iwl-nvm-parse.c 44.8 KB
Newer Older
1 2 3 4 5 6 7
/******************************************************************************
 *
 * This file is provided under a dual BSD/GPLv2 license.  When using or
 * redistributing this file, you may do so under either license.
 *
 * GPL LICENSE SUMMARY
 *
8
 * Copyright(c) 2008 - 2014 Intel Corporation. All rights reserved.
9
 * Copyright(c) 2013 - 2015 Intel Mobile Communications GmbH
10
 * Copyright(c) 2016 - 2017 Intel Deutschland GmbH
11
 * Copyright(c) 2018 - 2019 Intel Corporation
12 13 14 15 16 17 18 19 20 21 22
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of version 2 of the GNU General Public License as
 * published by the Free Software Foundation.
 *
 * This program is distributed in the hope that it will be useful, but
 * WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * General Public License for more details.
 *
 * The full GNU General Public License is included in this distribution
23
 * in the file called COPYING.
24 25
 *
 * Contact Information:
26
 *  Intel Linux Wireless <linuxwifi@intel.com>
27 28 29 30
 * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
 *
 * BSD LICENSE
 *
31
 * Copyright(c) 2005 - 2014 Intel Corporation. All rights reserved.
32
 * Copyright(c) 2013 - 2015 Intel Mobile Communications GmbH
33
 * Copyright(c) 2016 - 2017 Intel Deutschland GmbH
34
 * Copyright(c) 2018 - 2019 Intel Corporation
35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65
 * All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 *
 *  * Redistributions of source code must retain the above copyright
 *    notice, this list of conditions and the following disclaimer.
 *  * Redistributions in binary form must reproduce the above copyright
 *    notice, this list of conditions and the following disclaimer in
 *    the documentation and/or other materials provided with the
 *    distribution.
 *  * Neither the name Intel Corporation nor the names of its
 *    contributors may be used to endorse or promote products derived
 *    from this software without specific prior written permission.
 *
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 *****************************************************************************/
#include <linux/types.h>
#include <linux/slab.h>
#include <linux/export.h>
66
#include <linux/etherdevice.h>
67
#include <linux/pci.h>
68
#include <linux/firmware.h>
69

70
#include "iwl-drv.h"
71 72
#include "iwl-modparams.h"
#include "iwl-nvm-parse.h"
73
#include "iwl-prph.h"
74 75
#include "iwl-io.h"
#include "iwl-csr.h"
76
#include "fw/acpi.h"
77
#include "fw/api/nvm-reg.h"
S
Shaul Triebitz 已提交
78 79 80
#include "fw/api/commands.h"
#include "fw/api/cmdhdr.h"
#include "fw/img.h"
81 82

/* NVM offsets (in words) definitions */
83
enum nvm_offsets {
84
	/* NVM HW-Section offset (in words) definitions */
85
	SUBSYSTEM_ID = 0x0A,
86 87
	HW_ADDR = 0x15,

88
	/* NVM SW-Section offset (in words) definitions */
89 90 91 92 93 94 95
	NVM_SW_SECTION = 0x1C0,
	NVM_VERSION = 0,
	RADIO_CFG = 1,
	SKU = 2,
	N_HW_ADDRS = 3,
	NVM_CHANNELS = 0x1E0 - NVM_SW_SECTION,

96
	/* NVM calibration section offset (in words) definitions */
97
	NVM_CALIB_SECTION = 0x2B8,
98 99 100 101
	XTAL_CALIB = 0x316 - NVM_CALIB_SECTION,

	/* NVM REGULATORY -Section offset (in words) definitions */
	NVM_CHANNELS_SDP = 0,
102 103
};

104
enum ext_nvm_offsets {
105
	/* NVM HW-Section offset (in words) definitions */
106
	MAC_ADDRESS_OVERRIDE_EXT_NVM = 1,
107 108

	/* NVM SW-Section offset (in words) definitions */
109 110
	NVM_VERSION_EXT_NVM = 0,
	RADIO_CFG_FAMILY_EXT_NVM = 0,
111 112
	SKU_FAMILY_8000 = 2,
	N_HW_ADDRS_FAMILY_8000 = 3,
113

114
	/* NVM REGULATORY -Section offset (in words) definitions */
115 116 117 118
	NVM_CHANNELS_EXTENDED = 0,
	NVM_LAR_OFFSET_OLD = 0x4C7,
	NVM_LAR_OFFSET = 0x507,
	NVM_LAR_ENABLED = 0x7,
119 120
};

121 122
/* SKU Capabilities (actual values from NVM definition) */
enum nvm_sku_bits {
123 124 125 126 127
	NVM_SKU_CAP_BAND_24GHZ		= BIT(0),
	NVM_SKU_CAP_BAND_52GHZ		= BIT(1),
	NVM_SKU_CAP_11N_ENABLE		= BIT(2),
	NVM_SKU_CAP_11AC_ENABLE		= BIT(3),
	NVM_SKU_CAP_MIMO_DISABLE	= BIT(5),
128 129 130 131 132 133 134 135 136 137 138 139 140 141
};

/*
 * These are the channel numbers in the order that they are stored in the NVM
 */
static const u8 iwl_nvm_channels[] = {
	/* 2.4 GHz */
	1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14,
	/* 5 GHz */
	36, 40, 44 , 48, 52, 56, 60, 64,
	100, 104, 108, 112, 116, 120, 124, 128, 132, 136, 140, 144,
	149, 153, 157, 161, 165
};

142
static const u8 iwl_ext_nvm_channels[] = {
143
	/* 2.4 GHz */
144
	1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14,
145 146 147 148 149 150
	/* 5 GHz */
	36, 40, 44, 48, 52, 56, 60, 64, 68, 72, 76, 80, 84, 88, 92,
	96, 100, 104, 108, 112, 116, 120, 124, 128, 132, 136, 140, 144,
	149, 153, 157, 161, 165, 169, 173, 177, 181
};

151 152
#define IWL_NVM_NUM_CHANNELS		ARRAY_SIZE(iwl_nvm_channels)
#define IWL_NVM_NUM_CHANNELS_EXT	ARRAY_SIZE(iwl_ext_nvm_channels)
153
#define NUM_2GHZ_CHANNELS		14
154
#define NUM_2GHZ_CHANNELS_EXT	14
155 156
#define FIRST_2GHZ_HT_MINUS		5
#define LAST_2GHZ_HT_PLUS		9
157 158
#define LAST_5GHZ_HT			165
#define LAST_5GHZ_HT_FAMILY_8000	181
159
#define N_HW_ADDR_MASK			0xF
160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189

/* rate data (static) */
static struct ieee80211_rate iwl_cfg80211_rates[] = {
	{ .bitrate = 1 * 10, .hw_value = 0, .hw_value_short = 0, },
	{ .bitrate = 2 * 10, .hw_value = 1, .hw_value_short = 1,
	  .flags = IEEE80211_RATE_SHORT_PREAMBLE, },
	{ .bitrate = 5.5 * 10, .hw_value = 2, .hw_value_short = 2,
	  .flags = IEEE80211_RATE_SHORT_PREAMBLE, },
	{ .bitrate = 11 * 10, .hw_value = 3, .hw_value_short = 3,
	  .flags = IEEE80211_RATE_SHORT_PREAMBLE, },
	{ .bitrate = 6 * 10, .hw_value = 4, .hw_value_short = 4, },
	{ .bitrate = 9 * 10, .hw_value = 5, .hw_value_short = 5, },
	{ .bitrate = 12 * 10, .hw_value = 6, .hw_value_short = 6, },
	{ .bitrate = 18 * 10, .hw_value = 7, .hw_value_short = 7, },
	{ .bitrate = 24 * 10, .hw_value = 8, .hw_value_short = 8, },
	{ .bitrate = 36 * 10, .hw_value = 9, .hw_value_short = 9, },
	{ .bitrate = 48 * 10, .hw_value = 10, .hw_value_short = 10, },
	{ .bitrate = 54 * 10, .hw_value = 11, .hw_value_short = 11, },
};
#define RATES_24_OFFS	0
#define N_RATES_24	ARRAY_SIZE(iwl_cfg80211_rates)
#define RATES_52_OFFS	4
#define N_RATES_52	(N_RATES_24 - RATES_52_OFFS)

/**
 * enum iwl_nvm_channel_flags - channel flags in NVM
 * @NVM_CHANNEL_VALID: channel is usable for this SKU/geo
 * @NVM_CHANNEL_IBSS: usable as an IBSS channel
 * @NVM_CHANNEL_ACTIVE: active scanning allowed
 * @NVM_CHANNEL_RADAR: radar detection required
190 191 192
 * @NVM_CHANNEL_INDOOR_ONLY: only indoor use is allowed
 * @NVM_CHANNEL_GO_CONCURRENT: GO operation is allowed when connected to BSS
 *	on same channel on 2.4 or same UNII band on 5.2
193 194 195 196 197 198
 * @NVM_CHANNEL_UNIFORM: uniform spreading required
 * @NVM_CHANNEL_20MHZ: 20 MHz channel okay
 * @NVM_CHANNEL_40MHZ: 40 MHz channel okay
 * @NVM_CHANNEL_80MHZ: 80 MHz channel okay
 * @NVM_CHANNEL_160MHZ: 160 MHz channel okay
 * @NVM_CHANNEL_DC_HIGH: DC HIGH required/allowed (?)
199 200
 */
enum iwl_nvm_channel_flags {
201 202 203 204 205 206 207 208 209 210 211 212
	NVM_CHANNEL_VALID		= BIT(0),
	NVM_CHANNEL_IBSS		= BIT(1),
	NVM_CHANNEL_ACTIVE		= BIT(3),
	NVM_CHANNEL_RADAR		= BIT(4),
	NVM_CHANNEL_INDOOR_ONLY		= BIT(5),
	NVM_CHANNEL_GO_CONCURRENT	= BIT(6),
	NVM_CHANNEL_UNIFORM		= BIT(7),
	NVM_CHANNEL_20MHZ		= BIT(8),
	NVM_CHANNEL_40MHZ		= BIT(9),
	NVM_CHANNEL_80MHZ		= BIT(10),
	NVM_CHANNEL_160MHZ		= BIT(11),
	NVM_CHANNEL_DC_HIGH		= BIT(12),
213 214
};

