random.c 66.6 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3
/*
 * random.c -- A strong random number generator
 *
4
 * Copyright (C) 2017-2022 Jason A. Donenfeld <Jason@zx2c4.com>. All Rights Reserved.
5
 *
6
 * Copyright Matt Mackall <mpm@selenic.com>, 2003, 2004, 2005
L
Linus Torvalds 已提交
7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79
 *
 * Copyright Theodore Ts'o, 1994, 1995, 1996, 1997, 1998, 1999.  All
 * rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 * 1. Redistributions of source code must retain the above copyright
 *    notice, and the entire permission notice in its entirety,
 *    including the disclaimer of warranties.
 * 2. Redistributions in binary form must reproduce the above copyright
 *    notice, this list of conditions and the following disclaimer in the
 *    documentation and/or other materials provided with the distribution.
 * 3. The name of the author may not be used to endorse or promote
 *    products derived from this software without specific prior
 *    written permission.
 *
 * ALTERNATIVELY, this product may be distributed under the terms of
 * the GNU General Public License, in which case the provisions of the GPL are
 * required INSTEAD OF the above restrictions.  (This clause is
 * necessary due to a potential bad interaction between the GPL and
 * the restrictions contained in a BSD-style copyright.)
 *
 * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, ALL OF
 * WHICH ARE HEREBY DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR BE
 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT
 * OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
 * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
 * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
 * USE OF THIS SOFTWARE, EVEN IF NOT ADVISED OF THE POSSIBILITY OF SUCH
 * DAMAGE.
 */

/*
 * (now, with legal B.S. out of the way.....)
 *
 * This routine gathers environmental noise from device drivers, etc.,
 * and returns good random numbers, suitable for cryptographic use.
 * Besides the obvious cryptographic uses, these numbers are also good
 * for seeding TCP sequence numbers, and other places where it is
 * desirable to have numbers which are not only random, but hard to
 * predict by an attacker.
 *
 * Theory of operation
 * ===================
 *
 * Computers are very predictable devices.  Hence it is extremely hard
 * to produce truly random numbers on a computer --- as opposed to
 * pseudo-random numbers, which can easily generated by using a
 * algorithm.  Unfortunately, it is very easy for attackers to guess
 * the sequence of pseudo-random number generators, and for some
 * applications this is not acceptable.  So instead, we must try to
 * gather "environmental noise" from the computer's environment, which
 * must be hard for outside attackers to observe, and use that to
 * generate random numbers.  In a Unix environment, this is best done
 * from inside the kernel.
 *
 * Sources of randomness from the environment include inter-keyboard
 * timings, inter-interrupt timings from some interrupts, and other
 * events which are both (a) non-deterministic and (b) hard for an
 * outside observer to measure.  Randomness from these sources are
 * added to an "entropy pool", which is mixed using a CRC-like function.
 * This is not cryptographically strong, but it is adequate assuming
 * the randomness is not chosen maliciously, and it is fast enough that
 * the overhead of doing it on every interrupt is very reasonable.
 * As random bytes are mixed into the entropy pool, the routines keep
 * an *estimate* of how many bits of randomness have been stored into
 * the random number generator's internal state.
 *
80 81
 * When random bytes are desired, they are obtained by taking the BLAKE2s
 * hash of the contents of the "entropy pool".  The BLAKE2s hash avoids
L
Linus Torvalds 已提交
82 83
 * exposing the internal state of the entropy pool.  It is believed to
 * be computationally infeasible to derive any useful information
84 85
 * about the input of BLAKE2s from its output.  Even if it is possible to
 * analyze BLAKE2s in some clever way, as long as the amount of data
L
Linus Torvalds 已提交
86 87 88 89 90 91 92 93 94
 * returned from the generator is less than the inherent entropy in
 * the pool, the output data is totally unpredictable.  For this
 * reason, the routine decreases its internal estimate of how many
 * bits of "true randomness" are contained in the entropy pool as it
 * outputs random numbers.
 *
 * If this estimate goes to zero, the routine can still generate
 * random numbers; however, an attacker may (at least in theory) be
 * able to infer the future output of the generator from prior
95
 * outputs.  This requires successful cryptanalysis of BLAKE2s, which is
L
Linus Torvalds 已提交
96 97 98 99 100 101 102
 * not believed to be feasible, but there is a remote possibility.
 * Nonetheless, these numbers should be useful for the vast majority
 * of purposes.
 *
 * Exported interfaces ---- output
 * ===============================
 *
103
 * There are four exported interfaces; two for use within the kernel,
schspa's avatar
schspa 已提交
104
 * and two for use from userspace.
L
Linus Torvalds 已提交
105
 *
106 107
 * Exported interfaces ---- userspace output
 * -----------------------------------------
L
Linus Torvalds 已提交
108
 *
109
 * The userspace interfaces are two character devices /dev/random and
L
Linus Torvalds 已提交
110 111 112 113 114 115 116 117 118 119 120 121
 * /dev/urandom.  /dev/random is suitable for use when very high
 * quality randomness is desired (for example, for key generation or
 * one-time pads), as it will only return a maximum of the number of
 * bits of randomness (as estimated by the random number generator)
 * contained in the entropy pool.
 *
 * The /dev/urandom device does not have this limit, and will return
 * as many bytes as are requested.  As more and more random bytes are
 * requested without giving time for the entropy pool to recharge,
 * this will result in random numbers that are merely cryptographically
 * strong.  For many applications, however, this is acceptable.
 *
122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192
 * Exported interfaces ---- kernel output
 * --------------------------------------
 *
 * The primary kernel interface is
 *
 * 	void get_random_bytes(void *buf, int nbytes);
 *
 * This interface will return the requested number of random bytes,
 * and place it in the requested buffer.  This is equivalent to a
 * read from /dev/urandom.
 *
 * For less critical applications, there are the functions:
 *
 * 	u32 get_random_u32()
 * 	u64 get_random_u64()
 * 	unsigned int get_random_int()
 * 	unsigned long get_random_long()
 *
 * These are produced by a cryptographic RNG seeded from get_random_bytes,
 * and so do not deplete the entropy pool as much.  These are recommended
 * for most in-kernel operations *if the result is going to be stored in
 * the kernel*.
 *
 * Specifically, the get_random_int() family do not attempt to do
 * "anti-backtracking".  If you capture the state of the kernel (e.g.
 * by snapshotting the VM), you can figure out previous get_random_int()
 * return values.  But if the value is stored in the kernel anyway,
 * this is not a problem.
 *
 * It *is* safe to expose get_random_int() output to attackers (e.g. as
 * network cookies); given outputs 1..n, it's not feasible to predict
 * outputs 0 or n+1.  The only concern is an attacker who breaks into
 * the kernel later; the get_random_int() engine is not reseeded as
 * often as the get_random_bytes() one.
 *
 * get_random_bytes() is needed for keys that need to stay secret after
 * they are erased from the kernel.  For example, any key that will
 * be wrapped and stored encrypted.  And session encryption keys: we'd
 * like to know that after the session is closed and the keys erased,
 * the plaintext is unrecoverable to someone who recorded the ciphertext.
 *
 * But for network ports/cookies, stack canaries, PRNG seeds, address
 * space layout randomization, session *authentication* keys, or other
 * applications where the sensitive data is stored in the kernel in
 * plaintext for as long as it's sensitive, the get_random_int() family
 * is just fine.
 *
 * Consider ASLR.  We want to keep the address space secret from an
 * outside attacker while the process is running, but once the address
 * space is torn down, it's of no use to an attacker any more.  And it's
 * stored in kernel data structures as long as it's alive, so worrying
 * about an attacker's ability to extrapolate it from the get_random_int()
 * CRNG is silly.
 *
 * Even some cryptographic keys are safe to generate with get_random_int().
 * In particular, keys for SipHash are generally fine.  Here, knowledge
 * of the key authorizes you to do something to a kernel object (inject
 * packets to a network connection, or flood a hash table), and the
 * key is stored with the object being protected.  Once it goes away,
 * we no longer care if anyone knows the key.
 *
 * prandom_u32()
 * -------------
 *
 * For even weaker applications, see the pseudorandom generator
 * prandom_u32(), prandom_max(), and prandom_bytes().  If the random
 * numbers aren't security-critical at all, these are *far* cheaper.
 * Useful for self-tests, random error simulation, randomized backoffs,
 * and any other application where you trust that nobody is trying to
 * maliciously mess with you by guessing the "random" numbers.
 *
L
Linus Torvalds 已提交
193 194 195 196 197 198
 * Exported interfaces ---- input
 * ==============================
 *
 * The current exported interfaces for gathering environmental noise
 * from the devices are:
 *
199
 *	void add_device_randomness(const void *buf, unsigned int size);
L
Linus Torvalds 已提交
200 201
 * 	void add_input_randomness(unsigned int type, unsigned int code,
 *                                unsigned int value);
202
 *	void add_interrupt_randomness(int irq);
203
 * 	void add_disk_randomness(struct gendisk *disk);
204 205 206
 *	void add_hwgenerator_randomness(const char *buffer, size_t count,
 *					size_t entropy);
 *	void add_bootloader_randomness(const void *buf, unsigned int size);
L
Linus Torvalds 已提交
207
 *
208 209 210 211 212 213 214 215
 * add_device_randomness() is for adding data to the random pool that
 * is likely to differ between two devices (or possibly even per boot).
 * This would be things like MAC addresses or serial numbers, or the
 * read-out of the RTC. This does *not* add any actual entropy to the
 * pool, but it initializes the pool to different values for devices
 * that might otherwise be identical and have very little entropy
 * available to them (particularly common in the embedded world).
 *
L
Linus Torvalds 已提交
216 217 218
 * add_input_randomness() uses the input layer interrupt timing, as well as
 * the event type information from the hardware.
 *
219 220 221
 * add_interrupt_randomness() uses the interrupt timing as random
 * inputs to the entropy pool. Using the cycle counters and the irq source
 * as inputs, it feeds the randomness roughly once a second.
222 223 224 225 226 227
 *
 * add_disk_randomness() uses what amounts to the seek time of block
 * layer request events, on a per-disk_devt basis, as input to the
 * entropy pool. Note that high-speed solid state drives with very low
 * seek times do not make for good sources of entropy, as their seek
 * times are usually fairly consistent.
L
Linus Torvalds 已提交
228 229 230 231 232
 *
 * All of these routines try to estimate how many bits of randomness a
 * particular randomness source.  They do this by keeping track of the
 * first and second order deltas of the event timings.
 *
233 234 235 236 237 238 239 240
 * add_hwgenerator_randomness() is for true hardware RNGs, and will credit
 * entropy as specified by the caller. If the entropy pool is full it will
 * block until more entropy is needed.
 *
 * add_bootloader_randomness() is the same as add_hwgenerator_randomness() or
 * add_device_randomness(), depending on whether or not the configuration
 * option CONFIG_RANDOM_TRUST_BOOTLOADER is set.
 *
L
Linus Torvalds 已提交
241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319
 * Ensuring unpredictability at system startup
 * ============================================
 *
 * When any operating system starts up, it will go through a sequence
 * of actions that are fairly predictable by an adversary, especially
 * if the start-up does not involve interaction with a human operator.
 * This reduces the actual number of bits of unpredictability in the
 * entropy pool below the value in entropy_count.  In order to
 * counteract this effect, it helps to carry information in the
 * entropy pool across shut-downs and start-ups.  To do this, put the
 * following lines an appropriate script which is run during the boot
 * sequence:
 *
 *	echo "Initializing random number generator..."
 *	random_seed=/var/run/random-seed
 *	# Carry a random seed from start-up to start-up
 *	# Load and then save the whole entropy pool
 *	if [ -f $random_seed ]; then
 *		cat $random_seed >/dev/urandom
 *	else
 *		touch $random_seed
 *	fi
 *	chmod 600 $random_seed
 *	dd if=/dev/urandom of=$random_seed count=1 bs=512
 *
 * and the following lines in an appropriate script which is run as
 * the system is shutdown:
 *
 *	# Carry a random seed from shut-down to start-up
 *	# Save the whole entropy pool
 *	echo "Saving random seed..."
 *	random_seed=/var/run/random-seed
 *	touch $random_seed
 *	chmod 600 $random_seed
 *	dd if=/dev/urandom of=$random_seed count=1 bs=512
 *
 * For example, on most modern systems using the System V init
 * scripts, such code fragments would be found in
 * /etc/rc.d/init.d/random.  On older Linux systems, the correct script
 * location might be in /etc/rcb.d/rc.local or /etc/rc.d/rc.0.
 *
 * Effectively, these commands cause the contents of the entropy pool
 * to be saved at shut-down time and reloaded into the entropy pool at
 * start-up.  (The 'dd' in the addition to the bootup script is to
 * make sure that /etc/random-seed is different for every start-up,
 * even if the system crashes without executing rc.0.)  Even with
 * complete knowledge of the start-up activities, predicting the state
 * of the entropy pool requires knowledge of the previous history of
 * the system.
 *
 * Configuring the /dev/random driver under Linux
 * ==============================================
 *
 * The /dev/random driver under Linux uses minor numbers 8 and 9 of
 * the /dev/mem major number (#1).  So if your system does not have
 * /dev/random and /dev/urandom created already, they can be created
 * by using the commands:
 *
 * 	mknod /dev/random c 1 8
 * 	mknod /dev/urandom c 1 9
 *
 * Acknowledgements:
 * =================
 *
 * Ideas for constructing this random number generator were derived
 * from Pretty Good Privacy's random number generator, and from private
 * discussions with Phil Karn.  Colin Plumb provided a faster random
 * number generator, which speed up the mixing function of the entropy
 * pool, taken from PGPfone.  Dale Worley has also contributed many
 * useful ideas and suggestions to improve this driver.
 *
 * Any flaws in the design are solely my responsibility, and should
 * not be attributed to the Phil, Colin, or any of authors of PGP.
 *
 * Further background information on this topic may be obtained from
 * RFC 1750, "Randomness Recommendations for Security", by Donald
 * Eastlake, Steve Crocker, and Jeff Schiller.
 */

