i915_gem_execbuffer.c 77.0 KB
Newer Older
1
/*
2
 * SPDX-License-Identifier: MIT
3
 *
4
 * Copyright © 2008,2010 Intel Corporation
5 6
 */

7
#include <linux/intel-iommu.h>
8
#include <linux/dma-resv.h>
9
#include <linux/sync_file.h>
10 11
#include <linux/uaccess.h>

12
#include <drm/drm_syncobj.h>
13
#include <drm/i915_drm.h>
14

15 16
#include "display/intel_frontbuffer.h"

17
#include "gem/i915_gem_ioctls.h"
18
#include "gt/intel_context.h"
19
#include "gt/intel_engine_pool.h"
20
#include "gt/intel_gt.h"
21
#include "gt/intel_gt_pm.h"
22
#include "gt/intel_ring.h"
23

24
#include "i915_drv.h"
25
#include "i915_gem_clflush.h"
26
#include "i915_gem_context.h"
27
#include "i915_gem_ioctls.h"
28 29
#include "i915_trace.h"

30 31 32 33 34 35
enum {
	FORCE_CPU_RELOC = 1,
	FORCE_GTT_RELOC,
	FORCE_GPU_RELOC,
#define DBG_FORCE_RELOC 0 /* choose one of the above! */
};
36

37 38 39 40 41 42
#define __EXEC_OBJECT_HAS_REF		BIT(31)
#define __EXEC_OBJECT_HAS_PIN		BIT(30)
#define __EXEC_OBJECT_HAS_FENCE		BIT(29)
#define __EXEC_OBJECT_NEEDS_MAP		BIT(28)
#define __EXEC_OBJECT_NEEDS_BIAS	BIT(27)
#define __EXEC_OBJECT_INTERNAL_FLAGS	(~0u << 27) /* all of the above */
43 44 45 46
#define __EXEC_OBJECT_RESERVED (__EXEC_OBJECT_HAS_PIN | __EXEC_OBJECT_HAS_FENCE)

#define __EXEC_HAS_RELOC	BIT(31)
#define __EXEC_VALIDATED	BIT(30)
47
#define __EXEC_INTERNAL_FLAGS	(~0u << 30)
48
#define UPDATE			PIN_OFFSET_FIXED
49 50

#define BATCH_OFFSET_BIAS (256*1024)
51

52
#define __I915_EXEC_ILLEGAL_FLAGS \
53 54 55
	(__I915_EXEC_UNKNOWN_FLAGS | \
	 I915_EXEC_CONSTANTS_MASK  | \
	 I915_EXEC_RESOURCE_STREAMER)
56

57 58 59 60 61 62 63 64 65
/* Catch emission of unexpected errors for CI! */
#if IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM)
#undef EINVAL
#define EINVAL ({ \
	DRM_DEBUG_DRIVER("EINVAL at %s:%d\n", __func__, __LINE__); \
	22; \
})
#endif

