFG_PNUM_MSK(radio_cfg);
		return;
	}

	/* set the radio configuration for family 8000 */
963 964 965 966 967 968
	data->radio_cfg_type = EXT_NVM_RF_CFG_TYPE_MSK(radio_cfg);
	data->radio_cfg_step = EXT_NVM_RF_CFG_STEP_MSK(radio_cfg);
	data->radio_cfg_dash = EXT_NVM_RF_CFG_DASH_MSK(radio_cfg);
	data->radio_cfg_pnum = EXT_NVM_RF_CFG_FLAVOR_MSK(radio_cfg);
	data->valid_tx_ant = EXT_NVM_RF_CFG_TX_ANT_MSK(radio_cfg);
	data->valid_rx_ant = EXT_NVM_RF_CFG_RX_ANT_MSK(radio_cfg);
969 970
}

971 972 973 974 975 976 977 978 979 980 981 982 983 984 985
static void iwl_flip_hw_address(__le32 mac_addr0, __le32 mac_addr1, u8 *dest)
{
	const u8 *hw_addr;

	hw_addr = (const u8 *)&mac_addr0;
	dest[0] = hw_addr[3];
	dest[1] = hw_addr[2];
	dest[2] = hw_addr[1];
	dest[3] = hw_addr[0];

	hw_addr = (const u8 *)&mac_addr1;
	dest[4] = hw_addr[1];
	dest[5] = hw_addr[0];
}

S
Shaul Triebitz 已提交
986 987
static void iwl_set_hw_address_from_csr(struct iwl_trans *trans,
					struct iwl_nvm_data *data)
988
{
989 990
	__le32 mac_addr0 = cpu_to_le32(iwl_read32(trans, CSR_MAC_ADDR0_STRAP));
	__le32 mac_addr1 = cpu_to_le32(iwl_read32(trans, CSR_MAC_ADDR1_STRAP));
991

992 993 994 995 996 997 998 999
	iwl_flip_hw_address(mac_addr0, mac_addr1, data->hw_addr);
	/*
	 * If the OEM fused a valid address, use it instead of the one in the
	 * OTP
	 */
	if (is_valid_ether_addr(data->hw_addr))
		return;

1000 1001
	mac_addr0 = cpu_to_le32(iwl_read32(trans, CSR_MAC_ADDR0_OTP));
	mac_addr1 = cpu_to_le32(iwl_read32(trans, CSR_MAC_ADDR1_OTP));
1002 1003 1004 1005

	iwl_flip_hw_address(mac_addr0, mac_addr1, data->hw_addr);
}

1006
static void iwl_set_hw_address_family_8000(struct iwl_trans *trans,
1007
					   const struct iwl_cfg *cfg,
1008 1009
					   struct iwl_nvm_data *data,
					   const __le16 *mac_override,
1010
					   const __be16 *nvm_hw)
1011 1012 1013 1014
{
	const u8 *hw_addr;

	if (mac_override) {
1015 1016 1017 1018
		static const u8 reserved_mac[] = {
			0x02, 0xcc, 0xaa, 0xff, 0xee, 0x00
		};

1019
		hw_addr = (const u8 *)(mac_override +
1020
				 MAC_ADDRESS_OVERRIDE_EXT_NVM);
1021

1022 1023 1024 1025 1026
		/*
		 * Store the MAC address from MAO section.
		 * No byte swapping is required in MAO section
		 */
		memcpy(data->hw_addr, hw_addr, ETH_ALEN);
1027

1028 1029 1030 1031 1032 1033
		/*
		 * Force the use of the OTP MAC address in case of reserved MAC
		 * address in the NVM, or if address is given but invalid.
		 */
		if (is_valid_ether_addr(data->hw_addr) &&
		    memcmp(reserved_mac, hw_addr, ETH_ALEN) != 0)
1034
			return;
1035

1036 1037
		IWL_ERR(trans,
			"mac address from nvm override section is not valid\n");
1038 1039
	}

