i915_request.c 58.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
/*
 * Copyright © 2008-2015 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 */

25
#include <linux/dma-fence-array.h>
26
#include <linux/dma-fence-chain.h>
27 28
#include <linux/irq_work.h>
#include <linux/prefetch.h>
29 30
#include <linux/sched.h>
#include <linux/sched/clock.h>
31
#include <linux/sched/signal.h>
32

33
#include "gem/i915_gem_context.h"
34
#include "gt/intel_breadcrumbs.h"
35
#include "gt/intel_context.h"
36
#include "gt/intel_gpu_commands.h"
37
#include "gt/intel_ring.h"
38
#include "gt/intel_rps.h"
39

40
#include "i915_active.h"
41
#include "i915_drv.h"
42
#include "i915_globals.h"
43
#include "i915_trace.h"
44
#include "intel_pm.h"
45

46 47 48
struct execute_cb {
	struct irq_work work;
	struct i915_sw_fence *fence;
49 50
	void (*hook)(struct i915_request *rq, struct dma_fence *signal);
	struct i915_request *signal;
51 52
};

53
static struct i915_global_request {
54
	struct i915_global base;
55
	struct kmem_cache *slab_requests;
56
	struct kmem_cache *slab_execute_cbs;
57 58
} global;

59
static const char *i915_fence_get_driver_name(struct dma_fence *fence)
60
{
61
	return dev_name(to_request(fence)->engine->i915->drm.dev);
62 63
}

64
static const char *i915_fence_get_timeline_name(struct dma_fence *fence)
65
{
66 67
	const struct i915_gem_context *ctx;

68 69
	/*
	 * The timeline struct (as part of the ppgtt underneath a context)
70 71 72 73 74 75 76 77 78 79
	 * may be freed when the request is no longer in use by the GPU.
	 * We could extend the life of a context to beyond that of all
	 * fences, possibly keeping the hw resource around indefinitely,
	 * or we just give them a false name. Since
	 * dma_fence_ops.get_timeline_name is a debug feature, the occasional
	 * lie seems justifiable.
	 */
	if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags))
		return "signaled";

80
	ctx = i915_request_gem_context(to_request(fence));
81 82 83 84
	if (!ctx)
		return "[" DRIVER_NAME "]";

	return ctx->name;
85 86
}

87
static bool i915_fence_signaled(struct dma_fence *fence)
88
{
89
	return i915_request_completed(to_request(fence));
90 91
}

92
static bool i915_fence_enable_signaling(struct dma_fence *fence)
93
{
94
	return i915_request_enable_breadcrumb(to_request(fence));
95 96
}

97
static signed long i915_fence_wait(struct dma_fence *fence,
98
				   bool interruptible,
99
				   signed long timeout)
100
{
101 102 103
	return i915_request_wait(to_request(fence),
				 interruptible | I915_WAIT_PRIORITY,
				 timeout);
104 105
}

106 107 108 109 110
struct kmem_cache *i915_request_slab_cache(void)
{
	return global.slab_requests;
}

111
static void i915_fence_release(struct dma_fence *fence)
112
{
113
	struct i915_request *rq = to_request(fence);
114

115 116
	/*
	 * The request is put onto a RCU freelist (i.e. the address
117 118 119 120 121
	 * is immediately reused), mark the fences as being freed now.
	 * Otherwise the debugobjects for the fences are only marked as
	 * freed when the slab cache itself is freed, and so we would get
	 * caught trying to reuse dead objects.
	 */
122
	i915_sw_fence_fini(&rq->submit);
123
	i915_sw_fence_fini(&rq->semaphore);
124

125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157
	/*
	 * Keep one request on each engine for reserved use under mempressure
	 *
	 * We do not hold a reference to the engine here and so have to be
	 * very careful in what rq->engine we poke. The virtual engine is
	 * referenced via the rq->context and we released that ref during
	 * i915_request_retire(), ergo we must not dereference a virtual
	 * engine here. Not that we would want to, as the only consumer of
	 * the reserved engine->request_pool is the power management parking,
	 * which must-not-fail, and that is only run on the physical engines.
	 *
	 * Since the request must have been executed to be have completed,
	 * we know that it will have been processed by the HW and will
	 * not be unsubmitted again, so rq->engine and rq->execution_mask
	 * at this point is stable. rq->execution_mask will be a single
	 * bit if the last and _only_ engine it could execution on was a
	 * physical engine, if it's multiple bits then it started on and
	 * could still be on a virtual engine. Thus if the mask is not a
	 * power-of-two we assume that rq->engine may still be a virtual
	 * engine and so a dangling invalid pointer that we cannot dereference
	 *
	 * For example, consider the flow of a bonded request through a virtual
	 * engine. The request is created with a wide engine mask (all engines
	 * that we might execute on). On processing the bond, the request mask
	 * is reduced to one or more engines. If the request is subsequently
	 * bound to a single engine, it will then be constrained to only
	 * execute on that engine and never returned to the virtual engine
	 * after timeslicing away, see __unwind_incomplete_requests(). Thus we
	 * know that if the rq->execution_mask is a single bit, rq->engine
	 * can be a physical engine with the exact corresponding mask.
	 */
	if (is_power_of_2(rq->execution_mask) &&
	    !cmpxchg(&rq->engine->request_pool, NULL, rq))
158 159
		return;

160
	kmem_cache_free(global.slab_requests, rq);
161 162
}

163
const struct dma_fence_ops i915_fence_ops = {
164 165 166 167 168 169 170 171
	.get_driver_name = i915_fence_get_driver_name,
	.get_timeline_name = i915_fence_get_timeline_name,
	.enable_signaling = i915_fence_enable_signaling,
	.signaled = i915_fence_signaled,
	.wait = i915_fence_wait,
	.release = i915_fence_release,
};

172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190
static void irq_execute_cb(struct irq_work *wrk)
{
	struct execute_cb *cb = container_of(wrk, typeof(*cb), work);

	i915_sw_fence_complete(cb->fence);
	kmem_cache_free(global.slab_execute_cbs, cb);
}

static void irq_execute_cb_hook(struct irq_work *wrk)
{
	struct execute_cb *cb = container_of(wrk, typeof(*cb), work);

	cb->hook(container_of(cb->fence, struct i915_request, submit),
		 &cb->signal->fence);
	i915_request_put(cb->signal);

	irq_execute_cb(wrk);
}

191 192
static __always_inline void
__notify_execute_cb(struct i915_request *rq, bool (*fn)(struct irq_work *wrk))
193
{
194
	struct execute_cb *cb, *cn;
195

196
	if (llist_empty(&rq->execute_cb))
197 198
		return;

199 200 201 202 203
	llist_for_each_entry_safe(cb, cn,
				  llist_del_all(&rq->execute_cb),
				  work.llnode)
		fn(&cb->work);
}
204

205 206 207 208 209 210 211 212 213 214 215 216 217 218
static void __notify_execute_cb_irq(struct i915_request *rq)
{
	__notify_execute_cb(rq, irq_work_queue);
}

static bool irq_work_imm(struct irq_work *wrk)
{
	wrk->func(wrk);
	return false;
}

static void __notify_execute_cb_imm(struct i915_request *rq)
{
	__notify_execute_cb(rq, irq_work_imm);
219 220
}

221
static void free_capture_list(struct i915_request *request)
222
{
223
	struct i915_capture_list *capture;
224

225
	capture = fetch_and_zero(&request->capture_list);
226
	while (capture) {
227
		struct i915_capture_list *next = capture->next;
228 229 230 231 232 233

		kfree(capture);
		capture = next;
	}
}

C
Chris Wilson 已提交
234 235 236 237 238 239 240 241 242 243 244 245 246
static void __i915_request_fill(struct i915_request *rq, u8 val)
{
	void *vaddr = rq->ring->vaddr;
	u32 head;

	head = rq->infix;
	if (rq->postfix < head) {
		memset(vaddr + head, val, rq->ring->size - head);
		head = 0;
	}
	memset(vaddr + head, val, rq->postfix - head);
}

247 248 249 250 251 252 253 254 255 256 257
static void remove_from_engine(struct i915_request *rq)
{
	struct intel_engine_cs *engine, *locked;

	/*
	 * Virtual engines complicate acquiring the engine timeline lock,
	 * as their rq->engine pointer is not stable until under that
	 * engine lock. The simple ploy we use is to take the lock then
	 * check that the rq still belongs to the newly locked engine.
	 */
	locked = READ_ONCE(rq->engine);
258
	spin_lock_irq(&locked->active.lock);
259 260 261 262 263
	while (unlikely(locked != (engine = READ_ONCE(rq->engine)))) {
		spin_unlock(&locked->active.lock);
		spin_lock(&engine->active.lock);
		locked = engine;
	}
264
	list_del_init(&rq->sched.link);
265

266 267
	clear_bit(I915_FENCE_FLAG_PQUEUE, &rq->fence.flags);
	clear_bit(I915_FENCE_FLAG_HOLD, &rq->fence.flags);
268 269 270 271

	/* Prevent further __await_execution() registering a cb, then flush */
	set_bit(I915_FENCE_FLAG_ACTIVE, &rq->fence.flags);