215 216 217
static inline void iwl_nvm_print_channel_flags(struct device *dev, u32 level,
					       int chan, u16 flags)
{
218
#define CHECK_AND_PRINT_I(x)	\
219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244
	((flags & NVM_CHANNEL_##x) ? " " #x : "")

	if (!(flags & NVM_CHANNEL_VALID)) {
		IWL_DEBUG_DEV(dev, level, "Ch. %d: 0x%x: No traffic\n",
			      chan, flags);
		return;
	}

	/* Note: already can print up to 101 characters, 110 is the limit! */
	IWL_DEBUG_DEV(dev, level,
		      "Ch. %d: 0x%x:%s%s%s%s%s%s%s%s%s%s%s%s\n",
		      chan, flags,
		      CHECK_AND_PRINT_I(VALID),
		      CHECK_AND_PRINT_I(IBSS),
		      CHECK_AND_PRINT_I(ACTIVE),
		      CHECK_AND_PRINT_I(RADAR),
		      CHECK_AND_PRINT_I(INDOOR_ONLY),
		      CHECK_AND_PRINT_I(GO_CONCURRENT),
		      CHECK_AND_PRINT_I(UNIFORM),
		      CHECK_AND_PRINT_I(20MHZ),
		      CHECK_AND_PRINT_I(40MHZ),
		      CHECK_AND_PRINT_I(80MHZ),
		      CHECK_AND_PRINT_I(160MHZ),
		      CHECK_AND_PRINT_I(DC_HIGH));
#undef CHECK_AND_PRINT_I
}
245

246
static u32 iwl_get_channel_flags(u8 ch_num, int ch_idx, bool is_5ghz,
247
				 u16 nvm_flags, const struct iwl_cfg *cfg)
248 249
{
	u32 flags = IEEE80211_CHAN_NO_HT40;
250 251
	u32 last_5ghz_ht = LAST_5GHZ_HT;

252
	if (cfg->nvm_type == IWL_NVM_EXT)
253
		last_5ghz_ht = LAST_5GHZ_HT_FAMILY_8000;
254 255 256 257 258 259

	if (!is_5ghz && (nvm_flags & NVM_CHANNEL_40MHZ)) {
		if (ch_num <= LAST_2GHZ_HT_PLUS)
			flags &= ~IEEE80211_CHAN_NO_HT40PLUS;
		if (ch_num >= FIRST_2GHZ_HT_MINUS)
			flags &= ~IEEE80211_CHAN_NO_HT40MINUS;
260
	} else if (ch_num <= last_5ghz_ht && (nvm_flags & NVM_CHANNEL_40MHZ)) {
261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287
		if ((ch_idx - NUM_2GHZ_CHANNELS) % 2 == 0)
			flags &= ~IEEE80211_CHAN_NO_HT40PLUS;
		else
			flags &= ~IEEE80211_CHAN_NO_HT40MINUS;
	}
	if (!(nvm_flags & NVM_CHANNEL_80MHZ))
		flags |= IEEE80211_CHAN_NO_80MHZ;
	if (!(nvm_flags & NVM_CHANNEL_160MHZ))
		flags |= IEEE80211_CHAN_NO_160MHZ;

	if (!(nvm_flags & NVM_CHANNEL_IBSS))
		flags |= IEEE80211_CHAN_NO_IR;

	if (!(nvm_flags & NVM_CHANNEL_ACTIVE))
		flags |= IEEE80211_CHAN_NO_IR;

	if (nvm_flags & NVM_CHANNEL_RADAR)
		flags |= IEEE80211_CHAN_RADAR;

	if (nvm_flags & NVM_CHANNEL_INDOOR_ONLY)
		flags |= IEEE80211_CHAN_INDOOR_ONLY;

	/* Set the GO concurrent flag only in case that NO_IR is set.
	 * Otherwise it is meaningless
	 */
	if ((nvm_flags & NVM_CHANNEL_GO_CONCURRENT) &&
	    (flags & IEEE80211_CHAN_NO_IR))
288
		flags |= IEEE80211_CHAN_IR_CONCURRENT;
289 290 291 292

	return flags;
}

293 294
static int iwl_init_channel_map(struct device *dev, const struct iwl_cfg *cfg,
				struct iwl_nvm_data *data,
295
				const __le16 * const nvm_ch_flags,
296
				u32 sbands_flags)
297 298 299 300 301
{
	int ch_idx;
	int n_channels = 0;
	struct ieee80211_channel *channel;
	u16 ch_flags;
302
	int num_of_ch, num_2ghz_channels;
303 304
	const u8 *nvm_chan;

305
	if (cfg->nvm_type != IWL_NVM_EXT) {
306
		num_of_ch = IWL_NVM_NUM_CHANNELS;
307
		nvm_chan = &iwl_nvm_channels[0];
308
		num_2ghz_channels = NUM_2GHZ_CHANNELS;
309
	} else {
310
		num_of_ch = IWL_NVM_NUM_CHANNELS_EXT;
311 312
		nvm_chan = &iwl_ext_nvm_channels[0];
		num_2ghz_channels = NUM_2GHZ_CHANNELS_EXT;
313
	}
314

315
	for (ch_idx = 0; ch_idx < num_of_ch; ch_idx++) {
316 317
		bool is_5ghz = (ch_idx >= num_2ghz_channels);

318
		ch_flags = __le16_to_cpup(nvm_ch_flags + ch_idx);
319

320
		if (is_5ghz && !data->sku_cap_band_52ghz_enable)
321
			continue;
322

323
		/* workaround to disable wide channels in 5GHz */
324 325
		if ((sbands_flags & IWL_NVM_SBANDS_FLAGS_NO_WIDE_IN_5GHZ) &&
		    is_5ghz) {
326 327 328 329 330
			ch_flags &= ~(NVM_CHANNEL_40MHZ |
				     NVM_CHANNEL_80MHZ |
				     NVM_CHANNEL_160MHZ);
		}

331 332 333
		if (ch_flags & NVM_CHANNEL_160MHZ)
			data->vht160_supported = true;

334 335
		if (!(sbands_flags & IWL_NVM_SBANDS_FLAGS_LAR) &&
		    !(ch_flags & NVM_CHANNEL_VALID)) {
336 337 338 339 340
			/*
			 * Channels might become valid later if lar is
			 * supported, hence we still want to add them to
			 * the list of supported channels to cfg80211.
			 */
341 342
			iwl_nvm_print_channel_flags(dev, IWL_DL_EEPROM,
						    nvm_chan[ch_idx], ch_flags);
343 344 345 346 347 348
			continue;
		}

		channel = &data->channels[n_channels];
		n_channels++;

349
		channel->hw_value = nvm_chan[ch_idx];
350 351
		channel->band = is_5ghz ?
				NL80211_BAND_5GHZ : NL80211_BAND_2GHZ;
352 353 354 355 356 357
		channel->center_freq =
			ieee80211_channel_to_frequency(
				channel->hw_value, channel->band);

		/* Initialize regulatory-based run-time data */

358 359 360 361
		/*
		 * Default value - highest tx power value.  max_power
		 * is not used in mvm, and is used for backwards compatibility
		 */
362
		channel->max_power = IWL_DEFAULT_MAX_TX_POWER;
363 364

		/* don't put limitations in case we're using LAR */
365
		if (!(sbands_flags & IWL_NVM_SBANDS_FLAGS_LAR))
366 367
			channel->flags = iwl_get_channel_flags(nvm_chan[ch_idx],
							       ch_idx, is_5ghz,
368
							       ch_flags, cfg);
369 370 371
		else
			channel->flags = 0;

372 373 374 375
		iwl_nvm_print_channel_flags(dev, IWL_DL_EEPROM,
					    channel->hw_value, ch_flags);
		IWL_DEBUG_EEPROM(dev, "Ch. %d: %ddBm\n",
				 channel->hw_value, channel->max_power);
376 377 378 379 380
	}

	return n_channels;
}

381 382
static void iwl_init_vht_hw_capab(const struct iwl_cfg *cfg,
				  struct iwl_nvm_data *data,
383 384
				  struct ieee80211_sta_vht_cap *vht_cap,
				  u8 tx_chains, u8 rx_chains)
385
{
386 387
	int num_rx_ants = num_of_ant(rx_chains);
	int num_tx_ants = num_of_ant(tx_chains);
388 389
	unsigned int max_ampdu_exponent = (cfg->max_vht_ampdu_exponent ?:
					   IEEE80211_VHT_MAX_AMPDU_1024K);
390

