iwl-nvm-parse.c 30.0 KB
Newer Older
1 2 3 4 5 6 7
/******************************************************************************
 *
 * This file is provided under a dual BSD/GPLv2 license.  When using or
 * redistributing this file, you may do so under either license.
 *
 * GPL LICENSE SUMMARY
 *
8
 * Copyright(c) 2008 - 2014 Intel Corporation. All rights reserved.
9
 * Copyright(c) 2013 - 2015 Intel Mobile Communications GmbH
10
 * Copyright(c) 2016 - 2017 Intel Deutschland GmbH
11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of version 2 of the GNU General Public License as
 * published by the Free Software Foundation.
 *
 * This program is distributed in the hope that it will be useful, but
 * WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110,
 * USA
 *
 * The full GNU General Public License is included in this distribution
27
 * in the file called COPYING.
28 29
 *
 * Contact Information:
30
 *  Intel Linux Wireless <linuxwifi@intel.com>
31 32 33 34
 * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
 *
 * BSD LICENSE
 *
35
 * Copyright(c) 2005 - 2014 Intel Corporation. All rights reserved.
36
 * Copyright(c) 2013 - 2015 Intel Mobile Communications GmbH
37
 * Copyright(c) 2016 - 2017 Intel Deutschland GmbH
38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68
 * All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 *
 *  * Redistributions of source code must retain the above copyright
 *    notice, this list of conditions and the following disclaimer.
 *  * Redistributions in binary form must reproduce the above copyright
 *    notice, this list of conditions and the following disclaimer in
 *    the documentation and/or other materials provided with the
 *    distribution.
 *  * Neither the name Intel Corporation nor the names of its
 *    contributors may be used to endorse or promote products derived
 *    from this software without specific prior written permission.
 *
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 *****************************************************************************/
#include <linux/types.h>
#include <linux/slab.h>
#include <linux/export.h>
69
#include <linux/etherdevice.h>
70
#include <linux/pci.h>
71
#include <linux/acpi.h>
72
#include "iwl-drv.h"
73 74
#include "iwl-modparams.h"
#include "iwl-nvm-parse.h"
75
#include "iwl-prph.h"
76 77
#include "iwl-io.h"
#include "iwl-csr.h"
78 79 80 81 82 83

/* NVM offsets (in words) definitions */
enum wkp_nvm_offsets {
	/* NVM HW-Section offset (in words) definitions */
	HW_ADDR = 0x15,

84
	/* NVM SW-Section offset (in words) definitions */
85 86 87 88 89 90 91
	NVM_SW_SECTION = 0x1C0,
	NVM_VERSION = 0,
	RADIO_CFG = 1,
	SKU = 2,
	N_HW_ADDRS = 3,
	NVM_CHANNELS = 0x1E0 - NVM_SW_SECTION,

92
	/* NVM calibration section offset (in words) definitions */
93 94 95 96
	NVM_CALIB_SECTION = 0x2B8,
	XTAL_CALIB = 0x316 - NVM_CALIB_SECTION
};

97 98
enum family_8000_nvm_offsets {
	/* NVM HW-Section offset (in words) definitions */
99 100 101 102
	HW_ADDR0_WFPM_FAMILY_8000 = 0x12,
	HW_ADDR1_WFPM_FAMILY_8000 = 0x16,
	HW_ADDR0_PCIE_FAMILY_8000 = 0x8A,
	HW_ADDR1_PCIE_FAMILY_8000 = 0x8E,
103 104 105 106 107
	MAC_ADDRESS_OVERRIDE_FAMILY_8000 = 1,

	/* NVM SW-Section offset (in words) definitions */
	NVM_SW_SECTION_FAMILY_8000 = 0x1C0,
	NVM_VERSION_FAMILY_8000 = 0,
108 109 110
	RADIO_CFG_FAMILY_8000 = 0,
	SKU_FAMILY_8000 = 2,
	N_HW_ADDRS_FAMILY_8000 = 3,
111

112 113
	/* NVM REGULATORY -Section offset (in words) definitions */
	NVM_CHANNELS_FAMILY_8000 = 0,
114 115
	NVM_LAR_OFFSET_FAMILY_8000_OLD = 0x4C7,
	NVM_LAR_OFFSET_FAMILY_8000 = 0x507,
116
	NVM_LAR_ENABLED_FAMILY_8000 = 0x7,
117 118 119 120 121 122

	/* NVM calibration section offset (in words) definitions */
	NVM_CALIB_SECTION_FAMILY_8000 = 0x2B8,
	XTAL_CALIB_FAMILY_8000 = 0x316 - NVM_CALIB_SECTION_FAMILY_8000
};

123 124
/* SKU Capabilities (actual values from NVM definition) */
enum nvm_sku_bits {
125 126 127 128 129
	NVM_SKU_CAP_BAND_24GHZ		= BIT(0),
	NVM_SKU_CAP_BAND_52GHZ		= BIT(1),
	NVM_SKU_CAP_11N_ENABLE		= BIT(2),
	NVM_SKU_CAP_11AC_ENABLE		= BIT(3),
	NVM_SKU_CAP_MIMO_DISABLE	= BIT(5),
130 131 132 133 134 135 136 137 138 139 140 141 142 143
};

/*
 * These are the channel numbers in the order that they are stored in the NVM
 */
static const u8 iwl_nvm_channels[] = {
	/* 2.4 GHz */
	1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14,
	/* 5 GHz */
	36, 40, 44 , 48, 52, 56, 60, 64,
	100, 104, 108, 112, 116, 120, 124, 128, 132, 136, 140, 144,
	149, 153, 157, 161, 165
};

144 145
static const u8 iwl_nvm_channels_family_8000[] = {
	/* 2.4 GHz */
146
	1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14,
147 148 149 150 151 152
	/* 5 GHz */
	36, 40, 44, 48, 52, 56, 60, 64, 68, 72, 76, 80, 84, 88, 92,
	96, 100, 104, 108, 112, 116, 120, 124, 128, 132, 136, 140, 144,
	149, 153, 157, 161, 165, 169, 173, 177, 181
};

