iwl-nvm-parse.c 30.7 KB
Newer Older
1 2 3 4 5 6 7
/******************************************************************************
 *
 * This file is provided under a dual BSD/GPLv2 license.  When using or
 * redistributing this file, you may do so under either license.
 *
 * GPL LICENSE SUMMARY
 *
8
 * Copyright(c) 2008 - 2014 Intel Corporation. All rights reserved.
9
 * Copyright(c) 2013 - 2015 Intel Mobile Communications GmbH
10
 * Copyright(c) 2016 - 2017 Intel Deutschland GmbH
11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of version 2 of the GNU General Public License as
 * published by the Free Software Foundation.
 *
 * This program is distributed in the hope that it will be useful, but
 * WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110,
 * USA
 *
 * The full GNU General Public License is included in this distribution
27
 * in the file called COPYING.
28 29
 *
 * Contact Information:
30
 *  Intel Linux Wireless <linuxwifi@intel.com>
31 32 33 34
 * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
 *
 * BSD LICENSE
 *
35
 * Copyright(c) 2005 - 2014 Intel Corporation. All rights reserved.
36
 * Copyright(c) 2013 - 2015 Intel Mobile Communications GmbH
37
 * Copyright(c) 2016 - 2017 Intel Deutschland GmbH
38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68
 * All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 *
 *  * Redistributions of source code must retain the above copyright
 *    notice, this list of conditions and the following disclaimer.
 *  * Redistributions in binary form must reproduce the above copyright
 *    notice, this list of conditions and the following disclaimer in
 *    the documentation and/or other materials provided with the
 *    distribution.
 *  * Neither the name Intel Corporation nor the names of its
 *    contributors may be used to endorse or promote products derived
 *    from this software without specific prior written permission.
 *
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 *****************************************************************************/
#include <linux/types.h>
#include <linux/slab.h>
#include <linux/export.h>
69
#include <linux/etherdevice.h>
70
#include <linux/pci.h>
71
#include <linux/acpi.h>
72
#include "iwl-drv.h"
73 74
#include "iwl-modparams.h"
#include "iwl-nvm-parse.h"
75
#include "iwl-prph.h"
76 77
#include "iwl-io.h"
#include "iwl-csr.h"
78 79 80 81

/* NVM offsets (in words) definitions */
enum wkp_nvm_offsets {
	/* NVM HW-Section offset (in words) definitions */
82
	SUBSYSTEM_ID = 0x0A,
83 84
	HW_ADDR = 0x15,

85
	/* NVM SW-Section offset (in words) definitions */
86 87 88 89 90 91 92 93
	NVM_SW_SECTION = 0x1C0,
	NVM_VERSION = 0,
	RADIO_CFG = 1,
	SKU = 2,
	N_HW_ADDRS = 3,
	NVM_CHANNELS = 0x1E0 - NVM_SW_SECTION,
};

94
enum ext_nvm_offsets {
95
	/* NVM HW-Section offset (in words) definitions */
96
	MAC_ADDRESS_OVERRIDE_EXT_NVM = 1,
97 98

	/* NVM SW-Section offset (in words) definitions */
99 100
	NVM_VERSION_EXT_NVM = 0,
	RADIO_CFG_FAMILY_EXT_NVM = 0,
101 102
	SKU_FAMILY_8000 = 2,
	N_HW_ADDRS_FAMILY_8000 = 3,
103

104
	/* NVM REGULATORY -Section offset (in words) definitions */
105 106 107 108
	NVM_CHANNELS_EXTENDED = 0,
	NVM_LAR_OFFSET_OLD = 0x4C7,
	NVM_LAR_OFFSET = 0x507,
	NVM_LAR_ENABLED = 0x7,
109 110
};

111 112
/* SKU Capabilities (actual values from NVM definition) */
enum nvm_sku_bits {
113 114 115 116 117
	NVM_SKU_CAP_BAND_24GHZ		= BIT(0),
	NVM_SKU_CAP_BAND_52GHZ		= BIT(1),
	NVM_SKU_CAP_11N_ENABLE		= BIT(2),
	NVM_SKU_CAP_11AC_ENABLE		= BIT(3),
	NVM_SKU_CAP_MIMO_DISABLE	= BIT(5),
118 119 120 121 122 123 124 125 126 127 128 129 130 131
};

/*
 * These are the channel numbers in the order that they are stored in the NVM
 */
static const u8 iwl_nvm_channels[] = {
	/* 2.4 GHz */
	1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14,
	/* 5 GHz */
	36, 40, 44 , 48, 52, 56, 60, 64,
	100, 104, 108, 112, 116, 120, 124, 128, 132, 136, 140, 144,
	149, 153, 157, 161, 165
};

132
static const u8 iwl_ext_nvm_channels[] = {
133
	/* 2.4 GHz */
134
	1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14,
135 136 137 138 139 140
	/* 5 GHz */
	36, 40, 44, 48, 52, 56, 60, 64, 68, 72, 76, 80, 84, 88, 92,
	96, 100, 104, 108, 112, 116, 120, 124, 128, 132, 136, 140, 144,
	149, 153, 157, 161, 165, 169, 173, 177, 181
};

141
#define IWL_NUM_CHANNELS		ARRAY_SIZE(iwl_nvm_channels)
142
#define IWL_NUM_CHANNELS_EXT	ARRAY_SIZE(iwl_ext_nvm_channels)
143
#define NUM_2GHZ_CHANNELS		14
144
#define NUM_2GHZ_CHANNELS_EXT	14
145 146
#define FIRST_2GHZ_HT_MINUS		5
#define LAST_2GHZ_HT_PLUS		9
147 148
#define LAST_5GHZ_HT			165
#define LAST_5GHZ_HT_FAMILY_8000	181
149
#define N_HW_ADDR_MASK			0xF
150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179

