iwl-nvm-parse.c 27.4 KB
Newer Older
1 2 3 4 5 6 7
/******************************************************************************
 *
 * This file is provided under a dual BSD/GPLv2 license.  When using or
 * redistributing this file, you may do so under either license.
 *
 * GPL LICENSE SUMMARY
 *
8
 * Copyright(c) 2008 - 2014 Intel Corporation. All rights reserved.
9
 * Copyright(c) 2013 - 2015 Intel Mobile Communications GmbH
10
 * Copyright(c) 2016 Intel Deutschland GmbH
11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of version 2 of the GNU General Public License as
 * published by the Free Software Foundation.
 *
 * This program is distributed in the hope that it will be useful, but
 * WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110,
 * USA
 *
 * The full GNU General Public License is included in this distribution
27
 * in the file called COPYING.
28 29
 *
 * Contact Information:
30
 *  Intel Linux Wireless <linuxwifi@intel.com>
31 32 33 34
 * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
 *
 * BSD LICENSE
 *
35
 * Copyright(c) 2005 - 2014 Intel Corporation. All rights reserved.
36
 * Copyright(c) 2013 - 2015 Intel Mobile Communications GmbH
37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67
 * All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 *
 *  * Redistributions of source code must retain the above copyright
 *    notice, this list of conditions and the following disclaimer.
 *  * Redistributions in binary form must reproduce the above copyright
 *    notice, this list of conditions and the following disclaimer in
 *    the documentation and/or other materials provided with the
 *    distribution.
 *  * Neither the name Intel Corporation nor the names of its
 *    contributors may be used to endorse or promote products derived
 *    from this software without specific prior written permission.
 *
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 *****************************************************************************/
#include <linux/types.h>
#include <linux/slab.h>
#include <linux/export.h>
68
#include <linux/etherdevice.h>
69
#include <linux/pci.h>
70
#include "iwl-drv.h"
71 72
#include "iwl-modparams.h"
#include "iwl-nvm-parse.h"
73
#include "iwl-prph.h"
74 75
#include "iwl-io.h"
#include "iwl-csr.h"
76 77 78 79 80 81

/* NVM offsets (in words) definitions */
enum wkp_nvm_offsets {
	/* NVM HW-Section offset (in words) definitions */
	HW_ADDR = 0x15,

82
	/* NVM SW-Section offset (in words) definitions */
83 84 85 86 87 88 89
	NVM_SW_SECTION = 0x1C0,
	NVM_VERSION = 0,
	RADIO_CFG = 1,
	SKU = 2,
	N_HW_ADDRS = 3,
	NVM_CHANNELS = 0x1E0 - NVM_SW_SECTION,

90
	/* NVM calibration section offset (in words) definitions */
91 92 93 94
	NVM_CALIB_SECTION = 0x2B8,
	XTAL_CALIB = 0x316 - NVM_CALIB_SECTION
};

95 96
enum family_8000_nvm_offsets {
	/* NVM HW-Section offset (in words) definitions */
97 98 99 100
	HW_ADDR0_WFPM_FAMILY_8000 = 0x12,
	HW_ADDR1_WFPM_FAMILY_8000 = 0x16,
	HW_ADDR0_PCIE_FAMILY_8000 = 0x8A,
	HW_ADDR1_PCIE_FAMILY_8000 = 0x8E,
101 102 103 104 105
	MAC_ADDRESS_OVERRIDE_FAMILY_8000 = 1,

	/* NVM SW-Section offset (in words) definitions */
	NVM_SW_SECTION_FAMILY_8000 = 0x1C0,
	NVM_VERSION_FAMILY_8000 = 0,
106 107 108
	RADIO_CFG_FAMILY_8000 = 0,
	SKU_FAMILY_8000 = 2,
	N_HW_ADDRS_FAMILY_8000 = 3,
109

110 111
	/* NVM REGULATORY -Section offset (in words) definitions */
	NVM_CHANNELS_FAMILY_8000 = 0,
112 113
	NVM_LAR_OFFSET_FAMILY_8000_OLD = 0x4C7,
	NVM_LAR_OFFSET_FAMILY_8000 = 0x507,
114
	NVM_LAR_ENABLED_FAMILY_8000 = 0x7,
115 116 117 118 119 120

	/* NVM calibration section offset (in words) definitions */
	NVM_CALIB_SECTION_FAMILY_8000 = 0x2B8,
	XTAL_CALIB_FAMILY_8000 = 0x316 - NVM_CALIB_SECTION_FAMILY_8000
};

121 122
/* SKU Capabilities (actual values from NVM definition) */
enum nvm_sku_bits {
123 124 125 126 127
	NVM_SKU_CAP_BAND_24GHZ		= BIT(0),
	NVM_SKU_CAP_BAND_52GHZ		= BIT(1),
	NVM_SKU_CAP_11N_ENABLE		= BIT(2),
	NVM_SKU_CAP_11AC_ENABLE		= BIT(3),
	NVM_SKU_CAP_MIMO_DISABLE	= BIT(5),
128 129 130 131 132 133 134 135 136 137 138 139 140 141
};

/*
 * These are the channel numbers in the order that they are stored in the NVM
 */
static const u8 iwl_nvm_channels[] = {
	/* 2.4 GHz */
	1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14,
	/* 5 GHz */
	36, 40, 44 , 48, 52, 56, 60, 64,
	100, 104, 108, 112, 116, 120, 124, 128, 132, 136, 140, 144,
	149, 153, 157, 161, 165
};