153
#define IWL_NUM_CHANNELS		ARRAY_SIZE(iwl_nvm_channels)
154
#define IWL_NUM_CHANNELS_FAMILY_8000	ARRAY_SIZE(iwl_nvm_channels_family_8000)
155
#define NUM_2GHZ_CHANNELS		14
156
#define NUM_2GHZ_CHANNELS_FAMILY_8000	14
157 158
#define FIRST_2GHZ_HT_MINUS		5
#define LAST_2GHZ_HT_PLUS		9
159 160
#define LAST_5GHZ_HT			165
#define LAST_5GHZ_HT_FAMILY_8000	181
161
#define N_HW_ADDR_MASK			0xF
162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191

/* rate data (static) */
static struct ieee80211_rate iwl_cfg80211_rates[] = {
	{ .bitrate = 1 * 10, .hw_value = 0, .hw_value_short = 0, },
	{ .bitrate = 2 * 10, .hw_value = 1, .hw_value_short = 1,
	  .flags = IEEE80211_RATE_SHORT_PREAMBLE, },
	{ .bitrate = 5.5 * 10, .hw_value = 2, .hw_value_short = 2,
	  .flags = IEEE80211_RATE_SHORT_PREAMBLE, },
	{ .bitrate = 11 * 10, .hw_value = 3, .hw_value_short = 3,
	  .flags = IEEE80211_RATE_SHORT_PREAMBLE, },
	{ .bitrate = 6 * 10, .hw_value = 4, .hw_value_short = 4, },
	{ .bitrate = 9 * 10, .hw_value = 5, .hw_value_short = 5, },
	{ .bitrate = 12 * 10, .hw_value = 6, .hw_value_short = 6, },
	{ .bitrate = 18 * 10, .hw_value = 7, .hw_value_short = 7, },
	{ .bitrate = 24 * 10, .hw_value = 8, .hw_value_short = 8, },
	{ .bitrate = 36 * 10, .hw_value = 9, .hw_value_short = 9, },
	{ .bitrate = 48 * 10, .hw_value = 10, .hw_value_short = 10, },
	{ .bitrate = 54 * 10, .hw_value = 11, .hw_value_short = 11, },
};
#define RATES_24_OFFS	0
#define N_RATES_24	ARRAY_SIZE(iwl_cfg80211_rates)
#define RATES_52_OFFS	4
#define N_RATES_52	(N_RATES_24 - RATES_52_OFFS)

/**
 * enum iwl_nvm_channel_flags - channel flags in NVM
 * @NVM_CHANNEL_VALID: channel is usable for this SKU/geo
 * @NVM_CHANNEL_IBSS: usable as an IBSS channel
 * @NVM_CHANNEL_ACTIVE: active scanning allowed
 * @NVM_CHANNEL_RADAR: radar detection required
192 193 194
 * @NVM_CHANNEL_INDOOR_ONLY: only indoor use is allowed
 * @NVM_CHANNEL_GO_CONCURRENT: GO operation is allowed when connected to BSS
 *	on same channel on 2.4 or same UNII band on 5.2
195 196
 * @NVM_CHANNEL_WIDE: 20 MHz channel okay (?)
 * @NVM_CHANNEL_40MHZ: 40 MHz channel okay (?)
197 198
 * @NVM_CHANNEL_80MHZ: 80 MHz channel okay (?)
 * @NVM_CHANNEL_160MHZ: 160 MHz channel okay (?)
199 200 201 202 203 204
 */
enum iwl_nvm_channel_flags {
	NVM_CHANNEL_VALID = BIT(0),
	NVM_CHANNEL_IBSS = BIT(1),
	NVM_CHANNEL_ACTIVE = BIT(3),
	NVM_CHANNEL_RADAR = BIT(4),
205 206
	NVM_CHANNEL_INDOOR_ONLY = BIT(5),
	NVM_CHANNEL_GO_CONCURRENT = BIT(6),
207 208
	NVM_CHANNEL_WIDE = BIT(8),
	NVM_CHANNEL_40MHZ = BIT(9),
209 210
	NVM_CHANNEL_80MHZ = BIT(10),
	NVM_CHANNEL_160MHZ = BIT(11),
211 212 213 214 215
};

#define CHECK_AND_PRINT_I(x)	\
	((ch_flags & NVM_CHANNEL_##x) ? # x " " : "")

216
static u32 iwl_get_channel_flags(u8 ch_num, int ch_idx, bool is_5ghz,
217
				 u16 nvm_flags, const struct iwl_cfg *cfg)
218 219
{
	u32 flags = IEEE80211_CHAN_NO_HT40;
220 221 222 223
	u32 last_5ghz_ht = LAST_5GHZ_HT;

	if (cfg->device_family == IWL_DEVICE_FAMILY_8000)
		last_5ghz_ht = LAST_5GHZ_HT_FAMILY_8000;
224 225 226 227 228 229

	if (!is_5ghz && (nvm_flags & NVM_CHANNEL_40MHZ)) {
		if (ch_num <= LAST_2GHZ_HT_PLUS)
			flags &= ~IEEE80211_CHAN_NO_HT40PLUS;
		if (ch_num >= FIRST_2GHZ_HT_MINUS)
			flags &= ~IEEE80211_CHAN_NO_HT40MINUS;
230
	} else if (ch_num <= last_5ghz_ht && (nvm_flags & NVM_CHANNEL_40MHZ)) {
231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257
		if ((ch_idx - NUM_2GHZ_CHANNELS) % 2 == 0)
			flags &= ~IEEE80211_CHAN_NO_HT40PLUS;
		else
			flags &= ~IEEE80211_CHAN_NO_HT40MINUS;
	}
	if (!(nvm_flags & NVM_CHANNEL_80MHZ))
		flags |= IEEE80211_CHAN_NO_80MHZ;
	if (!(nvm_flags & NVM_CHANNEL_160MHZ))
		flags |= IEEE80211_CHAN_NO_160MHZ;

	if (!(nvm_flags & NVM_CHANNEL_IBSS))
		flags |= IEEE80211_CHAN_NO_IR;

	if (!(nvm_flags & NVM_CHANNEL_ACTIVE))
		flags |= IEEE80211_CHAN_NO_IR;

	if (nvm_flags & NVM_CHANNEL_RADAR)
		flags |= IEEE80211_CHAN_RADAR;

	if (nvm_flags & NVM_CHANNEL_INDOOR_ONLY)
		flags |= IEEE80211_CHAN_INDOOR_ONLY;

