iwl-nvm-parse.c 45.7 KB
Newer Older
1 2 3 4 5 6 7
/******************************************************************************
 *
 * This file is provided under a dual BSD/GPLv2 license.  When using or
 * redistributing this file, you may do so under either license.
 *
 * GPL LICENSE SUMMARY
 *
8
 * Copyright(c) 2008 - 2014 Intel Corporation. All rights reserved.
9
 * Copyright(c) 2013 - 2015 Intel Mobile Communications GmbH
10
 * Copyright(c) 2016 - 2017 Intel Deutschland GmbH
11
 * Copyright(c) 2018 - 2019 Intel Corporation
12 13 14 15 16 17 18 19 20 21 22
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of version 2 of the GNU General Public License as
 * published by the Free Software Foundation.
 *
 * This program is distributed in the hope that it will be useful, but
 * WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * General Public License for more details.
 *
 * The full GNU General Public License is included in this distribution
23
 * in the file called COPYING.
24 25
 *
 * Contact Information:
26
 *  Intel Linux Wireless <linuxwifi@intel.com>
27 28 29 30
 * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
 *
 * BSD LICENSE
 *
31
 * Copyright(c) 2005 - 2014 Intel Corporation. All rights reserved.
32
 * Copyright(c) 2013 - 2015 Intel Mobile Communications GmbH
33
 * Copyright(c) 2016 - 2017 Intel Deutschland GmbH
34
 * Copyright(c) 2018 - 2019 Intel Corporation
35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65
 * All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 *
 *  * Redistributions of source code must retain the above copyright
 *    notice, this list of conditions and the following disclaimer.
 *  * Redistributions in binary form must reproduce the above copyright
 *    notice, this list of conditions and the following disclaimer in
 *    the documentation and/or other materials provided with the
 *    distribution.
 *  * Neither the name Intel Corporation nor the names of its
 *    contributors may be used to endorse or promote products derived
 *    from this software without specific prior written permission.
 *
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 *****************************************************************************/
#include <linux/types.h>
#include <linux/slab.h>
#include <linux/export.h>
66
#include <linux/etherdevice.h>
67
#include <linux/pci.h>
68
#include <linux/firmware.h>
69

70
#include "iwl-drv.h"
71 72
#include "iwl-modparams.h"
#include "iwl-nvm-parse.h"
73
#include "iwl-prph.h"
74 75
#include "iwl-io.h"
#include "iwl-csr.h"
76
#include "fw/acpi.h"
77
#include "fw/api/nvm-reg.h"
S
Shaul Triebitz 已提交
78 79 80
#include "fw/api/commands.h"
#include "fw/api/cmdhdr.h"
#include "fw/img.h"
81 82

/* NVM offsets (in words) definitions */
83
enum nvm_offsets {
84
	/* NVM HW-Section offset (in words) definitions */
85
	SUBSYSTEM_ID = 0x0A,
86 87
	HW_ADDR = 0x15,

88
	/* NVM SW-Section offset (in words) definitions */
89 90 91 92 93 94 95
	NVM_SW_SECTION = 0x1C0,
	NVM_VERSION = 0,
	RADIO_CFG = 1,
	SKU = 2,
	N_HW_ADDRS = 3,
	NVM_CHANNELS = 0x1E0 - NVM_SW_SECTION,

96
	/* NVM calibration section offset (in words) definitions */
97
	NVM_CALIB_SECTION = 0x2B8,
98 99 100 101
	XTAL_CALIB = 0x316 - NVM_CALIB_SECTION,

	/* NVM REGULATORY -Section offset (in words) definitions */
	NVM_CHANNELS_SDP = 0,
102 103
};

104
enum ext_nvm_offsets {
105
	/* NVM HW-Section offset (in words) definitions */
106
	MAC_ADDRESS_OVERRIDE_EXT_NVM = 1,
107 108

	/* NVM SW-Section offset (in words) definitions */
109 110
	NVM_VERSION_EXT_NVM = 0,
	RADIO_CFG_FAMILY_EXT_NVM = 0,
111 112
	SKU_FAMILY_8000 = 2,
	N_HW_ADDRS_FAMILY_8000 = 3,
113

114
	/* NVM REGULATORY -Section offset (in words) definitions */
115 116 117 118
	NVM_CHANNELS_EXTENDED = 0,
	NVM_LAR_OFFSET_OLD = 0x4C7,
	NVM_LAR_OFFSET = 0x507,
	NVM_LAR_ENABLED = 0x7,
119 120
};

121 122
/* SKU Capabilities (actual values from NVM definition) */
enum nvm_sku_bits {
123 124 125 126 127
	NVM_SKU_CAP_BAND_24GHZ		= BIT(0),
	NVM_SKU_CAP_BAND_52GHZ		= BIT(1),
	NVM_SKU_CAP_11N_ENABLE		= BIT(2),
	NVM_SKU_CAP_11AC_ENABLE		= BIT(3),
	NVM_SKU_CAP_MIMO_DISABLE	= BIT(5),
128 129 130 131 132
};

/*
 * These are the channel numbers in the order that they are stored in the NVM
 */
133
static const u16 iwl_nvm_channels[] = {
134 135 136 137 138 139 140 141
	/* 2.4 GHz */
	1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14,
	/* 5 GHz */
	36, 40, 44 , 48, 52, 56, 60, 64,
	100, 104, 108, 112, 116, 120, 124, 128, 132, 136, 140, 144,
	149, 153, 157, 161, 165
};

142
static const u16 iwl_ext_nvm_channels[] = {
143
	/* 2.4 GHz */
144
	1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14,
145 146 147 148 149 150
	/* 5 GHz */
	36, 40, 44, 48, 52, 56, 60, 64, 68, 72, 76, 80, 84, 88, 92,
	96, 100, 104, 108, 112, 116, 120, 124, 128, 132, 136, 140, 144,
	149, 153, 157, 161, 165, 169, 173, 177, 181
};

151 152 153 154 155 156 157 158 159 160 161 162 163 164 165
static const u16 iwl_uhb_nvm_channels[] = {
	/* 2.4 GHz */
	1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14,
	/* 5 GHz */
	36, 40, 44, 48, 52, 56, 60, 64, 68, 72, 76, 80, 84, 88, 92,
	96, 100, 104, 108, 112, 116, 120, 124, 128, 132, 136, 140, 144,
	149, 153, 157, 161, 165, 169, 173, 177, 181,
	/* 6-7 GHz */
	189, 193, 197, 201, 205, 209, 213, 217, 221, 225, 229, 233, 237, 241,
	245, 249, 253, 257, 261, 265, 269, 273, 277, 281, 285, 289, 293, 297,
	301, 305, 309, 313, 317, 321, 325, 329, 333, 337, 341, 345, 349, 353,
	357, 361, 365, 369, 373, 377, 381, 385, 389, 393, 397, 401, 405, 409,
	413, 417, 421
};

166 167
#define IWL_NVM_NUM_CHANNELS		ARRAY_SIZE(iwl_nvm_channels)
#define IWL_NVM_NUM_CHANNELS_EXT	ARRAY_SIZE(iwl_ext_nvm_channels)
168
#define IWL_NVM_NUM_CHANNELS_UHB	ARRAY_SIZE(iwl_uhb_nvm_channels)
169 170 171
#define NUM_2GHZ_CHANNELS		14
#define FIRST_2GHZ_HT_MINUS		5
#define LAST_2GHZ_HT_PLUS		9
172
#define N_HW_ADDR_MASK			0xF
173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202

/* rate data (static) */
static struct ieee80211_rate iwl_cfg80211_rates[] = {
	{ .bitrate = 1 * 10, .hw_value = 0, .hw_value_short = 0, },
	{ .bitrate = 2 * 10, .hw_value = 1, .hw_value_short = 1,
	  .flags = IEEE80211_RATE_SHORT_PREAMBLE, },
	{ .bitrate = 5.5 * 10, .hw_value = 2, .hw_value_short = 2,
	  .flags = IEEE80211_RATE_SHORT_PREAMBLE, },
	{ .bitrate = 11 * 10, .hw_value = 3, .hw_value_short = 3,
	  .flags = IEEE80211_RATE_SHORT_PREAMBLE, },
	{ .bitrate = 6 * 10, .hw_value = 4, .hw_value_short = 4, },
	{ .bitrate = 9 * 10, .hw_value = 5, .hw_value_short = 5, },
	{ .bitrate = 12 * 10, .hw_value = 6, .hw_value_short = 6, },
	{ .bitrate = 18 * 10, .hw_value = 7, .hw_value_short = 7, },
	{ .bitrate = 24 * 10, .hw_value = 8, .hw_value_short = 8, },
	{ .bitrate = 36 * 10, .hw_value = 9, .hw_value_short = 9, },
	{ .bitrate = 48 * 10, .hw_value = 10, .hw_value_short = 10, },
	{ .bitrate = 54 * 10, .hw_value = 11, .hw_value_short = 11, },
};
#define RATES_24_OFFS	0
#define N_RATES_24	ARRAY_SIZE(iwl_cfg80211_rates)
#define RATES_52_OFFS	4
#define N_RATES_52	(N_RATES_24 - RATES_52_OFFS)

