iwl-nvm-parse.c 30.7 KB
Newer Older
1 2 3 4 5 6 7
/******************************************************************************
 *
 * This file is provided under a dual BSD/GPLv2 license.  When using or
 * redistributing this file, you may do so under either license.
 *
 * GPL LICENSE SUMMARY
 *
8
 * Copyright(c) 2008 - 2014 Intel Corporation. All rights reserved.
9
 * Copyright(c) 2013 - 2015 Intel Mobile Communications GmbH
10
 * Copyright(c) 2016 - 2017 Intel Deutschland GmbH
11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of version 2 of the GNU General Public License as
 * published by the Free Software Foundation.
 *
 * This program is distributed in the hope that it will be useful, but
 * WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110,
 * USA
 *
 * The full GNU General Public License is included in this distribution
27
 * in the file called COPYING.
28 29
 *
 * Contact Information:
30
 *  Intel Linux Wireless <linuxwifi@intel.com>
31 32 33 34
 * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
 *
 * BSD LICENSE
 *
35
 * Copyright(c) 2005 - 2014 Intel Corporation. All rights reserved.
36
 * Copyright(c) 2013 - 2015 Intel Mobile Communications GmbH
37
 * Copyright(c) 2016 - 2017 Intel Deutschland GmbH
38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68
 * All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 *
 *  * Redistributions of source code must retain the above copyright
 *    notice, this list of conditions and the following disclaimer.
 *  * Redistributions in binary form must reproduce the above copyright
 *    notice, this list of conditions and the following disclaimer in
 *    the documentation and/or other materials provided with the
 *    distribution.
 *  * Neither the name Intel Corporation nor the names of its
 *    contributors may be used to endorse or promote products derived
 *    from this software without specific prior written permission.
 *
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 *****************************************************************************/
#include <linux/types.h>
#include <linux/slab.h>
#include <linux/export.h>
69
#include <linux/etherdevice.h>
70
#include <linux/pci.h>
71
#include <linux/acpi.h>
72
#include "iwl-drv.h"
73 74
#include "iwl-modparams.h"
#include "iwl-nvm-parse.h"
75
#include "iwl-prph.h"
76 77
#include "iwl-io.h"
#include "iwl-csr.h"
78 79 80 81

/* NVM offsets (in words) definitions */
enum wkp_nvm_offsets {
	/* NVM HW-Section offset (in words) definitions */
82
	SUBSYSTEM_ID = 0x0A,
83 84
	HW_ADDR = 0x15,

85
	/* NVM SW-Section offset (in words) definitions */
86 87 88 89 90 91 92
	NVM_SW_SECTION = 0x1C0,
	NVM_VERSION = 0,
	RADIO_CFG = 1,
	SKU = 2,
	N_HW_ADDRS = 3,
	NVM_CHANNELS = 0x1E0 - NVM_SW_SECTION,

93
	/* NVM calibration section offset (in words) definitions */
94 95 96 97
	NVM_CALIB_SECTION = 0x2B8,
	XTAL_CALIB = 0x316 - NVM_CALIB_SECTION
};

98
enum ext_nvm_offsets {
99
	/* NVM HW-Section offset (in words) definitions */
100
	MAC_ADDRESS_OVERRIDE_EXT_NVM = 1,
101 102

	/* NVM SW-Section offset (in words) definitions */
103 104
	NVM_VERSION_EXT_NVM = 0,
	RADIO_CFG_FAMILY_EXT_NVM = 0,
105 106
	SKU_FAMILY_8000 = 2,
	N_HW_ADDRS_FAMILY_8000 = 3,
107

108
	/* NVM REGULATORY -Section offset (in words) definitions */
109 110 111 112
	NVM_CHANNELS_EXTENDED = 0,
	NVM_LAR_OFFSET_OLD = 0x4C7,
	NVM_LAR_OFFSET = 0x507,
	NVM_LAR_ENABLED = 0x7,
113 114
};

115 116
/* SKU Capabilities (actual values from NVM definition) */
enum nvm_sku_bits {
117 118 119 120 121
	NVM_SKU_CAP_BAND_24GHZ		= BIT(0),
	NVM_SKU_CAP_BAND_52GHZ		= BIT(1),
	NVM_SKU_CAP_11N_ENABLE		= BIT(2),
	NVM_SKU_CAP_11AC_ENABLE		= BIT(3),
	NVM_SKU_CAP_MIMO_DISABLE	= BIT(5),
122 123 124 125 126 127 128 129 130 131 132 133 134 135
};

/*
 * These are the channel numbers in the order that they are stored in the NVM
 */
static const u8 iwl_nvm_channels[] = {
	/* 2.4 GHz */
	1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14,
	/* 5 GHz */
	36, 40, 44 , 48, 52, 56, 60, 64,
	100, 104, 108, 112, 116, 120, 124, 128, 132, 136, 140, 144,
	149, 153, 157, 161, 165
};

136
static const u8 iwl_ext_nvm_channels[] = {
137
	/* 2.4 GHz */
138
	1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14,
139 140 141 142 143 144
	/* 5 GHz */
	36, 40, 44, 48, 52, 56, 60, 64, 68, 72, 76, 80, 84, 88, 92,
	96, 100, 104, 108, 112, 116, 120, 124, 128, 132, 136, 140, 144,
	149, 153, 157, 161, 165, 169, 173, 177, 181
};

145
#define IWL_NUM_CHANNELS		ARRAY_SIZE(iwl_nvm_channels)
146
#define IWL_NUM_CHANNELS_EXT	ARRAY_SIZE(iwl_ext_nvm_channels)
147
#define NUM_2GHZ_CHANNELS		14
148
#define NUM_2GHZ_CHANNELS_EXT	14
149 150
#define FIRST_2GHZ_HT_MINUS		5
#define LAST_2GHZ_HT_PLUS		9
151 152
#define LAST_5GHZ_HT			165
#define LAST_5GHZ_HT_FAMILY_8000	181
153
#define N_HW_ADDR_MASK			0xF
154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183