	/* Set the GO concurrent flag only in case that NO_IR is set.
	 * Otherwise it is meaningless
	 */
	if ((nvm_flags & NVM_CHANNEL_GO_CONCURRENT) &&
	    (flags & IEEE80211_CHAN_NO_IR))
258
		flags |= IEEE80211_CHAN_IR_CONCURRENT;
259 260 261 262

	return flags;
}

263 264
static int iwl_init_channel_map(struct device *dev, const struct iwl_cfg *cfg,
				struct iwl_nvm_data *data,
265 266
				const __le16 * const nvm_ch_flags,
				bool lar_supported)
267 268 269 270 271 272
{
	int ch_idx;
	int n_channels = 0;
	struct ieee80211_channel *channel;
	u16 ch_flags;
	bool is_5ghz;
273
	int num_of_ch, num_2ghz_channels;
274 275 276 277 278
	const u8 *nvm_chan;

	if (cfg->device_family != IWL_DEVICE_FAMILY_8000) {
		num_of_ch = IWL_NUM_CHANNELS;
		nvm_chan = &iwl_nvm_channels[0];
279
		num_2ghz_channels = NUM_2GHZ_CHANNELS;
280 281 282
	} else {
		num_of_ch = IWL_NUM_CHANNELS_FAMILY_8000;
		nvm_chan = &iwl_nvm_channels_family_8000[0];
283
		num_2ghz_channels = NUM_2GHZ_CHANNELS_FAMILY_8000;
284
	}
285

286
	for (ch_idx = 0; ch_idx < num_of_ch; ch_idx++) {
287
		ch_flags = __le16_to_cpup(nvm_ch_flags + ch_idx);
288

289
		if (ch_idx >= num_2ghz_channels &&
290
		    !data->sku_cap_band_52GHz_enable)
291
			continue;
292

293 294 295
		if (ch_flags & NVM_CHANNEL_160MHZ)
			data->vht160_supported = true;

296
		if (!lar_supported && !(ch_flags & NVM_CHANNEL_VALID)) {
297 298 299 300 301
			/*
			 * Channels might become valid later if lar is
			 * supported, hence we still want to add them to
			 * the list of supported channels to cfg80211.
			 */
302 303
			IWL_DEBUG_EEPROM(dev,
					 "Ch. %d Flags %x [%sGHz] - No traffic\n",
304
					 nvm_chan[ch_idx],
305
					 ch_flags,
306
					 (ch_idx >= num_2ghz_channels) ?
307 308 309 310 311 312 313
					 "5.2" : "2.4");
			continue;
		}

		channel = &data->channels[n_channels];
		n_channels++;

314
		channel->hw_value = nvm_chan[ch_idx];
315
		channel->band = (ch_idx < num_2ghz_channels) ?
316
				NL80211_BAND_2GHZ : NL80211_BAND_5GHZ;
317 318 319 320 321 322
		channel->center_freq =
			ieee80211_channel_to_frequency(
				channel->hw_value, channel->band);

		/* Initialize regulatory-based run-time data */

323 324 325 326
		/*
		 * Default value - highest tx power value.  max_power
		 * is not used in mvm, and is used for backwards compatibility
		 */
327
		channel->max_power = IWL_DEFAULT_MAX_TX_POWER;
328
		is_5ghz = channel->band == NL80211_BAND_5GHZ;
329 330 331 332 333

		/* don't put limitations in case we're using LAR */
		if (!lar_supported)
			channel->flags = iwl_get_channel_flags(nvm_chan[ch_idx],
							       ch_idx, is_5ghz,
334
							       ch_flags, cfg);
335 336 337
		else
			channel->flags = 0;

338
		IWL_DEBUG_EEPROM(dev,
339
				 "Ch. %d [%sGHz] flags 0x%x %s%s%s%s%s%s%s%s%s%s(%ddBm): Ad-Hoc %ssupported\n",
340 341
				 channel->hw_value,
				 is_5ghz ? "5.2" : "2.4",
342
				 ch_flags,
343 344 345 346
				 CHECK_AND_PRINT_I(VALID),
				 CHECK_AND_PRINT_I(IBSS),
				 CHECK_AND_PRINT_I(ACTIVE),
				 CHECK_AND_PRINT_I(RADAR),
347 348
				 CHECK_AND_PRINT_I(INDOOR_ONLY),
				 CHECK_AND_PRINT_I(GO_CONCURRENT),
349 350 351 352
				 CHECK_AND_PRINT_I(WIDE),
				 CHECK_AND_PRINT_I(40MHZ),
				 CHECK_AND_PRINT_I(80MHZ),
				 CHECK_AND_PRINT_I(160MHZ),
353 354 355 356 357 358 359 360 361
				 channel->max_power,
				 ((ch_flags & NVM_CHANNEL_IBSS) &&
				  !(ch_flags & NVM_CHANNEL_RADAR))
					? "" : "not ");
	}

	return n_channels;
}

362 363
static void iwl_init_vht_hw_capab(const struct iwl_cfg *cfg,
				  struct iwl_nvm_data *data,
364 365
				  struct ieee80211_sta_vht_cap *vht_cap,
				  u8 tx_chains, u8 rx_chains)
366
{
367 368
	int num_rx_ants = num_of_ant(rx_chains);
	int num_tx_ants = num_of_ant(tx_chains);
369 370
	unsigned int max_ampdu_exponent = (cfg->max_vht_ampdu_exponent ?:
					   IEEE80211_VHT_MAX_AMPDU_1024K);
371

