iwl-nvm-parse.c 45.7 KB
Newer Older
1 2 3 4 5 6 7
/******************************************************************************
 *
 * This file is provided under a dual BSD/GPLv2 license.  When using or
 * redistributing this file, you may do so under either license.
 *
 * GPL LICENSE SUMMARY
 *
8
 * Copyright(c) 2008 - 2014 Intel Corporation. All rights reserved.
9
 * Copyright(c) 2013 - 2015 Intel Mobile Communications GmbH
10
 * Copyright(c) 2016 - 2017 Intel Deutschland GmbH
11
 * Copyright(c) 2018 - 2019 Intel Corporation
12 13 14 15 16 17 18 19 20 21 22
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of version 2 of the GNU General Public License as
 * published by the Free Software Foundation.
 *
 * This program is distributed in the hope that it will be useful, but
 * WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * General Public License for more details.
 *
 * The full GNU General Public License is included in this distribution
23
 * in the file called COPYING.
24 25
 *
 * Contact Information:
26
 *  Intel Linux Wireless <linuxwifi@intel.com>
27 28 29 30
 * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
 *
 * BSD LICENSE
 *
31
 * Copyright(c) 2005 - 2014 Intel Corporation. All rights reserved.
32
 * Copyright(c) 2013 - 2015 Intel Mobile Communications GmbH
33
 * Copyright(c) 2016 - 2017 Intel Deutschland GmbH
34
 * Copyright(c) 2018 - 2019 Intel Corporation
35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65
 * All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 *
 *  * Redistributions of source code must retain the above copyright
 *    notice, this list of conditions and the following disclaimer.
 *  * Redistributions in binary form must reproduce the above copyright
 *    notice, this list of conditions and the following disclaimer in
 *    the documentation and/or other materials provided with the
 *    distribution.
 *  * Neither the name Intel Corporation nor the names of its
 *    contributors may be used to endorse or promote products derived
 *    from this software without specific prior written permission.
 *
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 *****************************************************************************/
#include <linux/types.h>
#include <linux/slab.h>
#include <linux/export.h>
66
#include <linux/etherdevice.h>
67
#include <linux/pci.h>
68
#include <linux/firmware.h>
69

70
#include "iwl-drv.h"
71 72
#include "iwl-modparams.h"
#include "iwl-nvm-parse.h"
73
#include "iwl-prph.h"
74 75
#include "iwl-io.h"
#include "iwl-csr.h"
76
#include "fw/acpi.h"
77
#include "fw/api/nvm-reg.h"
S
Shaul Triebitz 已提交
78 79 80
#include "fw/api/commands.h"
#include "fw/api/cmdhdr.h"
#include "fw/img.h"
81 82

/* NVM offsets (in words) definitions */
83
enum nvm_offsets {
84
	/* NVM HW-Section offset (in words) definitions */
85
	SUBSYSTEM_ID = 0x0A,
86 87
	HW_ADDR = 0x15,

88
	/* NVM SW-Section offset (in words) definitions */
89 90 91 92 93 94 95
	NVM_SW_SECTION = 0x1C0,
	NVM_VERSION = 0,
	RADIO_CFG = 1,
	SKU = 2,
	N_HW_ADDRS = 3,
	NVM_CHANNELS = 0x1E0 - NVM_SW_SECTION,

96
	/* NVM calibration section offset (in words) definitions */
97
	NVM_CALIB_SECTION = 0x2B8,
98 99 100 101
	XTAL_CALIB = 0x316 - NVM_CALIB_SECTION,

	/* NVM REGULATORY -Section offset (in words) definitions */
	NVM_CHANNELS_SDP = 0,
102 103
};

104
enum ext_nvm_offsets {
105
	/* NVM HW-Section offset (in words) definitions */
106
	MAC_ADDRESS_OVERRIDE_EXT_NVM = 1,
107 108

	/* NVM SW-Section offset (in words) definitions */
109 110
	NVM_VERSION_EXT_NVM = 0,
	RADIO_CFG_FAMILY_EXT_NVM = 0,
111 112
	SKU_FAMILY_8000 = 2,
	N_HW_ADDRS_FAMILY_8000 = 3,
113

114
	/* NVM REGULATORY -Section offset (in words) definitions */
115 116 117 118
	NVM_CHANNELS_EXTENDED = 0,
	NVM_LAR_OFFSET_OLD = 0x4C7,
	NVM_LAR_OFFSET = 0x507,
	NVM_LAR_ENABLED = 0x7,
119 120
};

121 122
/* SKU Capabilities (actual values from NVM definition) */
enum nvm_sku_bits {
123 124 125 126 127
	NVM_SKU_CAP_BAND_24GHZ		= BIT(0),
	NVM_SKU_CAP_BAND_52GHZ		= BIT(1),
	NVM_SKU_CAP_11N_ENABLE		= BIT(2),
	NVM_SKU_CAP_11AC_ENABLE		= BIT(3),
	NVM_SKU_CAP_MIMO_DISABLE	= BIT(5),
128 129 130 131 132
};

/*
 * These are the channel numbers in the order that they are stored in the NVM
 */
133
static const u16 iwl_nvm_channels[] = {
134 135 136 137 138 139 140 141
	/* 2.4 GHz */
	1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14,
	/* 5 GHz */
	36, 40, 44 , 48, 52, 56, 60, 64,
	100, 104, 108, 112, 116, 120, 124, 128, 132, 136, 140, 144,
	149, 153, 157, 161, 165
};

142
static const u16 iwl_ext_nvm_channels[] = {
143
	/* 2.4 GHz */
144
	1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14,
145 146 147 148 149 150
	/* 5 GHz */
	36, 40, 44, 48, 52, 56, 60, 64, 68, 72, 76, 80, 84, 88, 92,
	96, 100, 104, 108, 112, 116, 120, 124, 128, 132, 136, 140, 144,
	149, 153, 157, 161, 165, 169, 173, 177, 181
};

151 152 153 154 155 156 157 158
static const u16 iwl_uhb_nvm_channels[] = {
	/* 2.4 GHz */
	1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14,
	/* 5 GHz */
	36, 40, 44, 48, 52, 56, 60, 64, 68, 72, 76, 80, 84, 88, 92,
	96, 100, 104, 108, 112, 116, 120, 124, 128, 132, 136, 140, 144,
	149, 153, 157, 161, 165, 169, 173, 177, 181,
	/* 6-7 GHz */
159 160 161 162
	1, 5, 9, 13, 17, 21, 25, 29, 33, 37, 41, 45, 49, 53, 57, 61, 65, 69,
	73, 77, 81, 85, 89, 93, 97, 101, 105, 109, 113, 117, 121, 125, 129,
	133, 137, 141, 145, 149, 153, 157, 161, 165, 169, 173, 177, 181, 185,
	189, 193, 197, 201, 205, 209, 213, 217, 221, 225, 229, 233
163 164
};

165 166
#define IWL_NVM_NUM_CHANNELS		ARRAY_SIZE(iwl_nvm_channels)
#define IWL_NVM_NUM_CHANNELS_EXT	ARRAY_SIZE(iwl_ext_nvm_channels)
167
#define IWL_NVM_NUM_CHANNELS_UHB	ARRAY_SIZE(iwl_uhb_nvm_channels)
168 169 170
#define NUM_2GHZ_CHANNELS		14
#define FIRST_2GHZ_HT_MINUS		5
#define LAST_2GHZ_HT_PLUS		9
171
#define N_HW_ADDR_MASK			0xF
172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201

/* rate data (static) */
static struct ieee80211_rate iwl_cfg80211_rates[] = {
	{ .bitrate = 1 * 10, .hw_value = 0, .hw_value_short = 0, },
	{ .bitrate = 2 * 10, .hw_value = 1, .hw_value_short = 1,
	  .flags = IEEE80211_RATE_SHORT_PREAMBLE, },
	{ .bitrate = 5.5 * 10, .hw_value = 2, .hw_value_short = 2,
	  .flags = IEEE80211_RATE_SHORT_PREAMBLE, },
	{ .bitrate = 11 * 10, .hw_value = 3, .hw_value_short = 3,
	  .flags = IEEE80211_RATE_SHORT_PREAMBLE, },
	{ .bitrate = 6 * 10, .hw_value = 4, .hw_value_short = 4, },
	{ .bitrate = 9 * 10, .hw_value = 5, .hw_value_short = 5, },
	{ .bitrate = 12 * 10, .hw_value = 6, .hw_value_short = 6, },
	{ .bitrate = 18 * 10, .hw_value = 7, .hw_value_short = 7, },
	{ .bitrate = 24 * 10, .hw_value = 8, .hw_value_short = 8, },
	{ .bitrate = 36 * 10, .hw_value = 9, .hw_value_short = 9, },
	{ .bitrate = 48 * 10, .hw_value = 10, .hw_value_short = 10, },
	{ .bitrate = 54 * 10, .hw_value = 11, .hw_value_short = 11, },
};
#define RATES_24_OFFS	0
#define N_RATES_24	ARRAY_SIZE(iwl_cfg80211_rates)
#define RATES_52_OFFS	4
#define N_RATES_52	(N_RATES_24 - RATES_52_OFFS)

