iwl-nvm-parse.c 30.3 KB
Newer Older
1 2 3 4 5 6 7
/******************************************************************************
 *
 * This file is provided under a dual BSD/GPLv2 license.  When using or
 * redistributing this file, you may do so under either license.
 *
 * GPL LICENSE SUMMARY
 *
8
 * Copyright(c) 2008 - 2014 Intel Corporation. All rights reserved.
9
 * Copyright(c) 2013 - 2015 Intel Mobile Communications GmbH
10
 * Copyright(c) 2016 - 2017 Intel Deutschland GmbH
11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of version 2 of the GNU General Public License as
 * published by the Free Software Foundation.
 *
 * This program is distributed in the hope that it will be useful, but
 * WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110,
 * USA
 *
 * The full GNU General Public License is included in this distribution
27
 * in the file called COPYING.
28 29
 *
 * Contact Information:
30
 *  Intel Linux Wireless <linuxwifi@intel.com>
31 32 33 34
 * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
 *
 * BSD LICENSE
 *
35
 * Copyright(c) 2005 - 2014 Intel Corporation. All rights reserved.
36
 * Copyright(c) 2013 - 2015 Intel Mobile Communications GmbH
37
 * Copyright(c) 2016 - 2017 Intel Deutschland GmbH
38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68
 * All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 *
 *  * Redistributions of source code must retain the above copyright
 *    notice, this list of conditions and the following disclaimer.
 *  * Redistributions in binary form must reproduce the above copyright
 *    notice, this list of conditions and the following disclaimer in
 *    the documentation and/or other materials provided with the
 *    distribution.
 *  * Neither the name Intel Corporation nor the names of its
 *    contributors may be used to endorse or promote products derived
 *    from this software without specific prior written permission.
 *
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 *****************************************************************************/
#include <linux/types.h>
#include <linux/slab.h>
#include <linux/export.h>
69
#include <linux/etherdevice.h>
70
#include <linux/pci.h>
71
#include <linux/acpi.h>
72
#include "iwl-drv.h"
73 74
#include "iwl-modparams.h"
#include "iwl-nvm-parse.h"
75
#include "iwl-prph.h"
76 77
#include "iwl-io.h"
#include "iwl-csr.h"
78 79 80 81

/* NVM offsets (in words) definitions */
enum wkp_nvm_offsets {
	/* NVM HW-Section offset (in words) definitions */
82
	SUBSYSTEM_ID = 0x0A,
83 84
	HW_ADDR = 0x15,

85
	/* NVM SW-Section offset (in words) definitions */
86 87 88 89 90 91 92
	NVM_SW_SECTION = 0x1C0,
	NVM_VERSION = 0,
	RADIO_CFG = 1,
	SKU = 2,
	N_HW_ADDRS = 3,
	NVM_CHANNELS = 0x1E0 - NVM_SW_SECTION,

93
	/* NVM calibration section offset (in words) definitions */
94 95 96 97
	NVM_CALIB_SECTION = 0x2B8,
	XTAL_CALIB = 0x316 - NVM_CALIB_SECTION
};

98
enum ext_nvm_offsets {
99
	/* NVM HW-Section offset (in words) definitions */
100
	MAC_ADDRESS_OVERRIDE_EXT_NVM = 1,
101 102

	/* NVM SW-Section offset (in words) definitions */
103 104
	NVM_VERSION_EXT_NVM = 0,
	RADIO_CFG_FAMILY_EXT_NVM = 0,
105 106
	SKU_FAMILY_8000 = 2,
	N_HW_ADDRS_FAMILY_8000 = 3,
107

108
	/* NVM REGULATORY -Section offset (in words) definitions */
109 110 111 112
	NVM_CHANNELS_EXTENDED = 0,
	NVM_LAR_OFFSET_OLD = 0x4C7,
	NVM_LAR_OFFSET = 0x507,
	NVM_LAR_ENABLED = 0x7,
113 114
};

115 116
/* SKU Capabilities (actual values from NVM definition) */
enum nvm_sku_bits {
117 118 119 120 121
	NVM_SKU_CAP_BAND_24GHZ		= BIT(0),
	NVM_SKU_CAP_BAND_52GHZ		= BIT(1),
	NVM_SKU_CAP_11N_ENABLE		= BIT(2),
	NVM_SKU_CAP_11AC_ENABLE		= BIT(3),
	NVM_SKU_CAP_MIMO_DISABLE	= BIT(5),
122 123 124 125 126 127 128 129 130 131 132 133 134 135
};

/*
 * These are the channel numbers in the order that they are stored in the NVM
 */
static const u8 iwl_nvm_channels[] = {
	/* 2.4 GHz */
	1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14,
	/* 5 GHz */
	36, 40, 44 , 48, 52, 56, 60, 64,
	100, 104, 108, 112, 116, 120, 124, 128, 132, 136, 140, 144,
	149, 153, 157, 161, 165
};

136
static const u8 iwl_ext_nvm_channels[] = {
137
	/* 2.4 GHz */
138
	1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14,
139 140 141 142 143 144
	/* 5 GHz */
	36, 40, 44, 48, 52, 56, 60, 64, 68, 72, 76, 80, 84, 88, 92,
	96, 100, 104, 108, 112, 116, 120, 124, 128, 132, 136, 140, 144,
	149, 153, 157, 161, 165, 169, 173, 177, 181
};

145
#define IWL_NUM_CHANNELS		ARRAY_SIZE(iwl_nvm_channels)
146
#define IWL_NUM_CHANNELS_EXT	ARRAY_SIZE(iwl_ext_nvm_channels)
147
#define NUM_2GHZ_CHANNELS		14
148
#define NUM_2GHZ_CHANNELS_EXT	14
149 150
#define FIRST_2GHZ_HT_MINUS		5
#define LAST_2GHZ_HT_PLUS		9
151 152
#define LAST_5GHZ_HT			165
#define LAST_5GHZ_HT_FAMILY_8000	181
153
#define N_HW_ADDR_MASK			0xF
154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183

