iwl-nvm-parse.c 26.3 KB
Newer Older
1 2 3 4 5 6 7
/******************************************************************************
 *
 * This file is provided under a dual BSD/GPLv2 license.  When using or
 * redistributing this file, you may do so under either license.
 *
 * GPL LICENSE SUMMARY
 *
8
 * Copyright(c) 2008 - 2014 Intel Corporation. All rights reserved.
9
 * Copyright(c) 2013 - 2015 Intel Mobile Communications GmbH
10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of version 2 of the GNU General Public License as
 * published by the Free Software Foundation.
 *
 * This program is distributed in the hope that it will be useful, but
 * WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110,
 * USA
 *
 * The full GNU General Public License is included in this distribution
26
 * in the file called COPYING.
27 28
 *
 * Contact Information:
29
 *  Intel Linux Wireless <linuxwifi@intel.com>
30 31 32 33
 * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
 *
 * BSD LICENSE
 *
34
 * Copyright(c) 2005 - 2014 Intel Corporation. All rights reserved.
35
 * Copyright(c) 2013 - 2015 Intel Mobile Communications GmbH
36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66
 * All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 *
 *  * Redistributions of source code must retain the above copyright
 *    notice, this list of conditions and the following disclaimer.
 *  * Redistributions in binary form must reproduce the above copyright
 *    notice, this list of conditions and the following disclaimer in
 *    the documentation and/or other materials provided with the
 *    distribution.
 *  * Neither the name Intel Corporation nor the names of its
 *    contributors may be used to endorse or promote products derived
 *    from this software without specific prior written permission.
 *
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 *****************************************************************************/
#include <linux/types.h>
#include <linux/slab.h>
#include <linux/export.h>
67
#include <linux/etherdevice.h>
68
#include <linux/pci.h>
69
#include "iwl-drv.h"
70 71 72 73 74 75 76 77
#include "iwl-modparams.h"
#include "iwl-nvm-parse.h"

/* NVM offsets (in words) definitions */
enum wkp_nvm_offsets {
	/* NVM HW-Section offset (in words) definitions */
	HW_ADDR = 0x15,

78
	/* NVM SW-Section offset (in words) definitions */
79 80 81 82 83 84 85
	NVM_SW_SECTION = 0x1C0,
	NVM_VERSION = 0,
	RADIO_CFG = 1,
	SKU = 2,
	N_HW_ADDRS = 3,
	NVM_CHANNELS = 0x1E0 - NVM_SW_SECTION,

86
	/* NVM calibration section offset (in words) definitions */
87 88 89 90
	NVM_CALIB_SECTION = 0x2B8,
	XTAL_CALIB = 0x316 - NVM_CALIB_SECTION
};

91 92
enum family_8000_nvm_offsets {
	/* NVM HW-Section offset (in words) definitions */
93 94 95 96
	HW_ADDR0_WFPM_FAMILY_8000 = 0x12,
	HW_ADDR1_WFPM_FAMILY_8000 = 0x16,
	HW_ADDR0_PCIE_FAMILY_8000 = 0x8A,
	HW_ADDR1_PCIE_FAMILY_8000 = 0x8E,
97 98 99 100 101
	MAC_ADDRESS_OVERRIDE_FAMILY_8000 = 1,

	/* NVM SW-Section offset (in words) definitions */
	NVM_SW_SECTION_FAMILY_8000 = 0x1C0,
	NVM_VERSION_FAMILY_8000 = 0,
102 103 104
	RADIO_CFG_FAMILY_8000 = 0,
	SKU_FAMILY_8000 = 2,
	N_HW_ADDRS_FAMILY_8000 = 3,
105

106 107
	/* NVM REGULATORY -Section offset (in words) definitions */
	NVM_CHANNELS_FAMILY_8000 = 0,
108 109
	NVM_LAR_OFFSET_FAMILY_8000_OLD = 0x4C7,
	NVM_LAR_OFFSET_FAMILY_8000 = 0x507,
110
	NVM_LAR_ENABLED_FAMILY_8000 = 0x7,
111 112 113 114 115 116

	/* NVM calibration section offset (in words) definitions */
	NVM_CALIB_SECTION_FAMILY_8000 = 0x2B8,
	XTAL_CALIB_FAMILY_8000 = 0x316 - NVM_CALIB_SECTION_FAMILY_8000
};

117 118
/* SKU Capabilities (actual values from NVM definition) */
enum nvm_sku_bits {
119 120 121 122 123
	NVM_SKU_CAP_BAND_24GHZ		= BIT(0),
	NVM_SKU_CAP_BAND_52GHZ		= BIT(1),
	NVM_SKU_CAP_11N_ENABLE		= BIT(2),
	NVM_SKU_CAP_11AC_ENABLE		= BIT(3),
	NVM_SKU_CAP_MIMO_DISABLE	= BIT(5),
124 125 126 127 128 129 130 131 132 133 134 135 136 137
};

/*
 * These are the channel numbers in the order that they are stored in the NVM
 */
static const u8 iwl_nvm_channels[] = {
	/* 2.4 GHz */
	1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14,
	/* 5 GHz */
	36, 40, 44 , 48, 52, 56, 60, 64,
	100, 104, 108, 112, 116, 120, 124, 128, 132, 136, 140, 144,
	149, 153, 157, 161, 165
};

