iwl-nvm-parse.c 26.2 KB
Newer Older
1 2 3 4 5 6 7
/******************************************************************************
 *
 * This file is provided under a dual BSD/GPLv2 license.  When using or
 * redistributing this file, you may do so under either license.
 *
 * GPL LICENSE SUMMARY
 *
8
 * Copyright(c) 2008 - 2014 Intel Corporation. All rights reserved.
9
 * Copyright(c) 2013 - 2015 Intel Mobile Communications GmbH
10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of version 2 of the GNU General Public License as
 * published by the Free Software Foundation.
 *
 * This program is distributed in the hope that it will be useful, but
 * WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110,
 * USA
 *
 * The full GNU General Public License is included in this distribution
26
 * in the file called COPYING.
27 28 29 30 31 32 33
 *
 * Contact Information:
 *  Intel Linux Wireless <ilw@linux.intel.com>
 * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
 *
 * BSD LICENSE
 *
34
 * Copyright(c) 2005 - 2014 Intel Corporation. All rights reserved.
35
 * Copyright(c) 2013 - 2015 Intel Mobile Communications GmbH
36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66
 * All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 *
 *  * Redistributions of source code must retain the above copyright
 *    notice, this list of conditions and the following disclaimer.
 *  * Redistributions in binary form must reproduce the above copyright
 *    notice, this list of conditions and the following disclaimer in
 *    the documentation and/or other materials provided with the
 *    distribution.
 *  * Neither the name Intel Corporation nor the names of its
 *    contributors may be used to endorse or promote products derived
 *    from this software without specific prior written permission.
 *
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 *****************************************************************************/
#include <linux/types.h>
#include <linux/slab.h>
#include <linux/export.h>
67
#include <linux/etherdevice.h>
68
#include <linux/pci.h>
69
#include "iwl-drv.h"
70 71 72 73 74 75 76 77
#include "iwl-modparams.h"
#include "iwl-nvm-parse.h"

/* NVM offsets (in words) definitions */
enum wkp_nvm_offsets {
	/* NVM HW-Section offset (in words) definitions */
	HW_ADDR = 0x15,

78
	/* NVM SW-Section offset (in words) definitions */
79 80 81 82 83 84 85
	NVM_SW_SECTION = 0x1C0,
	NVM_VERSION = 0,
	RADIO_CFG = 1,
	SKU = 2,
	N_HW_ADDRS = 3,
	NVM_CHANNELS = 0x1E0 - NVM_SW_SECTION,

86
	/* NVM calibration section offset (in words) definitions */
87 88 89 90
	NVM_CALIB_SECTION = 0x2B8,
	XTAL_CALIB = 0x316 - NVM_CALIB_SECTION
};

91 92
enum family_8000_nvm_offsets {
	/* NVM HW-Section offset (in words) definitions */
93 94 95 96
	HW_ADDR0_WFPM_FAMILY_8000 = 0x12,
	HW_ADDR1_WFPM_FAMILY_8000 = 0x16,
	HW_ADDR0_PCIE_FAMILY_8000 = 0x8A,
	HW_ADDR1_PCIE_FAMILY_8000 = 0x8E,
97 98 99 100 101
	MAC_ADDRESS_OVERRIDE_FAMILY_8000 = 1,

	/* NVM SW-Section offset (in words) definitions */
	NVM_SW_SECTION_FAMILY_8000 = 0x1C0,
	NVM_VERSION_FAMILY_8000 = 0,
102 103 104
	RADIO_CFG_FAMILY_8000 = 0,
	SKU_FAMILY_8000 = 2,
	N_HW_ADDRS_FAMILY_8000 = 3,
105

106 107
	/* NVM REGULATORY -Section offset (in words) definitions */
	NVM_CHANNELS_FAMILY_8000 = 0,
108 109
	NVM_LAR_OFFSET_FAMILY_8000_OLD = 0x4C7,
	NVM_LAR_OFFSET_FAMILY_8000 = 0x507,
110
	NVM_LAR_ENABLED_FAMILY_8000 = 0x7,
111 112 113 114 115 116

	/* NVM calibration section offset (in words) definitions */
	NVM_CALIB_SECTION_FAMILY_8000 = 0x2B8,
	XTAL_CALIB_FAMILY_8000 = 0x316 - NVM_CALIB_SECTION_FAMILY_8000
};

117 118
/* SKU Capabilities (actual values from NVM definition) */
enum nvm_sku_bits {
119 120 121 122 123
	NVM_SKU_CAP_BAND_24GHZ		= BIT(0),
	NVM_SKU_CAP_BAND_52GHZ		= BIT(1),
	NVM_SKU_CAP_11N_ENABLE		= BIT(2),
	NVM_SKU_CAP_11AC_ENABLE		= BIT(3),
	NVM_SKU_CAP_MIMO_DISABLE	= BIT(5),
124 125 126 127 128 129 130 131 132 133 134 135 136 137
};

/*
 * These are the channel numbers in the order that they are stored in the NVM
 */
static const u8 iwl_nvm_channels[] = {
	/* 2.4 GHz */
	1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14,
	/* 5 GHz */
	36, 40, 44 , 48, 52, 56, 60, 64,
	100, 104, 108, 112, 116, 120, 124, 128, 132, 136, 140, 144,
	149, 153, 157, 161, 165
};