/**
 * enum iwl_nvm_channel_flags - channel flags in NVM
 * @NVM_CHANNEL_VALID: channel is usable for this SKU/geo
 * @NVM_CHANNEL_IBSS: usable as an IBSS channel
 * @NVM_CHANNEL_ACTIVE: active scanning allowed
 * @NVM_CHANNEL_RADAR: radar detection required
203 204 205
 * @NVM_CHANNEL_INDOOR_ONLY: only indoor use is allowed
 * @NVM_CHANNEL_GO_CONCURRENT: GO operation is allowed when connected to BSS
 *	on same channel on 2.4 or same UNII band on 5.2
206 207 208 209 210 211
 * @NVM_CHANNEL_UNIFORM: uniform spreading required
 * @NVM_CHANNEL_20MHZ: 20 MHz channel okay
 * @NVM_CHANNEL_40MHZ: 40 MHz channel okay
 * @NVM_CHANNEL_80MHZ: 80 MHz channel okay
 * @NVM_CHANNEL_160MHZ: 160 MHz channel okay
 * @NVM_CHANNEL_DC_HIGH: DC HIGH required/allowed (?)
212 213
 */
enum iwl_nvm_channel_flags {
214 215 216 217 218 219 220 221 222 223 224 225
	NVM_CHANNEL_VALID		= BIT(0),
	NVM_CHANNEL_IBSS		= BIT(1),
	NVM_CHANNEL_ACTIVE		= BIT(3),
	NVM_CHANNEL_RADAR		= BIT(4),
	NVM_CHANNEL_INDOOR_ONLY		= BIT(5),
	NVM_CHANNEL_GO_CONCURRENT	= BIT(6),
	NVM_CHANNEL_UNIFORM		= BIT(7),
	NVM_CHANNEL_20MHZ		= BIT(8),
	NVM_CHANNEL_40MHZ		= BIT(9),
	NVM_CHANNEL_80MHZ		= BIT(10),
	NVM_CHANNEL_160MHZ		= BIT(11),
	NVM_CHANNEL_DC_HIGH		= BIT(12),
226 227
};

228
static inline void iwl_nvm_print_channel_flags(struct device *dev, u32 level,
229
					       int chan, u32 flags)
230
{
231
#define CHECK_AND_PRINT_I(x)	\
232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257
	((flags & NVM_CHANNEL_##x) ? " " #x : "")

	if (!(flags & NVM_CHANNEL_VALID)) {
		IWL_DEBUG_DEV(dev, level, "Ch. %d: 0x%x: No traffic\n",
			      chan, flags);
		return;
	}

	/* Note: already can print up to 101 characters, 110 is the limit! */
	IWL_DEBUG_DEV(dev, level,
		      "Ch. %d: 0x%x:%s%s%s%s%s%s%s%s%s%s%s%s\n",
		      chan, flags,
		      CHECK_AND_PRINT_I(VALID),
		      CHECK_AND_PRINT_I(IBSS),
		      CHECK_AND_PRINT_I(ACTIVE),
		      CHECK_AND_PRINT_I(RADAR),
		      CHECK_AND_PRINT_I(INDOOR_ONLY),
		      CHECK_AND_PRINT_I(GO_CONCURRENT),
		      CHECK_AND_PRINT_I(UNIFORM),
		      CHECK_AND_PRINT_I(20MHZ),
		      CHECK_AND_PRINT_I(40MHZ),
		      CHECK_AND_PRINT_I(80MHZ),
		      CHECK_AND_PRINT_I(160MHZ),
		      CHECK_AND_PRINT_I(DC_HIGH));
#undef CHECK_AND_PRINT_I
}
258

259
static u32 iwl_get_channel_flags(u8 ch_num, int ch_idx, bool is_5ghz,
260
				 u32 nvm_flags, const struct iwl_cfg *cfg)
261 262 263 264 265 266 267 268
{
	u32 flags = IEEE80211_CHAN_NO_HT40;

	if (!is_5ghz && (nvm_flags & NVM_CHANNEL_40MHZ)) {
		if (ch_num <= LAST_2GHZ_HT_PLUS)
			flags &= ~IEEE80211_CHAN_NO_HT40PLUS;
		if (ch_num >= FIRST_2GHZ_HT_MINUS)
			flags &= ~IEEE80211_CHAN_NO_HT40MINUS;
269
	} else if (nvm_flags & NVM_CHANNEL_40MHZ) {
270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296
		if ((ch_idx - NUM_2GHZ_CHANNELS) % 2 == 0)
			flags &= ~IEEE80211_CHAN_NO_HT40PLUS;
		else
			flags &= ~IEEE80211_CHAN_NO_HT40MINUS;
	}
	if (!(nvm_flags & NVM_CHANNEL_80MHZ))
		flags |= IEEE80211_CHAN_NO_80MHZ;
	if (!(nvm_flags & NVM_CHANNEL_160MHZ))
		flags |= IEEE80211_CHAN_NO_160MHZ;

	if (!(nvm_flags & NVM_CHANNEL_IBSS))
		flags |= IEEE80211_CHAN_NO_IR;

	if (!(nvm_flags & NVM_CHANNEL_ACTIVE))
		flags |= IEEE80211_CHAN_NO_IR;

	if (nvm_flags & NVM_CHANNEL_RADAR)
		flags |= IEEE80211_CHAN_RADAR;

	if (nvm_flags & NVM_CHANNEL_INDOOR_ONLY)
		flags |= IEEE80211_CHAN_INDOOR_ONLY;

	/* Set the GO concurrent flag only in case that NO_IR is set.
	 * Otherwise it is meaningless
	 */
	if ((nvm_flags & NVM_CHANNEL_GO_CONCURRENT) &&
	    (flags & IEEE80211_CHAN_NO_IR))
297
		flags |= IEEE80211_CHAN_IR_CONCURRENT;
298 299 300 301

	return flags;
}

302 303
static int iwl_init_channel_map(struct device *dev, const struct iwl_cfg *cfg,
				struct iwl_nvm_data *data,
304 305
				const void * const nvm_ch_flags,
				u32 sbands_flags, bool v4)
306 307 308 309
{
	int ch_idx;
	int n_channels = 0;
	struct ieee80211_channel *channel;
310
	u32 ch_flags;
311 312
	int num_of_ch, num_2ghz_channels = NUM_2GHZ_CHANNELS;
	const u16 *nvm_chan;
313

314 315 316 317
	if (cfg->uhb_supported) {
		num_of_ch = IWL_NVM_NUM_CHANNELS_UHB;
		nvm_chan = iwl_uhb_nvm_channels;
	} else if (cfg->nvm_type == IWL_NVM_EXT) {
318
		num_of_ch = IWL_NVM_NUM_CHANNELS_EXT;
319 320 321 322
		nvm_chan = iwl_ext_nvm_channels;
	} else {
		num_of_ch = IWL_NVM_NUM_CHANNELS;
		nvm_chan = iwl_nvm_channels;
323
	}
324

325
	for (ch_idx = 0; ch_idx < num_of_ch; ch_idx++) {
326 327
		bool is_5ghz = (ch_idx >= num_2ghz_channels);

328 329 330 331 332 333
		if (v4)
			ch_flags =
				__le32_to_cpup((__le32 *)nvm_ch_flags + ch_idx);
		else
			ch_flags =
				__le16_to_cpup((__le16 *)nvm_ch_flags + ch_idx);
334

335
		if (is_5ghz && !data->sku_cap_band_52ghz_enable)
336
			continue;
337

338
		/* workaround to disable wide channels in 5GHz */
339 340
		if ((sbands_flags & IWL_NVM_SBANDS_FLAGS_NO_WIDE_IN_5GHZ) &&
		    is_5ghz) {
341 342 343 344 345
			ch_flags &= ~(NVM_CHANNEL_40MHZ |
				     NVM_CHANNEL_80MHZ |
				     NVM_CHANNEL_160MHZ);
		}

346 347 348
		if (ch_flags & NVM_CHANNEL_160MHZ)
			data->vht160_supported = true;

349 350
		if (!(sbands_flags & IWL_NVM_SBANDS_FLAGS_LAR) &&
		    !(ch_flags & NVM_CHANNEL_VALID)) {
351 352 353 354 355
			/*
			 * Channels might become valid later if lar is
			 * supported, hence we still want to add them to
			 * the list of supported channels to cfg80211.
			 */
356 357
			iwl_nvm_print_channel_flags(dev, IWL_DL_EEPROM,
						    nvm_chan[ch_idx], ch_flags);
358 359 360 361 362 363
			continue;
		}

		channel = &data->channels[n_channels];
		n_channels++;

364
		channel->hw_value = nvm_chan[ch_idx];
365 366
		channel->band = is_5ghz ?
				NL80211_BAND_5GHZ : NL80211_BAND_2GHZ;
367 368 369 370 371 372
		channel->center_freq =
			ieee80211_channel_to_frequency(
				channel->hw_value, channel->band);

		/* Initialize regulatory-based run-time data */

373 374 375 376
		/*
		 * Default value - highest tx power value.  max_power
		 * is not used in mvm, and is used for backwards compatibility
		 */
377
		channel->max_power = IWL_DEFAULT_MAX_TX_POWER;
378 379

		/* don't put limitations in case we're using LAR */
380
		if (!(sbands_flags & IWL_NVM_SBANDS_FLAGS_LAR))
381 382
			channel->flags = iwl_get_channel_flags(nvm_chan[ch_idx],
							       ch_idx, is_5ghz,
383
							       ch_flags, cfg);
384 385 386
		else
			channel->flags = 0;