Y
Yangtao Li 已提交
320 321
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt

L
Linus Torvalds 已提交
322 323 324 325 326 327 328 329 330 331 332 333 334
#include <linux/utsname.h>
#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/major.h>
#include <linux/string.h>
#include <linux/fcntl.h>
#include <linux/slab.h>
#include <linux/random.h>
#include <linux/poll.h>
#include <linux/init.h>
#include <linux/fs.h>
#include <linux/genhd.h>
#include <linux/interrupt.h>
335
#include <linux/mm.h>
336
#include <linux/nodemask.h>
L
Linus Torvalds 已提交
337
#include <linux/spinlock.h>
338
#include <linux/kthread.h>
L
Linus Torvalds 已提交
339
#include <linux/percpu.h>
340
#include <linux/ptrace.h>
341
#include <linux/workqueue.h>
342
#include <linux/irq.h>
343
#include <linux/ratelimit.h>
344 345
#include <linux/syscalls.h>
#include <linux/completion.h>
346
#include <linux/uuid.h>
347
#include <crypto/chacha.h>
348
#include <crypto/blake2s.h>
349

L
Linus Torvalds 已提交
350
#include <asm/processor.h>
351
#include <linux/uaccess.h>
L
Linus Torvalds 已提交
352
#include <asm/irq.h>
353
#include <asm/irq_regs.h>
L
Linus Torvalds 已提交
354 355
#include <asm/io.h>

356 357 358
#define CREATE_TRACE_POINTS
#include <trace/events/random.h>

359 360
/* #define ADD_INTERRUPT_BENCH */

L
Linus Torvalds 已提交
361 362 363
/*
 * Configuration information
 */
364 365 366 367
#define INPUT_POOL_SHIFT	12
#define INPUT_POOL_WORDS	(1 << (INPUT_POOL_SHIFT-5))
#define OUTPUT_POOL_SHIFT	10
#define OUTPUT_POOL_WORDS	(1 << (OUTPUT_POOL_SHIFT-5))
368
#define EXTRACT_SIZE		(BLAKE2S_HASH_SIZE / 2)
369

370
/*
T
Theodore Ts'o 已提交
371 372
 * To allow fractional bits to be tracked, the entropy_count field is
 * denominated in units of 1/8th bits.
373
 *
374
 * 2*(ENTROPY_SHIFT + poolbitshift) must <= 31, or the multiply in
375
 * credit_entropy_bits() needs to be 64 bits wide.
376 377 378 379
 */
#define ENTROPY_SHIFT 3
#define ENTROPY_BITS(r) ((r)->entropy_count >> ENTROPY_SHIFT)

L
Linus Torvalds 已提交
380 381 382 383 384
/*
 * If the entropy count falls under this number of bits, then we
 * should wake up processes which are selecting or polling on write
 * access to /dev/random.
 */
385
static int random_write_wakeup_bits = 28 * OUTPUT_POOL_WORDS;
L
Linus Torvalds 已提交
386 387

/*
388 389 390 391 392 393 394 395 396 397
 * Originally, we used a primitive polynomial of degree .poolwords
 * over GF(2).  The taps for various sizes are defined below.  They
 * were chosen to be evenly spaced except for the last tap, which is 1
 * to get the twisting happening as fast as possible.
 *
 * For the purposes of better mixing, we use the CRC-32 polynomial as
 * well to make a (modified) twisted Generalized Feedback Shift
 * Register.  (See M. Matsumoto & Y. Kurita, 1992.  Twisted GFSR
 * generators.  ACM Transactions on Modeling and Computer Simulation
 * 2(3):179-194.  Also see M. Matsumoto & Y. Kurita, 1994.  Twisted
398
 * GFSR generators II.  ACM Transactions on Modeling and Computer
399 400 401 402 403
 * Simulation 4:254-266)
 *
 * Thanks to Colin Plumb for suggesting this.
 *
 * The mixing operation is much less sensitive than the output hash,
404
 * where we use BLAKE2s.  All that we want of mixing operation is that
405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430
 * it be a good non-cryptographic hash; i.e. it not produce collisions
 * when fed "random" data of the sort we expect to see.  As long as
 * the pool state differs for different inputs, we have preserved the
 * input entropy and done a good job.  The fact that an intelligent
 * attacker can construct inputs that will produce controlled
 * alterations to the pool's state is not important because we don't
 * consider such inputs to contribute any randomness.  The only
 * property we need with respect to them is that the attacker can't
 * increase his/her knowledge of the pool's state.  Since all
 * additions are reversible (knowing the final state and the input,
 * you can reconstruct the initial state), if an attacker has any
 * uncertainty about the initial state, he/she can only shuffle that
 * uncertainty about, but never cause any collisions (which would
 * decrease the uncertainty).
 *
 * Our mixing functions were analyzed by Lacharme, Roeck, Strubel, and
 * Videau in their paper, "The Linux Pseudorandom Number Generator
 * Revisited" (see: http://eprint.iacr.org/2012/251.pdf).  In their
 * paper, they point out that we are not using a true Twisted GFSR,
 * since Matsumoto & Kurita used a trinomial feedback polynomial (that
 * is, with only three taps, instead of the six that we are using).
 * As a result, the resulting polynomial is neither primitive nor
 * irreducible, and hence does not have a maximal period over
 * GF(2**32).  They suggest a slight change to the generator
 * polynomial which improves the resulting TGFSR polynomial to be
 * irreducible, which we have made here.
L
Linus Torvalds 已提交
431
 */
432 433 434 435 436 437 438 439
enum poolinfo {
	POOL_WORDS = 128,
	POOL_WORDMASK = POOL_WORDS - 1,
	POOL_BYTES = POOL_WORDS * sizeof(u32),
	POOL_BITS = POOL_BYTES * 8,
	POOL_BITSHIFT = ilog2(POOL_WORDS) + 5,
	POOL_FRACBITS = POOL_WORDS << (ENTROPY_SHIFT + 5),

440
	/* x^128 + x^104 + x^76 + x^51 +x^25 + x + 1 */
441 442 443 444 445
	POOL_TAP1 = 104,
	POOL_TAP2 = 76,
	POOL_TAP3 = 51,
	POOL_TAP4 = 25,
	POOL_TAP5 = 1
L
Linus Torvalds 已提交
446 447 448 449 450
};

/*
 * Static global variables
 */
451
static DECLARE_WAIT_QUEUE_HEAD(random_write_wait);
452
static struct fasync_struct *fasync;
L
Linus Torvalds 已提交
453

454 455 456
static DEFINE_SPINLOCK(random_ready_list_lock);
static LIST_HEAD(random_ready_list);

457
struct crng_state {
458
	u32		state[16];
459 460 461 462
	unsigned long	init_time;
	spinlock_t	lock;
};

463
static struct crng_state primary_crng = {
464
	.lock = __SPIN_LOCK_UNLOCKED(primary_crng.lock),
465 466 467 468
	.state[0] = CHACHA_CONSTANT_EXPA,
	.state[1] = CHACHA_CONSTANT_ND_3,
	.state[2] = CHACHA_CONSTANT_2_BY,
	.state[3] = CHACHA_CONSTANT_TE_K,
469 470 471 472 473 474 475 476 477 478 479
};

/*
 * crng_init =  0 --> Uninitialized
 *		1 --> Initialized
 *		2 --> Initialized from input_pool
 *
 * crng_init is protected by primary_crng->lock, and only increases
 * its value (from 0->1->2).
 */
static int crng_init = 0;
480
static bool crng_need_final_init = false;
T
Theodore Ts'o 已提交
481
#define crng_ready() (likely(crng_init > 1))
482
static int crng_init_cnt = 0;
483
static unsigned long crng_global_init_time = 0;
484
#define CRNG_INIT_CNT_THRESH (2*CHACHA_KEY_SIZE)
485
static void _extract_crng(struct crng_state *crng, u8 out[CHACHA_BLOCK_SIZE]);
486
static void _crng_backtrack_protect(struct crng_state *crng,
487
				    u8 tmp[CHACHA_BLOCK_SIZE], int used);
488
static void process_random_ready_list(void);
489
static void _get_random_bytes(void *buf, int nbytes);
490

491 492 493 494 495 496 497 498 499 500
static struct ratelimit_state unseeded_warning =
	RATELIMIT_STATE_INIT("warn_unseeded_randomness", HZ, 3);
static struct ratelimit_state urandom_warning =
	RATELIMIT_STATE_INIT("warn_urandom_randomness", HZ, 3);

static int ratelimit_disable __read_mostly;

module_param_named(ratelimit_disable, ratelimit_disable, int, 0644);
MODULE_PARM_DESC(ratelimit_disable, "Disable random ratelimit suppression");

L
Linus Torvalds 已提交
501 502 503 504 505 506 507 508 509
/**********************************************************************
 *
 * OS independent entropy store.   Here are the functions which handle
 * storing entropy in an entropy pool.
 *
 **********************************************************************/

struct entropy_store;
struct entropy_store {
510
	/* read-only data: */
511
	u32 *pool;
L
Linus Torvalds 已提交
512 513 514
	const char *name;

	/* read-write data: */
515
	spinlock_t lock;
516 517
	u16 add_ptr;
	u16 input_rotate;
518
	int entropy_count;
L
Linus Torvalds 已提交
519 520
};