/* rate data (static) */
static struct ieee80211_rate iwl_cfg80211_rates[] = {
	{ .bitrate = 1 * 10, .hw_value = 0, .hw_value_short = 0, },
	{ .bitrate = 2 * 10, .hw_value = 1, .hw_value_short = 1,
	  .flags = IEEE80211_RATE_SHORT_PREAMBLE, },
	{ .bitrate = 5.5 * 10, .hw_value = 2, .hw_value_short = 2,
	  .flags = IEEE80211_RATE_SHORT_PREAMBLE, },
	{ .bitrate = 11 * 10, .hw_value = 3, .hw_value_short = 3,
	  .flags = IEEE80211_RATE_SHORT_PREAMBLE, },
	{ .bitrate = 6 * 10, .hw_value = 4, .hw_value_short = 4, },
	{ .bitrate = 9 * 10, .hw_value = 5, .hw_value_short = 5, },
	{ .bitrate = 12 * 10, .hw_value = 6, .hw_value_short = 6, },
	{ .bitrate = 18 * 10, .hw_value = 7, .hw_value_short = 7, },
	{ .bitrate = 24 * 10, .hw_value = 8, .hw_value_short = 8, },
	{ .bitrate = 36 * 10, .hw_value = 9, .hw_value_short = 9, },
	{ .bitrate = 48 * 10, .hw_value = 10, .hw_value_short = 10, },
	{ .bitrate = 54 * 10, .hw_value = 11, .hw_value_short = 11, },
};
#define RATES_24_OFFS	0
#define N_RATES_24	ARRAY_SIZE(iwl_cfg80211_rates)
#define RATES_52_OFFS	4
#define N_RATES_52	(N_RATES_24 - RATES_52_OFFS)

/**
 * enum iwl_nvm_channel_flags - channel flags in NVM
 * @NVM_CHANNEL_VALID: channel is usable for this SKU/geo
 * @NVM_CHANNEL_IBSS: usable as an IBSS channel
 * @NVM_CHANNEL_ACTIVE: active scanning allowed
 * @NVM_CHANNEL_RADAR: radar detection required
184 185 186
 * @NVM_CHANNEL_INDOOR_ONLY: only indoor use is allowed
 * @NVM_CHANNEL_GO_CONCURRENT: GO operation is allowed when connected to BSS
 *	on same channel on 2.4 or same UNII band on 5.2
187 188 189 190 191 192
 * @NVM_CHANNEL_UNIFORM: uniform spreading required
 * @NVM_CHANNEL_20MHZ: 20 MHz channel okay
 * @NVM_CHANNEL_40MHZ: 40 MHz channel okay
 * @NVM_CHANNEL_80MHZ: 80 MHz channel okay
 * @NVM_CHANNEL_160MHZ: 160 MHz channel okay
 * @NVM_CHANNEL_DC_HIGH: DC HIGH required/allowed (?)
193 194
 */
enum iwl_nvm_channel_flags {
195 196 197 198 199 200 201 202 203 204 205 206
	NVM_CHANNEL_VALID		= BIT(0),
	NVM_CHANNEL_IBSS		= BIT(1),
	NVM_CHANNEL_ACTIVE		= BIT(3),
	NVM_CHANNEL_RADAR		= BIT(4),
	NVM_CHANNEL_INDOOR_ONLY		= BIT(5),
	NVM_CHANNEL_GO_CONCURRENT	= BIT(6),
	NVM_CHANNEL_UNIFORM		= BIT(7),
	NVM_CHANNEL_20MHZ		= BIT(8),
	NVM_CHANNEL_40MHZ		= BIT(9),
	NVM_CHANNEL_80MHZ		= BIT(10),
	NVM_CHANNEL_160MHZ		= BIT(11),
	NVM_CHANNEL_DC_HIGH		= BIT(12),
207 208
};

209 210 211
static inline void iwl_nvm_print_channel_flags(struct device *dev, u32 level,
					       int chan, u16 flags)
{
212
#define CHECK_AND_PRINT_I(x)	\
213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238
	((flags & NVM_CHANNEL_##x) ? " " #x : "")

	if (!(flags & NVM_CHANNEL_VALID)) {
		IWL_DEBUG_DEV(dev, level, "Ch. %d: 0x%x: No traffic\n",
			      chan, flags);
		return;
	}

	/* Note: already can print up to 101 characters, 110 is the limit! */
	IWL_DEBUG_DEV(dev, level,
		      "Ch. %d: 0x%x:%s%s%s%s%s%s%s%s%s%s%s%s\n",
		      chan, flags,
		      CHECK_AND_PRINT_I(VALID),
		      CHECK_AND_PRINT_I(IBSS),
		      CHECK_AND_PRINT_I(ACTIVE),
		      CHECK_AND_PRINT_I(RADAR),
		      CHECK_AND_PRINT_I(INDOOR_ONLY),
		      CHECK_AND_PRINT_I(GO_CONCURRENT),
		      CHECK_AND_PRINT_I(UNIFORM),
		      CHECK_AND_PRINT_I(20MHZ),
		      CHECK_AND_PRINT_I(40MHZ),
		      CHECK_AND_PRINT_I(80MHZ),
		      CHECK_AND_PRINT_I(160MHZ),
		      CHECK_AND_PRINT_I(DC_HIGH));
#undef CHECK_AND_PRINT_I
}
239

240
static u32 iwl_get_channel_flags(u8 ch_num, int ch_idx, bool is_5ghz,
241
				 u16 nvm_flags, const struct iwl_cfg *cfg)
242 243
{
	u32 flags = IEEE80211_CHAN_NO_HT40;
244 245
	u32 last_5ghz_ht = LAST_5GHZ_HT;