272
	spin_unlock_irq(&locked->active.lock);
273 274

	__notify_execute_cb_imm(rq);
275 276
}

277
bool i915_request_retire(struct i915_request *rq)
278
{
279 280
	if (!i915_request_completed(rq))
		return false;
281

282
	RQ_TRACE(rq, "\n");
283

284 285
	GEM_BUG_ON(!i915_sw_fence_signaled(&rq->submit));
	trace_i915_request_retire(rq);
286
	i915_request_mark_complete(rq);
C
Chris Wilson 已提交
287

288 289 290 291 292 293 294 295 296
	/*
	 * We know the GPU must have read the request to have
	 * sent us the seqno + interrupt, so use the position
	 * of tail of the request to update the last known position
	 * of the GPU head.
	 *
	 * Note this requires that we are always called in request
	 * completion order.
	 */
297 298
	GEM_BUG_ON(!list_is_first(&rq->link,
				  &i915_request_timeline(rq)->requests));
C
Chris Wilson 已提交
299 300 301
	if (IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM))
		/* Poison before we release our space in the ring */
		__i915_request_fill(rq, POISON_FREE);
302
	rq->ring->head = rq->postfix;
303

304 305
	if (!i915_request_signaled(rq)) {
		spin_lock_irq(&rq->lock);
306
		dma_fence_signal_locked(&rq->fence);
307 308
		spin_unlock_irq(&rq->lock);
	}
309

310
	if (i915_request_has_waitboost(rq)) {
311 312
		GEM_BUG_ON(!atomic_read(&rq->engine->gt->rps.num_waiters));
		atomic_dec(&rq->engine->gt->rps.num_waiters);
313
	}
314 315 316 317 318 319 320 321 322 323 324

	/*
	 * We only loosely track inflight requests across preemption,
	 * and so we may find ourselves attempting to retire a _completed_
	 * request that we have removed from the HW and put back on a run
	 * queue.
	 *
	 * As we set I915_FENCE_FLAG_ACTIVE on the request, this should be
	 * after removing the breadcrumb and signaling it, so that we do not
	 * inadvertently attach the breadcrumb to a completed request.
	 */
325 326
	if (!list_empty(&rq->sched.link))
		remove_from_engine(rq);
327
	GEM_BUG_ON(!llist_empty(&rq->execute_cb));
328

329
	__list_del_entry(&rq->link); /* poison neither prev/next (RCU walks) */
330

331 332
	intel_context_exit(rq->context);
	intel_context_unpin(rq->context);
333

334 335 336 337 338
	free_capture_list(rq);
	i915_sched_node_fini(&rq->sched);
	i915_request_put(rq);

	return true;
339 340
}

341
void i915_request_retire_upto(struct i915_request *rq)
342
{
343
	struct intel_timeline * const tl = i915_request_timeline(rq);
344
	struct i915_request *tmp;
345

346
	RQ_TRACE(rq, "\n");
347

348
	GEM_BUG_ON(!i915_request_completed(rq));
349

350
	do {
351
		tmp = list_first_entry(&tl->requests, typeof(*tmp), link);
352
	} while (i915_request_retire(tmp) && tmp != rq);
353 354
}

355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379
static struct i915_request * const *
__engine_active(struct intel_engine_cs *engine)
{
	return READ_ONCE(engine->execlists.active);
}

static bool __request_in_flight(const struct i915_request *signal)
{
	struct i915_request * const *port, *rq;
	bool inflight = false;

	if (!i915_request_is_ready(signal))
		return false;

	/*
	 * Even if we have unwound the request, it may still be on
	 * the GPU (preempt-to-busy). If that request is inside an
	 * unpreemptible critical section, it will not be removed. Some
	 * GPU functions may even be stuck waiting for the paired request
	 * (__await_execution) to be submitted and cannot be preempted
	 * until the bond is executing.
	 *
	 * As we know that there are always preemption points between
	 * requests, we know that only the currently executing request
	 * may be still active even though we have cleared the flag.
380
	 * However, we can't rely on our tracking of ELSP[0] to know
381 382 383 384
	 * which request is currently active and so maybe stuck, as
	 * the tracking maybe an event behind. Instead assume that
	 * if the context is still inflight, then it is still active
	 * even if the active flag has been cleared.
385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403
	 *
	 * To further complicate matters, if there a pending promotion, the HW
	 * may either perform a context switch to the second inflight execlists,
	 * or it may switch to the pending set of execlists. In the case of the
	 * latter, it may send the ACK and we process the event copying the
	 * pending[] over top of inflight[], _overwriting_ our *active. Since
	 * this implies the HW is arbitrating and not struck in *active, we do
	 * not worry about complete accuracy, but we do require no read/write
	 * tearing of the pointer [the read of the pointer must be valid, even
	 * as the array is being overwritten, for which we require the writes
	 * to avoid tearing.]
	 *
	 * Note that the read of *execlists->active may race with the promotion
	 * of execlists->pending[] to execlists->inflight[], overwritting
	 * the value at *execlists->active. This is fine. The promotion implies
	 * that we received an ACK from the HW, and so the context is not
	 * stuck -- if we do not see ourselves in *active, the inflight status
	 * is valid. If instead we see ourselves being copied into *active,
	 * we are inflight and may signal the callback.
404 405 406 407 408
	 */
	if (!intel_context_inflight(signal->context))
		return false;

	rcu_read_lock();
409 410 411
	for (port = __engine_active(signal->engine);
	     (rq = READ_ONCE(*port)); /* may race with promotion of pending[] */
	     port++) {
412 413 414 415 416 417 418 419 420 421 422
		if (rq->context == signal->context) {
			inflight = i915_seqno_passed(rq->fence.seqno,
						     signal->fence.seqno);
			break;
		}
	}
	rcu_read_unlock();

	return inflight;
}

423
static int
424 425 426 427 428
__await_execution(struct i915_request *rq,
		  struct i915_request *signal,
		  void (*hook)(struct i915_request *rq,
			       struct dma_fence *signal),
		  gfp_t gfp)
429 430 431
{
	struct execute_cb *cb;

432 433 434
	if (i915_request_is_active(signal)) {
		if (hook)
			hook(rq, &signal->fence);
435
		return 0;
436
	}
437 438 439 440 441 442 443 444 445

	cb = kmem_cache_alloc(global.slab_execute_cbs, gfp);
	if (!cb)
		return -ENOMEM;

	cb->fence = &rq->submit;
	i915_sw_fence_await(cb->fence);
	init_irq_work(&cb->work, irq_execute_cb);

446 447 448 449 450 451
	if (hook) {
		cb->hook = hook;
		cb->signal = i915_request_get(signal);
		cb->work.func = irq_execute_cb_hook;
	}

452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468
	/*
	 * Register the callback first, then see if the signaler is already
	 * active. This ensures that if we race with the
	 * __notify_execute_cb from i915_request_submit() and we are not
	 * included in that list, we get a second bite of the cherry and
	 * execute it ourselves. After this point, a future
	 * i915_request_submit() will notify us.
	 *
	 * In i915_request_retire() we set the ACTIVE bit on a completed
	 * request (then flush the execute_cb). So by registering the
	 * callback first, then checking the ACTIVE bit, we serialise with
	 * the completed/retired request.
	 */
	if (llist_add(&cb->work.llnode, &signal->execute_cb)) {
		if (i915_request_is_active(signal) ||
		    __request_in_flight(signal))
			__notify_execute_cb_imm(signal);
469 470 471 472 473
	}

	return 0;
}

474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492
static bool fatal_error(int error)
{
	switch (error) {
	case 0: /* not an error! */
	case -EAGAIN: /* innocent victim of a GT reset (__i915_request_reset) */
	case -ETIMEDOUT: /* waiting for Godot (timer_i915_sw_fence_wake) */
		return false;
	default:
		return true;
	}
}

void __i915_request_skip(struct i915_request *rq)
{
	GEM_BUG_ON(!fatal_error(rq->fence.error));

	if (rq->infix == rq->postfix)
		return;

493 494
	RQ_TRACE(rq, "error: %d\n", rq->fence.error);

495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519
	/*
	 * As this request likely depends on state from the lost
	 * context, clear out all the user operations leaving the
	 * breadcrumb at the end (so we get the fence notifications).
	 */
	__i915_request_fill(rq, 0);
	rq->infix = rq->postfix;
}

void i915_request_set_error_once(struct i915_request *rq, int error)
{
	int old;

	GEM_BUG_ON(!IS_ERR_VALUE((long)error));

	if (i915_request_signaled(rq))
		return;

	old = READ_ONCE(rq->fence.error);
	do {
		if (fatal_error(old))
			return;
	} while (!try_cmpxchg(&rq->fence.error, &old, error));
}

520
bool __i915_request_submit(struct i915_request *request)
521
{
522
	struct intel_engine_cs *engine = request->engine;
523
	bool result = false;
524