521
static ssize_t extract_entropy(struct entropy_store *r, void *buf,
522
			       size_t nbytes, int min);
523
static ssize_t _extract_entropy(struct entropy_store *r, void *buf,
524
				size_t nbytes);
525 526

static void crng_reseed(struct crng_state *crng, struct entropy_store *r);
527
static u32 input_pool_data[INPUT_POOL_WORDS] __latent_entropy;
L
Linus Torvalds 已提交
528 529 530

static struct entropy_store input_pool = {
	.name = "input",
531
	.lock = __SPIN_LOCK_UNLOCKED(input_pool.lock),
L
Linus Torvalds 已提交
532 533 534
	.pool = input_pool_data
};

535
static u32 const twist_table[8] = {
536 537 538
	0x00000000, 0x3b6e20c8, 0x76dc4190, 0x4db26158,
	0xedb88320, 0xd6d6a3e8, 0x9b64c2b0, 0xa00ae278 };

L
Linus Torvalds 已提交
539
/*
540
 * This function adds bytes into the entropy "pool".  It does not
L
Linus Torvalds 已提交
541
 * update the entropy estimate.  The caller should call
542
 * credit_entropy_bits if this is appropriate.
L
Linus Torvalds 已提交
543 544 545 546 547 548
 *
 * The pool is stirred with a primitive polynomial of the appropriate
 * degree, and then twisted.  We twist by three bits at a time because
 * it's cheap to do so and helps slightly in the expected case where
 * the entropy is concentrated in the low-order bits.
 */
549
static void _mix_pool_bytes(struct entropy_store *r, const void *in,
550
			    int nbytes)
L
Linus Torvalds 已提交
551
{
552
	unsigned long i;
553
	int input_rotate;
554 555
	const u8 *bytes = in;
	u32 w;
L
Linus Torvalds 已提交
556

557 558
	input_rotate = r->input_rotate;
	i = r->add_ptr;
L
Linus Torvalds 已提交
559

560 561
	/* mix one byte at a time to simplify size handling and churn faster */
	while (nbytes--) {
562
		w = rol32(*bytes++, input_rotate);
563
		i = (i - 1) & POOL_WORDMASK;
L
Linus Torvalds 已提交
564 565

		/* XOR in the various taps */
M
Matt Mackall 已提交
566
		w ^= r->pool[i];
567 568 569 570 571
		w ^= r->pool[(i + POOL_TAP1) & POOL_WORDMASK];
		w ^= r->pool[(i + POOL_TAP2) & POOL_WORDMASK];
		w ^= r->pool[(i + POOL_TAP3) & POOL_WORDMASK];
		w ^= r->pool[(i + POOL_TAP4) & POOL_WORDMASK];
		w ^= r->pool[(i + POOL_TAP5) & POOL_WORDMASK];
M
Matt Mackall 已提交
572 573

		/* Mix the result back in with a twist */
L
Linus Torvalds 已提交
574
		r->pool[i] = (w >> 3) ^ twist_table[w & 7];
575 576 577 578 579 580 581

		/*
		 * Normally, we add 7 bits of rotation to the pool.
		 * At the beginning of the pool, add an extra 7 bits
		 * rotation, so that successive passes spread the
		 * input bits across the pool evenly.
		 */
582
		input_rotate = (input_rotate + (i ? 7 : 14)) & 31;
L
Linus Torvalds 已提交
583 584
	}

585 586
	r->input_rotate = input_rotate;
	r->add_ptr = i;
L
Linus Torvalds 已提交
587 588
}

589
static void __mix_pool_bytes(struct entropy_store *r, const void *in,
590
			     int nbytes)
591 592
{
	trace_mix_pool_bytes_nolock(r->name, nbytes, _RET_IP_);
593
	_mix_pool_bytes(r, in, nbytes);
594 595 596
}

static void mix_pool_bytes(struct entropy_store *r, const void *in,
597
			   int nbytes)
L
Linus Torvalds 已提交
598
{
599 600
	unsigned long flags;

601
	trace_mix_pool_bytes(r->name, nbytes, _RET_IP_);
602
	spin_lock_irqsave(&r->lock, flags);
603
	_mix_pool_bytes(r, in, nbytes);
604
	spin_unlock_irqrestore(&r->lock, flags);
L
Linus Torvalds 已提交
605 606
}

607
struct fast_pool {
608
	u32		pool[4];
609
	unsigned long	last;
610 611
	u16		reg_idx;
	u8		count;
612 613 614 615 616 617 618
};

/*
 * This is a fast mixing routine used by the interrupt randomness
 * collector.  It's hardcoded for an 128 bit pool and assumes that any
 * locks that might be needed are taken by the caller.
 */
619
static void fast_mix(struct fast_pool *f)
620
{
621 622
	u32 a = f->pool[0],	b = f->pool[1];
	u32 c = f->pool[2],	d = f->pool[3];
623 624

	a += b;			c += d;
G
George Spelvin 已提交
625
	b = rol32(b, 6);	d = rol32(d, 27);
626 627 628
	d ^= a;			b ^= c;

	a += b;			c += d;
G
George Spelvin 已提交
629
	b = rol32(b, 16);	d = rol32(d, 14);
630 631 632
	d ^= a;			b ^= c;

	a += b;			c += d;
G
George Spelvin 已提交
633
	b = rol32(b, 6);	d = rol32(d, 27);
634 635 636
	d ^= a;			b ^= c;

	a += b;			c += d;
G
George Spelvin 已提交
637
	b = rol32(b, 16);	d = rol32(d, 14);
638 639 640 641
	d ^= a;			b ^= c;

	f->pool[0] = a;  f->pool[1] = b;
	f->pool[2] = c;  f->pool[3] = d;
642
	f->count++;
643 644
}

645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660
static void process_random_ready_list(void)
{
	unsigned long flags;
	struct random_ready_callback *rdy, *tmp;

	spin_lock_irqsave(&random_ready_list_lock, flags);
	list_for_each_entry_safe(rdy, tmp, &random_ready_list, list) {
		struct module *owner = rdy->owner;

		list_del_init(&rdy->list);
		rdy->func(rdy);
		module_put(owner);
	}
	spin_unlock_irqrestore(&random_ready_list_lock, flags);
}

L
Linus Torvalds 已提交
661
/*
662 663 664
 * Credit (or debit) the entropy store with n bits of entropy.
 * Use credit_entropy_bits_safe() if the value comes from userspace
 * or otherwise should be checked for extreme values.
L
Linus Torvalds 已提交
665
 */
666
static void credit_entropy_bits(struct entropy_store *r, int nbits)
L
Linus Torvalds 已提交
667
{
668
	int entropy_count, orig;
669
	int nfrac = nbits << ENTROPY_SHIFT;
L
Linus Torvalds 已提交
670

671 672 673
	if (!nbits)
		return;

674
retry:
675
	entropy_count = orig = READ_ONCE(r->entropy_count);
676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701
	if (nfrac < 0) {
		/* Debit */
		entropy_count += nfrac;
	} else {
		/*
		 * Credit: we have to account for the possibility of
		 * overwriting already present entropy.	 Even in the
		 * ideal case of pure Shannon entropy, new contributions
		 * approach the full value asymptotically:
		 *
		 * entropy <- entropy + (pool_size - entropy) *
		 *	(1 - exp(-add_entropy/pool_size))
		 *
		 * For add_entropy <= pool_size/2 then
		 * (1 - exp(-add_entropy/pool_size)) >=
		 *    (add_entropy/pool_size)*0.7869...
		 * so we can approximate the exponential with
		 * 3/4*add_entropy/pool_size and still be on the
		 * safe side by adding at most pool_size/2 at a time.
		 *
		 * The use of pool_size-2 in the while statement is to
		 * prevent rounding artifacts from making the loop
		 * arbitrarily long; this limits the loop to log2(pool_size)*2
		 * turns no matter how large nbits is.
		 */
		int pnfrac = nfrac;
702
		const int s = POOL_BITSHIFT + ENTROPY_SHIFT + 2;
703 704 705
		/* The +2 corresponds to the /4 in the denominator */

		do {
706
			unsigned int anfrac = min(pnfrac, POOL_FRACBITS/2);
707
			unsigned int add =
708
				((POOL_FRACBITS - entropy_count)*anfrac*3) >> s;
709 710 711

			entropy_count += add;
			pnfrac -= anfrac;
712
		} while (unlikely(entropy_count < POOL_FRACBITS-2 && pnfrac));
713
	}
714

715
	if (WARN_ON(entropy_count < 0)) {
Y
Yangtao Li 已提交
716
		pr_warn("negative entropy/overflow: pool %s count %d\n",
717
			r->name, entropy_count);
718
		entropy_count = 0;
719 720
	} else if (entropy_count > POOL_FRACBITS)
		entropy_count = POOL_FRACBITS;
721 722
	if (cmpxchg(&r->entropy_count, orig, entropy_count) != orig)
		goto retry;
L
Linus Torvalds 已提交
723

724
	trace_credit_entropy_bits(r->name, nbits,
725
				  entropy_count >> ENTROPY_SHIFT, _RET_IP_);
726

727
	if (r == &input_pool) {
728
		int entropy_bits = entropy_count >> ENTROPY_SHIFT;
729

730
		if (crng_init < 2 && entropy_bits >= 128)
731
			crng_reseed(&primary_crng, r);
732
	}
L
Linus Torvalds 已提交
733 734
}

735
static int credit_entropy_bits_safe(struct entropy_store *r, int nbits)
736
{
737 738 739
	if (nbits < 0)
		return -EINVAL;

740
	/* Cap the value to avoid overflows */
741
	nbits = min(nbits,  POOL_BITS);
742 743

	credit_entropy_bits(r, nbits);
744
	return 0;
745 746
}

747 748 749 750 751 752 753 754 755 756
/*********************************************************************
 *
 * CRNG using CHACHA20
 *
 *********************************************************************/

#define CRNG_RESEED_INTERVAL (300*HZ)

static DECLARE_WAIT_QUEUE_HEAD(crng_init_wait);

757 758 759 760 761 762 763 764
/*
 * Hack to deal with crazy userspace progams when they are all trying
 * to access /dev/urandom in parallel.  The programs are almost
 * certainly doing something terribly wrong, but we'll work around
 * their brain damage.
 */
static struct crng_state **crng_node_pool __read_mostly;

765
static void invalidate_batched_entropy(void);
766
static void numa_crng_init(void);
767

768 769 770 771 772 773 774
static bool trust_cpu __ro_after_init = IS_ENABLED(CONFIG_RANDOM_TRUST_CPU);
static int __init parse_trust_cpu(char *arg)
{
	return kstrtobool(arg, &trust_cpu);
}
early_param("random.trust_cpu", parse_trust_cpu);

775
static bool crng_init_try_arch(struct crng_state *crng)
776 777
{
	int		i;
778
	bool		arch_init = true;
779 780 781 782
	unsigned long	rv;

	for (i = 4; i < 16; i++) {
		if (!arch_get_random_seed_long(&rv) &&
783
		    !arch_get_random_long(&rv)) {
784
			rv = random_get_entropy();
785
			arch_init = false;
786
		}
787 788
		crng->state[i] ^= rv;
	}
789 790 791 792

	return arch_init;
}

793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810
static bool __init crng_init_try_arch_early(struct crng_state *crng)
{
	int		i;
	bool		arch_init = true;
	unsigned long	rv;

	for (i = 4; i < 16; i++) {
		if (!arch_get_random_seed_long_early(&rv) &&
		    !arch_get_random_long_early(&rv)) {
			rv = random_get_entropy();
			arch_init = false;
		}
		crng->state[i] ^= rv;
	}

	return arch_init;
}

811
static void crng_initialize_secondary(struct crng_state *crng)
812
{
813
	chacha_init_consts(crng->state);
814
	_get_random_bytes(&crng->state[4], sizeof(u32) * 12);
815 816 817 818 819 820
	crng_init_try_arch(crng);
	crng->init_time = jiffies - CRNG_RESEED_INTERVAL - 1;
}

static void __init crng_initialize_primary(struct crng_state *crng)
{
821
	_extract_entropy(&input_pool, &crng->state[4], sizeof(u32) * 12);
822
	if (crng_init_try_arch_early(crng) && trust_cpu && crng_init < 2) {
823 824
		invalidate_batched_entropy();
		numa_crng_init();
825
		crng_init = 2;
826
		pr_notice("crng init done (trusting CPU's manufacturer)\n");
827
	}
828 829 830
	crng->init_time = jiffies - CRNG_RESEED_INTERVAL - 1;
}