246
	if (cfg->ext_nvm)
247
		last_5ghz_ht = LAST_5GHZ_HT_FAMILY_8000;
248 249 250 251 252 253

	if (!is_5ghz && (nvm_flags & NVM_CHANNEL_40MHZ)) {
		if (ch_num <= LAST_2GHZ_HT_PLUS)
			flags &= ~IEEE80211_CHAN_NO_HT40PLUS;
		if (ch_num >= FIRST_2GHZ_HT_MINUS)
			flags &= ~IEEE80211_CHAN_NO_HT40MINUS;
254
	} else if (ch_num <= last_5ghz_ht && (nvm_flags & NVM_CHANNEL_40MHZ)) {
255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281
		if ((ch_idx - NUM_2GHZ_CHANNELS) % 2 == 0)
			flags &= ~IEEE80211_CHAN_NO_HT40PLUS;
		else
			flags &= ~IEEE80211_CHAN_NO_HT40MINUS;
	}
	if (!(nvm_flags & NVM_CHANNEL_80MHZ))
		flags |= IEEE80211_CHAN_NO_80MHZ;
	if (!(nvm_flags & NVM_CHANNEL_160MHZ))
		flags |= IEEE80211_CHAN_NO_160MHZ;

	if (!(nvm_flags & NVM_CHANNEL_IBSS))
		flags |= IEEE80211_CHAN_NO_IR;

	if (!(nvm_flags & NVM_CHANNEL_ACTIVE))
		flags |= IEEE80211_CHAN_NO_IR;

	if (nvm_flags & NVM_CHANNEL_RADAR)
		flags |= IEEE80211_CHAN_RADAR;

	if (nvm_flags & NVM_CHANNEL_INDOOR_ONLY)
		flags |= IEEE80211_CHAN_INDOOR_ONLY;

	/* Set the GO concurrent flag only in case that NO_IR is set.
	 * Otherwise it is meaningless
	 */
	if ((nvm_flags & NVM_CHANNEL_GO_CONCURRENT) &&
	    (flags & IEEE80211_CHAN_NO_IR))
282
		flags |= IEEE80211_CHAN_IR_CONCURRENT;
283 284 285 286

	return flags;
}

287 288
static int iwl_init_channel_map(struct device *dev, const struct iwl_cfg *cfg,
				struct iwl_nvm_data *data,
289
				const __le16 * const nvm_ch_flags,
290
				bool lar_supported, bool no_wide_in_5ghz)
291 292 293 294 295
{
	int ch_idx;
	int n_channels = 0;
	struct ieee80211_channel *channel;
	u16 ch_flags;
296
	int num_of_ch, num_2ghz_channels;
297 298
	const u8 *nvm_chan;

299
	if (!cfg->ext_nvm) {
300 301
		num_of_ch = IWL_NUM_CHANNELS;
		nvm_chan = &iwl_nvm_channels[0];
302
		num_2ghz_channels = NUM_2GHZ_CHANNELS;
303
	} else {
304 305 306
		num_of_ch = IWL_NUM_CHANNELS_EXT;
		nvm_chan = &iwl_ext_nvm_channels[0];
		num_2ghz_channels = NUM_2GHZ_CHANNELS_EXT;
307
	}
308

309
	for (ch_idx = 0; ch_idx < num_of_ch; ch_idx++) {
310 311
		bool is_5ghz = (ch_idx >= num_2ghz_channels);

312
		ch_flags = __le16_to_cpup(nvm_ch_flags + ch_idx);
313

314
		if (is_5ghz && !data->sku_cap_band_52GHz_enable)
315
			continue;
316

317 318 319 320 321 322 323
		/* workaround to disable wide channels in 5GHz */
		if (no_wide_in_5ghz && is_5ghz) {
			ch_flags &= ~(NVM_CHANNEL_40MHZ |
				     NVM_CHANNEL_80MHZ |
				     NVM_CHANNEL_160MHZ);
		}

324 325 326
		if (ch_flags & NVM_CHANNEL_160MHZ)
			data->vht160_supported = true;

327
		if (!lar_supported && !(ch_flags & NVM_CHANNEL_VALID)) {
328 329 330 331 332
			/*
			 * Channels might become valid later if lar is
			 * supported, hence we still want to add them to
			 * the list of supported channels to cfg80211.
			 */
333 334
			iwl_nvm_print_channel_flags(dev, IWL_DL_EEPROM,
						    nvm_chan[ch_idx], ch_flags);
335 336 337 338 339 340
			continue;
		}

		channel = &data->channels[n_channels];
		n_channels++;

341
		channel->hw_value = nvm_chan[ch_idx];
342 343
		channel->band = is_5ghz ?
				NL80211_BAND_5GHZ : NL80211_BAND_2GHZ;
344 345 346 347 348 349
		channel->center_freq =
			ieee80211_channel_to_frequency(
				channel->hw_value, channel->band);

		/* Initialize regulatory-based run-time data */

350 351 352 353
		/*
		 * Default value - highest tx power value.  max_power
		 * is not used in mvm, and is used for backwards compatibility
		 */
354
		channel->max_power = IWL_DEFAULT_MAX_TX_POWER;
355 356 357 358 359

		/* don't put limitations in case we're using LAR */
		if (!lar_supported)
			channel->flags = iwl_get_channel_flags(nvm_chan[ch_idx],
							       ch_idx, is_5ghz,
360
							       ch_flags, cfg);
361 362 363
		else
			channel->flags = 0;

364 365 366 367
		iwl_nvm_print_channel_flags(dev, IWL_DL_EEPROM,
					    channel->hw_value, ch_flags);
		IWL_DEBUG_EEPROM(dev, "Ch. %d: %ddBm\n",
				 channel->hw_value, channel->max_power);
368 369 370 371 372
	}

	return n_channels;
}

373 374
static void iwl_init_vht_hw_capab(const struct iwl_cfg *cfg,
				  struct iwl_nvm_data *data,
375 376
				  struct ieee80211_sta_vht_cap *vht_cap,
				  u8 tx_chains, u8 rx_chains)
377
{
378 379
	int num_rx_ants = num_of_ant(rx_chains);
	int num_tx_ants = num_of_ant(tx_chains);
380 381
	unsigned int max_ampdu_exponent = (cfg->max_vht_ampdu_exponent ?:
					   IEEE80211_VHT_MAX_AMPDU_1024K);
382