138 139
static const u8 iwl_nvm_channels_family_8000[] = {
	/* 2.4 GHz */
140
	1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14,
141 142 143 144 145 146
	/* 5 GHz */
	36, 40, 44, 48, 52, 56, 60, 64, 68, 72, 76, 80, 84, 88, 92,
	96, 100, 104, 108, 112, 116, 120, 124, 128, 132, 136, 140, 144,
	149, 153, 157, 161, 165, 169, 173, 177, 181
};

147
#define IWL_NUM_CHANNELS		ARRAY_SIZE(iwl_nvm_channels)
148
#define IWL_NUM_CHANNELS_FAMILY_8000	ARRAY_SIZE(iwl_nvm_channels_family_8000)
149
#define NUM_2GHZ_CHANNELS		14
150
#define NUM_2GHZ_CHANNELS_FAMILY_8000	14
151 152
#define FIRST_2GHZ_HT_MINUS		5
#define LAST_2GHZ_HT_PLUS		9
153 154
#define LAST_5GHZ_HT			165
#define LAST_5GHZ_HT_FAMILY_8000	181
155
#define N_HW_ADDR_MASK			0xF
156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185

/* rate data (static) */
static struct ieee80211_rate iwl_cfg80211_rates[] = {
	{ .bitrate = 1 * 10, .hw_value = 0, .hw_value_short = 0, },
	{ .bitrate = 2 * 10, .hw_value = 1, .hw_value_short = 1,
	  .flags = IEEE80211_RATE_SHORT_PREAMBLE, },
	{ .bitrate = 5.5 * 10, .hw_value = 2, .hw_value_short = 2,
	  .flags = IEEE80211_RATE_SHORT_PREAMBLE, },
	{ .bitrate = 11 * 10, .hw_value = 3, .hw_value_short = 3,
	  .flags = IEEE80211_RATE_SHORT_PREAMBLE, },
	{ .bitrate = 6 * 10, .hw_value = 4, .hw_value_short = 4, },
	{ .bitrate = 9 * 10, .hw_value = 5, .hw_value_short = 5, },
	{ .bitrate = 12 * 10, .hw_value = 6, .hw_value_short = 6, },
	{ .bitrate = 18 * 10, .hw_value = 7, .hw_value_short = 7, },
	{ .bitrate = 24 * 10, .hw_value = 8, .hw_value_short = 8, },
	{ .bitrate = 36 * 10, .hw_value = 9, .hw_value_short = 9, },
	{ .bitrate = 48 * 10, .hw_value = 10, .hw_value_short = 10, },
	{ .bitrate = 54 * 10, .hw_value = 11, .hw_value_short = 11, },
};
#define RATES_24_OFFS	0
#define N_RATES_24	ARRAY_SIZE(iwl_cfg80211_rates)
#define RATES_52_OFFS	4
#define N_RATES_52	(N_RATES_24 - RATES_52_OFFS)

/**
 * enum iwl_nvm_channel_flags - channel flags in NVM
 * @NVM_CHANNEL_VALID: channel is usable for this SKU/geo
 * @NVM_CHANNEL_IBSS: usable as an IBSS channel
 * @NVM_CHANNEL_ACTIVE: active scanning allowed
 * @NVM_CHANNEL_RADAR: radar detection required
186 187 188
 * @NVM_CHANNEL_INDOOR_ONLY: only indoor use is allowed
 * @NVM_CHANNEL_GO_CONCURRENT: GO operation is allowed when connected to BSS
 *	on same channel on 2.4 or same UNII band on 5.2
189 190
 * @NVM_CHANNEL_WIDE: 20 MHz channel okay (?)
 * @NVM_CHANNEL_40MHZ: 40 MHz channel okay (?)
191 192
 * @NVM_CHANNEL_80MHZ: 80 MHz channel okay (?)
 * @NVM_CHANNEL_160MHZ: 160 MHz channel okay (?)
193 194 195 196 197 198
 */
enum iwl_nvm_channel_flags {
	NVM_CHANNEL_VALID = BIT(0),
	NVM_CHANNEL_IBSS = BIT(1),
	NVM_CHANNEL_ACTIVE = BIT(3),
	NVM_CHANNEL_RADAR = BIT(4),
199 200
	NVM_CHANNEL_INDOOR_ONLY = BIT(5),
	NVM_CHANNEL_GO_CONCURRENT = BIT(6),
201 202
	NVM_CHANNEL_WIDE = BIT(8),
	NVM_CHANNEL_40MHZ = BIT(9),
203 204
	NVM_CHANNEL_80MHZ = BIT(10),
	NVM_CHANNEL_160MHZ = BIT(11),
205 206 207 208 209
};

#define CHECK_AND_PRINT_I(x)	\
	((ch_flags & NVM_CHANNEL_##x) ? # x " " : "")