142 143
static const u8 iwl_nvm_channels_family_8000[] = {
	/* 2.4 GHz */
144
	1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14,
145 146 147 148 149 150
	/* 5 GHz */
	36, 40, 44, 48, 52, 56, 60, 64, 68, 72, 76, 80, 84, 88, 92,
	96, 100, 104, 108, 112, 116, 120, 124, 128, 132, 136, 140, 144,
	149, 153, 157, 161, 165, 169, 173, 177, 181
};

151
#define IWL_NUM_CHANNELS		ARRAY_SIZE(iwl_nvm_channels)
152
#define IWL_NUM_CHANNELS_FAMILY_8000	ARRAY_SIZE(iwl_nvm_channels_family_8000)
153
#define NUM_2GHZ_CHANNELS		14
154
#define NUM_2GHZ_CHANNELS_FAMILY_8000	14
155 156
#define FIRST_2GHZ_HT_MINUS		5
#define LAST_2GHZ_HT_PLUS		9
157 158
#define LAST_5GHZ_HT			165
#define LAST_5GHZ_HT_FAMILY_8000	181
159
#define N_HW_ADDR_MASK			0xF
160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189

/* rate data (static) */
static struct ieee80211_rate iwl_cfg80211_rates[] = {
	{ .bitrate = 1 * 10, .hw_value = 0, .hw_value_short = 0, },
	{ .bitrate = 2 * 10, .hw_value = 1, .hw_value_short = 1,
	  .flags = IEEE80211_RATE_SHORT_PREAMBLE, },
	{ .bitrate = 5.5 * 10, .hw_value = 2, .hw_value_short = 2,
	  .flags = IEEE80211_RATE_SHORT_PREAMBLE, },
	{ .bitrate = 11 * 10, .hw_value = 3, .hw_value_short = 3,
	  .flags = IEEE80211_RATE_SHORT_PREAMBLE, },
	{ .bitrate = 6 * 10, .hw_value = 4, .hw_value_short = 4, },
	{ .bitrate = 9 * 10, .hw_value = 5, .hw_value_short = 5, },
	{ .bitrate = 12 * 10, .hw_value = 6, .hw_value_short = 6, },
	{ .bitrate = 18 * 10, .hw_value = 7, .hw_value_short = 7, },
	{ .bitrate = 24 * 10, .hw_value = 8, .hw_value_short = 8, },
	{ .bitrate = 36 * 10, .hw_value = 9, .hw_value_short = 9, },
	{ .bitrate = 48 * 10, .hw_value = 10, .hw_value_short = 10, },
	{ .bitrate = 54 * 10, .hw_value = 11, .hw_value_short = 11, },
};
#define RATES_24_OFFS	0
#define N_RATES_24	ARRAY_SIZE(iwl_cfg80211_rates)
#define RATES_52_OFFS	4
#define N_RATES_52	(N_RATES_24 - RATES_52_OFFS)

/**
 * enum iwl_nvm_channel_flags - channel flags in NVM
 * @NVM_CHANNEL_VALID: channel is usable for this SKU/geo
 * @NVM_CHANNEL_IBSS: usable as an IBSS channel
 * @NVM_CHANNEL_ACTIVE: active scanning allowed
 * @NVM_CHANNEL_RADAR: radar detection required
190 191 192
 * @NVM_CHANNEL_INDOOR_ONLY: only indoor use is allowed
 * @NVM_CHANNEL_GO_CONCURRENT: GO operation is allowed when connected to BSS
 *	on same channel on 2.4 or same UNII band on 5.2
193 194
 * @NVM_CHANNEL_WIDE: 20 MHz channel okay (?)
 * @NVM_CHANNEL_40MHZ: 40 MHz channel okay (?)
195 196
 * @NVM_CHANNEL_80MHZ: 80 MHz channel okay (?)
 * @NVM_CHANNEL_160MHZ: 160 MHz channel okay (?)
197 198 199 200 201 202
 */
enum iwl_nvm_channel_flags {
	NVM_CHANNEL_VALID = BIT(0),
	NVM_CHANNEL_IBSS = BIT(1),
	NVM_CHANNEL_ACTIVE = BIT(3),
	NVM_CHANNEL_RADAR = BIT(4),
203 204
	NVM_CHANNEL_INDOOR_ONLY = BIT(5),
	NVM_CHANNEL_GO_CONCURRENT = BIT(6),
205 206
	NVM_CHANNEL_WIDE = BIT(8),
	NVM_CHANNEL_40MHZ = BIT(9),
207 208
	NVM_CHANNEL_80MHZ = BIT(10),
	NVM_CHANNEL_160MHZ = BIT(11),
209 210 211 212 213
};

#define CHECK_AND_PRINT_I(x)	\
	((ch_flags & NVM_CHANNEL_##x) ? # x " " : "")