383 384 385 386 387
	vht_cap->vht_supported = true;

	vht_cap->cap = IEEE80211_VHT_CAP_SHORT_GI_80 |
		       IEEE80211_VHT_CAP_RXSTBC_1 |
		       IEEE80211_VHT_CAP_SU_BEAMFORMEE_CAPABLE |
388
		       3 << IEEE80211_VHT_CAP_BEAMFORMEE_STS_SHIFT |
389 390
		       max_ampdu_exponent <<
		       IEEE80211_VHT_CAP_MAX_A_MPDU_LENGTH_EXPONENT_SHIFT;
391

392
	if (data->vht160_supported)
393 394
		vht_cap->cap |= IEEE80211_VHT_CAP_SUPP_CHAN_WIDTH_160MHZ |
				IEEE80211_VHT_CAP_SHORT_GI_160;
395

396 397 398
	if (cfg->vht_mu_mimo_supported)
		vht_cap->cap |= IEEE80211_VHT_CAP_MU_BEAMFORMEE_CAPABLE;

E
Eyal Shapira 已提交
399 400 401
	if (cfg->ht_params->ldpc)
		vht_cap->cap |= IEEE80211_VHT_CAP_RXLDPC;

402 403 404 405 406
	if (data->sku_cap_mimo_disabled) {
		num_rx_ants = 1;
		num_tx_ants = 1;
	}

407
	if (num_tx_ants > 1)
408
		vht_cap->cap |= IEEE80211_VHT_CAP_TXSTBC;
409 410
	else
		vht_cap->cap |= IEEE80211_VHT_CAP_TX_ANTENNA_PATTERN;
411

412
	switch (iwlwifi_mod_params.amsdu_size) {
413 414 415 416 417 418 419
	case IWL_AMSDU_DEF:
		if (cfg->mq_rx_supported)
			vht_cap->cap |=
				IEEE80211_VHT_CAP_MAX_MPDU_LENGTH_11454;
		else
			vht_cap->cap |= IEEE80211_VHT_CAP_MAX_MPDU_LENGTH_3895;
		break;
420 421 422 423
	case IWL_AMSDU_4K:
		vht_cap->cap |= IEEE80211_VHT_CAP_MAX_MPDU_LENGTH_3895;
		break;
	case IWL_AMSDU_8K:
424
		vht_cap->cap |= IEEE80211_VHT_CAP_MAX_MPDU_LENGTH_7991;
425 426 427 428 429 430 431
		break;
	case IWL_AMSDU_12K:
		vht_cap->cap |= IEEE80211_VHT_CAP_MAX_MPDU_LENGTH_11454;
		break;
	default:
		break;
	}
432 433 434 435 436 437 438 439 440 441 442

	vht_cap->vht_mcs.rx_mcs_map =
		cpu_to_le16(IEEE80211_VHT_MCS_SUPPORT_0_9 << 0 |
			    IEEE80211_VHT_MCS_SUPPORT_0_9 << 2 |
			    IEEE80211_VHT_MCS_NOT_SUPPORTED << 4 |
			    IEEE80211_VHT_MCS_NOT_SUPPORTED << 6 |
			    IEEE80211_VHT_MCS_NOT_SUPPORTED << 8 |
			    IEEE80211_VHT_MCS_NOT_SUPPORTED << 10 |
			    IEEE80211_VHT_MCS_NOT_SUPPORTED << 12 |
			    IEEE80211_VHT_MCS_NOT_SUPPORTED << 14);

443 444
	if (num_rx_ants == 1 || cfg->rx_with_siso_diversity) {
		vht_cap->cap |= IEEE80211_VHT_CAP_RX_ANTENNA_PATTERN;
445 446 447 448 449 450 451 452
		/* this works because NOT_SUPPORTED == 3 */
		vht_cap->vht_mcs.rx_mcs_map |=
			cpu_to_le16(IEEE80211_VHT_MCS_NOT_SUPPORTED << 2);
	}

	vht_cap->vht_mcs.tx_mcs_map = vht_cap->vht_mcs.rx_mcs_map;
}

453 454
void iwl_init_sbands(struct device *dev, const struct iwl_cfg *cfg,
		     struct iwl_nvm_data *data, const __le16 *nvm_ch_flags,
455 456
		     u8 tx_chains, u8 rx_chains, bool lar_supported,
		     bool no_wide_in_5ghz)
457
{
458
	int n_channels;
459 460 461
	int n_used = 0;
	struct ieee80211_supported_band *sband;

462
	n_channels = iwl_init_channel_map(dev, cfg, data, nvm_ch_flags,
463
					  lar_supported, no_wide_in_5ghz);
464 465
	sband = &data->bands[NL80211_BAND_2GHZ];
	sband->band = NL80211_BAND_2GHZ;
466 467 468
	sband->bitrates = &iwl_cfg80211_rates[RATES_24_OFFS];
	sband->n_bitrates = N_RATES_24;
	n_used += iwl_init_sband_channels(data, sband, n_channels,
469 470
					  NL80211_BAND_2GHZ);
	iwl_init_ht_hw_capab(cfg, data, &sband->ht_cap, NL80211_BAND_2GHZ,
471
			     tx_chains, rx_chains);
472

473 474
	sband = &data->bands[NL80211_BAND_5GHZ];
	sband->band = NL80211_BAND_5GHZ;
475 476 477
	sband->bitrates = &iwl_cfg80211_rates[RATES_52_OFFS];
	sband->n_bitrates = N_RATES_52;
	n_used += iwl_init_sband_channels(data, sband, n_channels,
478 479
					  NL80211_BAND_5GHZ);
	iwl_init_ht_hw_capab(cfg, data, &sband->ht_cap, NL80211_BAND_5GHZ,
480
			     tx_chains, rx_chains);
481
	if (data->sku_cap_11ac_enable && !iwlwifi_mod_params.disable_11ac)
482 483
		iwl_init_vht_hw_capab(cfg, data, &sband->vht_cap,
				      tx_chains, rx_chains);
484 485 486 487 488

	if (n_channels != n_used)
		IWL_ERR_DEV(dev, "NVM: used only %d of %d channels\n",
			    n_used, n_channels);
}
489
IWL_EXPORT_SYMBOL(iwl_init_sbands);
490