210
static u32 iwl_get_channel_flags(u8 ch_num, int ch_idx, bool is_5ghz,
211
				 u16 nvm_flags, const struct iwl_cfg *cfg)
212 213
{
	u32 flags = IEEE80211_CHAN_NO_HT40;
214 215 216 217
	u32 last_5ghz_ht = LAST_5GHZ_HT;

	if (cfg->device_family == IWL_DEVICE_FAMILY_8000)
		last_5ghz_ht = LAST_5GHZ_HT_FAMILY_8000;
218 219 220 221 222 223

	if (!is_5ghz && (nvm_flags & NVM_CHANNEL_40MHZ)) {
		if (ch_num <= LAST_2GHZ_HT_PLUS)
			flags &= ~IEEE80211_CHAN_NO_HT40PLUS;
		if (ch_num >= FIRST_2GHZ_HT_MINUS)
			flags &= ~IEEE80211_CHAN_NO_HT40MINUS;
224
	} else if (ch_num <= last_5ghz_ht && (nvm_flags & NVM_CHANNEL_40MHZ)) {
225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251
		if ((ch_idx - NUM_2GHZ_CHANNELS) % 2 == 0)
			flags &= ~IEEE80211_CHAN_NO_HT40PLUS;
		else
			flags &= ~IEEE80211_CHAN_NO_HT40MINUS;
	}
	if (!(nvm_flags & NVM_CHANNEL_80MHZ))
		flags |= IEEE80211_CHAN_NO_80MHZ;
	if (!(nvm_flags & NVM_CHANNEL_160MHZ))
		flags |= IEEE80211_CHAN_NO_160MHZ;

	if (!(nvm_flags & NVM_CHANNEL_IBSS))
		flags |= IEEE80211_CHAN_NO_IR;

	if (!(nvm_flags & NVM_CHANNEL_ACTIVE))
		flags |= IEEE80211_CHAN_NO_IR;

	if (nvm_flags & NVM_CHANNEL_RADAR)
		flags |= IEEE80211_CHAN_RADAR;

	if (nvm_flags & NVM_CHANNEL_INDOOR_ONLY)
		flags |= IEEE80211_CHAN_INDOOR_ONLY;

	/* Set the GO concurrent flag only in case that NO_IR is set.
	 * Otherwise it is meaningless
	 */
	if ((nvm_flags & NVM_CHANNEL_GO_CONCURRENT) &&
	    (flags & IEEE80211_CHAN_NO_IR))
252
		flags |= IEEE80211_CHAN_IR_CONCURRENT;
253 254 255 256

	return flags;
}

257 258
static int iwl_init_channel_map(struct device *dev, const struct iwl_cfg *cfg,
				struct iwl_nvm_data *data,
259 260
				const __le16 * const nvm_ch_flags,
				bool lar_supported)
261 262 263 264 265 266
{
	int ch_idx;
	int n_channels = 0;
	struct ieee80211_channel *channel;
	u16 ch_flags;
	bool is_5ghz;
267
	int num_of_ch, num_2ghz_channels;
268 269 270 271 272
	const u8 *nvm_chan;

	if (cfg->device_family != IWL_DEVICE_FAMILY_8000) {
		num_of_ch = IWL_NUM_CHANNELS;
		nvm_chan = &iwl_nvm_channels[0];
273
		num_2ghz_channels = NUM_2GHZ_CHANNELS;
274 275 276
	} else {
		num_of_ch = IWL_NUM_CHANNELS_FAMILY_8000;
		nvm_chan = &iwl_nvm_channels_family_8000[0];
277
		num_2ghz_channels = NUM_2GHZ_CHANNELS_FAMILY_8000;
278
	}
279

280
	for (ch_idx = 0; ch_idx < num_of_ch; ch_idx++) {
281
		ch_flags = __le16_to_cpup(nvm_ch_flags + ch_idx);
282

283
		if (ch_idx >= num_2ghz_channels &&
284
		    !data->sku_cap_band_52GHz_enable)
285
			continue;
286

287
		if (!lar_supported && !(ch_flags & NVM_CHANNEL_VALID)) {
288 289 290 291 292
			/*
			 * Channels might become valid later if lar is
			 * supported, hence we still want to add them to
			 * the list of supported channels to cfg80211.
			 */
293 294
			IWL_DEBUG_EEPROM(dev,
					 "Ch. %d Flags %x [%sGHz] - No traffic\n",
295
					 nvm_chan[ch_idx],
296
					 ch_flags,
297
					 (ch_idx >= num_2ghz_channels) ?
298 299 300 301 302 303 304
					 "5.2" : "2.4");
			continue;
		}

		channel = &data->channels[n_channels];
		n_channels++;

305
		channel->hw_value = nvm_chan[ch_idx];
306
		channel->band = (ch_idx < num_2ghz_channels) ?
307 308 309 310 311 312 313
				IEEE80211_BAND_2GHZ : IEEE80211_BAND_5GHZ;
		channel->center_freq =
			ieee80211_channel_to_frequency(
				channel->hw_value, channel->band);

		/* Initialize regulatory-based run-time data */

314 315 316 317
		/*
		 * Default value - highest tx power value.  max_power
		 * is not used in mvm, and is used for backwards compatibility
		 */
318
		channel->max_power = IWL_DEFAULT_MAX_TX_POWER;
319
		is_5ghz = channel->band == IEEE80211_BAND_5GHZ;
320 321 322 323 324

		/* don't put limitations in case we're using LAR */
		if (!lar_supported)
			channel->flags = iwl_get_channel_flags(nvm_chan[ch_idx],
							       ch_idx, is_5ghz,
325
							       ch_flags, cfg);
326 327 328
		else
			channel->flags = 0;