/* rate data (static) */
static struct ieee80211_rate iwl_cfg80211_rates[] = {
	{ .bitrate = 1 * 10, .hw_value = 0, .hw_value_short = 0, },
	{ .bitrate = 2 * 10, .hw_value = 1, .hw_value_short = 1,
	  .flags = IEEE80211_RATE_SHORT_PREAMBLE, },
	{ .bitrate = 5.5 * 10, .hw_value = 2, .hw_value_short = 2,
	  .flags = IEEE80211_RATE_SHORT_PREAMBLE, },
	{ .bitrate = 11 * 10, .hw_value = 3, .hw_value_short = 3,
	  .flags = IEEE80211_RATE_SHORT_PREAMBLE, },
	{ .bitrate = 6 * 10, .hw_value = 4, .hw_value_short = 4, },
	{ .bitrate = 9 * 10, .hw_value = 5, .hw_value_short = 5, },
	{ .bitrate = 12 * 10, .hw_value = 6, .hw_value_short = 6, },
	{ .bitrate = 18 * 10, .hw_value = 7, .hw_value_short = 7, },
	{ .bitrate = 24 * 10, .hw_value = 8, .hw_value_short = 8, },
	{ .bitrate = 36 * 10, .hw_value = 9, .hw_value_short = 9, },
	{ .bitrate = 48 * 10, .hw_value = 10, .hw_value_short = 10, },
	{ .bitrate = 54 * 10, .hw_value = 11, .hw_value_short = 11, },
};
#define RATES_24_OFFS	0
#define N_RATES_24	ARRAY_SIZE(iwl_cfg80211_rates)
#define RATES_52_OFFS	4
#define N_RATES_52	(N_RATES_24 - RATES_52_OFFS)

/**
 * enum iwl_nvm_channel_flags - channel flags in NVM
 * @NVM_CHANNEL_VALID: channel is usable for this SKU/geo
 * @NVM_CHANNEL_IBSS: usable as an IBSS channel
 * @NVM_CHANNEL_ACTIVE: active scanning allowed
 * @NVM_CHANNEL_RADAR: radar detection required
180 181 182
 * @NVM_CHANNEL_INDOOR_ONLY: only indoor use is allowed
 * @NVM_CHANNEL_GO_CONCURRENT: GO operation is allowed when connected to BSS
 *	on same channel on 2.4 or same UNII band on 5.2
183 184 185 186 187 188
 * @NVM_CHANNEL_UNIFORM: uniform spreading required
 * @NVM_CHANNEL_20MHZ: 20 MHz channel okay
 * @NVM_CHANNEL_40MHZ: 40 MHz channel okay
 * @NVM_CHANNEL_80MHZ: 80 MHz channel okay
 * @NVM_CHANNEL_160MHZ: 160 MHz channel okay
 * @NVM_CHANNEL_DC_HIGH: DC HIGH required/allowed (?)
189 190
 */
enum iwl_nvm_channel_flags {
191 192 193 194 195 196 197 198 199 200 201 202
	NVM_CHANNEL_VALID		= BIT(0),
	NVM_CHANNEL_IBSS		= BIT(1),
	NVM_CHANNEL_ACTIVE		= BIT(3),
	NVM_CHANNEL_RADAR		= BIT(4),
	NVM_CHANNEL_INDOOR_ONLY		= BIT(5),
	NVM_CHANNEL_GO_CONCURRENT	= BIT(6),
	NVM_CHANNEL_UNIFORM		= BIT(7),
	NVM_CHANNEL_20MHZ		= BIT(8),
	NVM_CHANNEL_40MHZ		= BIT(9),
	NVM_CHANNEL_80MHZ		= BIT(10),
	NVM_CHANNEL_160MHZ		= BIT(11),
	NVM_CHANNEL_DC_HIGH		= BIT(12),
203 204 205 206 207
};

#define CHECK_AND_PRINT_I(x)	\
	((ch_flags & NVM_CHANNEL_##x) ? # x " " : "")

208
static u32 iwl_get_channel_flags(u8 ch_num, int ch_idx, bool is_5ghz,
209
				 u16 nvm_flags, const struct iwl_cfg *cfg)
210 211
{
	u32 flags = IEEE80211_CHAN_NO_HT40;
212 213
	u32 last_5ghz_ht = LAST_5GHZ_HT;

214
	if (cfg->ext_nvm)
215
		last_5ghz_ht = LAST_5GHZ_HT_FAMILY_8000;
216 217 218 219 220 221

	if (!is_5ghz && (nvm_flags & NVM_CHANNEL_40MHZ)) {
		if (ch_num <= LAST_2GHZ_HT_PLUS)
			flags &= ~IEEE80211_CHAN_NO_HT40PLUS;
		if (ch_num >= FIRST_2GHZ_HT_MINUS)
			flags &= ~IEEE80211_CHAN_NO_HT40MINUS;
222
	} else if (ch_num <= last_5ghz_ht && (nvm_flags & NVM_CHANNEL_40MHZ)) {
223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249
		if ((ch_idx - NUM_2GHZ_CHANNELS) % 2 == 0)
			flags &= ~IEEE80211_CHAN_NO_HT40PLUS;
		else
			flags &= ~IEEE80211_CHAN_NO_HT40MINUS;
	}
	if (!(nvm_flags & NVM_CHANNEL_80MHZ))
		flags |= IEEE80211_CHAN_NO_80MHZ;
	if (!(nvm_flags & NVM_CHANNEL_160MHZ))
		flags |= IEEE80211_CHAN_NO_160MHZ;

	if (!(nvm_flags & NVM_CHANNEL_IBSS))
		flags |= IEEE80211_CHAN_NO_IR;

	if (!(nvm_flags & NVM_CHANNEL_ACTIVE))
		flags |= IEEE80211_CHAN_NO_IR;

	if (nvm_flags & NVM_CHANNEL_RADAR)
		flags |= IEEE80211_CHAN_RADAR;

	if (nvm_flags & NVM_CHANNEL_INDOOR_ONLY)
		flags |= IEEE80211_CHAN_INDOOR_ONLY;

	/* Set the GO concurrent flag only in case that NO_IR is set.
	 * Otherwise it is meaningless
	 */
	if ((nvm_flags & NVM_CHANNEL_GO_CONCURRENT) &&
	    (flags & IEEE80211_CHAN_NO_IR))
250
		flags |= IEEE80211_CHAN_IR_CONCURRENT;
251 252 253 254

	return flags;
}

255 256
static int iwl_init_channel_map(struct device *dev, const struct iwl_cfg *cfg,
				struct iwl_nvm_data *data,
257
				const __le16 * const nvm_ch_flags,
258
				bool lar_supported, bool no_wide_in_5ghz)
259 260 261 262 263
{
	int ch_idx;
	int n_channels = 0;
	struct ieee80211_channel *channel;
	u16 ch_flags;
264
	int num_of_ch, num_2ghz_channels;
265 266
	const u8 *nvm_chan;