391 392 393 394 395
	vht_cap->vht_supported = true;

	vht_cap->cap = IEEE80211_VHT_CAP_SHORT_GI_80 |
		       IEEE80211_VHT_CAP_RXSTBC_1 |
		       IEEE80211_VHT_CAP_SU_BEAMFORMEE_CAPABLE |
396
		       3 << IEEE80211_VHT_CAP_BEAMFORMEE_STS_SHIFT |
397 398
		       max_ampdu_exponent <<
		       IEEE80211_VHT_CAP_MAX_A_MPDU_LENGTH_EXPONENT_SHIFT;
399

400
	if (data->vht160_supported)
401 402
		vht_cap->cap |= IEEE80211_VHT_CAP_SUPP_CHAN_WIDTH_160MHZ |
				IEEE80211_VHT_CAP_SHORT_GI_160;
403

404 405 406
	if (cfg->vht_mu_mimo_supported)
		vht_cap->cap |= IEEE80211_VHT_CAP_MU_BEAMFORMEE_CAPABLE;

E
Eyal Shapira 已提交
407 408 409
	if (cfg->ht_params->ldpc)
		vht_cap->cap |= IEEE80211_VHT_CAP_RXLDPC;

410 411 412 413 414
	if (data->sku_cap_mimo_disabled) {
		num_rx_ants = 1;
		num_tx_ants = 1;
	}

415
	if (num_tx_ants > 1)
416
		vht_cap->cap |= IEEE80211_VHT_CAP_TXSTBC;
417 418
	else
		vht_cap->cap |= IEEE80211_VHT_CAP_TX_ANTENNA_PATTERN;
419

420
	switch (iwlwifi_mod_params.amsdu_size) {
421 422 423 424 425 426 427
	case IWL_AMSDU_DEF:
		if (cfg->mq_rx_supported)
			vht_cap->cap |=
				IEEE80211_VHT_CAP_MAX_MPDU_LENGTH_11454;
		else
			vht_cap->cap |= IEEE80211_VHT_CAP_MAX_MPDU_LENGTH_3895;
		break;
428 429 430 431 432 433 434
	case IWL_AMSDU_2K:
		if (cfg->mq_rx_supported)
			vht_cap->cap |=
				IEEE80211_VHT_CAP_MAX_MPDU_LENGTH_11454;
		else
			WARN(1, "RB size of 2K is not supported by this device\n");
		break;
435 436 437 438
	case IWL_AMSDU_4K:
		vht_cap->cap |= IEEE80211_VHT_CAP_MAX_MPDU_LENGTH_3895;
		break;
	case IWL_AMSDU_8K:
439
		vht_cap->cap |= IEEE80211_VHT_CAP_MAX_MPDU_LENGTH_7991;
440 441 442 443 444 445 446
		break;
	case IWL_AMSDU_12K:
		vht_cap->cap |= IEEE80211_VHT_CAP_MAX_MPDU_LENGTH_11454;
		break;
	default:
		break;
	}
447 448 449 450 451 452 453 454 455 456 457

	vht_cap->vht_mcs.rx_mcs_map =
		cpu_to_le16(IEEE80211_VHT_MCS_SUPPORT_0_9 << 0 |
			    IEEE80211_VHT_MCS_SUPPORT_0_9 << 2 |
			    IEEE80211_VHT_MCS_NOT_SUPPORTED << 4 |
			    IEEE80211_VHT_MCS_NOT_SUPPORTED << 6 |
			    IEEE80211_VHT_MCS_NOT_SUPPORTED << 8 |
			    IEEE80211_VHT_MCS_NOT_SUPPORTED << 10 |
			    IEEE80211_VHT_MCS_NOT_SUPPORTED << 12 |
			    IEEE80211_VHT_MCS_NOT_SUPPORTED << 14);

458 459
	if (num_rx_ants == 1 || cfg->rx_with_siso_diversity) {
		vht_cap->cap |= IEEE80211_VHT_CAP_RX_ANTENNA_PATTERN;
460 461 462 463 464 465
		/* this works because NOT_SUPPORTED == 3 */
		vht_cap->vht_mcs.rx_mcs_map |=
			cpu_to_le16(IEEE80211_VHT_MCS_NOT_SUPPORTED << 2);
	}

	vht_cap->vht_mcs.tx_mcs_map = vht_cap->vht_mcs.rx_mcs_map;
466 467 468

	vht_cap->vht_mcs.tx_highest |=
		cpu_to_le16(IEEE80211_VHT_EXT_NSS_BW_CAPABLE);
469 470
}