329
		IWL_DEBUG_EEPROM(dev,
330
				 "Ch. %d [%sGHz] %s%s%s%s%s%s%s(0x%02x %ddBm): Ad-Hoc %ssupported\n",
331 332 333 334 335 336 337
				 channel->hw_value,
				 is_5ghz ? "5.2" : "2.4",
				 CHECK_AND_PRINT_I(VALID),
				 CHECK_AND_PRINT_I(IBSS),
				 CHECK_AND_PRINT_I(ACTIVE),
				 CHECK_AND_PRINT_I(RADAR),
				 CHECK_AND_PRINT_I(WIDE),
338 339
				 CHECK_AND_PRINT_I(INDOOR_ONLY),
				 CHECK_AND_PRINT_I(GO_CONCURRENT),
340 341 342 343 344 345 346 347 348 349
				 ch_flags,
				 channel->max_power,
				 ((ch_flags & NVM_CHANNEL_IBSS) &&
				  !(ch_flags & NVM_CHANNEL_RADAR))
					? "" : "not ");
	}

	return n_channels;
}

350 351
static void iwl_init_vht_hw_capab(const struct iwl_cfg *cfg,
				  struct iwl_nvm_data *data,
352 353
				  struct ieee80211_sta_vht_cap *vht_cap,
				  u8 tx_chains, u8 rx_chains)
354
{
355 356
	int num_rx_ants = num_of_ant(rx_chains);
	int num_tx_ants = num_of_ant(tx_chains);
357 358
	unsigned int max_ampdu_exponent = (cfg->max_vht_ampdu_exponent ?:
					   IEEE80211_VHT_MAX_AMPDU_1024K);
359

360 361 362 363 364
	vht_cap->vht_supported = true;

	vht_cap->cap = IEEE80211_VHT_CAP_SHORT_GI_80 |
		       IEEE80211_VHT_CAP_RXSTBC_1 |
		       IEEE80211_VHT_CAP_SU_BEAMFORMEE_CAPABLE |
365
		       3 << IEEE80211_VHT_CAP_BEAMFORMEE_STS_SHIFT |
366 367
		       max_ampdu_exponent <<
		       IEEE80211_VHT_CAP_MAX_A_MPDU_LENGTH_EXPONENT_SHIFT;
368

369 370 371
	if (cfg->vht_mu_mimo_supported)
		vht_cap->cap |= IEEE80211_VHT_CAP_MU_BEAMFORMEE_CAPABLE;

E
Eyal Shapira 已提交
372 373 374
	if (cfg->ht_params->ldpc)
		vht_cap->cap |= IEEE80211_VHT_CAP_RXLDPC;

375 376 377 378 379
	if (data->sku_cap_mimo_disabled) {
		num_rx_ants = 1;
		num_tx_ants = 1;
	}

380
	if (num_tx_ants > 1)
381
		vht_cap->cap |= IEEE80211_VHT_CAP_TXSTBC;
382 383
	else
		vht_cap->cap |= IEEE80211_VHT_CAP_TX_ANTENNA_PATTERN;
384

385 386 387 388 389
	switch (iwlwifi_mod_params.amsdu_size) {
	case IWL_AMSDU_4K:
		vht_cap->cap |= IEEE80211_VHT_CAP_MAX_MPDU_LENGTH_3895;
		break;
	case IWL_AMSDU_8K:
390
		vht_cap->cap |= IEEE80211_VHT_CAP_MAX_MPDU_LENGTH_7991;
391 392 393 394 395 396 397
		break;
	case IWL_AMSDU_12K:
		vht_cap->cap |= IEEE80211_VHT_CAP_MAX_MPDU_LENGTH_11454;
		break;
	default:
		break;
	}
398 399 400 401 402 403 404 405 406 407 408

	vht_cap->vht_mcs.rx_mcs_map =
		cpu_to_le16(IEEE80211_VHT_MCS_SUPPORT_0_9 << 0 |
			    IEEE80211_VHT_MCS_SUPPORT_0_9 << 2 |
			    IEEE80211_VHT_MCS_NOT_SUPPORTED << 4 |
			    IEEE80211_VHT_MCS_NOT_SUPPORTED << 6 |
			    IEEE80211_VHT_MCS_NOT_SUPPORTED << 8 |
			    IEEE80211_VHT_MCS_NOT_SUPPORTED << 10 |
			    IEEE80211_VHT_MCS_NOT_SUPPORTED << 12 |
			    IEEE80211_VHT_MCS_NOT_SUPPORTED << 14);

409 410
	if (num_rx_ants == 1 || cfg->rx_with_siso_diversity) {
		vht_cap->cap |= IEEE80211_VHT_CAP_RX_ANTENNA_PATTERN;
411 412 413 414 415 416 417 418
		/* this works because NOT_SUPPORTED == 3 */
		vht_cap->vht_mcs.rx_mcs_map |=
			cpu_to_le16(IEEE80211_VHT_MCS_NOT_SUPPORTED << 2);
	}

	vht_cap->vht_mcs.tx_mcs_map = vht_cap->vht_mcs.rx_mcs_map;
}

419
static void iwl_init_sbands(struct device *dev, const struct iwl_cfg *cfg,
420
			    struct iwl_nvm_data *data,
421
			    const __le16 *ch_section,
422
			    u8 tx_chains, u8 rx_chains, bool lar_supported)
423
{
424
	int n_channels;
425 426 427
	int n_used = 0;
	struct ieee80211_supported_band *sband;