831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860
static void crng_finalize_init(struct crng_state *crng)
{
	if (crng != &primary_crng || crng_init >= 2)
		return;
	if (!system_wq) {
		/* We can't call numa_crng_init until we have workqueues,
		 * so mark this for processing later. */
		crng_need_final_init = true;
		return;
	}

	invalidate_batched_entropy();
	numa_crng_init();
	crng_init = 2;
	process_random_ready_list();
	wake_up_interruptible(&crng_init_wait);
	kill_fasync(&fasync, SIGIO, POLL_IN);
	pr_notice("crng init done\n");
	if (unseeded_warning.missed) {
		pr_notice("%d get_random_xx warning(s) missed due to ratelimiting\n",
			  unseeded_warning.missed);
		unseeded_warning.missed = 0;
	}
	if (urandom_warning.missed) {
		pr_notice("%d urandom warning(s) missed due to ratelimiting\n",
			  urandom_warning.missed);
		urandom_warning.missed = 0;
	}
}

861
static void do_numa_crng_init(struct work_struct *work)
862 863 864 865 866 867 868 869 870 871
{
	int i;
	struct crng_state *crng;
	struct crng_state **pool;

	pool = kcalloc(nr_node_ids, sizeof(*pool), GFP_KERNEL|__GFP_NOFAIL);
	for_each_online_node(i) {
		crng = kmalloc_node(sizeof(struct crng_state),
				    GFP_KERNEL | __GFP_NOFAIL, i);
		spin_lock_init(&crng->lock);
872
		crng_initialize_secondary(crng);
873 874
		pool[i] = crng;
	}
875 876
	/* pairs with READ_ONCE() in select_crng() */
	if (cmpxchg_release(&crng_node_pool, NULL, pool) != NULL) {
877 878 879 880 881
		for_each_node(i)
			kfree(pool[i]);
		kfree(pool);
	}
}
882 883 884 885 886

static DECLARE_WORK(numa_crng_init_work, do_numa_crng_init);

static void numa_crng_init(void)
{
887 888
	if (IS_ENABLED(CONFIG_NUMA))
		schedule_work(&numa_crng_init_work);
889
}
890 891 892

static struct crng_state *select_crng(void)
{
893 894 895 896 897 898 899 900 901
	if (IS_ENABLED(CONFIG_NUMA)) {
		struct crng_state **pool;
		int nid = numa_node_id();

		/* pairs with cmpxchg_release() in do_numa_crng_init() */
		pool = READ_ONCE(crng_node_pool);
		if (pool && pool[nid])
			return pool[nid];
	}
902 903 904

	return &primary_crng;
}
905

906 907
/*
 * crng_fast_load() can be called by code in the interrupt service
908 909
 * path.  So we can't afford to dilly-dally. Returns the number of
 * bytes processed from cp.
910
 */
911
static size_t crng_fast_load(const u8 *cp, size_t len)
912 913
{
	unsigned long flags;
914
	u8 *p;
915
	size_t ret = 0;
916 917 918

	if (!spin_trylock_irqsave(&primary_crng.lock, flags))
		return 0;
T
Theodore Ts'o 已提交
919
	if (crng_init != 0) {
920 921 922
		spin_unlock_irqrestore(&primary_crng.lock, flags);
		return 0;
	}
923
	p = (u8 *) &primary_crng.state[4];
924
	while (len > 0 && crng_init_cnt < CRNG_INIT_CNT_THRESH) {
925
		p[crng_init_cnt % CHACHA_KEY_SIZE] ^= *cp;
926
		cp++; crng_init_cnt++; len--; ret++;
927
	}
928
	spin_unlock_irqrestore(&primary_crng.lock, flags);
929
	if (crng_init_cnt >= CRNG_INIT_CNT_THRESH) {
930
		invalidate_batched_entropy();
931
		crng_init = 1;
Y
Yangtao Li 已提交
932
		pr_notice("fast init done\n");
933
	}
934
	return ret;
935 936
}

937 938 939 940 941 942 943 944 945 946 947 948 949 950
/*
 * crng_slow_load() is called by add_device_randomness, which has two
 * attributes.  (1) We can't trust the buffer passed to it is
 * guaranteed to be unpredictable (so it might not have any entropy at
 * all), and (2) it doesn't have the performance constraints of
 * crng_fast_load().
 *
 * So we do something more comprehensive which is guaranteed to touch
 * all of the primary_crng's state, and which uses a LFSR with a
 * period of 255 as part of the mixing algorithm.  Finally, we do
 * *not* advance crng_init_cnt since buffer we may get may be something
 * like a fixed DMI table (for example), which might very well be
 * unique to the machine, but is otherwise unvarying.
 */
951
static int crng_slow_load(const u8 *cp, size_t len)
952 953
{
	unsigned long		flags;
954 955 956 957 958
	static u8		lfsr = 1;
	u8			tmp;
	unsigned int		i, max = CHACHA_KEY_SIZE;
	const u8 *		src_buf = cp;
	u8 *			dest_buf = (u8 *) &primary_crng.state[4];
959 960 961 962 963 964 965 966 967 968 969 970 971 972 973

	if (!spin_trylock_irqsave(&primary_crng.lock, flags))
		return 0;
	if (crng_init != 0) {
		spin_unlock_irqrestore(&primary_crng.lock, flags);
		return 0;
	}
	if (len > max)
		max = len;

	for (i = 0; i < max ; i++) {
		tmp = lfsr;
		lfsr >>= 1;
		if (tmp & 1)
			lfsr ^= 0xE1;
974 975
		tmp = dest_buf[i % CHACHA_KEY_SIZE];
		dest_buf[i % CHACHA_KEY_SIZE] ^= src_buf[i % len] ^ lfsr;
976 977 978 979 980 981
		lfsr += (tmp << 3) | (tmp >> 5);
	}
	spin_unlock_irqrestore(&primary_crng.lock, flags);
	return 1;
}

982 983 984 985 986
static void crng_reseed(struct crng_state *crng, struct entropy_store *r)
{
	unsigned long	flags;
	int		i, num;
	union {
987 988
		u8	block[CHACHA_BLOCK_SIZE];
		u32	key[8];
989 990 991
	} buf;

	if (r) {
992
		num = extract_entropy(r, &buf, 32, 16);
993 994
		if (num == 0)
			return;
995
	} else {
996
		_extract_crng(&primary_crng, buf.block);
997
		_crng_backtrack_protect(&primary_crng, buf.block,
998
					CHACHA_KEY_SIZE);
999
	}
1000
	spin_lock_irqsave(&crng->lock, flags);
1001 1002 1003 1004 1005 1006 1007 1008
	for (i = 0; i < 8; i++) {
		unsigned long	rv;
		if (!arch_get_random_seed_long(&rv) &&
		    !arch_get_random_long(&rv))
			rv = random_get_entropy();
		crng->state[i+4] ^= buf.key[i] ^ rv;
	}
	memzero_explicit(&buf, sizeof(buf));
1009
	WRITE_ONCE(crng->init_time, jiffies);
1010
	spin_unlock_irqrestore(&crng->lock, flags);
1011
	crng_finalize_init(crng);
1012 1013
}

1014
static void _extract_crng(struct crng_state *crng,
1015
			  u8 out[CHACHA_BLOCK_SIZE])
1016
{
1017
	unsigned long flags, init_time;
1018 1019 1020 1021 1022 1023 1024 1025

	if (crng_ready()) {
		init_time = READ_ONCE(crng->init_time);
		if (time_after(READ_ONCE(crng_global_init_time), init_time) ||
		    time_after(jiffies, init_time + CRNG_RESEED_INTERVAL))
			crng_reseed(crng, crng == &primary_crng ?
				    &input_pool : NULL);
	}
1026 1027 1028 1029 1030 1031 1032
	spin_lock_irqsave(&crng->lock, flags);
	chacha20_block(&crng->state[0], out);
	if (crng->state[12] == 0)
		crng->state[13]++;
	spin_unlock_irqrestore(&crng->lock, flags);
}

1033
static void extract_crng(u8 out[CHACHA_BLOCK_SIZE])
1034
{
1035
	_extract_crng(select_crng(), out);
1036 1037
}

1038 1039 1040 1041 1042
/*
 * Use the leftover bytes from the CRNG block output (if there is
 * enough) to mutate the CRNG key to provide backtracking protection.
 */
static void _crng_backtrack_protect(struct crng_state *crng,
1043
				    u8 tmp[CHACHA_BLOCK_SIZE], int used)
1044 1045
{
	unsigned long	flags;
1046
	u32		*s, *d;
1047 1048
	int		i;

1049
	used = round_up(used, sizeof(u32));
1050
	if (used + CHACHA_KEY_SIZE > CHACHA_BLOCK_SIZE) {
1051 1052 1053 1054
		extract_crng(tmp);
		used = 0;
	}
	spin_lock_irqsave(&crng->lock, flags);
1055
	s = (u32 *) &tmp[used];
1056 1057 1058 1059 1060 1061
	d = &crng->state[4];
	for (i=0; i < 8; i++)
		*d++ ^= *s++;
	spin_unlock_irqrestore(&crng->lock, flags);
}

1062
static void crng_backtrack_protect(u8 tmp[CHACHA_BLOCK_SIZE], int used)
1063
{
1064
	_crng_backtrack_protect(select_crng(), tmp, used);
1065 1066
}

1067 1068
static ssize_t extract_crng_user(void __user *buf, size_t nbytes)
{
1069
	ssize_t ret = 0, i = CHACHA_BLOCK_SIZE;
1070
	u8 tmp[CHACHA_BLOCK_SIZE] __aligned(4);
1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083
	int large_request = (nbytes > 256);

	while (nbytes) {
		if (large_request && need_resched()) {
			if (signal_pending(current)) {
				if (ret == 0)
					ret = -ERESTARTSYS;
				break;
			}
			schedule();
		}

		extract_crng(tmp);
1084
		i = min_t(int, nbytes, CHACHA_BLOCK_SIZE);
1085 1086 1087 1088 1089 1090 1091 1092 1093
		if (copy_to_user(buf, tmp, i)) {
			ret = -EFAULT;
			break;
		}

		nbytes -= i;
		buf += i;
		ret += i;
	}
1094
	crng_backtrack_protect(tmp, i);
1095 1096 1097 1098 1099 1100 1101 1102

	/* Wipe data just written to memory */
	memzero_explicit(tmp, sizeof(tmp));

	return ret;
}


L
Linus Torvalds 已提交
1103 1104 1105 1106 1107 1108 1109 1110 1111
/*********************************************************************
 *
 * Entropy input management
 *
 *********************************************************************/

/* There is one of these per entropy source */
struct timer_rand_state {
	cycles_t last_time;
1112
	long last_delta, last_delta2;
L
Linus Torvalds 已提交
1113 1114
};

1115 1116
#define INIT_TIMER_RAND_STATE { INITIAL_JIFFIES, };