214
static u32 iwl_get_channel_flags(u8 ch_num, int ch_idx, bool is_5ghz,
215
				 u16 nvm_flags, const struct iwl_cfg *cfg)
216 217
{
	u32 flags = IEEE80211_CHAN_NO_HT40;
218 219 220 221
	u32 last_5ghz_ht = LAST_5GHZ_HT;

	if (cfg->device_family == IWL_DEVICE_FAMILY_8000)
		last_5ghz_ht = LAST_5GHZ_HT_FAMILY_8000;
222 223 224 225 226 227

	if (!is_5ghz && (nvm_flags & NVM_CHANNEL_40MHZ)) {
		if (ch_num <= LAST_2GHZ_HT_PLUS)
			flags &= ~IEEE80211_CHAN_NO_HT40PLUS;
		if (ch_num >= FIRST_2GHZ_HT_MINUS)
			flags &= ~IEEE80211_CHAN_NO_HT40MINUS;
228
	} else if (ch_num <= last_5ghz_ht && (nvm_flags & NVM_CHANNEL_40MHZ)) {
229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255
		if ((ch_idx - NUM_2GHZ_CHANNELS) % 2 == 0)
			flags &= ~IEEE80211_CHAN_NO_HT40PLUS;
		else
			flags &= ~IEEE80211_CHAN_NO_HT40MINUS;
	}
	if (!(nvm_flags & NVM_CHANNEL_80MHZ))
		flags |= IEEE80211_CHAN_NO_80MHZ;
	if (!(nvm_flags & NVM_CHANNEL_160MHZ))
		flags |= IEEE80211_CHAN_NO_160MHZ;

	if (!(nvm_flags & NVM_CHANNEL_IBSS))
		flags |= IEEE80211_CHAN_NO_IR;

	if (!(nvm_flags & NVM_CHANNEL_ACTIVE))
		flags |= IEEE80211_CHAN_NO_IR;

	if (nvm_flags & NVM_CHANNEL_RADAR)
		flags |= IEEE80211_CHAN_RADAR;

	if (nvm_flags & NVM_CHANNEL_INDOOR_ONLY)
		flags |= IEEE80211_CHAN_INDOOR_ONLY;

	/* Set the GO concurrent flag only in case that NO_IR is set.
	 * Otherwise it is meaningless
	 */
	if ((nvm_flags & NVM_CHANNEL_GO_CONCURRENT) &&
	    (flags & IEEE80211_CHAN_NO_IR))
256
		flags |= IEEE80211_CHAN_IR_CONCURRENT;
257 258 259 260

	return flags;
}

261 262
static int iwl_init_channel_map(struct device *dev, const struct iwl_cfg *cfg,
				struct iwl_nvm_data *data,
263 264
				const __le16 * const nvm_ch_flags,
				bool lar_supported)
265 266 267 268 269 270
{
	int ch_idx;
	int n_channels = 0;
	struct ieee80211_channel *channel;
	u16 ch_flags;
	bool is_5ghz;
271
	int num_of_ch, num_2ghz_channels;
272 273 274 275 276
	const u8 *nvm_chan;

	if (cfg->device_family != IWL_DEVICE_FAMILY_8000) {
		num_of_ch = IWL_NUM_CHANNELS;
		nvm_chan = &iwl_nvm_channels[0];
277
		num_2ghz_channels = NUM_2GHZ_CHANNELS;
278 279 280
	} else {
		num_of_ch = IWL_NUM_CHANNELS_FAMILY_8000;
		nvm_chan = &iwl_nvm_channels_family_8000[0];
281
		num_2ghz_channels = NUM_2GHZ_CHANNELS_FAMILY_8000;
282
	}
283

284
	for (ch_idx = 0; ch_idx < num_of_ch; ch_idx++) {
285
		ch_flags = __le16_to_cpup(nvm_ch_flags + ch_idx);
286

287
		if (ch_idx >= num_2ghz_channels &&
288
		    !data->sku_cap_band_52GHz_enable)
289
			continue;
290

291
		if (!lar_supported && !(ch_flags & NVM_CHANNEL_VALID)) {
292 293 294 295 296
			/*
			 * Channels might become valid later if lar is
			 * supported, hence we still want to add them to
			 * the list of supported channels to cfg80211.
			 */
297 298
			IWL_DEBUG_EEPROM(dev,
					 "Ch. %d Flags %x [%sGHz] - No traffic\n",
299
					 nvm_chan[ch_idx],
300
					 ch_flags,
301
					 (ch_idx >= num_2ghz_channels) ?
302 303 304 305 306 307 308
					 "5.2" : "2.4");
			continue;
		}

		channel = &data->channels[n_channels];
		n_channels++;

309
		channel->hw_value = nvm_chan[ch_idx];
310
		channel->band = (ch_idx < num_2ghz_channels) ?
311
				NL80211_BAND_2GHZ : NL80211_BAND_5GHZ;
312 313 314 315 316 317
		channel->center_freq =
			ieee80211_channel_to_frequency(
				channel->hw_value, channel->band);

		/* Initialize regulatory-based run-time data */

318 319 320 321
		/*
		 * Default value - highest tx power value.  max_power
		 * is not used in mvm, and is used for backwards compatibility
		 */
322
		channel->max_power = IWL_DEFAULT_MAX_TX_POWER;
323
		is_5ghz = channel->band == NL80211_BAND_5GHZ;
324 325 326 327 328

		/* don't put limitations in case we're using LAR */
		if (!lar_supported)
			channel->flags = iwl_get_channel_flags(nvm_chan[ch_idx],
							       ch_idx, is_5ghz,
329
							       ch_flags, cfg);
330 331 332
		else
			channel->flags = 0;