66 67 68 69 70 71 72 73 74 75 76 77 78 79 80
/**
 * DOC: User command execution
 *
 * Userspace submits commands to be executed on the GPU as an instruction
 * stream within a GEM object we call a batchbuffer. This instructions may
 * refer to other GEM objects containing auxiliary state such as kernels,
 * samplers, render targets and even secondary batchbuffers. Userspace does
 * not know where in the GPU memory these objects reside and so before the
 * batchbuffer is passed to the GPU for execution, those addresses in the
 * batchbuffer and auxiliary objects are updated. This is known as relocation,
 * or patching. To try and avoid having to relocate each object on the next
 * execution, userspace is told the location of those objects in this pass,
 * but this remains just a hint as the kernel may choose a new location for
 * any object in the future.
 *
81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109
 * At the level of talking to the hardware, submitting a batchbuffer for the
 * GPU to execute is to add content to a buffer from which the HW
 * command streamer is reading.
 *
 * 1. Add a command to load the HW context. For Logical Ring Contexts, i.e.
 *    Execlists, this command is not placed on the same buffer as the
 *    remaining items.
 *
 * 2. Add a command to invalidate caches to the buffer.
 *
 * 3. Add a batchbuffer start command to the buffer; the start command is
 *    essentially a token together with the GPU address of the batchbuffer
 *    to be executed.
 *
 * 4. Add a pipeline flush to the buffer.
 *
 * 5. Add a memory write command to the buffer to record when the GPU
 *    is done executing the batchbuffer. The memory write writes the
 *    global sequence number of the request, ``i915_request::global_seqno``;
 *    the i915 driver uses the current value in the register to determine
 *    if the GPU has completed the batchbuffer.
 *
 * 6. Add a user interrupt command to the buffer. This command instructs
 *    the GPU to issue an interrupt when the command, pipeline flush and
 *    memory write are completed.
 *
 * 7. Inform the hardware of the additional commands added to the buffer
 *    (by updating the tail pointer).
 *
110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216
 * Processing an execbuf ioctl is conceptually split up into a few phases.
 *
 * 1. Validation - Ensure all the pointers, handles and flags are valid.
 * 2. Reservation - Assign GPU address space for every object
 * 3. Relocation - Update any addresses to point to the final locations
 * 4. Serialisation - Order the request with respect to its dependencies
 * 5. Construction - Construct a request to execute the batchbuffer
 * 6. Submission (at some point in the future execution)
 *
 * Reserving resources for the execbuf is the most complicated phase. We
 * neither want to have to migrate the object in the address space, nor do
 * we want to have to update any relocations pointing to this object. Ideally,
 * we want to leave the object where it is and for all the existing relocations
 * to match. If the object is given a new address, or if userspace thinks the
 * object is elsewhere, we have to parse all the relocation entries and update
 * the addresses. Userspace can set the I915_EXEC_NORELOC flag to hint that
 * all the target addresses in all of its objects match the value in the
 * relocation entries and that they all match the presumed offsets given by the
 * list of execbuffer objects. Using this knowledge, we know that if we haven't
 * moved any buffers, all the relocation entries are valid and we can skip
 * the update. (If userspace is wrong, the likely outcome is an impromptu GPU
 * hang.) The requirement for using I915_EXEC_NO_RELOC are:
 *
 *      The addresses written in the objects must match the corresponding
 *      reloc.presumed_offset which in turn must match the corresponding
 *      execobject.offset.
 *
 *      Any render targets written to in the batch must be flagged with
 *      EXEC_OBJECT_WRITE.
 *
 *      To avoid stalling, execobject.offset should match the current
 *      address of that object within the active context.
 *
 * The reservation is done is multiple phases. First we try and keep any
 * object already bound in its current location - so as long as meets the
 * constraints imposed by the new execbuffer. Any object left unbound after the
 * first pass is then fitted into any available idle space. If an object does
 * not fit, all objects are removed from the reservation and the process rerun
 * after sorting the objects into a priority order (more difficult to fit
 * objects are tried first). Failing that, the entire VM is cleared and we try
 * to fit the execbuf once last time before concluding that it simply will not
 * fit.
 *
 * A small complication to all of this is that we allow userspace not only to
 * specify an alignment and a size for the object in the address space, but
 * we also allow userspace to specify the exact offset. This objects are
 * simpler to place (the location is known a priori) all we have to do is make
 * sure the space is available.
 *
 * Once all the objects are in place, patching up the buried pointers to point
 * to the final locations is a fairly simple job of walking over the relocation
 * entry arrays, looking up the right address and rewriting the value into
 * the object. Simple! ... The relocation entries are stored in user memory
 * and so to access them we have to copy them into a local buffer. That copy
 * has to avoid taking any pagefaults as they may lead back to a GEM object
 * requiring the struct_mutex (i.e. recursive deadlock). So once again we split
 * the relocation into multiple passes. First we try to do everything within an
 * atomic context (avoid the pagefaults) which requires that we never wait. If
 * we detect that we may wait, or if we need to fault, then we have to fallback
 * to a slower path. The slowpath has to drop the mutex. (Can you hear alarm
 * bells yet?) Dropping the mutex means that we lose all the state we have
 * built up so far for the execbuf and we must reset any global data. However,
 * we do leave the objects pinned in their final locations - which is a
 * potential issue for concurrent execbufs. Once we have left the mutex, we can
 * allocate and copy all the relocation entries into a large array at our
 * leisure, reacquire the mutex, reclaim all the objects and other state and
 * then proceed to update any incorrect addresses with the objects.
 *
 * As we process the relocation entries, we maintain a record of whether the
 * object is being written to. Using NORELOC, we expect userspace to provide
 * this information instead. We also check whether we can skip the relocation
 * by comparing the expected value inside the relocation entry with the target's
 * final address. If they differ, we have to map the current object and rewrite
 * the 4 or 8 byte pointer within.
 *
 * Serialising an execbuf is quite simple according to the rules of the GEM
 * ABI. Execution within each context is ordered by the order of submission.
 * Writes to any GEM object are in order of submission and are exclusive. Reads
 * from a GEM object are unordered with respect to other reads, but ordered by
 * writes. A write submitted after a read cannot occur before the read, and
 * similarly any read submitted after a write cannot occur before the write.
 * Writes are ordered between engines such that only one write occurs at any
 * time (completing any reads beforehand) - using semaphores where available
 * and CPU serialisation otherwise. Other GEM access obey the same rules, any
 * write (either via mmaps using set-domain, or via pwrite) must flush all GPU
 * reads before starting, and any read (either using set-domain or pread) must
 * flush all GPU writes before starting. (Note we only employ a barrier before,
 * we currently rely on userspace not concurrently starting a new execution
 * whilst reading or writing to an object. This may be an advantage or not
 * depending on how much you trust userspace not to shoot themselves in the
 * foot.) Serialisation may just result in the request being inserted into
 * a DAG awaiting its turn, but most simple is to wait on the CPU until
 * all dependencies are resolved.
 *
 * After all of that, is just a matter of closing the request and handing it to
 * the hardware (well, leaving it in a queue to be executed). However, we also
 * offer the ability for batchbuffers to be run with elevated privileges so
 * that they access otherwise hidden registers. (Used to adjust L3 cache etc.)
 * Before any batch is given extra privileges we first must check that it
 * contains no nefarious instructions, we check that each instruction is from
 * our whitelist and all registers are also from an allowed list. We first
 * copy the user's batchbuffer to a shadow (so that the user doesn't have
 * access to it, either by the CPU or GPU as we scan it) and then parse each
 * instruction. If everything is ok, we set a flag telling the hardware to run
 * the batchbuffer in trusted mode, otherwise the ioctl is rejected.
 */

217
struct i915_execbuffer {
218 219 220 221
	struct drm_i915_private *i915; /** i915 backpointer */
	struct drm_file *file; /** per-file lookup tables and limits */
	struct drm_i915_gem_execbuffer2 *args; /** ioctl parameters */
	struct drm_i915_gem_exec_object2 *exec; /** ioctl execobj[] */
222 223
	struct i915_vma **vma;
	unsigned int *flags;
224 225

	struct intel_engine_cs *engine; /** engine to queue the request to */
226 227
	struct intel_context *context; /* logical state for the request */
	struct i915_gem_context *gem_context; /** caller's context */
228

229
	struct i915_request *request; /** our request to build */
230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245
	struct i915_vma *batch; /** identity of the batch obj/vma */

	/** actual size of execobj[] as we may extend it for the cmdparser */
	unsigned int buffer_count;

	/** list of vma not yet bound during reservation phase */
	struct list_head unbound;

	/** list of vma that have execobj.relocation_count */
	struct list_head relocs;

	/**
	 * Track the most recently used object for relocations, as we
	 * frequently have to perform multiple relocations within the same
	 * obj/page
	 */
246
	struct reloc_cache {
247 248 249
		struct drm_mm_node node; /** temporary GTT binding */
		unsigned long vaddr; /** Current kmap address */
		unsigned long page; /** Currently mapped page index */
250
		unsigned int gen; /** Cached value of INTEL_GEN */
251
		bool use_64bit_reloc : 1;
252 253 254
		bool has_llc : 1;
		bool has_fence : 1;
		bool needs_unfenced : 1;
255

256
		struct intel_context *ce;
257
		struct i915_request *rq;
258 259
		u32 *rq_cmd;
		unsigned int rq_size;
260
	} reloc_cache;
261 262 263 264 265 266 267 268 269 270 271 272 273 274 275

	u64 invalid_flags; /** Set of execobj.flags that are invalid */
	u32 context_flags; /** Set of execobj.flags to insert from the ctx */

	u32 batch_start_offset; /** Location within object of batch */
	u32 batch_len; /** Length of batch within object */
	u32 batch_flags; /** Flags composed for emit_bb_start() */

	/**
	 * Indicate either the size of the hastable used to resolve
	 * relocation handles, or if negative that we are using a direct
	 * index into the execobj[].
	 */
	int lut_size;
	struct hlist_head *buckets; /** ht for relocation handles */
276 277
};

278
#define exec_entry(EB, VMA) (&(EB)->exec[(VMA)->exec_flags - (EB)->flags])
279