/* rate data (static) */
static struct ieee80211_rate iwl_cfg80211_rates[] = {
	{ .bitrate = 1 * 10, .hw_value = 0, .hw_value_short = 0, },
	{ .bitrate = 2 * 10, .hw_value = 1, .hw_value_short = 1,
	  .flags = IEEE80211_RATE_SHORT_PREAMBLE, },
	{ .bitrate = 5.5 * 10, .hw_value = 2, .hw_value_short = 2,
	  .flags = IEEE80211_RATE_SHORT_PREAMBLE, },
	{ .bitrate = 11 * 10, .hw_value = 3, .hw_value_short = 3,
	  .flags = IEEE80211_RATE_SHORT_PREAMBLE, },
	{ .bitrate = 6 * 10, .hw_value = 4, .hw_value_short = 4, },
	{ .bitrate = 9 * 10, .hw_value = 5, .hw_value_short = 5, },
	{ .bitrate = 12 * 10, .hw_value = 6, .hw_value_short = 6, },
	{ .bitrate = 18 * 10, .hw_value = 7, .hw_value_short = 7, },
	{ .bitrate = 24 * 10, .hw_value = 8, .hw_value_short = 8, },
	{ .bitrate = 36 * 10, .hw_value = 9, .hw_value_short = 9, },
	{ .bitrate = 48 * 10, .hw_value = 10, .hw_value_short = 10, },
	{ .bitrate = 54 * 10, .hw_value = 11, .hw_value_short = 11, },
};
#define RATES_24_OFFS	0
#define N_RATES_24	ARRAY_SIZE(iwl_cfg80211_rates)
#define RATES_52_OFFS	4
#define N_RATES_52	(N_RATES_24 - RATES_52_OFFS)

/**
 * enum iwl_nvm_channel_flags - channel flags in NVM
 * @NVM_CHANNEL_VALID: channel is usable for this SKU/geo
 * @NVM_CHANNEL_IBSS: usable as an IBSS channel
 * @NVM_CHANNEL_ACTIVE: active scanning allowed
 * @NVM_CHANNEL_RADAR: radar detection required
184 185 186
 * @NVM_CHANNEL_INDOOR_ONLY: only indoor use is allowed
 * @NVM_CHANNEL_GO_CONCURRENT: GO operation is allowed when connected to BSS
 *	on same channel on 2.4 or same UNII band on 5.2
187 188 189 190 191 192
 * @NVM_CHANNEL_UNIFORM: uniform spreading required
 * @NVM_CHANNEL_20MHZ: 20 MHz channel okay
 * @NVM_CHANNEL_40MHZ: 40 MHz channel okay
 * @NVM_CHANNEL_80MHZ: 80 MHz channel okay
 * @NVM_CHANNEL_160MHZ: 160 MHz channel okay
 * @NVM_CHANNEL_DC_HIGH: DC HIGH required/allowed (?)
193 194
 */
enum iwl_nvm_channel_flags {
195 196 197 198 199 200 201 202 203 204 205 206
	NVM_CHANNEL_VALID		= BIT(0),
	NVM_CHANNEL_IBSS		= BIT(1),
	NVM_CHANNEL_ACTIVE		= BIT(3),
	NVM_CHANNEL_RADAR		= BIT(4),
	NVM_CHANNEL_INDOOR_ONLY		= BIT(5),
	NVM_CHANNEL_GO_CONCURRENT	= BIT(6),
	NVM_CHANNEL_UNIFORM		= BIT(7),
	NVM_CHANNEL_20MHZ		= BIT(8),
	NVM_CHANNEL_40MHZ		= BIT(9),
	NVM_CHANNEL_80MHZ		= BIT(10),
	NVM_CHANNEL_160MHZ		= BIT(11),
	NVM_CHANNEL_DC_HIGH		= BIT(12),
207 208 209 210 211
};

#define CHECK_AND_PRINT_I(x)	\
	((ch_flags & NVM_CHANNEL_##x) ? # x " " : "")

212
static u32 iwl_get_channel_flags(u8 ch_num, int ch_idx, bool is_5ghz,
213
				 u16 nvm_flags, const struct iwl_cfg *cfg)
214 215
{
	u32 flags = IEEE80211_CHAN_NO_HT40;
216 217
	u32 last_5ghz_ht = LAST_5GHZ_HT;

218
	if (cfg->ext_nvm)
219
		last_5ghz_ht = LAST_5GHZ_HT_FAMILY_8000;
220 221 222 223 224 225

	if (!is_5ghz && (nvm_flags & NVM_CHANNEL_40MHZ)) {
		if (ch_num <= LAST_2GHZ_HT_PLUS)
			flags &= ~IEEE80211_CHAN_NO_HT40PLUS;
		if (ch_num >= FIRST_2GHZ_HT_MINUS)
			flags &= ~IEEE80211_CHAN_NO_HT40MINUS;
226
	} else if (ch_num <= last_5ghz_ht && (nvm_flags & NVM_CHANNEL_40MHZ)) {
227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253
		if ((ch_idx - NUM_2GHZ_CHANNELS) % 2 == 0)
			flags &= ~IEEE80211_CHAN_NO_HT40PLUS;
		else
			flags &= ~IEEE80211_CHAN_NO_HT40MINUS;
	}
	if (!(nvm_flags & NVM_CHANNEL_80MHZ))
		flags |= IEEE80211_CHAN_NO_80MHZ;
	if (!(nvm_flags & NVM_CHANNEL_160MHZ))
		flags |= IEEE80211_CHAN_NO_160MHZ;

	if (!(nvm_flags & NVM_CHANNEL_IBSS))
		flags |= IEEE80211_CHAN_NO_IR;

	if (!(nvm_flags & NVM_CHANNEL_ACTIVE))
		flags |= IEEE80211_CHAN_NO_IR;

	if (nvm_flags & NVM_CHANNEL_RADAR)
		flags |= IEEE80211_CHAN_RADAR;

	if (nvm_flags & NVM_CHANNEL_INDOOR_ONLY)
		flags |= IEEE80211_CHAN_INDOOR_ONLY;