471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494
static struct ieee80211_sband_iftype_data iwl_he_capa[] = {
	{
		.types_mask = BIT(NL80211_IFTYPE_STATION),
		.he_cap = {
			.has_he = true,
			.he_cap_elem = {
				.mac_cap_info[0] =
					IEEE80211_HE_MAC_CAP0_HTC_HE |
					IEEE80211_HE_MAC_CAP0_TWT_REQ,
				.mac_cap_info[1] =
					IEEE80211_HE_MAC_CAP1_TF_MAC_PAD_DUR_16US |
					IEEE80211_HE_MAC_CAP1_MULTI_TID_AGG_RX_QOS_8,
				.mac_cap_info[2] =
					IEEE80211_HE_MAC_CAP2_32BIT_BA_BITMAP |
					IEEE80211_HE_MAC_CAP2_ACK_EN,
				.mac_cap_info[3] =
					IEEE80211_HE_MAC_CAP3_OMI_CONTROL |
					IEEE80211_HE_MAC_CAP3_MAX_AMPDU_LEN_EXP_VHT_2,
				.mac_cap_info[4] =
					IEEE80211_HE_MAC_CAP4_AMDSU_IN_AMPDU |
					IEEE80211_HE_MAC_CAP4_MULTI_TID_AGG_TX_QOS_B39,
				.mac_cap_info[5] =
					IEEE80211_HE_MAC_CAP5_MULTI_TID_AGG_TX_QOS_B40 |
					IEEE80211_HE_MAC_CAP5_MULTI_TID_AGG_TX_QOS_B41 |
L
Liad Kaufman 已提交
495 496 497
					IEEE80211_HE_MAC_CAP5_UL_2x996_TONE_RU |
					IEEE80211_HE_MAC_CAP5_HE_DYNAMIC_SM_PS |
					IEEE80211_HE_MAC_CAP5_HT_VHT_TRIG_FRAME_RX,
498 499 500 501 502 503 504
				.phy_cap_info[0] =
					IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_40MHZ_IN_2G |
					IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_40MHZ_80MHZ_IN_5G |
					IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_160MHZ_IN_5G,
				.phy_cap_info[1] =
					IEEE80211_HE_PHY_CAP1_PREAMBLE_PUNC_RX_MASK |
					IEEE80211_HE_PHY_CAP1_DEVICE_CLASS_A |
L
Liad Kaufman 已提交
505
					IEEE80211_HE_PHY_CAP1_LDPC_CODING_IN_PAYLOAD,
506
				.phy_cap_info[2] =
L
Liad Kaufman 已提交
507
					IEEE80211_HE_PHY_CAP2_NDP_4x_LTF_AND_3_2US,
508
				.phy_cap_info[3] =
L
Liad Kaufman 已提交
509
					IEEE80211_HE_PHY_CAP3_DCM_MAX_CONST_TX_NO_DCM |
510
					IEEE80211_HE_PHY_CAP3_DCM_MAX_TX_NSS_1 |
L
Liad Kaufman 已提交
511
					IEEE80211_HE_PHY_CAP3_DCM_MAX_CONST_RX_NO_DCM |
512 513 514 515 516 517 518
					IEEE80211_HE_PHY_CAP3_DCM_MAX_RX_NSS_1,
				.phy_cap_info[4] =
					IEEE80211_HE_PHY_CAP4_SU_BEAMFORMEE |
					IEEE80211_HE_PHY_CAP4_BEAMFORMEE_MAX_STS_ABOVE_80MHZ_8 |
					IEEE80211_HE_PHY_CAP4_BEAMFORMEE_MAX_STS_UNDER_80MHZ_8,
				.phy_cap_info[5] =
					IEEE80211_HE_PHY_CAP5_BEAMFORMEE_NUM_SND_DIM_UNDER_80MHZ_2 |
L
Liad Kaufman 已提交
519
					IEEE80211_HE_PHY_CAP5_BEAMFORMEE_NUM_SND_DIM_ABOVE_80MHZ_2,
520 521 522 523 524 525 526 527 528 529 530
				.phy_cap_info[6] =
					IEEE80211_HE_PHY_CAP6_PPE_THRESHOLD_PRESENT,
				.phy_cap_info[7] =
					IEEE80211_HE_PHY_CAP7_POWER_BOOST_FACTOR_AR |
					IEEE80211_HE_PHY_CAP7_HE_SU_MU_PPDU_4XLTF_AND_08_US_GI |
					IEEE80211_HE_PHY_CAP7_MAX_NC_1,
				.phy_cap_info[8] =
					IEEE80211_HE_PHY_CAP8_HE_ER_SU_PPDU_4XLTF_AND_08_US_GI |
					IEEE80211_HE_PHY_CAP8_20MHZ_IN_40MHZ_HE_PPDU_IN_2G |
					IEEE80211_HE_PHY_CAP8_20MHZ_IN_160MHZ_HE_PPDU |
					IEEE80211_HE_PHY_CAP8_80MHZ_IN_160MHZ_HE_PPDU |
L
Liad Kaufman 已提交
531
					IEEE80211_HE_PHY_CAP8_DCM_MAX_RU_2x996,
532 533 534
				.phy_cap_info[9] =
					IEEE80211_HE_PHY_CAP9_NON_TRIGGERED_CQI_FEEDBACK |
					IEEE80211_HE_PHY_CAP9_RX_FULL_BW_SU_USING_MU_WITH_COMP_SIGB |
L
Liad Kaufman 已提交
535 536
					IEEE80211_HE_PHY_CAP9_RX_FULL_BW_SU_USING_MU_WITH_NON_COMP_SIGB |
					IEEE80211_HE_PHY_CAP9_NOMIMAL_PKT_PADDING_RESERVED,
537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555
			},
			/*
			 * Set default Tx/Rx HE MCS NSS Support field.
			 * Indicate support for up to 2 spatial streams and all
			 * MCS, without any special cases
			 */
			.he_mcs_nss_supp = {
				.rx_mcs_80 = cpu_to_le16(0xfffa),
				.tx_mcs_80 = cpu_to_le16(0xfffa),
				.rx_mcs_160 = cpu_to_le16(0xfffa),
				.tx_mcs_160 = cpu_to_le16(0xfffa),
				.rx_mcs_80p80 = cpu_to_le16(0xffff),
				.tx_mcs_80p80 = cpu_to_le16(0xffff),
			},
			/*
			 * Set default PPE thresholds, with PPET16 set to 0,
			 * PPET8 set to 7
			 */
			.ppe_thres = {0x61, 0x1c, 0xc7, 0x71},
556
		},
557 558 559 560 561 562 563
	},
	{
		.types_mask = BIT(NL80211_IFTYPE_AP),
		.he_cap = {
			.has_he = true,
			.he_cap_elem = {
				.mac_cap_info[0] =
564
					IEEE80211_HE_MAC_CAP0_HTC_HE,
565 566 567 568 569 570 571 572 573 574 575
				.mac_cap_info[1] =
					IEEE80211_HE_MAC_CAP1_TF_MAC_PAD_DUR_16US |
					IEEE80211_HE_MAC_CAP1_MULTI_TID_AGG_RX_QOS_8,
				.mac_cap_info[2] =
					IEEE80211_HE_MAC_CAP2_BSR |
					IEEE80211_HE_MAC_CAP2_ACK_EN,
				.mac_cap_info[3] =
					IEEE80211_HE_MAC_CAP3_OMI_CONTROL |
					IEEE80211_HE_MAC_CAP3_MAX_AMPDU_LEN_EXP_VHT_2,
				.mac_cap_info[4] =
					IEEE80211_HE_MAC_CAP4_AMDSU_IN_AMPDU,
L
Liad Kaufman 已提交
576 577
				.mac_cap_info[5] =
					IEEE80211_HE_MAC_CAP5_UL_2x996_TONE_RU,
578 579 580 581 582
				.phy_cap_info[0] =
					IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_40MHZ_IN_2G |
					IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_40MHZ_80MHZ_IN_5G |
					IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_160MHZ_IN_5G,
				.phy_cap_info[1] =
L
Liad Kaufman 已提交
583
					IEEE80211_HE_PHY_CAP1_LDPC_CODING_IN_PAYLOAD,
584
				.phy_cap_info[2] =
L
Liad Kaufman 已提交
585
					IEEE80211_HE_PHY_CAP2_NDP_4x_LTF_AND_3_2US,
586
				.phy_cap_info[3] =
L
Liad Kaufman 已提交
587
					IEEE80211_HE_PHY_CAP3_DCM_MAX_CONST_TX_NO_DCM |
588
					IEEE80211_HE_PHY_CAP3_DCM_MAX_TX_NSS_1 |
L
Liad Kaufman 已提交
589
					IEEE80211_HE_PHY_CAP3_DCM_MAX_CONST_RX_NO_DCM |
590 591 592 593 594 595 596
					IEEE80211_HE_PHY_CAP3_DCM_MAX_RX_NSS_1,
				.phy_cap_info[4] =
					IEEE80211_HE_PHY_CAP4_SU_BEAMFORMEE |
					IEEE80211_HE_PHY_CAP4_BEAMFORMEE_MAX_STS_ABOVE_80MHZ_8 |
					IEEE80211_HE_PHY_CAP4_BEAMFORMEE_MAX_STS_UNDER_80MHZ_8,
				.phy_cap_info[5] =
					IEEE80211_HE_PHY_CAP5_BEAMFORMEE_NUM_SND_DIM_UNDER_80MHZ_2 |
L
Liad Kaufman 已提交
597
					IEEE80211_HE_PHY_CAP5_BEAMFORMEE_NUM_SND_DIM_ABOVE_80MHZ_2,
598 599 600 601 602 603 604 605 606 607
				.phy_cap_info[6] =
					IEEE80211_HE_PHY_CAP6_PPE_THRESHOLD_PRESENT,
				.phy_cap_info[7] =
					IEEE80211_HE_PHY_CAP7_HE_SU_MU_PPDU_4XLTF_AND_08_US_GI |
					IEEE80211_HE_PHY_CAP7_MAX_NC_1,
				.phy_cap_info[8] =
					IEEE80211_HE_PHY_CAP8_HE_ER_SU_PPDU_4XLTF_AND_08_US_GI |
					IEEE80211_HE_PHY_CAP8_20MHZ_IN_40MHZ_HE_PPDU_IN_2G |
					IEEE80211_HE_PHY_CAP8_20MHZ_IN_160MHZ_HE_PPDU |
					IEEE80211_HE_PHY_CAP8_80MHZ_IN_160MHZ_HE_PPDU |
L
Liad Kaufman 已提交
608
					IEEE80211_HE_PHY_CAP8_DCM_MAX_RU_2x996,
609 610
				.phy_cap_info[9] =
					IEEE80211_HE_PHY_CAP9_RX_FULL_BW_SU_USING_MU_WITH_COMP_SIGB |
L
Liad Kaufman 已提交
611 612
					IEEE80211_HE_PHY_CAP9_RX_FULL_BW_SU_USING_MU_WITH_NON_COMP_SIGB |
					IEEE80211_HE_PHY_CAP9_NOMIMAL_PKT_PADDING_RESERVED,
613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631
			},
			/*
			 * Set default Tx/Rx HE MCS NSS Support field.
			 * Indicate support for up to 2 spatial streams and all
			 * MCS, without any special cases
			 */
			.he_mcs_nss_supp = {
				.rx_mcs_80 = cpu_to_le16(0xfffa),
				.tx_mcs_80 = cpu_to_le16(0xfffa),
				.rx_mcs_160 = cpu_to_le16(0xfffa),
				.tx_mcs_160 = cpu_to_le16(0xfffa),
				.rx_mcs_80p80 = cpu_to_le16(0xffff),
				.tx_mcs_80p80 = cpu_to_le16(0xffff),
			},
			/*
			 * Set default PPE thresholds, with PPET16 set to 0,
			 * PPET8 set to 7
			 */
			.ppe_thres = {0x61, 0x1c, 0xc7, 0x71},
632 633 634 635 636 637 638 639 640
		},
	},
};

static void iwl_init_he_hw_capab(struct ieee80211_supported_band *sband,
				 u8 tx_chains, u8 rx_chains)
{
	if (sband->band == NL80211_BAND_2GHZ ||
	    sband->band == NL80211_BAND_5GHZ)
641
		sband->iftype_data = iwl_he_capa;
642 643 644
	else
		return;

645
	sband->n_iftype_data = ARRAY_SIZE(iwl_he_capa);
646 647 648

	/* If not 2x2, we need to indicate 1x1 in the Midamble RX Max NSTS */
	if ((tx_chains & rx_chains) != ANT_AB) {
649 650 651 652 653 654 655 656 657 658
		int i;

		for (i = 0; i < sband->n_iftype_data; i++) {
			iwl_he_capa[i].he_cap.he_cap_elem.phy_cap_info[1] &=
				~IEEE80211_HE_PHY_CAP1_MIDAMBLE_RX_TX_MAX_NSTS;
			iwl_he_capa[i].he_cap.he_cap_elem.phy_cap_info[2] &=
				~IEEE80211_HE_PHY_CAP2_MIDAMBLE_RX_TX_MAX_NSTS;
			iwl_he_capa[i].he_cap.he_cap_elem.phy_cap_info[7] &=
				~IEEE80211_HE_PHY_CAP7_MAX_NC_MASK;
		}
659 660 661
	}
}

S
Shaul Triebitz 已提交
662 663 664 665
static void iwl_init_sbands(struct device *dev, const struct iwl_cfg *cfg,
			    struct iwl_nvm_data *data,
			    const __le16 *nvm_ch_flags, u8 tx_chains,
			    u8 rx_chains, u32 sbands_flags)
666
{
667
	int n_channels;
668 669 670
	int n_used = 0;
	struct ieee80211_supported_band *sband;