491 492
static int iwl_get_sku(const struct iwl_cfg *cfg, const __le16 *nvm_sw,
		       const __le16 *phy_sku)
493
{
494
	if (!cfg->ext_nvm)
495
		return le16_to_cpup(nvm_sw + SKU);
496

497
	return le32_to_cpup((__le32 *)(phy_sku + SKU_FAMILY_8000));
498 499
}

500
static int iwl_get_nvm_version(const struct iwl_cfg *cfg, const __le16 *nvm_sw)
501
{
502
	if (!cfg->ext_nvm)
503 504 505
		return le16_to_cpup(nvm_sw + NVM_VERSION);
	else
		return le32_to_cpup((__le32 *)(nvm_sw +
506
					       NVM_VERSION_EXT_NVM));
507 508
}

509 510
static int iwl_get_radio_cfg(const struct iwl_cfg *cfg, const __le16 *nvm_sw,
			     const __le16 *phy_sku)
511
{
512
	if (!cfg->ext_nvm)
513
		return le16_to_cpup(nvm_sw + RADIO_CFG);
514

515
	return le32_to_cpup((__le32 *)(phy_sku + RADIO_CFG_FAMILY_EXT_NVM));
516

517 518
}

519
static int iwl_get_n_hw_addrs(const struct iwl_cfg *cfg, const __le16 *nvm_sw)
520
{
521 522
	int n_hw_addr;

523
	if (!cfg->ext_nvm)
524
		return le16_to_cpup(nvm_sw + N_HW_ADDRS);
525

526
	n_hw_addr = le32_to_cpup((__le32 *)(nvm_sw + N_HW_ADDRS_FAMILY_8000));
527 528

	return n_hw_addr & N_HW_ADDR_MASK;
529 530 531 532 533 534
}

static void iwl_set_radio_cfg(const struct iwl_cfg *cfg,
			      struct iwl_nvm_data *data,
			      u32 radio_cfg)
{
535
	if (!cfg->ext_nvm) {
536 537 538 539 540 541 542 543
		data->radio_cfg_type = NVM_RF_CFG_TYPE_MSK(radio_cfg);
		data->radio_cfg_step = NVM_RF_CFG_STEP_MSK(radio_cfg);
		data->radio_cfg_dash = NVM_RF_CFG_DASH_MSK(radio_cfg);
		data->radio_cfg_pnum = NVM_RF_CFG_PNUM_MSK(radio_cfg);
		return;
	}

	/* set the radio configuration for family 8000 */
544 545 546 547 548 549
	data->radio_cfg_type = EXT_NVM_RF_CFG_TYPE_MSK(radio_cfg);
	data->radio_cfg_step = EXT_NVM_RF_CFG_STEP_MSK(radio_cfg);
	data->radio_cfg_dash = EXT_NVM_RF_CFG_DASH_MSK(radio_cfg);
	data->radio_cfg_pnum = EXT_NVM_RF_CFG_FLAVOR_MSK(radio_cfg);
	data->valid_tx_ant = EXT_NVM_RF_CFG_TX_ANT_MSK(radio_cfg);
	data->valid_rx_ant = EXT_NVM_RF_CFG_RX_ANT_MSK(radio_cfg);
550 551
}

552 553 554 555 556 557 558 559 560 561 562 563 564 565 566
static void iwl_flip_hw_address(__le32 mac_addr0, __le32 mac_addr1, u8 *dest)
{
	const u8 *hw_addr;

	hw_addr = (const u8 *)&mac_addr0;
	dest[0] = hw_addr[3];
	dest[1] = hw_addr[2];
	dest[2] = hw_addr[1];
	dest[3] = hw_addr[0];

	hw_addr = (const u8 *)&mac_addr1;
	dest[4] = hw_addr[1];
	dest[5] = hw_addr[0];
}

567 568
void iwl_set_hw_address_from_csr(struct iwl_trans *trans,
				 struct iwl_nvm_data *data)
569 570 571 572
{
	__le32 mac_addr0 = cpu_to_le32(iwl_read32(trans, CSR_MAC_ADDR0_STRAP));
	__le32 mac_addr1 = cpu_to_le32(iwl_read32(trans, CSR_MAC_ADDR1_STRAP));

573 574 575 576 577 578 579 580 581 582
	iwl_flip_hw_address(mac_addr0, mac_addr1, data->hw_addr);
	/*
	 * If the OEM fused a valid address, use it instead of the one in the
	 * OTP
	 */
	if (is_valid_ether_addr(data->hw_addr))
		return;

	mac_addr0 = cpu_to_le32(iwl_read32(trans, CSR_MAC_ADDR0_OTP));
	mac_addr1 = cpu_to_le32(iwl_read32(trans, CSR_MAC_ADDR1_OTP));
583 584 585

	iwl_flip_hw_address(mac_addr0, mac_addr1, data->hw_addr);
}
586
IWL_EXPORT_SYMBOL(iwl_set_hw_address_from_csr);
587

588
static void iwl_set_hw_address_family_8000(struct iwl_trans *trans,
589
					   const struct iwl_cfg *cfg,
590 591
					   struct iwl_nvm_data *data,
					   const __le16 *mac_override,
592
					   const __be16 *nvm_hw)
593 594 595 596
{
	const u8 *hw_addr;

	if (mac_override) {
597 598 599 600
		static const u8 reserved_mac[] = {
			0x02, 0xcc, 0xaa, 0xff, 0xee, 0x00
		};

601
		hw_addr = (const u8 *)(mac_override +
602
				 MAC_ADDRESS_OVERRIDE_EXT_NVM);
603

604 605 606 607 608
		/*
		 * Store the MAC address from MAO section.
		 * No byte swapping is required in MAO section
		 */
		memcpy(data->hw_addr, hw_addr, ETH_ALEN);
609