333
		IWL_DEBUG_EEPROM(dev,
334
				 "Ch. %d [%sGHz] %s%s%s%s%s%s%s(0x%02x %ddBm): Ad-Hoc %ssupported\n",
335 336 337 338 339 340 341
				 channel->hw_value,
				 is_5ghz ? "5.2" : "2.4",
				 CHECK_AND_PRINT_I(VALID),
				 CHECK_AND_PRINT_I(IBSS),
				 CHECK_AND_PRINT_I(ACTIVE),
				 CHECK_AND_PRINT_I(RADAR),
				 CHECK_AND_PRINT_I(WIDE),
342 343
				 CHECK_AND_PRINT_I(INDOOR_ONLY),
				 CHECK_AND_PRINT_I(GO_CONCURRENT),
344 345 346 347 348 349 350 351 352 353
				 ch_flags,
				 channel->max_power,
				 ((ch_flags & NVM_CHANNEL_IBSS) &&
				  !(ch_flags & NVM_CHANNEL_RADAR))
					? "" : "not ");
	}

	return n_channels;
}

354 355
static void iwl_init_vht_hw_capab(const struct iwl_cfg *cfg,
				  struct iwl_nvm_data *data,
356 357
				  struct ieee80211_sta_vht_cap *vht_cap,
				  u8 tx_chains, u8 rx_chains)
358
{
359 360
	int num_rx_ants = num_of_ant(rx_chains);
	int num_tx_ants = num_of_ant(tx_chains);
361 362
	unsigned int max_ampdu_exponent = (cfg->max_vht_ampdu_exponent ?:
					   IEEE80211_VHT_MAX_AMPDU_1024K);
363

364 365 366 367 368
	vht_cap->vht_supported = true;

	vht_cap->cap = IEEE80211_VHT_CAP_SHORT_GI_80 |
		       IEEE80211_VHT_CAP_RXSTBC_1 |
		       IEEE80211_VHT_CAP_SU_BEAMFORMEE_CAPABLE |
369
		       3 << IEEE80211_VHT_CAP_BEAMFORMEE_STS_SHIFT |
370 371
		       max_ampdu_exponent <<
		       IEEE80211_VHT_CAP_MAX_A_MPDU_LENGTH_EXPONENT_SHIFT;
372

373 374 375
	if (cfg->vht_mu_mimo_supported)
		vht_cap->cap |= IEEE80211_VHT_CAP_MU_BEAMFORMEE_CAPABLE;

E
Eyal Shapira 已提交
376 377 378
	if (cfg->ht_params->ldpc)
		vht_cap->cap |= IEEE80211_VHT_CAP_RXLDPC;

379 380 381 382 383
	if (data->sku_cap_mimo_disabled) {
		num_rx_ants = 1;
		num_tx_ants = 1;
	}

384
	if (num_tx_ants > 1)
385
		vht_cap->cap |= IEEE80211_VHT_CAP_TXSTBC;
386 387
	else
		vht_cap->cap |= IEEE80211_VHT_CAP_TX_ANTENNA_PATTERN;
388

389 390 391 392 393
	switch (iwlwifi_mod_params.amsdu_size) {
	case IWL_AMSDU_4K:
		vht_cap->cap |= IEEE80211_VHT_CAP_MAX_MPDU_LENGTH_3895;
		break;
	case IWL_AMSDU_8K:
394
		vht_cap->cap |= IEEE80211_VHT_CAP_MAX_MPDU_LENGTH_7991;
395 396 397 398 399 400 401
		break;
	case IWL_AMSDU_12K:
		vht_cap->cap |= IEEE80211_VHT_CAP_MAX_MPDU_LENGTH_11454;
		break;
	default:
		break;
	}
402 403 404 405 406 407 408 409 410 411 412

	vht_cap->vht_mcs.rx_mcs_map =
		cpu_to_le16(IEEE80211_VHT_MCS_SUPPORT_0_9 << 0 |
			    IEEE80211_VHT_MCS_SUPPORT_0_9 << 2 |
			    IEEE80211_VHT_MCS_NOT_SUPPORTED << 4 |
			    IEEE80211_VHT_MCS_NOT_SUPPORTED << 6 |
			    IEEE80211_VHT_MCS_NOT_SUPPORTED << 8 |
			    IEEE80211_VHT_MCS_NOT_SUPPORTED << 10 |
			    IEEE80211_VHT_MCS_NOT_SUPPORTED << 12 |
			    IEEE80211_VHT_MCS_NOT_SUPPORTED << 14);

413 414
	if (num_rx_ants == 1 || cfg->rx_with_siso_diversity) {
		vht_cap->cap |= IEEE80211_VHT_CAP_RX_ANTENNA_PATTERN;
415 416 417 418 419 420 421 422
		/* this works because NOT_SUPPORTED == 3 */
		vht_cap->vht_mcs.rx_mcs_map |=
			cpu_to_le16(IEEE80211_VHT_MCS_NOT_SUPPORTED << 2);
	}

	vht_cap->vht_mcs.tx_mcs_map = vht_cap->vht_mcs.rx_mcs_map;
}

423
static void iwl_init_sbands(struct device *dev, const struct iwl_cfg *cfg,
424
			    struct iwl_nvm_data *data,
425
			    const __le16 *ch_section,
426
			    u8 tx_chains, u8 rx_chains, bool lar_supported)
427
{
428
	int n_channels;
429 430 431
	int n_used = 0;
	struct ieee80211_supported_band *sband;

432 433 434
	if (cfg->device_family != IWL_DEVICE_FAMILY_8000)
		n_channels = iwl_init_channel_map(
				dev, cfg, data,
435
				&ch_section[NVM_CHANNELS], lar_supported);
436 437 438
	else
		n_channels = iwl_init_channel_map(
				dev, cfg, data,
439 440
				&ch_section[NVM_CHANNELS_FAMILY_8000],
				lar_supported);
441