1117
/*
1118 1119
 * Add device- or boot-specific data to the input pool to help
 * initialize it.
1120
 *
1121 1122 1123
 * None of this adds any entropy; it is meant to avoid the problem of
 * the entropy pool having similar initial state across largely
 * identical devices.
1124 1125 1126
 */
void add_device_randomness(const void *buf, unsigned int size)
{
1127
	unsigned long time = random_get_entropy() ^ jiffies;
1128
	unsigned long flags;
1129

1130 1131
	if (!crng_ready() && size)
		crng_slow_load(buf, size);
1132

1133
	trace_add_device_randomness(size, _RET_IP_);
1134
	spin_lock_irqsave(&input_pool.lock, flags);
1135 1136
	_mix_pool_bytes(&input_pool, buf, size);
	_mix_pool_bytes(&input_pool, &time, sizeof(time));
1137
	spin_unlock_irqrestore(&input_pool.lock, flags);
1138 1139 1140
}
EXPORT_SYMBOL(add_device_randomness);

1141
static struct timer_rand_state input_timer_state = INIT_TIMER_RAND_STATE;
1142

L
Linus Torvalds 已提交
1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154
/*
 * This function adds entropy to the entropy "pool" by using timing
 * delays.  It uses the timer_rand_state structure to make an estimate
 * of how many bits of entropy this call has added to the pool.
 *
 * The number "num" is also added to the pool - it should somehow describe
 * the type of event which just happened.  This is currently 0-255 for
 * keyboard scan codes, and 256 upwards for interrupts.
 *
 */
static void add_timer_randomness(struct timer_rand_state *state, unsigned num)
{
1155
	struct entropy_store	*r;
L
Linus Torvalds 已提交
1156 1157
	struct {
		long jiffies;
1158 1159
		unsigned int cycles;
		unsigned int num;
L
Linus Torvalds 已提交
1160 1161 1162 1163
	} sample;
	long delta, delta2, delta3;

	sample.jiffies = jiffies;
1164
	sample.cycles = random_get_entropy();
L
Linus Torvalds 已提交
1165
	sample.num = num;
1166
	r = &input_pool;
1167
	mix_pool_bytes(r, &sample, sizeof(sample));
L
Linus Torvalds 已提交
1168 1169 1170 1171 1172 1173

	/*
	 * Calculate number of bits of randomness we probably added.
	 * We take into account the first, second and third-order deltas
	 * in order to make our estimate.
	 */
1174 1175
	delta = sample.jiffies - READ_ONCE(state->last_time);
	WRITE_ONCE(state->last_time, sample.jiffies);
1176

1177 1178
	delta2 = delta - READ_ONCE(state->last_delta);
	WRITE_ONCE(state->last_delta, delta);
1179

1180 1181
	delta3 = delta2 - READ_ONCE(state->last_delta2);
	WRITE_ONCE(state->last_delta2, delta2);
1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192

	if (delta < 0)
		delta = -delta;
	if (delta2 < 0)
		delta2 = -delta2;
	if (delta3 < 0)
		delta3 = -delta3;
	if (delta > delta2)
		delta = delta2;
	if (delta > delta3)
		delta = delta3;
L
Linus Torvalds 已提交
1193

1194 1195 1196
	/*
	 * delta is now minimum absolute delta.
	 * Round down by 1 bit on general principles,
1197
	 * and limit entropy estimate to 12 bits.
1198 1199
	 */
	credit_entropy_bits(r, min_t(int, fls(delta>>1), 11));
L
Linus Torvalds 已提交
1200 1201
}

1202
void add_input_randomness(unsigned int type, unsigned int code,
L
Linus Torvalds 已提交
1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213
				 unsigned int value)
{
	static unsigned char last_value;

	/* ignore autorepeat and the like */
	if (value == last_value)
		return;

	last_value = value;
	add_timer_randomness(&input_timer_state,
			     (type << 4) ^ code ^ (code >> 4) ^ value);
1214
	trace_add_input_randomness(ENTROPY_BITS(&input_pool));
L
Linus Torvalds 已提交
1215
}
1216
EXPORT_SYMBOL_GPL(add_input_randomness);
L
Linus Torvalds 已提交
1217

1218 1219
static DEFINE_PER_CPU(struct fast_pool, irq_randomness);

1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240
#ifdef ADD_INTERRUPT_BENCH
static unsigned long avg_cycles, avg_deviation;

#define AVG_SHIFT 8     /* Exponential average factor k=1/256 */
#define FIXED_1_2 (1 << (AVG_SHIFT-1))

static void add_interrupt_bench(cycles_t start)
{
        long delta = random_get_entropy() - start;

        /* Use a weighted moving average */
        delta = delta - ((avg_cycles + FIXED_1_2) >> AVG_SHIFT);
        avg_cycles += delta;
        /* And average deviation */
        delta = abs(delta) - ((avg_deviation + FIXED_1_2) >> AVG_SHIFT);
        avg_deviation += delta;
}
#else
#define add_interrupt_bench(x)
#endif

1241
static u32 get_reg(struct fast_pool *f, struct pt_regs *regs)
1242
{
1243
	u32 *ptr = (u32 *) regs;
1244
	unsigned int idx;
1245 1246 1247

	if (regs == NULL)
		return 0;
1248
	idx = READ_ONCE(f->reg_idx);
1249
	if (idx >= sizeof(struct pt_regs) / sizeof(u32))
1250 1251 1252
		idx = 0;
	ptr += idx++;
	WRITE_ONCE(f->reg_idx, idx);
1253
	return *ptr;
1254 1255
}

1256
void add_interrupt_randomness(int irq)
L
Linus Torvalds 已提交
1257
{
1258
	struct entropy_store	*r;
1259
	struct fast_pool	*fast_pool = this_cpu_ptr(&irq_randomness);
1260 1261
	struct pt_regs		*regs = get_irq_regs();
	unsigned long		now = jiffies;
1262
	cycles_t		cycles = random_get_entropy();
1263 1264
	u32			c_high, j_high;
	u64			ip;
1265

1266 1267
	if (cycles == 0)
		cycles = get_reg(fast_pool, regs);
1268 1269
	c_high = (sizeof(cycles) > 4) ? cycles >> 32 : 0;
	j_high = (sizeof(now) > 4) ? now >> 32 : 0;
1270 1271
	fast_pool->pool[0] ^= cycles ^ j_high ^ irq;
	fast_pool->pool[1] ^= now ^ c_high;
1272
	ip = regs ? instruction_pointer(regs) : _RET_IP_;
1273
	fast_pool->pool[2] ^= ip;
1274 1275
	fast_pool->pool[3] ^= (sizeof(ip) > 4) ? ip >> 32 :
		get_reg(fast_pool, regs);
1276

1277 1278
	fast_mix(fast_pool);
	add_interrupt_bench(cycles);
1279

T
Theodore Ts'o 已提交
1280
	if (unlikely(crng_init == 0)) {
1281
		if ((fast_pool->count >= 64) &&
1282
		    crng_fast_load((u8 *)fast_pool->pool, sizeof(fast_pool->pool)) > 0) {
1283 1284 1285 1286 1287 1288
			fast_pool->count = 0;
			fast_pool->last = now;
		}
		return;
	}

1289 1290
	if ((fast_pool->count < 64) &&
	    !time_after(now, fast_pool->last + HZ))
L
Linus Torvalds 已提交
1291 1292
		return;

1293
	r = &input_pool;
1294
	if (!spin_trylock(&r->lock))
1295
		return;
1296

1297
	fast_pool->last = now;
1298
	__mix_pool_bytes(r, &fast_pool->pool, sizeof(fast_pool->pool));
1299
	spin_unlock(&r->lock);
1300

1301
	fast_pool->count = 0;
1302

1303
	/* award one bit for the contents of the fast pool */
1304
	credit_entropy_bits(r, 1);
L
Linus Torvalds 已提交
1305
}
1306
EXPORT_SYMBOL_GPL(add_interrupt_randomness);
L
Linus Torvalds 已提交
1307

1308
#ifdef CONFIG_BLOCK
L
Linus Torvalds 已提交
1309 1310 1311 1312 1313
void add_disk_randomness(struct gendisk *disk)
{
	if (!disk || !disk->random)
		return;
	/* first major is 1, so we get >= 0x200 here */
1314
	add_timer_randomness(disk->random, 0x100 + disk_devt(disk));
1315
	trace_add_disk_randomness(disk_devt(disk), ENTROPY_BITS(&input_pool));
L
Linus Torvalds 已提交
1316
}
1317
EXPORT_SYMBOL_GPL(add_disk_randomness);
1318
#endif
L
Linus Torvalds 已提交
1319 1320 1321 1322 1323 1324 1325 1326

/*********************************************************************
 *
 * Entropy extraction routines
 *
 *********************************************************************/

/*
G
Greg Price 已提交
1327 1328
 * This function decides how many bytes to actually take from the
 * given pool, and also debits the entropy count accordingly.
L
Linus Torvalds 已提交
1329
 */
1330
static size_t account(struct entropy_store *r, size_t nbytes, int min)
L
Linus Torvalds 已提交
1331
{
S
Stephan Müller 已提交
1332
	int entropy_count, orig, have_bytes;
1333
	size_t ibytes, nfrac;
L
Linus Torvalds 已提交
1334

1335
	BUG_ON(r->entropy_count > POOL_FRACBITS);
L
Linus Torvalds 已提交
1336 1337

	/* Can we pull enough? */
1338
retry:
1339
	entropy_count = orig = READ_ONCE(r->entropy_count);
1340
	ibytes = nbytes;
S
Stephan Müller 已提交
1341 1342
	/* never pull more than available */
	have_bytes = entropy_count >> (ENTROPY_SHIFT + 3);
1343

1344
	if (have_bytes < 0)
S
Stephan Müller 已提交
1345 1346
		have_bytes = 0;
	ibytes = min_t(size_t, ibytes, have_bytes);
G
Greg Price 已提交
1347
	if (ibytes < min)
1348
		ibytes = 0;
1349

1350
	if (WARN_ON(entropy_count < 0)) {
Y
Yangtao Li 已提交
1351
		pr_warn("negative entropy count: pool %s count %d\n",
1352 1353 1354 1355 1356 1357 1358
			r->name, entropy_count);
		entropy_count = 0;
	}
	nfrac = ibytes << (ENTROPY_SHIFT + 3);
	if ((size_t) entropy_count > nfrac)
		entropy_count -= nfrac;
	else
1359
		entropy_count = 0;
1360

G
Greg Price 已提交
1361 1362
	if (cmpxchg(&r->entropy_count, orig, entropy_count) != orig)
		goto retry;
L
Linus Torvalds 已提交
1363

1364
	trace_debit_entropy(r->name, 8 * ibytes);
1365
	if (ibytes && ENTROPY_BITS(r) < random_write_wakeup_bits) {
1366
		wake_up_interruptible(&random_write_wait);
1367 1368 1369
		kill_fasync(&fasync, SIGIO, POLL_OUT);
	}

1370
	return ibytes;
L
Linus Torvalds 已提交
1371 1372
}

G
Greg Price 已提交
1373
/*
1374
 * This function does the actual extraction for extract_entropy.
G
Greg Price 已提交
1375 1376 1377
 *
 * Note: we assume that .poolwords is a multiple of 16 words.
 */
1378
static void extract_buf(struct entropy_store *r, u8 *out)
L
Linus Torvalds 已提交
1379
{
1380 1381 1382
	struct blake2s_state state __aligned(__alignof__(unsigned long));
	u8 hash[BLAKE2S_HASH_SIZE];
	unsigned long *salt;
1383
	unsigned long flags;
L
Linus Torvalds 已提交
1384

1385 1386
	blake2s_init(&state, sizeof(hash));

1387
	/*
1388
	 * If we have an architectural hardware random number
1389
	 * generator, use it for BLAKE2's salt & personal fields.
1390
	 */
1391 1392
	for (salt = (unsigned long *)&state.h[4];
	     salt < (unsigned long *)&state.h[8]; ++salt) {
1393 1394 1395
		unsigned long v;
		if (!arch_get_random_long(&v))
			break;
1396
		*salt ^= v;
1397 1398
	}