280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298
/*
 * Used to convert any address to canonical form.
 * Starting from gen8, some commands (e.g. STATE_BASE_ADDRESS,
 * MI_LOAD_REGISTER_MEM and others, see Broadwell PRM Vol2a) require the
 * addresses to be in a canonical form:
 * "GraphicsAddress[63:48] are ignored by the HW and assumed to be in correct
 * canonical form [63:48] == [47]."
 */
#define GEN8_HIGH_ADDRESS_BIT 47
static inline u64 gen8_canonical_addr(u64 address)
{
	return sign_extend64(address, GEN8_HIGH_ADDRESS_BIT);
}

static inline u64 gen8_noncanonical_addr(u64 address)
{
	return address & GENMASK_ULL(GEN8_HIGH_ADDRESS_BIT, 0);
}

299 300
static inline bool eb_use_cmdparser(const struct i915_execbuffer *eb)
{
301
	return intel_engine_requires_cmd_parser(eb->engine) ||
302 303
		(intel_engine_using_cmd_parser(eb->engine) &&
		 eb->args->batch_len);
304 305
}

306
static int eb_create(struct i915_execbuffer *eb)
307
{
308 309
	if (!(eb->args->flags & I915_EXEC_HANDLE_LUT)) {
		unsigned int size = 1 + ilog2(eb->buffer_count);
310

311 312 313 314 315 316 317 318 319 320 321
		/*
		 * Without a 1:1 association between relocation handles and
		 * the execobject[] index, we instead create a hashtable.
		 * We size it dynamically based on available memory, starting
		 * first with 1:1 assocative hash and scaling back until
		 * the allocation succeeds.
		 *
		 * Later on we use a positive lut_size to indicate we are
		 * using this hashtable, and a negative value to indicate a
		 * direct lookup.
		 */
322
		do {
323
			gfp_t flags;
324 325 326 327 328 329 330

			/* While we can still reduce the allocation size, don't
			 * raise a warning and allow the allocation to fail.
			 * On the last pass though, we want to try as hard
			 * as possible to perform the allocation and warn
			 * if it fails.
			 */
331
			flags = GFP_KERNEL;
332 333 334
			if (size > 1)
				flags |= __GFP_NORETRY | __GFP_NOWARN;

335
			eb->buckets = kzalloc(sizeof(struct hlist_head) << size,
336
					      flags);
337 338 339 340
			if (eb->buckets)
				break;
		} while (--size);

341 342
		if (unlikely(!size))
			return -ENOMEM;
343

344
		eb->lut_size = size;
345
	} else {
346
		eb->lut_size = -eb->buffer_count;
347
	}
348

349
	return 0;
350 351
}

352 353
static bool
eb_vma_misplaced(const struct drm_i915_gem_exec_object2 *entry,
354 355
		 const struct i915_vma *vma,
		 unsigned int flags)
356 357 358 359 360 361 362
{
	if (vma->node.size < entry->pad_to_size)
		return true;

	if (entry->alignment && !IS_ALIGNED(vma->node.start, entry->alignment))
		return true;

363
	if (flags & EXEC_OBJECT_PINNED &&
364 365 366
	    vma->node.start != entry->offset)
		return true;

367
	if (flags & __EXEC_OBJECT_NEEDS_BIAS &&
368 369 370
	    vma->node.start < BATCH_OFFSET_BIAS)
		return true;

371
	if (!(flags & EXEC_OBJECT_SUPPORTS_48B_ADDRESS) &&
372 373 374
	    (vma->node.start + vma->node.size - 1) >> 32)
		return true;

375 376 377 378
	if (flags & __EXEC_OBJECT_NEEDS_MAP &&
	    !i915_vma_is_map_and_fenceable(vma))
		return true;

379 380 381
	return false;
}

382
static inline bool
383
eb_pin_vma(struct i915_execbuffer *eb,
384
	   const struct drm_i915_gem_exec_object2 *entry,
385 386
	   struct i915_vma *vma)
{
387 388
	unsigned int exec_flags = *vma->exec_flags;
	u64 pin_flags;
389

390
	if (vma->node.size)
391
		pin_flags = vma->node.start;
392
	else
393
		pin_flags = entry->offset & PIN_OFFSET_MASK;
394

395 396 397
	pin_flags |= PIN_USER | PIN_NOEVICT | PIN_OFFSET_FIXED;
	if (unlikely(exec_flags & EXEC_OBJECT_NEEDS_GTT))
		pin_flags |= PIN_GLOBAL;
398

399 400
	if (unlikely(i915_vma_pin(vma, 0, 0, pin_flags)))
		return false;
401

402
	if (unlikely(exec_flags & EXEC_OBJECT_NEEDS_FENCE)) {
403
		if (unlikely(i915_vma_pin_fence(vma))) {
404
			i915_vma_unpin(vma);
405
			return false;
406 407
		}

408
		if (vma->fence)
409
			exec_flags |= __EXEC_OBJECT_HAS_FENCE;
410 411
	}

412 413
	*vma->exec_flags = exec_flags | __EXEC_OBJECT_HAS_PIN;
	return !eb_vma_misplaced(entry, vma, exec_flags);
414 415
}

416
static inline void __eb_unreserve_vma(struct i915_vma *vma, unsigned int flags)
417
{
418
	GEM_BUG_ON(!(flags & __EXEC_OBJECT_HAS_PIN));
419

420
	if (unlikely(flags & __EXEC_OBJECT_HAS_FENCE))
421
		__i915_vma_unpin_fence(vma);
422

423
	__i915_vma_unpin(vma);
424 425
}

426
static inline void
427
eb_unreserve_vma(struct i915_vma *vma, unsigned int *flags)
428
{
429
	if (!(*flags & __EXEC_OBJECT_HAS_PIN))
430
		return;
431

432 433
	__eb_unreserve_vma(vma, *flags);
	*flags &= ~__EXEC_OBJECT_RESERVED;
434 435
}

436 437 438 439
static int
eb_validate_vma(struct i915_execbuffer *eb,
		struct drm_i915_gem_exec_object2 *entry,
		struct i915_vma *vma)
440
{
441 442
	if (unlikely(entry->flags & eb->invalid_flags))
		return -EINVAL;
443

444 445 446 447 448 449 450 451
	if (unlikely(entry->alignment && !is_power_of_2(entry->alignment)))
		return -EINVAL;

	/*
	 * Offset can be used as input (EXEC_OBJECT_PINNED), reject
	 * any non-page-aligned or non-canonical addresses.
	 */
	if (unlikely(entry->flags & EXEC_OBJECT_PINNED &&
452
		     entry->offset != gen8_canonical_addr(entry->offset & I915_GTT_PAGE_MASK)))
453 454 455 456 457 458 459 460
		return -EINVAL;

	/* pad_to_size was once a reserved field, so sanitize it */
	if (entry->flags & EXEC_OBJECT_PAD_TO_SIZE) {
		if (unlikely(offset_in_page(entry->pad_to_size)))
			return -EINVAL;
	} else {
		entry->pad_to_size = 0;
461 462
	}