428 429 430
	if (cfg->device_family != IWL_DEVICE_FAMILY_8000)
		n_channels = iwl_init_channel_map(
				dev, cfg, data,
431
				&ch_section[NVM_CHANNELS], lar_supported);
432 433 434
	else
		n_channels = iwl_init_channel_map(
				dev, cfg, data,
435 436
				&ch_section[NVM_CHANNELS_FAMILY_8000],
				lar_supported);
437

438 439 440 441 442 443
	sband = &data->bands[IEEE80211_BAND_2GHZ];
	sband->band = IEEE80211_BAND_2GHZ;
	sband->bitrates = &iwl_cfg80211_rates[RATES_24_OFFS];
	sband->n_bitrates = N_RATES_24;
	n_used += iwl_init_sband_channels(data, sband, n_channels,
					  IEEE80211_BAND_2GHZ);
444 445
	iwl_init_ht_hw_capab(cfg, data, &sband->ht_cap, IEEE80211_BAND_2GHZ,
			     tx_chains, rx_chains);
446 447 448 449 450 451 452

	sband = &data->bands[IEEE80211_BAND_5GHZ];
	sband->band = IEEE80211_BAND_5GHZ;
	sband->bitrates = &iwl_cfg80211_rates[RATES_52_OFFS];
	sband->n_bitrates = N_RATES_52;
	n_used += iwl_init_sband_channels(data, sband, n_channels,
					  IEEE80211_BAND_5GHZ);
453 454
	iwl_init_ht_hw_capab(cfg, data, &sband->ht_cap, IEEE80211_BAND_5GHZ,
			     tx_chains, rx_chains);
455
	if (data->sku_cap_11ac_enable)
456 457
		iwl_init_vht_hw_capab(cfg, data, &sband->vht_cap,
				      tx_chains, rx_chains);
458 459 460 461 462 463

	if (n_channels != n_used)
		IWL_ERR_DEV(dev, "NVM: used only %d of %d channels\n",
			    n_used, n_channels);
}

464 465
static int iwl_get_sku(const struct iwl_cfg *cfg, const __le16 *nvm_sw,
		       const __le16 *phy_sku)
466 467 468
{
	if (cfg->device_family != IWL_DEVICE_FAMILY_8000)
		return le16_to_cpup(nvm_sw + SKU);
469

470
	return le32_to_cpup((__le32 *)(phy_sku + SKU_FAMILY_8000));
471 472
}

473
static int iwl_get_nvm_version(const struct iwl_cfg *cfg, const __le16 *nvm_sw)
474 475 476 477 478 479 480 481
{
	if (cfg->device_family != IWL_DEVICE_FAMILY_8000)
		return le16_to_cpup(nvm_sw + NVM_VERSION);
	else
		return le32_to_cpup((__le32 *)(nvm_sw +
					       NVM_VERSION_FAMILY_8000));
}

482 483
static int iwl_get_radio_cfg(const struct iwl_cfg *cfg, const __le16 *nvm_sw,
			     const __le16 *phy_sku)
484 485 486
{
	if (cfg->device_family != IWL_DEVICE_FAMILY_8000)
		return le16_to_cpup(nvm_sw + RADIO_CFG);
487

488
	return le32_to_cpup((__le32 *)(phy_sku + RADIO_CFG_FAMILY_8000));
489

490 491
}

492
static int iwl_get_n_hw_addrs(const struct iwl_cfg *cfg, const __le16 *nvm_sw)
493
{
494 495
	int n_hw_addr;

496 497
	if (cfg->device_family != IWL_DEVICE_FAMILY_8000)
		return le16_to_cpup(nvm_sw + N_HW_ADDRS);
498

499
	n_hw_addr = le32_to_cpup((__le32 *)(nvm_sw + N_HW_ADDRS_FAMILY_8000));
500 501

	return n_hw_addr & N_HW_ADDR_MASK;
502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520
}

static void iwl_set_radio_cfg(const struct iwl_cfg *cfg,
			      struct iwl_nvm_data *data,
			      u32 radio_cfg)
{
	if (cfg->device_family != IWL_DEVICE_FAMILY_8000) {
		data->radio_cfg_type = NVM_RF_CFG_TYPE_MSK(radio_cfg);
		data->radio_cfg_step = NVM_RF_CFG_STEP_MSK(radio_cfg);
		data->radio_cfg_dash = NVM_RF_CFG_DASH_MSK(radio_cfg);
		data->radio_cfg_pnum = NVM_RF_CFG_PNUM_MSK(radio_cfg);
		return;
	}