525
	RQ_TRACE(request, "\n");
526

527
	GEM_BUG_ON(!irqs_disabled());
528
	lockdep_assert_held(&engine->active.lock);
529

530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548
	/*
	 * With the advent of preempt-to-busy, we frequently encounter
	 * requests that we have unsubmitted from HW, but left running
	 * until the next ack and so have completed in the meantime. On
	 * resubmission of that completed request, we can skip
	 * updating the payload, and execlists can even skip submitting
	 * the request.
	 *
	 * We must remove the request from the caller's priority queue,
	 * and the caller must only call us when the request is in their
	 * priority queue, under the active.lock. This ensures that the
	 * request has *not* yet been retired and we can safely move
	 * the request into the engine->active.list where it will be
	 * dropped upon retiring. (Otherwise if resubmit a *retired*
	 * request, this would be a horrible use-after-free.)
	 */
	if (i915_request_completed(request))
		goto xfer;

549 550 551 552
	if (unlikely(intel_context_is_closed(request->context) &&
		     !intel_engine_has_heartbeat(engine)))
		intel_context_set_banned(request->context);

553 554
	if (unlikely(intel_context_is_banned(request->context)))
		i915_request_set_error_once(request, -EIO);
555

556 557
	if (unlikely(fatal_error(request->fence.error)))
		__i915_request_skip(request);
558

559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576
	/*
	 * Are we using semaphores when the gpu is already saturated?
	 *
	 * Using semaphores incurs a cost in having the GPU poll a
	 * memory location, busywaiting for it to change. The continual
	 * memory reads can have a noticeable impact on the rest of the
	 * system with the extra bus traffic, stalling the cpu as it too
	 * tries to access memory across the bus (perf stat -e bus-cycles).
	 *
	 * If we installed a semaphore on this request and we only submit
	 * the request after the signaler completed, that indicates the
	 * system is overloaded and using semaphores at this time only
	 * increases the amount of work we are doing. If so, we disable
	 * further use of semaphores until we are idle again, whence we
	 * optimistically try again.
	 */
	if (request->sched.semaphores &&
	    i915_sw_fence_signaled(&request->semaphore))
577
		engine->saturated |= request->sched.semaphores;
578

579 580
	engine->emit_fini_breadcrumb(request,
				     request->ring->vaddr + request->postfix);
581

582 583 584
	trace_i915_request_execute(request);
	engine->serial++;
	result = true;
585

586
xfer:
587
	if (!test_and_set_bit(I915_FENCE_FLAG_ACTIVE, &request->fence.flags)) {
588
		list_move_tail(&request->sched.link, &engine->active.requests);
589 590
		clear_bit(I915_FENCE_FLAG_PQUEUE, &request->fence.flags);
	}
591

592 593 594 595 596 597 598 599 600 601
	/*
	 * XXX Rollback bonded-execution on __i915_request_unsubmit()?
	 *
	 * In the future, perhaps when we have an active time-slicing scheduler,
	 * it will be interesting to unsubmit parallel execution and remove
	 * busywaits from the GPU until their master is restarted. This is
	 * quite hairy, we have to carefully rollback the fence and do a
	 * preempt-to-idle cycle on the target engine, all the while the
	 * master execute_cb may refire.
	 */
602 603 604
	__notify_execute_cb_irq(request);

	/* We may be recursing from the signal callback of another i915 fence */
605 606
	if (test_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT, &request->fence.flags))
		i915_request_enable_breadcrumb(request);
607

608
	return result;
609 610
}

611
void i915_request_submit(struct i915_request *request)
612 613 614
{
	struct intel_engine_cs *engine = request->engine;
	unsigned long flags;
615

616
	/* Will be called from irq-context when using foreign fences. */
617
	spin_lock_irqsave(&engine->active.lock, flags);
618

619
	__i915_request_submit(request);
620

621
	spin_unlock_irqrestore(&engine->active.lock, flags);
622 623
}

624
void __i915_request_unsubmit(struct i915_request *request)
625
{
626
	struct intel_engine_cs *engine = request->engine;
627

628 629 630 631
	/*
	 * Only unwind in reverse order, required so that the per-context list
	 * is kept in seqno/ring order.
	 */
632
	RQ_TRACE(request, "\n");
633

634
	GEM_BUG_ON(!irqs_disabled());
635
	lockdep_assert_held(&engine->active.lock);
636

637
	/*
638 639 640 641 642
	 * Before we remove this breadcrumb from the signal list, we have
	 * to ensure that a concurrent dma_fence_enable_signaling() does not
	 * attach itself. We first mark the request as no longer active and
	 * make sure that is visible to other cores, and then remove the
	 * breadcrumb if attached.
643
	 */
644 645
	GEM_BUG_ON(!test_bit(I915_FENCE_FLAG_ACTIVE, &request->fence.flags));
	clear_bit_unlock(I915_FENCE_FLAG_ACTIVE, &request->fence.flags);
646
	if (test_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT, &request->fence.flags))
647
		i915_request_cancel_breadcrumb(request);
648

649
	/* We've already spun, don't charge on resubmitting. */
650
	if (request->sched.semaphores && i915_request_started(request))
651 652
		request->sched.semaphores = 0;

653 654
	/*
	 * We don't need to wake_up any waiters on request->execute, they
655
	 * will get woken by any other event or us re-adding this request
656
	 * to the engine timeline (__i915_request_submit()). The waiters
657 658 659 660 661
	 * should be quite adapt at finding that the request now has a new
	 * global_seqno to the one they went to sleep on.
	 */
}

662
void i915_request_unsubmit(struct i915_request *request)
663 664 665 666 667
{
	struct intel_engine_cs *engine = request->engine;
	unsigned long flags;

	/* Will be called from irq-context when using foreign fences. */
668
	spin_lock_irqsave(&engine->active.lock, flags);
669

670
	__i915_request_unsubmit(request);
671

672
	spin_unlock_irqrestore(&engine->active.lock, flags);
673 674
}

675
static int __i915_sw_fence_call
676
submit_notify(struct i915_sw_fence *fence, enum i915_sw_fence_notify state)
677
{
678
	struct i915_request *request =
679 680 681 682
		container_of(fence, typeof(*request), submit);

	switch (state) {
	case FENCE_COMPLETE:
683
		trace_i915_request_submit(request);
C
Chris Wilson 已提交
684 685

		if (unlikely(fence->error))
686
			i915_request_set_error_once(request, fence->error);
C
Chris Wilson 已提交
687

688
		/*
689 690 691 692 693 694
		 * We need to serialize use of the submit_request() callback
		 * with its hotplugging performed during an emergency
		 * i915_gem_set_wedged().  We use the RCU mechanism to mark the
		 * critical section in order to force i915_gem_set_wedged() to
		 * wait until the submit_request() is completed before
		 * proceeding.
695 696
		 */
		rcu_read_lock();
697
		request->engine->submit_request(request);
698
		rcu_read_unlock();
699 700 701
		break;

	case FENCE_FREE:
702
		i915_request_put(request);
703 704 705
		break;
	}

706 707 708
	return NOTIFY_DONE;
}

709 710 711
static int __i915_sw_fence_call
semaphore_notify(struct i915_sw_fence *fence, enum i915_sw_fence_notify state)
{
712
	struct i915_request *rq = container_of(fence, typeof(*rq), semaphore);
713 714 715 716 717 718

	switch (state) {
	case FENCE_COMPLETE:
		break;

	case FENCE_FREE:
719
		i915_request_put(rq);
720 721 722 723 724 725
		break;
	}

	return NOTIFY_DONE;
}

726
static void retire_requests(struct intel_timeline *tl)
727 728 729
{
	struct i915_request *rq, *rn;

730
	list_for_each_entry_safe(rq, rn, &tl->requests, link)
731
		if (!i915_request_retire(rq))
732 733 734 735
			break;
}

static noinline struct i915_request *
736 737 738
request_alloc_slow(struct intel_timeline *tl,
		   struct i915_request **rsvd,
		   gfp_t gfp)
739 740 741
{
	struct i915_request *rq;

742 743 744 745 746
	/* If we cannot wait, dip into our reserves */
	if (!gfpflags_allow_blocking(gfp)) {
		rq = xchg(rsvd, NULL);
		if (!rq) /* Use the normal failure path for one final WARN */
			goto out;
747

748 749 750 751
		return rq;
	}

	if (list_empty(&tl->requests))
752 753
		goto out;

754
	/* Move our oldest request to the slab-cache (if not in use!) */
755
	rq = list_first_entry(&tl->requests, typeof(*rq), link);
756 757 758 759 760 761 762
	i915_request_retire(rq);

	rq = kmem_cache_alloc(global.slab_requests,
			      gfp | __GFP_RETRY_MAYFAIL | __GFP_NOWARN);
	if (rq)
		return rq;

763
	/* Ratelimit ourselves to prevent oom from malicious clients */
764
	rq = list_last_entry(&tl->requests, typeof(*rq), link);
765 766 767
	cond_synchronize_rcu(rq->rcustate);

	/* Retire our old requests in the hope that we free some */
768
	retire_requests(tl);
769 770

out:
771
	return kmem_cache_alloc(global.slab_requests, gfp);
772 773
}

774 775 776 777 778 779 780 781 782
static void __i915_request_ctor(void *arg)
{
	struct i915_request *rq = arg;

	spin_lock_init(&rq->lock);
	i915_sched_node_init(&rq->sched);
	i915_sw_fence_init(&rq->submit, submit_notify);
	i915_sw_fence_init(&rq->semaphore, semaphore_notify);