1399
	/* Generate a hash across the pool */
1400
	spin_lock_irqsave(&r->lock, flags);
1401
	blake2s_update(&state, (const u8 *)r->pool, POOL_BYTES);
1402
	blake2s_final(&state, hash); /* final zeros out state */
1403

L
Linus Torvalds 已提交
1404
	/*
1405 1406 1407
	 * We mix the hash back into the pool to prevent backtracking
	 * attacks (where the attacker knows the state of the pool
	 * plus the current outputs, and attempts to find previous
1408 1409
	 * outputs), unless the hash function can be inverted. By
	 * mixing at least a hash worth of hash data back, we make
1410 1411
	 * brute-forcing the feedback as hard as brute-forcing the
	 * hash.
L
Linus Torvalds 已提交
1412
	 */
1413
	__mix_pool_bytes(r, hash, sizeof(hash));
1414
	spin_unlock_irqrestore(&r->lock, flags);
L
Linus Torvalds 已提交
1415

1416 1417 1418
	/* Note that EXTRACT_SIZE is half of hash size here, because above
	 * we've dumped the full length back into mixer. By reducing the
	 * amount that we emit, we retain a level of forward secrecy.
L
Linus Torvalds 已提交
1419
	 */
1420 1421
	memcpy(out, hash, EXTRACT_SIZE);
	memzero_explicit(hash, sizeof(hash));
L
Linus Torvalds 已提交
1422 1423
}

1424
static ssize_t _extract_entropy(struct entropy_store *r, void *buf,
1425
				size_t nbytes)
1426 1427
{
	ssize_t ret = 0, i;
1428
	u8 tmp[EXTRACT_SIZE];
1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444

	while (nbytes) {
		extract_buf(r, tmp);
		i = min_t(int, nbytes, EXTRACT_SIZE);
		memcpy(buf, tmp, i);
		nbytes -= i;
		buf += i;
		ret += i;
	}

	/* Wipe data just returned from memory */
	memzero_explicit(tmp, sizeof(tmp));

	return ret;
}

G
Greg Price 已提交
1445 1446 1447 1448 1449
/*
 * This function extracts randomness from the "entropy pool", and
 * returns it in a buffer.
 *
 * The min parameter specifies the minimum amount we can pull before
1450
 * failing to avoid races that defeat catastrophic reseeding.
G
Greg Price 已提交
1451
 */
1452
static ssize_t extract_entropy(struct entropy_store *r, void *buf,
1453
				 size_t nbytes, int min)
L
Linus Torvalds 已提交
1454
{
1455
	trace_extract_entropy(r->name, nbytes, ENTROPY_BITS(r), _RET_IP_);
1456
	nbytes = account(r, nbytes, min);
1457
	return _extract_entropy(r, buf, nbytes);
L
Linus Torvalds 已提交
1458 1459
}

1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479
#define warn_unseeded_randomness(previous) \
	_warn_unseeded_randomness(__func__, (void *) _RET_IP_, (previous))

static void _warn_unseeded_randomness(const char *func_name, void *caller,
				      void **previous)
{
#ifdef CONFIG_WARN_ALL_UNSEEDED_RANDOM
	const bool print_once = false;
#else
	static bool print_once __read_mostly;
#endif

	if (print_once ||
	    crng_ready() ||
	    (previous && (caller == READ_ONCE(*previous))))
		return;
	WRITE_ONCE(*previous, caller);
#ifndef CONFIG_WARN_ALL_UNSEEDED_RANDOM
	print_once = true;
#endif
1480
	if (__ratelimit(&unseeded_warning))
1481 1482 1483
		printk_deferred(KERN_NOTICE "random: %s called from %pS "
				"with crng_init=%d\n", func_name, caller,
				crng_init);
1484 1485
}

L
Linus Torvalds 已提交
1486 1487
/*
 * This function is the exported kernel interface.  It returns some
1488
 * number of good random numbers, suitable for key generation, seeding
1489 1490
 * TCP sequence numbers, etc.  It does not rely on the hardware random
 * number generator.  For random bytes direct from the hardware RNG
1491 1492 1493 1494
 * (when available), use get_random_bytes_arch(). In order to ensure
 * that the randomness provided by this function is okay, the function
 * wait_for_random_bytes() should be called and return 0 at least once
 * at any point prior.
L
Linus Torvalds 已提交
1495
 */
1496
static void _get_random_bytes(void *buf, int nbytes)
1497
{
1498
	u8 tmp[CHACHA_BLOCK_SIZE] __aligned(4);
1499

1500
	trace_get_random_bytes(nbytes, _RET_IP_);
1501

1502
	while (nbytes >= CHACHA_BLOCK_SIZE) {
1503
		extract_crng(buf);
1504 1505
		buf += CHACHA_BLOCK_SIZE;
		nbytes -= CHACHA_BLOCK_SIZE;
1506 1507 1508 1509 1510
	}

	if (nbytes > 0) {
		extract_crng(tmp);
		memcpy(buf, tmp, nbytes);
1511 1512
		crng_backtrack_protect(tmp, nbytes);
	} else
1513
		crng_backtrack_protect(tmp, CHACHA_BLOCK_SIZE);
1514
	memzero_explicit(tmp, sizeof(tmp));
1515
}
1516 1517 1518 1519 1520 1521 1522 1523

void get_random_bytes(void *buf, int nbytes)
{
	static void *previous;

	warn_unseeded_randomness(&previous);
	_get_random_bytes(buf, nbytes);
}
1524 1525
EXPORT_SYMBOL(get_random_bytes);

1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575

/*
 * Each time the timer fires, we expect that we got an unpredictable
 * jump in the cycle counter. Even if the timer is running on another
 * CPU, the timer activity will be touching the stack of the CPU that is
 * generating entropy..
 *
 * Note that we don't re-arm the timer in the timer itself - we are
 * happy to be scheduled away, since that just makes the load more
 * complex, but we do not want the timer to keep ticking unless the
 * entropy loop is running.
 *
 * So the re-arming always happens in the entropy loop itself.
 */
static void entropy_timer(struct timer_list *t)
{
	credit_entropy_bits(&input_pool, 1);
}

/*
 * If we have an actual cycle counter, see if we can
 * generate enough entropy with timing noise
 */
static void try_to_generate_entropy(void)
{
	struct {
		unsigned long now;
		struct timer_list timer;
	} stack;

	stack.now = random_get_entropy();

	/* Slow counter - or none. Don't even bother */
	if (stack.now == random_get_entropy())
		return;

	timer_setup_on_stack(&stack.timer, entropy_timer, 0);
	while (!crng_ready()) {
		if (!timer_pending(&stack.timer))
			mod_timer(&stack.timer, jiffies+1);
		mix_pool_bytes(&input_pool, &stack.now, sizeof(stack.now));
		schedule();
		stack.now = random_get_entropy();
	}

	del_timer_sync(&stack.timer);
	destroy_timer_on_stack(&stack.timer);
	mix_pool_bytes(&input_pool, &stack.now, sizeof(stack.now));
}

1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589
/*
 * Wait for the urandom pool to be seeded and thus guaranteed to supply
 * cryptographically secure random numbers. This applies to: the /dev/urandom
 * device, the get_random_bytes function, and the get_random_{u32,u64,int,long}
 * family of functions. Using any of these functions without first calling
 * this function forfeits the guarantee of security.
 *
 * Returns: 0 if the urandom pool has been seeded.
 *          -ERESTARTSYS if the function was interrupted by a signal.
 */
int wait_for_random_bytes(void)
{
	if (likely(crng_ready()))
		return 0;
1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600

	do {
		int ret;
		ret = wait_event_interruptible_timeout(crng_init_wait, crng_ready(), HZ);
		if (ret)
			return ret > 0 ? 0 : ret;

		try_to_generate_entropy();
	} while (!crng_ready());

	return 0;
1601 1602 1603
}
EXPORT_SYMBOL(wait_for_random_bytes);

1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618
/*
 * Returns whether or not the urandom pool has been seeded and thus guaranteed
 * to supply cryptographically secure random numbers. This applies to: the
 * /dev/urandom device, the get_random_bytes function, and the get_random_{u32,
 * ,u64,int,long} family of functions.
 *
 * Returns: true if the urandom pool has been seeded.
 *          false if the urandom pool has not been seeded.
 */
bool rng_is_initialized(void)
{
	return crng_ready();
}
EXPORT_SYMBOL(rng_is_initialized);

1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632
/*
 * Add a callback function that will be invoked when the nonblocking
 * pool is initialised.
 *
 * returns: 0 if callback is successfully added
 *	    -EALREADY if pool is already initialised (callback not called)
 *	    -ENOENT if module for callback is not alive
 */
int add_random_ready_callback(struct random_ready_callback *rdy)
{
	struct module *owner;
	unsigned long flags;
	int err = -EALREADY;

1633
	if (crng_ready())
1634 1635 1636 1637 1638 1639 1640
		return err;

	owner = rdy->owner;
	if (!try_module_get(owner))
		return -ENOENT;

	spin_lock_irqsave(&random_ready_list_lock, flags);
1641
	if (crng_ready())
1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676
		goto out;

	owner = NULL;

	list_add(&rdy->list, &random_ready_list);
	err = 0;

out:
	spin_unlock_irqrestore(&random_ready_list_lock, flags);

	module_put(owner);

	return err;
}
EXPORT_SYMBOL(add_random_ready_callback);

/*
 * Delete a previously registered readiness callback function.
 */
void del_random_ready_callback(struct random_ready_callback *rdy)
{
	unsigned long flags;
	struct module *owner = NULL;

	spin_lock_irqsave(&random_ready_list_lock, flags);
	if (!list_empty(&rdy->list)) {
		list_del_init(&rdy->list);
		owner = rdy->owner;
	}
	spin_unlock_irqrestore(&random_ready_list_lock, flags);

	module_put(owner);
}
EXPORT_SYMBOL(del_random_ready_callback);

1677 1678 1679 1680 1681 1682 1683 1684 1685
/*
 * This function will use the architecture-specific hardware random
 * number generator if it is available.  The arch-specific hw RNG will
 * almost certainly be faster than what we can do in software, but it
 * is impossible to verify that it is implemented securely (as
 * opposed, to, say, the AES encryption of a sequence number using a
 * key known by the NSA).  So it's useful if we need the speed, but
 * only if we're willing to trust the hardware manufacturer not to
 * have put in a back door.
1686 1687
 *
 * Return number of bytes filled in.
1688
 */
1689
int __must_check get_random_bytes_arch(void *buf, int nbytes)
L
Linus Torvalds 已提交
1690
{
1691
	int left = nbytes;
1692
	u8 *p = buf;
1693

1694 1695
	trace_get_random_bytes_arch(left, _RET_IP_);
	while (left) {
1696
		unsigned long v;
1697
		int chunk = min_t(int, left, sizeof(unsigned long));
1698

1699 1700
		if (!arch_get_random_long(&v))
			break;
1701

L
Luck, Tony 已提交
1702
		memcpy(p, &v, chunk);
1703
		p += chunk;
1704
		left -= chunk;
1705 1706
	}

1707
	return nbytes - left;
L
Linus Torvalds 已提交
1708
}
1709 1710
EXPORT_SYMBOL(get_random_bytes_arch);

L
Linus Torvalds 已提交
1711 1712 1713 1714 1715 1716 1717 1718 1719
/*
 * init_std_data - initialize pool with system data
 *
 * @r: pool to initialize
 *
 * This function clears the pool's entropy count and mixes some system
 * data into the pool to prepare it for use. The pool is not cleared
 * as that can only decrease the entropy in the pool.
 */
1720
static void __init init_std_data(struct entropy_store *r)
L
Linus Torvalds 已提交
1721
{
1722
	int i;
1723 1724
	ktime_t now = ktime_get_real();
	unsigned long rv;
L
Linus Torvalds 已提交
1725