463
	if (unlikely(vma->exec_flags)) {
464 465 466 467 468 469 470 471 472 473 474 475
		DRM_DEBUG("Object [handle %d, index %d] appears more than once in object list\n",
			  entry->handle, (int)(entry - eb->exec));
		return -EINVAL;
	}

	/*
	 * From drm_mm perspective address space is continuous,
	 * so from this point we're always using non-canonical
	 * form internally.
	 */
	entry->offset = gen8_noncanonical_addr(entry->offset);

476 477 478 479 480 481 482 483 484 485 486 487
	if (!eb->reloc_cache.has_fence) {
		entry->flags &= ~EXEC_OBJECT_NEEDS_FENCE;
	} else {
		if ((entry->flags & EXEC_OBJECT_NEEDS_FENCE ||
		     eb->reloc_cache.needs_unfenced) &&
		    i915_gem_object_is_tiled(vma->obj))
			entry->flags |= EXEC_OBJECT_NEEDS_GTT | __EXEC_OBJECT_NEEDS_MAP;
	}

	if (!(entry->flags & EXEC_OBJECT_PINNED))
		entry->flags |= eb->context_flags;

488
	return 0;
489 490
}

491
static int
492 493 494
eb_add_vma(struct i915_execbuffer *eb,
	   unsigned int i, unsigned batch_idx,
	   struct i915_vma *vma)
495
{
496
	struct drm_i915_gem_exec_object2 *entry = &eb->exec[i];
497 498 499 500 501 502 503 504
	int err;

	GEM_BUG_ON(i915_vma_is_closed(vma));

	if (!(eb->args->flags & __EXEC_VALIDATED)) {
		err = eb_validate_vma(eb, entry, vma);
		if (unlikely(err))
			return err;
505 506
	}

507
	if (eb->lut_size > 0) {
508
		vma->exec_handle = entry->handle;
509
		hlist_add_head(&vma->exec_node,
510 511
			       &eb->buckets[hash_32(entry->handle,
						    eb->lut_size)]);
512
	}
513

514 515 516 517 518 519 520 521 522
	if (entry->relocation_count)
		list_add_tail(&vma->reloc_link, &eb->relocs);

	/*
	 * Stash a pointer from the vma to execobj, so we can query its flags,
	 * size, alignment etc as provided by the user. Also we stash a pointer
	 * to the vma inside the execobj so that we can use a direct lookup
	 * to find the right target VMA when doing relocations.
	 */
523
	eb->vma[i] = vma;
524
	eb->flags[i] = entry->flags;
525
	vma->exec_flags = &eb->flags[i];
526

527 528 529 530 531 532 533 534 535 536
	/*
	 * SNA is doing fancy tricks with compressing batch buffers, which leads
	 * to negative relocation deltas. Usually that works out ok since the
	 * relocate address is still positive, except when the batch is placed
	 * very low in the GTT. Ensure this doesn't happen.
	 *
	 * Note that actual hangs have only been observed on gen7, but for
	 * paranoia do it everywhere.
	 */
	if (i == batch_idx) {
537 538
		if (entry->relocation_count &&
		    !(eb->flags[i] & EXEC_OBJECT_PINNED))
539 540 541 542 543 544 545
			eb->flags[i] |= __EXEC_OBJECT_NEEDS_BIAS;
		if (eb->reloc_cache.has_fence)
			eb->flags[i] |= EXEC_OBJECT_NEEDS_FENCE;

		eb->batch = vma;
	}

546
	err = 0;
547
	if (eb_pin_vma(eb, entry, vma)) {
548 549 550 551
		if (entry->offset != vma->node.start) {
			entry->offset = vma->node.start | UPDATE;
			eb->args->flags |= __EXEC_HAS_RELOC;
		}
552 553 554 555 556 557
	} else {
		eb_unreserve_vma(vma, vma->exec_flags);

		list_add_tail(&vma->exec_link, &eb->unbound);
		if (drm_mm_node_allocated(&vma->node))
			err = i915_vma_unbind(vma);
558 559
		if (unlikely(err))
			vma->exec_flags = NULL;
560 561 562 563 564 565 566 567 568 569
	}
	return err;
}

static inline int use_cpu_reloc(const struct reloc_cache *cache,
				const struct drm_i915_gem_object *obj)
{
	if (!i915_gem_object_has_struct_page(obj))
		return false;

570 571 572 573 574
	if (DBG_FORCE_RELOC == FORCE_CPU_RELOC)
		return true;

	if (DBG_FORCE_RELOC == FORCE_GTT_RELOC)
		return false;
575 576 577 578 579 580 581 582 583

	return (cache->has_llc ||
		obj->cache_dirty ||
		obj->cache_level != I915_CACHE_NONE);
}

static int eb_reserve_vma(const struct i915_execbuffer *eb,
			  struct i915_vma *vma)
{
584 585 586
	struct drm_i915_gem_exec_object2 *entry = exec_entry(eb, vma);
	unsigned int exec_flags = *vma->exec_flags;
	u64 pin_flags;
587 588
	int err;

589 590 591
	pin_flags = PIN_USER | PIN_NONBLOCK;
	if (exec_flags & EXEC_OBJECT_NEEDS_GTT)
		pin_flags |= PIN_GLOBAL;
592 593 594 595 596

	/*
	 * Wa32bitGeneralStateOffset & Wa32bitInstructionBaseOffset,
	 * limit address to the first 4GBs for unflagged objects.
	 */
597 598
	if (!(exec_flags & EXEC_OBJECT_SUPPORTS_48B_ADDRESS))
		pin_flags |= PIN_ZONE_4G;
599

600 601
	if (exec_flags & __EXEC_OBJECT_NEEDS_MAP)
		pin_flags |= PIN_MAPPABLE;
602

603 604 605 606 607
	if (exec_flags & EXEC_OBJECT_PINNED) {
		pin_flags |= entry->offset | PIN_OFFSET_FIXED;
		pin_flags &= ~PIN_NONBLOCK; /* force overlapping checks */
	} else if (exec_flags & __EXEC_OBJECT_NEEDS_BIAS) {
		pin_flags |= BATCH_OFFSET_BIAS | PIN_OFFSET_BIAS;
608 609
	}

610 611 612
	err = i915_vma_pin(vma,
			   entry->pad_to_size, entry->alignment,
			   pin_flags);
613 614 615 616 617 618 619 620
	if (err)
		return err;

	if (entry->offset != vma->node.start) {
		entry->offset = vma->node.start | UPDATE;
		eb->args->flags |= __EXEC_HAS_RELOC;
	}