	/* Set the GO concurrent flag only in case that NO_IR is set.
	 * Otherwise it is meaningless
	 */
	if ((nvm_flags & NVM_CHANNEL_GO_CONCURRENT) &&
	    (flags & IEEE80211_CHAN_NO_IR))
254
		flags |= IEEE80211_CHAN_IR_CONCURRENT;
255 256 257 258

	return flags;
}

259 260
static int iwl_init_channel_map(struct device *dev, const struct iwl_cfg *cfg,
				struct iwl_nvm_data *data,
261
				const __le16 * const nvm_ch_flags,
262
				bool lar_supported, bool no_wide_in_5ghz)
263 264 265 266 267
{
	int ch_idx;
	int n_channels = 0;
	struct ieee80211_channel *channel;
	u16 ch_flags;
268
	int num_of_ch, num_2ghz_channels;
269 270
	const u8 *nvm_chan;

271
	if (!cfg->ext_nvm) {
272 273
		num_of_ch = IWL_NUM_CHANNELS;
		nvm_chan = &iwl_nvm_channels[0];
274
		num_2ghz_channels = NUM_2GHZ_CHANNELS;
275
	} else {
276 277 278
		num_of_ch = IWL_NUM_CHANNELS_EXT;
		nvm_chan = &iwl_ext_nvm_channels[0];
		num_2ghz_channels = NUM_2GHZ_CHANNELS_EXT;
279
	}
280

281
	for (ch_idx = 0; ch_idx < num_of_ch; ch_idx++) {
282 283
		bool is_5ghz = (ch_idx >= num_2ghz_channels);

284
		ch_flags = __le16_to_cpup(nvm_ch_flags + ch_idx);
285

286
		if (is_5ghz && !data->sku_cap_band_52GHz_enable)
287
			continue;
288

289 290 291 292 293 294 295
		/* workaround to disable wide channels in 5GHz */
		if (no_wide_in_5ghz && is_5ghz) {
			ch_flags &= ~(NVM_CHANNEL_40MHZ |
				     NVM_CHANNEL_80MHZ |
				     NVM_CHANNEL_160MHZ);
		}

296 297 298
		if (ch_flags & NVM_CHANNEL_160MHZ)
			data->vht160_supported = true;

299
		if (!lar_supported && !(ch_flags & NVM_CHANNEL_VALID)) {
300 301 302 303 304
			/*
			 * Channels might become valid later if lar is
			 * supported, hence we still want to add them to
			 * the list of supported channels to cfg80211.
			 */
305 306
			IWL_DEBUG_EEPROM(dev,
					 "Ch. %d Flags %x [%sGHz] - No traffic\n",
307
					 nvm_chan[ch_idx],
308
					 ch_flags,
309
					 (ch_idx >= num_2ghz_channels) ?
310 311 312 313 314 315 316
					 "5.2" : "2.4");
			continue;
		}

		channel = &data->channels[n_channels];
		n_channels++;

317
		channel->hw_value = nvm_chan[ch_idx];
318 319
		channel->band = is_5ghz ?
				NL80211_BAND_5GHZ : NL80211_BAND_2GHZ;
320 321 322 323 324 325
		channel->center_freq =
			ieee80211_channel_to_frequency(
				channel->hw_value, channel->band);

		/* Initialize regulatory-based run-time data */

326 327 328 329
		/*
		 * Default value - highest tx power value.  max_power
		 * is not used in mvm, and is used for backwards compatibility
		 */
330
		channel->max_power = IWL_DEFAULT_MAX_TX_POWER;
331 332 333 334 335

		/* don't put limitations in case we're using LAR */
		if (!lar_supported)
			channel->flags = iwl_get_channel_flags(nvm_chan[ch_idx],
							       ch_idx, is_5ghz,
336
							       ch_flags, cfg);
337 338 339
		else
			channel->flags = 0;

340
		IWL_DEBUG_EEPROM(dev,
341
				 "Ch. %d [%sGHz] flags 0x%x %s%s%s%s%s%s%s%s%s%s%s%s(%ddBm): Ad-Hoc %ssupported\n",
342 343
				 channel->hw_value,
				 is_5ghz ? "5.2" : "2.4",
344
				 ch_flags,
345 346 347 348
				 CHECK_AND_PRINT_I(VALID),
				 CHECK_AND_PRINT_I(IBSS),
				 CHECK_AND_PRINT_I(ACTIVE),
				 CHECK_AND_PRINT_I(RADAR),
349 350
				 CHECK_AND_PRINT_I(INDOOR_ONLY),
				 CHECK_AND_PRINT_I(GO_CONCURRENT),
351 352
				 CHECK_AND_PRINT_I(UNIFORM),
				 CHECK_AND_PRINT_I(20MHZ),
353 354 355
				 CHECK_AND_PRINT_I(40MHZ),
				 CHECK_AND_PRINT_I(80MHZ),
				 CHECK_AND_PRINT_I(160MHZ),
356
				 CHECK_AND_PRINT_I(DC_HIGH),
357 358 359 360 361 362 363 364 365
				 channel->max_power,
				 ((ch_flags & NVM_CHANNEL_IBSS) &&
				  !(ch_flags & NVM_CHANNEL_RADAR))
					? "" : "not ");
	}

	return n_channels;
}

366 367
static void iwl_init_vht_hw_capab(const struct iwl_cfg *cfg,
				  struct iwl_nvm_data *data,
368 369
				  struct ieee80211_sta_vht_cap *vht_cap,
				  u8 tx_chains, u8 rx_chains)
370
{
371 372
	int num_rx_ants = num_of_ant(rx_chains);
	int num_tx_ants = num_of_ant(tx_chains);
373 374
	unsigned int max_ampdu_exponent = (cfg->max_vht_ampdu_exponent ?:
					   IEEE80211_VHT_MAX_AMPDU_1024K);
375

376 377 378 379 380
	vht_cap->vht_supported = true;

	vht_cap->cap = IEEE80211_VHT_CAP_SHORT_GI_80 |
		       IEEE80211_VHT_CAP_RXSTBC_1 |
		       IEEE80211_VHT_CAP_SU_BEAMFORMEE_CAPABLE |
381
		       3 << IEEE80211_VHT_CAP_BEAMFORMEE_STS_SHIFT |
382 383
		       max_ampdu_exponent <<
		       IEEE80211_VHT_CAP_MAX_A_MPDU_LENGTH_EXPONENT_SHIFT;
384