1726
	mix_pool_bytes(r, &now, sizeof(now));
1727
	for (i = POOL_BYTES; i > 0; i -= sizeof(rv)) {
1728 1729
		if (!arch_get_random_seed_long(&rv) &&
		    !arch_get_random_long(&rv))
1730
			rv = random_get_entropy();
1731
		mix_pool_bytes(r, &rv, sizeof(rv));
1732
	}
1733
	mix_pool_bytes(r, utsname(), sizeof(*(utsname())));
L
Linus Torvalds 已提交
1734 1735
}

1736 1737 1738 1739 1740 1741 1742 1743 1744 1745
/*
 * Note that setup_arch() may call add_device_randomness()
 * long before we get here. This allows seeding of the pools
 * with some platform dependent data very early in the boot
 * process. But it limits our options here. We must use
 * statically allocated structures that already have all
 * initializations complete at compile time. We should also
 * take care not to overwrite the precious per platform data
 * we were given.
 */
1746
int __init rand_initialize(void)
L
Linus Torvalds 已提交
1747 1748
{
	init_std_data(&input_pool);
1749 1750
	if (crng_need_final_init)
		crng_finalize_init(&primary_crng);
1751
	crng_initialize_primary(&primary_crng);
1752
	crng_global_init_time = jiffies;
1753 1754 1755 1756
	if (ratelimit_disable) {
		urandom_warning.interval = 0;
		unseeded_warning.interval = 0;
	}
L
Linus Torvalds 已提交
1757 1758 1759
	return 0;
}

1760
#ifdef CONFIG_BLOCK
L
Linus Torvalds 已提交
1761 1762 1763 1764 1765
void rand_initialize_disk(struct gendisk *disk)
{
	struct timer_rand_state *state;

	/*
1766
	 * If kzalloc returns null, we just won't use that entropy
L
Linus Torvalds 已提交
1767 1768
	 * source.
	 */
1769
	state = kzalloc(sizeof(struct timer_rand_state), GFP_KERNEL);
1770 1771
	if (state) {
		state->last_time = INITIAL_JIFFIES;
L
Linus Torvalds 已提交
1772
		disk->random = state;
1773
	}
L
Linus Torvalds 已提交
1774
}
1775
#endif
L
Linus Torvalds 已提交
1776

1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788
static ssize_t
urandom_read_nowarn(struct file *file, char __user *buf, size_t nbytes,
		    loff_t *ppos)
{
	int ret;

	nbytes = min_t(size_t, nbytes, INT_MAX >> (ENTROPY_SHIFT + 3));
	ret = extract_crng_user(buf, nbytes);
	trace_urandom_read(8 * nbytes, 0, ENTROPY_BITS(&input_pool));
	return ret;
}

L
Linus Torvalds 已提交
1789
static ssize_t
1790
urandom_read(struct file *file, char __user *buf, size_t nbytes, loff_t *ppos)
L
Linus Torvalds 已提交
1791
{
1792
	static int maxwarn = 10;
1793

1794
	if (!crng_ready() && maxwarn > 0) {
1795
		maxwarn--;
1796
		if (__ratelimit(&urandom_warning))
Y
Yangtao Li 已提交
1797 1798
			pr_notice("%s: uninitialized urandom read (%zd bytes read)\n",
				  current->comm, nbytes);
1799
	}
1800 1801

	return urandom_read_nowarn(file, buf, nbytes, ppos);
L
Linus Torvalds 已提交
1802 1803
}

1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814
static ssize_t
random_read(struct file *file, char __user *buf, size_t nbytes, loff_t *ppos)
{
	int ret;

	ret = wait_for_random_bytes();
	if (ret != 0)
		return ret;
	return urandom_read_nowarn(file, buf, nbytes, ppos);
}

1815
static __poll_t
1816
random_poll(struct file *file, poll_table * wait)
L
Linus Torvalds 已提交
1817
{
1818
	__poll_t mask;
L
Linus Torvalds 已提交
1819

1820
	poll_wait(file, &crng_init_wait, wait);
1821 1822
	poll_wait(file, &random_write_wait, wait);
	mask = 0;
1823
	if (crng_ready())
1824
		mask |= EPOLLIN | EPOLLRDNORM;
1825
	if (ENTROPY_BITS(&input_pool) < random_write_wakeup_bits)
1826
		mask |= EPOLLOUT | EPOLLWRNORM;
L
Linus Torvalds 已提交
1827 1828 1829
	return mask;
}

1830 1831
static int
write_pool(struct entropy_store *r, const char __user *buffer, size_t count)
L
Linus Torvalds 已提交
1832 1833
{
	size_t bytes;
1834
	u32 t, buf[16];
L
Linus Torvalds 已提交
1835 1836
	const char __user *p = buffer;

1837
	while (count > 0) {
1838 1839
		int b, i = 0;

1840 1841 1842
		bytes = min(count, sizeof(buf));
		if (copy_from_user(&buf, p, bytes))
			return -EFAULT;
L
Linus Torvalds 已提交
1843

1844
		for (b = bytes; b > 0; b -= sizeof(u32), i++) {
1845 1846 1847 1848 1849
			if (!arch_get_random_int(&t))
				break;
			buf[i] ^= t;
		}

1850
		count -= bytes;
L
Linus Torvalds 已提交
1851 1852
		p += bytes;

1853
		mix_pool_bytes(r, buf, bytes);
1854
		cond_resched();
L
Linus Torvalds 已提交
1855
	}
1856 1857 1858 1859

	return 0;
}

1860 1861
static ssize_t random_write(struct file *file, const char __user *buffer,
			    size_t count, loff_t *ppos)
1862 1863 1864
{
	size_t ret;

1865
	ret = write_pool(&input_pool, buffer, count);
1866 1867 1868 1869
	if (ret)
		return ret;

	return (ssize_t)count;
L
Linus Torvalds 已提交
1870 1871
}

M
Matt Mackall 已提交
1872
static long random_ioctl(struct file *f, unsigned int cmd, unsigned long arg)
L
Linus Torvalds 已提交
1873 1874 1875 1876 1877 1878 1879
{
	int size, ent_count;
	int __user *p = (int __user *)arg;
	int retval;

	switch (cmd) {
	case RNDGETENTCNT:
M
Matt Mackall 已提交
1880
		/* inherently racy, no point locking */
1881 1882
		ent_count = ENTROPY_BITS(&input_pool);
		if (put_user(ent_count, p))
L
Linus Torvalds 已提交
1883 1884 1885 1886 1887 1888 1889
			return -EFAULT;
		return 0;
	case RNDADDTOENTCNT:
		if (!capable(CAP_SYS_ADMIN))
			return -EPERM;
		if (get_user(ent_count, p))
			return -EFAULT;
1890
		return credit_entropy_bits_safe(&input_pool, ent_count);
L
Linus Torvalds 已提交
1891 1892 1893 1894 1895 1896 1897 1898 1899
	case RNDADDENTROPY:
		if (!capable(CAP_SYS_ADMIN))
			return -EPERM;
		if (get_user(ent_count, p++))
			return -EFAULT;
		if (ent_count < 0)
			return -EINVAL;
		if (get_user(size, p++))
			return -EFAULT;
1900 1901
		retval = write_pool(&input_pool, (const char __user *)p,
				    size);
L
Linus Torvalds 已提交
1902 1903
		if (retval < 0)
			return retval;
1904
		return credit_entropy_bits_safe(&input_pool, ent_count);
L
Linus Torvalds 已提交
1905 1906
	case RNDZAPENTCNT:
	case RNDCLEARPOOL:
1907 1908 1909 1910
		/*
		 * Clear the entropy pool counters. We no longer clear
		 * the entropy pool, as that's silly.
		 */
L
Linus Torvalds 已提交
1911 1912
		if (!capable(CAP_SYS_ADMIN))
			return -EPERM;
1913
		input_pool.entropy_count = 0;
L
Linus Torvalds 已提交
1914
		return 0;
1915 1916 1917 1918 1919
	case RNDRESEEDCRNG:
		if (!capable(CAP_SYS_ADMIN))
			return -EPERM;
		if (crng_init < 2)
			return -ENODATA;
1920
		crng_reseed(&primary_crng, &input_pool);
1921
		WRITE_ONCE(crng_global_init_time, jiffies - 1);
1922
		return 0;
L
Linus Torvalds 已提交
1923 1924 1925 1926 1927
	default:
		return -EINVAL;
	}
}

1928 1929 1930 1931 1932
static int random_fasync(int fd, struct file *filp, int on)
{
	return fasync_helper(fd, filp, on, &fasync);
}

1933
const struct file_operations random_fops = {
L
Linus Torvalds 已提交
1934 1935
	.read  = random_read,
	.write = random_write,
1936
	.poll  = random_poll,
M
Matt Mackall 已提交
1937
	.unlocked_ioctl = random_ioctl,
1938
	.compat_ioctl = compat_ptr_ioctl,
1939
	.fasync = random_fasync,
1940
	.llseek = noop_llseek,
L
Linus Torvalds 已提交
1941 1942
};

1943
const struct file_operations urandom_fops = {
L
Linus Torvalds 已提交
1944 1945
	.read  = urandom_read,
	.write = random_write,
M
Matt Mackall 已提交
1946
	.unlocked_ioctl = random_ioctl,
1947
	.compat_ioctl = compat_ptr_ioctl,
1948
	.fasync = random_fasync,
1949
	.llseek = noop_llseek,
L
Linus Torvalds 已提交
1950 1951
};

1952 1953 1954
SYSCALL_DEFINE3(getrandom, char __user *, buf, size_t, count,
		unsigned int, flags)
{
1955 1956
	int ret;

1957 1958 1959 1960 1961 1962 1963 1964
	if (flags & ~(GRND_NONBLOCK|GRND_RANDOM|GRND_INSECURE))
		return -EINVAL;

	/*
	 * Requesting insecure and blocking randomness at the same time makes
	 * no sense.
	 */
	if ((flags & (GRND_INSECURE|GRND_RANDOM)) == (GRND_INSECURE|GRND_RANDOM))
1965 1966 1967 1968 1969
		return -EINVAL;

	if (count > INT_MAX)
		count = INT_MAX;

1970
	if (!(flags & GRND_INSECURE) && !crng_ready()) {
1971 1972
		if (flags & GRND_NONBLOCK)
			return -EAGAIN;
1973 1974 1975
		ret = wait_for_random_bytes();
		if (unlikely(ret))
			return ret;
1976
	}
1977
	return urandom_read_nowarn(NULL, buf, count, NULL);
1978 1979
}

L
Linus Torvalds 已提交
1980 1981 1982 1983 1984 1985 1986 1987 1988 1989
/********************************************************************
 *
 * Sysctl interface
 *
 ********************************************************************/

#ifdef CONFIG_SYSCTL

#include <linux/sysctl.h>

1990
static int min_write_thresh;
L
Linus Torvalds 已提交
1991
static int max_write_thresh = INPUT_POOL_WORDS * 32;
1992
static int random_min_urandom_seed = 60;
L
Linus Torvalds 已提交
1993 1994 1995
static char sysctl_bootid[16];

