iwl-nvm-parse.c 27.9 KB
Newer Older
1 2 3 4 5 6 7
/******************************************************************************
 *
 * This file is provided under a dual BSD/GPLv2 license.  When using or
 * redistributing this file, you may do so under either license.
 *
 * GPL LICENSE SUMMARY
 *
8
 * Copyright(c) 2008 - 2014 Intel Corporation. All rights reserved.
9
 * Copyright(c) 2013 - 2015 Intel Mobile Communications GmbH
10
 * Copyright(c) 2016 Intel Deutschland GmbH
11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of version 2 of the GNU General Public License as
 * published by the Free Software Foundation.
 *
 * This program is distributed in the hope that it will be useful, but
 * WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110,
 * USA
 *
 * The full GNU General Public License is included in this distribution
27
 * in the file called COPYING.
28 29
 *
 * Contact Information:
30
 *  Intel Linux Wireless <linuxwifi@intel.com>
31 32 33 34
 * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
 *
 * BSD LICENSE
 *
35
 * Copyright(c) 2005 - 2014 Intel Corporation. All rights reserved.
36
 * Copyright(c) 2013 - 2015 Intel Mobile Communications GmbH
37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67
 * All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 *
 *  * Redistributions of source code must retain the above copyright
 *    notice, this list of conditions and the following disclaimer.
 *  * Redistributions in binary form must reproduce the above copyright
 *    notice, this list of conditions and the following disclaimer in
 *    the documentation and/or other materials provided with the
 *    distribution.
 *  * Neither the name Intel Corporation nor the names of its
 *    contributors may be used to endorse or promote products derived
 *    from this software without specific prior written permission.
 *
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 *****************************************************************************/
#include <linux/types.h>
#include <linux/slab.h>
#include <linux/export.h>
68
#include <linux/etherdevice.h>
69
#include <linux/pci.h>
70
#include "iwl-drv.h"
71 72
#include "iwl-modparams.h"
#include "iwl-nvm-parse.h"
73
#include "iwl-prph.h"
74 75
#include "iwl-io.h"
#include "iwl-csr.h"
76 77 78 79 80 81

/* NVM offsets (in words) definitions */
enum wkp_nvm_offsets {
	/* NVM HW-Section offset (in words) definitions */
	HW_ADDR = 0x15,

82
	/* NVM SW-Section offset (in words) definitions */
83 84 85 86 87 88 89
	NVM_SW_SECTION = 0x1C0,
	NVM_VERSION = 0,
	RADIO_CFG = 1,
	SKU = 2,
	N_HW_ADDRS = 3,
	NVM_CHANNELS = 0x1E0 - NVM_SW_SECTION,

90
	/* NVM calibration section offset (in words) definitions */
91 92 93 94
	NVM_CALIB_SECTION = 0x2B8,
	XTAL_CALIB = 0x316 - NVM_CALIB_SECTION
};

95 96
enum family_8000_nvm_offsets {
	/* NVM HW-Section offset (in words) definitions */
97 98 99 100
	HW_ADDR0_WFPM_FAMILY_8000 = 0x12,
	HW_ADDR1_WFPM_FAMILY_8000 = 0x16,
	HW_ADDR0_PCIE_FAMILY_8000 = 0x8A,
	HW_ADDR1_PCIE_FAMILY_8000 = 0x8E,
101 102 103 104 105
	MAC_ADDRESS_OVERRIDE_FAMILY_8000 = 1,

	/* NVM SW-Section offset (in words) definitions */
	NVM_SW_SECTION_FAMILY_8000 = 0x1C0,
	NVM_VERSION_FAMILY_8000 = 0,
106 107 108
	RADIO_CFG_FAMILY_8000 = 0,
	SKU_FAMILY_8000 = 2,
	N_HW_ADDRS_FAMILY_8000 = 3,
109

110 111
	/* NVM REGULATORY -Section offset (in words) definitions */
	NVM_CHANNELS_FAMILY_8000 = 0,
112 113
	NVM_LAR_OFFSET_FAMILY_8000_OLD = 0x4C7,
	NVM_LAR_OFFSET_FAMILY_8000 = 0x507,
114
	NVM_LAR_ENABLED_FAMILY_8000 = 0x7,
115 116 117 118 119 120

	/* NVM calibration section offset (in words) definitions */
	NVM_CALIB_SECTION_FAMILY_8000 = 0x2B8,
	XTAL_CALIB_FAMILY_8000 = 0x316 - NVM_CALIB_SECTION_FAMILY_8000
};

121 122
/* SKU Capabilities (actual values from NVM definition) */
enum nvm_sku_bits {
123 124 125 126 127
	NVM_SKU_CAP_BAND_24GHZ		= BIT(0),
	NVM_SKU_CAP_BAND_52GHZ		= BIT(1),
	NVM_SKU_CAP_11N_ENABLE		= BIT(2),
	NVM_SKU_CAP_11AC_ENABLE		= BIT(3),
	NVM_SKU_CAP_MIMO_DISABLE	= BIT(5),
128 129 130 131 132 133 134 135 136 137 138 139 140 141
};

/*
 * These are the channel numbers in the order that they are stored in the NVM
 */
static const u8 iwl_nvm_channels[] = {
	/* 2.4 GHz */
	1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14,
	/* 5 GHz */
	36, 40, 44 , 48, 52, 56, 60, 64,
	100, 104, 108, 112, 116, 120, 124, 128, 132, 136, 140, 144,
	149, 153, 157, 161, 165
};