671
	n_channels = iwl_init_channel_map(dev, cfg, data, nvm_ch_flags,
672
					  sbands_flags);
673 674
	sband = &data->bands[NL80211_BAND_2GHZ];
	sband->band = NL80211_BAND_2GHZ;
675 676 677
	sband->bitrates = &iwl_cfg80211_rates[RATES_24_OFFS];
	sband->n_bitrates = N_RATES_24;
	n_used += iwl_init_sband_channels(data, sband, n_channels,
678 679
					  NL80211_BAND_2GHZ);
	iwl_init_ht_hw_capab(cfg, data, &sband->ht_cap, NL80211_BAND_2GHZ,
680
			     tx_chains, rx_chains);
681

682
	if (data->sku_cap_11ax_enable && !iwlwifi_mod_params.disable_11ax)
683 684
		iwl_init_he_hw_capab(sband, tx_chains, rx_chains);

685 686
	sband = &data->bands[NL80211_BAND_5GHZ];
	sband->band = NL80211_BAND_5GHZ;
687 688 689
	sband->bitrates = &iwl_cfg80211_rates[RATES_52_OFFS];
	sband->n_bitrates = N_RATES_52;
	n_used += iwl_init_sband_channels(data, sband, n_channels,
690 691
					  NL80211_BAND_5GHZ);
	iwl_init_ht_hw_capab(cfg, data, &sband->ht_cap, NL80211_BAND_5GHZ,
692
			     tx_chains, rx_chains);
693
	if (data->sku_cap_11ac_enable && !iwlwifi_mod_params.disable_11ac)
694 695
		iwl_init_vht_hw_capab(cfg, data, &sband->vht_cap,
				      tx_chains, rx_chains);
696

697
	if (data->sku_cap_11ax_enable && !iwlwifi_mod_params.disable_11ax)
698 699
		iwl_init_he_hw_capab(sband, tx_chains, rx_chains);

700 701 702 703 704
	if (n_channels != n_used)
		IWL_ERR_DEV(dev, "NVM: used only %d of %d channels\n",
			    n_used, n_channels);
}

705 706
static int iwl_get_sku(const struct iwl_cfg *cfg, const __le16 *nvm_sw,
		       const __le16 *phy_sku)
707
{
708
	if (cfg->nvm_type != IWL_NVM_EXT)
709
		return le16_to_cpup(nvm_sw + SKU);
710

711
	return le32_to_cpup((__le32 *)(phy_sku + SKU_FAMILY_8000));
712 713
}

714
static int iwl_get_nvm_version(const struct iwl_cfg *cfg, const __le16 *nvm_sw)
715
{
716
	if (cfg->nvm_type != IWL_NVM_EXT)
717 718 719
		return le16_to_cpup(nvm_sw + NVM_VERSION);
	else
		return le32_to_cpup((__le32 *)(nvm_sw +
720
					       NVM_VERSION_EXT_NVM));
721 722
}

723 724
static int iwl_get_radio_cfg(const struct iwl_cfg *cfg, const __le16 *nvm_sw,
			     const __le16 *phy_sku)
725
{
726
	if (cfg->nvm_type != IWL_NVM_EXT)
727
		return le16_to_cpup(nvm_sw + RADIO_CFG);
728

729
	return le32_to_cpup((__le32 *)(phy_sku + RADIO_CFG_FAMILY_EXT_NVM));
730

731 732
}

733
static int iwl_get_n_hw_addrs(const struct iwl_cfg *cfg, const __le16 *nvm_sw)
734
{
735 736
	int n_hw_addr;

737
	if (cfg->nvm_type != IWL_NVM_EXT)
738
		return le16_to_cpup(nvm_sw + N_HW_ADDRS);
739

740
	n_hw_addr = le32_to_cpup((__le32 *)(nvm_sw + N_HW_ADDRS_FAMILY_8000));
741 742

	return n_hw_addr & N_HW_ADDR_MASK;
743 744 745 746 747 748
}

static void iwl_set_radio_cfg(const struct iwl_cfg *cfg,
			      struct iwl_nvm_data *data,
			      u32 radio_cfg)
{
749
	if (cfg->nvm_type != IWL_NVM_EXT) {
750 751 752 753 754 755 756 757
		data->radio_cfg_type = NVM_RF_CFG_TYPE_MSK(radio_cfg);
		data->radio_cfg_step = NVM_RF_CFG_STEP_MSK(radio_cfg);
		data->radio_cfg_dash = NVM_RF_CFG_DASH_MSK(radio_cfg);
		data->radio_cfg_pnum = NVM_RF_CFG_PNUM_MSK(radio_cfg);
		return;
	}

	/* set the radio configuration for family 8000 */
758 759 760 761 762 763
	data->radio_cfg_type = EXT_NVM_RF_CFG_TYPE_MSK(radio_cfg);
	data->radio_cfg_step = EXT_NVM_RF_CFG_STEP_MSK(radio_cfg);
	data->radio_cfg_dash = EXT_NVM_RF_CFG_DASH_MSK(radio_cfg);
	data->radio_cfg_pnum = EXT_NVM_RF_CFG_FLAVOR_MSK(radio_cfg);
	data->valid_tx_ant = EXT_NVM_RF_CFG_TX_ANT_MSK(radio_cfg);
	data->valid_rx_ant = EXT_NVM_RF_CFG_RX_ANT_MSK(radio_cfg);
764 765
}

766 767 768 769 770 771 772 773 774 775 776 777 778 779 780
static void iwl_flip_hw_address(__le32 mac_addr0, __le32 mac_addr1, u8 *dest)
{
	const u8 *hw_addr;

	hw_addr = (const u8 *)&mac_addr0;
	dest[0] = hw_addr[3];
	dest[1] = hw_addr[2];
	dest[2] = hw_addr[1];
	dest[3] = hw_addr[0];

	hw_addr = (const u8 *)&mac_addr1;
	dest[4] = hw_addr[1];
	dest[5] = hw_addr[0];
}

S
Shaul Triebitz 已提交
781 782
static void iwl_set_hw_address_from_csr(struct iwl_trans *trans,
					struct iwl_nvm_data *data)
783
{
784 785 786 787 788 789
	__le32 mac_addr0 =
		cpu_to_le32(iwl_read32(trans,
				       trans->cfg->csr->mac_addr0_strap));
	__le32 mac_addr1 =
		cpu_to_le32(iwl_read32(trans,
				       trans->cfg->csr->mac_addr1_strap));
790

791 792 793 794 795 796 797 798
	iwl_flip_hw_address(mac_addr0, mac_addr1, data->hw_addr);
	/*
	 * If the OEM fused a valid address, use it instead of the one in the
	 * OTP
	 */
	if (is_valid_ether_addr(data->hw_addr))
		return;

799 800 801 802
	mac_addr0 = cpu_to_le32(iwl_read32(trans,
					   trans->cfg->csr->mac_addr0_otp));
	mac_addr1 = cpu_to_le32(iwl_read32(trans,
					   trans->cfg->csr->mac_addr1_otp));
803 804 805 806

	iwl_flip_hw_address(mac_addr0, mac_addr1, data->hw_addr);
}

807
static void iwl_set_hw_address_family_8000(struct iwl_trans *trans,
808
					   const struct iwl_cfg *cfg,
809 810
					   struct iwl_nvm_data *data,
					   const __le16 *mac_override,
811
					   const __be16 *nvm_hw)
812 813 814 815
{
	const u8 *hw_addr;

	if (mac_override) {
816 817 818 819
		static const u8 reserved_mac[] = {
			0x02, 0xcc, 0xaa, 0xff, 0xee, 0x00
		};

820
		hw_addr = (const u8 *)(mac_override +
821
				 MAC_ADDRESS_OVERRIDE_EXT_NVM);
822

823 824 825 826 827
		/*
		 * Store the MAC address from MAO section.
		 * No byte swapping is required in MAO section
		 */
		memcpy(data->hw_addr, hw_addr, ETH_ALEN);
828

829 830 831 832 833 834
		/*
		 * Force the use of the OTP MAC address in case of reserved MAC
		 * address in the NVM, or if address is given but invalid.
		 */
		if (is_valid_ether_addr(data->hw_addr) &&
		    memcmp(reserved_mac, hw_addr, ETH_ALEN) != 0)
835
			return;
836

837 838
		IWL_ERR(trans,
			"mac address from nvm override section is not valid\n");
839 840
	}

841
	if (nvm_hw) {
842 843 844 845 846
		/* read the mac address from WFMP registers */
		__le32 mac_addr0 = cpu_to_le32(iwl_trans_read_prph(trans,
						WFMP_MAC_ADDR_0));
		__le32 mac_addr1 = cpu_to_le32(iwl_trans_read_prph(trans,
						WFMP_MAC_ADDR_1));
847 848

		iwl_flip_hw_address(mac_addr0, mac_addr1, data->hw_addr);
849

850 851
		return;
	}
852

853 854 855
	IWL_ERR(trans, "mac address is not found\n");
}

856 857
static int iwl_set_hw_address(struct iwl_trans *trans,
			      const struct iwl_cfg *cfg,
858
			      struct iwl_nvm_data *data, const __be16 *nvm_hw,
859
			      const __le16 *mac_override)
860
{
861 862
	if (cfg->mac_addr_from_csr) {
		iwl_set_hw_address_from_csr(trans, data);
863
	} else if (cfg->nvm_type != IWL_NVM_EXT) {
864 865 866 867 868 869 870 871 872 873 874 875 876
		const u8 *hw_addr = (const u8 *)(nvm_hw + HW_ADDR);