/*
G
Greg Price 已提交
1996
 * This function is used to return both the bootid UUID, and random
L
Linus Torvalds 已提交
1997 1998 1999
 * UUID.  The difference is in whether table->data is NULL; if it is,
 * then a new UUID is generated and returned to the user.
 *
G
Greg Price 已提交
2000 2001 2002
 * If the user accesses this via the proc interface, the UUID will be
 * returned as an ASCII string in the standard UUID format; if via the
 * sysctl system call, as 16 bytes of binary data.
L
Linus Torvalds 已提交
2003
 */
2004
static int proc_do_uuid(struct ctl_table *table, int write,
2005
			void *buffer, size_t *lenp, loff_t *ppos)
L
Linus Torvalds 已提交
2006
{
2007
	struct ctl_table fake_table;
L
Linus Torvalds 已提交
2008 2009 2010 2011 2012 2013
	unsigned char buf[64], tmp_uuid[16], *uuid;

	uuid = table->data;
	if (!uuid) {
		uuid = tmp_uuid;
		generate_random_uuid(uuid);
2014 2015 2016 2017 2018 2019 2020 2021
	} else {
		static DEFINE_SPINLOCK(bootid_spinlock);

		spin_lock(&bootid_spinlock);
		if (!uuid[8])
			generate_random_uuid(uuid);
		spin_unlock(&bootid_spinlock);
	}
L
Linus Torvalds 已提交
2022

J
Joe Perches 已提交
2023 2024
	sprintf(buf, "%pU", uuid);

L
Linus Torvalds 已提交
2025 2026 2027
	fake_table.data = buf;
	fake_table.maxlen = sizeof(buf);

2028
	return proc_dostring(&fake_table, write, buffer, lenp, ppos);
L
Linus Torvalds 已提交
2029 2030
}

2031 2032 2033
/*
 * Return entropy available scaled to integral bits
 */
2034
static int proc_do_entropy(struct ctl_table *table, int write,
2035
			   void *buffer, size_t *lenp, loff_t *ppos)
2036
{
2037
	struct ctl_table fake_table;
2038 2039 2040 2041 2042 2043 2044 2045 2046 2047
	int entropy_count;

	entropy_count = *(int *)table->data >> ENTROPY_SHIFT;

	fake_table.data = &entropy_count;
	fake_table.maxlen = sizeof(entropy_count);

	return proc_dointvec(&fake_table, write, buffer, lenp, ppos);
}

L
Linus Torvalds 已提交
2048
static int sysctl_poolsize = INPUT_POOL_WORDS * 32;
2049 2050
extern struct ctl_table random_table[];
struct ctl_table random_table[] = {
L
Linus Torvalds 已提交
2051 2052 2053 2054 2055
	{
		.procname	= "poolsize",
		.data		= &sysctl_poolsize,
		.maxlen		= sizeof(int),
		.mode		= 0444,
2056
		.proc_handler	= proc_dointvec,
L
Linus Torvalds 已提交
2057 2058 2059 2060 2061
	},
	{
		.procname	= "entropy_avail",
		.maxlen		= sizeof(int),
		.mode		= 0444,
2062
		.proc_handler	= proc_do_entropy,
L
Linus Torvalds 已提交
2063 2064 2065 2066
		.data		= &input_pool.entropy_count,
	},
	{
		.procname	= "write_wakeup_threshold",
2067
		.data		= &random_write_wakeup_bits,
L
Linus Torvalds 已提交
2068 2069
		.maxlen		= sizeof(int),
		.mode		= 0644,
2070
		.proc_handler	= proc_dointvec_minmax,
L
Linus Torvalds 已提交
2071 2072 2073
		.extra1		= &min_write_thresh,
		.extra2		= &max_write_thresh,
	},
2074 2075 2076 2077 2078 2079 2080
	{
		.procname	= "urandom_min_reseed_secs",
		.data		= &random_min_urandom_seed,
		.maxlen		= sizeof(int),
		.mode		= 0644,
		.proc_handler	= proc_dointvec,
	},
L
Linus Torvalds 已提交
2081 2082 2083 2084 2085
	{
		.procname	= "boot_id",
		.data		= &sysctl_bootid,
		.maxlen		= 16,
		.mode		= 0444,
2086
		.proc_handler	= proc_do_uuid,
L
Linus Torvalds 已提交
2087 2088 2089 2090 2091
	},
	{
		.procname	= "uuid",
		.maxlen		= 16,
		.mode		= 0444,
2092
		.proc_handler	= proc_do_uuid,
L
Linus Torvalds 已提交
2093
	},
2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109
#ifdef ADD_INTERRUPT_BENCH
	{
		.procname	= "add_interrupt_avg_cycles",
		.data		= &avg_cycles,
		.maxlen		= sizeof(avg_cycles),
		.mode		= 0444,
		.proc_handler	= proc_doulongvec_minmax,
	},
	{
		.procname	= "add_interrupt_avg_deviation",
		.data		= &avg_deviation,
		.maxlen		= sizeof(avg_deviation),
		.mode		= 0444,
		.proc_handler	= proc_doulongvec_minmax,
	},
#endif
2110
	{ }
L
Linus Torvalds 已提交
2111 2112 2113
};
#endif 	/* CONFIG_SYSCTL */

2114 2115
struct batched_entropy {
	union {
2116 2117
		u64 entropy_u64[CHACHA_BLOCK_SIZE / sizeof(u64)];
		u32 entropy_u32[CHACHA_BLOCK_SIZE / sizeof(u32)];
2118 2119
	};
	unsigned int position;
2120
	spinlock_t batch_lock;
2121
};
2122

L
Linus Torvalds 已提交
2123
/*
2124
 * Get a random word for internal kernel use only. The quality of the random
2125 2126
 * number is good as /dev/urandom, but there is no backtrack protection, with
 * the goal of being quite fast and not depleting entropy. In order to ensure
2127
 * that the randomness provided by this function is okay, the function
2128 2129
 * wait_for_random_bytes() should be called and return 0 at least once at any
 * point prior.
L
Linus Torvalds 已提交
2130
 */
2131 2132 2133 2134
static DEFINE_PER_CPU(struct batched_entropy, batched_entropy_u64) = {
	.batch_lock	= __SPIN_LOCK_UNLOCKED(batched_entropy_u64.lock),
};

2135
u64 get_random_u64(void)
L
Linus Torvalds 已提交
2136
{
2137
	u64 ret;
2138
	unsigned long flags;
2139
	struct batched_entropy *batch;
2140
	static void *previous;
2141

2142
	warn_unseeded_randomness(&previous);
2143

2144 2145
	batch = raw_cpu_ptr(&batched_entropy_u64);
	spin_lock_irqsave(&batch->batch_lock, flags);
2146
	if (batch->position % ARRAY_SIZE(batch->entropy_u64) == 0) {
2147
		extract_crng((u8 *)batch->entropy_u64);
2148 2149
		batch->position = 0;
	}
2150
	ret = batch->entropy_u64[batch->position++];
2151
	spin_unlock_irqrestore(&batch->batch_lock, flags);
2152
	return ret;
L
Linus Torvalds 已提交
2153
}
2154
EXPORT_SYMBOL(get_random_u64);
L
Linus Torvalds 已提交
2155

2156 2157 2158
static DEFINE_PER_CPU(struct batched_entropy, batched_entropy_u32) = {
	.batch_lock	= __SPIN_LOCK_UNLOCKED(batched_entropy_u32.lock),
};
2159
u32 get_random_u32(void)
2160
{
2161
	u32 ret;
2162
	unsigned long flags;
2163
	struct batched_entropy *batch;
2164
	static void *previous;
2165

2166
	warn_unseeded_randomness(&previous);
2167

2168 2169
	batch = raw_cpu_ptr(&batched_entropy_u32);
	spin_lock_irqsave(&batch->batch_lock, flags);
2170
	if (batch->position % ARRAY_SIZE(batch->entropy_u32) == 0) {
2171
		extract_crng((u8 *)batch->entropy_u32);
2172 2173
		batch->position = 0;
	}
2174
	ret = batch->entropy_u32[batch->position++];
2175
	spin_unlock_irqrestore(&batch->batch_lock, flags);
2176 2177
	return ret;
}
2178
EXPORT_SYMBOL(get_random_u32);
2179

2180 2181 2182 2183 2184 2185 2186 2187 2188 2189
/* It's important to invalidate all potential batched entropy that might
 * be stored before the crng is initialized, which we can do lazily by
 * simply resetting the counter to zero so that it's re-extracted on the
 * next usage. */
static void invalidate_batched_entropy(void)
{
	int cpu;
	unsigned long flags;

	for_each_possible_cpu (cpu) {
2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200
		struct batched_entropy *batched_entropy;

		batched_entropy = per_cpu_ptr(&batched_entropy_u32, cpu);
		spin_lock_irqsave(&batched_entropy->batch_lock, flags);
		batched_entropy->position = 0;
		spin_unlock(&batched_entropy->batch_lock);

		batched_entropy = per_cpu_ptr(&batched_entropy_u64, cpu);
		spin_lock(&batched_entropy->batch_lock);
		batched_entropy->position = 0;
		spin_unlock_irqrestore(&batched_entropy->batch_lock, flags);
2201 2202 2203
	}
}

2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236
/**
 * randomize_page - Generate a random, page aligned address
 * @start:	The smallest acceptable address the caller will take.
 * @range:	The size of the area, starting at @start, within which the
 *		random address must fall.
 *
 * If @start + @range would overflow, @range is capped.
 *
 * NOTE: Historical use of randomize_range, which this replaces, presumed that
 * @start was already page aligned.  We now align it regardless.
 *
 * Return: A page aligned address within [start, start + range).  On error,
 * @start is returned.
 */
unsigned long
randomize_page(unsigned long start, unsigned long range)
{
	if (!PAGE_ALIGNED(start)) {
		range -= PAGE_ALIGN(start) - start;
		start = PAGE_ALIGN(start);
	}

	if (start > ULONG_MAX - range)
		range = ULONG_MAX - start;

	range >>= PAGE_SHIFT;

	if (range == 0)
		return start;

	return start + (get_random_long() % range << PAGE_SHIFT);
}

2237 2238 2239 2240 2241 2242 2243 2244 2245
/* Interface for in-kernel drivers of true hardware RNGs.
 * Those devices may produce endless random bits and will be throttled
 * when our pool is full.
 */
void add_hwgenerator_randomness(const char *buffer, size_t count,
				size_t entropy)
{
	struct entropy_store *poolp = &input_pool;

T
Theodore Ts'o 已提交
2246
	if (unlikely(crng_init == 0)) {
2247
		size_t ret = crng_fast_load(buffer, count);
2248
		mix_pool_bytes(poolp, buffer, ret);
2249 2250 2251 2252
		count -= ret;
		buffer += ret;
		if (!count || crng_init == 0)
			return;
2253
	}
2254 2255 2256 2257 2258

	/* Suspend writing if we're above the trickle threshold.
	 * We'll be woken up again once below random_write_wakeup_thresh,
	 * or when the calling thread is about to terminate.
	 */
2259 2260
	wait_event_interruptible(random_write_wait,
			!system_wq || kthread_should_stop() ||
2261
			ENTROPY_BITS(&input_pool) <= random_write_wakeup_bits);
2262 2263 2264 2265
	mix_pool_bytes(poolp, buffer, count);
	credit_entropy_bits(poolp, entropy);
}
EXPORT_SYMBOL_GPL(add_hwgenerator_randomness);
H
Hsin-Yi Wang 已提交
2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278

/* Handle random seed passed by bootloader.
 * If the seed is trustworthy, it would be regarded as hardware RNGs. Otherwise
 * it would be regarded as device data.
 * The decision is controlled by CONFIG_RANDOM_TRUST_BOOTLOADER.
 */
void add_bootloader_randomness(const void *buf, unsigned int size)
{
	if (IS_ENABLED(CONFIG_RANDOM_TRUST_BOOTLOADER))
		add_hwgenerator_randomness(buf, size, size * 8);
	else
		add_device_randomness(buf, size);
}
2279
EXPORT_SYMBOL_GPL(add_bootloader_randomness);