610 611 612 613 614 615
		/*
		 * Force the use of the OTP MAC address in case of reserved MAC
		 * address in the NVM, or if address is given but invalid.
		 */
		if (is_valid_ether_addr(data->hw_addr) &&
		    memcmp(reserved_mac, hw_addr, ETH_ALEN) != 0)
616
			return;
617

618 619
		IWL_ERR(trans,
			"mac address from nvm override section is not valid\n");
620 621
	}

622
	if (nvm_hw) {
623 624 625 626 627
		/* read the mac address from WFMP registers */
		__le32 mac_addr0 = cpu_to_le32(iwl_trans_read_prph(trans,
						WFMP_MAC_ADDR_0));
		__le32 mac_addr1 = cpu_to_le32(iwl_trans_read_prph(trans,
						WFMP_MAC_ADDR_1));
628 629

		iwl_flip_hw_address(mac_addr0, mac_addr1, data->hw_addr);
630

631 632
		return;
	}
633

634 635 636
	IWL_ERR(trans, "mac address is not found\n");
}

637 638
static int iwl_set_hw_address(struct iwl_trans *trans,
			      const struct iwl_cfg *cfg,
639
			      struct iwl_nvm_data *data, const __be16 *nvm_hw,
640
			      const __le16 *mac_override)
641
{
642 643
	if (cfg->mac_addr_from_csr) {
		iwl_set_hw_address_from_csr(trans, data);
644
	} else if (!cfg->ext_nvm) {
645 646 647 648 649 650 651 652 653 654 655 656 657
		const u8 *hw_addr = (const u8 *)(nvm_hw + HW_ADDR);

		/* The byte order is little endian 16 bit, meaning 214365 */
		data->hw_addr[0] = hw_addr[1];
		data->hw_addr[1] = hw_addr[0];
		data->hw_addr[2] = hw_addr[3];
		data->hw_addr[3] = hw_addr[2];
		data->hw_addr[4] = hw_addr[5];
		data->hw_addr[5] = hw_addr[4];
	} else {
		iwl_set_hw_address_family_8000(trans, cfg, data,
					       mac_override, nvm_hw);
	}
658 659 660 661 662 663

	if (!is_valid_ether_addr(data->hw_addr)) {
		IWL_ERR(trans, "no valid mac address was found\n");
		return -EINVAL;
	}

664 665
	IWL_INFO(trans, "base HW address: %pM\n", data->hw_addr);

666
	return 0;
667 668
}

669 670
static bool
iwl_nvm_no_wide_in_5ghz(struct device *dev, const struct iwl_cfg *cfg,
671
			const __be16 *nvm_hw)
672 673 674 675 676 677 678 679 680 681 682 683 684 685 686
{
	/*
	 * Workaround a bug in Indonesia SKUs where the regulatory in
	 * some 7000-family OTPs erroneously allow wide channels in
	 * 5GHz.  To check for Indonesia, we take the SKU value from
	 * bits 1-4 in the subsystem ID and check if it is either 5 or
	 * 9.  In those cases, we need to force-disable wide channels
	 * in 5GHz otherwise the FW will throw a sysassert when we try
	 * to use them.
	 */
	if (cfg->device_family == IWL_DEVICE_FAMILY_7000) {
		/*
		 * Unlike the other sections in the NVM, the hw
		 * section uses big-endian.
		 */
687
		u16 subsystem_id = be16_to_cpup(nvm_hw + SUBSYSTEM_ID);
688 689 690 691 692 693 694 695 696 697 698 699 700
		u8 sku = (subsystem_id & 0x1e) >> 1;

		if (sku == 5 || sku == 9) {
			IWL_DEBUG_EEPROM(dev,
					 "disabling wide channels in 5GHz (0x%0x %d)\n",
					 subsystem_id, sku);
			return true;
		}
	}

	return false;
}

701
struct iwl_nvm_data *
702
iwl_parse_nvm_data(struct iwl_trans *trans, const struct iwl_cfg *cfg,
703
		   const __be16 *nvm_hw, const __le16 *nvm_sw,
704
		   const __le16 *nvm_calib, const __le16 *regulatory,
705
		   const __le16 *mac_override, const __le16 *phy_sku,
706
		   u8 tx_chains, u8 rx_chains, bool lar_fw_supported)
707
{
708
	struct device *dev = trans->dev;
709
	struct iwl_nvm_data *data;
710
	bool lar_enabled;
711
	bool no_wide_in_5ghz = iwl_nvm_no_wide_in_5ghz(dev, cfg, nvm_hw);
712
	u32 sku, radio_cfg;
713
	u16 lar_config;
714
	const __le16 *ch_section;
715

716
	if (!cfg->ext_nvm)
717 718 719 720 721 722 723
		data = kzalloc(sizeof(*data) +
			       sizeof(struct ieee80211_channel) *
			       IWL_NUM_CHANNELS,
			       GFP_KERNEL);
	else
		data = kzalloc(sizeof(*data) +
			       sizeof(struct ieee80211_channel) *
724
			       IWL_NUM_CHANNELS_EXT,
725
			       GFP_KERNEL);
726 727 728
	if (!data)
		return NULL;

729
	data->nvm_version = iwl_get_nvm_version(cfg, nvm_sw);
730

731
	radio_cfg = iwl_get_radio_cfg(cfg, nvm_sw, phy_sku);
732
	iwl_set_radio_cfg(cfg, data, radio_cfg);
733 734 735 736
	if (data->valid_tx_ant)
		tx_chains &= data->valid_tx_ant;
	if (data->valid_rx_ant)
		rx_chains &= data->valid_rx_ant;
737

738
	sku = iwl_get_sku(cfg, nvm_sw, phy_sku);
739 740 741 742 743
	data->sku_cap_band_24GHz_enable = sku & NVM_SKU_CAP_BAND_24GHZ;
	data->sku_cap_band_52GHz_enable = sku & NVM_SKU_CAP_BAND_52GHZ;
	data->sku_cap_11n_enable = sku & NVM_SKU_CAP_11N_ENABLE;
	if (iwlwifi_mod_params.disable_11n & IWL_DISABLE_HT_ALL)
		data->sku_cap_11n_enable = false;
744 745
	data->sku_cap_11ac_enable = data->sku_cap_11n_enable &&
				    (sku & NVM_SKU_CAP_11AC_ENABLE);
746
	data->sku_cap_mimo_disabled = sku & NVM_SKU_CAP_MIMO_DISABLE;
747