1040
	if (nvm_hw) {
1041 1042 1043 1044 1045
		/* read the mac address from WFMP registers */
		__le32 mac_addr0 = cpu_to_le32(iwl_trans_read_prph(trans,
						WFMP_MAC_ADDR_0));
		__le32 mac_addr1 = cpu_to_le32(iwl_trans_read_prph(trans,
						WFMP_MAC_ADDR_1));
1046 1047

		iwl_flip_hw_address(mac_addr0, mac_addr1, data->hw_addr);
1048

1049 1050
		return;
	}
1051

1052 1053 1054
	IWL_ERR(trans, "mac address is not found\n");
}

1055 1056
static int iwl_set_hw_address(struct iwl_trans *trans,
			      const struct iwl_cfg *cfg,
1057
			      struct iwl_nvm_data *data, const __be16 *nvm_hw,
1058
			      const __le16 *mac_override)
1059
{
1060 1061
	if (cfg->mac_addr_from_csr) {
		iwl_set_hw_address_from_csr(trans, data);
1062
	} else if (cfg->nvm_type != IWL_NVM_EXT) {
1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075
		const u8 *hw_addr = (const u8 *)(nvm_hw + HW_ADDR);

		/* The byte order is little endian 16 bit, meaning 214365 */
		data->hw_addr[0] = hw_addr[1];
		data->hw_addr[1] = hw_addr[0];
		data->hw_addr[2] = hw_addr[3];
		data->hw_addr[3] = hw_addr[2];
		data->hw_addr[4] = hw_addr[5];
		data->hw_addr[5] = hw_addr[4];
	} else {
		iwl_set_hw_address_family_8000(trans, cfg, data,
					       mac_override, nvm_hw);
	}
1076 1077 1078 1079 1080 1081

	if (!is_valid_ether_addr(data->hw_addr)) {
		IWL_ERR(trans, "no valid mac address was found\n");
		return -EINVAL;
	}

1082 1083
	IWL_INFO(trans, "base HW address: %pM\n", data->hw_addr);

1084
	return 0;
1085 1086
}

1087
static bool
1088
iwl_nvm_no_wide_in_5ghz(struct iwl_trans *trans, const struct iwl_cfg *cfg,
1089
			const __be16 *nvm_hw)
1090 1091 1092 1093 1094 1095 1096 1097 1098 1099
{
	/*
	 * Workaround a bug in Indonesia SKUs where the regulatory in
	 * some 7000-family OTPs erroneously allow wide channels in
	 * 5GHz.  To check for Indonesia, we take the SKU value from
	 * bits 1-4 in the subsystem ID and check if it is either 5 or
	 * 9.  In those cases, we need to force-disable wide channels
	 * in 5GHz otherwise the FW will throw a sysassert when we try
	 * to use them.
	 */
1100
	if (trans->trans_cfg->device_family == IWL_DEVICE_FAMILY_7000) {
1101 1102 1103 1104
		/*
		 * Unlike the other sections in the NVM, the hw
		 * section uses big-endian.
		 */
1105
		u16 subsystem_id = be16_to_cpup(nvm_hw + SUBSYSTEM_ID);
1106 1107 1108
		u8 sku = (subsystem_id & 0x1e) >> 1;

		if (sku == 5 || sku == 9) {
1109
			IWL_DEBUG_EEPROM(trans->dev,
1110 1111 1112 1113 1114 1115 1116 1117 1118
					 "disabling wide channels in 5GHz (0x%0x %d)\n",
					 subsystem_id, sku);
			return true;
		}
	}

	return false;
}

1119
struct iwl_nvm_data *
1120
iwl_parse_nvm_data(struct iwl_trans *trans, const struct iwl_cfg *cfg,
1121
		   const struct iwl_fw *fw,
1122
		   const __be16 *nvm_hw, const __le16 *nvm_sw,
1123
		   const __le16 *nvm_calib, const __le16 *regulatory,
1124
		   const __le16 *mac_override, const __le16 *phy_sku,
1125
		   u8 tx_chains, u8 rx_chains)
1126 1127
{
	struct iwl_nvm_data *data;
1128 1129
	bool lar_enabled;
	u32 sku, radio_cfg;
1130
	u32 sbands_flags = 0;
1131
	u16 lar_config;
1132
	const __le16 *ch_section;
1133

1134 1135 1136 1137 1138
	if (cfg->uhb_supported)
		data = kzalloc(struct_size(data, channels,
					   IWL_NVM_NUM_CHANNELS_UHB),
					   GFP_KERNEL);
	else if (cfg->nvm_type != IWL_NVM_EXT)
1139 1140 1141
		data = kzalloc(struct_size(data, channels,
					   IWL_NVM_NUM_CHANNELS),
					   GFP_KERNEL);
1142
	else
1143 1144 1145
		data = kzalloc(struct_size(data, channels,
					   IWL_NVM_NUM_CHANNELS_EXT),
					   GFP_KERNEL);
1146 1147 1148
	if (!data)
		return NULL;