	/* set the radio configuration for family 8000 */
	data->radio_cfg_type = NVM_RF_CFG_TYPE_MSK_FAMILY_8000(radio_cfg);
	data->radio_cfg_step = NVM_RF_CFG_STEP_MSK_FAMILY_8000(radio_cfg);
	data->radio_cfg_dash = NVM_RF_CFG_DASH_MSK_FAMILY_8000(radio_cfg);
	data->radio_cfg_pnum = NVM_RF_CFG_FLAVOR_MSK_FAMILY_8000(radio_cfg);
521 522
	data->valid_tx_ant = NVM_RF_CFG_TX_ANT_MSK_FAMILY_8000(radio_cfg);
	data->valid_rx_ant = NVM_RF_CFG_RX_ANT_MSK_FAMILY_8000(radio_cfg);
523 524 525 526 527 528
}

static void iwl_set_hw_address(const struct iwl_cfg *cfg,
			       struct iwl_nvm_data *data,
			       const __le16 *nvm_sec)
{
529
	const u8 *hw_addr = (const u8 *)(nvm_sec + HW_ADDR);
530 531 532 533 534 535 536 537 538 539

	/* The byte order is little endian 16 bit, meaning 214365 */
	data->hw_addr[0] = hw_addr[1];
	data->hw_addr[1] = hw_addr[0];
	data->hw_addr[2] = hw_addr[3];
	data->hw_addr[3] = hw_addr[2];
	data->hw_addr[4] = hw_addr[5];
	data->hw_addr[5] = hw_addr[4];
}

540 541
static void iwl_set_hw_address_family_8000(struct device *dev,
					   const struct iwl_cfg *cfg,
542 543
					   struct iwl_nvm_data *data,
					   const __le16 *mac_override,
544
					   const __le16 *nvm_hw,
545
					   __le32 mac_addr0, __le32 mac_addr1)
546 547 548 549
{
	const u8 *hw_addr;

	if (mac_override) {
550 551 552 553
		static const u8 reserved_mac[] = {
			0x02, 0xcc, 0xaa, 0xff, 0xee, 0x00
		};

554 555 556
		hw_addr = (const u8 *)(mac_override +
				 MAC_ADDRESS_OVERRIDE_FAMILY_8000);

557 558 559 560 561
		/*
		 * Store the MAC address from MAO section.
		 * No byte swapping is required in MAO section
		 */
		memcpy(data->hw_addr, hw_addr, ETH_ALEN);
562

563 564 565 566 567 568
		/*
		 * Force the use of the OTP MAC address in case of reserved MAC
		 * address in the NVM, or if address is given but invalid.
		 */
		if (is_valid_ether_addr(data->hw_addr) &&
		    memcmp(reserved_mac, hw_addr, ETH_ALEN) != 0)
569
			return;
570 571 572

		IWL_ERR_DEV(dev,
			    "mac address from nvm override section is not valid\n");
573 574
	}

575
	if (nvm_hw) {
576 577 578 579 580 581 582 583 584 585 586
		/* read the MAC address from HW resisters */
		hw_addr = (const u8 *)&mac_addr0;
		data->hw_addr[0] = hw_addr[3];
		data->hw_addr[1] = hw_addr[2];
		data->hw_addr[2] = hw_addr[1];
		data->hw_addr[3] = hw_addr[0];

		hw_addr = (const u8 *)&mac_addr1;
		data->hw_addr[4] = hw_addr[1];
		data->hw_addr[5] = hw_addr[0];

587 588
		if (!is_valid_ether_addr(data->hw_addr))
			IWL_ERR_DEV(dev,
589 590
				    "mac address (%pM) from hw section is not valid\n",
				    data->hw_addr);
591

592 593
		return;
	}
594

595
	IWL_ERR_DEV(dev, "mac address is not found\n");
596 597
}

598 599 600
struct iwl_nvm_data *
iwl_parse_nvm_data(struct device *dev, const struct iwl_cfg *cfg,
		   const __le16 *nvm_hw, const __le16 *nvm_sw,
601
		   const __le16 *nvm_calib, const __le16 *regulatory,
602
		   const __le16 *mac_override, const __le16 *phy_sku,
603
		   u8 tx_chains, u8 rx_chains, bool lar_fw_supported,
604
		   __le32 mac_addr0, __le32 mac_addr1)
605 606
{
	struct iwl_nvm_data *data;
607 608
	u32 sku;
	u32 radio_cfg;
609
	u16 lar_config;
610 611 612 613 614 615 616 617 618 619 620

	if (cfg->device_family != IWL_DEVICE_FAMILY_8000)
		data = kzalloc(sizeof(*data) +
			       sizeof(struct ieee80211_channel) *
			       IWL_NUM_CHANNELS,
			       GFP_KERNEL);
	else
		data = kzalloc(sizeof(*data) +
			       sizeof(struct ieee80211_channel) *
			       IWL_NUM_CHANNELS_FAMILY_8000,
			       GFP_KERNEL);
621 622 623
	if (!data)
		return NULL;

624
	data->nvm_version = iwl_get_nvm_version(cfg, nvm_sw);
625

626
	radio_cfg = iwl_get_radio_cfg(cfg, nvm_sw, phy_sku);
627
	iwl_set_radio_cfg(cfg, data, radio_cfg);
628 629 630 631
	if (data->valid_tx_ant)
		tx_chains &= data->valid_tx_ant;
	if (data->valid_rx_ant)
		rx_chains &= data->valid_rx_ant;
632