138 139
static const u8 iwl_nvm_channels_family_8000[] = {
	/* 2.4 GHz */
140
	1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14,
141 142 143 144 145 146
	/* 5 GHz */
	36, 40, 44, 48, 52, 56, 60, 64, 68, 72, 76, 80, 84, 88, 92,
	96, 100, 104, 108, 112, 116, 120, 124, 128, 132, 136, 140, 144,
	149, 153, 157, 161, 165, 169, 173, 177, 181
};

147
#define IWL_NUM_CHANNELS		ARRAY_SIZE(iwl_nvm_channels)
148
#define IWL_NUM_CHANNELS_FAMILY_8000	ARRAY_SIZE(iwl_nvm_channels_family_8000)
149
#define NUM_2GHZ_CHANNELS		14
150
#define NUM_2GHZ_CHANNELS_FAMILY_8000	14
151 152
#define FIRST_2GHZ_HT_MINUS		5
#define LAST_2GHZ_HT_PLUS		9
153 154
#define LAST_5GHZ_HT			165
#define LAST_5GHZ_HT_FAMILY_8000	181
155
#define N_HW_ADDR_MASK			0xF
156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185

/* rate data (static) */
static struct ieee80211_rate iwl_cfg80211_rates[] = {
	{ .bitrate = 1 * 10, .hw_value = 0, .hw_value_short = 0, },
	{ .bitrate = 2 * 10, .hw_value = 1, .hw_value_short = 1,
	  .flags = IEEE80211_RATE_SHORT_PREAMBLE, },
	{ .bitrate = 5.5 * 10, .hw_value = 2, .hw_value_short = 2,
	  .flags = IEEE80211_RATE_SHORT_PREAMBLE, },
	{ .bitrate = 11 * 10, .hw_value = 3, .hw_value_short = 3,
	  .flags = IEEE80211_RATE_SHORT_PREAMBLE, },
	{ .bitrate = 6 * 10, .hw_value = 4, .hw_value_short = 4, },
	{ .bitrate = 9 * 10, .hw_value = 5, .hw_value_short = 5, },
	{ .bitrate = 12 * 10, .hw_value = 6, .hw_value_short = 6, },
	{ .bitrate = 18 * 10, .hw_value = 7, .hw_value_short = 7, },
	{ .bitrate = 24 * 10, .hw_value = 8, .hw_value_short = 8, },
	{ .bitrate = 36 * 10, .hw_value = 9, .hw_value_short = 9, },
	{ .bitrate = 48 * 10, .hw_value = 10, .hw_value_short = 10, },
	{ .bitrate = 54 * 10, .hw_value = 11, .hw_value_short = 11, },
};
#define RATES_24_OFFS	0
#define N_RATES_24	ARRAY_SIZE(iwl_cfg80211_rates)
#define RATES_52_OFFS	4
#define N_RATES_52	(N_RATES_24 - RATES_52_OFFS)

/**
 * enum iwl_nvm_channel_flags - channel flags in NVM
 * @NVM_CHANNEL_VALID: channel is usable for this SKU/geo
 * @NVM_CHANNEL_IBSS: usable as an IBSS channel
 * @NVM_CHANNEL_ACTIVE: active scanning allowed
 * @NVM_CHANNEL_RADAR: radar detection required
186 187 188
 * @NVM_CHANNEL_INDOOR_ONLY: only indoor use is allowed
 * @NVM_CHANNEL_GO_CONCURRENT: GO operation is allowed when connected to BSS
 *	on same channel on 2.4 or same UNII band on 5.2
189 190
 * @NVM_CHANNEL_WIDE: 20 MHz channel okay (?)
 * @NVM_CHANNEL_40MHZ: 40 MHz channel okay (?)
191 192
 * @NVM_CHANNEL_80MHZ: 80 MHz channel okay (?)
 * @NVM_CHANNEL_160MHZ: 160 MHz channel okay (?)
193 194 195 196 197 198
 */
enum iwl_nvm_channel_flags {
	NVM_CHANNEL_VALID = BIT(0),
	NVM_CHANNEL_IBSS = BIT(1),
	NVM_CHANNEL_ACTIVE = BIT(3),
	NVM_CHANNEL_RADAR = BIT(4),
199 200
	NVM_CHANNEL_INDOOR_ONLY = BIT(5),
	NVM_CHANNEL_GO_CONCURRENT = BIT(6),
201 202
	NVM_CHANNEL_WIDE = BIT(8),
	NVM_CHANNEL_40MHZ = BIT(9),
203 204
	NVM_CHANNEL_80MHZ = BIT(10),
	NVM_CHANNEL_160MHZ = BIT(11),
205 206 207 208 209
};

#define CHECK_AND_PRINT_I(x)	\
	((ch_flags & NVM_CHANNEL_##x) ? # x " " : "")