/**
 * enum iwl_nvm_channel_flags - channel flags in NVM
 * @NVM_CHANNEL_VALID: channel is usable for this SKU/geo
 * @NVM_CHANNEL_IBSS: usable as an IBSS channel
 * @NVM_CHANNEL_ACTIVE: active scanning allowed
 * @NVM_CHANNEL_RADAR: radar detection required
202 203 204
 * @NVM_CHANNEL_INDOOR_ONLY: only indoor use is allowed
 * @NVM_CHANNEL_GO_CONCURRENT: GO operation is allowed when connected to BSS
 *	on same channel on 2.4 or same UNII band on 5.2
205 206 207 208 209 210
 * @NVM_CHANNEL_UNIFORM: uniform spreading required
 * @NVM_CHANNEL_20MHZ: 20 MHz channel okay
 * @NVM_CHANNEL_40MHZ: 40 MHz channel okay
 * @NVM_CHANNEL_80MHZ: 80 MHz channel okay
 * @NVM_CHANNEL_160MHZ: 160 MHz channel okay
 * @NVM_CHANNEL_DC_HIGH: DC HIGH required/allowed (?)
211 212
 */
enum iwl_nvm_channel_flags {
213 214 215 216 217 218 219 220 221 222 223 224
	NVM_CHANNEL_VALID		= BIT(0),
	NVM_CHANNEL_IBSS		= BIT(1),
	NVM_CHANNEL_ACTIVE		= BIT(3),
	NVM_CHANNEL_RADAR		= BIT(4),
	NVM_CHANNEL_INDOOR_ONLY		= BIT(5),
	NVM_CHANNEL_GO_CONCURRENT	= BIT(6),
	NVM_CHANNEL_UNIFORM		= BIT(7),
	NVM_CHANNEL_20MHZ		= BIT(8),
	NVM_CHANNEL_40MHZ		= BIT(9),
	NVM_CHANNEL_80MHZ		= BIT(10),
	NVM_CHANNEL_160MHZ		= BIT(11),
	NVM_CHANNEL_DC_HIGH		= BIT(12),
225 226
};

227
static inline void iwl_nvm_print_channel_flags(struct device *dev, u32 level,
228
					       int chan, u32 flags)
229
{
230
#define CHECK_AND_PRINT_I(x)	\
231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256
	((flags & NVM_CHANNEL_##x) ? " " #x : "")

	if (!(flags & NVM_CHANNEL_VALID)) {
		IWL_DEBUG_DEV(dev, level, "Ch. %d: 0x%x: No traffic\n",
			      chan, flags);
		return;
	}

	/* Note: already can print up to 101 characters, 110 is the limit! */
	IWL_DEBUG_DEV(dev, level,
		      "Ch. %d: 0x%x:%s%s%s%s%s%s%s%s%s%s%s%s\n",
		      chan, flags,
		      CHECK_AND_PRINT_I(VALID),
		      CHECK_AND_PRINT_I(IBSS),
		      CHECK_AND_PRINT_I(ACTIVE),
		      CHECK_AND_PRINT_I(RADAR),
		      CHECK_AND_PRINT_I(INDOOR_ONLY),
		      CHECK_AND_PRINT_I(GO_CONCURRENT),
		      CHECK_AND_PRINT_I(UNIFORM),
		      CHECK_AND_PRINT_I(20MHZ),
		      CHECK_AND_PRINT_I(40MHZ),
		      CHECK_AND_PRINT_I(80MHZ),
		      CHECK_AND_PRINT_I(160MHZ),
		      CHECK_AND_PRINT_I(DC_HIGH));
#undef CHECK_AND_PRINT_I
}
257

258
static u32 iwl_get_channel_flags(u8 ch_num, int ch_idx, enum nl80211_band band,
259
				 u32 nvm_flags, const struct iwl_cfg *cfg)
260 261 262
{
	u32 flags = IEEE80211_CHAN_NO_HT40;

263
	if (band == NL80211_BAND_2GHZ && (nvm_flags & NVM_CHANNEL_40MHZ)) {
264 265 266 267
		if (ch_num <= LAST_2GHZ_HT_PLUS)
			flags &= ~IEEE80211_CHAN_NO_HT40PLUS;
		if (ch_num >= FIRST_2GHZ_HT_MINUS)
			flags &= ~IEEE80211_CHAN_NO_HT40MINUS;
268
	} else if (nvm_flags & NVM_CHANNEL_40MHZ) {
269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295
		if ((ch_idx - NUM_2GHZ_CHANNELS) % 2 == 0)
			flags &= ~IEEE80211_CHAN_NO_HT40PLUS;
		else
			flags &= ~IEEE80211_CHAN_NO_HT40MINUS;
	}
	if (!(nvm_flags & NVM_CHANNEL_80MHZ))
		flags |= IEEE80211_CHAN_NO_80MHZ;
	if (!(nvm_flags & NVM_CHANNEL_160MHZ))
		flags |= IEEE80211_CHAN_NO_160MHZ;

	if (!(nvm_flags & NVM_CHANNEL_IBSS))
		flags |= IEEE80211_CHAN_NO_IR;

	if (!(nvm_flags & NVM_CHANNEL_ACTIVE))
		flags |= IEEE80211_CHAN_NO_IR;

	if (nvm_flags & NVM_CHANNEL_RADAR)
		flags |= IEEE80211_CHAN_RADAR;

	if (nvm_flags & NVM_CHANNEL_INDOOR_ONLY)
		flags |= IEEE80211_CHAN_INDOOR_ONLY;

	/* Set the GO concurrent flag only in case that NO_IR is set.
	 * Otherwise it is meaningless
	 */
	if ((nvm_flags & NVM_CHANNEL_GO_CONCURRENT) &&
	    (flags & IEEE80211_CHAN_NO_IR))
296
		flags |= IEEE80211_CHAN_IR_CONCURRENT;
297 298 299 300

	return flags;
}

301 302 303 304 305 306 307
static enum nl80211_band iwl_nl80211_band_from_channel_idx(int ch_idx)
{
	if (ch_idx >= NUM_2GHZ_CHANNELS)
		return NL80211_BAND_5GHZ;
	return NL80211_BAND_2GHZ;
}

308 309
static int iwl_init_channel_map(struct device *dev, const struct iwl_cfg *cfg,
				struct iwl_nvm_data *data,
310 311
				const void * const nvm_ch_flags,
				u32 sbands_flags, bool v4)
312 313 314 315
{
	int ch_idx;
	int n_channels = 0;
	struct ieee80211_channel *channel;
316
	u32 ch_flags;
317
	int num_of_ch;
318
	const u16 *nvm_chan;
319

320 321 322 323
	if (cfg->uhb_supported) {
		num_of_ch = IWL_NVM_NUM_CHANNELS_UHB;
		nvm_chan = iwl_uhb_nvm_channels;
	} else if (cfg->nvm_type == IWL_NVM_EXT) {
324
		num_of_ch = IWL_NVM_NUM_CHANNELS_EXT;
325 326 327 328
		nvm_chan = iwl_ext_nvm_channels;
	} else {
		num_of_ch = IWL_NVM_NUM_CHANNELS;
		nvm_chan = iwl_nvm_channels;
329
	}
330

331
	for (ch_idx = 0; ch_idx < num_of_ch; ch_idx++) {
332 333
		enum nl80211_band band =
			iwl_nl80211_band_from_channel_idx(ch_idx);
334

335 336 337 338 339 340
		if (v4)
			ch_flags =
				__le32_to_cpup((__le32 *)nvm_ch_flags + ch_idx);
		else
			ch_flags =
				__le16_to_cpup((__le16 *)nvm_ch_flags + ch_idx);
341

342 343
		if (band == NL80211_BAND_5GHZ &&
		    !data->sku_cap_band_52ghz_enable)
344
			continue;
345

346
		/* workaround to disable wide channels in 5GHz */
347
		if ((sbands_flags & IWL_NVM_SBANDS_FLAGS_NO_WIDE_IN_5GHZ) &&
348
		    band == NL80211_BAND_5GHZ) {
349 350 351 352 353
			ch_flags &= ~(NVM_CHANNEL_40MHZ |
				     NVM_CHANNEL_80MHZ |
				     NVM_CHANNEL_160MHZ);
		}

354 355 356
		if (ch_flags & NVM_CHANNEL_160MHZ)
			data->vht160_supported = true;

357 358
		if (!(sbands_flags & IWL_NVM_SBANDS_FLAGS_LAR) &&
		    !(ch_flags & NVM_CHANNEL_VALID)) {
359 360 361 362 363
			/*
			 * Channels might become valid later if lar is
			 * supported, hence we still want to add them to
			 * the list of supported channels to cfg80211.
			 */
364 365
			iwl_nvm_print_channel_flags(dev, IWL_DL_EEPROM,
						    nvm_chan[ch_idx], ch_flags);
366 367 368 369 370 371
			continue;
		}

		channel = &data->channels[n_channels];
		n_channels++;

372
		channel->hw_value = nvm_chan[ch_idx];
373
		channel->band = band;
374 375 376 377 378 379
		channel->center_freq =
			ieee80211_channel_to_frequency(
				channel->hw_value, channel->band);

		/* Initialize regulatory-based run-time data */

380 381 382 383
		/*
		 * Default value - highest tx power value.  max_power
		 * is not used in mvm, and is used for backwards compatibility
		 */
384
		channel->max_power = IWL_DEFAULT_MAX_TX_POWER;
385 386

		/* don't put limitations in case we're using LAR */
387
		if (!(sbands_flags & IWL_NVM_SBANDS_FLAGS_LAR))
388
			channel->flags = iwl_get_channel_flags(nvm_chan[ch_idx],
389
							       ch_idx, band,
390
							       ch_flags, cfg);
391 392 393
		else
			channel->flags = 0;