442 443
	sband = &data->bands[NL80211_BAND_2GHZ];
	sband->band = NL80211_BAND_2GHZ;
444 445 446
	sband->bitrates = &iwl_cfg80211_rates[RATES_24_OFFS];
	sband->n_bitrates = N_RATES_24;
	n_used += iwl_init_sband_channels(data, sband, n_channels,
447 448
					  NL80211_BAND_2GHZ);
	iwl_init_ht_hw_capab(cfg, data, &sband->ht_cap, NL80211_BAND_2GHZ,
449
			     tx_chains, rx_chains);
450

451 452
	sband = &data->bands[NL80211_BAND_5GHZ];
	sband->band = NL80211_BAND_5GHZ;
453 454 455
	sband->bitrates = &iwl_cfg80211_rates[RATES_52_OFFS];
	sband->n_bitrates = N_RATES_52;
	n_used += iwl_init_sband_channels(data, sband, n_channels,
456 457
					  NL80211_BAND_5GHZ);
	iwl_init_ht_hw_capab(cfg, data, &sband->ht_cap, NL80211_BAND_5GHZ,
458
			     tx_chains, rx_chains);
459
	if (data->sku_cap_11ac_enable && !iwlwifi_mod_params.disable_11ac)
460 461
		iwl_init_vht_hw_capab(cfg, data, &sband->vht_cap,
				      tx_chains, rx_chains);
462 463 464 465 466 467

	if (n_channels != n_used)
		IWL_ERR_DEV(dev, "NVM: used only %d of %d channels\n",
			    n_used, n_channels);
}

468 469
static int iwl_get_sku(const struct iwl_cfg *cfg, const __le16 *nvm_sw,
		       const __le16 *phy_sku)
470 471 472
{
	if (cfg->device_family != IWL_DEVICE_FAMILY_8000)
		return le16_to_cpup(nvm_sw + SKU);
473

474
	return le32_to_cpup((__le32 *)(phy_sku + SKU_FAMILY_8000));
475 476
}

477
static int iwl_get_nvm_version(const struct iwl_cfg *cfg, const __le16 *nvm_sw)
478 479 480 481 482 483 484 485
{
	if (cfg->device_family != IWL_DEVICE_FAMILY_8000)
		return le16_to_cpup(nvm_sw + NVM_VERSION);
	else
		return le32_to_cpup((__le32 *)(nvm_sw +
					       NVM_VERSION_FAMILY_8000));
}

486 487
static int iwl_get_radio_cfg(const struct iwl_cfg *cfg, const __le16 *nvm_sw,
			     const __le16 *phy_sku)
488 489 490
{
	if (cfg->device_family != IWL_DEVICE_FAMILY_8000)
		return le16_to_cpup(nvm_sw + RADIO_CFG);
491

492
	return le32_to_cpup((__le32 *)(phy_sku + RADIO_CFG_FAMILY_8000));
493

494 495
}

496
static int iwl_get_n_hw_addrs(const struct iwl_cfg *cfg, const __le16 *nvm_sw)
497
{
498 499
	int n_hw_addr;

500 501
	if (cfg->device_family != IWL_DEVICE_FAMILY_8000)
		return le16_to_cpup(nvm_sw + N_HW_ADDRS);
502

503
	n_hw_addr = le32_to_cpup((__le32 *)(nvm_sw + N_HW_ADDRS_FAMILY_8000));
504 505

	return n_hw_addr & N_HW_ADDR_MASK;
506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524
}

static void iwl_set_radio_cfg(const struct iwl_cfg *cfg,
			      struct iwl_nvm_data *data,
			      u32 radio_cfg)
{
	if (cfg->device_family != IWL_DEVICE_FAMILY_8000) {
		data->radio_cfg_type = NVM_RF_CFG_TYPE_MSK(radio_cfg);
		data->radio_cfg_step = NVM_RF_CFG_STEP_MSK(radio_cfg);
		data->radio_cfg_dash = NVM_RF_CFG_DASH_MSK(radio_cfg);
		data->radio_cfg_pnum = NVM_RF_CFG_PNUM_MSK(radio_cfg);
		return;
	}

	/* set the radio configuration for family 8000 */
	data->radio_cfg_type = NVM_RF_CFG_TYPE_MSK_FAMILY_8000(radio_cfg);
	data->radio_cfg_step = NVM_RF_CFG_STEP_MSK_FAMILY_8000(radio_cfg);
	data->radio_cfg_dash = NVM_RF_CFG_DASH_MSK_FAMILY_8000(radio_cfg);
	data->radio_cfg_pnum = NVM_RF_CFG_FLAVOR_MSK_FAMILY_8000(radio_cfg);
525 526
	data->valid_tx_ant = NVM_RF_CFG_TX_ANT_MSK_FAMILY_8000(radio_cfg);
	data->valid_rx_ant = NVM_RF_CFG_RX_ANT_MSK_FAMILY_8000(radio_cfg);
527 528
}

529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558
static void iwl_flip_hw_address(__le32 mac_addr0, __le32 mac_addr1, u8 *dest)
{
	const u8 *hw_addr;

	hw_addr = (const u8 *)&mac_addr0;
	dest[0] = hw_addr[3];
	dest[1] = hw_addr[2];
	dest[2] = hw_addr[1];
	dest[3] = hw_addr[0];

	hw_addr = (const u8 *)&mac_addr1;
	dest[4] = hw_addr[1];
	dest[5] = hw_addr[0];
}

static void iwl_set_hw_address_from_csr(struct iwl_trans *trans,
					struct iwl_nvm_data *data)
{
	__le32 mac_addr0 = cpu_to_le32(iwl_read32(trans, CSR_MAC_ADDR0_STRAP));
	__le32 mac_addr1 = cpu_to_le32(iwl_read32(trans, CSR_MAC_ADDR1_STRAP));