783 784
	dma_fence_init(&rq->fence, &i915_fence_ops, &rq->lock, 0, 0);

785 786
	rq->capture_list = NULL;

787
	init_llist_head(&rq->execute_cb);
788 789
}

790
struct i915_request *
791
__i915_request_create(struct intel_context *ce, gfp_t gfp)
792
{
793
	struct intel_timeline *tl = ce->timeline;
794 795
	struct i915_request *rq;
	u32 seqno;
796 797
	int ret;

798
	might_sleep_if(gfpflags_allow_blocking(gfp));
799

800 801
	/* Check that the caller provided an already pinned context */
	__intel_context_pin(ce);
802

803 804
	/*
	 * Beware: Dragons be flying overhead.
805 806 807 808
	 *
	 * We use RCU to look up requests in flight. The lookups may
	 * race with the request being allocated from the slab freelist.
	 * That is the request we are writing to here, may be in the process
809
	 * of being read by __i915_active_request_get_rcu(). As such,
810 811
	 * we have to be very careful when overwriting the contents. During
	 * the RCU lookup, we change chase the request->engine pointer,
812
	 * read the request->global_seqno and increment the reference count.
813 814 815 816
	 *
	 * The reference count is incremented atomically. If it is zero,
	 * the lookup knows the request is unallocated and complete. Otherwise,
	 * it is either still in use, or has been reallocated and reset
817 818
	 * with dma_fence_init(). This increment is safe for release as we
	 * check that the request we have a reference to and matches the active
819 820 821 822 823 824 825 826 827 828 829 830 831
	 * request.
	 *
	 * Before we increment the refcount, we chase the request->engine
	 * pointer. We must not call kmem_cache_zalloc() or else we set
	 * that pointer to NULL and cause a crash during the lookup. If
	 * we see the request is completed (based on the value of the
	 * old engine and seqno), the lookup is complete and reports NULL.
	 * If we decide the request is not completed (new engine or seqno),
	 * then we grab a reference and double check that it is still the
	 * active request - which it won't be and restart the lookup.
	 *
	 * Do not use kmem_cache_zalloc() here!
	 */
832
	rq = kmem_cache_alloc(global.slab_requests,
833
			      gfp | __GFP_RETRY_MAYFAIL | __GFP_NOWARN);
834
	if (unlikely(!rq)) {
835
		rq = request_alloc_slow(tl, &ce->engine->request_pool, gfp);
836
		if (!rq) {
837 838 839
			ret = -ENOMEM;
			goto err_unreserve;
		}
840
	}
841

842
	rq->context = ce;
843
	rq->engine = ce->engine;
844
	rq->ring = ce->ring;
845
	rq->execution_mask = ce->engine->mask;
846

847 848 849 850 851 852 853 854 855 856 857 858
	kref_init(&rq->fence.refcount);
	rq->fence.flags = 0;
	rq->fence.error = 0;
	INIT_LIST_HEAD(&rq->fence.cb_list);

	ret = intel_timeline_get_seqno(tl, rq, &seqno);
	if (ret)
		goto err_free;

	rq->fence.context = tl->fence_context;
	rq->fence.seqno = seqno;

859 860
	RCU_INIT_POINTER(rq->timeline, tl);
	RCU_INIT_POINTER(rq->hwsp_cacheline, tl->hwsp_cacheline);
861
	rq->hwsp_seqno = tl->hwsp_seqno;
862
	GEM_BUG_ON(i915_request_completed(rq));
863

864
	rq->rcustate = get_state_synchronize_rcu(); /* acts as smp_mb() */
865

866
	/* We bump the ref for the fence chain */
867 868
	i915_sw_fence_reinit(&i915_request_get(rq)->submit);
	i915_sw_fence_reinit(&i915_request_get(rq)->semaphore);
869

870
	i915_sched_node_reinit(&rq->sched);
871

872
	/* No zalloc, everything must be cleared after use */
873
	rq->batch = NULL;
874
	GEM_BUG_ON(rq->capture_list);
875
	GEM_BUG_ON(!llist_empty(&rq->execute_cb));
876

877 878 879
	/*
	 * Reserve space in the ring buffer for all the commands required to
	 * eventually emit this request. This is to guarantee that the
880
	 * i915_request_add() call can't fail. Note that the reserve may need
881 882
	 * to be redone if the request is not actually submitted straight
	 * away, e.g. because a GPU scheduler has deferred it.
883 884 885 886 887
	 *
	 * Note that due to how we add reserved_space to intel_ring_begin()
	 * we need to double our request to ensure that if we need to wrap
	 * around inside i915_request_add() there is sufficient space at
	 * the beginning of the ring as well.
888
	 */
889 890
	rq->reserved_space =
		2 * rq->engine->emit_fini_breadcrumb_dw * sizeof(u32);
891

892 893
	/*
	 * Record the position of the start of the request so that
894 895 896 897
	 * should we detect the updated seqno part-way through the
	 * GPU processing the request, we never over-estimate the
	 * position of the head.
	 */
898
	rq->head = rq->ring->emit;
899

900
	ret = rq->engine->request_alloc(rq);
901 902
	if (ret)
		goto err_unwind;
903

904 905
	rq->infix = rq->ring->emit; /* end of header; start of user payload */

906
	intel_context_mark_active(ce);
907 908
	list_add_tail_rcu(&rq->link, &tl->requests);

909
	return rq;
910

911
err_unwind:
912
	ce->ring->emit = rq->head;
913

914
	/* Make sure we didn't add ourselves to external state before freeing */
915 916
	GEM_BUG_ON(!list_empty(&rq->sched.signalers_list));
	GEM_BUG_ON(!list_empty(&rq->sched.waiters_list));
917

918
err_free:
919
	kmem_cache_free(global.slab_requests, rq);
920
err_unreserve:
921
	intel_context_unpin(ce);
922
	return ERR_PTR(ret);
923 924
}

925 926 927 928
struct i915_request *
i915_request_create(struct intel_context *ce)
{
	struct i915_request *rq;
929
	struct intel_timeline *tl;
930

931 932 933
	tl = intel_context_timeline_lock(ce);
	if (IS_ERR(tl))
		return ERR_CAST(tl);
934 935

	/* Move our oldest request to the slab-cache (if not in use!) */
936 937
	rq = list_first_entry(&tl->requests, typeof(*rq), link);
	if (!list_is_last(&rq->link, &tl->requests))
938 939 940 941 942 943 944 945 946
		i915_request_retire(rq);

	intel_context_enter(ce);
	rq = __i915_request_create(ce, GFP_KERNEL);
	intel_context_exit(ce); /* active reference transferred to request */
	if (IS_ERR(rq))
		goto err_unlock;

	/* Check that we do not interrupt ourselves with a new request */
947
	rq->cookie = lockdep_pin_lock(&tl->mutex);
948 949 950 951

	return rq;

err_unlock:
952
	intel_context_timeline_unlock(tl);
953 954 955
	return rq;
}

956 957 958
static int
i915_request_await_start(struct i915_request *rq, struct i915_request *signal)
{
959 960
	struct dma_fence *fence;
	int err;
961

962 963
	if (i915_request_timeline(rq) == rcu_access_pointer(signal->timeline))
		return 0;
964

965 966 967
	if (i915_request_started(signal))
		return 0;

968
	fence = NULL;
969
	rcu_read_lock();
970
	spin_lock_irq(&signal->lock);
971 972 973 974 975 976 977 978 979 980 981
	do {
		struct list_head *pos = READ_ONCE(signal->link.prev);
		struct i915_request *prev;

		/* Confirm signal has not been retired, the link is valid */
		if (unlikely(i915_request_started(signal)))
			break;

		/* Is signal the earliest request on its timeline? */
		if (pos == &rcu_dereference(signal->timeline)->requests)
			break;
982

983 984 985 986 987 988
		/*
		 * Peek at the request before us in the timeline. That
		 * request will only be valid before it is retired, so
		 * after acquiring a reference to it, confirm that it is
		 * still part of the signaler's timeline.
		 */
989 990 991 992 993 994 995 996
		prev = list_entry(pos, typeof(*prev), link);
		if (!i915_request_get_rcu(prev))
			break;

		/* After the strong barrier, confirm prev is still attached */
		if (unlikely(READ_ONCE(prev->link.next) != &signal->link)) {
			i915_request_put(prev);
			break;
997
		}
998 999 1000

		fence = &prev->fence;
	} while (0);
1001 1002 1003 1004
	spin_unlock_irq(&signal->lock);
	rcu_read_unlock();
	if (!fence)
		return 0;
1005 1006

	err = 0;
1007
	if (!intel_timeline_sync_is_later(i915_request_timeline(rq), fence))
1008 1009 1010 1011 1012 1013
		err = i915_sw_fence_await_dma_fence(&rq->submit,
						    fence, 0,
						    I915_FENCE_GFP);
	dma_fence_put(fence);

	return err;
1014 1015
}

1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030
static intel_engine_mask_t
already_busywaiting(struct i915_request *rq)
{
	/*
	 * Polling a semaphore causes bus traffic, delaying other users of
	 * both the GPU and CPU. We want to limit the impact on others,
	 * while taking advantage of early submission to reduce GPU
	 * latency. Therefore we restrict ourselves to not using more
	 * than one semaphore from each source, and not using a semaphore
	 * if we have detected the engine is saturated (i.e. would not be
	 * submitted early and cause bus traffic reading an already passed
	 * semaphore).
	 *
	 * See the are-we-too-late? check in __i915_request_submit().
	 */
1031
	return rq->sched.semaphores | READ_ONCE(rq->engine->saturated);
1032 1033
}