621
	if (unlikely(exec_flags & EXEC_OBJECT_NEEDS_FENCE)) {
622
		err = i915_vma_pin_fence(vma);
623 624 625 626 627
		if (unlikely(err)) {
			i915_vma_unpin(vma);
			return err;
		}

628
		if (vma->fence)
629
			exec_flags |= __EXEC_OBJECT_HAS_FENCE;
630 631
	}

632 633
	*vma->exec_flags = exec_flags | __EXEC_OBJECT_HAS_PIN;
	GEM_BUG_ON(eb_vma_misplaced(entry, vma, exec_flags));
634

635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674
	return 0;
}

static int eb_reserve(struct i915_execbuffer *eb)
{
	const unsigned int count = eb->buffer_count;
	struct list_head last;
	struct i915_vma *vma;
	unsigned int i, pass;
	int err;

	/*
	 * Attempt to pin all of the buffers into the GTT.
	 * This is done in 3 phases:
	 *
	 * 1a. Unbind all objects that do not match the GTT constraints for
	 *     the execbuffer (fenceable, mappable, alignment etc).
	 * 1b. Increment pin count for already bound objects.
	 * 2.  Bind new objects.
	 * 3.  Decrement pin count.
	 *
	 * This avoid unnecessary unbinding of later objects in order to make
	 * room for the earlier objects *unless* we need to defragment.
	 */

	pass = 0;
	err = 0;
	do {
		list_for_each_entry(vma, &eb->unbound, exec_link) {
			err = eb_reserve_vma(eb, vma);
			if (err)
				break;
		}
		if (err != -ENOSPC)
			return err;

		/* Resort *all* the objects into priority order */
		INIT_LIST_HEAD(&eb->unbound);
		INIT_LIST_HEAD(&last);
		for (i = 0; i < count; i++) {
675 676
			unsigned int flags = eb->flags[i];
			struct i915_vma *vma = eb->vma[i];
677

678 679
			if (flags & EXEC_OBJECT_PINNED &&
			    flags & __EXEC_OBJECT_HAS_PIN)
680 681
				continue;

682
			eb_unreserve_vma(vma, &eb->flags[i]);
683

684
			if (flags & EXEC_OBJECT_PINNED)
685
				/* Pinned must have their slot */
686
				list_add(&vma->exec_link, &eb->unbound);
687
			else if (flags & __EXEC_OBJECT_NEEDS_MAP)
688
				/* Map require the lowest 256MiB (aperture) */
689
				list_add_tail(&vma->exec_link, &eb->unbound);
690 691 692
			else if (!(flags & EXEC_OBJECT_SUPPORTS_48B_ADDRESS))
				/* Prioritise 4GiB region for restricted bo */
				list_add(&vma->exec_link, &last);
693 694 695 696 697 698 699 700 701 702 703
			else
				list_add_tail(&vma->exec_link, &last);
		}
		list_splice_tail(&last, &eb->unbound);

		switch (pass++) {
		case 0:
			break;

		case 1:
			/* Too fragmented, unbind everything and retry */
704
			mutex_lock(&eb->context->vm->mutex);
705
			err = i915_gem_evict_vm(eb->context->vm);
706
			mutex_unlock(&eb->context->vm->mutex);
707 708 709 710 711 712 713 714
			if (err)
				return err;
			break;

		default:
			return -ENOSPC;
		}
	} while (1);
715
}
716

717 718
static unsigned int eb_batch_index(const struct i915_execbuffer *eb)
{
719 720 721 722
	if (eb->args->flags & I915_EXEC_BATCH_FIRST)
		return 0;
	else
		return eb->buffer_count - 1;
723 724 725 726 727 728 729
}

static int eb_select_context(struct i915_execbuffer *eb)
{
	struct i915_gem_context *ctx;

	ctx = i915_gem_context_lookup(eb->file->driver_priv, eb->args->rsvd1);
730 731
	if (unlikely(!ctx))
		return -ENOENT;
732

733
	eb->gem_context = ctx;
734
	if (rcu_access_pointer(ctx->vm))
735
		eb->invalid_flags |= EXEC_OBJECT_NEEDS_GTT;
736 737

	eb->context_flags = 0;
738
	if (test_bit(UCONTEXT_NO_ZEROMAP, &ctx->user_flags))
739 740 741 742 743 744
		eb->context_flags |= __EXEC_OBJECT_NEEDS_BIAS;

	return 0;
}

static int eb_lookup_vmas(struct i915_execbuffer *eb)
745
{
746
	struct radix_tree_root *handles_vma = &eb->gem_context->handles_vma;
747
	struct drm_i915_gem_object *obj;
748
	unsigned int i, batch;
749
	int err;
750

751
	if (unlikely(i915_gem_context_is_banned(eb->gem_context)))
752 753
		return -EIO;

754 755
	INIT_LIST_HEAD(&eb->relocs);
	INIT_LIST_HEAD(&eb->unbound);
756

757 758
	batch = eb_batch_index(eb);

759 760 761 762 763 764
	mutex_lock(&eb->gem_context->mutex);
	if (unlikely(i915_gem_context_is_closed(eb->gem_context))) {
		err = -ENOENT;
		goto err_ctx;
	}

765 766
	for (i = 0; i < eb->buffer_count; i++) {
		u32 handle = eb->exec[i].handle;
767
		struct i915_lut_handle *lut;
768
		struct i915_vma *vma;
769

770 771
		vma = radix_tree_lookup(handles_vma, handle);
		if (likely(vma))
772
			goto add_vma;
773

774
		obj = i915_gem_object_lookup(eb->file, handle);
775
		if (unlikely(!obj)) {
776
			err = -ENOENT;
777
			goto err_vma;
778 779
		}

780
		vma = i915_vma_instance(obj, eb->context->vm, NULL);
781
		if (IS_ERR(vma)) {
782
			err = PTR_ERR(vma);
783
			goto err_obj;
784 785
		}

786
		lut = i915_lut_handle_alloc();
787 788 789 790 791 792 793
		if (unlikely(!lut)) {
			err = -ENOMEM;
			goto err_obj;
		}

		err = radix_tree_insert(handles_vma, handle, vma);
		if (unlikely(err)) {
794
			i915_lut_handle_free(lut);
795
			goto err_obj;
796
		}
797

798 799
		/* transfer ref to lut */
		if (!atomic_fetch_inc(&vma->open_count))
800
			i915_vma_reopen(vma);
801
		lut->handle = handle;
802 803 804 805 806
		lut->ctx = eb->gem_context;

		i915_gem_object_lock(obj);
		list_add(&lut->obj_link, &obj->lut_list);
		i915_gem_object_unlock(obj);
807

808
add_vma:
809
		err = eb_add_vma(eb, i, batch, vma);
810
		if (unlikely(err))
811
			goto err_vma;
812