		/* The byte order is little endian 16 bit, meaning 214365 */
		data->hw_addr[0] = hw_addr[1];
		data->hw_addr[1] = hw_addr[0];
		data->hw_addr[2] = hw_addr[3];
		data->hw_addr[3] = hw_addr[2];
		data->hw_addr[4] = hw_addr[5];
		data->hw_addr[5] = hw_addr[4];
	} else {
		iwl_set_hw_address_family_8000(trans, cfg, data,
					       mac_override, nvm_hw);
	}
877 878 879 880 881 882

	if (!is_valid_ether_addr(data->hw_addr)) {
		IWL_ERR(trans, "no valid mac address was found\n");
		return -EINVAL;
	}

883 884
	IWL_INFO(trans, "base HW address: %pM\n", data->hw_addr);

885
	return 0;
886 887
}

888 889
static bool
iwl_nvm_no_wide_in_5ghz(struct device *dev, const struct iwl_cfg *cfg,
890
			const __be16 *nvm_hw)
891 892 893 894 895 896 897 898 899 900 901 902 903 904 905
{
	/*
	 * Workaround a bug in Indonesia SKUs where the regulatory in
	 * some 7000-family OTPs erroneously allow wide channels in
	 * 5GHz.  To check for Indonesia, we take the SKU value from
	 * bits 1-4 in the subsystem ID and check if it is either 5 or
	 * 9.  In those cases, we need to force-disable wide channels
	 * in 5GHz otherwise the FW will throw a sysassert when we try
	 * to use them.
	 */
	if (cfg->device_family == IWL_DEVICE_FAMILY_7000) {
		/*
		 * Unlike the other sections in the NVM, the hw
		 * section uses big-endian.
		 */
906
		u16 subsystem_id = be16_to_cpup(nvm_hw + SUBSYSTEM_ID);
907 908 909 910 911 912 913 914 915 916 917 918 919
		u8 sku = (subsystem_id & 0x1e) >> 1;

		if (sku == 5 || sku == 9) {
			IWL_DEBUG_EEPROM(dev,
					 "disabling wide channels in 5GHz (0x%0x %d)\n",
					 subsystem_id, sku);
			return true;
		}
	}

	return false;
}

920
struct iwl_nvm_data *
921
iwl_parse_nvm_data(struct iwl_trans *trans, const struct iwl_cfg *cfg,
922
		   const __be16 *nvm_hw, const __le16 *nvm_sw,
923
		   const __le16 *nvm_calib, const __le16 *regulatory,
924
		   const __le16 *mac_override, const __le16 *phy_sku,
925
		   u8 tx_chains, u8 rx_chains, bool lar_fw_supported)
926
{
927
	struct device *dev = trans->dev;
928
	struct iwl_nvm_data *data;
929 930
	bool lar_enabled;
	u32 sku, radio_cfg;
931
	u32 sbands_flags = 0;
932
	u16 lar_config;
933
	const __le16 *ch_section;
934

935
	if (cfg->nvm_type != IWL_NVM_EXT)
936 937 938
		data = kzalloc(struct_size(data, channels,
					   IWL_NVM_NUM_CHANNELS),
					   GFP_KERNEL);
939
	else
940 941 942
		data = kzalloc(struct_size(data, channels,
					   IWL_NVM_NUM_CHANNELS_EXT),
					   GFP_KERNEL);
943 944 945
	if (!data)
		return NULL;

946
	data->nvm_version = iwl_get_nvm_version(cfg, nvm_sw);
947

948
	radio_cfg = iwl_get_radio_cfg(cfg, nvm_sw, phy_sku);
949
	iwl_set_radio_cfg(cfg, data, radio_cfg);
950 951 952 953
	if (data->valid_tx_ant)
		tx_chains &= data->valid_tx_ant;
	if (data->valid_rx_ant)
		rx_chains &= data->valid_rx_ant;
954

955
	sku = iwl_get_sku(cfg, nvm_sw, phy_sku);
956 957
	data->sku_cap_band_24ghz_enable = sku & NVM_SKU_CAP_BAND_24GHZ;
	data->sku_cap_band_52ghz_enable = sku & NVM_SKU_CAP_BAND_52GHZ;
958 959 960
	data->sku_cap_11n_enable = sku & NVM_SKU_CAP_11N_ENABLE;
	if (iwlwifi_mod_params.disable_11n & IWL_DISABLE_HT_ALL)
		data->sku_cap_11n_enable = false;
961 962
	data->sku_cap_11ac_enable = data->sku_cap_11n_enable &&
				    (sku & NVM_SKU_CAP_11AC_ENABLE);
963
	data->sku_cap_mimo_disabled = sku & NVM_SKU_CAP_MIMO_DISABLE;
964

965
	data->n_hw_addrs = iwl_get_n_hw_addrs(cfg, nvm_sw);
966

967
	if (cfg->nvm_type != IWL_NVM_EXT) {
968 969
		/* Checking for required sections */
		if (!nvm_calib) {
970 971
			IWL_ERR(trans,
				"Can't parse empty Calib NVM sections\n");
972
			kfree(data);
973 974
			return NULL;
		}
975 976 977 978 979

		ch_section = cfg->nvm_type == IWL_NVM_SDP ?
			     &regulatory[NVM_CHANNELS_SDP] :
			     &nvm_sw[NVM_CHANNELS];

980 981 982
		/* in family 8000 Xtal calibration values moved to OTP */
		data->xtal_calib[0] = *(nvm_calib + XTAL_CALIB);
		data->xtal_calib[1] = *(nvm_calib + XTAL_CALIB + 1);
983
		lar_enabled = true;
984
	} else {
985
		u16 lar_offset = data->nvm_version < 0xE39 ?
986 987
				 NVM_LAR_OFFSET_OLD :
				 NVM_LAR_OFFSET;
988 989

		lar_config = le16_to_cpup(regulatory + lar_offset);
990
		data->lar_enabled = !!(lar_config &
991
				       NVM_LAR_ENABLED);
992
		lar_enabled = data->lar_enabled;
993
		ch_section = &regulatory[NVM_CHANNELS_EXTENDED];
994
	}
995

996 997 998 999 1000 1001
	/* If no valid mac address was found - bail out */
	if (iwl_set_hw_address(trans, cfg, data, nvm_hw, mac_override)) {
		kfree(data);
		return NULL;
	}

1002 1003 1004 1005 1006 1007
	if (lar_fw_supported && lar_enabled)
		sbands_flags |= IWL_NVM_SBANDS_FLAGS_LAR;

	if (iwl_nvm_no_wide_in_5ghz(dev, cfg, nvm_hw))
		sbands_flags |= IWL_NVM_SBANDS_FLAGS_NO_WIDE_IN_5GHZ;

1008
	iwl_init_sbands(dev, cfg, data, ch_section, tx_chains, rx_chains,
1009
			sbands_flags);
1010
	data->calib_version = 255;
1011 1012 1013

	return data;
}
1014
IWL_EXPORT_SYMBOL(iwl_parse_nvm_data);
1015 1016

static u32 iwl_nvm_get_regdom_bw_flags(const u8 *nvm_chan,
1017 1018
				       int ch_idx, u16 nvm_flags,
				       const struct iwl_cfg *cfg)
1019 1020
{
	u32 flags = NL80211_RRF_NO_HT40;
1021 1022
	u32 last_5ghz_ht = LAST_5GHZ_HT;

1023
	if (cfg->nvm_type == IWL_NVM_EXT)
1024
		last_5ghz_ht = LAST_5GHZ_HT_FAMILY_8000;
1025 1026 1027 1028 1029 1030 1031

	if (ch_idx < NUM_2GHZ_CHANNELS &&
	    (nvm_flags & NVM_CHANNEL_40MHZ)) {
		if (nvm_chan[ch_idx] <= LAST_2GHZ_HT_PLUS)
			flags &= ~NL80211_RRF_NO_HT40PLUS;
		if (nvm_chan[ch_idx] >= FIRST_2GHZ_HT_MINUS)
			flags &= ~NL80211_RRF_NO_HT40MINUS;
1032
	} else if (nvm_chan[ch_idx] <= last_5ghz_ht &&
1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063
		   (nvm_flags & NVM_CHANNEL_40MHZ)) {
		if ((ch_idx - NUM_2GHZ_CHANNELS) % 2 == 0)
			flags &= ~NL80211_RRF_NO_HT40PLUS;
		else
			flags &= ~NL80211_RRF_NO_HT40MINUS;
	}

	if (!(nvm_flags & NVM_CHANNEL_80MHZ))
		flags |= NL80211_RRF_NO_80MHZ;
	if (!(nvm_flags & NVM_CHANNEL_160MHZ))
		flags |= NL80211_RRF_NO_160MHZ;

	if (!(nvm_flags & NVM_CHANNEL_ACTIVE))
		flags |= NL80211_RRF_NO_IR;

	if (nvm_flags & NVM_CHANNEL_RADAR)
		flags |= NL80211_RRF_DFS;

	if (nvm_flags & NVM_CHANNEL_INDOOR_ONLY)
		flags |= NL80211_RRF_NO_OUTDOOR;