1034
static int
1035 1036 1037
__emit_semaphore_wait(struct i915_request *to,
		      struct i915_request *from,
		      u32 seqno)
1038
{
1039
	const int has_token = INTEL_GEN(to->engine->i915) >= 12;
1040
	u32 hwsp_offset;
1041
	int len, err;
1042 1043
	u32 *cs;

1044
	GEM_BUG_ON(INTEL_GEN(to->engine->i915) < 8);
1045
	GEM_BUG_ON(i915_request_has_initial_breadcrumb(to));
1046

1047
	/* We need to pin the signaler's HWSP until we are finished reading. */
1048 1049 1050
	err = intel_timeline_read_hwsp(from, to, &hwsp_offset);
	if (err)
		return err;
1051

1052 1053 1054 1055 1056
	len = 4;
	if (has_token)
		len += 2;

	cs = intel_ring_begin(to, len);
1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067
	if (IS_ERR(cs))
		return PTR_ERR(cs);

	/*
	 * Using greater-than-or-equal here means we have to worry
	 * about seqno wraparound. To side step that issue, we swap
	 * the timeline HWSP upon wrapping, so that everyone listening
	 * for the old (pre-wrap) values do not see the much smaller
	 * (post-wrap) values than they were expecting (and so wait
	 * forever).
	 */
1068 1069 1070 1071 1072
	*cs++ = (MI_SEMAPHORE_WAIT |
		 MI_SEMAPHORE_GLOBAL_GTT |
		 MI_SEMAPHORE_POLL |
		 MI_SEMAPHORE_SAD_GTE_SDD) +
		has_token;
1073
	*cs++ = seqno;
1074 1075
	*cs++ = hwsp_offset;
	*cs++ = 0;
1076 1077 1078 1079
	if (has_token) {
		*cs++ = 0;
		*cs++ = MI_NOOP;
	}
1080 1081

	intel_ring_advance(to, cs);
1082 1083 1084 1085 1086 1087 1088 1089
	return 0;
}

static int
emit_semaphore_wait(struct i915_request *to,
		    struct i915_request *from,
		    gfp_t gfp)
{
1090
	const intel_engine_mask_t mask = READ_ONCE(from->engine)->mask;
1091
	struct i915_sw_fence *wait = &to->submit;
1092

1093 1094 1095
	if (!intel_context_use_semaphores(to->context))
		goto await_fence;

1096 1097 1098
	if (i915_request_has_initial_breadcrumb(to))
		goto await_fence;

1099 1100 1101
	if (!rcu_access_pointer(from->hwsp_cacheline))
		goto await_fence;

1102 1103 1104 1105 1106 1107 1108 1109 1110
	/*
	 * If this or its dependents are waiting on an external fence
	 * that may fail catastrophically, then we want to avoid using
	 * sempahores as they bypass the fence signaling metadata, and we
	 * lose the fence->error propagation.
	 */
	if (from->sched.flags & I915_SCHED_HAS_EXTERNAL_CHAIN)
		goto await_fence;

1111
	/* Just emit the first semaphore we see as request space is limited. */
1112
	if (already_busywaiting(to) & mask)
1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124
		goto await_fence;

	if (i915_request_await_start(to, from) < 0)
		goto await_fence;

	/* Only submit our spinner after the signaler is running! */
	if (__await_execution(to, from, NULL, gfp))
		goto await_fence;

	if (__emit_semaphore_wait(to, from, from->fence.seqno))
		goto await_fence;

1125
	to->sched.semaphores |= mask;
1126
	wait = &to->semaphore;
1127 1128

await_fence:
1129
	return i915_sw_fence_await_dma_fence(wait,
1130 1131
					     &from->fence, 0,
					     I915_FENCE_GFP);
1132 1133
}

1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147
static bool intel_timeline_sync_has_start(struct intel_timeline *tl,
					  struct dma_fence *fence)
{
	return __intel_timeline_sync_is_later(tl,
					      fence->context,
					      fence->seqno - 1);
}

static int intel_timeline_sync_set_start(struct intel_timeline *tl,
					 const struct dma_fence *fence)
{
	return __intel_timeline_sync_set(tl, fence->context, fence->seqno - 1);
}

1148
static int
1149 1150 1151 1152
__i915_request_await_execution(struct i915_request *to,
			       struct i915_request *from,
			       void (*hook)(struct i915_request *rq,
					    struct dma_fence *signal))
1153
{
1154
	int err;
1155

1156
	GEM_BUG_ON(intel_context_is_barrier(from->context));
1157

1158 1159 1160 1161 1162 1163 1164 1165
	/* Submit both requests at the same time */
	err = __await_execution(to, from, hook, I915_FENCE_GFP);
	if (err)
		return err;

	/* Squash repeated depenendices to the same timelines */
	if (intel_timeline_sync_has_start(i915_request_timeline(to),
					  &from->fence))
1166
		return 0;
1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205

	/*
	 * Wait until the start of this request.
	 *
	 * The execution cb fires when we submit the request to HW. But in
	 * many cases this may be long before the request itself is ready to
	 * run (consider that we submit 2 requests for the same context, where
	 * the request of interest is behind an indefinite spinner). So we hook
	 * up to both to reduce our queues and keep the execution lag minimised
	 * in the worst case, though we hope that the await_start is elided.
	 */
	err = i915_request_await_start(to, from);
	if (err < 0)
		return err;

	/*
	 * Ensure both start together [after all semaphores in signal]
	 *
	 * Now that we are queued to the HW at roughly the same time (thanks
	 * to the execute cb) and are ready to run at roughly the same time
	 * (thanks to the await start), our signaler may still be indefinitely
	 * delayed by waiting on a semaphore from a remote engine. If our
	 * signaler depends on a semaphore, so indirectly do we, and we do not
	 * want to start our payload until our signaler also starts theirs.
	 * So we wait.
	 *
	 * However, there is also a second condition for which we need to wait
	 * for the precise start of the signaler. Consider that the signaler
	 * was submitted in a chain of requests following another context
	 * (with just an ordinary intra-engine fence dependency between the
	 * two). In this case the signaler is queued to HW, but not for
	 * immediate execution, and so we must wait until it reaches the
	 * active slot.
	 */
	if (intel_engine_has_semaphores(to->engine) &&
	    !i915_request_has_initial_breadcrumb(to)) {
		err = __emit_semaphore_wait(to, from, from->fence.seqno - 1);
		if (err < 0)
			return err;
1206
	}
1207

1208
	/* Couple the dependency tree for PI on this exposed to->fence */
1209
	if (to->engine->schedule) {
1210
		err = i915_sched_node_add_dependency(&to->sched,
1211
						     &from->sched,
1212 1213 1214
						     I915_DEPENDENCY_WEAK);
		if (err < 0)
			return err;
1215 1216
	}

1217 1218
	return intel_timeline_sync_set_start(i915_request_timeline(to),
					     &from->fence);
1219 1220
}

1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233
static void mark_external(struct i915_request *rq)
{
	/*
	 * The downside of using semaphores is that we lose metadata passing
	 * along the signaling chain. This is particularly nasty when we
	 * need to pass along a fatal error such as EFAULT or EDEADLK. For
	 * fatal errors we want to scrub the request before it is executed,
	 * which means that we cannot preload the request onto HW and have
	 * it wait upon a semaphore.
	 */
	rq->sched.flags |= I915_SCHED_HAS_EXTERNAL_CHAIN;
}

1234
static int
1235
__i915_request_await_external(struct i915_request *rq, struct dma_fence *fence)
1236
{
1237
	mark_external(rq);
1238
	return i915_sw_fence_await_dma_fence(&rq->submit, fence,
1239
					     i915_fence_context_timeout(rq->engine->i915,
1240
									fence->context),
1241 1242 1243
					     I915_FENCE_GFP);
}

1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269
static int
i915_request_await_external(struct i915_request *rq, struct dma_fence *fence)
{
	struct dma_fence *iter;
	int err = 0;

	if (!to_dma_fence_chain(fence))
		return __i915_request_await_external(rq, fence);

	dma_fence_chain_for_each(iter, fence) {
		struct dma_fence_chain *chain = to_dma_fence_chain(iter);

		if (!dma_fence_is_i915(chain->fence)) {
			err = __i915_request_await_external(rq, iter);
			break;
		}

		err = i915_request_await_dma_fence(rq, chain->fence);
		if (err < 0)
			break;
	}

	dma_fence_put(iter);
	return err;
}

1270
int
1271 1272 1273 1274
i915_request_await_execution(struct i915_request *rq,
			     struct dma_fence *fence,
			     void (*hook)(struct i915_request *rq,
					  struct dma_fence *signal))
1275
{
1276 1277
	struct dma_fence **child = &fence;
	unsigned int nchild = 1;
1278 1279
	int ret;