372 373 374 375 376
	vht_cap->vht_supported = true;

	vht_cap->cap = IEEE80211_VHT_CAP_SHORT_GI_80 |
		       IEEE80211_VHT_CAP_RXSTBC_1 |
		       IEEE80211_VHT_CAP_SU_BEAMFORMEE_CAPABLE |
377
		       3 << IEEE80211_VHT_CAP_BEAMFORMEE_STS_SHIFT |
378 379
		       max_ampdu_exponent <<
		       IEEE80211_VHT_CAP_MAX_A_MPDU_LENGTH_EXPONENT_SHIFT;
380

381
	if (data->vht160_supported)
382 383
		vht_cap->cap |= IEEE80211_VHT_CAP_SUPP_CHAN_WIDTH_160MHZ |
				IEEE80211_VHT_CAP_SHORT_GI_160;
384

385 386 387
	if (cfg->vht_mu_mimo_supported)
		vht_cap->cap |= IEEE80211_VHT_CAP_MU_BEAMFORMEE_CAPABLE;

E
Eyal Shapira 已提交
388 389 390
	if (cfg->ht_params->ldpc)
		vht_cap->cap |= IEEE80211_VHT_CAP_RXLDPC;

391 392 393 394 395
	if (data->sku_cap_mimo_disabled) {
		num_rx_ants = 1;
		num_tx_ants = 1;
	}

396
	if (num_tx_ants > 1)
397
		vht_cap->cap |= IEEE80211_VHT_CAP_TXSTBC;
398 399
	else
		vht_cap->cap |= IEEE80211_VHT_CAP_TX_ANTENNA_PATTERN;
400

401
	switch (iwlwifi_mod_params.amsdu_size) {
402 403 404 405 406 407 408
	case IWL_AMSDU_DEF:
		if (cfg->mq_rx_supported)
			vht_cap->cap |=
				IEEE80211_VHT_CAP_MAX_MPDU_LENGTH_11454;
		else
			vht_cap->cap |= IEEE80211_VHT_CAP_MAX_MPDU_LENGTH_3895;
		break;
409 410 411 412
	case IWL_AMSDU_4K:
		vht_cap->cap |= IEEE80211_VHT_CAP_MAX_MPDU_LENGTH_3895;
		break;
	case IWL_AMSDU_8K:
413
		vht_cap->cap |= IEEE80211_VHT_CAP_MAX_MPDU_LENGTH_7991;
414 415 416 417 418 419 420
		break;
	case IWL_AMSDU_12K:
		vht_cap->cap |= IEEE80211_VHT_CAP_MAX_MPDU_LENGTH_11454;
		break;
	default:
		break;
	}
421 422 423 424 425 426 427 428 429 430 431

	vht_cap->vht_mcs.rx_mcs_map =
		cpu_to_le16(IEEE80211_VHT_MCS_SUPPORT_0_9 << 0 |
			    IEEE80211_VHT_MCS_SUPPORT_0_9 << 2 |
			    IEEE80211_VHT_MCS_NOT_SUPPORTED << 4 |
			    IEEE80211_VHT_MCS_NOT_SUPPORTED << 6 |
			    IEEE80211_VHT_MCS_NOT_SUPPORTED << 8 |
			    IEEE80211_VHT_MCS_NOT_SUPPORTED << 10 |
			    IEEE80211_VHT_MCS_NOT_SUPPORTED << 12 |
			    IEEE80211_VHT_MCS_NOT_SUPPORTED << 14);

432 433
	if (num_rx_ants == 1 || cfg->rx_with_siso_diversity) {
		vht_cap->cap |= IEEE80211_VHT_CAP_RX_ANTENNA_PATTERN;
434 435 436 437 438 439 440 441
		/* this works because NOT_SUPPORTED == 3 */
		vht_cap->vht_mcs.rx_mcs_map |=
			cpu_to_le16(IEEE80211_VHT_MCS_NOT_SUPPORTED << 2);
	}

	vht_cap->vht_mcs.tx_mcs_map = vht_cap->vht_mcs.rx_mcs_map;
}

442 443 444
void iwl_init_sbands(struct device *dev, const struct iwl_cfg *cfg,
		     struct iwl_nvm_data *data, const __le16 *nvm_ch_flags,
		     u8 tx_chains, u8 rx_chains, bool lar_supported)
445
{
446
	int n_channels;
447 448 449
	int n_used = 0;
	struct ieee80211_supported_band *sband;

450 451
	n_channels = iwl_init_channel_map(dev, cfg, data, nvm_ch_flags,
					  lar_supported);
452 453
	sband = &data->bands[NL80211_BAND_2GHZ];
	sband->band = NL80211_BAND_2GHZ;
454 455 456
	sband->bitrates = &iwl_cfg80211_rates[RATES_24_OFFS];
	sband->n_bitrates = N_RATES_24;
	n_used += iwl_init_sband_channels(data, sband, n_channels,
457 458
					  NL80211_BAND_2GHZ);
	iwl_init_ht_hw_capab(cfg, data, &sband->ht_cap, NL80211_BAND_2GHZ,
459
			     tx_chains, rx_chains);
460

461 462
	sband = &data->bands[NL80211_BAND_5GHZ];
	sband->band = NL80211_BAND_5GHZ;
463 464 465
	sband->bitrates = &iwl_cfg80211_rates[RATES_52_OFFS];
	sband->n_bitrates = N_RATES_52;
	n_used += iwl_init_sband_channels(data, sband, n_channels,
466 467
					  NL80211_BAND_5GHZ);
	iwl_init_ht_hw_capab(cfg, data, &sband->ht_cap, NL80211_BAND_5GHZ,
468
			     tx_chains, rx_chains);
469
	if (data->sku_cap_11ac_enable && !iwlwifi_mod_params.disable_11ac)
470 471
		iwl_init_vht_hw_capab(cfg, data, &sband->vht_cap,
				      tx_chains, rx_chains);
472 473 474 475 476

	if (n_channels != n_used)
		IWL_ERR_DEV(dev, "NVM: used only %d of %d channels\n",
			    n_used, n_channels);
}
477
IWL_EXPORT_SYMBOL(iwl_init_sbands);
478