210
static u32 iwl_get_channel_flags(u8 ch_num, int ch_idx, bool is_5ghz,
211
				 u16 nvm_flags, const struct iwl_cfg *cfg)
212 213
{
	u32 flags = IEEE80211_CHAN_NO_HT40;
214 215 216 217
	u32 last_5ghz_ht = LAST_5GHZ_HT;

	if (cfg->device_family == IWL_DEVICE_FAMILY_8000)
		last_5ghz_ht = LAST_5GHZ_HT_FAMILY_8000;
218 219 220 221 222 223

	if (!is_5ghz && (nvm_flags & NVM_CHANNEL_40MHZ)) {
		if (ch_num <= LAST_2GHZ_HT_PLUS)
			flags &= ~IEEE80211_CHAN_NO_HT40PLUS;
		if (ch_num >= FIRST_2GHZ_HT_MINUS)
			flags &= ~IEEE80211_CHAN_NO_HT40MINUS;
224
	} else if (ch_num <= last_5ghz_ht && (nvm_flags & NVM_CHANNEL_40MHZ)) {
225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251
		if ((ch_idx - NUM_2GHZ_CHANNELS) % 2 == 0)
			flags &= ~IEEE80211_CHAN_NO_HT40PLUS;
		else
			flags &= ~IEEE80211_CHAN_NO_HT40MINUS;
	}
	if (!(nvm_flags & NVM_CHANNEL_80MHZ))
		flags |= IEEE80211_CHAN_NO_80MHZ;
	if (!(nvm_flags & NVM_CHANNEL_160MHZ))
		flags |= IEEE80211_CHAN_NO_160MHZ;

	if (!(nvm_flags & NVM_CHANNEL_IBSS))
		flags |= IEEE80211_CHAN_NO_IR;

	if (!(nvm_flags & NVM_CHANNEL_ACTIVE))
		flags |= IEEE80211_CHAN_NO_IR;

	if (nvm_flags & NVM_CHANNEL_RADAR)
		flags |= IEEE80211_CHAN_RADAR;

	if (nvm_flags & NVM_CHANNEL_INDOOR_ONLY)
		flags |= IEEE80211_CHAN_INDOOR_ONLY;

	/* Set the GO concurrent flag only in case that NO_IR is set.
	 * Otherwise it is meaningless
	 */
	if ((nvm_flags & NVM_CHANNEL_GO_CONCURRENT) &&
	    (flags & IEEE80211_CHAN_NO_IR))
252
		flags |= IEEE80211_CHAN_IR_CONCURRENT;
253 254 255 256

	return flags;
}

257 258
static int iwl_init_channel_map(struct device *dev, const struct iwl_cfg *cfg,
				struct iwl_nvm_data *data,
259 260
				const __le16 * const nvm_ch_flags,
				bool lar_supported)
261 262 263 264 265 266
{
	int ch_idx;
	int n_channels = 0;
	struct ieee80211_channel *channel;
	u16 ch_flags;
	bool is_5ghz;
267
	int num_of_ch, num_2ghz_channels;
268 269 270 271 272
	const u8 *nvm_chan;

	if (cfg->device_family != IWL_DEVICE_FAMILY_8000) {
		num_of_ch = IWL_NUM_CHANNELS;
		nvm_chan = &iwl_nvm_channels[0];
273
		num_2ghz_channels = NUM_2GHZ_CHANNELS;
274 275 276
	} else {
		num_of_ch = IWL_NUM_CHANNELS_FAMILY_8000;
		nvm_chan = &iwl_nvm_channels_family_8000[0];
277
		num_2ghz_channels = NUM_2GHZ_CHANNELS_FAMILY_8000;
278
	}
279

280
	for (ch_idx = 0; ch_idx < num_of_ch; ch_idx++) {
281
		ch_flags = __le16_to_cpup(nvm_ch_flags + ch_idx);
282

283
		if (ch_idx >= num_2ghz_channels &&
284
		    !data->sku_cap_band_52GHz_enable)
285
			continue;
286

287
		if (!lar_supported && !(ch_flags & NVM_CHANNEL_VALID)) {
288 289 290 291 292
			/*
			 * Channels might become valid later if lar is
			 * supported, hence we still want to add them to
			 * the list of supported channels to cfg80211.
			 */
293 294
			IWL_DEBUG_EEPROM(dev,
					 "Ch. %d Flags %x [%sGHz] - No traffic\n",
295
					 nvm_chan[ch_idx],
296
					 ch_flags,
297
					 (ch_idx >= num_2ghz_channels) ?
298 299 300 301 302 303 304
					 "5.2" : "2.4");
			continue;
		}

		channel = &data->channels[n_channels];
		n_channels++;

305
		channel->hw_value = nvm_chan[ch_idx];
306
		channel->band = (ch_idx < num_2ghz_channels) ?
307 308 309 310 311 312 313
				IEEE80211_BAND_2GHZ : IEEE80211_BAND_5GHZ;
		channel->center_freq =
			ieee80211_channel_to_frequency(
				channel->hw_value, channel->band);

		/* Initialize regulatory-based run-time data */

314 315 316 317
		/*
		 * Default value - highest tx power value.  max_power
		 * is not used in mvm, and is used for backwards compatibility
		 */
318
		channel->max_power = IWL_DEFAULT_MAX_TX_POWER;
319
		is_5ghz = channel->band == IEEE80211_BAND_5GHZ;
320 321 322 323 324

		/* don't put limitations in case we're using LAR */
		if (!lar_supported)
			channel->flags = iwl_get_channel_flags(nvm_chan[ch_idx],
							       ch_idx, is_5ghz,
325
							       ch_flags, cfg);
326 327 328
		else
			channel->flags = 0;