1280 1281 1282
	if (dma_fence_is_array(fence)) {
		struct dma_fence_array *array = to_dma_fence_array(fence);

1283 1284
		/* XXX Error for signal-on-any fence arrays */

1285 1286 1287 1288
		child = array->fences;
		nchild = array->num_fences;
		GEM_BUG_ON(!nchild);
	}
1289

1290 1291
	do {
		fence = *child++;
1292 1293
		if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags)) {
			i915_sw_fence_set_error_once(&rq->submit, fence->error);
1294
			continue;
1295
		}
1296

1297
		if (fence->context == rq->fence.context)
1298 1299
			continue;

1300 1301 1302 1303
		/*
		 * We don't squash repeated fence dependencies here as we
		 * want to run our callback in all cases.
		 */
1304

1305
		if (dma_fence_is_i915(fence))
1306 1307 1308
			ret = __i915_request_await_execution(rq,
							     to_request(fence),
							     hook);
1309
		else
1310
			ret = i915_request_await_external(rq, fence);
1311 1312
		if (ret < 0)
			return ret;
1313
	} while (--nchild);
1314 1315 1316 1317

	return 0;
}

1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336
static int
await_request_submit(struct i915_request *to, struct i915_request *from)
{
	/*
	 * If we are waiting on a virtual engine, then it may be
	 * constrained to execute on a single engine *prior* to submission.
	 * When it is submitted, it will be first submitted to the virtual
	 * engine and then passed to the physical engine. We cannot allow
	 * the waiter to be submitted immediately to the physical engine
	 * as it may then bypass the virtual request.
	 */
	if (to->engine == READ_ONCE(from->engine))
		return i915_sw_fence_await_sw_fence_gfp(&to->submit,
							&from->submit,
							I915_FENCE_GFP);
	else
		return __i915_request_await_execution(to, from, NULL);
}

1337
static int
1338
i915_request_await_request(struct i915_request *to, struct i915_request *from)
1339
{
1340
	int ret;
1341

1342 1343
	GEM_BUG_ON(to == from);
	GEM_BUG_ON(to->timeline == from->timeline);
1344

1345 1346
	if (i915_request_completed(from)) {
		i915_sw_fence_set_error_once(&to->submit, from->fence.error);
1347
		return 0;
1348 1349
	}

1350
	if (to->engine->schedule) {
1351
		ret = i915_sched_node_add_dependency(&to->sched,
1352
						     &from->sched,
1353 1354 1355
						     I915_DEPENDENCY_EXTERNAL);
		if (ret < 0)
			return ret;
1356 1357
	}

1358 1359
	if (is_power_of_2(to->execution_mask | READ_ONCE(from->execution_mask)))
		ret = await_request_submit(to, from);
1360 1361 1362 1363 1364 1365
	else
		ret = emit_semaphore_wait(to, from, I915_FENCE_GFP);
	if (ret < 0)
		return ret;

	return 0;
1366 1367
}

1368
int
1369
i915_request_await_dma_fence(struct i915_request *rq, struct dma_fence *fence)
1370 1371 1372 1373 1374
{
	struct dma_fence **child = &fence;
	unsigned int nchild = 1;
	int ret;

1375 1376 1377 1378 1379 1380 1381 1382
	/*
	 * Note that if the fence-array was created in signal-on-any mode,
	 * we should *not* decompose it into its individual fences. However,
	 * we don't currently store which mode the fence-array is operating
	 * in. Fortunately, the only user of signal-on-any is private to
	 * amdgpu and we should not see any incoming fence-array from
	 * sync-file being in signal-on-any mode.
	 */
1383 1384 1385 1386 1387 1388 1389 1390 1391 1392
	if (dma_fence_is_array(fence)) {
		struct dma_fence_array *array = to_dma_fence_array(fence);

		child = array->fences;
		nchild = array->num_fences;
		GEM_BUG_ON(!nchild);
	}

	do {
		fence = *child++;
1393 1394
		if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags)) {
			i915_sw_fence_set_error_once(&rq->submit, fence->error);
1395
			continue;
1396
		}
1397

1398 1399 1400 1401 1402
		/*
		 * Requests on the same timeline are explicitly ordered, along
		 * with their dependencies, by i915_request_add() which ensures
		 * that requests are submitted in-order through each ring.
		 */
1403 1404 1405
		if (fence->context == rq->fence.context)
			continue;

1406 1407 1408 1409 1410
		/* Squash repeated waits to the same timelines */
		if (fence->context &&
		    intel_timeline_sync_is_later(i915_request_timeline(rq),
						 fence))
			continue;
1411 1412

		if (dma_fence_is_i915(fence))
1413
			ret = i915_request_await_request(rq, to_request(fence));
1414
		else
1415
			ret = i915_request_await_external(rq, fence);
1416 1417
		if (ret < 0)
			return ret;
1418 1419 1420 1421 1422

		/* Record the latest fence used against each timeline */
		if (fence->context)
			intel_timeline_sync_set(i915_request_timeline(rq),
						fence);
1423 1424 1425 1426 1427
	} while (--nchild);

	return 0;
}

1428
/**
1429
 * i915_request_await_object - set this request to (async) wait upon a bo
1430 1431
 * @to: request we are wishing to use
 * @obj: object which may be in use on another ring.
1432
 * @write: whether the wait is on behalf of a writer
1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448
 *
 * This code is meant to abstract object synchronization with the GPU.
 * Conceptually we serialise writes between engines inside the GPU.
 * We only allow one engine to write into a buffer at any time, but
 * multiple readers. To ensure each has a coherent view of memory, we must:
 *
 * - If there is an outstanding write request to the object, the new
 *   request must wait for it to complete (either CPU or in hw, requests
 *   on the same ring will be naturally ordered).
 *
 * - If we are a write request (pending_write_domain is set), the new
 *   request must wait for outstanding read requests to complete.
 *
 * Returns 0 if successful, else propagates up the lower layer error.
 */
int
1449 1450 1451
i915_request_await_object(struct i915_request *to,
			  struct drm_i915_gem_object *obj,
			  bool write)
1452
{
1453 1454
	struct dma_fence *excl;
	int ret = 0;
1455 1456

	if (write) {
1457 1458 1459
		struct dma_fence **shared;
		unsigned int count, i;

1460
		ret = dma_resv_get_fences_rcu(obj->base.resv,
1461 1462 1463 1464 1465
							&excl, &count, &shared);
		if (ret)
			return ret;

		for (i = 0; i < count; i++) {
1466
			ret = i915_request_await_dma_fence(to, shared[i]);
1467 1468 1469 1470 1471 1472 1473 1474 1475
			if (ret)
				break;

			dma_fence_put(shared[i]);
		}

		for (; i < count; i++)
			dma_fence_put(shared[i]);
		kfree(shared);
1476
	} else {
1477
		excl = dma_resv_get_excl_rcu(obj->base.resv);
1478 1479
	}

1480 1481
	if (excl) {
		if (ret == 0)
1482
			ret = i915_request_await_dma_fence(to, excl);
1483

1484
		dma_fence_put(excl);
1485 1486
	}

1487
	return ret;
1488 1489
}

1490 1491 1492
static struct i915_request *
__i915_request_add_to_timeline(struct i915_request *rq)
{
1493
	struct intel_timeline *timeline = i915_request_timeline(rq);
1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515
	struct i915_request *prev;

	/*
	 * Dependency tracking and request ordering along the timeline
	 * is special cased so that we can eliminate redundant ordering
	 * operations while building the request (we know that the timeline
	 * itself is ordered, and here we guarantee it).
	 *
	 * As we know we will need to emit tracking along the timeline,
	 * we embed the hooks into our request struct -- at the cost of
	 * having to have specialised no-allocation interfaces (which will
	 * be beneficial elsewhere).
	 *
	 * A second benefit to open-coding i915_request_await_request is
	 * that we can apply a slight variant of the rules specialised
	 * for timelines that jump between engines (such as virtual engines).
	 * If we consider the case of virtual engine, we must emit a dma-fence
	 * to prevent scheduling of the second request until the first is
	 * complete (to maximise our greedy late load balancing) and this
	 * precludes optimising to use semaphores serialisation of a single
	 * timeline across engines.
	 */
1516 1517
	prev = to_request(__i915_active_fence_set(&timeline->last_request,
						  &rq->fence));
1518
	if (prev && !i915_request_completed(prev)) {
1519 1520 1521 1522 1523 1524 1525 1526 1527 1528
		/*
		 * The requests are supposed to be kept in order. However,
		 * we need to be wary in case the timeline->last_request
		 * is used as a barrier for external modification to this
		 * context.
		 */
		GEM_BUG_ON(prev->context == rq->context &&
			   i915_seqno_passed(prev->fence.seqno,
					     rq->fence.seqno));