387 388 389 390
		iwl_nvm_print_channel_flags(dev, IWL_DL_EEPROM,
					    channel->hw_value, ch_flags);
		IWL_DEBUG_EEPROM(dev, "Ch. %d: %ddBm\n",
				 channel->hw_value, channel->max_power);
391 392 393 394 395
	}

	return n_channels;
}

396 397
static void iwl_init_vht_hw_capab(const struct iwl_cfg *cfg,
				  struct iwl_nvm_data *data,
398 399
				  struct ieee80211_sta_vht_cap *vht_cap,
				  u8 tx_chains, u8 rx_chains)
400
{
401 402
	int num_rx_ants = num_of_ant(rx_chains);
	int num_tx_ants = num_of_ant(tx_chains);
403 404
	unsigned int max_ampdu_exponent = (cfg->max_vht_ampdu_exponent ?:
					   IEEE80211_VHT_MAX_AMPDU_1024K);
405

406 407 408 409 410
	vht_cap->vht_supported = true;

	vht_cap->cap = IEEE80211_VHT_CAP_SHORT_GI_80 |
		       IEEE80211_VHT_CAP_RXSTBC_1 |
		       IEEE80211_VHT_CAP_SU_BEAMFORMEE_CAPABLE |
411
		       3 << IEEE80211_VHT_CAP_BEAMFORMEE_STS_SHIFT |
412 413
		       max_ampdu_exponent <<
		       IEEE80211_VHT_CAP_MAX_A_MPDU_LENGTH_EXPONENT_SHIFT;
414

415
	if (data->vht160_supported)
416 417
		vht_cap->cap |= IEEE80211_VHT_CAP_SUPP_CHAN_WIDTH_160MHZ |
				IEEE80211_VHT_CAP_SHORT_GI_160;
418

419 420 421
	if (cfg->vht_mu_mimo_supported)
		vht_cap->cap |= IEEE80211_VHT_CAP_MU_BEAMFORMEE_CAPABLE;

E
Eyal Shapira 已提交
422 423 424
	if (cfg->ht_params->ldpc)
		vht_cap->cap |= IEEE80211_VHT_CAP_RXLDPC;

425 426 427 428 429
	if (data->sku_cap_mimo_disabled) {
		num_rx_ants = 1;
		num_tx_ants = 1;
	}

430
	if (num_tx_ants > 1)
431
		vht_cap->cap |= IEEE80211_VHT_CAP_TXSTBC;
432 433
	else
		vht_cap->cap |= IEEE80211_VHT_CAP_TX_ANTENNA_PATTERN;
434

435
	switch (iwlwifi_mod_params.amsdu_size) {
436 437 438 439 440 441 442
	case IWL_AMSDU_DEF:
		if (cfg->mq_rx_supported)
			vht_cap->cap |=
				IEEE80211_VHT_CAP_MAX_MPDU_LENGTH_11454;
		else
			vht_cap->cap |= IEEE80211_VHT_CAP_MAX_MPDU_LENGTH_3895;
		break;
443 444 445 446 447 448 449
	case IWL_AMSDU_2K:
		if (cfg->mq_rx_supported)
			vht_cap->cap |=
				IEEE80211_VHT_CAP_MAX_MPDU_LENGTH_11454;
		else
			WARN(1, "RB size of 2K is not supported by this device\n");
		break;
450 451 452 453
	case IWL_AMSDU_4K:
		vht_cap->cap |= IEEE80211_VHT_CAP_MAX_MPDU_LENGTH_3895;
		break;
	case IWL_AMSDU_8K:
454
		vht_cap->cap |= IEEE80211_VHT_CAP_MAX_MPDU_LENGTH_7991;
455 456 457 458 459 460 461
		break;
	case IWL_AMSDU_12K:
		vht_cap->cap |= IEEE80211_VHT_CAP_MAX_MPDU_LENGTH_11454;
		break;
	default:
		break;
	}
462 463 464 465 466 467 468 469 470 471 472

	vht_cap->vht_mcs.rx_mcs_map =
		cpu_to_le16(IEEE80211_VHT_MCS_SUPPORT_0_9 << 0 |
			    IEEE80211_VHT_MCS_SUPPORT_0_9 << 2 |
			    IEEE80211_VHT_MCS_NOT_SUPPORTED << 4 |
			    IEEE80211_VHT_MCS_NOT_SUPPORTED << 6 |
			    IEEE80211_VHT_MCS_NOT_SUPPORTED << 8 |
			    IEEE80211_VHT_MCS_NOT_SUPPORTED << 10 |
			    IEEE80211_VHT_MCS_NOT_SUPPORTED << 12 |
			    IEEE80211_VHT_MCS_NOT_SUPPORTED << 14);

473 474
	if (num_rx_ants == 1 || cfg->rx_with_siso_diversity) {
		vht_cap->cap |= IEEE80211_VHT_CAP_RX_ANTENNA_PATTERN;
475 476 477 478 479 480
		/* this works because NOT_SUPPORTED == 3 */
		vht_cap->vht_mcs.rx_mcs_map |=
			cpu_to_le16(IEEE80211_VHT_MCS_NOT_SUPPORTED << 2);
	}

	vht_cap->vht_mcs.tx_mcs_map = vht_cap->vht_mcs.rx_mcs_map;
481 482 483

	vht_cap->vht_mcs.tx_highest |=
		cpu_to_le16(IEEE80211_VHT_EXT_NSS_BW_CAPABLE);
484 485
}