748
	data->n_hw_addrs = iwl_get_n_hw_addrs(cfg, nvm_sw);
749

750
	if (!cfg->ext_nvm) {
751 752
		/* Checking for required sections */
		if (!nvm_calib) {
753 754
			IWL_ERR(trans,
				"Can't parse empty Calib NVM sections\n");
755
			kfree(data);
756 757 758 759 760
			return NULL;
		}
		/* in family 8000 Xtal calibration values moved to OTP */
		data->xtal_calib[0] = *(nvm_calib + XTAL_CALIB);
		data->xtal_calib[1] = *(nvm_calib + XTAL_CALIB + 1);
761
		lar_enabled = true;
762
		ch_section = &nvm_sw[NVM_CHANNELS];
763
	} else {
764
		u16 lar_offset = data->nvm_version < 0xE39 ?
765 766
				 NVM_LAR_OFFSET_OLD :
				 NVM_LAR_OFFSET;
767 768

		lar_config = le16_to_cpup(regulatory + lar_offset);
769
		data->lar_enabled = !!(lar_config &
770
				       NVM_LAR_ENABLED);
771
		lar_enabled = data->lar_enabled;
772
		ch_section = &regulatory[NVM_CHANNELS_EXTENDED];
773
	}
774

775 776 777 778 779 780
	/* If no valid mac address was found - bail out */
	if (iwl_set_hw_address(trans, cfg, data, nvm_hw, mac_override)) {
		kfree(data);
		return NULL;
	}

781
	iwl_init_sbands(dev, cfg, data, ch_section, tx_chains, rx_chains,
782
			lar_fw_supported && lar_enabled, no_wide_in_5ghz);
783
	data->calib_version = 255;
784 785 786

	return data;
}
787
IWL_EXPORT_SYMBOL(iwl_parse_nvm_data);
788 789

static u32 iwl_nvm_get_regdom_bw_flags(const u8 *nvm_chan,
790 791
				       int ch_idx, u16 nvm_flags,
				       const struct iwl_cfg *cfg)
792 793
{
	u32 flags = NL80211_RRF_NO_HT40;
794 795
	u32 last_5ghz_ht = LAST_5GHZ_HT;

796
	if (cfg->ext_nvm)
797
		last_5ghz_ht = LAST_5GHZ_HT_FAMILY_8000;
798 799 800 801 802 803 804

	if (ch_idx < NUM_2GHZ_CHANNELS &&
	    (nvm_flags & NVM_CHANNEL_40MHZ)) {
		if (nvm_chan[ch_idx] <= LAST_2GHZ_HT_PLUS)
			flags &= ~NL80211_RRF_NO_HT40PLUS;
		if (nvm_chan[ch_idx] >= FIRST_2GHZ_HT_MINUS)
			flags &= ~NL80211_RRF_NO_HT40MINUS;
805
	} else if (nvm_chan[ch_idx] <= last_5ghz_ht &&
806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837
		   (nvm_flags & NVM_CHANNEL_40MHZ)) {
		if ((ch_idx - NUM_2GHZ_CHANNELS) % 2 == 0)
			flags &= ~NL80211_RRF_NO_HT40PLUS;
		else
			flags &= ~NL80211_RRF_NO_HT40MINUS;
	}

	if (!(nvm_flags & NVM_CHANNEL_80MHZ))
		flags |= NL80211_RRF_NO_80MHZ;
	if (!(nvm_flags & NVM_CHANNEL_160MHZ))
		flags |= NL80211_RRF_NO_160MHZ;

	if (!(nvm_flags & NVM_CHANNEL_ACTIVE))
		flags |= NL80211_RRF_NO_IR;

	if (nvm_flags & NVM_CHANNEL_RADAR)
		flags |= NL80211_RRF_DFS;

	if (nvm_flags & NVM_CHANNEL_INDOOR_ONLY)
		flags |= NL80211_RRF_NO_OUTDOOR;

	/* Set the GO concurrent flag only in case that NO_IR is set.
	 * Otherwise it is meaningless
	 */
	if ((nvm_flags & NVM_CHANNEL_GO_CONCURRENT) &&
	    (flags & NL80211_RRF_NO_IR))
		flags |= NL80211_RRF_GO_CONCURRENT;

	return flags;
}

struct ieee80211_regdomain *
838 839
iwl_parse_nvm_mcc_info(struct device *dev, const struct iwl_cfg *cfg,
		       int num_of_ch, __le32 *channels, u16 fw_mcc)
840 841
{
	int ch_idx;
842 843
	u16 ch_flags;
	u32 reg_rule_flags, prev_reg_rule_flags = 0;
844 845
	const u8 *nvm_chan = cfg->ext_nvm ?
			     iwl_ext_nvm_channels : iwl_nvm_channels;
846 847 848
	struct ieee80211_regdomain *regd;
	int size_of_regd;
	struct ieee80211_reg_rule *rule;
849
	enum nl80211_band band;
850 851 852
	int center_freq, prev_center_freq = 0;
	int valid_rules = 0;
	bool new_rule;
853 854
	int max_num_ch = cfg->ext_nvm ?
			 IWL_NUM_CHANNELS_EXT : IWL_NUM_CHANNELS;
855 856 857 858

	if (WARN_ON_ONCE(num_of_ch > NL80211_MAX_SUPP_REG_RULES))
		return ERR_PTR(-EINVAL);

859 860 861
	if (WARN_ON(num_of_ch > max_num_ch))
		num_of_ch = max_num_ch;

862 863 864 865 866 867 868 869 870 871 872 873 874 875 876
	IWL_DEBUG_DEV(dev, IWL_DL_LAR, "building regdom for %d channels\n",
		      num_of_ch);