142 143
static const u8 iwl_nvm_channels_family_8000[] = {
	/* 2.4 GHz */
144
	1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14,
145 146 147 148 149 150
	/* 5 GHz */
	36, 40, 44, 48, 52, 56, 60, 64, 68, 72, 76, 80, 84, 88, 92,
	96, 100, 104, 108, 112, 116, 120, 124, 128, 132, 136, 140, 144,
	149, 153, 157, 161, 165, 169, 173, 177, 181
};

151
#define IWL_NUM_CHANNELS		ARRAY_SIZE(iwl_nvm_channels)
152
#define IWL_NUM_CHANNELS_FAMILY_8000	ARRAY_SIZE(iwl_nvm_channels_family_8000)
153
#define NUM_2GHZ_CHANNELS		14
154
#define NUM_2GHZ_CHANNELS_FAMILY_8000	14
155 156
#define FIRST_2GHZ_HT_MINUS		5
#define LAST_2GHZ_HT_PLUS		9
157 158
#define LAST_5GHZ_HT			165
#define LAST_5GHZ_HT_FAMILY_8000	181
159
#define N_HW_ADDR_MASK			0xF
160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189

/* rate data (static) */
static struct ieee80211_rate iwl_cfg80211_rates[] = {
	{ .bitrate = 1 * 10, .hw_value = 0, .hw_value_short = 0, },
	{ .bitrate = 2 * 10, .hw_value = 1, .hw_value_short = 1,
	  .flags = IEEE80211_RATE_SHORT_PREAMBLE, },
	{ .bitrate = 5.5 * 10, .hw_value = 2, .hw_value_short = 2,
	  .flags = IEEE80211_RATE_SHORT_PREAMBLE, },
	{ .bitrate = 11 * 10, .hw_value = 3, .hw_value_short = 3,
	  .flags = IEEE80211_RATE_SHORT_PREAMBLE, },
	{ .bitrate = 6 * 10, .hw_value = 4, .hw_value_short = 4, },
	{ .bitrate = 9 * 10, .hw_value = 5, .hw_value_short = 5, },
	{ .bitrate = 12 * 10, .hw_value = 6, .hw_value_short = 6, },
	{ .bitrate = 18 * 10, .hw_value = 7, .hw_value_short = 7, },
	{ .bitrate = 24 * 10, .hw_value = 8, .hw_value_short = 8, },
	{ .bitrate = 36 * 10, .hw_value = 9, .hw_value_short = 9, },
	{ .bitrate = 48 * 10, .hw_value = 10, .hw_value_short = 10, },
	{ .bitrate = 54 * 10, .hw_value = 11, .hw_value_short = 11, },
};
#define RATES_24_OFFS	0
#define N_RATES_24	ARRAY_SIZE(iwl_cfg80211_rates)
#define RATES_52_OFFS	4
#define N_RATES_52	(N_RATES_24 - RATES_52_OFFS)

/**
 * enum iwl_nvm_channel_flags - channel flags in NVM
 * @NVM_CHANNEL_VALID: channel is usable for this SKU/geo
 * @NVM_CHANNEL_IBSS: usable as an IBSS channel
 * @NVM_CHANNEL_ACTIVE: active scanning allowed
 * @NVM_CHANNEL_RADAR: radar detection required
190 191 192
 * @NVM_CHANNEL_INDOOR_ONLY: only indoor use is allowed
 * @NVM_CHANNEL_GO_CONCURRENT: GO operation is allowed when connected to BSS
 *	on same channel on 2.4 or same UNII band on 5.2
193 194
 * @NVM_CHANNEL_WIDE: 20 MHz channel okay (?)
 * @NVM_CHANNEL_40MHZ: 40 MHz channel okay (?)
195 196
 * @NVM_CHANNEL_80MHZ: 80 MHz channel okay (?)
 * @NVM_CHANNEL_160MHZ: 160 MHz channel okay (?)
197 198 199 200 201 202
 */
enum iwl_nvm_channel_flags {
	NVM_CHANNEL_VALID = BIT(0),
	NVM_CHANNEL_IBSS = BIT(1),
	NVM_CHANNEL_ACTIVE = BIT(3),
	NVM_CHANNEL_RADAR = BIT(4),
203 204
	NVM_CHANNEL_INDOOR_ONLY = BIT(5),
	NVM_CHANNEL_GO_CONCURRENT = BIT(6),
205 206
	NVM_CHANNEL_WIDE = BIT(8),
	NVM_CHANNEL_40MHZ = BIT(9),
207 208
	NVM_CHANNEL_80MHZ = BIT(10),
	NVM_CHANNEL_160MHZ = BIT(11),
209 210 211 212 213
};

#define CHECK_AND_PRINT_I(x)	\
	((ch_flags & NVM_CHANNEL_##x) ? # x " " : "")

214
static u32 iwl_get_channel_flags(u8 ch_num, int ch_idx, bool is_5ghz,
215
				 u16 nvm_flags, const struct iwl_cfg *cfg)
216 217
{
	u32 flags = IEEE80211_CHAN_NO_HT40;
218 219 220 221
	u32 last_5ghz_ht = LAST_5GHZ_HT;

	if (cfg->device_family == IWL_DEVICE_FAMILY_8000)
		last_5ghz_ht = LAST_5GHZ_HT_FAMILY_8000;
222 223 224 225 226 227