385
	if (data->vht160_supported)
386 387
		vht_cap->cap |= IEEE80211_VHT_CAP_SUPP_CHAN_WIDTH_160MHZ |
				IEEE80211_VHT_CAP_SHORT_GI_160;
388

389 390 391
	if (cfg->vht_mu_mimo_supported)
		vht_cap->cap |= IEEE80211_VHT_CAP_MU_BEAMFORMEE_CAPABLE;

E
Eyal Shapira 已提交
392 393 394
	if (cfg->ht_params->ldpc)
		vht_cap->cap |= IEEE80211_VHT_CAP_RXLDPC;

395 396 397 398 399
	if (data->sku_cap_mimo_disabled) {
		num_rx_ants = 1;
		num_tx_ants = 1;
	}

400
	if (num_tx_ants > 1)
401
		vht_cap->cap |= IEEE80211_VHT_CAP_TXSTBC;
402 403
	else
		vht_cap->cap |= IEEE80211_VHT_CAP_TX_ANTENNA_PATTERN;
404

405
	switch (iwlwifi_mod_params.amsdu_size) {
406 407 408 409 410 411 412
	case IWL_AMSDU_DEF:
		if (cfg->mq_rx_supported)
			vht_cap->cap |=
				IEEE80211_VHT_CAP_MAX_MPDU_LENGTH_11454;
		else
			vht_cap->cap |= IEEE80211_VHT_CAP_MAX_MPDU_LENGTH_3895;
		break;
413 414 415 416
	case IWL_AMSDU_4K:
		vht_cap->cap |= IEEE80211_VHT_CAP_MAX_MPDU_LENGTH_3895;
		break;
	case IWL_AMSDU_8K:
417
		vht_cap->cap |= IEEE80211_VHT_CAP_MAX_MPDU_LENGTH_7991;
418 419 420 421 422 423 424
		break;
	case IWL_AMSDU_12K:
		vht_cap->cap |= IEEE80211_VHT_CAP_MAX_MPDU_LENGTH_11454;
		break;
	default:
		break;
	}
425 426 427 428 429 430 431 432 433 434 435

	vht_cap->vht_mcs.rx_mcs_map =
		cpu_to_le16(IEEE80211_VHT_MCS_SUPPORT_0_9 << 0 |
			    IEEE80211_VHT_MCS_SUPPORT_0_9 << 2 |
			    IEEE80211_VHT_MCS_NOT_SUPPORTED << 4 |
			    IEEE80211_VHT_MCS_NOT_SUPPORTED << 6 |
			    IEEE80211_VHT_MCS_NOT_SUPPORTED << 8 |
			    IEEE80211_VHT_MCS_NOT_SUPPORTED << 10 |
			    IEEE80211_VHT_MCS_NOT_SUPPORTED << 12 |
			    IEEE80211_VHT_MCS_NOT_SUPPORTED << 14);

436 437
	if (num_rx_ants == 1 || cfg->rx_with_siso_diversity) {
		vht_cap->cap |= IEEE80211_VHT_CAP_RX_ANTENNA_PATTERN;
438 439 440 441 442 443 444 445
		/* this works because NOT_SUPPORTED == 3 */
		vht_cap->vht_mcs.rx_mcs_map |=
			cpu_to_le16(IEEE80211_VHT_MCS_NOT_SUPPORTED << 2);
	}

	vht_cap->vht_mcs.tx_mcs_map = vht_cap->vht_mcs.rx_mcs_map;
}

446 447
void iwl_init_sbands(struct device *dev, const struct iwl_cfg *cfg,
		     struct iwl_nvm_data *data, const __le16 *nvm_ch_flags,
448 449
		     u8 tx_chains, u8 rx_chains, bool lar_supported,
		     bool no_wide_in_5ghz)
450
{
451
	int n_channels;
452 453 454
	int n_used = 0;
	struct ieee80211_supported_band *sband;

455
	n_channels = iwl_init_channel_map(dev, cfg, data, nvm_ch_flags,
456
					  lar_supported, no_wide_in_5ghz);
457 458
	sband = &data->bands[NL80211_BAND_2GHZ];
	sband->band = NL80211_BAND_2GHZ;
459 460 461
	sband->bitrates = &iwl_cfg80211_rates[RATES_24_OFFS];
	sband->n_bitrates = N_RATES_24;
	n_used += iwl_init_sband_channels(data, sband, n_channels,
462 463
					  NL80211_BAND_2GHZ);
	iwl_init_ht_hw_capab(cfg, data, &sband->ht_cap, NL80211_BAND_2GHZ,
464
			     tx_chains, rx_chains);
465

466 467
	sband = &data->bands[NL80211_BAND_5GHZ];
	sband->band = NL80211_BAND_5GHZ;
468 469 470
	sband->bitrates = &iwl_cfg80211_rates[RATES_52_OFFS];
	sband->n_bitrates = N_RATES_52;
	n_used += iwl_init_sband_channels(data, sband, n_channels,
471 472
					  NL80211_BAND_5GHZ);
	iwl_init_ht_hw_capab(cfg, data, &sband->ht_cap, NL80211_BAND_5GHZ,
473
			     tx_chains, rx_chains);
474
	if (data->sku_cap_11ac_enable && !iwlwifi_mod_params.disable_11ac)
475 476
		iwl_init_vht_hw_capab(cfg, data, &sband->vht_cap,
				      tx_chains, rx_chains);
477 478 479 480 481

	if (n_channels != n_used)
		IWL_ERR_DEV(dev, "NVM: used only %d of %d channels\n",
			    n_used, n_channels);
}
482
IWL_EXPORT_SYMBOL(iwl_init_sbands);
483

484 485
static int iwl_get_sku(const struct iwl_cfg *cfg, const __le16 *nvm_sw,
		       const __le16 *phy_sku)
486
{
487
	if (!cfg->ext_nvm)
488
		return le16_to_cpup(nvm_sw + SKU);
489