	/* build a regdomain rule for every valid channel */
	size_of_regd =
		sizeof(struct ieee80211_regdomain) +
		num_of_ch * sizeof(struct ieee80211_reg_rule);

	regd = kzalloc(size_of_regd, GFP_KERNEL);
	if (!regd)
		return ERR_PTR(-ENOMEM);

	for (ch_idx = 0; ch_idx < num_of_ch; ch_idx++) {
		ch_flags = (u16)__le32_to_cpup(channels + ch_idx);
		band = (ch_idx < NUM_2GHZ_CHANNELS) ?
877
		       NL80211_BAND_2GHZ : NL80211_BAND_5GHZ;
878 879 880 881 882
		center_freq = ieee80211_channel_to_frequency(nvm_chan[ch_idx],
							     band);
		new_rule = false;

		if (!(ch_flags & NVM_CHANNEL_VALID)) {
883 884
			iwl_nvm_print_channel_flags(dev, IWL_DL_LAR,
						    nvm_chan[ch_idx], ch_flags);
885 886 887
			continue;
		}

888 889 890
		reg_rule_flags = iwl_nvm_get_regdom_bw_flags(nvm_chan, ch_idx,
							     ch_flags, cfg);

891
		/* we can't continue the same rule */
892
		if (ch_idx == 0 || prev_reg_rule_flags != reg_rule_flags ||
893 894 895 896 897 898 899 900 901 902 903 904 905 906 907
		    center_freq - prev_center_freq > 20) {
			valid_rules++;
			new_rule = true;
		}

		rule = &regd->reg_rules[valid_rules - 1];

		if (new_rule)
			rule->freq_range.start_freq_khz =
						MHZ_TO_KHZ(center_freq - 10);

		rule->freq_range.end_freq_khz = MHZ_TO_KHZ(center_freq + 10);

		/* this doesn't matter - not used by FW */
		rule->power_rule.max_antenna_gain = DBI_TO_MBI(6);
908 909
		rule->power_rule.max_eirp =
			DBM_TO_MBM(IWL_DEFAULT_MAX_TX_POWER);
910

911
		rule->flags = reg_rule_flags;
912 913 914 915 916 917

		/* rely on auto-calculation to merge BW of contiguous chans */
		rule->flags |= NL80211_RRF_AUTO_BW;
		rule->freq_range.max_bandwidth_khz = 0;

		prev_center_freq = center_freq;
918
		prev_reg_rule_flags = reg_rule_flags;
919

920 921
		iwl_nvm_print_channel_flags(dev, IWL_DL_LAR,
					    nvm_chan[ch_idx], ch_flags);
922 923 924 925 926 927 928 929 930 931 932
	}

	regd->n_reg_rules = valid_rules;

	/* set alpha2 from FW. */
	regd->alpha2[0] = fw_mcc >> 8;
	regd->alpha2[1] = fw_mcc & 0xff;

	return regd;
}
IWL_EXPORT_SYMBOL(iwl_parse_nvm_mcc_info);
933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020

#ifdef CONFIG_ACPI
#define WRDD_METHOD		"WRDD"
#define WRDD_WIFI		(0x07)
#define WRDD_WIGIG		(0x10)

static u32 iwl_wrdd_get_mcc(struct device *dev, union acpi_object *wrdd)
{
	union acpi_object *mcc_pkg, *domain_type, *mcc_value;
	u32 i;

	if (wrdd->type != ACPI_TYPE_PACKAGE ||
	    wrdd->package.count < 2 ||
	    wrdd->package.elements[0].type != ACPI_TYPE_INTEGER ||
	    wrdd->package.elements[0].integer.value != 0) {
		IWL_DEBUG_EEPROM(dev, "Unsupported wrdd structure\n");
		return 0;
	}

	for (i = 1 ; i < wrdd->package.count ; ++i) {
		mcc_pkg = &wrdd->package.elements[i];

		if (mcc_pkg->type != ACPI_TYPE_PACKAGE ||
		    mcc_pkg->package.count < 2 ||
		    mcc_pkg->package.elements[0].type != ACPI_TYPE_INTEGER ||
		    mcc_pkg->package.elements[1].type != ACPI_TYPE_INTEGER) {
			mcc_pkg = NULL;
			continue;
		}

		domain_type = &mcc_pkg->package.elements[0];
		if (domain_type->integer.value == WRDD_WIFI)
			break;

		mcc_pkg = NULL;
	}

	if (mcc_pkg) {
		mcc_value = &mcc_pkg->package.elements[1];
		return mcc_value->integer.value;
	}

	return 0;
}

int iwl_get_bios_mcc(struct device *dev, char *mcc)
{
	acpi_handle root_handle;
	acpi_handle handle;
	struct acpi_buffer wrdd = {ACPI_ALLOCATE_BUFFER, NULL};
	acpi_status status;
	u32 mcc_val;

	root_handle = ACPI_HANDLE(dev);
	if (!root_handle) {
		IWL_DEBUG_EEPROM(dev,
				 "Could not retrieve root port ACPI handle\n");
		return -ENOENT;
	}

	/* Get the method's handle */
	status = acpi_get_handle(root_handle, (acpi_string)WRDD_METHOD,
				 &handle);
	if (ACPI_FAILURE(status)) {
		IWL_DEBUG_EEPROM(dev, "WRD method not found\n");
		return -ENOENT;
	}

	/* Call WRDD with no arguments */
	status = acpi_evaluate_object(handle, NULL, NULL, &wrdd);
	if (ACPI_FAILURE(status)) {
		IWL_DEBUG_EEPROM(dev, "WRDC invocation failed (0x%x)\n",
				 status);
		return -ENOENT;
	}

	mcc_val = iwl_wrdd_get_mcc(dev, wrdd.pointer);
	kfree(wrdd.pointer);
	if (!mcc_val)
		return -ENOENT;

	mcc[0] = (mcc_val >> 8) & 0xff;
	mcc[1] = mcc_val & 0xff;
	mcc[2] = '\0';
	return 0;
}
IWL_EXPORT_SYMBOL(iwl_get_bios_mcc);
#endif