813 814
		GEM_BUG_ON(vma != eb->vma[i]);
		GEM_BUG_ON(vma->exec_flags != &eb->flags[i]);
815 816
		GEM_BUG_ON(drm_mm_node_allocated(&vma->node) &&
			   eb_vma_misplaced(&eb->exec[i], vma, eb->flags[i]));
817 818
	}

819 820
	mutex_unlock(&eb->gem_context->mutex);

821 822 823
	eb->args->flags |= __EXEC_VALIDATED;
	return eb_reserve(eb);

824
err_obj:
825
	i915_gem_object_put(obj);
826 827
err_vma:
	eb->vma[i] = NULL;
828 829
err_ctx:
	mutex_unlock(&eb->gem_context->mutex);
830
	return err;
831 832
}

833
static struct i915_vma *
834
eb_get_vma(const struct i915_execbuffer *eb, unsigned long handle)
835
{
836 837
	if (eb->lut_size < 0) {
		if (handle >= -eb->lut_size)
838
			return NULL;
839
		return eb->vma[handle];
840 841
	} else {
		struct hlist_head *head;
842
		struct i915_vma *vma;
843

844
		head = &eb->buckets[hash_32(handle, eb->lut_size)];
845
		hlist_for_each_entry(vma, head, exec_node) {
846 847
			if (vma->exec_handle == handle)
				return vma;
848 849 850
		}
		return NULL;
	}
851 852
}

853
static void eb_release_vmas(const struct i915_execbuffer *eb)
854
{
855 856 857 858
	const unsigned int count = eb->buffer_count;
	unsigned int i;

	for (i = 0; i < count; i++) {
859 860
		struct i915_vma *vma = eb->vma[i];
		unsigned int flags = eb->flags[i];
861

862
		if (!vma)
863
			break;
864

865 866 867
		GEM_BUG_ON(vma->exec_flags != &eb->flags[i]);
		vma->exec_flags = NULL;
		eb->vma[i] = NULL;
868

869 870
		if (flags & __EXEC_OBJECT_HAS_PIN)
			__eb_unreserve_vma(vma, flags);
871

872
		if (flags & __EXEC_OBJECT_HAS_REF)
873
			i915_vma_put(vma);
874
	}
875 876
}

877
static void eb_reset_vmas(const struct i915_execbuffer *eb)
878
{
879
	eb_release_vmas(eb);
880
	if (eb->lut_size > 0)
881 882
		memset(eb->buckets, 0,
		       sizeof(struct hlist_head) << eb->lut_size);
883 884
}

885
static void eb_destroy(const struct i915_execbuffer *eb)
886
{
887 888
	GEM_BUG_ON(eb->reloc_cache.rq);

889 890 891
	if (eb->reloc_cache.ce)
		intel_context_put(eb->reloc_cache.ce);

892
	if (eb->lut_size > 0)
893
		kfree(eb->buckets);
894 895
}

896
static inline u64
897
relocation_target(const struct drm_i915_gem_relocation_entry *reloc,
898
		  const struct i915_vma *target)
899
{
900
	return gen8_canonical_addr((int)reloc->delta + target->node.start);
901 902
}

903 904
static void reloc_cache_init(struct reloc_cache *cache,
			     struct drm_i915_private *i915)
905
{
906
	cache->page = -1;
907
	cache->vaddr = 0;
908
	/* Must be a variable in the struct to allow GCC to unroll. */
909
	cache->gen = INTEL_GEN(i915);
910
	cache->has_llc = HAS_LLC(i915);
911
	cache->use_64bit_reloc = HAS_64BIT_RELOC(i915);
912 913
	cache->has_fence = cache->gen < 4;
	cache->needs_unfenced = INTEL_INFO(i915)->unfenced_needs_alignment;
914
	cache->node.flags = 0;
915
	cache->ce = NULL;
916 917
	cache->rq = NULL;
	cache->rq_size = 0;
918
}
919

920 921 922 923 924 925 926 927
static inline void *unmask_page(unsigned long p)
{
	return (void *)(uintptr_t)(p & PAGE_MASK);
}

static inline unsigned int unmask_flags(unsigned long p)
{
	return p & ~PAGE_MASK;
928 929
}

930 931
#define KMAP 0x4 /* after CLFLUSH_FLAGS */

932 933 934 935 936 937 938
static inline struct i915_ggtt *cache_to_ggtt(struct reloc_cache *cache)
{
	struct drm_i915_private *i915 =
		container_of(cache, struct i915_execbuffer, reloc_cache)->i915;
	return &i915->ggtt;
}

939 940 941 942
static void reloc_gpu_flush(struct reloc_cache *cache)
{
	GEM_BUG_ON(cache->rq_size >= cache->rq->batch->obj->base.size / sizeof(u32));
	cache->rq_cmd[cache->rq_size] = MI_BATCH_BUFFER_END;
943 944

	__i915_gem_object_flush_map(cache->rq->batch->obj, 0, cache->rq_size);
945
	i915_gem_object_unpin_map(cache->rq->batch->obj);
946

947
	intel_gt_chipset_flush(cache->rq->engine->gt);
948

949
	i915_request_add(cache->rq);
950 951 952
	cache->rq = NULL;
}

953
static void reloc_cache_reset(struct reloc_cache *cache)
954
{
955
	void *vaddr;
956

957 958 959
	if (cache->rq)
		reloc_gpu_flush(cache);

960 961
	if (!cache->vaddr)
		return;
962

963 964 965 966
	vaddr = unmask_page(cache->vaddr);
	if (cache->vaddr & KMAP) {
		if (cache->vaddr & CLFLUSH_AFTER)
			mb();
967

968
		kunmap_atomic(vaddr);
969
		i915_gem_object_finish_access((struct drm_i915_gem_object *)cache->node.mm);
970
	} else {
971 972 973
		struct i915_ggtt *ggtt = cache_to_ggtt(cache);

		intel_gt_flush_ggtt_writes(ggtt->vm.gt);
974
		io_mapping_unmap_atomic((void __iomem *)vaddr);
975

976
		if (drm_mm_node_allocated(&cache->node)) {
977 978 979
			ggtt->vm.clear_range(&ggtt->vm,
					     cache->node.start,
					     cache->node.size);
980
			mutex_lock(&ggtt->vm.mutex);
981
			drm_mm_remove_node(&cache->node);
982
			mutex_unlock(&ggtt->vm.mutex);
983 984
		} else {
			i915_vma_unpin((struct i915_vma *)cache->node.mm);
985
		}
986
	}
987 988 989

	cache->vaddr = 0;
	cache->page = -1;
990 991 992 993
}

static void *reloc_kmap(struct drm_i915_gem_object *obj,
			struct reloc_cache *cache,
994
			unsigned long page)
995
{
996 997 998 999 1000 1001
	void *vaddr;

	if (cache->vaddr) {
		kunmap_atomic(unmask_page(cache->vaddr));
	} else {
		unsigned int flushes;
1002
		int err;
1003