	if (!is_5ghz && (nvm_flags & NVM_CHANNEL_40MHZ)) {
		if (ch_num <= LAST_2GHZ_HT_PLUS)
			flags &= ~IEEE80211_CHAN_NO_HT40PLUS;
		if (ch_num >= FIRST_2GHZ_HT_MINUS)
			flags &= ~IEEE80211_CHAN_NO_HT40MINUS;
228
	} else if (ch_num <= last_5ghz_ht && (nvm_flags & NVM_CHANNEL_40MHZ)) {
229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255
		if ((ch_idx - NUM_2GHZ_CHANNELS) % 2 == 0)
			flags &= ~IEEE80211_CHAN_NO_HT40PLUS;
		else
			flags &= ~IEEE80211_CHAN_NO_HT40MINUS;
	}
	if (!(nvm_flags & NVM_CHANNEL_80MHZ))
		flags |= IEEE80211_CHAN_NO_80MHZ;
	if (!(nvm_flags & NVM_CHANNEL_160MHZ))
		flags |= IEEE80211_CHAN_NO_160MHZ;

	if (!(nvm_flags & NVM_CHANNEL_IBSS))
		flags |= IEEE80211_CHAN_NO_IR;

	if (!(nvm_flags & NVM_CHANNEL_ACTIVE))
		flags |= IEEE80211_CHAN_NO_IR;

	if (nvm_flags & NVM_CHANNEL_RADAR)
		flags |= IEEE80211_CHAN_RADAR;

	if (nvm_flags & NVM_CHANNEL_INDOOR_ONLY)
		flags |= IEEE80211_CHAN_INDOOR_ONLY;

	/* Set the GO concurrent flag only in case that NO_IR is set.
	 * Otherwise it is meaningless
	 */
	if ((nvm_flags & NVM_CHANNEL_GO_CONCURRENT) &&
	    (flags & IEEE80211_CHAN_NO_IR))
256
		flags |= IEEE80211_CHAN_IR_CONCURRENT;
257 258 259 260

	return flags;
}

261 262
static int iwl_init_channel_map(struct device *dev, const struct iwl_cfg *cfg,
				struct iwl_nvm_data *data,
263 264
				const __le16 * const nvm_ch_flags,
				bool lar_supported)
265 266 267 268 269 270
{
	int ch_idx;
	int n_channels = 0;
	struct ieee80211_channel *channel;
	u16 ch_flags;
	bool is_5ghz;
271
	int num_of_ch, num_2ghz_channels;
272 273 274 275 276
	const u8 *nvm_chan;

	if (cfg->device_family != IWL_DEVICE_FAMILY_8000) {
		num_of_ch = IWL_NUM_CHANNELS;
		nvm_chan = &iwl_nvm_channels[0];
277
		num_2ghz_channels = NUM_2GHZ_CHANNELS;
278 279 280
	} else {
		num_of_ch = IWL_NUM_CHANNELS_FAMILY_8000;
		nvm_chan = &iwl_nvm_channels_family_8000[0];
281
		num_2ghz_channels = NUM_2GHZ_CHANNELS_FAMILY_8000;
282
	}
283

284
	for (ch_idx = 0; ch_idx < num_of_ch; ch_idx++) {
285
		ch_flags = __le16_to_cpup(nvm_ch_flags + ch_idx);
286

287
		if (ch_idx >= num_2ghz_channels &&
288
		    !data->sku_cap_band_52GHz_enable)
289
			continue;
290

291 292 293
		if (ch_flags & NVM_CHANNEL_160MHZ)
			data->vht160_supported = true;

294
		if (!lar_supported && !(ch_flags & NVM_CHANNEL_VALID)) {
295 296 297 298 299
			/*
			 * Channels might become valid later if lar is
			 * supported, hence we still want to add them to
			 * the list of supported channels to cfg80211.
			 */
300 301
			IWL_DEBUG_EEPROM(dev,
					 "Ch. %d Flags %x [%sGHz] - No traffic\n",
302
					 nvm_chan[ch_idx],
303
					 ch_flags,
304
					 (ch_idx >= num_2ghz_channels) ?
305 306 307 308 309 310 311
					 "5.2" : "2.4");
			continue;
		}

		channel = &data->channels[n_channels];
		n_channels++;

312
		channel->hw_value = nvm_chan[ch_idx];
313
		channel->band = (ch_idx < num_2ghz_channels) ?
314
				NL80211_BAND_2GHZ : NL80211_BAND_5GHZ;
315 316 317 318 319 320
		channel->center_freq =
			ieee80211_channel_to_frequency(
				channel->hw_value, channel->band);

		/* Initialize regulatory-based run-time data */

321 322 323 324
		/*
		 * Default value - highest tx power value.  max_power
		 * is not used in mvm, and is used for backwards compatibility
		 */
325
		channel->max_power = IWL_DEFAULT_MAX_TX_POWER;
326
		is_5ghz = channel->band == NL80211_BAND_5GHZ;
327 328 329 330 331

		/* don't put limitations in case we're using LAR */
		if (!lar_supported)
			channel->flags = iwl_get_channel_flags(nvm_chan[ch_idx],
							       ch_idx, is_5ghz,
332
							       ch_flags, cfg);
333 334 335
		else
			channel->flags = 0;