329
		IWL_DEBUG_EEPROM(dev,
330
				 "Ch. %d [%sGHz] %s%s%s%s%s%s%s(0x%02x %ddBm): Ad-Hoc %ssupported\n",
331 332 333 334 335 336 337
				 channel->hw_value,
				 is_5ghz ? "5.2" : "2.4",
				 CHECK_AND_PRINT_I(VALID),
				 CHECK_AND_PRINT_I(IBSS),
				 CHECK_AND_PRINT_I(ACTIVE),
				 CHECK_AND_PRINT_I(RADAR),
				 CHECK_AND_PRINT_I(WIDE),
338 339
				 CHECK_AND_PRINT_I(INDOOR_ONLY),
				 CHECK_AND_PRINT_I(GO_CONCURRENT),
340 341 342 343 344 345 346 347 348 349
				 ch_flags,
				 channel->max_power,
				 ((ch_flags & NVM_CHANNEL_IBSS) &&
				  !(ch_flags & NVM_CHANNEL_RADAR))
					? "" : "not ");
	}

	return n_channels;
}

350 351
static void iwl_init_vht_hw_capab(const struct iwl_cfg *cfg,
				  struct iwl_nvm_data *data,
352 353
				  struct ieee80211_sta_vht_cap *vht_cap,
				  u8 tx_chains, u8 rx_chains)
354
{
355 356
	int num_rx_ants = num_of_ant(rx_chains);
	int num_tx_ants = num_of_ant(tx_chains);
357 358
	unsigned int max_ampdu_exponent = (cfg->max_vht_ampdu_exponent ?:
					   IEEE80211_VHT_MAX_AMPDU_1024K);
359

360 361 362 363 364
	vht_cap->vht_supported = true;

	vht_cap->cap = IEEE80211_VHT_CAP_SHORT_GI_80 |
		       IEEE80211_VHT_CAP_RXSTBC_1 |
		       IEEE80211_VHT_CAP_SU_BEAMFORMEE_CAPABLE |
365
		       3 << IEEE80211_VHT_CAP_BEAMFORMEE_STS_SHIFT |
366 367
		       max_ampdu_exponent <<
		       IEEE80211_VHT_CAP_MAX_A_MPDU_LENGTH_EXPONENT_SHIFT;
368

E
Eyal Shapira 已提交
369 370 371
	if (cfg->ht_params->ldpc)
		vht_cap->cap |= IEEE80211_VHT_CAP_RXLDPC;

372 373 374 375 376
	if (data->sku_cap_mimo_disabled) {
		num_rx_ants = 1;
		num_tx_ants = 1;
	}

377
	if (num_tx_ants > 1)
378
		vht_cap->cap |= IEEE80211_VHT_CAP_TXSTBC;
379 380
	else
		vht_cap->cap |= IEEE80211_VHT_CAP_TX_ANTENNA_PATTERN;
381

382 383 384 385 386
	switch (iwlwifi_mod_params.amsdu_size) {
	case IWL_AMSDU_4K:
		vht_cap->cap |= IEEE80211_VHT_CAP_MAX_MPDU_LENGTH_3895;
		break;
	case IWL_AMSDU_8K:
387
		vht_cap->cap |= IEEE80211_VHT_CAP_MAX_MPDU_LENGTH_7991;
388 389 390 391 392 393 394
		break;
	case IWL_AMSDU_12K:
		vht_cap->cap |= IEEE80211_VHT_CAP_MAX_MPDU_LENGTH_11454;
		break;
	default:
		break;
	}
395 396 397 398 399 400 401 402 403 404 405

	vht_cap->vht_mcs.rx_mcs_map =
		cpu_to_le16(IEEE80211_VHT_MCS_SUPPORT_0_9 << 0 |
			    IEEE80211_VHT_MCS_SUPPORT_0_9 << 2 |
			    IEEE80211_VHT_MCS_NOT_SUPPORTED << 4 |
			    IEEE80211_VHT_MCS_NOT_SUPPORTED << 6 |
			    IEEE80211_VHT_MCS_NOT_SUPPORTED << 8 |
			    IEEE80211_VHT_MCS_NOT_SUPPORTED << 10 |
			    IEEE80211_VHT_MCS_NOT_SUPPORTED << 12 |
			    IEEE80211_VHT_MCS_NOT_SUPPORTED << 14);

406 407
	if (num_rx_ants == 1 || cfg->rx_with_siso_diversity) {
		vht_cap->cap |= IEEE80211_VHT_CAP_RX_ANTENNA_PATTERN;
408 409 410 411 412 413 414 415
		/* this works because NOT_SUPPORTED == 3 */
		vht_cap->vht_mcs.rx_mcs_map |=
			cpu_to_le16(IEEE80211_VHT_MCS_NOT_SUPPORTED << 2);
	}

	vht_cap->vht_mcs.tx_mcs_map = vht_cap->vht_mcs.rx_mcs_map;
}

416
static void iwl_init_sbands(struct device *dev, const struct iwl_cfg *cfg,
417
			    struct iwl_nvm_data *data,
418
			    const __le16 *ch_section,
419
			    u8 tx_chains, u8 rx_chains, bool lar_supported)
420
{
421
	int n_channels;
422 423 424
	int n_used = 0;
	struct ieee80211_supported_band *sband;