267
	if (!cfg->ext_nvm) {
268 269
		num_of_ch = IWL_NUM_CHANNELS;
		nvm_chan = &iwl_nvm_channels[0];
270
		num_2ghz_channels = NUM_2GHZ_CHANNELS;
271
	} else {
272 273 274
		num_of_ch = IWL_NUM_CHANNELS_EXT;
		nvm_chan = &iwl_ext_nvm_channels[0];
		num_2ghz_channels = NUM_2GHZ_CHANNELS_EXT;
275
	}
276

277
	for (ch_idx = 0; ch_idx < num_of_ch; ch_idx++) {
278 279
		bool is_5ghz = (ch_idx >= num_2ghz_channels);

280
		ch_flags = __le16_to_cpup(nvm_ch_flags + ch_idx);
281

282
		if (is_5ghz && !data->sku_cap_band_52GHz_enable)
283
			continue;
284

285 286 287 288 289 290 291
		/* workaround to disable wide channels in 5GHz */
		if (no_wide_in_5ghz && is_5ghz) {
			ch_flags &= ~(NVM_CHANNEL_40MHZ |
				     NVM_CHANNEL_80MHZ |
				     NVM_CHANNEL_160MHZ);
		}

292 293 294
		if (ch_flags & NVM_CHANNEL_160MHZ)
			data->vht160_supported = true;

295
		if (!lar_supported && !(ch_flags & NVM_CHANNEL_VALID)) {
296 297 298 299 300
			/*
			 * Channels might become valid later if lar is
			 * supported, hence we still want to add them to
			 * the list of supported channels to cfg80211.
			 */
301 302
			IWL_DEBUG_EEPROM(dev,
					 "Ch. %d Flags %x [%sGHz] - No traffic\n",
303
					 nvm_chan[ch_idx],
304
					 ch_flags,
305
					 (ch_idx >= num_2ghz_channels) ?
306 307 308 309 310 311 312
					 "5.2" : "2.4");
			continue;
		}

		channel = &data->channels[n_channels];
		n_channels++;

313
		channel->hw_value = nvm_chan[ch_idx];
314 315
		channel->band = is_5ghz ?
				NL80211_BAND_5GHZ : NL80211_BAND_2GHZ;
316 317 318 319 320 321
		channel->center_freq =
			ieee80211_channel_to_frequency(
				channel->hw_value, channel->band);

		/* Initialize regulatory-based run-time data */

322 323 324 325
		/*
		 * Default value - highest tx power value.  max_power
		 * is not used in mvm, and is used for backwards compatibility
		 */
326
		channel->max_power = IWL_DEFAULT_MAX_TX_POWER;
327 328 329 330 331

		/* don't put limitations in case we're using LAR */
		if (!lar_supported)
			channel->flags = iwl_get_channel_flags(nvm_chan[ch_idx],
							       ch_idx, is_5ghz,
332
							       ch_flags, cfg);
333 334 335
		else
			channel->flags = 0;

336
		IWL_DEBUG_EEPROM(dev,
337
				 "Ch. %d [%sGHz] flags 0x%x %s%s%s%s%s%s%s%s%s%s%s%s(%ddBm): Ad-Hoc %ssupported\n",
338 339
				 channel->hw_value,
				 is_5ghz ? "5.2" : "2.4",
340
				 ch_flags,
341 342 343 344
				 CHECK_AND_PRINT_I(VALID),
				 CHECK_AND_PRINT_I(IBSS),
				 CHECK_AND_PRINT_I(ACTIVE),
				 CHECK_AND_PRINT_I(RADAR),
345 346
				 CHECK_AND_PRINT_I(INDOOR_ONLY),
				 CHECK_AND_PRINT_I(GO_CONCURRENT),
347 348
				 CHECK_AND_PRINT_I(UNIFORM),
				 CHECK_AND_PRINT_I(20MHZ),
349 350 351
				 CHECK_AND_PRINT_I(40MHZ),
				 CHECK_AND_PRINT_I(80MHZ),
				 CHECK_AND_PRINT_I(160MHZ),
352
				 CHECK_AND_PRINT_I(DC_HIGH),
353 354 355 356 357 358 359 360 361
				 channel->max_power,
				 ((ch_flags & NVM_CHANNEL_IBSS) &&
				  !(ch_flags & NVM_CHANNEL_RADAR))
					? "" : "not ");
	}

	return n_channels;
}

362 363
static void iwl_init_vht_hw_capab(const struct iwl_cfg *cfg,
				  struct iwl_nvm_data *data,
364 365
				  struct ieee80211_sta_vht_cap *vht_cap,
				  u8 tx_chains, u8 rx_chains)
366
{
367 368
	int num_rx_ants = num_of_ant(rx_chains);
	int num_tx_ants = num_of_ant(tx_chains);
369 370
	unsigned int max_ampdu_exponent = (cfg->max_vht_ampdu_exponent ?:
					   IEEE80211_VHT_MAX_AMPDU_1024K);
371

372 373 374 375 376
	vht_cap->vht_supported = true;

	vht_cap->cap = IEEE80211_VHT_CAP_SHORT_GI_80 |
		       IEEE80211_VHT_CAP_RXSTBC_1 |
		       IEEE80211_VHT_CAP_SU_BEAMFORMEE_CAPABLE |
377
		       3 << IEEE80211_VHT_CAP_BEAMFORMEE_STS_SHIFT |
378 379
		       max_ampdu_exponent <<
		       IEEE80211_VHT_CAP_MAX_A_MPDU_LENGTH_EXPONENT_SHIFT;
380

381
	if (data->vht160_supported)
382 383
		vht_cap->cap |= IEEE80211_VHT_CAP_SUPP_CHAN_WIDTH_160MHZ |
				IEEE80211_VHT_CAP_SHORT_GI_160;
384