394 395 396 397
		iwl_nvm_print_channel_flags(dev, IWL_DL_EEPROM,
					    channel->hw_value, ch_flags);
		IWL_DEBUG_EEPROM(dev, "Ch. %d: %ddBm\n",
				 channel->hw_value, channel->max_power);
398 399 400 401 402
	}

	return n_channels;
}

403
static void iwl_init_vht_hw_capab(struct iwl_trans *trans,
404
				  struct iwl_nvm_data *data,
405 406
				  struct ieee80211_sta_vht_cap *vht_cap,
				  u8 tx_chains, u8 rx_chains)
407
{
408
	const struct iwl_cfg *cfg = trans->cfg;
409 410
	int num_rx_ants = num_of_ant(rx_chains);
	int num_tx_ants = num_of_ant(tx_chains);
411 412
	unsigned int max_ampdu_exponent = (cfg->max_vht_ampdu_exponent ?:
					   IEEE80211_VHT_MAX_AMPDU_1024K);
413

414 415 416 417 418
	vht_cap->vht_supported = true;

	vht_cap->cap = IEEE80211_VHT_CAP_SHORT_GI_80 |
		       IEEE80211_VHT_CAP_RXSTBC_1 |
		       IEEE80211_VHT_CAP_SU_BEAMFORMEE_CAPABLE |
419
		       3 << IEEE80211_VHT_CAP_BEAMFORMEE_STS_SHIFT |
420 421
		       max_ampdu_exponent <<
		       IEEE80211_VHT_CAP_MAX_A_MPDU_LENGTH_EXPONENT_SHIFT;
422

423
	if (data->vht160_supported)
424 425
		vht_cap->cap |= IEEE80211_VHT_CAP_SUPP_CHAN_WIDTH_160MHZ |
				IEEE80211_VHT_CAP_SHORT_GI_160;
426

427 428 429
	if (cfg->vht_mu_mimo_supported)
		vht_cap->cap |= IEEE80211_VHT_CAP_MU_BEAMFORMEE_CAPABLE;

E
Eyal Shapira 已提交
430 431 432
	if (cfg->ht_params->ldpc)
		vht_cap->cap |= IEEE80211_VHT_CAP_RXLDPC;

433 434 435 436 437
	if (data->sku_cap_mimo_disabled) {
		num_rx_ants = 1;
		num_tx_ants = 1;
	}

438
	if (num_tx_ants > 1)
439
		vht_cap->cap |= IEEE80211_VHT_CAP_TXSTBC;
440 441
	else
		vht_cap->cap |= IEEE80211_VHT_CAP_TX_ANTENNA_PATTERN;
442

443
	switch (iwlwifi_mod_params.amsdu_size) {
444
	case IWL_AMSDU_DEF:
445
		if (trans->trans_cfg->mq_rx_supported)
446 447 448 449 450
			vht_cap->cap |=
				IEEE80211_VHT_CAP_MAX_MPDU_LENGTH_11454;
		else
			vht_cap->cap |= IEEE80211_VHT_CAP_MAX_MPDU_LENGTH_3895;
		break;
451
	case IWL_AMSDU_2K:
452
		if (trans->trans_cfg->mq_rx_supported)
453 454 455 456 457
			vht_cap->cap |=
				IEEE80211_VHT_CAP_MAX_MPDU_LENGTH_11454;
		else
			WARN(1, "RB size of 2K is not supported by this device\n");
		break;
458 459 460 461
	case IWL_AMSDU_4K:
		vht_cap->cap |= IEEE80211_VHT_CAP_MAX_MPDU_LENGTH_3895;
		break;
	case IWL_AMSDU_8K:
462
		vht_cap->cap |= IEEE80211_VHT_CAP_MAX_MPDU_LENGTH_7991;
463 464 465 466 467 468 469
		break;
	case IWL_AMSDU_12K:
		vht_cap->cap |= IEEE80211_VHT_CAP_MAX_MPDU_LENGTH_11454;
		break;
	default:
		break;
	}
470 471 472 473 474 475 476 477 478 479 480

	vht_cap->vht_mcs.rx_mcs_map =
		cpu_to_le16(IEEE80211_VHT_MCS_SUPPORT_0_9 << 0 |
			    IEEE80211_VHT_MCS_SUPPORT_0_9 << 2 |
			    IEEE80211_VHT_MCS_NOT_SUPPORTED << 4 |
			    IEEE80211_VHT_MCS_NOT_SUPPORTED << 6 |
			    IEEE80211_VHT_MCS_NOT_SUPPORTED << 8 |
			    IEEE80211_VHT_MCS_NOT_SUPPORTED << 10 |
			    IEEE80211_VHT_MCS_NOT_SUPPORTED << 12 |
			    IEEE80211_VHT_MCS_NOT_SUPPORTED << 14);

481 482
	if (num_rx_ants == 1 || cfg->rx_with_siso_diversity) {
		vht_cap->cap |= IEEE80211_VHT_CAP_RX_ANTENNA_PATTERN;
483 484 485 486 487 488
		/* this works because NOT_SUPPORTED == 3 */
		vht_cap->vht_mcs.rx_mcs_map |=
			cpu_to_le16(IEEE80211_VHT_MCS_NOT_SUPPORTED << 2);
	}

	vht_cap->vht_mcs.tx_mcs_map = vht_cap->vht_mcs.rx_mcs_map;
489 490 491

	vht_cap->vht_mcs.tx_highest |=
		cpu_to_le16(IEEE80211_VHT_EXT_NSS_BW_CAPABLE);
492 493
}