1529
		if (is_power_of_2(READ_ONCE(prev->engine)->mask | rq->engine->mask))
1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543
			i915_sw_fence_await_sw_fence(&rq->submit,
						     &prev->submit,
						     &rq->submitq);
		else
			__i915_sw_fence_await_dma_fence(&rq->submit,
							&prev->fence,
							&rq->dmaq);
		if (rq->engine->schedule)
			__i915_sched_node_add_dependency(&rq->sched,
							 &prev->sched,
							 &rq->dep,
							 0);
	}

1544 1545 1546 1547 1548
	/*
	 * Make sure that no request gazumped us - if it was allocated after
	 * our i915_request_alloc() and called __i915_request_add() before
	 * us, the timeline will hold its seqno which is later than ours.
	 */
1549 1550 1551 1552 1553
	GEM_BUG_ON(timeline->seqno != rq->fence.seqno);

	return prev;
}

1554 1555 1556 1557 1558
/*
 * NB: This function is not allowed to fail. Doing so would mean the the
 * request is not being tracked for completion but the work itself is
 * going to happen on the hardware. This would be a Bad Thing(tm).
 */
1559
struct i915_request *__i915_request_commit(struct i915_request *rq)
1560
{
1561 1562
	struct intel_engine_cs *engine = rq->engine;
	struct intel_ring *ring = rq->ring;
1563
	u32 *cs;
1564

1565
	RQ_TRACE(rq, "\n");
1566

1567 1568 1569 1570 1571
	/*
	 * To ensure that this call will not fail, space for its emissions
	 * should already have been reserved in the ring buffer. Let the ring
	 * know that it is time to use that space up.
	 */
1572 1573
	GEM_BUG_ON(rq->reserved_space > ring->space);
	rq->reserved_space = 0;
1574
	rq->emitted_jiffies = jiffies;
1575

1576 1577
	/*
	 * Record the position of the start of the breadcrumb so that
1578 1579
	 * should we detect the updated seqno part-way through the
	 * GPU processing the request, we never over-estimate the
1580
	 * position of the ring's HEAD.
1581
	 */
1582
	cs = intel_ring_begin(rq, engine->emit_fini_breadcrumb_dw);
1583
	GEM_BUG_ON(IS_ERR(cs));
1584
	rq->postfix = intel_ring_offset(rq, cs);
1585

1586
	return __i915_request_add_to_timeline(rq);
1587 1588
}

1589 1590 1591 1592 1593 1594
void __i915_request_queue_bh(struct i915_request *rq)
{
	i915_sw_fence_commit(&rq->semaphore);
	i915_sw_fence_commit(&rq->submit);
}

1595 1596 1597
void __i915_request_queue(struct i915_request *rq,
			  const struct i915_sched_attr *attr)
{
1598 1599
	/*
	 * Let the backend know a new request has arrived that may need
1600 1601 1602 1603 1604 1605 1606 1607 1608
	 * to adjust the existing execution schedule due to a high priority
	 * request - i.e. we may want to preempt the current request in order
	 * to run a high priority dependency chain *before* we can execute this
	 * request.
	 *
	 * This is called before the request is ready to run so that we can
	 * decide whether to preempt the entire chain so that it is ready to
	 * run at the earliest possible convenience.
	 */
1609 1610
	if (attr && rq->engine->schedule)
		rq->engine->schedule(rq, attr);
1611 1612 1613 1614

	local_bh_disable();
	__i915_request_queue_bh(rq);
	local_bh_enable(); /* kick tasklets */
1615 1616 1617 1618
}

void i915_request_add(struct i915_request *rq)
{
1619
	struct intel_timeline * const tl = i915_request_timeline(rq);
1620
	struct i915_sched_attr attr = {};
1621
	struct i915_gem_context *ctx;
1622

1623 1624
	lockdep_assert_held(&tl->mutex);
	lockdep_unpin_lock(&tl->mutex, rq->cookie);
1625 1626

	trace_i915_request_add(rq);
1627
	__i915_request_commit(rq);
1628

1629 1630 1631 1632 1633 1634
	/* XXX placeholder for selftests */
	rcu_read_lock();
	ctx = rcu_dereference(rq->context->gem_context);
	if (ctx)
		attr = ctx->sched;
	rcu_read_unlock();
1635

1636 1637
	__i915_request_queue(rq, &attr);

1638
	mutex_unlock(&tl->mutex);
1639 1640
}

1641
static unsigned long local_clock_ns(unsigned int *cpu)
1642 1643 1644
{
	unsigned long t;

1645 1646
	/*
	 * Cheaply and approximately convert from nanoseconds to microseconds.
1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657
	 * The result and subsequent calculations are also defined in the same
	 * approximate microseconds units. The principal source of timing
	 * error here is from the simple truncation.
	 *
	 * Note that local_clock() is only defined wrt to the current CPU;
	 * the comparisons are no longer valid if we switch CPUs. Instead of
	 * blocking preemption for the entire busywait, we can detect the CPU
	 * switch and use that as indicator of system load and a reason to
	 * stop busywaiting, see busywait_stop().
	 */
	*cpu = get_cpu();
1658
	t = local_clock();
1659 1660 1661 1662 1663 1664 1665 1666 1667
	put_cpu();

	return t;
}

static bool busywait_stop(unsigned long timeout, unsigned int cpu)
{
	unsigned int this_cpu;

1668
	if (time_after(local_clock_ns(&this_cpu), timeout))
1669 1670 1671 1672 1673
		return true;

	return this_cpu != cpu;
}

1674
static bool __i915_spin_request(struct i915_request * const rq, int state)
1675
{
1676
	unsigned long timeout_ns;
1677
	unsigned int cpu;
1678 1679 1680 1681 1682 1683 1684

	/*
	 * Only wait for the request if we know it is likely to complete.
	 *
	 * We don't track the timestamps around requests, nor the average
	 * request length, so we do not have a good indicator that this
	 * request will complete within the timeout. What we do know is the
1685 1686 1687 1688
	 * order in which requests are executed by the context and so we can
	 * tell if the request has been started. If the request is not even
	 * running yet, it is a fair assumption that it will not complete
	 * within our relatively short timeout.
1689
	 */
1690
	if (!i915_request_is_running(rq))
1691 1692
		return false;

1693 1694
	/*
	 * When waiting for high frequency requests, e.g. during synchronous
1695 1696 1697 1698 1699 1700 1701 1702 1703
	 * rendering split between the CPU and GPU, the finite amount of time
	 * required to set up the irq and wait upon it limits the response
	 * rate. By busywaiting on the request completion for a short while we
	 * can service the high frequency waits as quick as possible. However,
	 * if it is a slow request, we want to sleep as quickly as possible.
	 * The tradeoff between waiting and sleeping is roughly the time it
	 * takes to sleep on a request, on the order of a microsecond.
	 */

1704 1705
	timeout_ns = READ_ONCE(rq->engine->props.max_busywait_duration_ns);
	timeout_ns += local_clock_ns(&cpu);
1706
	do {
1707
		if (dma_fence_is_signaled(&rq->fence))
1708
			return true;
1709

1710 1711 1712
		if (signal_pending_state(state, current))
			break;

1713
		if (busywait_stop(timeout_ns, cpu))
1714 1715
			break;

1716
		cpu_relax();
1717 1718 1719 1720 1721
	} while (!need_resched());

	return false;
}

1722 1723 1724 1725 1726 1727 1728 1729 1730
struct request_wait {
	struct dma_fence_cb cb;
	struct task_struct *tsk;
};

static void request_wait_wake(struct dma_fence *fence, struct dma_fence_cb *cb)
{
	struct request_wait *wait = container_of(cb, typeof(*wait), cb);

1731
	wake_up_process(fetch_and_zero(&wait->tsk));
1732 1733
}

1734
/**
1735
 * i915_request_wait - wait until execution of request has finished
1736
 * @rq: the request to wait upon
1737
 * @flags: how to wait
1738 1739
 * @timeout: how long to wait in jiffies
 *
1740
 * i915_request_wait() waits for the request to be completed, for a
1741 1742
 * maximum of @timeout jiffies (with MAX_SCHEDULE_TIMEOUT implying an
 * unbounded wait).
1743
 *
1744 1745 1746 1747
 * Returns the remaining time (in jiffies) if the request completed, which may
 * be zero or -ETIME if the request is unfinished after the timeout expires.
 * May return -EINTR is called with I915_WAIT_INTERRUPTIBLE and a signal is
 * pending before the request completes.
1748
 */
1749
long i915_request_wait(struct i915_request *rq,
1750 1751
		       unsigned int flags,
		       long timeout)
1752
{
1753 1754
	const int state = flags & I915_WAIT_INTERRUPTIBLE ?
		TASK_INTERRUPTIBLE : TASK_UNINTERRUPTIBLE;
1755
	struct request_wait wait;
1756 1757

	might_sleep();
1758
	GEM_BUG_ON(timeout < 0);
1759

1760
	if (dma_fence_is_signaled(&rq->fence))
1761
		return timeout;
1762

1763 1764
	if (!timeout)
		return -ETIME;
1765

1766
	trace_i915_request_wait_begin(rq, flags);
1767 1768 1769 1770 1771 1772 1773