385 386 387
	if (cfg->vht_mu_mimo_supported)
		vht_cap->cap |= IEEE80211_VHT_CAP_MU_BEAMFORMEE_CAPABLE;

E
Eyal Shapira 已提交
388 389 390
	if (cfg->ht_params->ldpc)
		vht_cap->cap |= IEEE80211_VHT_CAP_RXLDPC;

391 392 393 394 395
	if (data->sku_cap_mimo_disabled) {
		num_rx_ants = 1;
		num_tx_ants = 1;
	}

396
	if (num_tx_ants > 1)
397
		vht_cap->cap |= IEEE80211_VHT_CAP_TXSTBC;
398 399
	else
		vht_cap->cap |= IEEE80211_VHT_CAP_TX_ANTENNA_PATTERN;
400

401
	switch (iwlwifi_mod_params.amsdu_size) {
402 403 404 405 406 407 408
	case IWL_AMSDU_DEF:
		if (cfg->mq_rx_supported)
			vht_cap->cap |=
				IEEE80211_VHT_CAP_MAX_MPDU_LENGTH_11454;
		else
			vht_cap->cap |= IEEE80211_VHT_CAP_MAX_MPDU_LENGTH_3895;
		break;
409 410 411 412
	case IWL_AMSDU_4K:
		vht_cap->cap |= IEEE80211_VHT_CAP_MAX_MPDU_LENGTH_3895;
		break;
	case IWL_AMSDU_8K:
413
		vht_cap->cap |= IEEE80211_VHT_CAP_MAX_MPDU_LENGTH_7991;
414 415 416 417 418 419 420
		break;
	case IWL_AMSDU_12K:
		vht_cap->cap |= IEEE80211_VHT_CAP_MAX_MPDU_LENGTH_11454;
		break;
	default:
		break;
	}
421 422 423 424 425 426 427 428 429 430 431

	vht_cap->vht_mcs.rx_mcs_map =
		cpu_to_le16(IEEE80211_VHT_MCS_SUPPORT_0_9 << 0 |
			    IEEE80211_VHT_MCS_SUPPORT_0_9 << 2 |
			    IEEE80211_VHT_MCS_NOT_SUPPORTED << 4 |
			    IEEE80211_VHT_MCS_NOT_SUPPORTED << 6 |
			    IEEE80211_VHT_MCS_NOT_SUPPORTED << 8 |
			    IEEE80211_VHT_MCS_NOT_SUPPORTED << 10 |
			    IEEE80211_VHT_MCS_NOT_SUPPORTED << 12 |
			    IEEE80211_VHT_MCS_NOT_SUPPORTED << 14);

432 433
	if (num_rx_ants == 1 || cfg->rx_with_siso_diversity) {
		vht_cap->cap |= IEEE80211_VHT_CAP_RX_ANTENNA_PATTERN;
434 435 436 437 438 439 440 441
		/* this works because NOT_SUPPORTED == 3 */
		vht_cap->vht_mcs.rx_mcs_map |=
			cpu_to_le16(IEEE80211_VHT_MCS_NOT_SUPPORTED << 2);
	}

	vht_cap->vht_mcs.tx_mcs_map = vht_cap->vht_mcs.rx_mcs_map;
}

442 443
void iwl_init_sbands(struct device *dev, const struct iwl_cfg *cfg,
		     struct iwl_nvm_data *data, const __le16 *nvm_ch_flags,
444 445
		     u8 tx_chains, u8 rx_chains, bool lar_supported,
		     bool no_wide_in_5ghz)
446
{
447
	int n_channels;
448 449 450
	int n_used = 0;
	struct ieee80211_supported_band *sband;

451
	n_channels = iwl_init_channel_map(dev, cfg, data, nvm_ch_flags,
452
					  lar_supported, no_wide_in_5ghz);
453 454
	sband = &data->bands[NL80211_BAND_2GHZ];
	sband->band = NL80211_BAND_2GHZ;
455 456 457
	sband->bitrates = &iwl_cfg80211_rates[RATES_24_OFFS];
	sband->n_bitrates = N_RATES_24;
	n_used += iwl_init_sband_channels(data, sband, n_channels,
458 459
					  NL80211_BAND_2GHZ);
	iwl_init_ht_hw_capab(cfg, data, &sband->ht_cap, NL80211_BAND_2GHZ,
460
			     tx_chains, rx_chains);
461

462 463
	sband = &data->bands[NL80211_BAND_5GHZ];
	sband->band = NL80211_BAND_5GHZ;
464 465 466
	sband->bitrates = &iwl_cfg80211_rates[RATES_52_OFFS];
	sband->n_bitrates = N_RATES_52;
	n_used += iwl_init_sband_channels(data, sband, n_channels,
467 468
					  NL80211_BAND_5GHZ);
	iwl_init_ht_hw_capab(cfg, data, &sband->ht_cap, NL80211_BAND_5GHZ,
469
			     tx_chains, rx_chains);
470
	if (data->sku_cap_11ac_enable && !iwlwifi_mod_params.disable_11ac)
471 472
		iwl_init_vht_hw_capab(cfg, data, &sband->vht_cap,
				      tx_chains, rx_chains);
473 474 475 476 477

	if (n_channels != n_used)
		IWL_ERR_DEV(dev, "NVM: used only %d of %d channels\n",
			    n_used, n_channels);
}
478
IWL_EXPORT_SYMBOL(iwl_init_sbands);
479

480 481
static int iwl_get_sku(const struct iwl_cfg *cfg, const __le16 *nvm_sw,
		       const __le16 *phy_sku)
482
{
483
	if (!cfg->ext_nvm)
484
		return le16_to_cpup(nvm_sw + SKU);
485

486
	return le32_to_cpup((__le32 *)(phy_sku + SKU_FAMILY_8000));
487 488
}

489
static int iwl_get_nvm_version(const struct iwl_cfg *cfg, const __le16 *nvm_sw)
490
{
491
	if (!cfg->ext_nvm)
492 493 494
		return le16_to_cpup(nvm_sw + NVM_VERSION);
	else
		return le32_to_cpup((__le32 *)(nvm_sw +
495
					       NVM_VERSION_EXT_NVM));
496 497
}