494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517
static struct ieee80211_sband_iftype_data iwl_he_capa[] = {
	{
		.types_mask = BIT(NL80211_IFTYPE_STATION),
		.he_cap = {
			.has_he = true,
			.he_cap_elem = {
				.mac_cap_info[0] =
					IEEE80211_HE_MAC_CAP0_HTC_HE |
					IEEE80211_HE_MAC_CAP0_TWT_REQ,
				.mac_cap_info[1] =
					IEEE80211_HE_MAC_CAP1_TF_MAC_PAD_DUR_16US |
					IEEE80211_HE_MAC_CAP1_MULTI_TID_AGG_RX_QOS_8,
				.mac_cap_info[2] =
					IEEE80211_HE_MAC_CAP2_32BIT_BA_BITMAP |
					IEEE80211_HE_MAC_CAP2_ACK_EN,
				.mac_cap_info[3] =
					IEEE80211_HE_MAC_CAP3_OMI_CONTROL |
					IEEE80211_HE_MAC_CAP3_MAX_AMPDU_LEN_EXP_VHT_2,
				.mac_cap_info[4] =
					IEEE80211_HE_MAC_CAP4_AMDSU_IN_AMPDU |
					IEEE80211_HE_MAC_CAP4_MULTI_TID_AGG_TX_QOS_B39,
				.mac_cap_info[5] =
					IEEE80211_HE_MAC_CAP5_MULTI_TID_AGG_TX_QOS_B40 |
					IEEE80211_HE_MAC_CAP5_MULTI_TID_AGG_TX_QOS_B41 |
L
Liad Kaufman 已提交
518 519 520
					IEEE80211_HE_MAC_CAP5_UL_2x996_TONE_RU |
					IEEE80211_HE_MAC_CAP5_HE_DYNAMIC_SM_PS |
					IEEE80211_HE_MAC_CAP5_HT_VHT_TRIG_FRAME_RX,
521 522 523 524 525 526 527
				.phy_cap_info[0] =
					IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_40MHZ_IN_2G |
					IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_40MHZ_80MHZ_IN_5G |
					IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_160MHZ_IN_5G,
				.phy_cap_info[1] =
					IEEE80211_HE_PHY_CAP1_PREAMBLE_PUNC_RX_MASK |
					IEEE80211_HE_PHY_CAP1_DEVICE_CLASS_A |
L
Liad Kaufman 已提交
528
					IEEE80211_HE_PHY_CAP1_LDPC_CODING_IN_PAYLOAD,
529
				.phy_cap_info[2] =
L
Liad Kaufman 已提交
530
					IEEE80211_HE_PHY_CAP2_NDP_4x_LTF_AND_3_2US,
531
				.phy_cap_info[3] =
L
Liad Kaufman 已提交
532
					IEEE80211_HE_PHY_CAP3_DCM_MAX_CONST_TX_NO_DCM |
533
					IEEE80211_HE_PHY_CAP3_DCM_MAX_TX_NSS_1 |
L
Liad Kaufman 已提交
534
					IEEE80211_HE_PHY_CAP3_DCM_MAX_CONST_RX_NO_DCM |
535 536 537 538 539 540 541
					IEEE80211_HE_PHY_CAP3_DCM_MAX_RX_NSS_1,
				.phy_cap_info[4] =
					IEEE80211_HE_PHY_CAP4_SU_BEAMFORMEE |
					IEEE80211_HE_PHY_CAP4_BEAMFORMEE_MAX_STS_ABOVE_80MHZ_8 |
					IEEE80211_HE_PHY_CAP4_BEAMFORMEE_MAX_STS_UNDER_80MHZ_8,
				.phy_cap_info[5] =
					IEEE80211_HE_PHY_CAP5_BEAMFORMEE_NUM_SND_DIM_UNDER_80MHZ_2 |
L
Liad Kaufman 已提交
542
					IEEE80211_HE_PHY_CAP5_BEAMFORMEE_NUM_SND_DIM_ABOVE_80MHZ_2,
543 544 545 546 547 548 549 550 551 552 553
				.phy_cap_info[6] =
					IEEE80211_HE_PHY_CAP6_PPE_THRESHOLD_PRESENT,
				.phy_cap_info[7] =
					IEEE80211_HE_PHY_CAP7_POWER_BOOST_FACTOR_AR |
					IEEE80211_HE_PHY_CAP7_HE_SU_MU_PPDU_4XLTF_AND_08_US_GI |
					IEEE80211_HE_PHY_CAP7_MAX_NC_1,
				.phy_cap_info[8] =
					IEEE80211_HE_PHY_CAP8_HE_ER_SU_PPDU_4XLTF_AND_08_US_GI |
					IEEE80211_HE_PHY_CAP8_20MHZ_IN_40MHZ_HE_PPDU_IN_2G |
					IEEE80211_HE_PHY_CAP8_20MHZ_IN_160MHZ_HE_PPDU |
					IEEE80211_HE_PHY_CAP8_80MHZ_IN_160MHZ_HE_PPDU |
L
Liad Kaufman 已提交
554
					IEEE80211_HE_PHY_CAP8_DCM_MAX_RU_2x996,
555 556 557
				.phy_cap_info[9] =
					IEEE80211_HE_PHY_CAP9_NON_TRIGGERED_CQI_FEEDBACK |
					IEEE80211_HE_PHY_CAP9_RX_FULL_BW_SU_USING_MU_WITH_COMP_SIGB |
L
Liad Kaufman 已提交
558 559
					IEEE80211_HE_PHY_CAP9_RX_FULL_BW_SU_USING_MU_WITH_NON_COMP_SIGB |
					IEEE80211_HE_PHY_CAP9_NOMIMAL_PKT_PADDING_RESERVED,
560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578
			},
			/*
			 * Set default Tx/Rx HE MCS NSS Support field.
			 * Indicate support for up to 2 spatial streams and all
			 * MCS, without any special cases
			 */
			.he_mcs_nss_supp = {
				.rx_mcs_80 = cpu_to_le16(0xfffa),
				.tx_mcs_80 = cpu_to_le16(0xfffa),
				.rx_mcs_160 = cpu_to_le16(0xfffa),
				.tx_mcs_160 = cpu_to_le16(0xfffa),
				.rx_mcs_80p80 = cpu_to_le16(0xffff),
				.tx_mcs_80p80 = cpu_to_le16(0xffff),
			},
			/*
			 * Set default PPE thresholds, with PPET16 set to 0,
			 * PPET8 set to 7
			 */
			.ppe_thres = {0x61, 0x1c, 0xc7, 0x71},
579
		},
580 581 582 583 584 585 586
	},
	{
		.types_mask = BIT(NL80211_IFTYPE_AP),
		.he_cap = {
			.has_he = true,
			.he_cap_elem = {
				.mac_cap_info[0] =
587
					IEEE80211_HE_MAC_CAP0_HTC_HE,
588 589 590 591 592 593 594 595 596 597 598
				.mac_cap_info[1] =
					IEEE80211_HE_MAC_CAP1_TF_MAC_PAD_DUR_16US |
					IEEE80211_HE_MAC_CAP1_MULTI_TID_AGG_RX_QOS_8,
				.mac_cap_info[2] =
					IEEE80211_HE_MAC_CAP2_BSR |
					IEEE80211_HE_MAC_CAP2_ACK_EN,
				.mac_cap_info[3] =
					IEEE80211_HE_MAC_CAP3_OMI_CONTROL |
					IEEE80211_HE_MAC_CAP3_MAX_AMPDU_LEN_EXP_VHT_2,
				.mac_cap_info[4] =
					IEEE80211_HE_MAC_CAP4_AMDSU_IN_AMPDU,
L
Liad Kaufman 已提交
599 600
				.mac_cap_info[5] =
					IEEE80211_HE_MAC_CAP5_UL_2x996_TONE_RU,
601 602 603 604 605
				.phy_cap_info[0] =
					IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_40MHZ_IN_2G |
					IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_40MHZ_80MHZ_IN_5G |
					IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_160MHZ_IN_5G,
				.phy_cap_info[1] =
L
Liad Kaufman 已提交
606
					IEEE80211_HE_PHY_CAP1_LDPC_CODING_IN_PAYLOAD,
607
				.phy_cap_info[2] =
L
Liad Kaufman 已提交
608
					IEEE80211_HE_PHY_CAP2_NDP_4x_LTF_AND_3_2US,
609
				.phy_cap_info[3] =
L
Liad Kaufman 已提交
610
					IEEE80211_HE_PHY_CAP3_DCM_MAX_CONST_TX_NO_DCM |
611
					IEEE80211_HE_PHY_CAP3_DCM_MAX_TX_NSS_1 |
L
Liad Kaufman 已提交
612
					IEEE80211_HE_PHY_CAP3_DCM_MAX_CONST_RX_NO_DCM |
613 614 615 616 617 618 619
					IEEE80211_HE_PHY_CAP3_DCM_MAX_RX_NSS_1,
				.phy_cap_info[4] =
					IEEE80211_HE_PHY_CAP4_SU_BEAMFORMEE |
					IEEE80211_HE_PHY_CAP4_BEAMFORMEE_MAX_STS_ABOVE_80MHZ_8 |
					IEEE80211_HE_PHY_CAP4_BEAMFORMEE_MAX_STS_UNDER_80MHZ_8,
				.phy_cap_info[5] =
					IEEE80211_HE_PHY_CAP5_BEAMFORMEE_NUM_SND_DIM_UNDER_80MHZ_2 |
L
Liad Kaufman 已提交
620
					IEEE80211_HE_PHY_CAP5_BEAMFORMEE_NUM_SND_DIM_ABOVE_80MHZ_2,
621 622 623 624 625 626 627 628 629 630
				.phy_cap_info[6] =
					IEEE80211_HE_PHY_CAP6_PPE_THRESHOLD_PRESENT,
				.phy_cap_info[7] =
					IEEE80211_HE_PHY_CAP7_HE_SU_MU_PPDU_4XLTF_AND_08_US_GI |
					IEEE80211_HE_PHY_CAP7_MAX_NC_1,
				.phy_cap_info[8] =
					IEEE80211_HE_PHY_CAP8_HE_ER_SU_PPDU_4XLTF_AND_08_US_GI |
					IEEE80211_HE_PHY_CAP8_20MHZ_IN_40MHZ_HE_PPDU_IN_2G |
					IEEE80211_HE_PHY_CAP8_20MHZ_IN_160MHZ_HE_PPDU |
					IEEE80211_HE_PHY_CAP8_80MHZ_IN_160MHZ_HE_PPDU |
L
Liad Kaufman 已提交
631
					IEEE80211_HE_PHY_CAP8_DCM_MAX_RU_2x996,
632 633
				.phy_cap_info[9] =
					IEEE80211_HE_PHY_CAP9_RX_FULL_BW_SU_USING_MU_WITH_COMP_SIGB |
L
Liad Kaufman 已提交
634 635
					IEEE80211_HE_PHY_CAP9_RX_FULL_BW_SU_USING_MU_WITH_NON_COMP_SIGB |
					IEEE80211_HE_PHY_CAP9_NOMIMAL_PKT_PADDING_RESERVED,
636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654
			},
			/*
			 * Set default Tx/Rx HE MCS NSS Support field.
			 * Indicate support for up to 2 spatial streams and all
			 * MCS, without any special cases
			 */
			.he_mcs_nss_supp = {
				.rx_mcs_80 = cpu_to_le16(0xfffa),
				.tx_mcs_80 = cpu_to_le16(0xfffa),
				.rx_mcs_160 = cpu_to_le16(0xfffa),
				.tx_mcs_160 = cpu_to_le16(0xfffa),
				.rx_mcs_80p80 = cpu_to_le16(0xffff),
				.tx_mcs_80p80 = cpu_to_le16(0xffff),
			},
			/*
			 * Set default PPE thresholds, with PPET16 set to 0,
			 * PPET8 set to 7
			 */
			.ppe_thres = {0x61, 0x1c, 0xc7, 0x71},
655 656 657 658 659 660 661
		},
	},
};

static void iwl_init_he_hw_capab(struct ieee80211_supported_band *sband,
				 u8 tx_chains, u8 rx_chains)
{
S
Shaul Triebitz 已提交
662
	sband->iftype_data = iwl_he_capa;
663
	sband->n_iftype_data = ARRAY_SIZE(iwl_he_capa);
664 665 666

	/* If not 2x2, we need to indicate 1x1 in the Midamble RX Max NSTS */
	if ((tx_chains & rx_chains) != ANT_AB) {
667 668 669 670 671 672 673 674 675 676
		int i;

		for (i = 0; i < sband->n_iftype_data; i++) {
			iwl_he_capa[i].he_cap.he_cap_elem.phy_cap_info[1] &=
				~IEEE80211_HE_PHY_CAP1_MIDAMBLE_RX_TX_MAX_NSTS;
			iwl_he_capa[i].he_cap.he_cap_elem.phy_cap_info[2] &=
				~IEEE80211_HE_PHY_CAP2_MIDAMBLE_RX_TX_MAX_NSTS;
			iwl_he_capa[i].he_cap.he_cap_elem.phy_cap_info[7] &=
				~IEEE80211_HE_PHY_CAP7_MAX_NC_MASK;
		}
677 678 679
	}
}