	/* If OEM did not fuse address - get it from OTP */
	if (!mac_addr0 && !mac_addr1) {
		mac_addr0 = cpu_to_le32(iwl_read32(trans, CSR_MAC_ADDR0_OTP));
		mac_addr1 = cpu_to_le32(iwl_read32(trans, CSR_MAC_ADDR1_OTP));
	}

	iwl_flip_hw_address(mac_addr0, mac_addr1, data->hw_addr);
}

559
static void iwl_set_hw_address_family_8000(struct iwl_trans *trans,
560
					   const struct iwl_cfg *cfg,
561 562
					   struct iwl_nvm_data *data,
					   const __le16 *mac_override,
563
					   const __le16 *nvm_hw)
564 565 566 567
{
	const u8 *hw_addr;

	if (mac_override) {
568 569 570 571
		static const u8 reserved_mac[] = {
			0x02, 0xcc, 0xaa, 0xff, 0xee, 0x00
		};

572 573 574
		hw_addr = (const u8 *)(mac_override +
				 MAC_ADDRESS_OVERRIDE_FAMILY_8000);

575 576 577 578 579
		/*
		 * Store the MAC address from MAO section.
		 * No byte swapping is required in MAO section
		 */
		memcpy(data->hw_addr, hw_addr, ETH_ALEN);
580

581 582 583 584 585 586
		/*
		 * Force the use of the OTP MAC address in case of reserved MAC
		 * address in the NVM, or if address is given but invalid.
		 */
		if (is_valid_ether_addr(data->hw_addr) &&
		    memcmp(reserved_mac, hw_addr, ETH_ALEN) != 0)
587
			return;
588

589 590
		IWL_ERR(trans,
			"mac address from nvm override section is not valid\n");
591 592
	}

593
	if (nvm_hw) {
594 595 596 597 598
		/* read the mac address from WFMP registers */
		__le32 mac_addr0 = cpu_to_le32(iwl_trans_read_prph(trans,
						WFMP_MAC_ADDR_0));
		__le32 mac_addr1 = cpu_to_le32(iwl_trans_read_prph(trans,
						WFMP_MAC_ADDR_1));
599 600

		iwl_flip_hw_address(mac_addr0, mac_addr1, data->hw_addr);
601

602 603
		return;
	}
604

605 606 607
	IWL_ERR(trans, "mac address is not found\n");
}

608 609 610 611
static int iwl_set_hw_address(struct iwl_trans *trans,
			      const struct iwl_cfg *cfg,
			      struct iwl_nvm_data *data, const __le16 *nvm_hw,
			      const __le16 *mac_override)
612
{
613 614 615
	if (cfg->mac_addr_from_csr) {
		iwl_set_hw_address_from_csr(trans, data);
	} else if (cfg->device_family != IWL_DEVICE_FAMILY_8000) {
616 617 618 619 620 621 622 623 624 625 626 627 628
		const u8 *hw_addr = (const u8 *)(nvm_hw + HW_ADDR);

		/* The byte order is little endian 16 bit, meaning 214365 */
		data->hw_addr[0] = hw_addr[1];
		data->hw_addr[1] = hw_addr[0];
		data->hw_addr[2] = hw_addr[3];
		data->hw_addr[3] = hw_addr[2];
		data->hw_addr[4] = hw_addr[5];
		data->hw_addr[5] = hw_addr[4];
	} else {
		iwl_set_hw_address_family_8000(trans, cfg, data,
					       mac_override, nvm_hw);
	}
629 630 631 632 633 634 635

	if (!is_valid_ether_addr(data->hw_addr)) {
		IWL_ERR(trans, "no valid mac address was found\n");
		return -EINVAL;
	}

	return 0;
636 637
}

638
struct iwl_nvm_data *
639
iwl_parse_nvm_data(struct iwl_trans *trans, const struct iwl_cfg *cfg,
640
		   const __le16 *nvm_hw, const __le16 *nvm_sw,
641
		   const __le16 *nvm_calib, const __le16 *regulatory,
642
		   const __le16 *mac_override, const __le16 *phy_sku,
643
		   u8 tx_chains, u8 rx_chains, bool lar_fw_supported)
644
{
645
	struct device *dev = trans->dev;
646
	struct iwl_nvm_data *data;
647 648
	bool lar_enabled;
	u32 sku, radio_cfg;
649
	u16 lar_config;
650
	const __le16 *ch_section;
651 652 653 654 655 656 657 658 659 660 661

	if (cfg->device_family != IWL_DEVICE_FAMILY_8000)
		data = kzalloc(sizeof(*data) +
			       sizeof(struct ieee80211_channel) *
			       IWL_NUM_CHANNELS,
			       GFP_KERNEL);
	else
		data = kzalloc(sizeof(*data) +
			       sizeof(struct ieee80211_channel) *
			       IWL_NUM_CHANNELS_FAMILY_8000,
			       GFP_KERNEL);
662 663 664
	if (!data)
		return NULL;