336
		IWL_DEBUG_EEPROM(dev,
337
				 "Ch. %d [%sGHz] flags 0x%x %s%s%s%s%s%s%s%s%s%s(%ddBm): Ad-Hoc %ssupported\n",
338 339
				 channel->hw_value,
				 is_5ghz ? "5.2" : "2.4",
340
				 ch_flags,
341 342 343 344
				 CHECK_AND_PRINT_I(VALID),
				 CHECK_AND_PRINT_I(IBSS),
				 CHECK_AND_PRINT_I(ACTIVE),
				 CHECK_AND_PRINT_I(RADAR),
345 346
				 CHECK_AND_PRINT_I(INDOOR_ONLY),
				 CHECK_AND_PRINT_I(GO_CONCURRENT),
347 348 349 350
				 CHECK_AND_PRINT_I(WIDE),
				 CHECK_AND_PRINT_I(40MHZ),
				 CHECK_AND_PRINT_I(80MHZ),
				 CHECK_AND_PRINT_I(160MHZ),
351 352 353 354 355 356 357 358 359
				 channel->max_power,
				 ((ch_flags & NVM_CHANNEL_IBSS) &&
				  !(ch_flags & NVM_CHANNEL_RADAR))
					? "" : "not ");
	}

	return n_channels;
}

360 361
static void iwl_init_vht_hw_capab(const struct iwl_cfg *cfg,
				  struct iwl_nvm_data *data,
362 363
				  struct ieee80211_sta_vht_cap *vht_cap,
				  u8 tx_chains, u8 rx_chains)
364
{
365 366
	int num_rx_ants = num_of_ant(rx_chains);
	int num_tx_ants = num_of_ant(tx_chains);
367 368
	unsigned int max_ampdu_exponent = (cfg->max_vht_ampdu_exponent ?:
					   IEEE80211_VHT_MAX_AMPDU_1024K);
369

370 371 372 373 374
	vht_cap->vht_supported = true;

	vht_cap->cap = IEEE80211_VHT_CAP_SHORT_GI_80 |
		       IEEE80211_VHT_CAP_RXSTBC_1 |
		       IEEE80211_VHT_CAP_SU_BEAMFORMEE_CAPABLE |
375
		       3 << IEEE80211_VHT_CAP_BEAMFORMEE_STS_SHIFT |
376 377
		       max_ampdu_exponent <<
		       IEEE80211_VHT_CAP_MAX_A_MPDU_LENGTH_EXPONENT_SHIFT;
378

379
	if (data->vht160_supported)
380 381
		vht_cap->cap |= IEEE80211_VHT_CAP_SUPP_CHAN_WIDTH_160MHZ |
				IEEE80211_VHT_CAP_SHORT_GI_160;
382

383 384 385
	if (cfg->vht_mu_mimo_supported)
		vht_cap->cap |= IEEE80211_VHT_CAP_MU_BEAMFORMEE_CAPABLE;

E
Eyal Shapira 已提交
386 387 388
	if (cfg->ht_params->ldpc)
		vht_cap->cap |= IEEE80211_VHT_CAP_RXLDPC;

389 390 391 392 393
	if (data->sku_cap_mimo_disabled) {
		num_rx_ants = 1;
		num_tx_ants = 1;
	}

394
	if (num_tx_ants > 1)
395
		vht_cap->cap |= IEEE80211_VHT_CAP_TXSTBC;
396 397
	else
		vht_cap->cap |= IEEE80211_VHT_CAP_TX_ANTENNA_PATTERN;
398

399
	switch (iwlwifi_mod_params.amsdu_size) {
400 401 402 403 404 405 406
	case IWL_AMSDU_DEF:
		if (cfg->mq_rx_supported)
			vht_cap->cap |=
				IEEE80211_VHT_CAP_MAX_MPDU_LENGTH_11454;
		else
			vht_cap->cap |= IEEE80211_VHT_CAP_MAX_MPDU_LENGTH_3895;
		break;
407 408 409 410
	case IWL_AMSDU_4K:
		vht_cap->cap |= IEEE80211_VHT_CAP_MAX_MPDU_LENGTH_3895;
		break;
	case IWL_AMSDU_8K:
411
		vht_cap->cap |= IEEE80211_VHT_CAP_MAX_MPDU_LENGTH_7991;
412 413 414 415 416 417 418
		break;
	case IWL_AMSDU_12K:
		vht_cap->cap |= IEEE80211_VHT_CAP_MAX_MPDU_LENGTH_11454;
		break;
	default:
		break;
	}
419 420 421 422 423 424 425 426 427 428 429

	vht_cap->vht_mcs.rx_mcs_map =
		cpu_to_le16(IEEE80211_VHT_MCS_SUPPORT_0_9 << 0 |
			    IEEE80211_VHT_MCS_SUPPORT_0_9 << 2 |
			    IEEE80211_VHT_MCS_NOT_SUPPORTED << 4 |
			    IEEE80211_VHT_MCS_NOT_SUPPORTED << 6 |
			    IEEE80211_VHT_MCS_NOT_SUPPORTED << 8 |
			    IEEE80211_VHT_MCS_NOT_SUPPORTED << 10 |
			    IEEE80211_VHT_MCS_NOT_SUPPORTED << 12 |
			    IEEE80211_VHT_MCS_NOT_SUPPORTED << 14);

430 431
	if (num_rx_ants == 1 || cfg->rx_with_siso_diversity) {
		vht_cap->cap |= IEEE80211_VHT_CAP_RX_ANTENNA_PATTERN;
432 433 434 435 436 437 438 439
		/* this works because NOT_SUPPORTED == 3 */
		vht_cap->vht_mcs.rx_mcs_map |=
			cpu_to_le16(IEEE80211_VHT_MCS_NOT_SUPPORTED << 2);
	}

	vht_cap->vht_mcs.tx_mcs_map = vht_cap->vht_mcs.rx_mcs_map;
}

440
static void iwl_init_sbands(struct device *dev, const struct iwl_cfg *cfg,
441
			    struct iwl_nvm_data *data,
442
			    const __le16 *ch_section,
443
			    u8 tx_chains, u8 rx_chains, bool lar_supported)
444
{
445
	int n_channels;
446 447 448
	int n_used = 0;
	struct ieee80211_supported_band *sband;