486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509
static struct ieee80211_sband_iftype_data iwl_he_capa[] = {
	{
		.types_mask = BIT(NL80211_IFTYPE_STATION),
		.he_cap = {
			.has_he = true,
			.he_cap_elem = {
				.mac_cap_info[0] =
					IEEE80211_HE_MAC_CAP0_HTC_HE |
					IEEE80211_HE_MAC_CAP0_TWT_REQ,
				.mac_cap_info[1] =
					IEEE80211_HE_MAC_CAP1_TF_MAC_PAD_DUR_16US |
					IEEE80211_HE_MAC_CAP1_MULTI_TID_AGG_RX_QOS_8,
				.mac_cap_info[2] =
					IEEE80211_HE_MAC_CAP2_32BIT_BA_BITMAP |
					IEEE80211_HE_MAC_CAP2_ACK_EN,
				.mac_cap_info[3] =
					IEEE80211_HE_MAC_CAP3_OMI_CONTROL |
					IEEE80211_HE_MAC_CAP3_MAX_AMPDU_LEN_EXP_VHT_2,
				.mac_cap_info[4] =
					IEEE80211_HE_MAC_CAP4_AMDSU_IN_AMPDU |
					IEEE80211_HE_MAC_CAP4_MULTI_TID_AGG_TX_QOS_B39,
				.mac_cap_info[5] =
					IEEE80211_HE_MAC_CAP5_MULTI_TID_AGG_TX_QOS_B40 |
					IEEE80211_HE_MAC_CAP5_MULTI_TID_AGG_TX_QOS_B41 |
L
Liad Kaufman 已提交
510 511 512
					IEEE80211_HE_MAC_CAP5_UL_2x996_TONE_RU |
					IEEE80211_HE_MAC_CAP5_HE_DYNAMIC_SM_PS |
					IEEE80211_HE_MAC_CAP5_HT_VHT_TRIG_FRAME_RX,
513 514 515 516 517 518 519
				.phy_cap_info[0] =
					IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_40MHZ_IN_2G |
					IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_40MHZ_80MHZ_IN_5G |
					IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_160MHZ_IN_5G,
				.phy_cap_info[1] =
					IEEE80211_HE_PHY_CAP1_PREAMBLE_PUNC_RX_MASK |
					IEEE80211_HE_PHY_CAP1_DEVICE_CLASS_A |
L
Liad Kaufman 已提交
520
					IEEE80211_HE_PHY_CAP1_LDPC_CODING_IN_PAYLOAD,
521
				.phy_cap_info[2] =
L
Liad Kaufman 已提交
522
					IEEE80211_HE_PHY_CAP2_NDP_4x_LTF_AND_3_2US,
523
				.phy_cap_info[3] =
L
Liad Kaufman 已提交
524
					IEEE80211_HE_PHY_CAP3_DCM_MAX_CONST_TX_NO_DCM |
525
					IEEE80211_HE_PHY_CAP3_DCM_MAX_TX_NSS_1 |
L
Liad Kaufman 已提交
526
					IEEE80211_HE_PHY_CAP3_DCM_MAX_CONST_RX_NO_DCM |
527 528 529 530 531 532 533
					IEEE80211_HE_PHY_CAP3_DCM_MAX_RX_NSS_1,
				.phy_cap_info[4] =
					IEEE80211_HE_PHY_CAP4_SU_BEAMFORMEE |
					IEEE80211_HE_PHY_CAP4_BEAMFORMEE_MAX_STS_ABOVE_80MHZ_8 |
					IEEE80211_HE_PHY_CAP4_BEAMFORMEE_MAX_STS_UNDER_80MHZ_8,
				.phy_cap_info[5] =
					IEEE80211_HE_PHY_CAP5_BEAMFORMEE_NUM_SND_DIM_UNDER_80MHZ_2 |
L
Liad Kaufman 已提交
534
					IEEE80211_HE_PHY_CAP5_BEAMFORMEE_NUM_SND_DIM_ABOVE_80MHZ_2,
535 536 537 538 539 540 541 542 543 544 545
				.phy_cap_info[6] =
					IEEE80211_HE_PHY_CAP6_PPE_THRESHOLD_PRESENT,
				.phy_cap_info[7] =
					IEEE80211_HE_PHY_CAP7_POWER_BOOST_FACTOR_AR |
					IEEE80211_HE_PHY_CAP7_HE_SU_MU_PPDU_4XLTF_AND_08_US_GI |
					IEEE80211_HE_PHY_CAP7_MAX_NC_1,
				.phy_cap_info[8] =
					IEEE80211_HE_PHY_CAP8_HE_ER_SU_PPDU_4XLTF_AND_08_US_GI |
					IEEE80211_HE_PHY_CAP8_20MHZ_IN_40MHZ_HE_PPDU_IN_2G |
					IEEE80211_HE_PHY_CAP8_20MHZ_IN_160MHZ_HE_PPDU |
					IEEE80211_HE_PHY_CAP8_80MHZ_IN_160MHZ_HE_PPDU |
L
Liad Kaufman 已提交
546
					IEEE80211_HE_PHY_CAP8_DCM_MAX_RU_2x996,
547 548 549
				.phy_cap_info[9] =
					IEEE80211_HE_PHY_CAP9_NON_TRIGGERED_CQI_FEEDBACK |
					IEEE80211_HE_PHY_CAP9_RX_FULL_BW_SU_USING_MU_WITH_COMP_SIGB |
L
Liad Kaufman 已提交
550 551
					IEEE80211_HE_PHY_CAP9_RX_FULL_BW_SU_USING_MU_WITH_NON_COMP_SIGB |
					IEEE80211_HE_PHY_CAP9_NOMIMAL_PKT_PADDING_RESERVED,
552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570
			},
			/*
			 * Set default Tx/Rx HE MCS NSS Support field.
			 * Indicate support for up to 2 spatial streams and all
			 * MCS, without any special cases
			 */
			.he_mcs_nss_supp = {
				.rx_mcs_80 = cpu_to_le16(0xfffa),
				.tx_mcs_80 = cpu_to_le16(0xfffa),
				.rx_mcs_160 = cpu_to_le16(0xfffa),
				.tx_mcs_160 = cpu_to_le16(0xfffa),
				.rx_mcs_80p80 = cpu_to_le16(0xffff),
				.tx_mcs_80p80 = cpu_to_le16(0xffff),
			},
			/*
			 * Set default PPE thresholds, with PPET16 set to 0,
			 * PPET8 set to 7
			 */
			.ppe_thres = {0x61, 0x1c, 0xc7, 0x71},
571
		},
572 573 574 575 576 577 578
	},
	{
		.types_mask = BIT(NL80211_IFTYPE_AP),
		.he_cap = {
			.has_he = true,
			.he_cap_elem = {
				.mac_cap_info[0] =
579
					IEEE80211_HE_MAC_CAP0_HTC_HE,
580 581 582 583 584 585 586 587 588 589 590
				.mac_cap_info[1] =
					IEEE80211_HE_MAC_CAP1_TF_MAC_PAD_DUR_16US |
					IEEE80211_HE_MAC_CAP1_MULTI_TID_AGG_RX_QOS_8,
				.mac_cap_info[2] =
					IEEE80211_HE_MAC_CAP2_BSR |
					IEEE80211_HE_MAC_CAP2_ACK_EN,
				.mac_cap_info[3] =
					IEEE80211_HE_MAC_CAP3_OMI_CONTROL |
					IEEE80211_HE_MAC_CAP3_MAX_AMPDU_LEN_EXP_VHT_2,
				.mac_cap_info[4] =
					IEEE80211_HE_MAC_CAP4_AMDSU_IN_AMPDU,
L
Liad Kaufman 已提交
591 592
				.mac_cap_info[5] =
					IEEE80211_HE_MAC_CAP5_UL_2x996_TONE_RU,
593 594 595 596 597
				.phy_cap_info[0] =
					IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_40MHZ_IN_2G |
					IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_40MHZ_80MHZ_IN_5G |
					IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_160MHZ_IN_5G,
				.phy_cap_info[1] =
L
Liad Kaufman 已提交
598
					IEEE80211_HE_PHY_CAP1_LDPC_CODING_IN_PAYLOAD,
599
				.phy_cap_info[2] =
L
Liad Kaufman 已提交
600
					IEEE80211_HE_PHY_CAP2_NDP_4x_LTF_AND_3_2US,
601
				.phy_cap_info[3] =
L
Liad Kaufman 已提交
602
					IEEE80211_HE_PHY_CAP3_DCM_MAX_CONST_TX_NO_DCM |
603
					IEEE80211_HE_PHY_CAP3_DCM_MAX_TX_NSS_1 |
L
Liad Kaufman 已提交
604
					IEEE80211_HE_PHY_CAP3_DCM_MAX_CONST_RX_NO_DCM |
605 606 607 608 609 610 611
					IEEE80211_HE_PHY_CAP3_DCM_MAX_RX_NSS_1,
				.phy_cap_info[4] =
					IEEE80211_HE_PHY_CAP4_SU_BEAMFORMEE |
					IEEE80211_HE_PHY_CAP4_BEAMFORMEE_MAX_STS_ABOVE_80MHZ_8 |
					IEEE80211_HE_PHY_CAP4_BEAMFORMEE_MAX_STS_UNDER_80MHZ_8,
				.phy_cap_info[5] =
					IEEE80211_HE_PHY_CAP5_BEAMFORMEE_NUM_SND_DIM_UNDER_80MHZ_2 |
L
Liad Kaufman 已提交
612
					IEEE80211_HE_PHY_CAP5_BEAMFORMEE_NUM_SND_DIM_ABOVE_80MHZ_2,
613 614 615 616 617 618 619 620 621 622
				.phy_cap_info[6] =
					IEEE80211_HE_PHY_CAP6_PPE_THRESHOLD_PRESENT,
				.phy_cap_info[7] =
					IEEE80211_HE_PHY_CAP7_HE_SU_MU_PPDU_4XLTF_AND_08_US_GI |
					IEEE80211_HE_PHY_CAP7_MAX_NC_1,
				.phy_cap_info[8] =
					IEEE80211_HE_PHY_CAP8_HE_ER_SU_PPDU_4XLTF_AND_08_US_GI |
					IEEE80211_HE_PHY_CAP8_20MHZ_IN_40MHZ_HE_PPDU_IN_2G |
					IEEE80211_HE_PHY_CAP8_20MHZ_IN_160MHZ_HE_PPDU |
					IEEE80211_HE_PHY_CAP8_80MHZ_IN_160MHZ_HE_PPDU |
L
Liad Kaufman 已提交
623
					IEEE80211_HE_PHY_CAP8_DCM_MAX_RU_2x996,
624 625
				.phy_cap_info[9] =
					IEEE80211_HE_PHY_CAP9_RX_FULL_BW_SU_USING_MU_WITH_COMP_SIGB |
L
Liad Kaufman 已提交
626 627
					IEEE80211_HE_PHY_CAP9_RX_FULL_BW_SU_USING_MU_WITH_NON_COMP_SIGB |
					IEEE80211_HE_PHY_CAP9_NOMIMAL_PKT_PADDING_RESERVED,
628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646
			},
			/*
			 * Set default Tx/Rx HE MCS NSS Support field.
			 * Indicate support for up to 2 spatial streams and all
			 * MCS, without any special cases
			 */
			.he_mcs_nss_supp = {
				.rx_mcs_80 = cpu_to_le16(0xfffa),
				.tx_mcs_80 = cpu_to_le16(0xfffa),
				.rx_mcs_160 = cpu_to_le16(0xfffa),
				.tx_mcs_160 = cpu_to_le16(0xfffa),
				.rx_mcs_80p80 = cpu_to_le16(0xffff),
				.tx_mcs_80p80 = cpu_to_le16(0xffff),
			},
			/*
			 * Set default PPE thresholds, with PPET16 set to 0,
			 * PPET8 set to 7
			 */
			.ppe_thres = {0x61, 0x1c, 0xc7, 0x71},
647 648 649 650 651 652 653 654 655
		},
	},
};

static void iwl_init_he_hw_capab(struct ieee80211_supported_band *sband,
				 u8 tx_chains, u8 rx_chains)
{
	if (sband->band == NL80211_BAND_2GHZ ||
	    sband->band == NL80211_BAND_5GHZ)
656
		sband->iftype_data = iwl_he_capa;
657 658 659
	else
		return;

660
	sband->n_iftype_data = ARRAY_SIZE(iwl_he_capa);
661 662 663

	/* If not 2x2, we need to indicate 1x1 in the Midamble RX Max NSTS */
	if ((tx_chains & rx_chains) != ANT_AB) {
664 665 666 667 668 669 670 671 672 673
		int i;

		for (i = 0; i < sband->n_iftype_data; i++) {
			iwl_he_capa[i].he_cap.he_cap_elem.phy_cap_info[1] &=
				~IEEE80211_HE_PHY_CAP1_MIDAMBLE_RX_TX_MAX_NSTS;
			iwl_he_capa[i].he_cap.he_cap_elem.phy_cap_info[2] &=
				~IEEE80211_HE_PHY_CAP2_MIDAMBLE_RX_TX_MAX_NSTS;
			iwl_he_capa[i].he_cap.he_cap_elem.phy_cap_info[7] &=
				~IEEE80211_HE_PHY_CAP7_MAX_NC_MASK;
		}
674 675 676
	}
}

S
Shaul Triebitz 已提交
677 678
static void iwl_init_sbands(struct device *dev, const struct iwl_cfg *cfg,
			    struct iwl_nvm_data *data,
679 680
			    const void *nvm_ch_flags, u8 tx_chains,
			    u8 rx_chains, u32 sbands_flags, bool v4)
681
{
682
	int n_channels;
683 684 685
	int n_used = 0;
	struct ieee80211_supported_band *sband;