665
	data->nvm_version = iwl_get_nvm_version(cfg, nvm_sw);
666

667
	radio_cfg = iwl_get_radio_cfg(cfg, nvm_sw, phy_sku);
668
	iwl_set_radio_cfg(cfg, data, radio_cfg);
669 670 671 672
	if (data->valid_tx_ant)
		tx_chains &= data->valid_tx_ant;
	if (data->valid_rx_ant)
		rx_chains &= data->valid_rx_ant;
673

674
	sku = iwl_get_sku(cfg, nvm_sw, phy_sku);
675 676 677 678 679
	data->sku_cap_band_24GHz_enable = sku & NVM_SKU_CAP_BAND_24GHZ;
	data->sku_cap_band_52GHz_enable = sku & NVM_SKU_CAP_BAND_52GHZ;
	data->sku_cap_11n_enable = sku & NVM_SKU_CAP_11N_ENABLE;
	if (iwlwifi_mod_params.disable_11n & IWL_DISABLE_HT_ALL)
		data->sku_cap_11n_enable = false;
680 681
	data->sku_cap_11ac_enable = data->sku_cap_11n_enable &&
				    (sku & NVM_SKU_CAP_11AC_ENABLE);
682
	data->sku_cap_mimo_disabled = sku & NVM_SKU_CAP_MIMO_DISABLE;
683

684
	data->n_hw_addrs = iwl_get_n_hw_addrs(cfg, nvm_sw);
685

686 687 688
	if (cfg->device_family != IWL_DEVICE_FAMILY_8000) {
		/* Checking for required sections */
		if (!nvm_calib) {
689 690
			IWL_ERR(trans,
				"Can't parse empty Calib NVM sections\n");
691
			kfree(data);
692 693 694 695 696
			return NULL;
		}
		/* in family 8000 Xtal calibration values moved to OTP */
		data->xtal_calib[0] = *(nvm_calib + XTAL_CALIB);
		data->xtal_calib[1] = *(nvm_calib + XTAL_CALIB + 1);
697 698
		lar_enabled = true;
		ch_section = nvm_sw;
699
	} else {
700 701 702 703 704
		u16 lar_offset = data->nvm_version < 0xE39 ?
				 NVM_LAR_OFFSET_FAMILY_8000_OLD :
				 NVM_LAR_OFFSET_FAMILY_8000;

		lar_config = le16_to_cpup(regulatory + lar_offset);
705 706
		data->lar_enabled = !!(lar_config &
				       NVM_LAR_ENABLED_FAMILY_8000);
707 708
		lar_enabled = data->lar_enabled;
		ch_section = regulatory;
709
	}
710

711 712 713 714 715 716
	/* If no valid mac address was found - bail out */
	if (iwl_set_hw_address(trans, cfg, data, nvm_hw, mac_override)) {
		kfree(data);
		return NULL;
	}

717 718
	iwl_init_sbands(dev, cfg, data, ch_section, tx_chains, rx_chains,
			lar_fw_supported && lar_enabled);
719
	data->calib_version = 255;
720 721 722

	return data;
}
723
IWL_EXPORT_SYMBOL(iwl_parse_nvm_data);
724 725

static u32 iwl_nvm_get_regdom_bw_flags(const u8 *nvm_chan,
726 727
				       int ch_idx, u16 nvm_flags,
				       const struct iwl_cfg *cfg)
728 729
{
	u32 flags = NL80211_RRF_NO_HT40;
730 731 732 733
	u32 last_5ghz_ht = LAST_5GHZ_HT;

	if (cfg->device_family == IWL_DEVICE_FAMILY_8000)
		last_5ghz_ht = LAST_5GHZ_HT_FAMILY_8000;
734 735 736 737 738 739 740

	if (ch_idx < NUM_2GHZ_CHANNELS &&
	    (nvm_flags & NVM_CHANNEL_40MHZ)) {
		if (nvm_chan[ch_idx] <= LAST_2GHZ_HT_PLUS)
			flags &= ~NL80211_RRF_NO_HT40PLUS;
		if (nvm_chan[ch_idx] >= FIRST_2GHZ_HT_MINUS)
			flags &= ~NL80211_RRF_NO_HT40MINUS;
741
	} else if (nvm_chan[ch_idx] <= last_5ghz_ht &&
742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773
		   (nvm_flags & NVM_CHANNEL_40MHZ)) {
		if ((ch_idx - NUM_2GHZ_CHANNELS) % 2 == 0)
			flags &= ~NL80211_RRF_NO_HT40PLUS;
		else
			flags &= ~NL80211_RRF_NO_HT40MINUS;
	}

	if (!(nvm_flags & NVM_CHANNEL_80MHZ))
		flags |= NL80211_RRF_NO_80MHZ;
	if (!(nvm_flags & NVM_CHANNEL_160MHZ))
		flags |= NL80211_RRF_NO_160MHZ;

	if (!(nvm_flags & NVM_CHANNEL_ACTIVE))
		flags |= NL80211_RRF_NO_IR;

	if (nvm_flags & NVM_CHANNEL_RADAR)
		flags |= NL80211_RRF_DFS;

	if (nvm_flags & NVM_CHANNEL_INDOOR_ONLY)
		flags |= NL80211_RRF_NO_OUTDOOR;