449 450 451
	if (cfg->device_family != IWL_DEVICE_FAMILY_8000)
		n_channels = iwl_init_channel_map(
				dev, cfg, data,
452
				&ch_section[NVM_CHANNELS], lar_supported);
453 454 455
	else
		n_channels = iwl_init_channel_map(
				dev, cfg, data,
456 457
				&ch_section[NVM_CHANNELS_FAMILY_8000],
				lar_supported);
458

459 460
	sband = &data->bands[NL80211_BAND_2GHZ];
	sband->band = NL80211_BAND_2GHZ;
461 462 463
	sband->bitrates = &iwl_cfg80211_rates[RATES_24_OFFS];
	sband->n_bitrates = N_RATES_24;
	n_used += iwl_init_sband_channels(data, sband, n_channels,
464 465
					  NL80211_BAND_2GHZ);
	iwl_init_ht_hw_capab(cfg, data, &sband->ht_cap, NL80211_BAND_2GHZ,
466
			     tx_chains, rx_chains);
467

468 469
	sband = &data->bands[NL80211_BAND_5GHZ];
	sband->band = NL80211_BAND_5GHZ;
470 471 472
	sband->bitrates = &iwl_cfg80211_rates[RATES_52_OFFS];
	sband->n_bitrates = N_RATES_52;
	n_used += iwl_init_sband_channels(data, sband, n_channels,
473 474
					  NL80211_BAND_5GHZ);
	iwl_init_ht_hw_capab(cfg, data, &sband->ht_cap, NL80211_BAND_5GHZ,
475
			     tx_chains, rx_chains);
476
	if (data->sku_cap_11ac_enable && !iwlwifi_mod_params.disable_11ac)
477 478
		iwl_init_vht_hw_capab(cfg, data, &sband->vht_cap,
				      tx_chains, rx_chains);
479 480 481 482 483 484

	if (n_channels != n_used)
		IWL_ERR_DEV(dev, "NVM: used only %d of %d channels\n",
			    n_used, n_channels);
}

485 486
static int iwl_get_sku(const struct iwl_cfg *cfg, const __le16 *nvm_sw,
		       const __le16 *phy_sku)
487 488 489
{
	if (cfg->device_family != IWL_DEVICE_FAMILY_8000)
		return le16_to_cpup(nvm_sw + SKU);
490

491
	return le32_to_cpup((__le32 *)(phy_sku + SKU_FAMILY_8000));
492 493
}

494
static int iwl_get_nvm_version(const struct iwl_cfg *cfg, const __le16 *nvm_sw)
495 496 497 498 499 500 501 502
{
	if (cfg->device_family != IWL_DEVICE_FAMILY_8000)
		return le16_to_cpup(nvm_sw + NVM_VERSION);
	else
		return le32_to_cpup((__le32 *)(nvm_sw +
					       NVM_VERSION_FAMILY_8000));
}

503 504
static int iwl_get_radio_cfg(const struct iwl_cfg *cfg, const __le16 *nvm_sw,
			     const __le16 *phy_sku)
505 506 507
{
	if (cfg->device_family != IWL_DEVICE_FAMILY_8000)
		return le16_to_cpup(nvm_sw + RADIO_CFG);
508

509
	return le32_to_cpup((__le32 *)(phy_sku + RADIO_CFG_FAMILY_8000));
510

511 512
}

513
static int iwl_get_n_hw_addrs(const struct iwl_cfg *cfg, const __le16 *nvm_sw)
514
{
515 516
	int n_hw_addr;

517 518
	if (cfg->device_family != IWL_DEVICE_FAMILY_8000)
		return le16_to_cpup(nvm_sw + N_HW_ADDRS);
519

520
	n_hw_addr = le32_to_cpup((__le32 *)(nvm_sw + N_HW_ADDRS_FAMILY_8000));
521 522

	return n_hw_addr & N_HW_ADDR_MASK;
523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541
}

static void iwl_set_radio_cfg(const struct iwl_cfg *cfg,
			      struct iwl_nvm_data *data,
			      u32 radio_cfg)
{
	if (cfg->device_family != IWL_DEVICE_FAMILY_8000) {
		data->radio_cfg_type = NVM_RF_CFG_TYPE_MSK(radio_cfg);
		data->radio_cfg_step = NVM_RF_CFG_STEP_MSK(radio_cfg);
		data->radio_cfg_dash = NVM_RF_CFG_DASH_MSK(radio_cfg);
		data->radio_cfg_pnum = NVM_RF_CFG_PNUM_MSK(radio_cfg);
		return;
	}

	/* set the radio configuration for family 8000 */
	data->radio_cfg_type = NVM_RF_CFG_TYPE_MSK_FAMILY_8000(radio_cfg);
	data->radio_cfg_step = NVM_RF_CFG_STEP_MSK_FAMILY_8000(radio_cfg);
	data->radio_cfg_dash = NVM_RF_CFG_DASH_MSK_FAMILY_8000(radio_cfg);
	data->radio_cfg_pnum = NVM_RF_CFG_FLAVOR_MSK_FAMILY_8000(radio_cfg);
542 543
	data->valid_tx_ant = NVM_RF_CFG_TX_ANT_MSK_FAMILY_8000(radio_cfg);
	data->valid_rx_ant = NVM_RF_CFG_RX_ANT_MSK_FAMILY_8000(radio_cfg);
544 545
}