479 480
static int iwl_get_sku(const struct iwl_cfg *cfg, const __le16 *nvm_sw,
		       const __le16 *phy_sku)
481 482 483
{
	if (cfg->device_family != IWL_DEVICE_FAMILY_8000)
		return le16_to_cpup(nvm_sw + SKU);
484

485
	return le32_to_cpup((__le32 *)(phy_sku + SKU_FAMILY_8000));
486 487
}

488
static int iwl_get_nvm_version(const struct iwl_cfg *cfg, const __le16 *nvm_sw)
489 490 491 492 493 494 495 496
{
	if (cfg->device_family != IWL_DEVICE_FAMILY_8000)
		return le16_to_cpup(nvm_sw + NVM_VERSION);
	else
		return le32_to_cpup((__le32 *)(nvm_sw +
					       NVM_VERSION_FAMILY_8000));
}

497 498
static int iwl_get_radio_cfg(const struct iwl_cfg *cfg, const __le16 *nvm_sw,
			     const __le16 *phy_sku)
499 500 501
{
	if (cfg->device_family != IWL_DEVICE_FAMILY_8000)
		return le16_to_cpup(nvm_sw + RADIO_CFG);
502

503
	return le32_to_cpup((__le32 *)(phy_sku + RADIO_CFG_FAMILY_8000));
504

505 506
}

507
static int iwl_get_n_hw_addrs(const struct iwl_cfg *cfg, const __le16 *nvm_sw)
508
{
509 510
	int n_hw_addr;

511 512
	if (cfg->device_family != IWL_DEVICE_FAMILY_8000)
		return le16_to_cpup(nvm_sw + N_HW_ADDRS);
513

514
	n_hw_addr = le32_to_cpup((__le32 *)(nvm_sw + N_HW_ADDRS_FAMILY_8000));
515 516

	return n_hw_addr & N_HW_ADDR_MASK;
517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535
}

static void iwl_set_radio_cfg(const struct iwl_cfg *cfg,
			      struct iwl_nvm_data *data,
			      u32 radio_cfg)
{
	if (cfg->device_family != IWL_DEVICE_FAMILY_8000) {
		data->radio_cfg_type = NVM_RF_CFG_TYPE_MSK(radio_cfg);
		data->radio_cfg_step = NVM_RF_CFG_STEP_MSK(radio_cfg);
		data->radio_cfg_dash = NVM_RF_CFG_DASH_MSK(radio_cfg);
		data->radio_cfg_pnum = NVM_RF_CFG_PNUM_MSK(radio_cfg);
		return;
	}

	/* set the radio configuration for family 8000 */
	data->radio_cfg_type = NVM_RF_CFG_TYPE_MSK_FAMILY_8000(radio_cfg);
	data->radio_cfg_step = NVM_RF_CFG_STEP_MSK_FAMILY_8000(radio_cfg);
	data->radio_cfg_dash = NVM_RF_CFG_DASH_MSK_FAMILY_8000(radio_cfg);
	data->radio_cfg_pnum = NVM_RF_CFG_FLAVOR_MSK_FAMILY_8000(radio_cfg);
536 537
	data->valid_tx_ant = NVM_RF_CFG_TX_ANT_MSK_FAMILY_8000(radio_cfg);
	data->valid_rx_ant = NVM_RF_CFG_RX_ANT_MSK_FAMILY_8000(radio_cfg);
538 539
}

540 541 542 543 544 545 546 547 548 549 550 551 552 553 554
static void iwl_flip_hw_address(__le32 mac_addr0, __le32 mac_addr1, u8 *dest)
{
	const u8 *hw_addr;

	hw_addr = (const u8 *)&mac_addr0;
	dest[0] = hw_addr[3];
	dest[1] = hw_addr[2];
	dest[2] = hw_addr[1];
	dest[3] = hw_addr[0];

	hw_addr = (const u8 *)&mac_addr1;
	dest[4] = hw_addr[1];
	dest[5] = hw_addr[0];
}

555 556
void iwl_set_hw_address_from_csr(struct iwl_trans *trans,
				 struct iwl_nvm_data *data)
557 558 559 560
{
	__le32 mac_addr0 = cpu_to_le32(iwl_read32(trans, CSR_MAC_ADDR0_STRAP));
	__le32 mac_addr1 = cpu_to_le32(iwl_read32(trans, CSR_MAC_ADDR1_STRAP));

561 562 563 564 565 566 567 568 569 570
	iwl_flip_hw_address(mac_addr0, mac_addr1, data->hw_addr);
	/*
	 * If the OEM fused a valid address, use it instead of the one in the
	 * OTP
	 */
	if (is_valid_ether_addr(data->hw_addr))
		return;

	mac_addr0 = cpu_to_le32(iwl_read32(trans, CSR_MAC_ADDR0_OTP));
	mac_addr1 = cpu_to_le32(iwl_read32(trans, CSR_MAC_ADDR1_OTP));
571 572 573

	iwl_flip_hw_address(mac_addr0, mac_addr1, data->hw_addr);
}
574
IWL_EXPORT_SYMBOL(iwl_set_hw_address_from_csr);
575

576
static void iwl_set_hw_address_family_8000(struct iwl_trans *trans,
577
					   const struct iwl_cfg *cfg,
578 579
					   struct iwl_nvm_data *data,
					   const __le16 *mac_override,
580
					   const __le16 *nvm_hw)
581 582 583 584
{
	const u8 *hw_addr;

	if (mac_override) {
585 586 587 588
		static const u8 reserved_mac[] = {
			0x02, 0xcc, 0xaa, 0xff, 0xee, 0x00
		};

589 590 591
		hw_addr = (const u8 *)(mac_override +
				 MAC_ADDRESS_OVERRIDE_FAMILY_8000);