686
	n_channels = iwl_init_channel_map(dev, cfg, data, nvm_ch_flags,
687
					  sbands_flags, v4);
688 689
	sband = &data->bands[NL80211_BAND_2GHZ];
	sband->band = NL80211_BAND_2GHZ;
690 691 692
	sband->bitrates = &iwl_cfg80211_rates[RATES_24_OFFS];
	sband->n_bitrates = N_RATES_24;
	n_used += iwl_init_sband_channels(data, sband, n_channels,
693 694
					  NL80211_BAND_2GHZ);
	iwl_init_ht_hw_capab(cfg, data, &sband->ht_cap, NL80211_BAND_2GHZ,
695
			     tx_chains, rx_chains);
696

697
	if (data->sku_cap_11ax_enable && !iwlwifi_mod_params.disable_11ax)
698 699
		iwl_init_he_hw_capab(sband, tx_chains, rx_chains);

700 701
	sband = &data->bands[NL80211_BAND_5GHZ];
	sband->band = NL80211_BAND_5GHZ;
702 703 704
	sband->bitrates = &iwl_cfg80211_rates[RATES_52_OFFS];
	sband->n_bitrates = N_RATES_52;
	n_used += iwl_init_sband_channels(data, sband, n_channels,
705 706
					  NL80211_BAND_5GHZ);
	iwl_init_ht_hw_capab(cfg, data, &sband->ht_cap, NL80211_BAND_5GHZ,
707
			     tx_chains, rx_chains);
708
	if (data->sku_cap_11ac_enable && !iwlwifi_mod_params.disable_11ac)
709 710
		iwl_init_vht_hw_capab(cfg, data, &sband->vht_cap,
				      tx_chains, rx_chains);
711

712
	if (data->sku_cap_11ax_enable && !iwlwifi_mod_params.disable_11ax)
713 714
		iwl_init_he_hw_capab(sband, tx_chains, rx_chains);

715 716 717 718 719
	if (n_channels != n_used)
		IWL_ERR_DEV(dev, "NVM: used only %d of %d channels\n",
			    n_used, n_channels);
}

720 721
static int iwl_get_sku(const struct iwl_cfg *cfg, const __le16 *nvm_sw,
		       const __le16 *phy_sku)
722
{
723
	if (cfg->nvm_type != IWL_NVM_EXT)
724
		return le16_to_cpup(nvm_sw + SKU);
725

726
	return le32_to_cpup((__le32 *)(phy_sku + SKU_FAMILY_8000));
727 728
}

729
static int iwl_get_nvm_version(const struct iwl_cfg *cfg, const __le16 *nvm_sw)
730
{
731
	if (cfg->nvm_type != IWL_NVM_EXT)
732 733 734
		return le16_to_cpup(nvm_sw + NVM_VERSION);
	else
		return le32_to_cpup((__le32 *)(nvm_sw +
735
					       NVM_VERSION_EXT_NVM));
736 737
}

738 739
static int iwl_get_radio_cfg(const struct iwl_cfg *cfg, const __le16 *nvm_sw,
			     const __le16 *phy_sku)
740
{
741
	if (cfg->nvm_type != IWL_NVM_EXT)
742
		return le16_to_cpup(nvm_sw + RADIO_CFG);
743

744
	return le32_to_cpup((__le32 *)(phy_sku + RADIO_CFG_FAMILY_EXT_NVM));
745

746 747
}

748
static int iwl_get_n_hw_addrs(const struct iwl_cfg *cfg, const __le16 *nvm_sw)
749
{
750 751
	int n_hw_addr;

752
	if (cfg->nvm_type != IWL_NVM_EXT)
753
		return le16_to_cpup(nvm_sw + N_HW_ADDRS);
754

755
	n_hw_addr = le32_to_cpup((__le32 *)(nvm_sw + N_HW_ADDRS_FAMILY_8000));
756 757

	return n_hw_addr & N_HW_ADDR_MASK;
758 759 760 761 762 763
}

static void iwl_set_radio_cfg(const struct iwl_cfg *cfg,
			      struct iwl_nvm_data *data,
			      u32 radio_cfg)
{
764
	if (cfg->nvm_type != IWL_NVM_EXT) {
765 766 767 768 769 770 771 772
		data->radio_cfg_type = NVM_RF_CFG_TYPE_MSK(radio_cfg);
		data->radio_cfg_step = NVM_RF_CFG_STEP_MSK(radio_cfg);
		data->radio_cfg_dash = NVM_RF_CFG_DASH_MSK(radio_cfg);
		data->radio_cfg_pnum = NVM_RF_CFG_PNUM_MSK(radio_cfg);
		return;
	}

	/* set the radio configuration for family 8000 */
773 774 775 776 777 778
	data->radio_cfg_type = EXT_NVM_RF_CFG_TYPE_MSK(radio_cfg);
	data->radio_cfg_step = EXT_NVM_RF_CFG_STEP_MSK(radio_cfg);
	data->radio_cfg_dash = EXT_NVM_RF_CFG_DASH_MSK(radio_cfg);
	data->radio_cfg_pnum = EXT_NVM_RF_CFG_FLAVOR_MSK(radio_cfg);
	data->valid_tx_ant = EXT_NVM_RF_CFG_TX_ANT_MSK(radio_cfg);
	data->valid_rx_ant = EXT_NVM_RF_CFG_RX_ANT_MSK(radio_cfg);
779 780
}

781 782 783 784 785 786 787 788 789 790 791 792 793 794 795
static void iwl_flip_hw_address(__le32 mac_addr0, __le32 mac_addr1, u8 *dest)
{
	const u8 *hw_addr;

	hw_addr = (const u8 *)&mac_addr0;
	dest[0] = hw_addr[3];
	dest[1] = hw_addr[2];
	dest[2] = hw_addr[1];
	dest[3] = hw_addr[0];

	hw_addr = (const u8 *)&mac_addr1;
	dest[4] = hw_addr[1];
	dest[5] = hw_addr[0];
}

S
Shaul Triebitz 已提交
796 797
static void iwl_set_hw_address_from_csr(struct iwl_trans *trans,
					struct iwl_nvm_data *data)
798
{
799 800 801 802 803 804
	__le32 mac_addr0 =
		cpu_to_le32(iwl_read32(trans,
				       trans->cfg->csr->mac_addr0_strap));
	__le32 mac_addr1 =
		cpu_to_le32(iwl_read32(trans,
				       trans->cfg->csr->mac_addr1_strap));
805

806 807 808 809 810 811 812 813
	iwl_flip_hw_address(mac_addr0, mac_addr1, data->hw_addr);
	/*
	 * If the OEM fused a valid address, use it instead of the one in the
	 * OTP
	 */
	if (is_valid_ether_addr(data->hw_addr))
		return;

814 815 816 817
	mac_addr0 = cpu_to_le32(iwl_read32(trans,
					   trans->cfg->csr->mac_addr0_otp));
	mac_addr1 = cpu_to_le32(iwl_read32(trans,
					   trans->cfg->csr->mac_addr1_otp));
818 819 820 821

	iwl_flip_hw_address(mac_addr0, mac_addr1, data->hw_addr);
}

822
static void iwl_set_hw_address_family_8000(struct iwl_trans *trans,
823
					   const struct iwl_cfg *cfg,
824 825
					   struct iwl_nvm_data *data,
					   const __le16 *mac_override,
826
					   const __be16 *nvm_hw)
827 828 829 830
{
	const u8 *hw_addr;

	if (mac_override) {
831 832 833 834
		static const u8 reserved_mac[] = {
			0x02, 0xcc, 0xaa, 0xff, 0xee, 0x00
		};

835
		hw_addr = (const u8 *)(mac_override +
836
				 MAC_ADDRESS_OVERRIDE_EXT_NVM);
837

838 839 840 841 842
		/*
		 * Store the MAC address from MAO section.
		 * No byte swapping is required in MAO section
		 */
		memcpy(data->hw_addr, hw_addr, ETH_ALEN);
843

844 845 846 847 848 849
		/*
		 * Force the use of the OTP MAC address in case of reserved MAC
		 * address in the NVM, or if address is given but invalid.
		 */
		if (is_valid_ether_addr(data->hw_addr) &&
		    memcmp(reserved_mac, hw_addr, ETH_ALEN) != 0)
850
			return;
851

852 853
		IWL_ERR(trans,
			"mac address from nvm override section is not valid\n");
854 855
	}

856
	if (nvm_hw) {
857 858 859 860 861
		/* read the mac address from WFMP registers */
		__le32 mac_addr0 = cpu_to_le32(iwl_trans_read_prph(trans,
						WFMP_MAC_ADDR_0));
		__le32 mac_addr1 = cpu_to_le32(iwl_trans_read_prph(trans,
						WFMP_MAC_ADDR_1));
862 863

		iwl_flip_hw_address(mac_addr0, mac_addr1, data->hw_addr);
864

865 866
		return;
	}
867

868 869 870
	IWL_ERR(trans, "mac address is not found\n");
}

871 872
static int iwl_set_hw_address(struct iwl_trans *trans,
			      const struct iwl_cfg *cfg,
873
			      struct iwl_nvm_data *data, const __be16 *nvm_hw,
874
			      const __le16 *mac_override)
875
{
876 877
	if (cfg->mac_addr_from_csr) {
		iwl_set_hw_address_from_csr(trans, data);
878
	} else if (cfg->nvm_type != IWL_NVM_EXT) {
879 880 881 882 883 884 885 886 887 888 889 890 891
		const u8 *hw_addr = (const u8 *)(nvm_hw + HW_ADDR);