490
	return le32_to_cpup((__le32 *)(phy_sku + SKU_FAMILY_8000));
491 492
}

493
static int iwl_get_nvm_version(const struct iwl_cfg *cfg, const __le16 *nvm_sw)
494
{
495
	if (!cfg->ext_nvm)
496 497 498
		return le16_to_cpup(nvm_sw + NVM_VERSION);
	else
		return le32_to_cpup((__le32 *)(nvm_sw +
499
					       NVM_VERSION_EXT_NVM));
500 501
}

502 503
static int iwl_get_radio_cfg(const struct iwl_cfg *cfg, const __le16 *nvm_sw,
			     const __le16 *phy_sku)
504
{
505
	if (!cfg->ext_nvm)
506
		return le16_to_cpup(nvm_sw + RADIO_CFG);
507

508
	return le32_to_cpup((__le32 *)(phy_sku + RADIO_CFG_FAMILY_EXT_NVM));
509

510 511
}

512
static int iwl_get_n_hw_addrs(const struct iwl_cfg *cfg, const __le16 *nvm_sw)
513
{
514 515
	int n_hw_addr;

516
	if (!cfg->ext_nvm)
517
		return le16_to_cpup(nvm_sw + N_HW_ADDRS);
518

519
	n_hw_addr = le32_to_cpup((__le32 *)(nvm_sw + N_HW_ADDRS_FAMILY_8000));
520 521

	return n_hw_addr & N_HW_ADDR_MASK;
522 523 524 525 526 527
}

static void iwl_set_radio_cfg(const struct iwl_cfg *cfg,
			      struct iwl_nvm_data *data,
			      u32 radio_cfg)
{
528
	if (!cfg->ext_nvm) {
529 530 531 532 533 534 535 536
		data->radio_cfg_type = NVM_RF_CFG_TYPE_MSK(radio_cfg);
		data->radio_cfg_step = NVM_RF_CFG_STEP_MSK(radio_cfg);
		data->radio_cfg_dash = NVM_RF_CFG_DASH_MSK(radio_cfg);
		data->radio_cfg_pnum = NVM_RF_CFG_PNUM_MSK(radio_cfg);
		return;
	}

	/* set the radio configuration for family 8000 */
537 538 539 540 541 542
	data->radio_cfg_type = EXT_NVM_RF_CFG_TYPE_MSK(radio_cfg);
	data->radio_cfg_step = EXT_NVM_RF_CFG_STEP_MSK(radio_cfg);
	data->radio_cfg_dash = EXT_NVM_RF_CFG_DASH_MSK(radio_cfg);
	data->radio_cfg_pnum = EXT_NVM_RF_CFG_FLAVOR_MSK(radio_cfg);
	data->valid_tx_ant = EXT_NVM_RF_CFG_TX_ANT_MSK(radio_cfg);
	data->valid_rx_ant = EXT_NVM_RF_CFG_RX_ANT_MSK(radio_cfg);
543 544
}

545 546 547 548 549 550 551 552 553 554 555 556 557 558 559
static void iwl_flip_hw_address(__le32 mac_addr0, __le32 mac_addr1, u8 *dest)
{
	const u8 *hw_addr;

	hw_addr = (const u8 *)&mac_addr0;
	dest[0] = hw_addr[3];
	dest[1] = hw_addr[2];
	dest[2] = hw_addr[1];
	dest[3] = hw_addr[0];

	hw_addr = (const u8 *)&mac_addr1;
	dest[4] = hw_addr[1];
	dest[5] = hw_addr[0];
}

560 561
void iwl_set_hw_address_from_csr(struct iwl_trans *trans,
				 struct iwl_nvm_data *data)
562 563 564 565
{
	__le32 mac_addr0 = cpu_to_le32(iwl_read32(trans, CSR_MAC_ADDR0_STRAP));
	__le32 mac_addr1 = cpu_to_le32(iwl_read32(trans, CSR_MAC_ADDR1_STRAP));

566 567 568 569 570 571 572 573 574 575
	iwl_flip_hw_address(mac_addr0, mac_addr1, data->hw_addr);
	/*
	 * If the OEM fused a valid address, use it instead of the one in the
	 * OTP
	 */
	if (is_valid_ether_addr(data->hw_addr))
		return;

	mac_addr0 = cpu_to_le32(iwl_read32(trans, CSR_MAC_ADDR0_OTP));
	mac_addr1 = cpu_to_le32(iwl_read32(trans, CSR_MAC_ADDR1_OTP));
576 577 578

	iwl_flip_hw_address(mac_addr0, mac_addr1, data->hw_addr);
}
579
IWL_EXPORT_SYMBOL(iwl_set_hw_address_from_csr);
580

581
static void iwl_set_hw_address_family_8000(struct iwl_trans *trans,
582
					   const struct iwl_cfg *cfg,
583 584
					   struct iwl_nvm_data *data,
					   const __le16 *mac_override,
585
					   const __le16 *nvm_hw)
586 587 588 589
{
	const u8 *hw_addr;

	if (mac_override) {
590 591 592 593
		static const u8 reserved_mac[] = {
			0x02, 0xcc, 0xaa, 0xff, 0xee, 0x00
		};

594
		hw_addr = (const u8 *)(mac_override +
595
				 MAC_ADDRESS_OVERRIDE_EXT_NVM);
596

597 598 599 600 601
		/*
		 * Store the MAC address from MAO section.
		 * No byte swapping is required in MAO section
		 */
		memcpy(data->hw_addr, hw_addr, ETH_ALEN);
602

603 604 605 606 607 608
		/*
		 * Force the use of the OTP MAC address in case of reserved MAC
		 * address in the NVM, or if address is given but invalid.
		 */
		if (is_valid_ether_addr(data->hw_addr) &&
		    memcmp(reserved_mac, hw_addr, ETH_ALEN) != 0)
609
			return;
610

611 612
		IWL_ERR(trans,
			"mac address from nvm override section is not valid\n");
613 614
	}