546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575
static void iwl_flip_hw_address(__le32 mac_addr0, __le32 mac_addr1, u8 *dest)
{
	const u8 *hw_addr;

	hw_addr = (const u8 *)&mac_addr0;
	dest[0] = hw_addr[3];
	dest[1] = hw_addr[2];
	dest[2] = hw_addr[1];
	dest[3] = hw_addr[0];

	hw_addr = (const u8 *)&mac_addr1;
	dest[4] = hw_addr[1];
	dest[5] = hw_addr[0];
}

static void iwl_set_hw_address_from_csr(struct iwl_trans *trans,
					struct iwl_nvm_data *data)
{
	__le32 mac_addr0 = cpu_to_le32(iwl_read32(trans, CSR_MAC_ADDR0_STRAP));
	__le32 mac_addr1 = cpu_to_le32(iwl_read32(trans, CSR_MAC_ADDR1_STRAP));

	/* If OEM did not fuse address - get it from OTP */
	if (!mac_addr0 && !mac_addr1) {
		mac_addr0 = cpu_to_le32(iwl_read32(trans, CSR_MAC_ADDR0_OTP));
		mac_addr1 = cpu_to_le32(iwl_read32(trans, CSR_MAC_ADDR1_OTP));
	}

	iwl_flip_hw_address(mac_addr0, mac_addr1, data->hw_addr);
}

576
static void iwl_set_hw_address_family_8000(struct iwl_trans *trans,
577
					   const struct iwl_cfg *cfg,
578 579
					   struct iwl_nvm_data *data,
					   const __le16 *mac_override,
580
					   const __le16 *nvm_hw)
581 582 583 584
{
	const u8 *hw_addr;

	if (mac_override) {
585 586 587 588
		static const u8 reserved_mac[] = {
			0x02, 0xcc, 0xaa, 0xff, 0xee, 0x00
		};

589 590 591
		hw_addr = (const u8 *)(mac_override +
				 MAC_ADDRESS_OVERRIDE_FAMILY_8000);

592 593 594 595 596
		/*
		 * Store the MAC address from MAO section.
		 * No byte swapping is required in MAO section
		 */
		memcpy(data->hw_addr, hw_addr, ETH_ALEN);
597

598 599 600 601 602 603
		/*
		 * Force the use of the OTP MAC address in case of reserved MAC
		 * address in the NVM, or if address is given but invalid.
		 */
		if (is_valid_ether_addr(data->hw_addr) &&
		    memcmp(reserved_mac, hw_addr, ETH_ALEN) != 0)
604
			return;
605

606 607
		IWL_ERR(trans,
			"mac address from nvm override section is not valid\n");
608 609
	}

610
	if (nvm_hw) {
611 612 613 614 615
		/* read the mac address from WFMP registers */
		__le32 mac_addr0 = cpu_to_le32(iwl_trans_read_prph(trans,
						WFMP_MAC_ADDR_0));
		__le32 mac_addr1 = cpu_to_le32(iwl_trans_read_prph(trans,
						WFMP_MAC_ADDR_1));
616 617

		iwl_flip_hw_address(mac_addr0, mac_addr1, data->hw_addr);
618

619 620
		return;
	}
621

622 623 624
	IWL_ERR(trans, "mac address is not found\n");
}

625 626 627 628
static int iwl_set_hw_address(struct iwl_trans *trans,
			      const struct iwl_cfg *cfg,
			      struct iwl_nvm_data *data, const __le16 *nvm_hw,
			      const __le16 *mac_override)
629
{
630 631 632
	if (cfg->mac_addr_from_csr) {
		iwl_set_hw_address_from_csr(trans, data);
	} else if (cfg->device_family != IWL_DEVICE_FAMILY_8000) {
633 634 635 636 637 638 639 640 641 642 643 644 645
		const u8 *hw_addr = (const u8 *)(nvm_hw + HW_ADDR);

		/* The byte order is little endian 16 bit, meaning 214365 */
		data->hw_addr[0] = hw_addr[1];
		data->hw_addr[1] = hw_addr[0];
		data->hw_addr[2] = hw_addr[3];
		data->hw_addr[3] = hw_addr[2];
		data->hw_addr[4] = hw_addr[5];
		data->hw_addr[5] = hw_addr[4];
	} else {
		iwl_set_hw_address_family_8000(trans, cfg, data,
					       mac_override, nvm_hw);
	}
646 647 648 649 650 651 652

	if (!is_valid_ether_addr(data->hw_addr)) {
		IWL_ERR(trans, "no valid mac address was found\n");
		return -EINVAL;
	}

	return 0;
653 654
}

655
struct iwl_nvm_data *
656
iwl_parse_nvm_data(struct iwl_trans *trans, const struct iwl_cfg *cfg,
657
		   const __le16 *nvm_hw, const __le16 *nvm_sw,
658
		   const __le16 *nvm_calib, const __le16 *regulatory,
659
		   const __le16 *mac_override, const __le16 *phy_sku,
660
		   u8 tx_chains, u8 rx_chains, bool lar_fw_supported)
661
{
662
	struct device *dev = trans->dev;
663
	struct iwl_nvm_data *data;
664 665
	bool lar_enabled;
	u32 sku, radio_cfg;
666
	u16 lar_config;
667
	const __le16 *ch_section;
668 669 670 671 672 673 674 675 676 677 678

	if (cfg->device_family != IWL_DEVICE_FAMILY_8000)
		data = kzalloc(sizeof(*data) +
			       sizeof(struct ieee80211_channel) *
			       IWL_NUM_CHANNELS,
			       GFP_KERNEL);
	else
		data = kzalloc(sizeof(*data) +
			       sizeof(struct ieee80211_channel) *
			       IWL_NUM_CHANNELS_FAMILY_8000,
			       GFP_KERNEL);
679 680 681
	if (!data)
		return NULL;