		/* The byte order is little endian 16 bit, meaning 214365 */
		data->hw_addr[0] = hw_addr[1];
		data->hw_addr[1] = hw_addr[0];
		data->hw_addr[2] = hw_addr[3];
		data->hw_addr[3] = hw_addr[2];
		data->hw_addr[4] = hw_addr[5];
		data->hw_addr[5] = hw_addr[4];
	} else {
		iwl_set_hw_address_family_8000(trans, cfg, data,
					       mac_override, nvm_hw);
	}
892 893 894 895 896 897

	if (!is_valid_ether_addr(data->hw_addr)) {
		IWL_ERR(trans, "no valid mac address was found\n");
		return -EINVAL;
	}

898 899
	IWL_INFO(trans, "base HW address: %pM\n", data->hw_addr);

900
	return 0;
901 902
}

903 904
static bool
iwl_nvm_no_wide_in_5ghz(struct device *dev, const struct iwl_cfg *cfg,
905
			const __be16 *nvm_hw)
906 907 908 909 910 911 912 913 914 915 916 917 918 919 920
{
	/*
	 * Workaround a bug in Indonesia SKUs where the regulatory in
	 * some 7000-family OTPs erroneously allow wide channels in
	 * 5GHz.  To check for Indonesia, we take the SKU value from
	 * bits 1-4 in the subsystem ID and check if it is either 5 or
	 * 9.  In those cases, we need to force-disable wide channels
	 * in 5GHz otherwise the FW will throw a sysassert when we try
	 * to use them.
	 */
	if (cfg->device_family == IWL_DEVICE_FAMILY_7000) {
		/*
		 * Unlike the other sections in the NVM, the hw
		 * section uses big-endian.
		 */
921
		u16 subsystem_id = be16_to_cpup(nvm_hw + SUBSYSTEM_ID);
922 923 924 925 926 927 928 929 930 931 932 933 934
		u8 sku = (subsystem_id & 0x1e) >> 1;

		if (sku == 5 || sku == 9) {
			IWL_DEBUG_EEPROM(dev,
					 "disabling wide channels in 5GHz (0x%0x %d)\n",
					 subsystem_id, sku);
			return true;
		}
	}

	return false;
}

935
struct iwl_nvm_data *
936
iwl_parse_nvm_data(struct iwl_trans *trans, const struct iwl_cfg *cfg,
937
		   const __be16 *nvm_hw, const __le16 *nvm_sw,
938
		   const __le16 *nvm_calib, const __le16 *regulatory,
939
		   const __le16 *mac_override, const __le16 *phy_sku,
940
		   u8 tx_chains, u8 rx_chains, bool lar_fw_supported)
941
{
942
	struct device *dev = trans->dev;
943
	struct iwl_nvm_data *data;
944 945
	bool lar_enabled;
	u32 sku, radio_cfg;
946
	u32 sbands_flags = 0;
947
	u16 lar_config;
948
	const __le16 *ch_section;
949

950
	if (cfg->nvm_type != IWL_NVM_EXT)
951 952 953
		data = kzalloc(struct_size(data, channels,
					   IWL_NVM_NUM_CHANNELS),
					   GFP_KERNEL);
954
	else
955 956 957
		data = kzalloc(struct_size(data, channels,
					   IWL_NVM_NUM_CHANNELS_EXT),
					   GFP_KERNEL);
958 959 960
	if (!data)
		return NULL;

961
	data->nvm_version = iwl_get_nvm_version(cfg, nvm_sw);
962

963
	radio_cfg = iwl_get_radio_cfg(cfg, nvm_sw, phy_sku);
964
	iwl_set_radio_cfg(cfg, data, radio_cfg);
965 966 967 968
	if (data->valid_tx_ant)
		tx_chains &= data->valid_tx_ant;
	if (data->valid_rx_ant)
		rx_chains &= data->valid_rx_ant;
969

970
	sku = iwl_get_sku(cfg, nvm_sw, phy_sku);
971 972
	data->sku_cap_band_24ghz_enable = sku & NVM_SKU_CAP_BAND_24GHZ;
	data->sku_cap_band_52ghz_enable = sku & NVM_SKU_CAP_BAND_52GHZ;
973 974 975
	data->sku_cap_11n_enable = sku & NVM_SKU_CAP_11N_ENABLE;
	if (iwlwifi_mod_params.disable_11n & IWL_DISABLE_HT_ALL)
		data->sku_cap_11n_enable = false;
976 977
	data->sku_cap_11ac_enable = data->sku_cap_11n_enable &&
				    (sku & NVM_SKU_CAP_11AC_ENABLE);
978
	data->sku_cap_mimo_disabled = sku & NVM_SKU_CAP_MIMO_DISABLE;
979

980
	data->n_hw_addrs = iwl_get_n_hw_addrs(cfg, nvm_sw);
981

982
	if (cfg->nvm_type != IWL_NVM_EXT) {
983 984
		/* Checking for required sections */
		if (!nvm_calib) {
985 986
			IWL_ERR(trans,
				"Can't parse empty Calib NVM sections\n");
987
			kfree(data);
988 989
			return NULL;
		}
990 991 992 993 994

		ch_section = cfg->nvm_type == IWL_NVM_SDP ?
			     &regulatory[NVM_CHANNELS_SDP] :
			     &nvm_sw[NVM_CHANNELS];

995 996 997
		/* in family 8000 Xtal calibration values moved to OTP */
		data->xtal_calib[0] = *(nvm_calib + XTAL_CALIB);
		data->xtal_calib[1] = *(nvm_calib + XTAL_CALIB + 1);
998
		lar_enabled = true;
999
	} else {
1000
		u16 lar_offset = data->nvm_version < 0xE39 ?
1001 1002
				 NVM_LAR_OFFSET_OLD :
				 NVM_LAR_OFFSET;
1003 1004

		lar_config = le16_to_cpup(regulatory + lar_offset);
1005
		data->lar_enabled = !!(lar_config &
1006
				       NVM_LAR_ENABLED);
1007
		lar_enabled = data->lar_enabled;
1008
		ch_section = &regulatory[NVM_CHANNELS_EXTENDED];
1009
	}
1010

1011 1012 1013 1014 1015 1016
	/* If no valid mac address was found - bail out */
	if (iwl_set_hw_address(trans, cfg, data, nvm_hw, mac_override)) {
		kfree(data);
		return NULL;
	}

1017 1018 1019 1020 1021 1022
	if (lar_fw_supported && lar_enabled)
		sbands_flags |= IWL_NVM_SBANDS_FLAGS_LAR;

	if (iwl_nvm_no_wide_in_5ghz(dev, cfg, nvm_hw))
		sbands_flags |= IWL_NVM_SBANDS_FLAGS_NO_WIDE_IN_5GHZ;

1023
	iwl_init_sbands(dev, cfg, data, ch_section, tx_chains, rx_chains,
1024
			sbands_flags, false);
1025
	data->calib_version = 255;
1026 1027 1028

	return data;
}
1029
IWL_EXPORT_SYMBOL(iwl_parse_nvm_data);
1030

1031
static u32 iwl_nvm_get_regdom_bw_flags(const u16 *nvm_chan,
1032 1033
				       int ch_idx, u16 nvm_flags,
				       const struct iwl_cfg *cfg)
1034 1035 1036 1037 1038 1039 1040 1041 1042
{
	u32 flags = NL80211_RRF_NO_HT40;

	if (ch_idx < NUM_2GHZ_CHANNELS &&
	    (nvm_flags & NVM_CHANNEL_40MHZ)) {
		if (nvm_chan[ch_idx] <= LAST_2GHZ_HT_PLUS)
			flags &= ~NL80211_RRF_NO_HT40PLUS;
		if (nvm_chan[ch_idx] >= FIRST_2GHZ_HT_MINUS)
			flags &= ~NL80211_RRF_NO_HT40MINUS;
1043
	} else if (nvm_flags & NVM_CHANNEL_40MHZ) {
1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073
		if ((ch_idx - NUM_2GHZ_CHANNELS) % 2 == 0)
			flags &= ~NL80211_RRF_NO_HT40PLUS;
		else
			flags &= ~NL80211_RRF_NO_HT40MINUS;
	}

	if (!(nvm_flags & NVM_CHANNEL_80MHZ))
		flags |= NL80211_RRF_NO_80MHZ;
	if (!(nvm_flags & NVM_CHANNEL_160MHZ))
		flags |= NL80211_RRF_NO_160MHZ;

	if (!(nvm_flags & NVM_CHANNEL_ACTIVE))
		flags |= NL80211_RRF_NO_IR;

	if (nvm_flags & NVM_CHANNEL_RADAR)
		flags |= NL80211_RRF_DFS;

	if (nvm_flags & NVM_CHANNEL_INDOOR_ONLY)
		flags |= NL80211_RRF_NO_OUTDOOR;

	/* Set the GO concurrent flag only in case that NO_IR is set.
	 * Otherwise it is meaningless
	 */
	if ((nvm_flags & NVM_CHANNEL_GO_CONCURRENT) &&
	    (flags & NL80211_RRF_NO_IR))
		flags |= NL80211_RRF_GO_CONCURRENT;

	return flags;
}

1074 1075 1076 1077 1078
struct regdb_ptrs {
	struct ieee80211_wmm_rule *rule;
	u32 token;
};