592 593 594 595 596
		/*
		 * Store the MAC address from MAO section.
		 * No byte swapping is required in MAO section
		 */
		memcpy(data->hw_addr, hw_addr, ETH_ALEN);
597

598 599 600 601 602 603
		/*
		 * Force the use of the OTP MAC address in case of reserved MAC
		 * address in the NVM, or if address is given but invalid.
		 */
		if (is_valid_ether_addr(data->hw_addr) &&
		    memcmp(reserved_mac, hw_addr, ETH_ALEN) != 0)
604
			return;
605

606 607
		IWL_ERR(trans,
			"mac address from nvm override section is not valid\n");
608 609
	}

610
	if (nvm_hw) {
611 612 613 614 615
		/* read the mac address from WFMP registers */
		__le32 mac_addr0 = cpu_to_le32(iwl_trans_read_prph(trans,
						WFMP_MAC_ADDR_0));
		__le32 mac_addr1 = cpu_to_le32(iwl_trans_read_prph(trans,
						WFMP_MAC_ADDR_1));
616 617

		iwl_flip_hw_address(mac_addr0, mac_addr1, data->hw_addr);
618

619 620
		return;
	}
621

622 623 624
	IWL_ERR(trans, "mac address is not found\n");
}

625 626 627 628
static int iwl_set_hw_address(struct iwl_trans *trans,
			      const struct iwl_cfg *cfg,
			      struct iwl_nvm_data *data, const __le16 *nvm_hw,
			      const __le16 *mac_override)
629
{
630 631 632
	if (cfg->mac_addr_from_csr) {
		iwl_set_hw_address_from_csr(trans, data);
	} else if (cfg->device_family != IWL_DEVICE_FAMILY_8000) {
633 634 635 636 637 638 639 640 641 642 643 644 645
		const u8 *hw_addr = (const u8 *)(nvm_hw + HW_ADDR);

		/* The byte order is little endian 16 bit, meaning 214365 */
		data->hw_addr[0] = hw_addr[1];
		data->hw_addr[1] = hw_addr[0];
		data->hw_addr[2] = hw_addr[3];
		data->hw_addr[3] = hw_addr[2];
		data->hw_addr[4] = hw_addr[5];
		data->hw_addr[5] = hw_addr[4];
	} else {
		iwl_set_hw_address_family_8000(trans, cfg, data,
					       mac_override, nvm_hw);
	}
646 647 648 649 650 651 652

	if (!is_valid_ether_addr(data->hw_addr)) {
		IWL_ERR(trans, "no valid mac address was found\n");
		return -EINVAL;
	}

	return 0;
653 654
}

655
struct iwl_nvm_data *
656
iwl_parse_nvm_data(struct iwl_trans *trans, const struct iwl_cfg *cfg,
657
		   const __le16 *nvm_hw, const __le16 *nvm_sw,
658
		   const __le16 *nvm_calib, const __le16 *regulatory,
659
		   const __le16 *mac_override, const __le16 *phy_sku,
660
		   u8 tx_chains, u8 rx_chains, bool lar_fw_supported)
661
{
662
	struct device *dev = trans->dev;
663
	struct iwl_nvm_data *data;
664 665
	bool lar_enabled;
	u32 sku, radio_cfg;
666
	u16 lar_config;
667
	const __le16 *ch_section;
668 669 670 671 672 673 674 675 676 677 678

	if (cfg->device_family != IWL_DEVICE_FAMILY_8000)
		data = kzalloc(sizeof(*data) +
			       sizeof(struct ieee80211_channel) *
			       IWL_NUM_CHANNELS,
			       GFP_KERNEL);
	else
		data = kzalloc(sizeof(*data) +
			       sizeof(struct ieee80211_channel) *
			       IWL_NUM_CHANNELS_FAMILY_8000,
			       GFP_KERNEL);
679 680 681
	if (!data)
		return NULL;

682
	data->nvm_version = iwl_get_nvm_version(cfg, nvm_sw);
683

684
	radio_cfg = iwl_get_radio_cfg(cfg, nvm_sw, phy_sku);
685
	iwl_set_radio_cfg(cfg, data, radio_cfg);
686 687 688 689
	if (data->valid_tx_ant)
		tx_chains &= data->valid_tx_ant;
	if (data->valid_rx_ant)
		rx_chains &= data->valid_rx_ant;
690

691
	sku = iwl_get_sku(cfg, nvm_sw, phy_sku);
692 693 694 695 696
	data->sku_cap_band_24GHz_enable = sku & NVM_SKU_CAP_BAND_24GHZ;
	data->sku_cap_band_52GHz_enable = sku & NVM_SKU_CAP_BAND_52GHZ;
	data->sku_cap_11n_enable = sku & NVM_SKU_CAP_11N_ENABLE;
	if (iwlwifi_mod_params.disable_11n & IWL_DISABLE_HT_ALL)
		data->sku_cap_11n_enable = false;
697 698
	data->sku_cap_11ac_enable = data->sku_cap_11n_enable &&
				    (sku & NVM_SKU_CAP_11AC_ENABLE);
699
	data->sku_cap_mimo_disabled = sku & NVM_SKU_CAP_MIMO_DISABLE;
700

701
	data->n_hw_addrs = iwl_get_n_hw_addrs(cfg, nvm_sw);
702

703 704 705
	if (cfg->device_family != IWL_DEVICE_FAMILY_8000) {
		/* Checking for required sections */
		if (!nvm_calib) {
706 707
			IWL_ERR(trans,
				"Can't parse empty Calib NVM sections\n");
708
			kfree(data);
709 710 711 712 713
			return NULL;
		}
		/* in family 8000 Xtal calibration values moved to OTP */
		data->xtal_calib[0] = *(nvm_calib + XTAL_CALIB);
		data->xtal_calib[1] = *(nvm_calib + XTAL_CALIB + 1);
714
		lar_enabled = true;
715
		ch_section = &nvm_sw[NVM_CHANNELS];
716
	} else {
717 718 719 720 721
		u16 lar_offset = data->nvm_version < 0xE39 ?
				 NVM_LAR_OFFSET_FAMILY_8000_OLD :
				 NVM_LAR_OFFSET_FAMILY_8000;

		lar_config = le16_to_cpup(regulatory + lar_offset);
722 723
		data->lar_enabled = !!(lar_config &
				       NVM_LAR_ENABLED_FAMILY_8000);
724
		lar_enabled = data->lar_enabled;
725
		ch_section = &regulatory[NVM_CHANNELS_FAMILY_8000];
726
	}
727