498 499
static int iwl_get_radio_cfg(const struct iwl_cfg *cfg, const __le16 *nvm_sw,
			     const __le16 *phy_sku)
500
{
501
	if (!cfg->ext_nvm)
502
		return le16_to_cpup(nvm_sw + RADIO_CFG);
503

504
	return le32_to_cpup((__le32 *)(phy_sku + RADIO_CFG_FAMILY_EXT_NVM));
505

506 507
}

508
static int iwl_get_n_hw_addrs(const struct iwl_cfg *cfg, const __le16 *nvm_sw)
509
{
510 511
	int n_hw_addr;

512
	if (!cfg->ext_nvm)
513
		return le16_to_cpup(nvm_sw + N_HW_ADDRS);
514

515
	n_hw_addr = le32_to_cpup((__le32 *)(nvm_sw + N_HW_ADDRS_FAMILY_8000));
516 517

	return n_hw_addr & N_HW_ADDR_MASK;
518 519 520 521 522 523
}

static void iwl_set_radio_cfg(const struct iwl_cfg *cfg,
			      struct iwl_nvm_data *data,
			      u32 radio_cfg)
{
524
	if (!cfg->ext_nvm) {
525 526 527 528 529 530 531 532
		data->radio_cfg_type = NVM_RF_CFG_TYPE_MSK(radio_cfg);
		data->radio_cfg_step = NVM_RF_CFG_STEP_MSK(radio_cfg);
		data->radio_cfg_dash = NVM_RF_CFG_DASH_MSK(radio_cfg);
		data->radio_cfg_pnum = NVM_RF_CFG_PNUM_MSK(radio_cfg);
		return;
	}

	/* set the radio configuration for family 8000 */
533 534 535 536 537 538
	data->radio_cfg_type = EXT_NVM_RF_CFG_TYPE_MSK(radio_cfg);
	data->radio_cfg_step = EXT_NVM_RF_CFG_STEP_MSK(radio_cfg);
	data->radio_cfg_dash = EXT_NVM_RF_CFG_DASH_MSK(radio_cfg);
	data->radio_cfg_pnum = EXT_NVM_RF_CFG_FLAVOR_MSK(radio_cfg);
	data->valid_tx_ant = EXT_NVM_RF_CFG_TX_ANT_MSK(radio_cfg);
	data->valid_rx_ant = EXT_NVM_RF_CFG_RX_ANT_MSK(radio_cfg);
539 540
}

541 542 543 544 545 546 547 548 549 550 551 552 553 554 555
static void iwl_flip_hw_address(__le32 mac_addr0, __le32 mac_addr1, u8 *dest)
{
	const u8 *hw_addr;

	hw_addr = (const u8 *)&mac_addr0;
	dest[0] = hw_addr[3];
	dest[1] = hw_addr[2];
	dest[2] = hw_addr[1];
	dest[3] = hw_addr[0];

	hw_addr = (const u8 *)&mac_addr1;
	dest[4] = hw_addr[1];
	dest[5] = hw_addr[0];
}

556 557
void iwl_set_hw_address_from_csr(struct iwl_trans *trans,
				 struct iwl_nvm_data *data)
558 559 560 561
{
	__le32 mac_addr0 = cpu_to_le32(iwl_read32(trans, CSR_MAC_ADDR0_STRAP));
	__le32 mac_addr1 = cpu_to_le32(iwl_read32(trans, CSR_MAC_ADDR1_STRAP));

562 563 564 565 566 567 568 569 570 571
	iwl_flip_hw_address(mac_addr0, mac_addr1, data->hw_addr);
	/*
	 * If the OEM fused a valid address, use it instead of the one in the
	 * OTP
	 */
	if (is_valid_ether_addr(data->hw_addr))
		return;

	mac_addr0 = cpu_to_le32(iwl_read32(trans, CSR_MAC_ADDR0_OTP));
	mac_addr1 = cpu_to_le32(iwl_read32(trans, CSR_MAC_ADDR1_OTP));
572 573 574

	iwl_flip_hw_address(mac_addr0, mac_addr1, data->hw_addr);
}
575
IWL_EXPORT_SYMBOL(iwl_set_hw_address_from_csr);
576

577
static void iwl_set_hw_address_family_8000(struct iwl_trans *trans,
578
					   const struct iwl_cfg *cfg,
579 580
					   struct iwl_nvm_data *data,
					   const __le16 *mac_override,
581
					   const __be16 *nvm_hw)
582 583 584 585
{
	const u8 *hw_addr;

	if (mac_override) {
586 587 588 589
		static const u8 reserved_mac[] = {
			0x02, 0xcc, 0xaa, 0xff, 0xee, 0x00
		};

590
		hw_addr = (const u8 *)(mac_override +
591
				 MAC_ADDRESS_OVERRIDE_EXT_NVM);
592

593 594 595 596 597
		/*
		 * Store the MAC address from MAO section.
		 * No byte swapping is required in MAO section
		 */
		memcpy(data->hw_addr, hw_addr, ETH_ALEN);
598

599 600 601 602 603 604
		/*
		 * Force the use of the OTP MAC address in case of reserved MAC
		 * address in the NVM, or if address is given but invalid.
		 */
		if (is_valid_ether_addr(data->hw_addr) &&
		    memcmp(reserved_mac, hw_addr, ETH_ALEN) != 0)
605
			return;
606

607 608
		IWL_ERR(trans,
			"mac address from nvm override section is not valid\n");
609 610
	}

611
	if (nvm_hw) {
612 613 614 615 616
		/* read the mac address from WFMP registers */
		__le32 mac_addr0 = cpu_to_le32(iwl_trans_read_prph(trans,
						WFMP_MAC_ADDR_0));
		__le32 mac_addr1 = cpu_to_le32(iwl_trans_read_prph(trans,
						WFMP_MAC_ADDR_1));
617 618

		iwl_flip_hw_address(mac_addr0, mac_addr1, data->hw_addr);
619

620 621
		return;
	}
622

623 624 625
	IWL_ERR(trans, "mac address is not found\n");
}

626 627
static int iwl_set_hw_address(struct iwl_trans *trans,
			      const struct iwl_cfg *cfg,
628
			      struct iwl_nvm_data *data, const __be16 *nvm_hw,
629
			      const __le16 *mac_override)
630
{
631 632
	if (cfg->mac_addr_from_csr) {
		iwl_set_hw_address_from_csr(trans, data);
633
	} else if (!cfg->ext_nvm) {
634 635 636 637 638 639 640 641 642 643 644 645 646
		const u8 *hw_addr = (const u8 *)(nvm_hw + HW_ADDR);