682
	data->nvm_version = iwl_get_nvm_version(cfg, nvm_sw);
683

684
	radio_cfg = iwl_get_radio_cfg(cfg, nvm_sw, phy_sku);
685
	iwl_set_radio_cfg(cfg, data, radio_cfg);
686 687 688 689
	if (data->valid_tx_ant)
		tx_chains &= data->valid_tx_ant;
	if (data->valid_rx_ant)
		rx_chains &= data->valid_rx_ant;
690

691
	sku = iwl_get_sku(cfg, nvm_sw, phy_sku);
692 693 694 695 696
	data->sku_cap_band_24GHz_enable = sku & NVM_SKU_CAP_BAND_24GHZ;
	data->sku_cap_band_52GHz_enable = sku & NVM_SKU_CAP_BAND_52GHZ;
	data->sku_cap_11n_enable = sku & NVM_SKU_CAP_11N_ENABLE;
	if (iwlwifi_mod_params.disable_11n & IWL_DISABLE_HT_ALL)
		data->sku_cap_11n_enable = false;
697 698
	data->sku_cap_11ac_enable = data->sku_cap_11n_enable &&
				    (sku & NVM_SKU_CAP_11AC_ENABLE);
699
	data->sku_cap_mimo_disabled = sku & NVM_SKU_CAP_MIMO_DISABLE;
700

701
	data->n_hw_addrs = iwl_get_n_hw_addrs(cfg, nvm_sw);
702

703 704 705
	if (cfg->device_family != IWL_DEVICE_FAMILY_8000) {
		/* Checking for required sections */
		if (!nvm_calib) {
706 707
			IWL_ERR(trans,
				"Can't parse empty Calib NVM sections\n");
708
			kfree(data);
709 710 711 712 713
			return NULL;
		}
		/* in family 8000 Xtal calibration values moved to OTP */
		data->xtal_calib[0] = *(nvm_calib + XTAL_CALIB);
		data->xtal_calib[1] = *(nvm_calib + XTAL_CALIB + 1);
714 715
		lar_enabled = true;
		ch_section = nvm_sw;
716
	} else {
717 718 719 720 721
		u16 lar_offset = data->nvm_version < 0xE39 ?
				 NVM_LAR_OFFSET_FAMILY_8000_OLD :
				 NVM_LAR_OFFSET_FAMILY_8000;

		lar_config = le16_to_cpup(regulatory + lar_offset);
722 723
		data->lar_enabled = !!(lar_config &
				       NVM_LAR_ENABLED_FAMILY_8000);
724 725
		lar_enabled = data->lar_enabled;
		ch_section = regulatory;
726
	}
727

728 729 730 731 732 733
	/* If no valid mac address was found - bail out */
	if (iwl_set_hw_address(trans, cfg, data, nvm_hw, mac_override)) {
		kfree(data);
		return NULL;
	}

734 735
	iwl_init_sbands(dev, cfg, data, ch_section, tx_chains, rx_chains,
			lar_fw_supported && lar_enabled);
736
	data->calib_version = 255;
737 738 739

	return data;
}
740
IWL_EXPORT_SYMBOL(iwl_parse_nvm_data);
741 742

static u32 iwl_nvm_get_regdom_bw_flags(const u8 *nvm_chan,
743 744
				       int ch_idx, u16 nvm_flags,
				       const struct iwl_cfg *cfg)
745 746
{
	u32 flags = NL80211_RRF_NO_HT40;
747 748 749 750
	u32 last_5ghz_ht = LAST_5GHZ_HT;

	if (cfg->device_family == IWL_DEVICE_FAMILY_8000)
		last_5ghz_ht = LAST_5GHZ_HT_FAMILY_8000;
751 752 753 754 755 756 757

	if (ch_idx < NUM_2GHZ_CHANNELS &&
	    (nvm_flags & NVM_CHANNEL_40MHZ)) {
		if (nvm_chan[ch_idx] <= LAST_2GHZ_HT_PLUS)
			flags &= ~NL80211_RRF_NO_HT40PLUS;
		if (nvm_chan[ch_idx] >= FIRST_2GHZ_HT_MINUS)
			flags &= ~NL80211_RRF_NO_HT40MINUS;
758
	} else if (nvm_chan[ch_idx] <= last_5ghz_ht &&
759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790
		   (nvm_flags & NVM_CHANNEL_40MHZ)) {
		if ((ch_idx - NUM_2GHZ_CHANNELS) % 2 == 0)
			flags &= ~NL80211_RRF_NO_HT40PLUS;
		else
			flags &= ~NL80211_RRF_NO_HT40MINUS;
	}

	if (!(nvm_flags & NVM_CHANNEL_80MHZ))
		flags |= NL80211_RRF_NO_80MHZ;
	if (!(nvm_flags & NVM_CHANNEL_160MHZ))
		flags |= NL80211_RRF_NO_160MHZ;

	if (!(nvm_flags & NVM_CHANNEL_ACTIVE))
		flags |= NL80211_RRF_NO_IR;

	if (nvm_flags & NVM_CHANNEL_RADAR)
		flags |= NL80211_RRF_DFS;

	if (nvm_flags & NVM_CHANNEL_INDOOR_ONLY)
		flags |= NL80211_RRF_NO_OUTDOOR;