633
	sku = iwl_get_sku(cfg, nvm_sw, phy_sku);
634 635 636 637 638
	data->sku_cap_band_24GHz_enable = sku & NVM_SKU_CAP_BAND_24GHZ;
	data->sku_cap_band_52GHz_enable = sku & NVM_SKU_CAP_BAND_52GHZ;
	data->sku_cap_11n_enable = sku & NVM_SKU_CAP_11N_ENABLE;
	if (iwlwifi_mod_params.disable_11n & IWL_DISABLE_HT_ALL)
		data->sku_cap_11n_enable = false;
639 640
	data->sku_cap_11ac_enable = data->sku_cap_11n_enable &&
				    (sku & NVM_SKU_CAP_11AC_ENABLE);
641
	data->sku_cap_mimo_disabled = sku & NVM_SKU_CAP_MIMO_DISABLE;
642

643
	data->n_hw_addrs = iwl_get_n_hw_addrs(cfg, nvm_sw);
644

645 646 647 648 649
	if (cfg->device_family != IWL_DEVICE_FAMILY_8000) {
		/* Checking for required sections */
		if (!nvm_calib) {
			IWL_ERR_DEV(dev,
				    "Can't parse empty Calib NVM sections\n");
650
			kfree(data);
651 652 653 654 655
			return NULL;
		}
		/* in family 8000 Xtal calibration values moved to OTP */
		data->xtal_calib[0] = *(nvm_calib + XTAL_CALIB);
		data->xtal_calib[1] = *(nvm_calib + XTAL_CALIB + 1);
656 657
	}

658 659
	if (cfg->device_family != IWL_DEVICE_FAMILY_8000) {
		iwl_set_hw_address(cfg, data, nvm_hw);
660

661
		iwl_init_sbands(dev, cfg, data, nvm_sw,
662
				tx_chains, rx_chains, lar_fw_supported);
663
	} else {
664 665 666 667 668
		u16 lar_offset = data->nvm_version < 0xE39 ?
				 NVM_LAR_OFFSET_FAMILY_8000_OLD :
				 NVM_LAR_OFFSET_FAMILY_8000;

		lar_config = le16_to_cpup(regulatory + lar_offset);
669 670 671
		data->lar_enabled = !!(lar_config &
				       NVM_LAR_ENABLED_FAMILY_8000);

672
		/* MAC address in family 8000 */
673
		iwl_set_hw_address_family_8000(dev, cfg, data, mac_override,
674
					       nvm_hw, mac_addr0, mac_addr1);
675

676
		iwl_init_sbands(dev, cfg, data, regulatory,
677 678
				tx_chains, rx_chains,
				lar_fw_supported && data->lar_enabled);
679
	}
680

681
	data->calib_version = 255;
682 683 684

	return data;
}
685
IWL_EXPORT_SYMBOL(iwl_parse_nvm_data);
686 687

static u32 iwl_nvm_get_regdom_bw_flags(const u8 *nvm_chan,
688 689
				       int ch_idx, u16 nvm_flags,
				       const struct iwl_cfg *cfg)
690 691
{
	u32 flags = NL80211_RRF_NO_HT40;
692 693 694 695
	u32 last_5ghz_ht = LAST_5GHZ_HT;

	if (cfg->device_family == IWL_DEVICE_FAMILY_8000)
		last_5ghz_ht = LAST_5GHZ_HT_FAMILY_8000;
696 697 698 699 700 701 702

	if (ch_idx < NUM_2GHZ_CHANNELS &&
	    (nvm_flags & NVM_CHANNEL_40MHZ)) {
		if (nvm_chan[ch_idx] <= LAST_2GHZ_HT_PLUS)
			flags &= ~NL80211_RRF_NO_HT40PLUS;
		if (nvm_chan[ch_idx] >= FIRST_2GHZ_HT_MINUS)
			flags &= ~NL80211_RRF_NO_HT40MINUS;
703
	} else if (nvm_chan[ch_idx] <= last_5ghz_ht &&
704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735
		   (nvm_flags & NVM_CHANNEL_40MHZ)) {
		if ((ch_idx - NUM_2GHZ_CHANNELS) % 2 == 0)
			flags &= ~NL80211_RRF_NO_HT40PLUS;
		else
			flags &= ~NL80211_RRF_NO_HT40MINUS;
	}

	if (!(nvm_flags & NVM_CHANNEL_80MHZ))
		flags |= NL80211_RRF_NO_80MHZ;
	if (!(nvm_flags & NVM_CHANNEL_160MHZ))
		flags |= NL80211_RRF_NO_160MHZ;

	if (!(nvm_flags & NVM_CHANNEL_ACTIVE))
		flags |= NL80211_RRF_NO_IR;

	if (nvm_flags & NVM_CHANNEL_RADAR)
		flags |= NL80211_RRF_DFS;

	if (nvm_flags & NVM_CHANNEL_INDOOR_ONLY)
		flags |= NL80211_RRF_NO_OUTDOOR;