425 426 427
	if (cfg->device_family != IWL_DEVICE_FAMILY_8000)
		n_channels = iwl_init_channel_map(
				dev, cfg, data,
428
				&ch_section[NVM_CHANNELS], lar_supported);
429 430 431
	else
		n_channels = iwl_init_channel_map(
				dev, cfg, data,
432 433
				&ch_section[NVM_CHANNELS_FAMILY_8000],
				lar_supported);
434

435 436 437 438 439 440
	sband = &data->bands[IEEE80211_BAND_2GHZ];
	sband->band = IEEE80211_BAND_2GHZ;
	sband->bitrates = &iwl_cfg80211_rates[RATES_24_OFFS];
	sband->n_bitrates = N_RATES_24;
	n_used += iwl_init_sband_channels(data, sband, n_channels,
					  IEEE80211_BAND_2GHZ);
441 442
	iwl_init_ht_hw_capab(cfg, data, &sband->ht_cap, IEEE80211_BAND_2GHZ,
			     tx_chains, rx_chains);
443 444 445 446 447 448 449

	sband = &data->bands[IEEE80211_BAND_5GHZ];
	sband->band = IEEE80211_BAND_5GHZ;
	sband->bitrates = &iwl_cfg80211_rates[RATES_52_OFFS];
	sband->n_bitrates = N_RATES_52;
	n_used += iwl_init_sband_channels(data, sband, n_channels,
					  IEEE80211_BAND_5GHZ);
450 451
	iwl_init_ht_hw_capab(cfg, data, &sband->ht_cap, IEEE80211_BAND_5GHZ,
			     tx_chains, rx_chains);
452
	if (data->sku_cap_11ac_enable)
453 454
		iwl_init_vht_hw_capab(cfg, data, &sband->vht_cap,
				      tx_chains, rx_chains);
455 456 457 458 459 460

	if (n_channels != n_used)
		IWL_ERR_DEV(dev, "NVM: used only %d of %d channels\n",
			    n_used, n_channels);
}

461 462
static int iwl_get_sku(const struct iwl_cfg *cfg, const __le16 *nvm_sw,
		       const __le16 *phy_sku)
463 464 465
{
	if (cfg->device_family != IWL_DEVICE_FAMILY_8000)
		return le16_to_cpup(nvm_sw + SKU);
466

467
	return le32_to_cpup((__le32 *)(phy_sku + SKU_FAMILY_8000));
468 469
}

470
static int iwl_get_nvm_version(const struct iwl_cfg *cfg, const __le16 *nvm_sw)
471 472 473 474 475 476 477 478
{
	if (cfg->device_family != IWL_DEVICE_FAMILY_8000)
		return le16_to_cpup(nvm_sw + NVM_VERSION);
	else
		return le32_to_cpup((__le32 *)(nvm_sw +
					       NVM_VERSION_FAMILY_8000));
}

479 480
static int iwl_get_radio_cfg(const struct iwl_cfg *cfg, const __le16 *nvm_sw,
			     const __le16 *phy_sku)
481 482 483
{
	if (cfg->device_family != IWL_DEVICE_FAMILY_8000)
		return le16_to_cpup(nvm_sw + RADIO_CFG);
484

485
	return le32_to_cpup((__le32 *)(phy_sku + RADIO_CFG_FAMILY_8000));
486

487 488
}

489
static int iwl_get_n_hw_addrs(const struct iwl_cfg *cfg, const __le16 *nvm_sw)
490
{
491 492
	int n_hw_addr;

493 494
	if (cfg->device_family != IWL_DEVICE_FAMILY_8000)
		return le16_to_cpup(nvm_sw + N_HW_ADDRS);
495

496
	n_hw_addr = le32_to_cpup((__le32 *)(nvm_sw + N_HW_ADDRS_FAMILY_8000));
497 498

	return n_hw_addr & N_HW_ADDR_MASK;
499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517
}

static void iwl_set_radio_cfg(const struct iwl_cfg *cfg,
			      struct iwl_nvm_data *data,
			      u32 radio_cfg)
{
	if (cfg->device_family != IWL_DEVICE_FAMILY_8000) {
		data->radio_cfg_type = NVM_RF_CFG_TYPE_MSK(radio_cfg);
		data->radio_cfg_step = NVM_RF_CFG_STEP_MSK(radio_cfg);
		data->radio_cfg_dash = NVM_RF_CFG_DASH_MSK(radio_cfg);
		data->radio_cfg_pnum = NVM_RF_CFG_PNUM_MSK(radio_cfg);
		return;
	}