1149
	data->nvm_version = iwl_get_nvm_version(cfg, nvm_sw);
1150

1151
	radio_cfg = iwl_get_radio_cfg(cfg, nvm_sw, phy_sku);
1152
	iwl_set_radio_cfg(cfg, data, radio_cfg);
1153 1154 1155 1156
	if (data->valid_tx_ant)
		tx_chains &= data->valid_tx_ant;
	if (data->valid_rx_ant)
		rx_chains &= data->valid_rx_ant;
1157

1158
	sku = iwl_get_sku(cfg, nvm_sw, phy_sku);
1159 1160
	data->sku_cap_band_24ghz_enable = sku & NVM_SKU_CAP_BAND_24GHZ;
	data->sku_cap_band_52ghz_enable = sku & NVM_SKU_CAP_BAND_52GHZ;
1161 1162 1163
	data->sku_cap_11n_enable = sku & NVM_SKU_CAP_11N_ENABLE;
	if (iwlwifi_mod_params.disable_11n & IWL_DISABLE_HT_ALL)
		data->sku_cap_11n_enable = false;
1164 1165
	data->sku_cap_11ac_enable = data->sku_cap_11n_enable &&
				    (sku & NVM_SKU_CAP_11AC_ENABLE);
1166
	data->sku_cap_mimo_disabled = sku & NVM_SKU_CAP_MIMO_DISABLE;
1167

1168
	data->n_hw_addrs = iwl_get_n_hw_addrs(cfg, nvm_sw);
1169

1170
	if (cfg->nvm_type != IWL_NVM_EXT) {
1171 1172
		/* Checking for required sections */
		if (!nvm_calib) {
1173 1174
			IWL_ERR(trans,
				"Can't parse empty Calib NVM sections\n");
1175
			kfree(data);
1176 1177
			return NULL;
		}
1178 1179 1180 1181 1182

		ch_section = cfg->nvm_type == IWL_NVM_SDP ?
			     &regulatory[NVM_CHANNELS_SDP] :
			     &nvm_sw[NVM_CHANNELS];

1183 1184 1185
		/* in family 8000 Xtal calibration values moved to OTP */
		data->xtal_calib[0] = *(nvm_calib + XTAL_CALIB);
		data->xtal_calib[1] = *(nvm_calib + XTAL_CALIB + 1);
1186
		lar_enabled = true;
1187
	} else {
1188
		u16 lar_offset = data->nvm_version < 0xE39 ?
1189 1190
				 NVM_LAR_OFFSET_OLD :
				 NVM_LAR_OFFSET;
1191 1192

		lar_config = le16_to_cpup(regulatory + lar_offset);
1193
		data->lar_enabled = !!(lar_config &
1194
				       NVM_LAR_ENABLED);
1195
		lar_enabled = data->lar_enabled;
1196
		ch_section = &regulatory[NVM_CHANNELS_EXTENDED];
1197
	}
1198

1199 1200 1201 1202 1203 1204
	/* If no valid mac address was found - bail out */
	if (iwl_set_hw_address(trans, cfg, data, nvm_hw, mac_override)) {
		kfree(data);
		return NULL;
	}

1205 1206
	if (lar_enabled &&
	    fw_has_capa(&fw->ucode_capa, IWL_UCODE_TLV_CAPA_LAR_SUPPORT))
1207 1208
		sbands_flags |= IWL_NVM_SBANDS_FLAGS_LAR;

1209
	if (iwl_nvm_no_wide_in_5ghz(trans, cfg, nvm_hw))
1210 1211
		sbands_flags |= IWL_NVM_SBANDS_FLAGS_NO_WIDE_IN_5GHZ;

1212
	iwl_init_sbands(trans, data, ch_section, tx_chains, rx_chains,
1213
			sbands_flags, false);
1214
	data->calib_version = 255;
1215 1216 1217

	return data;
}
1218
IWL_EXPORT_SYMBOL(iwl_parse_nvm_data);
1219

1220
static u32 iwl_nvm_get_regdom_bw_flags(const u16 *nvm_chan,
1221
				       int ch_idx, u16 nvm_flags,
1222
				       struct iwl_reg_capa reg_capa,
1223
				       const struct iwl_cfg *cfg)
1224 1225 1226 1227 1228 1229 1230 1231 1232
{
	u32 flags = NL80211_RRF_NO_HT40;