728 729 730 731 732 733
	/* If no valid mac address was found - bail out */
	if (iwl_set_hw_address(trans, cfg, data, nvm_hw, mac_override)) {
		kfree(data);
		return NULL;
	}

734 735
	iwl_init_sbands(dev, cfg, data, ch_section, tx_chains, rx_chains,
			lar_fw_supported && lar_enabled);
736
	data->calib_version = 255;
737 738 739

	return data;
}
740
IWL_EXPORT_SYMBOL(iwl_parse_nvm_data);
741 742

static u32 iwl_nvm_get_regdom_bw_flags(const u8 *nvm_chan,
743 744
				       int ch_idx, u16 nvm_flags,
				       const struct iwl_cfg *cfg)
745 746
{
	u32 flags = NL80211_RRF_NO_HT40;
747 748 749 750
	u32 last_5ghz_ht = LAST_5GHZ_HT;

	if (cfg->device_family == IWL_DEVICE_FAMILY_8000)
		last_5ghz_ht = LAST_5GHZ_HT_FAMILY_8000;
751 752 753 754 755 756 757

	if (ch_idx < NUM_2GHZ_CHANNELS &&
	    (nvm_flags & NVM_CHANNEL_40MHZ)) {
		if (nvm_chan[ch_idx] <= LAST_2GHZ_HT_PLUS)
			flags &= ~NL80211_RRF_NO_HT40PLUS;
		if (nvm_chan[ch_idx] >= FIRST_2GHZ_HT_MINUS)
			flags &= ~NL80211_RRF_NO_HT40MINUS;
758
	} else if (nvm_chan[ch_idx] <= last_5ghz_ht &&
759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790
		   (nvm_flags & NVM_CHANNEL_40MHZ)) {
		if ((ch_idx - NUM_2GHZ_CHANNELS) % 2 == 0)
			flags &= ~NL80211_RRF_NO_HT40PLUS;
		else
			flags &= ~NL80211_RRF_NO_HT40MINUS;
	}

	if (!(nvm_flags & NVM_CHANNEL_80MHZ))
		flags |= NL80211_RRF_NO_80MHZ;
	if (!(nvm_flags & NVM_CHANNEL_160MHZ))
		flags |= NL80211_RRF_NO_160MHZ;

	if (!(nvm_flags & NVM_CHANNEL_ACTIVE))
		flags |= NL80211_RRF_NO_IR;

	if (nvm_flags & NVM_CHANNEL_RADAR)
		flags |= NL80211_RRF_DFS;

	if (nvm_flags & NVM_CHANNEL_INDOOR_ONLY)
		flags |= NL80211_RRF_NO_OUTDOOR;

	/* Set the GO concurrent flag only in case that NO_IR is set.
	 * Otherwise it is meaningless
	 */
	if ((nvm_flags & NVM_CHANNEL_GO_CONCURRENT) &&
	    (flags & NL80211_RRF_NO_IR))
		flags |= NL80211_RRF_GO_CONCURRENT;

	return flags;
}

struct ieee80211_regdomain *
791 792
iwl_parse_nvm_mcc_info(struct device *dev, const struct iwl_cfg *cfg,
		       int num_of_ch, __le32 *channels, u16 fw_mcc)
793 794 795
{
	int ch_idx;
	u16 ch_flags, prev_ch_flags = 0;
796 797
	const u8 *nvm_chan = cfg->device_family == IWL_DEVICE_FAMILY_8000 ?
			     iwl_nvm_channels_family_8000 : iwl_nvm_channels;
798 799 800
	struct ieee80211_regdomain *regd;
	int size_of_regd;
	struct ieee80211_reg_rule *rule;
801
	enum nl80211_band band;
802 803 804
	int center_freq, prev_center_freq = 0;
	int valid_rules = 0;
	bool new_rule;
805 806
	int max_num_ch = cfg->device_family == IWL_DEVICE_FAMILY_8000 ?
			 IWL_NUM_CHANNELS_FAMILY_8000 : IWL_NUM_CHANNELS;
807 808 809 810

	if (WARN_ON_ONCE(num_of_ch > NL80211_MAX_SUPP_REG_RULES))
		return ERR_PTR(-EINVAL);

811 812 813
	if (WARN_ON(num_of_ch > max_num_ch))
		num_of_ch = max_num_ch;

814 815 816 817 818 819 820 821 822 823 824 825 826 827 828
	IWL_DEBUG_DEV(dev, IWL_DL_LAR, "building regdom for %d channels\n",
		      num_of_ch);

	/* build a regdomain rule for every valid channel */
	size_of_regd =
		sizeof(struct ieee80211_regdomain) +
		num_of_ch * sizeof(struct ieee80211_reg_rule);

	regd = kzalloc(size_of_regd, GFP_KERNEL);
	if (!regd)
		return ERR_PTR(-ENOMEM);

	for (ch_idx = 0; ch_idx < num_of_ch; ch_idx++) {
		ch_flags = (u16)__le32_to_cpup(channels + ch_idx);
		band = (ch_idx < NUM_2GHZ_CHANNELS) ?
829
		       NL80211_BAND_2GHZ : NL80211_BAND_5GHZ;
830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860
		center_freq = ieee80211_channel_to_frequency(nvm_chan[ch_idx],
							     band);
		new_rule = false;

		if (!(ch_flags & NVM_CHANNEL_VALID)) {
			IWL_DEBUG_DEV(dev, IWL_DL_LAR,
				      "Ch. %d Flags %x [%sGHz] - No traffic\n",
				      nvm_chan[ch_idx],
				      ch_flags,
				      (ch_idx >= NUM_2GHZ_CHANNELS) ?
				      "5.2" : "2.4");
			continue;
		}