	/* set the radio configuration for family 8000 */
	data->radio_cfg_type = NVM_RF_CFG_TYPE_MSK_FAMILY_8000(radio_cfg);
	data->radio_cfg_step = NVM_RF_CFG_STEP_MSK_FAMILY_8000(radio_cfg);
	data->radio_cfg_dash = NVM_RF_CFG_DASH_MSK_FAMILY_8000(radio_cfg);
	data->radio_cfg_pnum = NVM_RF_CFG_FLAVOR_MSK_FAMILY_8000(radio_cfg);
518 519
	data->valid_tx_ant = NVM_RF_CFG_TX_ANT_MSK_FAMILY_8000(radio_cfg);
	data->valid_rx_ant = NVM_RF_CFG_RX_ANT_MSK_FAMILY_8000(radio_cfg);
520 521 522 523 524 525
}

static void iwl_set_hw_address(const struct iwl_cfg *cfg,
			       struct iwl_nvm_data *data,
			       const __le16 *nvm_sec)
{
526
	const u8 *hw_addr = (const u8 *)(nvm_sec + HW_ADDR);
527 528 529 530 531 532 533 534 535 536

	/* The byte order is little endian 16 bit, meaning 214365 */
	data->hw_addr[0] = hw_addr[1];
	data->hw_addr[1] = hw_addr[0];
	data->hw_addr[2] = hw_addr[3];
	data->hw_addr[3] = hw_addr[2];
	data->hw_addr[4] = hw_addr[5];
	data->hw_addr[5] = hw_addr[4];
}

537 538
static void iwl_set_hw_address_family_8000(struct device *dev,
					   const struct iwl_cfg *cfg,
539 540
					   struct iwl_nvm_data *data,
					   const __le16 *mac_override,
541 542
					   const __le16 *nvm_hw,
					   u32 mac_addr0, u32 mac_addr1)
543 544 545 546
{
	const u8 *hw_addr;

	if (mac_override) {
547 548 549 550
		static const u8 reserved_mac[] = {
			0x02, 0xcc, 0xaa, 0xff, 0xee, 0x00
		};

551 552 553
		hw_addr = (const u8 *)(mac_override +
				 MAC_ADDRESS_OVERRIDE_FAMILY_8000);

554 555 556 557 558
		/*
		 * Store the MAC address from MAO section.
		 * No byte swapping is required in MAO section
		 */
		memcpy(data->hw_addr, hw_addr, ETH_ALEN);
559

560 561 562 563 564 565
		/*
		 * Force the use of the OTP MAC address in case of reserved MAC
		 * address in the NVM, or if address is given but invalid.
		 */
		if (is_valid_ether_addr(data->hw_addr) &&
		    memcmp(reserved_mac, hw_addr, ETH_ALEN) != 0)
566
			return;
567 568 569

		IWL_ERR_DEV(dev,
			    "mac address from nvm override section is not valid\n");
570 571
	}

572
	if (nvm_hw) {
573 574 575 576 577 578 579 580 581 582 583
		/* read the MAC address from HW resisters */
		hw_addr = (const u8 *)&mac_addr0;
		data->hw_addr[0] = hw_addr[3];
		data->hw_addr[1] = hw_addr[2];
		data->hw_addr[2] = hw_addr[1];
		data->hw_addr[3] = hw_addr[0];

		hw_addr = (const u8 *)&mac_addr1;
		data->hw_addr[4] = hw_addr[1];
		data->hw_addr[5] = hw_addr[0];

584 585 586
		if (!is_valid_ether_addr(data->hw_addr))
			IWL_ERR_DEV(dev,
				    "mac address from hw section is not valid\n");
587

588 589
		return;
	}
590

591
	IWL_ERR_DEV(dev, "mac address is not found\n");
592 593
}

594 595 596
struct iwl_nvm_data *
iwl_parse_nvm_data(struct device *dev, const struct iwl_cfg *cfg,
		   const __le16 *nvm_hw, const __le16 *nvm_sw,
597
		   const __le16 *nvm_calib, const __le16 *regulatory,
598
		   const __le16 *mac_override, const __le16 *phy_sku,
599
		   u8 tx_chains, u8 rx_chains, bool lar_fw_supported,
600
		   u32 mac_addr0, u32 mac_addr1)
601 602
{
	struct iwl_nvm_data *data;
603 604
	u32 sku;
	u32 radio_cfg;
605
	u16 lar_config;
606 607 608 609 610 611 612 613 614 615 616

	if (cfg->device_family != IWL_DEVICE_FAMILY_8000)
		data = kzalloc(sizeof(*data) +
			       sizeof(struct ieee80211_channel) *
			       IWL_NUM_CHANNELS,
			       GFP_KERNEL);
	else
		data = kzalloc(sizeof(*data) +
			       sizeof(struct ieee80211_channel) *
			       IWL_NUM_CHANNELS_FAMILY_8000,
			       GFP_KERNEL);
617 618 619
	if (!data)
		return NULL;

620
	data->nvm_version = iwl_get_nvm_version(cfg, nvm_sw);
621

622
	radio_cfg = iwl_get_radio_cfg(cfg, nvm_sw, phy_sku);
623
	iwl_set_radio_cfg(cfg, data, radio_cfg);
624 625 626 627
	if (data->valid_tx_ant)
		tx_chains &= data->valid_tx_ant;
	if (data->valid_rx_ant)
		rx_chains &= data->valid_rx_ant;
628