	if (ch_idx < NUM_2GHZ_CHANNELS &&
	    (nvm_flags & NVM_CHANNEL_40MHZ)) {
		if (nvm_chan[ch_idx] <= LAST_2GHZ_HT_PLUS)
			flags &= ~NL80211_RRF_NO_HT40PLUS;
		if (nvm_chan[ch_idx] >= FIRST_2GHZ_HT_MINUS)
			flags &= ~NL80211_RRF_NO_HT40MINUS;
1233
	} else if (nvm_flags & NVM_CHANNEL_40MHZ) {
1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260
		if ((ch_idx - NUM_2GHZ_CHANNELS) % 2 == 0)
			flags &= ~NL80211_RRF_NO_HT40PLUS;
		else
			flags &= ~NL80211_RRF_NO_HT40MINUS;
	}

	if (!(nvm_flags & NVM_CHANNEL_80MHZ))
		flags |= NL80211_RRF_NO_80MHZ;
	if (!(nvm_flags & NVM_CHANNEL_160MHZ))
		flags |= NL80211_RRF_NO_160MHZ;

	if (!(nvm_flags & NVM_CHANNEL_ACTIVE))
		flags |= NL80211_RRF_NO_IR;

	if (nvm_flags & NVM_CHANNEL_RADAR)
		flags |= NL80211_RRF_DFS;

	if (nvm_flags & NVM_CHANNEL_INDOOR_ONLY)
		flags |= NL80211_RRF_NO_OUTDOOR;

	/* Set the GO concurrent flag only in case that NO_IR is set.
	 * Otherwise it is meaningless
	 */
	if ((nvm_flags & NVM_CHANNEL_GO_CONCURRENT) &&
	    (flags & NL80211_RRF_NO_IR))
		flags |= NL80211_RRF_GO_CONCURRENT;

1261
	/*
1262
	 * reg_capa is per regulatory domain so apply it for every channel
1263 1264
	 */
	if (ch_idx >= NUM_2GHZ_CHANNELS) {
1265
		if (!reg_capa.allow_40mhz)
1266 1267
			flags |= NL80211_RRF_NO_HT40;

1268
		if (!reg_capa.allow_80mhz)
1269 1270
			flags |= NL80211_RRF_NO_80MHZ;

1271
		if (!reg_capa.allow_160mhz)
1272 1273
			flags |= NL80211_RRF_NO_160MHZ;
	}
1274
	if (reg_capa.disable_11ax)
1275 1276
		flags |= NL80211_RRF_NO_HE;

1277 1278 1279
	return flags;
}

1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297
static struct iwl_reg_capa iwl_get_reg_capa(u16 flags, u8 resp_ver)
{
	struct iwl_reg_capa reg_capa;

	if (resp_ver >= REG_CAPA_V2_RESP_VER) {
		reg_capa.allow_40mhz = flags & REG_CAPA_V2_40MHZ_ALLOWED;
		reg_capa.allow_80mhz = flags & REG_CAPA_V2_80MHZ_ALLOWED;
		reg_capa.allow_160mhz = flags & REG_CAPA_V2_160MHZ_ALLOWED;
		reg_capa.disable_11ax = flags & REG_CAPA_V2_11AX_DISABLED;
	} else {
		reg_capa.allow_40mhz = !(flags & REG_CAPA_40MHZ_FORBIDDEN);
		reg_capa.allow_80mhz = flags & REG_CAPA_80MHZ_ALLOWED;
		reg_capa.allow_160mhz = flags & REG_CAPA_160MHZ_ALLOWED;
		reg_capa.disable_11ax = flags & REG_CAPA_11AX_DISABLED;
	}
	return reg_capa;
}

1298
struct ieee80211_regdomain *
1299
iwl_parse_nvm_mcc_info(struct device *dev, const struct iwl_cfg *cfg,
1300
		       int num_of_ch, __le32 *channels, u16 fw_mcc,
1301
		       u16 geo_info, u16 cap, u8 resp_ver)
1302 1303
{
	int ch_idx;
1304 1305
	u16 ch_flags;
	u32 reg_rule_flags, prev_reg_rule_flags = 0;
1306
	const u16 *nvm_chan;
1307
	struct ieee80211_regdomain *regd, *copy_rd;
1308
	struct ieee80211_reg_rule *rule;
1309
	enum nl80211_band band;
1310
	int center_freq, prev_center_freq = 0;
1311
	int valid_rules = 0;
1312
	bool new_rule;
1313
	int max_num_ch;
1314
	struct iwl_reg_capa reg_capa;
1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325

	if (cfg->uhb_supported) {
		max_num_ch = IWL_NVM_NUM_CHANNELS_UHB;
		nvm_chan = iwl_uhb_nvm_channels;
	} else if (cfg->nvm_type == IWL_NVM_EXT) {
		max_num_ch = IWL_NVM_NUM_CHANNELS_EXT;
		nvm_chan = iwl_ext_nvm_channels;
	} else {
		max_num_ch = IWL_NVM_NUM_CHANNELS;
		nvm_chan = iwl_nvm_channels;
	}
1326