680
static void iwl_init_sbands(struct iwl_trans *trans,
S
Shaul Triebitz 已提交
681
			    struct iwl_nvm_data *data,
682 683
			    const void *nvm_ch_flags, u8 tx_chains,
			    u8 rx_chains, u32 sbands_flags, bool v4)
684
{
685 686
	struct device *dev = trans->dev;
	const struct iwl_cfg *cfg = trans->cfg;
687
	int n_channels;
688 689 690
	int n_used = 0;
	struct ieee80211_supported_band *sband;

691
	n_channels = iwl_init_channel_map(dev, cfg, data, nvm_ch_flags,
692
					  sbands_flags, v4);
693 694
	sband = &data->bands[NL80211_BAND_2GHZ];
	sband->band = NL80211_BAND_2GHZ;
695 696 697
	sband->bitrates = &iwl_cfg80211_rates[RATES_24_OFFS];
	sband->n_bitrates = N_RATES_24;
	n_used += iwl_init_sband_channels(data, sband, n_channels,
698
					  NL80211_BAND_2GHZ);
699
	iwl_init_ht_hw_capab(trans, data, &sband->ht_cap, NL80211_BAND_2GHZ,
700
			     tx_chains, rx_chains);
701

702
	if (data->sku_cap_11ax_enable && !iwlwifi_mod_params.disable_11ax)
703 704
		iwl_init_he_hw_capab(sband, tx_chains, rx_chains);

705 706
	sband = &data->bands[NL80211_BAND_5GHZ];
	sband->band = NL80211_BAND_5GHZ;
707 708 709
	sband->bitrates = &iwl_cfg80211_rates[RATES_52_OFFS];
	sband->n_bitrates = N_RATES_52;
	n_used += iwl_init_sband_channels(data, sband, n_channels,
710
					  NL80211_BAND_5GHZ);
711
	iwl_init_ht_hw_capab(trans, data, &sband->ht_cap, NL80211_BAND_5GHZ,
712
			     tx_chains, rx_chains);
713
	if (data->sku_cap_11ac_enable && !iwlwifi_mod_params.disable_11ac)
714
		iwl_init_vht_hw_capab(trans, data, &sband->vht_cap,
715
				      tx_chains, rx_chains);
716

717
	if (data->sku_cap_11ax_enable && !iwlwifi_mod_params.disable_11ax)
718 719
		iwl_init_he_hw_capab(sband, tx_chains, rx_chains);

720 721 722 723 724
	if (n_channels != n_used)
		IWL_ERR_DEV(dev, "NVM: used only %d of %d channels\n",
			    n_used, n_channels);
}

725 726
static int iwl_get_sku(const struct iwl_cfg *cfg, const __le16 *nvm_sw,
		       const __le16 *phy_sku)
727
{
728
	if (cfg->nvm_type != IWL_NVM_EXT)
729
		return le16_to_cpup(nvm_sw + SKU);
730

731
	return le32_to_cpup((__le32 *)(phy_sku + SKU_FAMILY_8000));
732 733
}

734
static int iwl_get_nvm_version(const struct iwl_cfg *cfg, const __le16 *nvm_sw)
735
{
736
	if (cfg->nvm_type != IWL_NVM_EXT)
737 738 739
		return le16_to_cpup(nvm_sw + NVM_VERSION);
	else
		return le32_to_cpup((__le32 *)(nvm_sw +
740
					       NVM_VERSION_EXT_NVM));
741 742
}

743 744
static int iwl_get_radio_cfg(const struct iwl_cfg *cfg, const __le16 *nvm_sw,
			     const __le16 *phy_sku)
745
{
746
	if (cfg->nvm_type != IWL_NVM_EXT)
747
		return le16_to_cpup(nvm_sw + RADIO_CFG);
748

749
	return le32_to_cpup((__le32 *)(phy_sku + RADIO_CFG_FAMILY_EXT_NVM));
750

751 752
}

753
static int iwl_get_n_hw_addrs(const struct iwl_cfg *cfg, const __le16 *nvm_sw)
754
{
755 756
	int n_hw_addr;

757
	if (cfg->nvm_type != IWL_NVM_EXT)
758
		return le16_to_cpup(nvm_sw + N_HW_ADDRS);
759

760
	n_hw_addr = le32_to_cpup((__le32 *)(nvm_sw + N_HW_ADDRS_FAMILY_8000));
761 762

	return n_hw_addr & N_HW_ADDR_MASK;
763 764 765 766 767 768
}

static void iwl_set_radio_cfg(const struct iwl_cfg *cfg,
			      struct iwl_nvm_data *data,
			      u32 radio_cfg)
{
769
	if (cfg->nvm_type != IWL_NVM_EXT) {
770 771 772 773 774 775 776 777
		data->radio_cfg_type = NVM_RF_CFG_TYPE_MSK(radio_cfg);
		data->radio_cfg_step = NVM_RF_CFG_STEP_MSK(radio_cfg);
		data->radio_cfg_dash = NVM_RF_CFG_DASH_MSK(radio_cfg);
		data->radio_cfg_pnum = NVM_RF_CFG_PNUM_MSK(radio_cfg);
		return;
	}

	/* set the radio configuration for family 8000 */
778 779 780 781 782 783
	data->radio_cfg_type = EXT_NVM_RF_CFG_TYPE_MSK(radio_cfg);
	data->radio_cfg_step = EXT_NVM_RF_CFG_STEP_MSK(radio_cfg);
	data->radio_cfg_dash = EXT_NVM_RF_CFG_DASH_MSK(radio_cfg);
	data->radio_cfg_pnum = EXT_NVM_RF_CFG_FLAVOR_MSK(radio_cfg);
	data->valid_tx_ant = EXT_NVM_RF_CFG_TX_ANT_MSK(radio_cfg);
	data->valid_rx_ant = EXT_NVM_RF_CFG_RX_ANT_MSK(radio_cfg);
784 785
}

786 787 788 789 790 791 792 793 794 795 796 797 798 799 800
static void iwl_flip_hw_address(__le32 mac_addr0, __le32 mac_addr1, u8 *dest)
{
	const u8 *hw_addr;

	hw_addr = (const u8 *)&mac_addr0;
	dest[0] = hw_addr[3];
	dest[1] = hw_addr[2];
	dest[2] = hw_addr[1];
	dest[3] = hw_addr[0];

	hw_addr = (const u8 *)&mac_addr1;
	dest[4] = hw_addr[1];
	dest[5] = hw_addr[0];
}

S
Shaul Triebitz 已提交
801 802
static void iwl_set_hw_address_from_csr(struct iwl_trans *trans,
					struct iwl_nvm_data *data)
803
{
804 805
	__le32 mac_addr0 =
		cpu_to_le32(iwl_read32(trans,
806
				       trans->trans_cfg->csr->mac_addr0_strap));
807 808
	__le32 mac_addr1 =
		cpu_to_le32(iwl_read32(trans,
809
				       trans->trans_cfg->csr->mac_addr1_strap));
810

811 812 813 814 815 816 817 818
	iwl_flip_hw_address(mac_addr0, mac_addr1, data->hw_addr);
	/*
	 * If the OEM fused a valid address, use it instead of the one in the
	 * OTP
	 */
	if (is_valid_ether_addr(data->hw_addr))
		return;

819
	mac_addr0 = cpu_to_le32(iwl_read32(trans,
820
					trans->trans_cfg->csr->mac_addr0_otp));
821
	mac_addr1 = cpu_to_le32(iwl_read32(trans,
822
					trans->trans_cfg->csr->mac_addr1_otp));
823 824 825 826

	iwl_flip_hw_address(mac_addr0, mac_addr1, data->hw_addr);
}

827
static void iwl_set_hw_address_family_8000(struct iwl_trans *trans,
828
					   const struct iwl_cfg *cfg,
829 830
					   struct iwl_nvm_data *data,
					   const __le16 *mac_override,
831
					   const __be16 *nvm_hw)
832 833 834 835
{
	const u8 *hw_addr;

	if (mac_override) {
836 837 838 839
		static const u8 reserved_mac[] = {
			0x02, 0xcc, 0xaa, 0xff, 0xee, 0x00
		};

840
		hw_addr = (const u8 *)(mac_override +
841
				 MAC_ADDRESS_OVERRIDE_EXT_NVM);
842

843 844 845 846 847
		/*
		 * Store the MAC address from MAO section.
		 * No byte swapping is required in MAO section
		 */
		memcpy(data->hw_addr, hw_addr, ETH_ALEN);
848

849 850 851 852 853 854
		/*
		 * Force the use of the OTP MAC address in case of reserved MAC
		 * address in the NVM, or if address is given but invalid.
		 */
		if (is_valid_ether_addr(data->hw_addr) &&
		    memcmp(reserved_mac, hw_addr, ETH_ALEN) != 0)
855
			return;
856

857 858
		IWL_ERR(trans,
			"mac address from nvm override section is not valid\n");
859 860
	}

861
	if (nvm_hw) {
862 863 864 865 866
		/* read the mac address from WFMP registers */
		__le32 mac_addr0 = cpu_to_le32(iwl_trans_read_prph(trans,
						WFMP_MAC_ADDR_0));
		__le32 mac_addr1 = cpu_to_le32(iwl_trans_read_prph(trans,
						WFMP_MAC_ADDR_1));
867 868

		iwl_flip_hw_address(mac_addr0, mac_addr1, data->hw_addr);
869

870 871
		return;
	}
872

873 874 875
	IWL_ERR(trans, "mac address is not found\n");
}

876 877
static int iwl_set_hw_address(struct iwl_trans *trans,
			      const struct iwl_cfg *cfg,
878
			      struct iwl_nvm_data *data, const __be16 *nvm_hw,
879
			      const __le16 *mac_override)
880
{
881 882
	if (cfg->mac_addr_from_csr) {
		iwl_set_hw_address_from_csr(trans, data);
883
	} else if (cfg->nvm_type != IWL_NVM_EXT) {
884 885 886 887 888 889 890 891 892 893 894 895 896
		const u8 *hw_addr = (const u8 *)(nvm_hw + HW_ADDR);