629
	sku = iwl_get_sku(cfg, nvm_sw, phy_sku);
630 631 632 633 634
	data->sku_cap_band_24GHz_enable = sku & NVM_SKU_CAP_BAND_24GHZ;
	data->sku_cap_band_52GHz_enable = sku & NVM_SKU_CAP_BAND_52GHZ;
	data->sku_cap_11n_enable = sku & NVM_SKU_CAP_11N_ENABLE;
	if (iwlwifi_mod_params.disable_11n & IWL_DISABLE_HT_ALL)
		data->sku_cap_11n_enable = false;
635 636
	data->sku_cap_11ac_enable = data->sku_cap_11n_enable &&
				    (sku & NVM_SKU_CAP_11AC_ENABLE);
637
	data->sku_cap_mimo_disabled = sku & NVM_SKU_CAP_MIMO_DISABLE;
638

639
	data->n_hw_addrs = iwl_get_n_hw_addrs(cfg, nvm_sw);
640

641 642 643 644 645
	if (cfg->device_family != IWL_DEVICE_FAMILY_8000) {
		/* Checking for required sections */
		if (!nvm_calib) {
			IWL_ERR_DEV(dev,
				    "Can't parse empty Calib NVM sections\n");
646
			kfree(data);
647 648 649 650 651
			return NULL;
		}
		/* in family 8000 Xtal calibration values moved to OTP */
		data->xtal_calib[0] = *(nvm_calib + XTAL_CALIB);
		data->xtal_calib[1] = *(nvm_calib + XTAL_CALIB + 1);
652 653
	}

654 655
	if (cfg->device_family != IWL_DEVICE_FAMILY_8000) {
		iwl_set_hw_address(cfg, data, nvm_hw);
656

657
		iwl_init_sbands(dev, cfg, data, nvm_sw,
658
				tx_chains, rx_chains, lar_fw_supported);
659
	} else {
660 661 662 663 664
		u16 lar_offset = data->nvm_version < 0xE39 ?
				 NVM_LAR_OFFSET_FAMILY_8000_OLD :
				 NVM_LAR_OFFSET_FAMILY_8000;

		lar_config = le16_to_cpup(regulatory + lar_offset);
665 666 667
		data->lar_enabled = !!(lar_config &
				       NVM_LAR_ENABLED_FAMILY_8000);

668
		/* MAC address in family 8000 */
669
		iwl_set_hw_address_family_8000(dev, cfg, data, mac_override,
670
					       nvm_hw, mac_addr0, mac_addr1);
671

672
		iwl_init_sbands(dev, cfg, data, regulatory,
673 674
				tx_chains, rx_chains,
				lar_fw_supported && data->lar_enabled);
675
	}
676

677
	data->calib_version = 255;
678 679 680

	return data;
}
681
IWL_EXPORT_SYMBOL(iwl_parse_nvm_data);
682 683

static u32 iwl_nvm_get_regdom_bw_flags(const u8 *nvm_chan,
684 685
				       int ch_idx, u16 nvm_flags,
				       const struct iwl_cfg *cfg)
686 687
{
	u32 flags = NL80211_RRF_NO_HT40;
688 689 690 691
	u32 last_5ghz_ht = LAST_5GHZ_HT;

	if (cfg->device_family == IWL_DEVICE_FAMILY_8000)
		last_5ghz_ht = LAST_5GHZ_HT_FAMILY_8000;
692 693 694 695 696 697 698

	if (ch_idx < NUM_2GHZ_CHANNELS &&
	    (nvm_flags & NVM_CHANNEL_40MHZ)) {
		if (nvm_chan[ch_idx] <= LAST_2GHZ_HT_PLUS)
			flags &= ~NL80211_RRF_NO_HT40PLUS;
		if (nvm_chan[ch_idx] >= FIRST_2GHZ_HT_MINUS)
			flags &= ~NL80211_RRF_NO_HT40MINUS;
699
	} else if (nvm_chan[ch_idx] <= last_5ghz_ht &&
700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731
		   (nvm_flags & NVM_CHANNEL_40MHZ)) {
		if ((ch_idx - NUM_2GHZ_CHANNELS) % 2 == 0)
			flags &= ~NL80211_RRF_NO_HT40PLUS;
		else
			flags &= ~NL80211_RRF_NO_HT40MINUS;
	}

	if (!(nvm_flags & NVM_CHANNEL_80MHZ))
		flags |= NL80211_RRF_NO_80MHZ;
	if (!(nvm_flags & NVM_CHANNEL_160MHZ))
		flags |= NL80211_RRF_NO_160MHZ;

	if (!(nvm_flags & NVM_CHANNEL_ACTIVE))
		flags |= NL80211_RRF_NO_IR;

	if (nvm_flags & NVM_CHANNEL_RADAR)
		flags |= NL80211_RRF_DFS;

	if (nvm_flags & NVM_CHANNEL_INDOOR_ONLY)
		flags |= NL80211_RRF_NO_OUTDOOR;