1004
		err = i915_gem_object_prepare_write(obj, &flushes);
1005 1006
		if (err)
			return ERR_PTR(err);
1007 1008 1009

		BUILD_BUG_ON(KMAP & CLFLUSH_FLAGS);
		BUILD_BUG_ON((KMAP | CLFLUSH_FLAGS) & PAGE_MASK);
1010

1011 1012 1013 1014
		cache->vaddr = flushes | KMAP;
		cache->node.mm = (void *)obj;
		if (flushes)
			mb();
1015 1016
	}

1017 1018
	vaddr = kmap_atomic(i915_gem_object_get_dirty_page(obj, page));
	cache->vaddr = unmask_flags(cache->vaddr) | (unsigned long)vaddr;
1019
	cache->page = page;
1020

1021
	return vaddr;
1022 1023
}

1024 1025
static void *reloc_iomap(struct drm_i915_gem_object *obj,
			 struct reloc_cache *cache,
1026
			 unsigned long page)
1027
{
1028
	struct i915_ggtt *ggtt = cache_to_ggtt(cache);
1029
	unsigned long offset;
1030
	void *vaddr;
1031

1032
	if (cache->vaddr) {
1033
		intel_gt_flush_ggtt_writes(ggtt->vm.gt);
1034
		io_mapping_unmap_atomic((void __force __iomem *) unmask_page(cache->vaddr));
1035 1036
	} else {
		struct i915_vma *vma;
1037
		int err;
1038

1039 1040 1041
		if (i915_gem_object_is_tiled(obj))
			return ERR_PTR(-EINVAL);

1042
		if (use_cpu_reloc(cache, obj))
1043
			return NULL;
1044

1045
		i915_gem_object_lock(obj);
1046
		err = i915_gem_object_set_to_gtt_domain(obj, true);
1047
		i915_gem_object_unlock(obj);
1048 1049
		if (err)
			return ERR_PTR(err);
1050

1051
		vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0,
1052
					       PIN_MAPPABLE |
1053 1054
					       PIN_NONBLOCK /* NOWARN */ |
					       PIN_NOEVICT);
1055 1056
		if (IS_ERR(vma)) {
			memset(&cache->node, 0, sizeof(cache->node));
1057
			mutex_lock(&ggtt->vm.mutex);
1058
			err = drm_mm_insert_node_in_range
1059
				(&ggtt->vm.mm, &cache->node,
1060
				 PAGE_SIZE, 0, I915_COLOR_UNEVICTABLE,
1061
				 0, ggtt->mappable_end,
1062
				 DRM_MM_INSERT_LOW);
1063
			mutex_unlock(&ggtt->vm.mutex);
1064
			if (err) /* no inactive aperture space, use cpu reloc */
1065
				return NULL;
1066 1067 1068
		} else {
			cache->node.start = vma->node.start;
			cache->node.mm = (void *)vma;
1069
		}
1070
	}
1071

1072
	offset = cache->node.start;
1073
	if (drm_mm_node_allocated(&cache->node)) {
1074 1075 1076
		ggtt->vm.insert_page(&ggtt->vm,
				     i915_gem_object_get_dma_address(obj, page),
				     offset, I915_CACHE_NONE, 0);
1077 1078
	} else {
		offset += page << PAGE_SHIFT;
1079 1080
	}

1081
	vaddr = (void __force *)io_mapping_map_atomic_wc(&ggtt->iomap,
1082
							 offset);
1083 1084
	cache->page = page;
	cache->vaddr = (unsigned long)vaddr;
1085

1086
	return vaddr;
1087 1088
}

1089 1090
static void *reloc_vaddr(struct drm_i915_gem_object *obj,
			 struct reloc_cache *cache,
1091
			 unsigned long page)
1092
{
1093
	void *vaddr;
1094

1095 1096 1097 1098 1099 1100 1101 1102
	if (cache->page == page) {
		vaddr = unmask_page(cache->vaddr);
	} else {
		vaddr = NULL;
		if ((cache->vaddr & KMAP) == 0)
			vaddr = reloc_iomap(obj, cache, page);
		if (!vaddr)
			vaddr = reloc_kmap(obj, cache, page);
1103 1104
	}

1105
	return vaddr;
1106 1107
}

1108
static void clflush_write32(u32 *addr, u32 value, unsigned int flushes)
1109
{
1110 1111 1112 1113 1114
	if (unlikely(flushes & (CLFLUSH_BEFORE | CLFLUSH_AFTER))) {
		if (flushes & CLFLUSH_BEFORE) {
			clflushopt(addr);
			mb();
		}
1115

1116
		*addr = value;
1117

1118 1119
		/*
		 * Writes to the same cacheline are serialised by the CPU
1120 1121 1122 1123 1124 1125 1126 1127 1128
		 * (including clflush). On the write path, we only require
		 * that it hits memory in an orderly fashion and place
		 * mb barriers at the start and end of the relocation phase
		 * to ensure ordering of clflush wrt to the system.
		 */
		if (flushes & CLFLUSH_AFTER)
			clflushopt(addr);
	} else
		*addr = value;
1129 1130
}

1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150
static int reloc_move_to_gpu(struct i915_request *rq, struct i915_vma *vma)
{
	struct drm_i915_gem_object *obj = vma->obj;
	int err;

	i915_vma_lock(vma);

	if (obj->cache_dirty & ~obj->cache_coherent)
		i915_gem_clflush_object(obj, 0);
	obj->write_domain = 0;

	err = i915_request_await_object(rq, vma->obj, true);
	if (err == 0)
		err = i915_vma_move_to_active(vma, rq, EXEC_OBJECT_WRITE);

	i915_vma_unlock(vma);

	return err;
}

1151 1152 1153 1154 1155
static int __reloc_gpu_alloc(struct i915_execbuffer *eb,
			     struct i915_vma *vma,
			     unsigned int len)
{
	struct reloc_cache *cache = &eb->reloc_cache;
1156
	struct intel_engine_pool_node *pool;
1157
	struct i915_request *rq;
1158 1159 1160 1161
	struct i915_vma *batch;
	u32 *cmd;
	int err;

1162
	pool = intel_engine_get_pool(eb->engine, PAGE_SIZE);
1163 1164
	if (IS_ERR(pool))
		return PTR_ERR(pool);
1165