		/* we can't continue the same rule */
		if (ch_idx == 0 || prev_ch_flags != ch_flags ||
		    center_freq - prev_center_freq > 20) {
			valid_rules++;
			new_rule = true;
		}

		rule = &regd->reg_rules[valid_rules - 1];

		if (new_rule)
			rule->freq_range.start_freq_khz =
						MHZ_TO_KHZ(center_freq - 10);

		rule->freq_range.end_freq_khz = MHZ_TO_KHZ(center_freq + 10);

		/* this doesn't matter - not used by FW */
		rule->power_rule.max_antenna_gain = DBI_TO_MBI(6);
861 862
		rule->power_rule.max_eirp =
			DBM_TO_MBM(IWL_DEFAULT_MAX_TX_POWER);
863 864

		rule->flags = iwl_nvm_get_regdom_bw_flags(nvm_chan, ch_idx,
865
							  ch_flags, cfg);
866 867 868 869 870 871 872 873 874

		/* rely on auto-calculation to merge BW of contiguous chans */
		rule->flags |= NL80211_RRF_AUTO_BW;
		rule->freq_range.max_bandwidth_khz = 0;

		prev_ch_flags = ch_flags;
		prev_center_freq = center_freq;

		IWL_DEBUG_DEV(dev, IWL_DL_LAR,
875
			      "Ch. %d [%sGHz] %s%s%s%s%s%s%s%s%s(0x%02x): Ad-Hoc %ssupported\n",
876
			      center_freq,
877
			      band == NL80211_BAND_5GHZ ? "5.2" : "2.4",
878 879 880 881 882 883 884 885 886 887
			      CHECK_AND_PRINT_I(VALID),
			      CHECK_AND_PRINT_I(ACTIVE),
			      CHECK_AND_PRINT_I(RADAR),
			      CHECK_AND_PRINT_I(WIDE),
			      CHECK_AND_PRINT_I(40MHZ),
			      CHECK_AND_PRINT_I(80MHZ),
			      CHECK_AND_PRINT_I(160MHZ),
			      CHECK_AND_PRINT_I(INDOOR_ONLY),
			      CHECK_AND_PRINT_I(GO_CONCURRENT),
			      ch_flags,
888
			      ((ch_flags & NVM_CHANNEL_ACTIVE) &&
889 890 891 892 893 894 895 896 897 898 899 900 901
			       !(ch_flags & NVM_CHANNEL_RADAR))
					 ? "" : "not ");
	}

	regd->n_reg_rules = valid_rules;

	/* set alpha2 from FW. */
	regd->alpha2[0] = fw_mcc >> 8;
	regd->alpha2[1] = fw_mcc & 0xff;

	return regd;
}
IWL_EXPORT_SYMBOL(iwl_parse_nvm_mcc_info);
902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989

#ifdef CONFIG_ACPI
#define WRDD_METHOD		"WRDD"
#define WRDD_WIFI		(0x07)
#define WRDD_WIGIG		(0x10)

static u32 iwl_wrdd_get_mcc(struct device *dev, union acpi_object *wrdd)
{
	union acpi_object *mcc_pkg, *domain_type, *mcc_value;
	u32 i;

	if (wrdd->type != ACPI_TYPE_PACKAGE ||
	    wrdd->package.count < 2 ||
	    wrdd->package.elements[0].type != ACPI_TYPE_INTEGER ||
	    wrdd->package.elements[0].integer.value != 0) {
		IWL_DEBUG_EEPROM(dev, "Unsupported wrdd structure\n");
		return 0;
	}

	for (i = 1 ; i < wrdd->package.count ; ++i) {
		mcc_pkg = &wrdd->package.elements[i];

		if (mcc_pkg->type != ACPI_TYPE_PACKAGE ||
		    mcc_pkg->package.count < 2 ||
		    mcc_pkg->package.elements[0].type != ACPI_TYPE_INTEGER ||
		    mcc_pkg->package.elements[1].type != ACPI_TYPE_INTEGER) {
			mcc_pkg = NULL;
			continue;
		}

		domain_type = &mcc_pkg->package.elements[0];
		if (domain_type->integer.value == WRDD_WIFI)
			break;

		mcc_pkg = NULL;
	}

	if (mcc_pkg) {
		mcc_value = &mcc_pkg->package.elements[1];
		return mcc_value->integer.value;
	}

	return 0;
}

int iwl_get_bios_mcc(struct device *dev, char *mcc)
{
	acpi_handle root_handle;
	acpi_handle handle;
	struct acpi_buffer wrdd = {ACPI_ALLOCATE_BUFFER, NULL};
	acpi_status status;
	u32 mcc_val;

	root_handle = ACPI_HANDLE(dev);
	if (!root_handle) {
		IWL_DEBUG_EEPROM(dev,
				 "Could not retrieve root port ACPI handle\n");
		return -ENOENT;
	}

	/* Get the method's handle */
	status = acpi_get_handle(root_handle, (acpi_string)WRDD_METHOD,
				 &handle);
	if (ACPI_FAILURE(status)) {
		IWL_DEBUG_EEPROM(dev, "WRD method not found\n");
		return -ENOENT;
	}

	/* Call WRDD with no arguments */
	status = acpi_evaluate_object(handle, NULL, NULL, &wrdd);
	if (ACPI_FAILURE(status)) {
		IWL_DEBUG_EEPROM(dev, "WRDC invocation failed (0x%x)\n",
				 status);
		return -ENOENT;
	}

	mcc_val = iwl_wrdd_get_mcc(dev, wrdd.pointer);
	kfree(wrdd.pointer);
	if (!mcc_val)
		return -ENOENT;

	mcc[0] = (mcc_val >> 8) & 0xff;
	mcc[1] = mcc_val & 0xff;
	mcc[2] = '\0';
	return 0;
}
IWL_EXPORT_SYMBOL(iwl_get_bios_mcc);
#endif