	/* Set the GO concurrent flag only in case that NO_IR is set.
	 * Otherwise it is meaningless
	 */
	if ((nvm_flags & NVM_CHANNEL_GO_CONCURRENT) &&
	    (flags & NL80211_RRF_NO_IR))
		flags |= NL80211_RRF_GO_CONCURRENT;

	return flags;
}

struct ieee80211_regdomain *
774 775
iwl_parse_nvm_mcc_info(struct device *dev, const struct iwl_cfg *cfg,
		       int num_of_ch, __le32 *channels, u16 fw_mcc)
776 777 778
{
	int ch_idx;
	u16 ch_flags, prev_ch_flags = 0;
779 780
	const u8 *nvm_chan = cfg->device_family == IWL_DEVICE_FAMILY_8000 ?
			     iwl_nvm_channels_family_8000 : iwl_nvm_channels;
781 782 783
	struct ieee80211_regdomain *regd;
	int size_of_regd;
	struct ieee80211_reg_rule *rule;
784
	enum nl80211_band band;
785 786 787
	int center_freq, prev_center_freq = 0;
	int valid_rules = 0;
	bool new_rule;
788 789
	int max_num_ch = cfg->device_family == IWL_DEVICE_FAMILY_8000 ?
			 IWL_NUM_CHANNELS_FAMILY_8000 : IWL_NUM_CHANNELS;
790 791 792 793

	if (WARN_ON_ONCE(num_of_ch > NL80211_MAX_SUPP_REG_RULES))
		return ERR_PTR(-EINVAL);

794 795 796
	if (WARN_ON(num_of_ch > max_num_ch))
		num_of_ch = max_num_ch;

797 798 799 800 801 802 803 804 805 806 807 808 809 810 811
	IWL_DEBUG_DEV(dev, IWL_DL_LAR, "building regdom for %d channels\n",
		      num_of_ch);

	/* build a regdomain rule for every valid channel */
	size_of_regd =
		sizeof(struct ieee80211_regdomain) +
		num_of_ch * sizeof(struct ieee80211_reg_rule);

	regd = kzalloc(size_of_regd, GFP_KERNEL);
	if (!regd)
		return ERR_PTR(-ENOMEM);

	for (ch_idx = 0; ch_idx < num_of_ch; ch_idx++) {
		ch_flags = (u16)__le32_to_cpup(channels + ch_idx);
		band = (ch_idx < NUM_2GHZ_CHANNELS) ?
812
		       NL80211_BAND_2GHZ : NL80211_BAND_5GHZ;
813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843
		center_freq = ieee80211_channel_to_frequency(nvm_chan[ch_idx],
							     band);
		new_rule = false;

		if (!(ch_flags & NVM_CHANNEL_VALID)) {
			IWL_DEBUG_DEV(dev, IWL_DL_LAR,
				      "Ch. %d Flags %x [%sGHz] - No traffic\n",
				      nvm_chan[ch_idx],
				      ch_flags,
				      (ch_idx >= NUM_2GHZ_CHANNELS) ?
				      "5.2" : "2.4");
			continue;
		}

		/* we can't continue the same rule */
		if (ch_idx == 0 || prev_ch_flags != ch_flags ||
		    center_freq - prev_center_freq > 20) {
			valid_rules++;
			new_rule = true;
		}

		rule = &regd->reg_rules[valid_rules - 1];

		if (new_rule)
			rule->freq_range.start_freq_khz =
						MHZ_TO_KHZ(center_freq - 10);

		rule->freq_range.end_freq_khz = MHZ_TO_KHZ(center_freq + 10);

		/* this doesn't matter - not used by FW */
		rule->power_rule.max_antenna_gain = DBI_TO_MBI(6);
844 845
		rule->power_rule.max_eirp =
			DBM_TO_MBM(IWL_DEFAULT_MAX_TX_POWER);
846 847

		rule->flags = iwl_nvm_get_regdom_bw_flags(nvm_chan, ch_idx,
848
							  ch_flags, cfg);
849 850 851 852 853 854 855 856 857

		/* rely on auto-calculation to merge BW of contiguous chans */
		rule->flags |= NL80211_RRF_AUTO_BW;
		rule->freq_range.max_bandwidth_khz = 0;

		prev_ch_flags = ch_flags;
		prev_center_freq = center_freq;

		IWL_DEBUG_DEV(dev, IWL_DL_LAR,
858
			      "Ch. %d [%sGHz] %s%s%s%s%s%s%s%s%s(0x%02x): Ad-Hoc %ssupported\n",
859
			      center_freq,
860
			      band == NL80211_BAND_5GHZ ? "5.2" : "2.4",
861 862 863 864 865 866 867 868 869 870
			      CHECK_AND_PRINT_I(VALID),
			      CHECK_AND_PRINT_I(ACTIVE),
			      CHECK_AND_PRINT_I(RADAR),
			      CHECK_AND_PRINT_I(WIDE),
			      CHECK_AND_PRINT_I(40MHZ),
			      CHECK_AND_PRINT_I(80MHZ),
			      CHECK_AND_PRINT_I(160MHZ),
			      CHECK_AND_PRINT_I(INDOOR_ONLY),
			      CHECK_AND_PRINT_I(GO_CONCURRENT),
			      ch_flags,
871
			      ((ch_flags & NVM_CHANNEL_ACTIVE) &&
872 873 874 875 876 877 878 879 880 881 882 883 884
			       !(ch_flags & NVM_CHANNEL_RADAR))
					 ? "" : "not ");
	}

	regd->n_reg_rules = valid_rules;

	/* set alpha2 from FW. */
	regd->alpha2[0] = fw_mcc >> 8;
	regd->alpha2[1] = fw_mcc & 0xff;

	return regd;
}
IWL_EXPORT_SYMBOL(iwl_parse_nvm_mcc_info);