		/* The byte order is little endian 16 bit, meaning 214365 */
		data->hw_addr[0] = hw_addr[1];
		data->hw_addr[1] = hw_addr[0];
		data->hw_addr[2] = hw_addr[3];
		data->hw_addr[3] = hw_addr[2];
		data->hw_addr[4] = hw_addr[5];
		data->hw_addr[5] = hw_addr[4];
	} else {
		iwl_set_hw_address_family_8000(trans, cfg, data,
					       mac_override, nvm_hw);
	}
647 648 649 650 651 652

	if (!is_valid_ether_addr(data->hw_addr)) {
		IWL_ERR(trans, "no valid mac address was found\n");
		return -EINVAL;
	}

653 654
	IWL_INFO(trans, "base HW address: %pM\n", data->hw_addr);

655
	return 0;
656 657
}

658 659
static bool
iwl_nvm_no_wide_in_5ghz(struct device *dev, const struct iwl_cfg *cfg,
660
			const __be16 *nvm_hw)
661 662 663 664 665 666 667 668 669 670 671 672 673 674 675
{
	/*
	 * Workaround a bug in Indonesia SKUs where the regulatory in
	 * some 7000-family OTPs erroneously allow wide channels in
	 * 5GHz.  To check for Indonesia, we take the SKU value from
	 * bits 1-4 in the subsystem ID and check if it is either 5 or
	 * 9.  In those cases, we need to force-disable wide channels
	 * in 5GHz otherwise the FW will throw a sysassert when we try
	 * to use them.
	 */
	if (cfg->device_family == IWL_DEVICE_FAMILY_7000) {
		/*
		 * Unlike the other sections in the NVM, the hw
		 * section uses big-endian.
		 */
676
		u16 subsystem_id = be16_to_cpup(nvm_hw + SUBSYSTEM_ID);
677 678 679 680 681 682 683 684 685 686 687 688 689
		u8 sku = (subsystem_id & 0x1e) >> 1;

		if (sku == 5 || sku == 9) {
			IWL_DEBUG_EEPROM(dev,
					 "disabling wide channels in 5GHz (0x%0x %d)\n",
					 subsystem_id, sku);
			return true;
		}
	}

	return false;
}

690
struct iwl_nvm_data *
691
iwl_parse_nvm_data(struct iwl_trans *trans, const struct iwl_cfg *cfg,
692
		   const __be16 *nvm_hw, const __le16 *nvm_sw,
693
		   const __le16 *nvm_calib, const __le16 *regulatory,
694
		   const __le16 *mac_override, const __le16 *phy_sku,
695
		   u8 tx_chains, u8 rx_chains, bool lar_fw_supported)
696
{
697
	struct device *dev = trans->dev;
698
	struct iwl_nvm_data *data;
699
	bool lar_enabled;
700
	bool no_wide_in_5ghz = iwl_nvm_no_wide_in_5ghz(dev, cfg, nvm_hw);
701
	u32 sku, radio_cfg;
702
	u16 lar_config;
703
	const __le16 *ch_section;
704

705
	if (!cfg->ext_nvm)
706 707 708 709 710 711 712
		data = kzalloc(sizeof(*data) +
			       sizeof(struct ieee80211_channel) *
			       IWL_NUM_CHANNELS,
			       GFP_KERNEL);
	else
		data = kzalloc(sizeof(*data) +
			       sizeof(struct ieee80211_channel) *
713
			       IWL_NUM_CHANNELS_EXT,
714
			       GFP_KERNEL);
715 716 717
	if (!data)
		return NULL;

718
	data->nvm_version = iwl_get_nvm_version(cfg, nvm_sw);
719

720
	radio_cfg = iwl_get_radio_cfg(cfg, nvm_sw, phy_sku);
721
	iwl_set_radio_cfg(cfg, data, radio_cfg);
722 723 724 725
	if (data->valid_tx_ant)
		tx_chains &= data->valid_tx_ant;
	if (data->valid_rx_ant)
		rx_chains &= data->valid_rx_ant;
726

727
	sku = iwl_get_sku(cfg, nvm_sw, phy_sku);
728 729 730 731 732
	data->sku_cap_band_24GHz_enable = sku & NVM_SKU_CAP_BAND_24GHZ;
	data->sku_cap_band_52GHz_enable = sku & NVM_SKU_CAP_BAND_52GHZ;
	data->sku_cap_11n_enable = sku & NVM_SKU_CAP_11N_ENABLE;
	if (iwlwifi_mod_params.disable_11n & IWL_DISABLE_HT_ALL)
		data->sku_cap_11n_enable = false;
733 734
	data->sku_cap_11ac_enable = data->sku_cap_11n_enable &&
				    (sku & NVM_SKU_CAP_11AC_ENABLE);
735
	data->sku_cap_mimo_disabled = sku & NVM_SKU_CAP_MIMO_DISABLE;
736

737
	data->n_hw_addrs = iwl_get_n_hw_addrs(cfg, nvm_sw);
738

739
	if (!cfg->ext_nvm) {
740 741
		/* Checking for required sections */
		if (!nvm_calib) {
742 743
			IWL_ERR(trans,
				"Can't parse empty Calib NVM sections\n");
744
			kfree(data);
745 746
			return NULL;
		}
747
		lar_enabled = true;
748
		ch_section = &nvm_sw[NVM_CHANNELS];
749
	} else {
750
		u16 lar_offset = data->nvm_version < 0xE39 ?
751 752
				 NVM_LAR_OFFSET_OLD :
				 NVM_LAR_OFFSET;
753 754

		lar_config = le16_to_cpup(regulatory + lar_offset);
755
		data->lar_enabled = !!(lar_config &
756
				       NVM_LAR_ENABLED);
757
		lar_enabled = data->lar_enabled;
758
		ch_section = &regulatory[NVM_CHANNELS_EXTENDED];
759
	}
760