	/*
	 * We must never wait on the GPU while holding a lock as we
	 * may need to perform a GPU reset. So while we don't need to
	 * serialise wait/reset with an explicit lock, we do want
	 * lockdep to detect potential dependency cycles.
	 */
1774
	mutex_acquire(&rq->engine->gt->reset.mutex.dep_map, 0, 0, _THIS_IP_);
1775

1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798
	/*
	 * Optimistic spin before touching IRQs.
	 *
	 * We may use a rather large value here to offset the penalty of
	 * switching away from the active task. Frequently, the client will
	 * wait upon an old swapbuffer to throttle itself to remain within a
	 * frame of the gpu. If the client is running in lockstep with the gpu,
	 * then it should not be waiting long at all, and a sleep now will incur
	 * extra scheduler latency in producing the next frame. To try to
	 * avoid adding the cost of enabling/disabling the interrupt to the
	 * short wait, we first spin to see if the request would have completed
	 * in the time taken to setup the interrupt.
	 *
	 * We need upto 5us to enable the irq, and upto 20us to hide the
	 * scheduler latency of a context switch, ignoring the secondary
	 * impacts from a context switch such as cache eviction.
	 *
	 * The scheme used for low-latency IO is called "hybrid interrupt
	 * polling". The suggestion there is to sleep until just before you
	 * expect to be woken by the device interrupt and then poll for its
	 * completion. That requires having a good predictor for the request
	 * duration, which we currently lack.
	 */
1799
	if (IS_ACTIVE(CONFIG_DRM_I915_MAX_REQUEST_BUSYWAIT) &&
1800
	    __i915_spin_request(rq, state))
1801
		goto out;
1802

1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814
	/*
	 * This client is about to stall waiting for the GPU. In many cases
	 * this is undesirable and limits the throughput of the system, as
	 * many clients cannot continue processing user input/output whilst
	 * blocked. RPS autotuning may take tens of milliseconds to respond
	 * to the GPU load and thus incurs additional latency for the client.
	 * We can circumvent that by promoting the GPU frequency to maximum
	 * before we sleep. This makes the GPU throttle up much more quickly
	 * (good for benchmarks and user experience, e.g. window animations),
	 * but at a cost of spending more power processing the workload
	 * (bad for battery).
	 */
1815 1816
	if (flags & I915_WAIT_PRIORITY && !i915_request_started(rq))
		intel_rps_boost(rq);
1817

1818 1819 1820
	wait.tsk = current;
	if (dma_fence_add_callback(&rq->fence, &wait.cb, request_wait_wake))
		goto out;
1821

1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837
	/*
	 * Flush the submission tasklet, but only if it may help this request.
	 *
	 * We sometimes experience some latency between the HW interrupts and
	 * tasklet execution (mostly due to ksoftirqd latency, but it can also
	 * be due to lazy CS events), so lets run the tasklet manually if there
	 * is a chance it may submit this request. If the request is not ready
	 * to run, as it is waiting for other fences to be signaled, flushing
	 * the tasklet is busy work without any advantage for this client.
	 *
	 * If the HW is being lazy, this is the last chance before we go to
	 * sleep to catch any pending events. We will check periodically in
	 * the heartbeat to flush the submission tasklets as a last resort
	 * for unhappy HW.
	 */
	if (i915_request_is_ready(rq))
1838
		__intel_engine_flush_submission(rq->engine, false);
1839

1840 1841
	for (;;) {
		set_current_state(state);
1842

1843
		if (dma_fence_is_signaled(&rq->fence))
1844
			break;
1845 1846

		if (signal_pending_state(state, current)) {
1847
			timeout = -ERESTARTSYS;
1848 1849 1850
			break;
		}

1851 1852
		if (!timeout) {
			timeout = -ETIME;
1853 1854 1855
			break;
		}

1856
		timeout = io_schedule_timeout(timeout);
1857
	}
1858
	__set_current_state(TASK_RUNNING);
1859

1860 1861 1862
	if (READ_ONCE(wait.tsk))
		dma_fence_remove_callback(&rq->fence, &wait.cb);
	GEM_BUG_ON(!list_empty(&wait.cb.node));
1863 1864

out:
1865
	mutex_release(&rq->engine->gt->reset.mutex.dep_map, _THIS_IP_);
1866
	trace_i915_request_wait_end(rq);
1867
	return timeout;
1868
}
1869

C
Chris Wilson 已提交
1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881
static int print_sched_attr(const struct i915_sched_attr *attr,
			    char *buf, int x, int len)
{
	if (attr->priority == I915_PRIORITY_INVALID)
		return x;

	x += snprintf(buf + x, len - x,
		      " prio=%d", attr->priority);

	return x;
}

1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917
static char queue_status(const struct i915_request *rq)
{
	if (i915_request_is_active(rq))
		return 'E';

	if (i915_request_is_ready(rq))
		return intel_engine_is_virtual(rq->engine) ? 'V' : 'R';

	return 'U';
}

static const char *run_status(const struct i915_request *rq)
{
	if (i915_request_completed(rq))
		return "!";

	if (i915_request_started(rq))
		return "*";

	if (!i915_sw_fence_signaled(&rq->semaphore))
		return "&";

	return "";
}

static const char *fence_status(const struct i915_request *rq)
{
	if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &rq->fence.flags))
		return "+";

	if (test_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT, &rq->fence.flags))
		return "-";

	return "";
}

C
Chris Wilson 已提交
1918 1919
void i915_request_show(struct drm_printer *m,
		       const struct i915_request *rq,
1920 1921
		       const char *prefix,
		       int indent)
C
Chris Wilson 已提交
1922 1923 1924 1925 1926
{
	const char *name = rq->fence.ops->get_timeline_name((struct dma_fence *)&rq->fence);
	char buf[80] = "";
	int x = 0;

1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956
	/*
	 * The prefix is used to show the queue status, for which we use
	 * the following flags:
	 *
	 *  U [Unready]
	 *    - initial status upon being submitted by the user
	 *
	 *    - the request is not ready for execution as it is waiting
	 *      for external fences
	 *
	 *  R [Ready]
	 *    - all fences the request was waiting on have been signaled,
	 *      and the request is now ready for execution and will be
	 *      in a backend queue
	 *
	 *    - a ready request may still need to wait on semaphores
	 *      [internal fences]
	 *
	 *  V [Ready/virtual]
	 *    - same as ready, but queued over multiple backends
	 *
	 *  E [Executing]
	 *    - the request has been transferred from the backend queue and
	 *      submitted for execution on HW
	 *
	 *    - a completed request may still be regarded as executing, its
	 *      status may not be updated until it is retired and removed
	 *      from the lists
	 */

C
Chris Wilson 已提交
1957 1958
	x = print_sched_attr(&rq->sched.attr, buf, x, sizeof(buf));

1959 1960 1961
	drm_printf(m, "%s%.*s%c %llx:%lld%s%s %s @ %dms: %s\n",
		   prefix, indent, "                ",
		   queue_status(rq),
C
Chris Wilson 已提交
1962
		   rq->fence.context, rq->fence.seqno,
1963 1964
		   run_status(rq),
		   fence_status(rq),
C
Chris Wilson 已提交
1965 1966 1967 1968 1969
		   buf,
		   jiffies_to_msecs(jiffies - rq->emitted_jiffies),
		   name);
}

1970 1971
#if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
#include "selftests/mock_request.c"
1972
#include "selftests/i915_request.c"
1973
#endif
1974

1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991
static void i915_global_request_shrink(void)
{
	kmem_cache_shrink(global.slab_execute_cbs);
	kmem_cache_shrink(global.slab_requests);
}

static void i915_global_request_exit(void)
{
	kmem_cache_destroy(global.slab_execute_cbs);
	kmem_cache_destroy(global.slab_requests);
}

static struct i915_global_request global = { {
	.shrink = i915_global_request_shrink,
	.exit = i915_global_request_exit,
} };

1992 1993
int __init i915_global_request_init(void)
{
1994 1995 1996 1997 1998 1999 2000 2001
	global.slab_requests =
		kmem_cache_create("i915_request",
				  sizeof(struct i915_request),
				  __alignof__(struct i915_request),
				  SLAB_HWCACHE_ALIGN |
				  SLAB_RECLAIM_ACCOUNT |
				  SLAB_TYPESAFE_BY_RCU,
				  __i915_request_ctor);
2002 2003 2004
	if (!global.slab_requests)
		return -ENOMEM;

2005 2006 2007 2008 2009 2010 2011
	global.slab_execute_cbs = KMEM_CACHE(execute_cb,
					     SLAB_HWCACHE_ALIGN |
					     SLAB_RECLAIM_ACCOUNT |
					     SLAB_TYPESAFE_BY_RCU);
	if (!global.slab_execute_cbs)
		goto err_requests;

2012
	i915_global_register(&global.base);
2013 2014 2015 2016 2017 2018
	return 0;

err_requests:
	kmem_cache_destroy(global.slab_requests);
	return -ENOMEM;
}