	/* Set the GO concurrent flag only in case that NO_IR is set.
	 * Otherwise it is meaningless
	 */
	if ((nvm_flags & NVM_CHANNEL_GO_CONCURRENT) &&
	    (flags & NL80211_RRF_NO_IR))
		flags |= NL80211_RRF_GO_CONCURRENT;

	return flags;
}

struct ieee80211_regdomain *
732 733
iwl_parse_nvm_mcc_info(struct device *dev, const struct iwl_cfg *cfg,
		       int num_of_ch, __le32 *channels, u16 fw_mcc)
734 735 736
{
	int ch_idx;
	u16 ch_flags, prev_ch_flags = 0;
737 738
	const u8 *nvm_chan = cfg->device_family == IWL_DEVICE_FAMILY_8000 ?
			     iwl_nvm_channels_family_8000 : iwl_nvm_channels;
739 740 741 742 743 744 745
	struct ieee80211_regdomain *regd;
	int size_of_regd;
	struct ieee80211_reg_rule *rule;
	enum ieee80211_band band;
	int center_freq, prev_center_freq = 0;
	int valid_rules = 0;
	bool new_rule;
746 747
	int max_num_ch = cfg->device_family == IWL_DEVICE_FAMILY_8000 ?
			 IWL_NUM_CHANNELS_FAMILY_8000 : IWL_NUM_CHANNELS;
748 749 750 751

	if (WARN_ON_ONCE(num_of_ch > NL80211_MAX_SUPP_REG_RULES))
		return ERR_PTR(-EINVAL);

752 753 754
	if (WARN_ON(num_of_ch > max_num_ch))
		num_of_ch = max_num_ch;

755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801
	IWL_DEBUG_DEV(dev, IWL_DL_LAR, "building regdom for %d channels\n",
		      num_of_ch);

	/* build a regdomain rule for every valid channel */
	size_of_regd =
		sizeof(struct ieee80211_regdomain) +
		num_of_ch * sizeof(struct ieee80211_reg_rule);

	regd = kzalloc(size_of_regd, GFP_KERNEL);
	if (!regd)
		return ERR_PTR(-ENOMEM);

	for (ch_idx = 0; ch_idx < num_of_ch; ch_idx++) {
		ch_flags = (u16)__le32_to_cpup(channels + ch_idx);
		band = (ch_idx < NUM_2GHZ_CHANNELS) ?
		       IEEE80211_BAND_2GHZ : IEEE80211_BAND_5GHZ;
		center_freq = ieee80211_channel_to_frequency(nvm_chan[ch_idx],
							     band);
		new_rule = false;

		if (!(ch_flags & NVM_CHANNEL_VALID)) {
			IWL_DEBUG_DEV(dev, IWL_DL_LAR,
				      "Ch. %d Flags %x [%sGHz] - No traffic\n",
				      nvm_chan[ch_idx],
				      ch_flags,
				      (ch_idx >= NUM_2GHZ_CHANNELS) ?
				      "5.2" : "2.4");
			continue;
		}

		/* we can't continue the same rule */
		if (ch_idx == 0 || prev_ch_flags != ch_flags ||
		    center_freq - prev_center_freq > 20) {
			valid_rules++;
			new_rule = true;
		}

		rule = &regd->reg_rules[valid_rules - 1];

		if (new_rule)
			rule->freq_range.start_freq_khz =
						MHZ_TO_KHZ(center_freq - 10);

		rule->freq_range.end_freq_khz = MHZ_TO_KHZ(center_freq + 10);

		/* this doesn't matter - not used by FW */
		rule->power_rule.max_antenna_gain = DBI_TO_MBI(6);
802 803
		rule->power_rule.max_eirp =
			DBM_TO_MBM(IWL_DEFAULT_MAX_TX_POWER);
804 805

		rule->flags = iwl_nvm_get_regdom_bw_flags(nvm_chan, ch_idx,
806
							  ch_flags, cfg);
807 808 809 810 811 812 813 814 815

		/* rely on auto-calculation to merge BW of contiguous chans */
		rule->flags |= NL80211_RRF_AUTO_BW;
		rule->freq_range.max_bandwidth_khz = 0;

		prev_ch_flags = ch_flags;
		prev_center_freq = center_freq;

		IWL_DEBUG_DEV(dev, IWL_DL_LAR,
816
			      "Ch. %d [%sGHz] %s%s%s%s%s%s%s%s%s(0x%02x): Ad-Hoc %ssupported\n",
817 818 819 820 821 822 823 824 825 826 827 828
			      center_freq,
			      band == IEEE80211_BAND_5GHZ ? "5.2" : "2.4",
			      CHECK_AND_PRINT_I(VALID),
			      CHECK_AND_PRINT_I(ACTIVE),
			      CHECK_AND_PRINT_I(RADAR),
			      CHECK_AND_PRINT_I(WIDE),
			      CHECK_AND_PRINT_I(40MHZ),
			      CHECK_AND_PRINT_I(80MHZ),
			      CHECK_AND_PRINT_I(160MHZ),
			      CHECK_AND_PRINT_I(INDOOR_ONLY),
			      CHECK_AND_PRINT_I(GO_CONCURRENT),
			      ch_flags,
829
			      ((ch_flags & NVM_CHANNEL_ACTIVE) &&
830 831 832 833 834 835 836 837 838 839 840 841 842
			       !(ch_flags & NVM_CHANNEL_RADAR))
					 ? "" : "not ");
	}

	regd->n_reg_rules = valid_rules;

	/* set alpha2 from FW. */
	regd->alpha2[0] = fw_mcc >> 8;
	regd->alpha2[1] = fw_mcc & 0xff;

	return regd;
}
IWL_EXPORT_SYMBOL(iwl_parse_nvm_mcc_info);