		/* The byte order is little endian 16 bit, meaning 214365 */
		data->hw_addr[0] = hw_addr[1];
		data->hw_addr[1] = hw_addr[0];
		data->hw_addr[2] = hw_addr[3];
		data->hw_addr[3] = hw_addr[2];
		data->hw_addr[4] = hw_addr[5];
		data->hw_addr[5] = hw_addr[4];
	} else {
		iwl_set_hw_address_family_8000(trans, cfg, data,
					       mac_override, nvm_hw);
	}
897 898 899 900 901 902

	if (!is_valid_ether_addr(data->hw_addr)) {
		IWL_ERR(trans, "no valid mac address was found\n");
		return -EINVAL;
	}

903 904
	IWL_INFO(trans, "base HW address: %pM\n", data->hw_addr);

905
	return 0;
906 907
}

908
static bool
909
iwl_nvm_no_wide_in_5ghz(struct iwl_trans *trans, const struct iwl_cfg *cfg,
910
			const __be16 *nvm_hw)
911 912 913 914 915 916 917 918 919 920
{
	/*
	 * Workaround a bug in Indonesia SKUs where the regulatory in
	 * some 7000-family OTPs erroneously allow wide channels in
	 * 5GHz.  To check for Indonesia, we take the SKU value from
	 * bits 1-4 in the subsystem ID and check if it is either 5 or
	 * 9.  In those cases, we need to force-disable wide channels
	 * in 5GHz otherwise the FW will throw a sysassert when we try
	 * to use them.
	 */
921
	if (trans->trans_cfg->device_family == IWL_DEVICE_FAMILY_7000) {
922 923 924 925
		/*
		 * Unlike the other sections in the NVM, the hw
		 * section uses big-endian.
		 */
926
		u16 subsystem_id = be16_to_cpup(nvm_hw + SUBSYSTEM_ID);
927 928 929
		u8 sku = (subsystem_id & 0x1e) >> 1;

		if (sku == 5 || sku == 9) {
930
			IWL_DEBUG_EEPROM(trans->dev,
931 932 933 934 935 936 937 938 939
					 "disabling wide channels in 5GHz (0x%0x %d)\n",
					 subsystem_id, sku);
			return true;
		}
	}

	return false;
}

940
struct iwl_nvm_data *
941
iwl_parse_nvm_data(struct iwl_trans *trans, const struct iwl_cfg *cfg,
942
		   const __be16 *nvm_hw, const __le16 *nvm_sw,
943
		   const __le16 *nvm_calib, const __le16 *regulatory,
944
		   const __le16 *mac_override, const __le16 *phy_sku,
945
		   u8 tx_chains, u8 rx_chains, bool lar_fw_supported)
946 947
{
	struct iwl_nvm_data *data;
948 949
	bool lar_enabled;
	u32 sku, radio_cfg;
950
	u32 sbands_flags = 0;
951
	u16 lar_config;
952
	const __le16 *ch_section;
953

954 955 956 957 958
	if (cfg->uhb_supported)
		data = kzalloc(struct_size(data, channels,
					   IWL_NVM_NUM_CHANNELS_UHB),
					   GFP_KERNEL);
	else if (cfg->nvm_type != IWL_NVM_EXT)
959 960 961
		data = kzalloc(struct_size(data, channels,
					   IWL_NVM_NUM_CHANNELS),
					   GFP_KERNEL);
962
	else
963 964 965
		data = kzalloc(struct_size(data, channels,
					   IWL_NVM_NUM_CHANNELS_EXT),
					   GFP_KERNEL);
966 967 968
	if (!data)
		return NULL;

969
	data->nvm_version = iwl_get_nvm_version(cfg, nvm_sw);
970

971
	radio_cfg = iwl_get_radio_cfg(cfg, nvm_sw, phy_sku);
972
	iwl_set_radio_cfg(cfg, data, radio_cfg);
973 974 975 976
	if (data->valid_tx_ant)
		tx_chains &= data->valid_tx_ant;
	if (data->valid_rx_ant)
		rx_chains &= data->valid_rx_ant;
977

978
	sku = iwl_get_sku(cfg, nvm_sw, phy_sku);
979 980
	data->sku_cap_band_24ghz_enable = sku & NVM_SKU_CAP_BAND_24GHZ;
	data->sku_cap_band_52ghz_enable = sku & NVM_SKU_CAP_BAND_52GHZ;
981 982 983
	data->sku_cap_11n_enable = sku & NVM_SKU_CAP_11N_ENABLE;
	if (iwlwifi_mod_params.disable_11n & IWL_DISABLE_HT_ALL)
		data->sku_cap_11n_enable = false;
984 985
	data->sku_cap_11ac_enable = data->sku_cap_11n_enable &&
				    (sku & NVM_SKU_CAP_11AC_ENABLE);
986
	data->sku_cap_mimo_disabled = sku & NVM_SKU_CAP_MIMO_DISABLE;
987

988
	data->n_hw_addrs = iwl_get_n_hw_addrs(cfg, nvm_sw);
989

990
	if (cfg->nvm_type != IWL_NVM_EXT) {
991 992
		/* Checking for required sections */
		if (!nvm_calib) {
993 994
			IWL_ERR(trans,
				"Can't parse empty Calib NVM sections\n");
995
			kfree(data);
996 997
			return NULL;
		}
998 999 1000 1001 1002

		ch_section = cfg->nvm_type == IWL_NVM_SDP ?
			     &regulatory[NVM_CHANNELS_SDP] :
			     &nvm_sw[NVM_CHANNELS];

1003 1004 1005
		/* in family 8000 Xtal calibration values moved to OTP */
		data->xtal_calib[0] = *(nvm_calib + XTAL_CALIB);
		data->xtal_calib[1] = *(nvm_calib + XTAL_CALIB + 1);
1006
		lar_enabled = true;
1007
	} else {
1008
		u16 lar_offset = data->nvm_version < 0xE39 ?
1009 1010
				 NVM_LAR_OFFSET_OLD :
				 NVM_LAR_OFFSET;
1011 1012

		lar_config = le16_to_cpup(regulatory + lar_offset);
1013
		data->lar_enabled = !!(lar_config &
1014
				       NVM_LAR_ENABLED);
1015
		lar_enabled = data->lar_enabled;
1016
		ch_section = &regulatory[NVM_CHANNELS_EXTENDED];
1017
	}
1018

1019 1020 1021 1022 1023 1024
	/* If no valid mac address was found - bail out */
	if (iwl_set_hw_address(trans, cfg, data, nvm_hw, mac_override)) {
		kfree(data);
		return NULL;
	}

1025 1026 1027
	if (lar_fw_supported && lar_enabled)
		sbands_flags |= IWL_NVM_SBANDS_FLAGS_LAR;

1028
	if (iwl_nvm_no_wide_in_5ghz(trans, cfg, nvm_hw))
1029 1030
		sbands_flags |= IWL_NVM_SBANDS_FLAGS_NO_WIDE_IN_5GHZ;

1031
	iwl_init_sbands(trans, data, ch_section, tx_chains, rx_chains,
1032
			sbands_flags, false);
1033
	data->calib_version = 255;
1034 1035 1036

	return data;
}
1037
IWL_EXPORT_SYMBOL(iwl_parse_nvm_data);
1038

1039
static u32 iwl_nvm_get_regdom_bw_flags(const u16 *nvm_chan,
1040 1041
				       int ch_idx, u16 nvm_flags,
				       const struct iwl_cfg *cfg)
1042 1043 1044 1045 1046 1047 1048 1049 1050
{
	u32 flags = NL80211_RRF_NO_HT40;

	if (ch_idx < NUM_2GHZ_CHANNELS &&
	    (nvm_flags & NVM_CHANNEL_40MHZ)) {
		if (nvm_chan[ch_idx] <= LAST_2GHZ_HT_PLUS)
			flags &= ~NL80211_RRF_NO_HT40PLUS;
		if (nvm_chan[ch_idx] >= FIRST_2GHZ_HT_MINUS)
			flags &= ~NL80211_RRF_NO_HT40MINUS;
1051
	} else if (nvm_flags & NVM_CHANNEL_40MHZ) {
1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082
		if ((ch_idx - NUM_2GHZ_CHANNELS) % 2 == 0)
			flags &= ~NL80211_RRF_NO_HT40PLUS;
		else
			flags &= ~NL80211_RRF_NO_HT40MINUS;
	}

	if (!(nvm_flags & NVM_CHANNEL_80MHZ))
		flags |= NL80211_RRF_NO_80MHZ;
	if (!(nvm_flags & NVM_CHANNEL_160MHZ))
		flags |= NL80211_RRF_NO_160MHZ;

	if (!(nvm_flags & NVM_CHANNEL_ACTIVE))
		flags |= NL80211_RRF_NO_IR;

	if (nvm_flags & NVM_CHANNEL_RADAR)
		flags |= NL80211_RRF_DFS;

	if (nvm_flags & NVM_CHANNEL_INDOOR_ONLY)
		flags |= NL80211_RRF_NO_OUTDOOR;