1327 1328 1329
	if (WARN_ON(num_of_ch > max_num_ch))
		num_of_ch = max_num_ch;

1330 1331 1332
	if (WARN_ON_ONCE(num_of_ch > NL80211_MAX_SUPP_REG_RULES))
		return ERR_PTR(-EINVAL);

1333 1334 1335 1336
	IWL_DEBUG_DEV(dev, IWL_DL_LAR, "building regdom for %d channels\n",
		      num_of_ch);

	/* build a regdomain rule for every valid channel */
1337
	regd = kzalloc(struct_size(regd, reg_rules, num_of_ch), GFP_KERNEL);
1338 1339 1340
	if (!regd)
		return ERR_PTR(-ENOMEM);

1341 1342 1343 1344
	/* set alpha2 from FW. */
	regd->alpha2[0] = fw_mcc >> 8;
	regd->alpha2[1] = fw_mcc & 0xff;

1345 1346 1347
	/* parse regulatory capability flags */
	reg_capa = iwl_get_reg_capa(cap, resp_ver);

1348 1349
	for (ch_idx = 0; ch_idx < num_of_ch; ch_idx++) {
		ch_flags = (u16)__le32_to_cpup(channels + ch_idx);
1350
		band = iwl_nl80211_band_from_channel_idx(ch_idx);
1351 1352 1353 1354 1355
		center_freq = ieee80211_channel_to_frequency(nvm_chan[ch_idx],
							     band);
		new_rule = false;

		if (!(ch_flags & NVM_CHANNEL_VALID)) {
1356 1357
			iwl_nvm_print_channel_flags(dev, IWL_DL_LAR,
						    nvm_chan[ch_idx], ch_flags);
1358 1359 1360
			continue;
		}

1361
		reg_rule_flags = iwl_nvm_get_regdom_bw_flags(nvm_chan, ch_idx,
1362
							     ch_flags, reg_capa,
1363
							     cfg);
1364

1365
		/* we can't continue the same rule */
1366
		if (ch_idx == 0 || prev_reg_rule_flags != reg_rule_flags ||
1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381
		    center_freq - prev_center_freq > 20) {
			valid_rules++;
			new_rule = true;
		}

		rule = &regd->reg_rules[valid_rules - 1];

		if (new_rule)
			rule->freq_range.start_freq_khz =
						MHZ_TO_KHZ(center_freq - 10);

		rule->freq_range.end_freq_khz = MHZ_TO_KHZ(center_freq + 10);

		/* this doesn't matter - not used by FW */
		rule->power_rule.max_antenna_gain = DBI_TO_MBI(6);
1382 1383
		rule->power_rule.max_eirp =
			DBM_TO_MBM(IWL_DEFAULT_MAX_TX_POWER);
1384

1385
		rule->flags = reg_rule_flags;
1386 1387 1388 1389 1390 1391

		/* rely on auto-calculation to merge BW of contiguous chans */
		rule->flags |= NL80211_RRF_AUTO_BW;
		rule->freq_range.max_bandwidth_khz = 0;

		prev_center_freq = center_freq;
1392
		prev_reg_rule_flags = reg_rule_flags;
1393

1394 1395
		iwl_nvm_print_channel_flags(dev, IWL_DL_LAR,
					    nvm_chan[ch_idx], ch_flags);
1396 1397 1398 1399 1400

		if (!(geo_info & GEO_WMM_ETSI_5GHZ_INFO) ||
		    band == NL80211_BAND_2GHZ)
			continue;

1401
		reg_query_regdb_wmm(regd->alpha2, center_freq, rule);
1402 1403 1404 1405
	}

	regd->n_reg_rules = valid_rules;

1406 1407 1408 1409
	/*
	 * Narrow down regdom for unused regulatory rules to prevent hole
	 * between reg rules to wmm rules.
	 */
1410 1411
	copy_rd = kmemdup(regd, struct_size(regd, reg_rules, valid_rules),
			  GFP_KERNEL);
1412
	if (!copy_rd)
1413 1414 1415 1416
		copy_rd = ERR_PTR(-ENOMEM);

	kfree(regd);
	return copy_rd;
1417 1418
}
IWL_EXPORT_SYMBOL(iwl_parse_nvm_mcc_info);
1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532