1079
struct ieee80211_regdomain *
1080
iwl_parse_nvm_mcc_info(struct device *dev, const struct iwl_cfg *cfg,
1081 1082
		       int num_of_ch, __le32 *channels, u16 fw_mcc,
		       u16 geo_info)
1083 1084
{
	int ch_idx;
1085 1086
	u16 ch_flags;
	u32 reg_rule_flags, prev_reg_rule_flags = 0;
1087
	const u16 *nvm_chan;
1088
	struct ieee80211_regdomain *regd, *copy_rd;
1089
	struct ieee80211_reg_rule *rule;
1090
	struct regdb_ptrs *regdb_ptrs;
1091
	enum nl80211_band band;
1092
	int center_freq, prev_center_freq = 0;
1093
	int valid_rules = 0;
1094
	bool new_rule;
1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106
	int max_num_ch;

	if (cfg->uhb_supported) {
		max_num_ch = IWL_NVM_NUM_CHANNELS_UHB;
		nvm_chan = iwl_uhb_nvm_channels;
	} else if (cfg->nvm_type == IWL_NVM_EXT) {
		max_num_ch = IWL_NVM_NUM_CHANNELS_EXT;
		nvm_chan = iwl_ext_nvm_channels;
	} else {
		max_num_ch = IWL_NVM_NUM_CHANNELS;
		nvm_chan = iwl_nvm_channels;
	}
1107

1108 1109 1110
	if (WARN_ON(num_of_ch > max_num_ch))
		num_of_ch = max_num_ch;

1111 1112 1113
	if (WARN_ON_ONCE(num_of_ch > NL80211_MAX_SUPP_REG_RULES))
		return ERR_PTR(-EINVAL);

1114 1115 1116 1117
	IWL_DEBUG_DEV(dev, IWL_DL_LAR, "building regdom for %d channels\n",
		      num_of_ch);

	/* build a regdomain rule for every valid channel */
1118
	regd = kzalloc(struct_size(regd, reg_rules, num_of_ch), GFP_KERNEL);
1119 1120 1121
	if (!regd)
		return ERR_PTR(-ENOMEM);

1122 1123 1124 1125 1126 1127 1128 1129 1130 1131
	regdb_ptrs = kcalloc(num_of_ch, sizeof(*regdb_ptrs), GFP_KERNEL);
	if (!regdb_ptrs) {
		copy_rd = ERR_PTR(-ENOMEM);
		goto out;
	}

	/* set alpha2 from FW. */
	regd->alpha2[0] = fw_mcc >> 8;
	regd->alpha2[1] = fw_mcc & 0xff;

1132 1133 1134
	for (ch_idx = 0; ch_idx < num_of_ch; ch_idx++) {
		ch_flags = (u16)__le32_to_cpup(channels + ch_idx);
		band = (ch_idx < NUM_2GHZ_CHANNELS) ?
1135
		       NL80211_BAND_2GHZ : NL80211_BAND_5GHZ;
1136 1137 1138 1139 1140
		center_freq = ieee80211_channel_to_frequency(nvm_chan[ch_idx],
							     band);
		new_rule = false;

		if (!(ch_flags & NVM_CHANNEL_VALID)) {
1141 1142
			iwl_nvm_print_channel_flags(dev, IWL_DL_LAR,
						    nvm_chan[ch_idx], ch_flags);
1143 1144 1145
			continue;
		}

1146 1147 1148
		reg_rule_flags = iwl_nvm_get_regdom_bw_flags(nvm_chan, ch_idx,
							     ch_flags, cfg);

1149
		/* we can't continue the same rule */
1150
		if (ch_idx == 0 || prev_reg_rule_flags != reg_rule_flags ||
1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165
		    center_freq - prev_center_freq > 20) {
			valid_rules++;
			new_rule = true;
		}

		rule = &regd->reg_rules[valid_rules - 1];

		if (new_rule)
			rule->freq_range.start_freq_khz =
						MHZ_TO_KHZ(center_freq - 10);

		rule->freq_range.end_freq_khz = MHZ_TO_KHZ(center_freq + 10);

		/* this doesn't matter - not used by FW */
		rule->power_rule.max_antenna_gain = DBI_TO_MBI(6);
1166 1167
		rule->power_rule.max_eirp =
			DBM_TO_MBM(IWL_DEFAULT_MAX_TX_POWER);
1168

1169
		rule->flags = reg_rule_flags;
1170 1171 1172 1173 1174 1175

		/* rely on auto-calculation to merge BW of contiguous chans */
		rule->flags |= NL80211_RRF_AUTO_BW;
		rule->freq_range.max_bandwidth_khz = 0;

		prev_center_freq = center_freq;
1176
		prev_reg_rule_flags = reg_rule_flags;
1177

1178 1179
		iwl_nvm_print_channel_flags(dev, IWL_DL_LAR,
					    nvm_chan[ch_idx], ch_flags);
1180 1181 1182 1183 1184

		if (!(geo_info & GEO_WMM_ETSI_5GHZ_INFO) ||
		    band == NL80211_BAND_2GHZ)
			continue;

1185
		reg_query_regdb_wmm(regd->alpha2, center_freq, rule);
1186 1187 1188 1189
	}

	regd->n_reg_rules = valid_rules;

1190 1191 1192 1193
	/*
	 * Narrow down regdom for unused regulatory rules to prevent hole
	 * between reg rules to wmm rules.
	 */
1194 1195
	copy_rd = kmemdup(regd, struct_size(regd, reg_rules, valid_rules),
			  GFP_KERNEL);
1196 1197 1198 1199 1200 1201 1202 1203 1204
	if (!copy_rd) {
		copy_rd = ERR_PTR(-ENOMEM);
		goto out;
	}

out:
	kfree(regdb_ptrs);
	kfree(regd);
	return copy_rd;
1205 1206
}
IWL_EXPORT_SYMBOL(iwl_parse_nvm_mcc_info);
1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402

#define IWL_MAX_NVM_SECTION_SIZE	0x1b58
#define IWL_MAX_EXT_NVM_SECTION_SIZE	0x1ffc
#define MAX_NVM_FILE_LEN	16384

void iwl_nvm_fixups(u32 hw_id, unsigned int section, u8 *data,
		    unsigned int len)
{
#define IWL_4165_DEVICE_ID	0x5501
#define NVM_SKU_CAP_MIMO_DISABLE BIT(5)

	if (section == NVM_SECTION_TYPE_PHY_SKU &&
	    hw_id == IWL_4165_DEVICE_ID && data && len >= 5 &&
	    (data[4] & NVM_SKU_CAP_MIMO_DISABLE))
		/* OTP 0x52 bug work around: it's a 1x1 device */
		data[3] = ANT_B | (ANT_B << 4);
}
IWL_EXPORT_SYMBOL(iwl_nvm_fixups);

/*
 * Reads external NVM from a file into mvm->nvm_sections
 *
 * HOW TO CREATE THE NVM FILE FORMAT:
 * ------------------------------
 * 1. create hex file, format:
 *      3800 -> header
 *      0000 -> header
 *      5a40 -> data
 *
 *   rev - 6 bit (word1)
 *   len - 10 bit (word1)
 *   id - 4 bit (word2)
 *   rsv - 12 bit (word2)
 *
 * 2. flip 8bits with 8 bits per line to get the right NVM file format
 *
 * 3. create binary file from the hex file
 *
 * 4. save as "iNVM_xxx.bin" under /lib/firmware
 */
int iwl_read_external_nvm(struct iwl_trans *trans,
			  const char *nvm_file_name,
			  struct iwl_nvm_section *nvm_sections)
{
	int ret, section_size;
	u16 section_id;
	const struct firmware *fw_entry;
	const struct {
		__le16 word1;
		__le16 word2;
		u8 data[];
	} *file_sec;
	const u8 *eof;
	u8 *temp;
	int max_section_size;
	const __le32 *dword_buff;

#define NVM_WORD1_LEN(x) (8 * (x & 0x03FF))
#define NVM_WORD2_ID(x) (x >> 12)
#define EXT_NVM_WORD2_LEN(x) (2 * (((x) & 0xFF) << 8 | (x) >> 8))
#define EXT_NVM_WORD1_ID(x) ((x) >> 4)
#define NVM_HEADER_0	(0x2A504C54)
#define NVM_HEADER_1	(0x4E564D2A)
#define NVM_HEADER_SIZE	(4 * sizeof(u32))

	IWL_DEBUG_EEPROM(trans->dev, "Read from external NVM\n");

	/* Maximal size depends on NVM version */
	if (trans->cfg->nvm_type != IWL_NVM_EXT)
		max_section_size = IWL_MAX_NVM_SECTION_SIZE;
	else
		max_section_size = IWL_MAX_EXT_NVM_SECTION_SIZE;

	/*
	 * Obtain NVM image via request_firmware. Since we already used
	 * request_firmware_nowait() for the firmware binary load and only
	 * get here after that we assume the NVM request can be satisfied
	 * synchronously.
	 */
	ret = request_firmware(&fw_entry, nvm_file_name, trans->dev);
	if (ret) {
		IWL_ERR(trans, "ERROR: %s isn't available %d\n",
			nvm_file_name, ret);
		return ret;
	}

	IWL_INFO(trans, "Loaded NVM file %s (%zu bytes)\n",
		 nvm_file_name, fw_entry->size);

	if (fw_entry->size > MAX_NVM_FILE_LEN) {
		IWL_ERR(trans, "NVM file too large\n");
		ret = -EINVAL;
		goto out;
	}

	eof = fw_entry->data + fw_entry->size;
	dword_buff = (__le32 *)fw_entry->data;