	/* Set the GO concurrent flag only in case that NO_IR is set.
	 * Otherwise it is meaningless
	 */
	if ((nvm_flags & NVM_CHANNEL_GO_CONCURRENT) &&
	    (flags & NL80211_RRF_NO_IR))
		flags |= NL80211_RRF_GO_CONCURRENT;

	return flags;
}

struct ieee80211_regdomain *
1083
iwl_parse_nvm_mcc_info(struct device *dev, const struct iwl_cfg *cfg,
1084 1085
		       int num_of_ch, __le32 *channels, u16 fw_mcc,
		       u16 geo_info)
1086 1087
{
	int ch_idx;
1088 1089
	u16 ch_flags;
	u32 reg_rule_flags, prev_reg_rule_flags = 0;
1090
	const u16 *nvm_chan;
1091
	struct ieee80211_regdomain *regd, *copy_rd;
1092
	struct ieee80211_reg_rule *rule;
1093
	enum nl80211_band band;
1094
	int center_freq, prev_center_freq = 0;
1095
	int valid_rules = 0;
1096
	bool new_rule;
1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108
	int max_num_ch;

	if (cfg->uhb_supported) {
		max_num_ch = IWL_NVM_NUM_CHANNELS_UHB;
		nvm_chan = iwl_uhb_nvm_channels;
	} else if (cfg->nvm_type == IWL_NVM_EXT) {
		max_num_ch = IWL_NVM_NUM_CHANNELS_EXT;
		nvm_chan = iwl_ext_nvm_channels;
	} else {
		max_num_ch = IWL_NVM_NUM_CHANNELS;
		nvm_chan = iwl_nvm_channels;
	}
1109

1110 1111 1112
	if (WARN_ON(num_of_ch > max_num_ch))
		num_of_ch = max_num_ch;

1113 1114 1115
	if (WARN_ON_ONCE(num_of_ch > NL80211_MAX_SUPP_REG_RULES))
		return ERR_PTR(-EINVAL);

1116 1117 1118 1119
	IWL_DEBUG_DEV(dev, IWL_DL_LAR, "building regdom for %d channels\n",
		      num_of_ch);

	/* build a regdomain rule for every valid channel */
1120
	regd = kzalloc(struct_size(regd, reg_rules, num_of_ch), GFP_KERNEL);
1121 1122 1123
	if (!regd)
		return ERR_PTR(-ENOMEM);

1124 1125 1126 1127
	/* set alpha2 from FW. */
	regd->alpha2[0] = fw_mcc >> 8;
	regd->alpha2[1] = fw_mcc & 0xff;

1128 1129 1130
	for (ch_idx = 0; ch_idx < num_of_ch; ch_idx++) {
		ch_flags = (u16)__le32_to_cpup(channels + ch_idx);
		band = (ch_idx < NUM_2GHZ_CHANNELS) ?
1131
		       NL80211_BAND_2GHZ : NL80211_BAND_5GHZ;
1132 1133 1134 1135 1136
		center_freq = ieee80211_channel_to_frequency(nvm_chan[ch_idx],
							     band);
		new_rule = false;

		if (!(ch_flags & NVM_CHANNEL_VALID)) {
1137 1138
			iwl_nvm_print_channel_flags(dev, IWL_DL_LAR,
						    nvm_chan[ch_idx], ch_flags);
1139 1140 1141
			continue;
		}

1142 1143 1144
		reg_rule_flags = iwl_nvm_get_regdom_bw_flags(nvm_chan, ch_idx,
							     ch_flags, cfg);

1145
		/* we can't continue the same rule */
1146
		if (ch_idx == 0 || prev_reg_rule_flags != reg_rule_flags ||
1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161
		    center_freq - prev_center_freq > 20) {
			valid_rules++;
			new_rule = true;
		}

		rule = &regd->reg_rules[valid_rules - 1];

		if (new_rule)
			rule->freq_range.start_freq_khz =
						MHZ_TO_KHZ(center_freq - 10);

		rule->freq_range.end_freq_khz = MHZ_TO_KHZ(center_freq + 10);

		/* this doesn't matter - not used by FW */
		rule->power_rule.max_antenna_gain = DBI_TO_MBI(6);
1162 1163
		rule->power_rule.max_eirp =
			DBM_TO_MBM(IWL_DEFAULT_MAX_TX_POWER);
1164

1165
		rule->flags = reg_rule_flags;
1166 1167 1168 1169 1170 1171

		/* rely on auto-calculation to merge BW of contiguous chans */
		rule->flags |= NL80211_RRF_AUTO_BW;
		rule->freq_range.max_bandwidth_khz = 0;

		prev_center_freq = center_freq;
1172
		prev_reg_rule_flags = reg_rule_flags;
1173

1174 1175
		iwl_nvm_print_channel_flags(dev, IWL_DL_LAR,
					    nvm_chan[ch_idx], ch_flags);
1176 1177 1178 1179 1180

		if (!(geo_info & GEO_WMM_ETSI_5GHZ_INFO) ||
		    band == NL80211_BAND_2GHZ)
			continue;

1181
		reg_query_regdb_wmm(regd->alpha2, center_freq, rule);
1182 1183 1184 1185
	}

	regd->n_reg_rules = valid_rules;

1186 1187 1188 1189
	/*
	 * Narrow down regdom for unused regulatory rules to prevent hole
	 * between reg rules to wmm rules.
	 */
1190 1191
	copy_rd = kmemdup(regd, struct_size(regd, reg_rules, valid_rules),
			  GFP_KERNEL);
1192
	if (!copy_rd)
1193 1194 1195 1196
		copy_rd = ERR_PTR(-ENOMEM);

	kfree(regd);
	return copy_rd;
1197 1198
}
IWL_EXPORT_SYMBOL(iwl_parse_nvm_mcc_info);
1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312

#define IWL_MAX_NVM_SECTION_SIZE	0x1b58
#define IWL_MAX_EXT_NVM_SECTION_SIZE	0x1ffc
#define MAX_NVM_FILE_LEN	16384

void iwl_nvm_fixups(u32 hw_id, unsigned int section, u8 *data,
		    unsigned int len)
{
#define IWL_4165_DEVICE_ID	0x5501
#define NVM_SKU_CAP_MIMO_DISABLE BIT(5)

	if (section == NVM_SECTION_TYPE_PHY_SKU &&
	    hw_id == IWL_4165_DEVICE_ID && data && len >= 5 &&
	    (data[4] & NVM_SKU_CAP_MIMO_DISABLE))
		/* OTP 0x52 bug work around: it's a 1x1 device */
		data[3] = ANT_B | (ANT_B << 4);
}
IWL_EXPORT_SYMBOL(iwl_nvm_fixups);

/*
 * Reads external NVM from a file into mvm->nvm_sections
 *
 * HOW TO CREATE THE NVM FILE FORMAT:
 * ------------------------------
 * 1. create hex file, format:
 *      3800 -> header
 *      0000 -> header
 *      5a40 -> data
 *
 *   rev - 6 bit (word1)
 *   len - 10 bit (word1)
 *   id - 4 bit (word2)
 *   rsv - 12 bit (word2)
 *
 * 2. flip 8bits with 8 bits per line to get the right NVM file format
 *
 * 3. create binary file from the hex file
 *
 * 4. save as "iNVM_xxx.bin" under /lib/firmware
 */
int iwl_read_external_nvm(struct iwl_trans *trans,
			  const char *nvm_file_name,
			  struct iwl_nvm_section *nvm_sections)
{
	int ret, section_size;
	u16 section_id;
	const struct firmware *fw_entry;
	const struct {
		__le16 word1;
		__le16 word2;
		u8 data[];
	} *file_sec;
	const u8 *eof;
	u8 *temp;
	int max_section_size;
	const __le32 *dword_buff;

#define NVM_WORD1_LEN(x) (8 * (x & 0x03FF))
#define NVM_WORD2_ID(x) (x >> 12)
#define EXT_NVM_WORD2_LEN(x) (2 * (((x) & 0xFF) << 8 | (x) >> 8))
#define EXT_NVM_WORD1_ID(x) ((x) >> 4)
#define NVM_HEADER_0	(0x2A504C54)
#define NVM_HEADER_1	(0x4E564D2A)
#define NVM_HEADER_SIZE	(4 * sizeof(u32))

	IWL_DEBUG_EEPROM(trans->dev, "Read from external NVM\n");

	/* Maximal size depends on NVM version */
	if (trans->cfg->nvm_type != IWL_NVM_EXT)
		max_section_size = IWL_MAX_NVM_SECTION_SIZE;
	else
		max_section_size = IWL_MAX_EXT_NVM_SECTION_SIZE;

	/*
	 * Obtain NVM image via request_firmware. Since we already used
	 * request_firmware_nowait() for the firmware binary load and only
	 * get here after that we assume the NVM request can be satisfied
	 * synchronously.
	 */
	ret = request_firmware(&fw_entry, nvm_file_name, trans->dev);
	if (ret) {
		IWL_ERR(trans, "ERROR: %s isn't available %d\n",
			nvm_file_name, ret);
		return ret;
	}

	IWL_INFO(trans, "Loaded NVM file %s (%zu bytes)\n",
		 nvm_file_name, fw_entry->size);

	if (fw_entry->size > MAX_NVM_FILE_LEN) {
		IWL_ERR(trans, "NVM file too large\n");
		ret = -EINVAL;
		goto out;
	}

	eof = fw_entry->data + fw_entry->size;
	dword_buff = (__le32 *)fw_entry->data;