#define IWL_MAX_NVM_SECTION_SIZE	0x1b58
#define IWL_MAX_EXT_NVM_SECTION_SIZE	0x1ffc
#define MAX_NVM_FILE_LEN	16384

void iwl_nvm_fixups(u32 hw_id, unsigned int section, u8 *data,
		    unsigned int len)
{
#define IWL_4165_DEVICE_ID	0x5501
#define NVM_SKU_CAP_MIMO_DISABLE BIT(5)

	if (section == NVM_SECTION_TYPE_PHY_SKU &&
	    hw_id == IWL_4165_DEVICE_ID && data && len >= 5 &&
	    (data[4] & NVM_SKU_CAP_MIMO_DISABLE))
		/* OTP 0x52 bug work around: it's a 1x1 device */
		data[3] = ANT_B | (ANT_B << 4);
}
IWL_EXPORT_SYMBOL(iwl_nvm_fixups);

/*
 * Reads external NVM from a file into mvm->nvm_sections
 *
 * HOW TO CREATE THE NVM FILE FORMAT:
 * ------------------------------
 * 1. create hex file, format:
 *      3800 -> header
 *      0000 -> header
 *      5a40 -> data
 *
 *   rev - 6 bit (word1)
 *   len - 10 bit (word1)
 *   id - 4 bit (word2)
 *   rsv - 12 bit (word2)
 *
 * 2. flip 8bits with 8 bits per line to get the right NVM file format
 *
 * 3. create binary file from the hex file
 *
 * 4. save as "iNVM_xxx.bin" under /lib/firmware
 */
int iwl_read_external_nvm(struct iwl_trans *trans,
			  const char *nvm_file_name,
			  struct iwl_nvm_section *nvm_sections)
{
	int ret, section_size;
	u16 section_id;
	const struct firmware *fw_entry;
	const struct {
		__le16 word1;
		__le16 word2;
		u8 data[];
	} *file_sec;
	const u8 *eof;
	u8 *temp;
	int max_section_size;
	const __le32 *dword_buff;

#define NVM_WORD1_LEN(x) (8 * (x & 0x03FF))
#define NVM_WORD2_ID(x) (x >> 12)
#define EXT_NVM_WORD2_LEN(x) (2 * (((x) & 0xFF) << 8 | (x) >> 8))
#define EXT_NVM_WORD1_ID(x) ((x) >> 4)
#define NVM_HEADER_0	(0x2A504C54)
#define NVM_HEADER_1	(0x4E564D2A)
#define NVM_HEADER_SIZE	(4 * sizeof(u32))

	IWL_DEBUG_EEPROM(trans->dev, "Read from external NVM\n");

	/* Maximal size depends on NVM version */
	if (trans->cfg->nvm_type != IWL_NVM_EXT)
		max_section_size = IWL_MAX_NVM_SECTION_SIZE;
	else
		max_section_size = IWL_MAX_EXT_NVM_SECTION_SIZE;

	/*
	 * Obtain NVM image via request_firmware. Since we already used
	 * request_firmware_nowait() for the firmware binary load and only
	 * get here after that we assume the NVM request can be satisfied
	 * synchronously.
	 */
	ret = request_firmware(&fw_entry, nvm_file_name, trans->dev);
	if (ret) {
		IWL_ERR(trans, "ERROR: %s isn't available %d\n",
			nvm_file_name, ret);
		return ret;
	}

	IWL_INFO(trans, "Loaded NVM file %s (%zu bytes)\n",
		 nvm_file_name, fw_entry->size);

	if (fw_entry->size > MAX_NVM_FILE_LEN) {
		IWL_ERR(trans, "NVM file too large\n");
		ret = -EINVAL;
		goto out;
	}

	eof = fw_entry->data + fw_entry->size;
	dword_buff = (__le32 *)fw_entry->data;

	/* some NVM file will contain a header.
	 * The header is identified by 2 dwords header as follow:
	 * dword[0] = 0x2A504C54
	 * dword[1] = 0x4E564D2A
	 *
	 * This header must be skipped when providing the NVM data to the FW.
	 */
	if (fw_entry->size > NVM_HEADER_SIZE &&
	    dword_buff[0] == cpu_to_le32(NVM_HEADER_0) &&
	    dword_buff[1] == cpu_to_le32(NVM_HEADER_1)) {
		file_sec = (void *)(fw_entry->data + NVM_HEADER_SIZE);
		IWL_INFO(trans, "NVM Version %08X\n", le32_to_cpu(dword_buff[2]));
		IWL_INFO(trans, "NVM Manufacturing date %08X\n",
			 le32_to_cpu(dword_buff[3]));