	/* Set the GO concurrent flag only in case that NO_IR is set.
	 * Otherwise it is meaningless
	 */
	if ((nvm_flags & NVM_CHANNEL_GO_CONCURRENT) &&
	    (flags & NL80211_RRF_NO_IR))
		flags |= NL80211_RRF_GO_CONCURRENT;

	return flags;
}

1064 1065 1066 1067 1068
struct regdb_ptrs {
	struct ieee80211_wmm_rule *rule;
	u32 token;
};

1069
struct ieee80211_regdomain *
1070
iwl_parse_nvm_mcc_info(struct device *dev, const struct iwl_cfg *cfg,
1071 1072
		       int num_of_ch, __le32 *channels, u16 fw_mcc,
		       u16 geo_info)
1073 1074
{
	int ch_idx;
1075 1076
	u16 ch_flags;
	u32 reg_rule_flags, prev_reg_rule_flags = 0;
1077
	const u8 *nvm_chan = cfg->nvm_type == IWL_NVM_EXT ?
1078
			     iwl_ext_nvm_channels : iwl_nvm_channels;
1079
	struct ieee80211_regdomain *regd, *copy_rd;
1080
	int size_of_regd, regd_to_copy;
1081
	struct ieee80211_reg_rule *rule;
1082
	struct regdb_ptrs *regdb_ptrs;
1083
	enum nl80211_band band;
1084
	int center_freq, prev_center_freq = 0;
1085
	int valid_rules = 0;
1086
	bool new_rule;
1087
	int max_num_ch = cfg->nvm_type == IWL_NVM_EXT ?
1088
			 IWL_NVM_NUM_CHANNELS_EXT : IWL_NVM_NUM_CHANNELS;
1089

1090 1091 1092
	if (WARN_ON(num_of_ch > max_num_ch))
		num_of_ch = max_num_ch;

1093 1094 1095
	if (WARN_ON_ONCE(num_of_ch > NL80211_MAX_SUPP_REG_RULES))
		return ERR_PTR(-EINVAL);

1096 1097 1098 1099 1100 1101 1102 1103
	IWL_DEBUG_DEV(dev, IWL_DL_LAR, "building regdom for %d channels\n",
		      num_of_ch);

	/* build a regdomain rule for every valid channel */
	size_of_regd =
		sizeof(struct ieee80211_regdomain) +
		num_of_ch * sizeof(struct ieee80211_reg_rule);

1104
	regd = kzalloc(size_of_regd, GFP_KERNEL);
1105 1106 1107
	if (!regd)
		return ERR_PTR(-ENOMEM);

1108 1109 1110 1111 1112 1113 1114 1115 1116 1117
	regdb_ptrs = kcalloc(num_of_ch, sizeof(*regdb_ptrs), GFP_KERNEL);
	if (!regdb_ptrs) {
		copy_rd = ERR_PTR(-ENOMEM);
		goto out;
	}

	/* set alpha2 from FW. */
	regd->alpha2[0] = fw_mcc >> 8;
	regd->alpha2[1] = fw_mcc & 0xff;

1118 1119 1120
	for (ch_idx = 0; ch_idx < num_of_ch; ch_idx++) {
		ch_flags = (u16)__le32_to_cpup(channels + ch_idx);
		band = (ch_idx < NUM_2GHZ_CHANNELS) ?
1121
		       NL80211_BAND_2GHZ : NL80211_BAND_5GHZ;
1122 1123 1124 1125 1126
		center_freq = ieee80211_channel_to_frequency(nvm_chan[ch_idx],
							     band);
		new_rule = false;

		if (!(ch_flags & NVM_CHANNEL_VALID)) {
1127 1128
			iwl_nvm_print_channel_flags(dev, IWL_DL_LAR,
						    nvm_chan[ch_idx], ch_flags);
1129 1130 1131
			continue;
		}

1132 1133 1134
		reg_rule_flags = iwl_nvm_get_regdom_bw_flags(nvm_chan, ch_idx,
							     ch_flags, cfg);

1135
		/* we can't continue the same rule */
1136
		if (ch_idx == 0 || prev_reg_rule_flags != reg_rule_flags ||
1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151
		    center_freq - prev_center_freq > 20) {
			valid_rules++;
			new_rule = true;
		}

		rule = &regd->reg_rules[valid_rules - 1];

		if (new_rule)
			rule->freq_range.start_freq_khz =
						MHZ_TO_KHZ(center_freq - 10);

		rule->freq_range.end_freq_khz = MHZ_TO_KHZ(center_freq + 10);

		/* this doesn't matter - not used by FW */
		rule->power_rule.max_antenna_gain = DBI_TO_MBI(6);
1152 1153
		rule->power_rule.max_eirp =
			DBM_TO_MBM(IWL_DEFAULT_MAX_TX_POWER);
1154

1155
		rule->flags = reg_rule_flags;
1156 1157 1158 1159 1160 1161

		/* rely on auto-calculation to merge BW of contiguous chans */
		rule->flags |= NL80211_RRF_AUTO_BW;
		rule->freq_range.max_bandwidth_khz = 0;

		prev_center_freq = center_freq;
1162
		prev_reg_rule_flags = reg_rule_flags;
1163

1164 1165
		iwl_nvm_print_channel_flags(dev, IWL_DL_LAR,
					    nvm_chan[ch_idx], ch_flags);
1166 1167 1168 1169 1170

		if (!(geo_info & GEO_WMM_ETSI_5GHZ_INFO) ||
		    band == NL80211_BAND_2GHZ)
			continue;

1171
		reg_query_regdb_wmm(regd->alpha2, center_freq, rule);
1172 1173 1174 1175
	}

	regd->n_reg_rules = valid_rules;

1176 1177 1178 1179 1180 1181 1182
	/*
	 * Narrow down regdom for unused regulatory rules to prevent hole
	 * between reg rules to wmm rules.
	 */
	regd_to_copy = sizeof(struct ieee80211_regdomain) +
		valid_rules * sizeof(struct ieee80211_reg_rule);

1183
	copy_rd = kmemdup(regd, regd_to_copy, GFP_KERNEL);
1184 1185 1186 1187 1188 1189 1190 1191 1192
	if (!copy_rd) {
		copy_rd = ERR_PTR(-ENOMEM);
		goto out;
	}

out:
	kfree(regdb_ptrs);
	kfree(regd);
	return copy_rd;
1193 1194
}
IWL_EXPORT_SYMBOL(iwl_parse_nvm_mcc_info);
1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390

#define IWL_MAX_NVM_SECTION_SIZE	0x1b58
#define IWL_MAX_EXT_NVM_SECTION_SIZE	0x1ffc
#define MAX_NVM_FILE_LEN	16384

void iwl_nvm_fixups(u32 hw_id, unsigned int section, u8 *data,
		    unsigned int len)
{
#define IWL_4165_DEVICE_ID	0x5501
#define NVM_SKU_CAP_MIMO_DISABLE BIT(5)

	if (section == NVM_SECTION_TYPE_PHY_SKU &&
	    hw_id == IWL_4165_DEVICE_ID && data && len >= 5 &&
	    (data[4] & NVM_SKU_CAP_MIMO_DISABLE))
		/* OTP 0x52 bug work around: it's a 1x1 device */
		data[3] = ANT_B | (ANT_B << 4);
}
IWL_EXPORT_SYMBOL(iwl_nvm_fixups);

/*
 * Reads external NVM from a file into mvm->nvm_sections
 *
 * HOW TO CREATE THE NVM FILE FORMAT:
 * ------------------------------
 * 1. create hex file, format:
 *      3800 -> header
 *      0000 -> header
 *      5a40 -> data
 *
 *   rev - 6 bit (word1)
 *   len - 10 bit (word1)
 *   id - 4 bit (word2)
 *   rsv - 12 bit (word2)
 *
 * 2. flip 8bits with 8 bits per line to get the right NVM file format
 *
 * 3. create binary file from the hex file
 *
 * 4. save as "iNVM_xxx.bin" under /lib/firmware
 */
int iwl_read_external_nvm(struct iwl_trans *trans,
			  const char *nvm_file_name,
			  struct iwl_nvm_section *nvm_sections)
{
	int ret, section_size;
	u16 section_id;
	const struct firmware *fw_entry;
	const struct {
		__le16 word1;
		__le16 word2;
		u8 data[];
	} *file_sec;
	const u8 *eof;
	u8 *temp;
	int max_section_size;
	const __le32 *dword_buff;

#define NVM_WORD1_LEN(x) (8 * (x & 0x03FF))
#define NVM_WORD2_ID(x) (x >> 12)
#define EXT_NVM_WORD2_LEN(x) (2 * (((x) & 0xFF) << 8 | (x) >> 8))
#define EXT_NVM_WORD1_ID(x) ((x) >> 4)
#define NVM_HEADER_0	(0x2A504C54)
#define NVM_HEADER_1	(0x4E564D2A)
#define NVM_HEADER_SIZE	(4 * sizeof(u32))

	IWL_DEBUG_EEPROM(trans->dev, "Read from external NVM\n");

	/* Maximal size depends on NVM version */
	if (trans->cfg->nvm_type != IWL_NVM_EXT)
		max_section_size = IWL_MAX_NVM_SECTION_SIZE;
	else
		max_section_size = IWL_MAX_EXT_NVM_SECTION_SIZE;