761 762 763 764 765 766
	/* If no valid mac address was found - bail out */
	if (iwl_set_hw_address(trans, cfg, data, nvm_hw, mac_override)) {
		kfree(data);
		return NULL;
	}

767
	iwl_init_sbands(dev, cfg, data, ch_section, tx_chains, rx_chains,
768
			lar_fw_supported && lar_enabled, no_wide_in_5ghz);
769
	data->calib_version = 255;
770 771 772

	return data;
}
773
IWL_EXPORT_SYMBOL(iwl_parse_nvm_data);
774 775

static u32 iwl_nvm_get_regdom_bw_flags(const u8 *nvm_chan,
776 777
				       int ch_idx, u16 nvm_flags,
				       const struct iwl_cfg *cfg)
778 779
{
	u32 flags = NL80211_RRF_NO_HT40;
780 781
	u32 last_5ghz_ht = LAST_5GHZ_HT;

782
	if (cfg->ext_nvm)
783
		last_5ghz_ht = LAST_5GHZ_HT_FAMILY_8000;
784 785 786 787 788 789 790

	if (ch_idx < NUM_2GHZ_CHANNELS &&
	    (nvm_flags & NVM_CHANNEL_40MHZ)) {
		if (nvm_chan[ch_idx] <= LAST_2GHZ_HT_PLUS)
			flags &= ~NL80211_RRF_NO_HT40PLUS;
		if (nvm_chan[ch_idx] >= FIRST_2GHZ_HT_MINUS)
			flags &= ~NL80211_RRF_NO_HT40MINUS;
791
	} else if (nvm_chan[ch_idx] <= last_5ghz_ht &&
792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823
		   (nvm_flags & NVM_CHANNEL_40MHZ)) {
		if ((ch_idx - NUM_2GHZ_CHANNELS) % 2 == 0)
			flags &= ~NL80211_RRF_NO_HT40PLUS;
		else
			flags &= ~NL80211_RRF_NO_HT40MINUS;
	}

	if (!(nvm_flags & NVM_CHANNEL_80MHZ))
		flags |= NL80211_RRF_NO_80MHZ;
	if (!(nvm_flags & NVM_CHANNEL_160MHZ))
		flags |= NL80211_RRF_NO_160MHZ;

	if (!(nvm_flags & NVM_CHANNEL_ACTIVE))
		flags |= NL80211_RRF_NO_IR;

	if (nvm_flags & NVM_CHANNEL_RADAR)
		flags |= NL80211_RRF_DFS;

	if (nvm_flags & NVM_CHANNEL_INDOOR_ONLY)
		flags |= NL80211_RRF_NO_OUTDOOR;

	/* Set the GO concurrent flag only in case that NO_IR is set.
	 * Otherwise it is meaningless
	 */
	if ((nvm_flags & NVM_CHANNEL_GO_CONCURRENT) &&
	    (flags & NL80211_RRF_NO_IR))
		flags |= NL80211_RRF_GO_CONCURRENT;

	return flags;
}

struct ieee80211_regdomain *
824 825
iwl_parse_nvm_mcc_info(struct device *dev, const struct iwl_cfg *cfg,
		       int num_of_ch, __le32 *channels, u16 fw_mcc)
826 827
{
	int ch_idx;
828 829
	u16 ch_flags;
	u32 reg_rule_flags, prev_reg_rule_flags = 0;
830 831
	const u8 *nvm_chan = cfg->ext_nvm ?
			     iwl_ext_nvm_channels : iwl_nvm_channels;
832 833 834
	struct ieee80211_regdomain *regd;
	int size_of_regd;
	struct ieee80211_reg_rule *rule;
835
	enum nl80211_band band;
836 837 838
	int center_freq, prev_center_freq = 0;
	int valid_rules = 0;
	bool new_rule;
839 840
	int max_num_ch = cfg->ext_nvm ?
			 IWL_NUM_CHANNELS_EXT : IWL_NUM_CHANNELS;
841 842 843 844

	if (WARN_ON_ONCE(num_of_ch > NL80211_MAX_SUPP_REG_RULES))
		return ERR_PTR(-EINVAL);

845 846 847
	if (WARN_ON(num_of_ch > max_num_ch))
		num_of_ch = max_num_ch;

848 849 850 851 852 853 854 855 856 857 858 859 860 861 862
	IWL_DEBUG_DEV(dev, IWL_DL_LAR, "building regdom for %d channels\n",
		      num_of_ch);

	/* build a regdomain rule for every valid channel */
	size_of_regd =
		sizeof(struct ieee80211_regdomain) +
		num_of_ch * sizeof(struct ieee80211_reg_rule);

	regd = kzalloc(size_of_regd, GFP_KERNEL);
	if (!regd)
		return ERR_PTR(-ENOMEM);

	for (ch_idx = 0; ch_idx < num_of_ch; ch_idx++) {
		ch_flags = (u16)__le32_to_cpup(channels + ch_idx);
		band = (ch_idx < NUM_2GHZ_CHANNELS) ?
863
		       NL80211_BAND_2GHZ : NL80211_BAND_5GHZ;
864 865 866 867 868 869 870 871 872 873 874 875 876 877
		center_freq = ieee80211_channel_to_frequency(nvm_chan[ch_idx],
							     band);
		new_rule = false;

		if (!(ch_flags & NVM_CHANNEL_VALID)) {
			IWL_DEBUG_DEV(dev, IWL_DL_LAR,
				      "Ch. %d Flags %x [%sGHz] - No traffic\n",
				      nvm_chan[ch_idx],
				      ch_flags,
				      (ch_idx >= NUM_2GHZ_CHANNELS) ?
				      "5.2" : "2.4");
			continue;
		}

878 879 880
		reg_rule_flags = iwl_nvm_get_regdom_bw_flags(nvm_chan, ch_idx,
							     ch_flags, cfg);