615
	if (nvm_hw) {
616 617 618 619 620
		/* read the mac address from WFMP registers */
		__le32 mac_addr0 = cpu_to_le32(iwl_trans_read_prph(trans,
						WFMP_MAC_ADDR_0));
		__le32 mac_addr1 = cpu_to_le32(iwl_trans_read_prph(trans,
						WFMP_MAC_ADDR_1));
621 622

		iwl_flip_hw_address(mac_addr0, mac_addr1, data->hw_addr);
623

624 625
		return;
	}
626

627 628 629
	IWL_ERR(trans, "mac address is not found\n");
}

630 631 632 633
static int iwl_set_hw_address(struct iwl_trans *trans,
			      const struct iwl_cfg *cfg,
			      struct iwl_nvm_data *data, const __le16 *nvm_hw,
			      const __le16 *mac_override)
634
{
635 636
	if (cfg->mac_addr_from_csr) {
		iwl_set_hw_address_from_csr(trans, data);
637
	} else if (!cfg->ext_nvm) {
638 639 640 641 642 643 644 645 646 647 648 649 650
		const u8 *hw_addr = (const u8 *)(nvm_hw + HW_ADDR);

		/* The byte order is little endian 16 bit, meaning 214365 */
		data->hw_addr[0] = hw_addr[1];
		data->hw_addr[1] = hw_addr[0];
		data->hw_addr[2] = hw_addr[3];
		data->hw_addr[3] = hw_addr[2];
		data->hw_addr[4] = hw_addr[5];
		data->hw_addr[5] = hw_addr[4];
	} else {
		iwl_set_hw_address_family_8000(trans, cfg, data,
					       mac_override, nvm_hw);
	}
651 652 653 654 655 656

	if (!is_valid_ether_addr(data->hw_addr)) {
		IWL_ERR(trans, "no valid mac address was found\n");
		return -EINVAL;
	}

657 658
	IWL_INFO(trans, "base HW address: %pM\n", data->hw_addr);

659
	return 0;
660 661
}

662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694
static bool
iwl_nvm_no_wide_in_5ghz(struct device *dev, const struct iwl_cfg *cfg,
			const __le16 *nvm_hw)
{
	/*
	 * Workaround a bug in Indonesia SKUs where the regulatory in
	 * some 7000-family OTPs erroneously allow wide channels in
	 * 5GHz.  To check for Indonesia, we take the SKU value from
	 * bits 1-4 in the subsystem ID and check if it is either 5 or
	 * 9.  In those cases, we need to force-disable wide channels
	 * in 5GHz otherwise the FW will throw a sysassert when we try
	 * to use them.
	 */
	if (cfg->device_family == IWL_DEVICE_FAMILY_7000) {
		/*
		 * Unlike the other sections in the NVM, the hw
		 * section uses big-endian.
		 */
		u16 subsystem_id = be16_to_cpup((const __be16 *)nvm_hw
						+ SUBSYSTEM_ID);
		u8 sku = (subsystem_id & 0x1e) >> 1;

		if (sku == 5 || sku == 9) {
			IWL_DEBUG_EEPROM(dev,
					 "disabling wide channels in 5GHz (0x%0x %d)\n",
					 subsystem_id, sku);
			return true;
		}
	}

	return false;
}

695
struct iwl_nvm_data *
696
iwl_parse_nvm_data(struct iwl_trans *trans, const struct iwl_cfg *cfg,
697
		   const __le16 *nvm_hw, const __le16 *nvm_sw,
698
		   const __le16 *nvm_calib, const __le16 *regulatory,
699
		   const __le16 *mac_override, const __le16 *phy_sku,
700
		   u8 tx_chains, u8 rx_chains, bool lar_fw_supported)
701
{
702
	struct device *dev = trans->dev;
703
	struct iwl_nvm_data *data;
704
	bool lar_enabled;
705
	bool no_wide_in_5ghz = iwl_nvm_no_wide_in_5ghz(dev, cfg, nvm_hw);
706
	u32 sku, radio_cfg;
707
	u16 lar_config;
708
	const __le16 *ch_section;
709

710
	if (!cfg->ext_nvm)
711 712 713 714 715 716 717
		data = kzalloc(sizeof(*data) +
			       sizeof(struct ieee80211_channel) *
			       IWL_NUM_CHANNELS,
			       GFP_KERNEL);
	else
		data = kzalloc(sizeof(*data) +
			       sizeof(struct ieee80211_channel) *
718
			       IWL_NUM_CHANNELS_EXT,
719
			       GFP_KERNEL);
720 721 722
	if (!data)
		return NULL;

723
	data->nvm_version = iwl_get_nvm_version(cfg, nvm_sw);
724

725
	radio_cfg = iwl_get_radio_cfg(cfg, nvm_sw, phy_sku);
726
	iwl_set_radio_cfg(cfg, data, radio_cfg);
727 728 729 730
	if (data->valid_tx_ant)
		tx_chains &= data->valid_tx_ant;
	if (data->valid_rx_ant)
		rx_chains &= data->valid_rx_ant;
731

732
	sku = iwl_get_sku(cfg, nvm_sw, phy_sku);
733 734 735 736 737
	data->sku_cap_band_24GHz_enable = sku & NVM_SKU_CAP_BAND_24GHZ;
	data->sku_cap_band_52GHz_enable = sku & NVM_SKU_CAP_BAND_52GHZ;
	data->sku_cap_11n_enable = sku & NVM_SKU_CAP_11N_ENABLE;
	if (iwlwifi_mod_params.disable_11n & IWL_DISABLE_HT_ALL)
		data->sku_cap_11n_enable = false;
738 739
	data->sku_cap_11ac_enable = data->sku_cap_11n_enable &&
				    (sku & NVM_SKU_CAP_11AC_ENABLE);
740
	data->sku_cap_mimo_disabled = sku & NVM_SKU_CAP_MIMO_DISABLE;
741