		/* nvm file validation, dword_buff[2] holds the file version */
1533
		if (trans->trans_cfg->device_family == IWL_DEVICE_FAMILY_8000 &&
1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614
		    CSR_HW_REV_STEP(trans->hw_rev) == SILICON_C_STEP &&
		    le32_to_cpu(dword_buff[2]) < 0xE4A) {
			ret = -EFAULT;
			goto out;
		}
	} else {
		file_sec = (void *)fw_entry->data;
	}

	while (true) {
		if (file_sec->data > eof) {
			IWL_ERR(trans,
				"ERROR - NVM file too short for section header\n");
			ret = -EINVAL;
			break;
		}

		/* check for EOF marker */
		if (!file_sec->word1 && !file_sec->word2) {
			ret = 0;
			break;
		}

		if (trans->cfg->nvm_type != IWL_NVM_EXT) {
			section_size =
				2 * NVM_WORD1_LEN(le16_to_cpu(file_sec->word1));
			section_id = NVM_WORD2_ID(le16_to_cpu(file_sec->word2));
		} else {
			section_size = 2 * EXT_NVM_WORD2_LEN(
						le16_to_cpu(file_sec->word2));
			section_id = EXT_NVM_WORD1_ID(
						le16_to_cpu(file_sec->word1));
		}

		if (section_size > max_section_size) {
			IWL_ERR(trans, "ERROR - section too large (%d)\n",
				section_size);
			ret = -EINVAL;
			break;
		}

		if (!section_size) {
			IWL_ERR(trans, "ERROR - section empty\n");
			ret = -EINVAL;
			break;
		}

		if (file_sec->data + section_size > eof) {
			IWL_ERR(trans,
				"ERROR - NVM file too short for section (%d bytes)\n",
				section_size);
			ret = -EINVAL;
			break;
		}

		if (WARN(section_id >= NVM_MAX_NUM_SECTIONS,
			 "Invalid NVM section ID %d\n", section_id)) {
			ret = -EINVAL;
			break;
		}

		temp = kmemdup(file_sec->data, section_size, GFP_KERNEL);
		if (!temp) {
			ret = -ENOMEM;
			break;
		}

		iwl_nvm_fixups(trans->hw_id, section_id, temp, section_size);

		kfree(nvm_sections[section_id].data);
		nvm_sections[section_id].data = temp;
		nvm_sections[section_id].length = section_size;

		/* advance to the next section */
		file_sec = (void *)(file_sec->data + section_size);
	}
out:
	release_firmware(fw_entry);
	return ret;
}
IWL_EXPORT_SYMBOL(iwl_read_external_nvm);
S
Shaul Triebitz 已提交
1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627

struct iwl_nvm_data *iwl_get_nvm(struct iwl_trans *trans,
				 const struct iwl_fw *fw)
{
	struct iwl_nvm_get_info cmd = {};
	struct iwl_nvm_data *nvm;
	struct iwl_host_cmd hcmd = {
		.flags = CMD_WANT_SKB | CMD_SEND_IN_RFKILL,
		.data = { &cmd, },
		.len = { sizeof(cmd) },
		.id = WIDE_ID(REGULATORY_AND_NVM_GROUP, NVM_GET_INFO)
	};
	int  ret;
1628
	bool empty_otp;
S
Shaul Triebitz 已提交
1629 1630
	u32 mac_flags;
	u32 sbands_flags = 0;
1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642
	/*
	 * All the values in iwl_nvm_get_info_rsp v4 are the same as
	 * in v3, except for the channel profile part of the
	 * regulatory.  So we can just access the new struct, with the
	 * exception of the latter.
	 */
	struct iwl_nvm_get_info_rsp *rsp;
	struct iwl_nvm_get_info_rsp_v3 *rsp_v3;
	bool v4 = fw_has_api(&fw->ucode_capa,
			     IWL_UCODE_TLV_API_REGULATORY_NVM_INFO);
	size_t rsp_size = v4 ? sizeof(*rsp) : sizeof(*rsp_v3);
	void *channel_profile;
S
Shaul Triebitz 已提交
1643 1644 1645 1646 1647

	ret = iwl_trans_send_cmd(trans, &hcmd);
	if (ret)
		return ERR_PTR(ret);