881
		/* we can't continue the same rule */
882
		if (ch_idx == 0 || prev_reg_rule_flags != reg_rule_flags ||
883 884 885 886 887 888 889 890 891 892 893 894 895 896 897
		    center_freq - prev_center_freq > 20) {
			valid_rules++;
			new_rule = true;
		}

		rule = &regd->reg_rules[valid_rules - 1];

		if (new_rule)
			rule->freq_range.start_freq_khz =
						MHZ_TO_KHZ(center_freq - 10);

		rule->freq_range.end_freq_khz = MHZ_TO_KHZ(center_freq + 10);

		/* this doesn't matter - not used by FW */
		rule->power_rule.max_antenna_gain = DBI_TO_MBI(6);
898 899
		rule->power_rule.max_eirp =
			DBM_TO_MBM(IWL_DEFAULT_MAX_TX_POWER);
900

901
		rule->flags = reg_rule_flags;
902 903 904 905 906 907

		/* rely on auto-calculation to merge BW of contiguous chans */
		rule->flags |= NL80211_RRF_AUTO_BW;
		rule->freq_range.max_bandwidth_khz = 0;

		prev_center_freq = center_freq;
908
		prev_reg_rule_flags = reg_rule_flags;
909 910

		IWL_DEBUG_DEV(dev, IWL_DL_LAR,
L
Liad Kaufman 已提交
911
			      "Ch. %d [%sGHz] %s%s%s%s%s%s%s%s%s%s%s%s(0x%02x)\n",
912
			      center_freq,
913
			      band == NL80211_BAND_5GHZ ? "5.2" : "2.4",
914
			      CHECK_AND_PRINT_I(VALID),
915
			      CHECK_AND_PRINT_I(IBSS),
916 917
			      CHECK_AND_PRINT_I(ACTIVE),
			      CHECK_AND_PRINT_I(RADAR),
918 919 920 921
			      CHECK_AND_PRINT_I(INDOOR_ONLY),
			      CHECK_AND_PRINT_I(GO_CONCURRENT),
			      CHECK_AND_PRINT_I(UNIFORM),
			      CHECK_AND_PRINT_I(20MHZ),
922 923 924
			      CHECK_AND_PRINT_I(40MHZ),
			      CHECK_AND_PRINT_I(80MHZ),
			      CHECK_AND_PRINT_I(160MHZ),
925
			      CHECK_AND_PRINT_I(DC_HIGH),
L
Liad Kaufman 已提交
926 927 928 929 930 931
			      ch_flags);
		IWL_DEBUG_DEV(dev, IWL_DL_LAR,
			      "Ch. %d [%sGHz] reg_flags 0x%x: %s\n",
			      center_freq,
			      band == NL80211_BAND_5GHZ ? "5.2" : "2.4",
			      reg_rule_flags,
932
			      ((ch_flags & NVM_CHANNEL_ACTIVE) &&
933
			       !(ch_flags & NVM_CHANNEL_RADAR))
934
					 ? "Ad-Hoc" : "");
935 936 937 938 939 940 941 942 943 944 945
	}

	regd->n_reg_rules = valid_rules;

	/* set alpha2 from FW. */
	regd->alpha2[0] = fw_mcc >> 8;
	regd->alpha2[1] = fw_mcc & 0xff;

	return regd;
}
IWL_EXPORT_SYMBOL(iwl_parse_nvm_mcc_info);
946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033

#ifdef CONFIG_ACPI
#define WRDD_METHOD		"WRDD"
#define WRDD_WIFI		(0x07)
#define WRDD_WIGIG		(0x10)

static u32 iwl_wrdd_get_mcc(struct device *dev, union acpi_object *wrdd)
{
	union acpi_object *mcc_pkg, *domain_type, *mcc_value;
	u32 i;

	if (wrdd->type != ACPI_TYPE_PACKAGE ||
	    wrdd->package.count < 2 ||
	    wrdd->package.elements[0].type != ACPI_TYPE_INTEGER ||
	    wrdd->package.elements[0].integer.value != 0) {
		IWL_DEBUG_EEPROM(dev, "Unsupported wrdd structure\n");
		return 0;
	}

	for (i = 1 ; i < wrdd->package.count ; ++i) {
		mcc_pkg = &wrdd->package.elements[i];

		if (mcc_pkg->type != ACPI_TYPE_PACKAGE ||
		    mcc_pkg->package.count < 2 ||
		    mcc_pkg->package.elements[0].type != ACPI_TYPE_INTEGER ||
		    mcc_pkg->package.elements[1].type != ACPI_TYPE_INTEGER) {
			mcc_pkg = NULL;
			continue;
		}

		domain_type = &mcc_pkg->package.elements[0];
		if (domain_type->integer.value == WRDD_WIFI)
			break;

		mcc_pkg = NULL;
	}

	if (mcc_pkg) {
		mcc_value = &mcc_pkg->package.elements[1];
		return mcc_value->integer.value;
	}

	return 0;
}

int iwl_get_bios_mcc(struct device *dev, char *mcc)
{
	acpi_handle root_handle;
	acpi_handle handle;
	struct acpi_buffer wrdd = {ACPI_ALLOCATE_BUFFER, NULL};
	acpi_status status;
	u32 mcc_val;

	root_handle = ACPI_HANDLE(dev);
	if (!root_handle) {
		IWL_DEBUG_EEPROM(dev,
				 "Could not retrieve root port ACPI handle\n");
		return -ENOENT;
	}

	/* Get the method's handle */
	status = acpi_get_handle(root_handle, (acpi_string)WRDD_METHOD,
				 &handle);
	if (ACPI_FAILURE(status)) {
		IWL_DEBUG_EEPROM(dev, "WRD method not found\n");
		return -ENOENT;
	}

	/* Call WRDD with no arguments */
	status = acpi_evaluate_object(handle, NULL, NULL, &wrdd);
	if (ACPI_FAILURE(status)) {
		IWL_DEBUG_EEPROM(dev, "WRDC invocation failed (0x%x)\n",
				 status);
		return -ENOENT;
	}

	mcc_val = iwl_wrdd_get_mcc(dev, wrdd.pointer);
	kfree(wrdd.pointer);
	if (!mcc_val)
		return -ENOENT;

	mcc[0] = (mcc_val >> 8) & 0xff;
	mcc[1] = mcc_val & 0xff;
	mcc[2] = '\0';
	return 0;
}
IWL_EXPORT_SYMBOL(iwl_get_bios_mcc);
#endif