742
	data->n_hw_addrs = iwl_get_n_hw_addrs(cfg, nvm_sw);
743

744
	if (!cfg->ext_nvm) {
745 746
		/* Checking for required sections */
		if (!nvm_calib) {
747 748
			IWL_ERR(trans,
				"Can't parse empty Calib NVM sections\n");
749
			kfree(data);
750 751 752 753 754
			return NULL;
		}
		/* in family 8000 Xtal calibration values moved to OTP */
		data->xtal_calib[0] = *(nvm_calib + XTAL_CALIB);
		data->xtal_calib[1] = *(nvm_calib + XTAL_CALIB + 1);
755
		lar_enabled = true;
756
		ch_section = &nvm_sw[NVM_CHANNELS];
757
	} else {
758
		u16 lar_offset = data->nvm_version < 0xE39 ?
759 760
				 NVM_LAR_OFFSET_OLD :
				 NVM_LAR_OFFSET;
761 762

		lar_config = le16_to_cpup(regulatory + lar_offset);
763
		data->lar_enabled = !!(lar_config &
764
				       NVM_LAR_ENABLED);
765
		lar_enabled = data->lar_enabled;
766
		ch_section = &regulatory[NVM_CHANNELS_EXTENDED];
767
	}
768

769 770 771 772 773 774
	/* If no valid mac address was found - bail out */
	if (iwl_set_hw_address(trans, cfg, data, nvm_hw, mac_override)) {
		kfree(data);
		return NULL;
	}

775
	iwl_init_sbands(dev, cfg, data, ch_section, tx_chains, rx_chains,
776
			lar_fw_supported && lar_enabled, no_wide_in_5ghz);
777
	data->calib_version = 255;
778 779 780

	return data;
}
781
IWL_EXPORT_SYMBOL(iwl_parse_nvm_data);
782 783

static u32 iwl_nvm_get_regdom_bw_flags(const u8 *nvm_chan,
784 785
				       int ch_idx, u16 nvm_flags,
				       const struct iwl_cfg *cfg)
786 787
{
	u32 flags = NL80211_RRF_NO_HT40;
788 789
	u32 last_5ghz_ht = LAST_5GHZ_HT;

790
	if (cfg->ext_nvm)
791
		last_5ghz_ht = LAST_5GHZ_HT_FAMILY_8000;
792 793 794 795 796 797 798

	if (ch_idx < NUM_2GHZ_CHANNELS &&
	    (nvm_flags & NVM_CHANNEL_40MHZ)) {
		if (nvm_chan[ch_idx] <= LAST_2GHZ_HT_PLUS)
			flags &= ~NL80211_RRF_NO_HT40PLUS;
		if (nvm_chan[ch_idx] >= FIRST_2GHZ_HT_MINUS)
			flags &= ~NL80211_RRF_NO_HT40MINUS;
799
	} else if (nvm_chan[ch_idx] <= last_5ghz_ht &&
800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831
		   (nvm_flags & NVM_CHANNEL_40MHZ)) {
		if ((ch_idx - NUM_2GHZ_CHANNELS) % 2 == 0)
			flags &= ~NL80211_RRF_NO_HT40PLUS;
		else
			flags &= ~NL80211_RRF_NO_HT40MINUS;
	}

	if (!(nvm_flags & NVM_CHANNEL_80MHZ))
		flags |= NL80211_RRF_NO_80MHZ;
	if (!(nvm_flags & NVM_CHANNEL_160MHZ))
		flags |= NL80211_RRF_NO_160MHZ;

	if (!(nvm_flags & NVM_CHANNEL_ACTIVE))
		flags |= NL80211_RRF_NO_IR;

	if (nvm_flags & NVM_CHANNEL_RADAR)
		flags |= NL80211_RRF_DFS;

	if (nvm_flags & NVM_CHANNEL_INDOOR_ONLY)
		flags |= NL80211_RRF_NO_OUTDOOR;

	/* Set the GO concurrent flag only in case that NO_IR is set.
	 * Otherwise it is meaningless
	 */
	if ((nvm_flags & NVM_CHANNEL_GO_CONCURRENT) &&
	    (flags & NL80211_RRF_NO_IR))
		flags |= NL80211_RRF_GO_CONCURRENT;

	return flags;
}

struct ieee80211_regdomain *
832 833
iwl_parse_nvm_mcc_info(struct device *dev, const struct iwl_cfg *cfg,
		       int num_of_ch, __le32 *channels, u16 fw_mcc)
834 835 836
{
	int ch_idx;
	u16 ch_flags, prev_ch_flags = 0;
837 838
	const u8 *nvm_chan = cfg->ext_nvm ?
			     iwl_ext_nvm_channels : iwl_nvm_channels;
839 840 841
	struct ieee80211_regdomain *regd;
	int size_of_regd;
	struct ieee80211_reg_rule *rule;
842
	enum nl80211_band band;
843 844 845
	int center_freq, prev_center_freq = 0;
	int valid_rules = 0;
	bool new_rule;
846 847
	int max_num_ch = cfg->ext_nvm ?
			 IWL_NUM_CHANNELS_EXT : IWL_NUM_CHANNELS;
848 849 850 851

	if (WARN_ON_ONCE(num_of_ch > NL80211_MAX_SUPP_REG_RULES))
		return ERR_PTR(-EINVAL);

852 853 854
	if (WARN_ON(num_of_ch > max_num_ch))
		num_of_ch = max_num_ch;

855 856 857 858 859 860 861 862 863 864 865 866 867 868 869
	IWL_DEBUG_DEV(dev, IWL_DL_LAR, "building regdom for %d channels\n",
		      num_of_ch);

	/* build a regdomain rule for every valid channel */
	size_of_regd =
		sizeof(struct ieee80211_regdomain) +
		num_of_ch * sizeof(struct ieee80211_reg_rule);

	regd = kzalloc(size_of_regd, GFP_KERNEL);
	if (!regd)
		return ERR_PTR(-ENOMEM);

	for (ch_idx = 0; ch_idx < num_of_ch; ch_idx++) {
		ch_flags = (u16)__le32_to_cpup(channels + ch_idx);
		band = (ch_idx < NUM_2GHZ_CHANNELS) ?
870
		       NL80211_BAND_2GHZ : NL80211_BAND_5GHZ;
871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901
		center_freq = ieee80211_channel_to_frequency(nvm_chan[ch_idx],
							     band);
		new_rule = false;

		if (!(ch_flags & NVM_CHANNEL_VALID)) {
			IWL_DEBUG_DEV(dev, IWL_DL_LAR,
				      "Ch. %d Flags %x [%sGHz] - No traffic\n",
				      nvm_chan[ch_idx],
				      ch_flags,
				      (ch_idx >= NUM_2GHZ_CHANNELS) ?
				      "5.2" : "2.4");
			continue;
		}