	/* some NVM file will contain a header.
	 * The header is identified by 2 dwords header as follow:
	 * dword[0] = 0x2A504C54
	 * dword[1] = 0x4E564D2A
	 *
	 * This header must be skipped when providing the NVM data to the FW.
	 */
	if (fw_entry->size > NVM_HEADER_SIZE &&
	    dword_buff[0] == cpu_to_le32(NVM_HEADER_0) &&
	    dword_buff[1] == cpu_to_le32(NVM_HEADER_1)) {
		file_sec = (void *)(fw_entry->data + NVM_HEADER_SIZE);
		IWL_INFO(trans, "NVM Version %08X\n", le32_to_cpu(dword_buff[2]));
		IWL_INFO(trans, "NVM Manufacturing date %08X\n",
			 le32_to_cpu(dword_buff[3]));

		/* nvm file validation, dword_buff[2] holds the file version */
		if (trans->cfg->device_family == IWL_DEVICE_FAMILY_8000 &&
		    CSR_HW_REV_STEP(trans->hw_rev) == SILICON_C_STEP &&
		    le32_to_cpu(dword_buff[2]) < 0xE4A) {
			ret = -EFAULT;
			goto out;
		}
	} else {
		file_sec = (void *)fw_entry->data;
	}

	while (true) {
		if (file_sec->data > eof) {
			IWL_ERR(trans,
				"ERROR - NVM file too short for section header\n");
			ret = -EINVAL;
			break;
		}

		/* check for EOF marker */
		if (!file_sec->word1 && !file_sec->word2) {
			ret = 0;
			break;
		}

		if (trans->cfg->nvm_type != IWL_NVM_EXT) {
			section_size =
				2 * NVM_WORD1_LEN(le16_to_cpu(file_sec->word1));
			section_id = NVM_WORD2_ID(le16_to_cpu(file_sec->word2));
		} else {
			section_size = 2 * EXT_NVM_WORD2_LEN(
						le16_to_cpu(file_sec->word2));
			section_id = EXT_NVM_WORD1_ID(
						le16_to_cpu(file_sec->word1));
		}

		if (section_size > max_section_size) {
			IWL_ERR(trans, "ERROR - section too large (%d)\n",
				section_size);
			ret = -EINVAL;
			break;
		}

		if (!section_size) {
			IWL_ERR(trans, "ERROR - section empty\n");
			ret = -EINVAL;
			break;
		}

		if (file_sec->data + section_size > eof) {
			IWL_ERR(trans,
				"ERROR - NVM file too short for section (%d bytes)\n",
				section_size);
			ret = -EINVAL;
			break;
		}

		if (WARN(section_id >= NVM_MAX_NUM_SECTIONS,
			 "Invalid NVM section ID %d\n", section_id)) {
			ret = -EINVAL;
			break;
		}

		temp = kmemdup(file_sec->data, section_size, GFP_KERNEL);
		if (!temp) {
			ret = -ENOMEM;
			break;
		}

		iwl_nvm_fixups(trans->hw_id, section_id, temp, section_size);

		kfree(nvm_sections[section_id].data);
		nvm_sections[section_id].data = temp;
		nvm_sections[section_id].length = section_size;

		/* advance to the next section */
		file_sec = (void *)(file_sec->data + section_size);
	}
out:
	release_firmware(fw_entry);
	return ret;
}
IWL_EXPORT_SYMBOL(iwl_read_external_nvm);
S
Shaul Triebitz 已提交
1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418

struct iwl_nvm_data *iwl_get_nvm(struct iwl_trans *trans,
				 const struct iwl_fw *fw)
{
	struct iwl_nvm_get_info cmd = {};
	struct iwl_nvm_data *nvm;
	struct iwl_host_cmd hcmd = {
		.flags = CMD_WANT_SKB | CMD_SEND_IN_RFKILL,
		.data = { &cmd, },
		.len = { sizeof(cmd) },
		.id = WIDE_ID(REGULATORY_AND_NVM_GROUP, NVM_GET_INFO)
	};
	int  ret;
	bool lar_fw_supported = !iwlwifi_mod_params.lar_disable &&
				fw_has_capa(&fw->ucode_capa,
					    IWL_UCODE_TLV_CAPA_LAR_SUPPORT);
1419
	bool empty_otp;
S
Shaul Triebitz 已提交
1420 1421
	u32 mac_flags;
	u32 sbands_flags = 0;
1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433
	/*
	 * All the values in iwl_nvm_get_info_rsp v4 are the same as
	 * in v3, except for the channel profile part of the
	 * regulatory.  So we can just access the new struct, with the
	 * exception of the latter.
	 */
	struct iwl_nvm_get_info_rsp *rsp;
	struct iwl_nvm_get_info_rsp_v3 *rsp_v3;
	bool v4 = fw_has_api(&fw->ucode_capa,
			     IWL_UCODE_TLV_API_REGULATORY_NVM_INFO);
	size_t rsp_size = v4 ? sizeof(*rsp) : sizeof(*rsp_v3);
	void *channel_profile;
S
Shaul Triebitz 已提交
1434 1435 1436 1437 1438

	ret = iwl_trans_send_cmd(trans, &hcmd);
	if (ret)
		return ERR_PTR(ret);

1439
	if (WARN(iwl_rx_packet_payload_len(hcmd.resp_pkt) != rsp_size,
S
Shaul Triebitz 已提交
1440 1441 1442 1443 1444 1445 1446
		 "Invalid payload len in NVM response from FW %d",
		 iwl_rx_packet_payload_len(hcmd.resp_pkt))) {
		ret = -EINVAL;
		goto out;
	}

	rsp = (void *)hcmd.resp_pkt->data;
1447 1448 1449
	empty_otp = !!(le32_to_cpu(rsp->general.flags) &
		       NVM_GENERAL_FLAGS_EMPTY_OTP);
	if (empty_otp)
S
Shaul Triebitz 已提交
1450 1451
		IWL_INFO(trans, "OTP is empty\n");

1452
	nvm = kzalloc(struct_size(nvm, channels, IWL_NUM_CHANNELS), GFP_KERNEL);
S
Shaul Triebitz 已提交
1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470
	if (!nvm) {
		ret = -ENOMEM;
		goto out;
	}

	iwl_set_hw_address_from_csr(trans, nvm);
	/* TODO: if platform NVM has MAC address - override it here */

	if (!is_valid_ether_addr(nvm->hw_addr)) {
		IWL_ERR(trans, "no valid mac address was found\n");
		ret = -EINVAL;
		goto err_free;
	}

	IWL_INFO(trans, "base HW address: %pM\n", nvm->hw_addr);

	/* Initialize general data */
	nvm->nvm_version = le16_to_cpu(rsp->general.nvm_version);
1471 1472 1473 1474 1475
	nvm->n_hw_addrs = rsp->general.n_hw_addrs;
	if (nvm->n_hw_addrs == 0)
		IWL_WARN(trans,
			 "Firmware declares no reserved mac addresses. OTP is empty: %d\n",
			 empty_otp);
S
Shaul Triebitz 已提交
1476 1477 1478 1479 1480 1481 1482

	/* Initialize MAC sku data */
	mac_flags = le32_to_cpu(rsp->mac_sku.mac_sku_flags);
	nvm->sku_cap_11ac_enable =
		!!(mac_flags & NVM_MAC_SKU_FLAGS_802_11AC_ENABLED);
	nvm->sku_cap_11n_enable =
		!!(mac_flags & NVM_MAC_SKU_FLAGS_802_11N_ENABLED);
1483 1484
	nvm->sku_cap_11ax_enable =
		!!(mac_flags & NVM_MAC_SKU_FLAGS_802_11AX_ENABLED);
S
Shaul Triebitz 已提交
1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500
	nvm->sku_cap_band_24ghz_enable =
		!!(mac_flags & NVM_MAC_SKU_FLAGS_BAND_2_4_ENABLED);
	nvm->sku_cap_band_52ghz_enable =
		!!(mac_flags & NVM_MAC_SKU_FLAGS_BAND_5_2_ENABLED);
	nvm->sku_cap_mimo_disabled =
		!!(mac_flags & NVM_MAC_SKU_FLAGS_MIMO_DISABLED);

	/* Initialize PHY sku data */
	nvm->valid_tx_ant = (u8)le32_to_cpu(rsp->phy_sku.tx_chains);
	nvm->valid_rx_ant = (u8)le32_to_cpu(rsp->phy_sku.rx_chains);

	if (le32_to_cpu(rsp->regulatory.lar_enabled) && lar_fw_supported) {
		nvm->lar_enabled = true;
		sbands_flags |= IWL_NVM_SBANDS_FLAGS_LAR;
	}

1501 1502 1503 1504
	rsp_v3 = (void *)rsp;
	channel_profile = v4 ? (void *)rsp->regulatory.channel_profile :
			  (void *)rsp_v3->regulatory.channel_profile;

S
Shaul Triebitz 已提交
1505 1506 1507 1508
	iwl_init_sbands(trans->dev, trans->cfg, nvm,
			rsp->regulatory.channel_profile,
			nvm->valid_tx_ant & fw->valid_tx_ant,
			nvm->valid_rx_ant & fw->valid_rx_ant,
1509
			sbands_flags, v4);
S
Shaul Triebitz 已提交
1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520

	iwl_free_resp(&hcmd);
	return nvm;

err_free:
	kfree(nvm);
out:
	iwl_free_resp(&hcmd);
	return ERR_PTR(ret);
}
IWL_EXPORT_SYMBOL(iwl_get_nvm);