	/*
	 * Obtain NVM image via request_firmware. Since we already used
	 * request_firmware_nowait() for the firmware binary load and only
	 * get here after that we assume the NVM request can be satisfied
	 * synchronously.
	 */
	ret = request_firmware(&fw_entry, nvm_file_name, trans->dev);
	if (ret) {
		IWL_ERR(trans, "ERROR: %s isn't available %d\n",
			nvm_file_name, ret);
		return ret;
	}

	IWL_INFO(trans, "Loaded NVM file %s (%zu bytes)\n",
		 nvm_file_name, fw_entry->size);

	if (fw_entry->size > MAX_NVM_FILE_LEN) {
		IWL_ERR(trans, "NVM file too large\n");
		ret = -EINVAL;
		goto out;
	}

	eof = fw_entry->data + fw_entry->size;
	dword_buff = (__le32 *)fw_entry->data;

	/* some NVM file will contain a header.
	 * The header is identified by 2 dwords header as follow:
	 * dword[0] = 0x2A504C54
	 * dword[1] = 0x4E564D2A
	 *
	 * This header must be skipped when providing the NVM data to the FW.
	 */
	if (fw_entry->size > NVM_HEADER_SIZE &&
	    dword_buff[0] == cpu_to_le32(NVM_HEADER_0) &&
	    dword_buff[1] == cpu_to_le32(NVM_HEADER_1)) {
		file_sec = (void *)(fw_entry->data + NVM_HEADER_SIZE);
		IWL_INFO(trans, "NVM Version %08X\n", le32_to_cpu(dword_buff[2]));
		IWL_INFO(trans, "NVM Manufacturing date %08X\n",
			 le32_to_cpu(dword_buff[3]));

		/* nvm file validation, dword_buff[2] holds the file version */
		if (trans->cfg->device_family == IWL_DEVICE_FAMILY_8000 &&
		    CSR_HW_REV_STEP(trans->hw_rev) == SILICON_C_STEP &&
		    le32_to_cpu(dword_buff[2]) < 0xE4A) {
			ret = -EFAULT;
			goto out;
		}
	} else {
		file_sec = (void *)fw_entry->data;
	}

	while (true) {
		if (file_sec->data > eof) {
			IWL_ERR(trans,
				"ERROR - NVM file too short for section header\n");
			ret = -EINVAL;
			break;
		}

		/* check for EOF marker */
		if (!file_sec->word1 && !file_sec->word2) {
			ret = 0;
			break;
		}

		if (trans->cfg->nvm_type != IWL_NVM_EXT) {
			section_size =
				2 * NVM_WORD1_LEN(le16_to_cpu(file_sec->word1));
			section_id = NVM_WORD2_ID(le16_to_cpu(file_sec->word2));
		} else {
			section_size = 2 * EXT_NVM_WORD2_LEN(
						le16_to_cpu(file_sec->word2));
			section_id = EXT_NVM_WORD1_ID(
						le16_to_cpu(file_sec->word1));
		}

		if (section_size > max_section_size) {
			IWL_ERR(trans, "ERROR - section too large (%d)\n",
				section_size);
			ret = -EINVAL;
			break;
		}

		if (!section_size) {
			IWL_ERR(trans, "ERROR - section empty\n");
			ret = -EINVAL;
			break;
		}

		if (file_sec->data + section_size > eof) {
			IWL_ERR(trans,
				"ERROR - NVM file too short for section (%d bytes)\n",
				section_size);
			ret = -EINVAL;
			break;
		}

		if (WARN(section_id >= NVM_MAX_NUM_SECTIONS,
			 "Invalid NVM section ID %d\n", section_id)) {
			ret = -EINVAL;
			break;
		}

		temp = kmemdup(file_sec->data, section_size, GFP_KERNEL);
		if (!temp) {
			ret = -ENOMEM;
			break;
		}

		iwl_nvm_fixups(trans->hw_id, section_id, temp, section_size);

		kfree(nvm_sections[section_id].data);
		nvm_sections[section_id].data = temp;
		nvm_sections[section_id].length = section_size;

		/* advance to the next section */
		file_sec = (void *)(file_sec->data + section_size);
	}
out:
	release_firmware(fw_entry);
	return ret;
}
IWL_EXPORT_SYMBOL(iwl_read_external_nvm);
S
Shaul Triebitz 已提交
1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407

struct iwl_nvm_data *iwl_get_nvm(struct iwl_trans *trans,
				 const struct iwl_fw *fw)
{
	struct iwl_nvm_get_info cmd = {};
	struct iwl_nvm_get_info_rsp *rsp;
	struct iwl_nvm_data *nvm;
	struct iwl_host_cmd hcmd = {
		.flags = CMD_WANT_SKB | CMD_SEND_IN_RFKILL,
		.data = { &cmd, },
		.len = { sizeof(cmd) },
		.id = WIDE_ID(REGULATORY_AND_NVM_GROUP, NVM_GET_INFO)
	};
	int  ret;
	bool lar_fw_supported = !iwlwifi_mod_params.lar_disable &&
				fw_has_capa(&fw->ucode_capa,
					    IWL_UCODE_TLV_CAPA_LAR_SUPPORT);
1408
	bool empty_otp;
S
Shaul Triebitz 已提交
1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423
	u32 mac_flags;
	u32 sbands_flags = 0;

	ret = iwl_trans_send_cmd(trans, &hcmd);
	if (ret)
		return ERR_PTR(ret);

	if (WARN(iwl_rx_packet_payload_len(hcmd.resp_pkt) != sizeof(*rsp),
		 "Invalid payload len in NVM response from FW %d",
		 iwl_rx_packet_payload_len(hcmd.resp_pkt))) {
		ret = -EINVAL;
		goto out;
	}

	rsp = (void *)hcmd.resp_pkt->data;
1424 1425 1426
	empty_otp = !!(le32_to_cpu(rsp->general.flags) &
		       NVM_GENERAL_FLAGS_EMPTY_OTP);
	if (empty_otp)
S
Shaul Triebitz 已提交
1427 1428
		IWL_INFO(trans, "OTP is empty\n");

1429
	nvm = kzalloc(struct_size(nvm, channels, IWL_NUM_CHANNELS), GFP_KERNEL);
S
Shaul Triebitz 已提交
1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447
	if (!nvm) {
		ret = -ENOMEM;
		goto out;
	}

	iwl_set_hw_address_from_csr(trans, nvm);
	/* TODO: if platform NVM has MAC address - override it here */

	if (!is_valid_ether_addr(nvm->hw_addr)) {
		IWL_ERR(trans, "no valid mac address was found\n");
		ret = -EINVAL;
		goto err_free;
	}

	IWL_INFO(trans, "base HW address: %pM\n", nvm->hw_addr);

	/* Initialize general data */
	nvm->nvm_version = le16_to_cpu(rsp->general.nvm_version);
1448 1449 1450 1451 1452
	nvm->n_hw_addrs = rsp->general.n_hw_addrs;
	if (nvm->n_hw_addrs == 0)
		IWL_WARN(trans,
			 "Firmware declares no reserved mac addresses. OTP is empty: %d\n",
			 empty_otp);
S
Shaul Triebitz 已提交
1453 1454 1455 1456 1457 1458 1459

	/* Initialize MAC sku data */
	mac_flags = le32_to_cpu(rsp->mac_sku.mac_sku_flags);
	nvm->sku_cap_11ac_enable =
		!!(mac_flags & NVM_MAC_SKU_FLAGS_802_11AC_ENABLED);
	nvm->sku_cap_11n_enable =
		!!(mac_flags & NVM_MAC_SKU_FLAGS_802_11N_ENABLED);
1460 1461
	nvm->sku_cap_11ax_enable =
		!!(mac_flags & NVM_MAC_SKU_FLAGS_802_11AX_ENABLED);
S
Shaul Triebitz 已提交
1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493
	nvm->sku_cap_band_24ghz_enable =
		!!(mac_flags & NVM_MAC_SKU_FLAGS_BAND_2_4_ENABLED);
	nvm->sku_cap_band_52ghz_enable =
		!!(mac_flags & NVM_MAC_SKU_FLAGS_BAND_5_2_ENABLED);
	nvm->sku_cap_mimo_disabled =
		!!(mac_flags & NVM_MAC_SKU_FLAGS_MIMO_DISABLED);

	/* Initialize PHY sku data */
	nvm->valid_tx_ant = (u8)le32_to_cpu(rsp->phy_sku.tx_chains);
	nvm->valid_rx_ant = (u8)le32_to_cpu(rsp->phy_sku.rx_chains);

	if (le32_to_cpu(rsp->regulatory.lar_enabled) && lar_fw_supported) {
		nvm->lar_enabled = true;
		sbands_flags |= IWL_NVM_SBANDS_FLAGS_LAR;
	}

	iwl_init_sbands(trans->dev, trans->cfg, nvm,
			rsp->regulatory.channel_profile,
			nvm->valid_tx_ant & fw->valid_tx_ant,
			nvm->valid_rx_ant & fw->valid_rx_ant,
			sbands_flags);

	iwl_free_resp(&hcmd);
	return nvm;

err_free:
	kfree(nvm);
out:
	iwl_free_resp(&hcmd);
	return ERR_PTR(ret);
}
IWL_EXPORT_SYMBOL(iwl_get_nvm);