		/* we can't continue the same rule */
		if (ch_idx == 0 || prev_ch_flags != ch_flags ||
		    center_freq - prev_center_freq > 20) {
			valid_rules++;
			new_rule = true;
		}

		rule = &regd->reg_rules[valid_rules - 1];

		if (new_rule)
			rule->freq_range.start_freq_khz =
						MHZ_TO_KHZ(center_freq - 10);

		rule->freq_range.end_freq_khz = MHZ_TO_KHZ(center_freq + 10);

		/* this doesn't matter - not used by FW */
		rule->power_rule.max_antenna_gain = DBI_TO_MBI(6);
902 903
		rule->power_rule.max_eirp =
			DBM_TO_MBM(IWL_DEFAULT_MAX_TX_POWER);
904 905

		rule->flags = iwl_nvm_get_regdom_bw_flags(nvm_chan, ch_idx,
906
							  ch_flags, cfg);
907 908 909 910 911 912 913 914 915

		/* rely on auto-calculation to merge BW of contiguous chans */
		rule->flags |= NL80211_RRF_AUTO_BW;
		rule->freq_range.max_bandwidth_khz = 0;

		prev_ch_flags = ch_flags;
		prev_center_freq = center_freq;

		IWL_DEBUG_DEV(dev, IWL_DL_LAR,
916
			      "Ch. %d [%sGHz] %s%s%s%s%s%s%s%s%s%s%s%s(0x%02x): %s\n",
917
			      center_freq,
918
			      band == NL80211_BAND_5GHZ ? "5.2" : "2.4",
919
			      CHECK_AND_PRINT_I(VALID),
920
			      CHECK_AND_PRINT_I(IBSS),
921 922
			      CHECK_AND_PRINT_I(ACTIVE),
			      CHECK_AND_PRINT_I(RADAR),
923 924 925 926
			      CHECK_AND_PRINT_I(INDOOR_ONLY),
			      CHECK_AND_PRINT_I(GO_CONCURRENT),
			      CHECK_AND_PRINT_I(UNIFORM),
			      CHECK_AND_PRINT_I(20MHZ),
927 928 929
			      CHECK_AND_PRINT_I(40MHZ),
			      CHECK_AND_PRINT_I(80MHZ),
			      CHECK_AND_PRINT_I(160MHZ),
930
			      CHECK_AND_PRINT_I(DC_HIGH),
931
			      ch_flags,
932
			      ((ch_flags & NVM_CHANNEL_ACTIVE) &&
933
			       !(ch_flags & NVM_CHANNEL_RADAR))
934
					 ? "Ad-Hoc" : "");
935 936 937 938 939 940 941 942 943 944 945
	}

	regd->n_reg_rules = valid_rules;

	/* set alpha2 from FW. */
	regd->alpha2[0] = fw_mcc >> 8;
	regd->alpha2[1] = fw_mcc & 0xff;

	return regd;
}
IWL_EXPORT_SYMBOL(iwl_parse_nvm_mcc_info);
946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033

#ifdef CONFIG_ACPI
#define WRDD_METHOD		"WRDD"
#define WRDD_WIFI		(0x07)
#define WRDD_WIGIG		(0x10)

static u32 iwl_wrdd_get_mcc(struct device *dev, union acpi_object *wrdd)
{
	union acpi_object *mcc_pkg, *domain_type, *mcc_value;
	u32 i;

	if (wrdd->type != ACPI_TYPE_PACKAGE ||
	    wrdd->package.count < 2 ||
	    wrdd->package.elements[0].type != ACPI_TYPE_INTEGER ||
	    wrdd->package.elements[0].integer.value != 0) {
		IWL_DEBUG_EEPROM(dev, "Unsupported wrdd structure\n");
		return 0;
	}

	for (i = 1 ; i < wrdd->package.count ; ++i) {
		mcc_pkg = &wrdd->package.elements[i];

		if (mcc_pkg->type != ACPI_TYPE_PACKAGE ||
		    mcc_pkg->package.count < 2 ||
		    mcc_pkg->package.elements[0].type != ACPI_TYPE_INTEGER ||
		    mcc_pkg->package.elements[1].type != ACPI_TYPE_INTEGER) {
			mcc_pkg = NULL;
			continue;
		}

		domain_type = &mcc_pkg->package.elements[0];
		if (domain_type->integer.value == WRDD_WIFI)
			break;

		mcc_pkg = NULL;
	}

	if (mcc_pkg) {
		mcc_value = &mcc_pkg->package.elements[1];
		return mcc_value->integer.value;
	}

	return 0;
}

int iwl_get_bios_mcc(struct device *dev, char *mcc)
{
	acpi_handle root_handle;
	acpi_handle handle;
	struct acpi_buffer wrdd = {ACPI_ALLOCATE_BUFFER, NULL};
	acpi_status status;
	u32 mcc_val;

	root_handle = ACPI_HANDLE(dev);
	if (!root_handle) {
		IWL_DEBUG_EEPROM(dev,
				 "Could not retrieve root port ACPI handle\n");
		return -ENOENT;
	}

	/* Get the method's handle */
	status = acpi_get_handle(root_handle, (acpi_string)WRDD_METHOD,
				 &handle);
	if (ACPI_FAILURE(status)) {
		IWL_DEBUG_EEPROM(dev, "WRD method not found\n");
		return -ENOENT;
	}

	/* Call WRDD with no arguments */
	status = acpi_evaluate_object(handle, NULL, NULL, &wrdd);
	if (ACPI_FAILURE(status)) {
		IWL_DEBUG_EEPROM(dev, "WRDC invocation failed (0x%x)\n",
				 status);
		return -ENOENT;
	}

	mcc_val = iwl_wrdd_get_mcc(dev, wrdd.pointer);
	kfree(wrdd.pointer);
	if (!mcc_val)
		return -ENOENT;

	mcc[0] = (mcc_val >> 8) & 0xff;
	mcc[1] = mcc_val & 0xff;
	mcc[2] = '\0';
	return 0;
}
IWL_EXPORT_SYMBOL(iwl_get_bios_mcc);
#endif