	/* some NVM file will contain a header.
	 * The header is identified by 2 dwords header as follow:
	 * dword[0] = 0x2A504C54
	 * dword[1] = 0x4E564D2A
	 *
	 * This header must be skipped when providing the NVM data to the FW.
	 */
	if (fw_entry->size > NVM_HEADER_SIZE &&
	    dword_buff[0] == cpu_to_le32(NVM_HEADER_0) &&
	    dword_buff[1] == cpu_to_le32(NVM_HEADER_1)) {
		file_sec = (void *)(fw_entry->data + NVM_HEADER_SIZE);
		IWL_INFO(trans, "NVM Version %08X\n", le32_to_cpu(dword_buff[2]));
		IWL_INFO(trans, "NVM Manufacturing date %08X\n",
			 le32_to_cpu(dword_buff[3]));

		/* nvm file validation, dword_buff[2] holds the file version */
1313
		if (trans->trans_cfg->device_family == IWL_DEVICE_FAMILY_8000 &&
1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394
		    CSR_HW_REV_STEP(trans->hw_rev) == SILICON_C_STEP &&
		    le32_to_cpu(dword_buff[2]) < 0xE4A) {
			ret = -EFAULT;
			goto out;
		}
	} else {
		file_sec = (void *)fw_entry->data;
	}

	while (true) {
		if (file_sec->data > eof) {
			IWL_ERR(trans,
				"ERROR - NVM file too short for section header\n");
			ret = -EINVAL;
			break;
		}

		/* check for EOF marker */
		if (!file_sec->word1 && !file_sec->word2) {
			ret = 0;
			break;
		}

		if (trans->cfg->nvm_type != IWL_NVM_EXT) {
			section_size =
				2 * NVM_WORD1_LEN(le16_to_cpu(file_sec->word1));
			section_id = NVM_WORD2_ID(le16_to_cpu(file_sec->word2));
		} else {
			section_size = 2 * EXT_NVM_WORD2_LEN(
						le16_to_cpu(file_sec->word2));
			section_id = EXT_NVM_WORD1_ID(
						le16_to_cpu(file_sec->word1));
		}

		if (section_size > max_section_size) {
			IWL_ERR(trans, "ERROR - section too large (%d)\n",
				section_size);
			ret = -EINVAL;
			break;
		}

		if (!section_size) {
			IWL_ERR(trans, "ERROR - section empty\n");
			ret = -EINVAL;
			break;
		}

		if (file_sec->data + section_size > eof) {
			IWL_ERR(trans,
				"ERROR - NVM file too short for section (%d bytes)\n",
				section_size);
			ret = -EINVAL;
			break;
		}

		if (WARN(section_id >= NVM_MAX_NUM_SECTIONS,
			 "Invalid NVM section ID %d\n", section_id)) {
			ret = -EINVAL;
			break;
		}

		temp = kmemdup(file_sec->data, section_size, GFP_KERNEL);
		if (!temp) {
			ret = -ENOMEM;
			break;
		}

		iwl_nvm_fixups(trans->hw_id, section_id, temp, section_size);

		kfree(nvm_sections[section_id].data);
		nvm_sections[section_id].data = temp;
		nvm_sections[section_id].length = section_size;

		/* advance to the next section */
		file_sec = (void *)(file_sec->data + section_size);
	}
out:
	release_firmware(fw_entry);
	return ret;
}
IWL_EXPORT_SYMBOL(iwl_read_external_nvm);
S
Shaul Triebitz 已提交
1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410

struct iwl_nvm_data *iwl_get_nvm(struct iwl_trans *trans,
				 const struct iwl_fw *fw)
{
	struct iwl_nvm_get_info cmd = {};
	struct iwl_nvm_data *nvm;
	struct iwl_host_cmd hcmd = {
		.flags = CMD_WANT_SKB | CMD_SEND_IN_RFKILL,
		.data = { &cmd, },
		.len = { sizeof(cmd) },
		.id = WIDE_ID(REGULATORY_AND_NVM_GROUP, NVM_GET_INFO)
	};
	int  ret;
	bool lar_fw_supported = !iwlwifi_mod_params.lar_disable &&
				fw_has_capa(&fw->ucode_capa,
					    IWL_UCODE_TLV_CAPA_LAR_SUPPORT);
1411
	bool empty_otp;
S
Shaul Triebitz 已提交
1412 1413
	u32 mac_flags;
	u32 sbands_flags = 0;
1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425
	/*
	 * All the values in iwl_nvm_get_info_rsp v4 are the same as
	 * in v3, except for the channel profile part of the
	 * regulatory.  So we can just access the new struct, with the
	 * exception of the latter.
	 */
	struct iwl_nvm_get_info_rsp *rsp;
	struct iwl_nvm_get_info_rsp_v3 *rsp_v3;
	bool v4 = fw_has_api(&fw->ucode_capa,
			     IWL_UCODE_TLV_API_REGULATORY_NVM_INFO);
	size_t rsp_size = v4 ? sizeof(*rsp) : sizeof(*rsp_v3);
	void *channel_profile;
S
Shaul Triebitz 已提交
1426 1427 1428 1429 1430

	ret = iwl_trans_send_cmd(trans, &hcmd);
	if (ret)
		return ERR_PTR(ret);

1431
	if (WARN(iwl_rx_packet_payload_len(hcmd.resp_pkt) != rsp_size,
S
Shaul Triebitz 已提交
1432 1433 1434 1435 1436 1437 1438
		 "Invalid payload len in NVM response from FW %d",
		 iwl_rx_packet_payload_len(hcmd.resp_pkt))) {
		ret = -EINVAL;
		goto out;
	}

	rsp = (void *)hcmd.resp_pkt->data;
1439 1440 1441
	empty_otp = !!(le32_to_cpu(rsp->general.flags) &
		       NVM_GENERAL_FLAGS_EMPTY_OTP);
	if (empty_otp)
S
Shaul Triebitz 已提交
1442 1443
		IWL_INFO(trans, "OTP is empty\n");

1444
	nvm = kzalloc(struct_size(nvm, channels, IWL_NUM_CHANNELS), GFP_KERNEL);
S
Shaul Triebitz 已提交
1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462
	if (!nvm) {
		ret = -ENOMEM;
		goto out;
	}

	iwl_set_hw_address_from_csr(trans, nvm);
	/* TODO: if platform NVM has MAC address - override it here */

	if (!is_valid_ether_addr(nvm->hw_addr)) {
		IWL_ERR(trans, "no valid mac address was found\n");
		ret = -EINVAL;
		goto err_free;
	}

	IWL_INFO(trans, "base HW address: %pM\n", nvm->hw_addr);

	/* Initialize general data */
	nvm->nvm_version = le16_to_cpu(rsp->general.nvm_version);
1463 1464 1465 1466 1467
	nvm->n_hw_addrs = rsp->general.n_hw_addrs;
	if (nvm->n_hw_addrs == 0)
		IWL_WARN(trans,
			 "Firmware declares no reserved mac addresses. OTP is empty: %d\n",
			 empty_otp);
S
Shaul Triebitz 已提交
1468 1469 1470 1471 1472 1473 1474

	/* Initialize MAC sku data */
	mac_flags = le32_to_cpu(rsp->mac_sku.mac_sku_flags);
	nvm->sku_cap_11ac_enable =
		!!(mac_flags & NVM_MAC_SKU_FLAGS_802_11AC_ENABLED);
	nvm->sku_cap_11n_enable =
		!!(mac_flags & NVM_MAC_SKU_FLAGS_802_11N_ENABLED);
1475 1476
	nvm->sku_cap_11ax_enable =
		!!(mac_flags & NVM_MAC_SKU_FLAGS_802_11AX_ENABLED);
S
Shaul Triebitz 已提交
1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492
	nvm->sku_cap_band_24ghz_enable =
		!!(mac_flags & NVM_MAC_SKU_FLAGS_BAND_2_4_ENABLED);
	nvm->sku_cap_band_52ghz_enable =
		!!(mac_flags & NVM_MAC_SKU_FLAGS_BAND_5_2_ENABLED);
	nvm->sku_cap_mimo_disabled =
		!!(mac_flags & NVM_MAC_SKU_FLAGS_MIMO_DISABLED);

	/* Initialize PHY sku data */
	nvm->valid_tx_ant = (u8)le32_to_cpu(rsp->phy_sku.tx_chains);
	nvm->valid_rx_ant = (u8)le32_to_cpu(rsp->phy_sku.rx_chains);

	if (le32_to_cpu(rsp->regulatory.lar_enabled) && lar_fw_supported) {
		nvm->lar_enabled = true;
		sbands_flags |= IWL_NVM_SBANDS_FLAGS_LAR;
	}

1493 1494 1495 1496
	rsp_v3 = (void *)rsp;
	channel_profile = v4 ? (void *)rsp->regulatory.channel_profile :
			  (void *)rsp_v3->regulatory.channel_profile;

1497
	iwl_init_sbands(trans, nvm,
1498
			channel_profile,
S
Shaul Triebitz 已提交
1499 1500
			nvm->valid_tx_ant & fw->valid_tx_ant,
			nvm->valid_rx_ant & fw->valid_rx_ant,
1501
			sbands_flags, v4);
S
Shaul Triebitz 已提交
1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512

	iwl_free_resp(&hcmd);
	return nvm;

err_free:
	kfree(nvm);
out:
	iwl_free_resp(&hcmd);
	return ERR_PTR(ret);
}
IWL_EXPORT_SYMBOL(iwl_get_nvm);