1648
	if (WARN(iwl_rx_packet_payload_len(hcmd.resp_pkt) != rsp_size,
S
Shaul Triebitz 已提交
1649 1650 1651 1652 1653 1654 1655
		 "Invalid payload len in NVM response from FW %d",
		 iwl_rx_packet_payload_len(hcmd.resp_pkt))) {
		ret = -EINVAL;
		goto out;
	}

	rsp = (void *)hcmd.resp_pkt->data;
1656 1657 1658
	empty_otp = !!(le32_to_cpu(rsp->general.flags) &
		       NVM_GENERAL_FLAGS_EMPTY_OTP);
	if (empty_otp)
S
Shaul Triebitz 已提交
1659 1660
		IWL_INFO(trans, "OTP is empty\n");

1661
	nvm = kzalloc(struct_size(nvm, channels, IWL_NUM_CHANNELS), GFP_KERNEL);
S
Shaul Triebitz 已提交
1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679
	if (!nvm) {
		ret = -ENOMEM;
		goto out;
	}

	iwl_set_hw_address_from_csr(trans, nvm);
	/* TODO: if platform NVM has MAC address - override it here */

	if (!is_valid_ether_addr(nvm->hw_addr)) {
		IWL_ERR(trans, "no valid mac address was found\n");
		ret = -EINVAL;
		goto err_free;
	}

	IWL_INFO(trans, "base HW address: %pM\n", nvm->hw_addr);

	/* Initialize general data */
	nvm->nvm_version = le16_to_cpu(rsp->general.nvm_version);
1680 1681 1682 1683 1684
	nvm->n_hw_addrs = rsp->general.n_hw_addrs;
	if (nvm->n_hw_addrs == 0)
		IWL_WARN(trans,
			 "Firmware declares no reserved mac addresses. OTP is empty: %d\n",
			 empty_otp);
S
Shaul Triebitz 已提交
1685 1686 1687 1688 1689 1690 1691

	/* Initialize MAC sku data */
	mac_flags = le32_to_cpu(rsp->mac_sku.mac_sku_flags);
	nvm->sku_cap_11ac_enable =
		!!(mac_flags & NVM_MAC_SKU_FLAGS_802_11AC_ENABLED);
	nvm->sku_cap_11n_enable =
		!!(mac_flags & NVM_MAC_SKU_FLAGS_802_11N_ENABLED);
1692 1693
	nvm->sku_cap_11ax_enable =
		!!(mac_flags & NVM_MAC_SKU_FLAGS_802_11AX_ENABLED);
S
Shaul Triebitz 已提交
1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704
	nvm->sku_cap_band_24ghz_enable =
		!!(mac_flags & NVM_MAC_SKU_FLAGS_BAND_2_4_ENABLED);
	nvm->sku_cap_band_52ghz_enable =
		!!(mac_flags & NVM_MAC_SKU_FLAGS_BAND_5_2_ENABLED);
	nvm->sku_cap_mimo_disabled =
		!!(mac_flags & NVM_MAC_SKU_FLAGS_MIMO_DISABLED);

	/* Initialize PHY sku data */
	nvm->valid_tx_ant = (u8)le32_to_cpu(rsp->phy_sku.tx_chains);
	nvm->valid_rx_ant = (u8)le32_to_cpu(rsp->phy_sku.rx_chains);

1705 1706 1707
	if (le32_to_cpu(rsp->regulatory.lar_enabled) &&
	    fw_has_capa(&fw->ucode_capa,
			IWL_UCODE_TLV_CAPA_LAR_SUPPORT)) {
S
Shaul Triebitz 已提交
1708 1709 1710 1711
		nvm->lar_enabled = true;
		sbands_flags |= IWL_NVM_SBANDS_FLAGS_LAR;
	}

1712 1713 1714 1715
	rsp_v3 = (void *)rsp;
	channel_profile = v4 ? (void *)rsp->regulatory.channel_profile :
			  (void *)rsp_v3->regulatory.channel_profile;

1716
	iwl_init_sbands(trans, nvm,
1717
			channel_profile,
S
Shaul Triebitz 已提交
1718 1719
			nvm->valid_tx_ant & fw->valid_tx_ant,
			nvm->valid_rx_ant & fw->valid_rx_ant,
1720
			sbands_flags, v4);
S
Shaul Triebitz 已提交
1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731

	iwl_free_resp(&hcmd);
	return nvm;

err_free:
	kfree(nvm);
out:
	iwl_free_resp(&hcmd);
	return ERR_PTR(ret);
}
IWL_EXPORT_SYMBOL(iwl_get_nvm);