	/* Set the GO concurrent flag only in case that NO_IR is set.
	 * Otherwise it is meaningless
	 */
	if ((nvm_flags & NVM_CHANNEL_GO_CONCURRENT) &&
	    (flags & NL80211_RRF_NO_IR))
		flags |= NL80211_RRF_GO_CONCURRENT;

	return flags;
}

struct ieee80211_regdomain *
736 737
iwl_parse_nvm_mcc_info(struct device *dev, const struct iwl_cfg *cfg,
		       int num_of_ch, __le32 *channels, u16 fw_mcc)
738 739 740
{
	int ch_idx;
	u16 ch_flags, prev_ch_flags = 0;
741 742
	const u8 *nvm_chan = cfg->device_family == IWL_DEVICE_FAMILY_8000 ?
			     iwl_nvm_channels_family_8000 : iwl_nvm_channels;
743 744 745 746 747 748 749
	struct ieee80211_regdomain *regd;
	int size_of_regd;
	struct ieee80211_reg_rule *rule;
	enum ieee80211_band band;
	int center_freq, prev_center_freq = 0;
	int valid_rules = 0;
	bool new_rule;
750 751
	int max_num_ch = cfg->device_family == IWL_DEVICE_FAMILY_8000 ?
			 IWL_NUM_CHANNELS_FAMILY_8000 : IWL_NUM_CHANNELS;
752 753 754 755

	if (WARN_ON_ONCE(num_of_ch > NL80211_MAX_SUPP_REG_RULES))
		return ERR_PTR(-EINVAL);

756 757 758
	if (WARN_ON(num_of_ch > max_num_ch))
		num_of_ch = max_num_ch;

759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805
	IWL_DEBUG_DEV(dev, IWL_DL_LAR, "building regdom for %d channels\n",
		      num_of_ch);

	/* build a regdomain rule for every valid channel */
	size_of_regd =
		sizeof(struct ieee80211_regdomain) +
		num_of_ch * sizeof(struct ieee80211_reg_rule);

	regd = kzalloc(size_of_regd, GFP_KERNEL);
	if (!regd)
		return ERR_PTR(-ENOMEM);

	for (ch_idx = 0; ch_idx < num_of_ch; ch_idx++) {
		ch_flags = (u16)__le32_to_cpup(channels + ch_idx);
		band = (ch_idx < NUM_2GHZ_CHANNELS) ?
		       IEEE80211_BAND_2GHZ : IEEE80211_BAND_5GHZ;
		center_freq = ieee80211_channel_to_frequency(nvm_chan[ch_idx],
							     band);
		new_rule = false;

		if (!(ch_flags & NVM_CHANNEL_VALID)) {
			IWL_DEBUG_DEV(dev, IWL_DL_LAR,
				      "Ch. %d Flags %x [%sGHz] - No traffic\n",
				      nvm_chan[ch_idx],
				      ch_flags,
				      (ch_idx >= NUM_2GHZ_CHANNELS) ?
				      "5.2" : "2.4");
			continue;
		}

		/* we can't continue the same rule */
		if (ch_idx == 0 || prev_ch_flags != ch_flags ||
		    center_freq - prev_center_freq > 20) {
			valid_rules++;
			new_rule = true;
		}

		rule = &regd->reg_rules[valid_rules - 1];

		if (new_rule)
			rule->freq_range.start_freq_khz =
						MHZ_TO_KHZ(center_freq - 10);

		rule->freq_range.end_freq_khz = MHZ_TO_KHZ(center_freq + 10);

		/* this doesn't matter - not used by FW */
		rule->power_rule.max_antenna_gain = DBI_TO_MBI(6);
806 807
		rule->power_rule.max_eirp =
			DBM_TO_MBM(IWL_DEFAULT_MAX_TX_POWER);
808 809

		rule->flags = iwl_nvm_get_regdom_bw_flags(nvm_chan, ch_idx,
810
							  ch_flags, cfg);
811 812 813 814 815 816 817 818 819

		/* rely on auto-calculation to merge BW of contiguous chans */
		rule->flags |= NL80211_RRF_AUTO_BW;
		rule->freq_range.max_bandwidth_khz = 0;

		prev_ch_flags = ch_flags;
		prev_center_freq = center_freq;

		IWL_DEBUG_DEV(dev, IWL_DL_LAR,
820
			      "Ch. %d [%sGHz] %s%s%s%s%s%s%s%s%s(0x%02x): Ad-Hoc %ssupported\n",
821 822 823 824 825 826 827 828 829 830 831 832
			      center_freq,
			      band == IEEE80211_BAND_5GHZ ? "5.2" : "2.4",
			      CHECK_AND_PRINT_I(VALID),
			      CHECK_AND_PRINT_I(ACTIVE),
			      CHECK_AND_PRINT_I(RADAR),
			      CHECK_AND_PRINT_I(WIDE),
			      CHECK_AND_PRINT_I(40MHZ),
			      CHECK_AND_PRINT_I(80MHZ),
			      CHECK_AND_PRINT_I(160MHZ),
			      CHECK_AND_PRINT_I(INDOOR_ONLY),
			      CHECK_AND_PRINT_I(GO_CONCURRENT),
			      ch_flags,
833
			      ((ch_flags & NVM_CHANNEL_ACTIVE) &&
834 835 836 837 838 839 840 841 842 843 844 845 846
			       !(ch_flags & NVM_CHANNEL_RADAR))
					 ? "" : "not ");
	}

	regd->n_reg_rules = valid_rules;

	/* set alpha2 from FW. */
	regd->alpha2[0] = fw_mcc >> 8;
	regd->alpha2[1] = fw_mcc & 0xff;

	return regd;
}
IWL_EXPORT_SYMBOL(iwl_parse_nvm_mcc_info);