	/* Set the GO concurrent flag only in case that NO_IR is set.
	 * Otherwise it is meaningless
	 */
	if ((nvm_flags & NVM_CHANNEL_GO_CONCURRENT) &&
	    (flags & NL80211_RRF_NO_IR))
		flags |= NL80211_RRF_GO_CONCURRENT;

	return flags;
}

struct ieee80211_regdomain *
791 792
iwl_parse_nvm_mcc_info(struct device *dev, const struct iwl_cfg *cfg,
		       int num_of_ch, __le32 *channels, u16 fw_mcc)
793 794 795
{
	int ch_idx;
	u16 ch_flags, prev_ch_flags = 0;
796 797
	const u8 *nvm_chan = cfg->device_family == IWL_DEVICE_FAMILY_8000 ?
			     iwl_nvm_channels_family_8000 : iwl_nvm_channels;
798 799 800
	struct ieee80211_regdomain *regd;
	int size_of_regd;
	struct ieee80211_reg_rule *rule;
801
	enum nl80211_band band;
802 803 804
	int center_freq, prev_center_freq = 0;
	int valid_rules = 0;
	bool new_rule;
805 806
	int max_num_ch = cfg->device_family == IWL_DEVICE_FAMILY_8000 ?
			 IWL_NUM_CHANNELS_FAMILY_8000 : IWL_NUM_CHANNELS;
807 808 809 810

	if (WARN_ON_ONCE(num_of_ch > NL80211_MAX_SUPP_REG_RULES))
		return ERR_PTR(-EINVAL);

811 812 813
	if (WARN_ON(num_of_ch > max_num_ch))
		num_of_ch = max_num_ch;

814 815 816 817 818 819 820 821 822 823 824 825 826 827 828
	IWL_DEBUG_DEV(dev, IWL_DL_LAR, "building regdom for %d channels\n",
		      num_of_ch);

	/* build a regdomain rule for every valid channel */
	size_of_regd =
		sizeof(struct ieee80211_regdomain) +
		num_of_ch * sizeof(struct ieee80211_reg_rule);

	regd = kzalloc(size_of_regd, GFP_KERNEL);
	if (!regd)
		return ERR_PTR(-ENOMEM);

	for (ch_idx = 0; ch_idx < num_of_ch; ch_idx++) {
		ch_flags = (u16)__le32_to_cpup(channels + ch_idx);
		band = (ch_idx < NUM_2GHZ_CHANNELS) ?
829
		       NL80211_BAND_2GHZ : NL80211_BAND_5GHZ;
830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860
		center_freq = ieee80211_channel_to_frequency(nvm_chan[ch_idx],
							     band);
		new_rule = false;

		if (!(ch_flags & NVM_CHANNEL_VALID)) {
			IWL_DEBUG_DEV(dev, IWL_DL_LAR,
				      "Ch. %d Flags %x [%sGHz] - No traffic\n",
				      nvm_chan[ch_idx],
				      ch_flags,
				      (ch_idx >= NUM_2GHZ_CHANNELS) ?
				      "5.2" : "2.4");
			continue;
		}

		/* we can't continue the same rule */
		if (ch_idx == 0 || prev_ch_flags != ch_flags ||
		    center_freq - prev_center_freq > 20) {
			valid_rules++;
			new_rule = true;
		}

		rule = &regd->reg_rules[valid_rules - 1];

		if (new_rule)
			rule->freq_range.start_freq_khz =
						MHZ_TO_KHZ(center_freq - 10);

		rule->freq_range.end_freq_khz = MHZ_TO_KHZ(center_freq + 10);

		/* this doesn't matter - not used by FW */
		rule->power_rule.max_antenna_gain = DBI_TO_MBI(6);
861 862
		rule->power_rule.max_eirp =
			DBM_TO_MBM(IWL_DEFAULT_MAX_TX_POWER);
863 864

		rule->flags = iwl_nvm_get_regdom_bw_flags(nvm_chan, ch_idx,
865
							  ch_flags, cfg);
866 867 868 869 870 871 872 873 874

		/* rely on auto-calculation to merge BW of contiguous chans */
		rule->flags |= NL80211_RRF_AUTO_BW;
		rule->freq_range.max_bandwidth_khz = 0;

		prev_ch_flags = ch_flags;
		prev_center_freq = center_freq;

		IWL_DEBUG_DEV(dev, IWL_DL_LAR,
875
			      "Ch. %d [%sGHz] %s%s%s%s%s%s%s%s%s(0x%02x): Ad-Hoc %ssupported\n",
876
			      center_freq,
877
			      band == NL80211_BAND_5GHZ ? "5.2" : "2.4",
878 879 880 881 882 883 884 885 886 887
			      CHECK_AND_PRINT_I(VALID),
			      CHECK_AND_PRINT_I(ACTIVE),
			      CHECK_AND_PRINT_I(RADAR),
			      CHECK_AND_PRINT_I(WIDE),
			      CHECK_AND_PRINT_I(40MHZ),
			      CHECK_AND_PRINT_I(80MHZ),
			      CHECK_AND_PRINT_I(160MHZ),
			      CHECK_AND_PRINT_I(INDOOR_ONLY),
			      CHECK_AND_PRINT_I(GO_CONCURRENT),
			      ch_flags,
888
			      ((ch_flags & NVM_CHANNEL_ACTIVE) &&
889 890 891 892 893 894 895 896 897 898 899 900 901
			       !(ch_flags & NVM_CHANNEL_RADAR))
					 ? "" : "not ");
	}

	regd->n_reg_rules = valid_rules;

	/* set alpha2 from FW. */
	regd->alpha2[0] = fw_mcc >> 8;
	regd->alpha2[1] = fw_mcc & 0xff;

	return regd;
}
IWL_EXPORT_SYMBOL(iwl_parse_nvm_mcc_info);