1166
	cmd = i915_gem_object_pin_map(pool->obj,
1167 1168 1169
				      cache->has_llc ?
				      I915_MAP_FORCE_WB :
				      I915_MAP_FORCE_WC);
1170 1171 1172 1173
	if (IS_ERR(cmd)) {
		err = PTR_ERR(cmd);
		goto out_pool;
	}
1174

1175
	batch = i915_vma_instance(pool->obj, vma->vm, NULL);
1176 1177 1178 1179 1180 1181 1182 1183 1184
	if (IS_ERR(batch)) {
		err = PTR_ERR(batch);
		goto err_unmap;
	}

	err = i915_vma_pin(batch, 0, 0, PIN_USER | PIN_NONBLOCK);
	if (err)
		goto err_unmap;

1185
	rq = intel_context_create_request(cache->ce);
1186 1187 1188 1189 1190
	if (IS_ERR(rq)) {
		err = PTR_ERR(rq);
		goto err_unpin;
	}

1191 1192 1193 1194
	err = intel_engine_pool_mark_active(pool, rq);
	if (err)
		goto err_request;

1195
	err = reloc_move_to_gpu(rq, vma);
1196 1197 1198 1199 1200 1201 1202
	if (err)
		goto err_request;

	err = eb->engine->emit_bb_start(rq,
					batch->node.start, PAGE_SIZE,
					cache->gen > 5 ? 0 : I915_DISPATCH_SECURE);
	if (err)
1203
		goto skip_request;
1204

1205
	i915_vma_lock(batch);
1206 1207 1208
	err = i915_request_await_object(rq, batch->obj, false);
	if (err == 0)
		err = i915_vma_move_to_active(batch, rq, 0);
1209
	i915_vma_unlock(batch);
1210 1211
	if (err)
		goto skip_request;
1212 1213

	rq->batch = batch;
1214
	i915_vma_unpin(batch);
1215 1216 1217 1218 1219 1220

	cache->rq = rq;
	cache->rq_cmd = cmd;
	cache->rq_size = 0;

	/* Return with batch mapping (cmd) still pinned */
1221
	goto out_pool;
1222

1223 1224
skip_request:
	i915_request_skip(rq, err);
1225
err_request:
1226
	i915_request_add(rq);
1227 1228 1229
err_unpin:
	i915_vma_unpin(batch);
err_unmap:
1230 1231 1232
	i915_gem_object_unpin_map(pool->obj);
out_pool:
	intel_engine_pool_put(pool);
1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248
	return err;
}

static u32 *reloc_gpu(struct i915_execbuffer *eb,
		      struct i915_vma *vma,
		      unsigned int len)
{
	struct reloc_cache *cache = &eb->reloc_cache;
	u32 *cmd;

	if (cache->rq_size > PAGE_SIZE/sizeof(u32) - (len + 1))
		reloc_gpu_flush(cache);

	if (unlikely(!cache->rq)) {
		int err;

1249 1250 1251 1252
		/* If we need to copy for the cmdparser, we will stall anyway */
		if (eb_use_cmdparser(eb))
			return ERR_PTR(-EWOULDBLOCK);

1253 1254 1255
		if (!intel_engine_can_store_dword(eb->engine))
			return ERR_PTR(-ENODEV);

1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278
		if (!cache->ce) {
			struct intel_context *ce;

			/*
			 * The CS pre-parser can pre-fetch commands across
			 * memory sync points and starting gen12 it is able to
			 * pre-fetch across BB_START and BB_END boundaries
			 * (within the same context). We therefore use a
			 * separate context gen12+ to guarantee that the reloc
			 * writes land before the parser gets to the target
			 * memory location.
			 */
			if (cache->gen >= 12)
				ce = intel_context_create(eb->context->gem_context,
							  eb->engine);
			else
				ce = intel_context_get(eb->context);
			if (IS_ERR(ce))
				return ERR_CAST(ce);

			cache->ce = ce;
		}

1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289
		err = __reloc_gpu_alloc(eb, vma, len);
		if (unlikely(err))
			return ERR_PTR(err);
	}

	cmd = cache->rq_cmd + cache->rq_size;
	cache->rq_size += len;

	return cmd;
}

1290 1291
static u64
relocate_entry(struct i915_vma *vma,
1292
	       const struct drm_i915_gem_relocation_entry *reloc,
1293 1294
	       struct i915_execbuffer *eb,
	       const struct i915_vma *target)
1295
{
1296
	u64 offset = reloc->offset;
1297 1298
	u64 target_offset = relocation_target(reloc, target);
	bool wide = eb->reloc_cache.use_64bit_reloc;
1299
	void *vaddr;
1300

1301 1302
	if (!eb->reloc_cache.vaddr &&
	    (DBG_FORCE_RELOC == FORCE_GPU_RELOC ||
1303
	     !dma_resv_test_signaled_rcu(vma->resv, true))) {
1304 1305 1306 1307 1308 1309 1310 1311 1312
		const unsigned int gen = eb->reloc_cache.gen;
		unsigned int len;
		u32 *batch;
		u64 addr;

		if (wide)
			len = offset & 7 ? 8 : 5;
		else if (gen >= 4)
			len = 4;
1313
		else
1314
			len = 3;
1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359

		batch = reloc_gpu(eb, vma, len);
		if (IS_ERR(batch))
			goto repeat;

		addr = gen8_canonical_addr(vma->node.start + offset);
		if (wide) {
			if (offset & 7) {
				*batch++ = MI_STORE_DWORD_IMM_GEN4;
				*batch++ = lower_32_bits(addr);
				*batch++ = upper_32_bits(addr);
				*batch++ = lower_32_bits(target_offset);

				addr = gen8_canonical_addr(addr + 4);

				*batch++ = MI_STORE_DWORD_IMM_GEN4;
				*batch++ = lower_32_bits(addr);
				*batch++ = upper_32_bits(addr);
				*batch++ = upper_32_bits(target_offset);
			} else {
				*batch++ = (MI_STORE_DWORD_IMM_GEN4 | (1 << 21)) + 1;
				*batch++ = lower_32_bits(addr);
				*batch++ = upper_32_bits(addr);
				*batch++ = lower_32_bits(target_offset);
				*batch++ = upper_32_bits(target_offset);
			}
		} else if (gen >= 6) {
			*batch++ = MI_STORE_DWORD_IMM_GEN4;
			*batch++ = 0;
			*batch++ = addr;
			*batch++ = target_offset;
		} else if (gen >= 4) {
			*batch++ = MI_STORE_DWORD_IMM_GEN4 | MI_USE_GGTT;
			*batch++ = 0;
			*batch++ = addr;
			*batch++ = target_offset;
		} else {
			*batch++ = MI_STORE_DWORD_IMM | MI_MEM_VIRTUAL;
			*batch++ = addr;
			*batch++ = target_offset;
		}

		goto out;
	}

1360
repeat:
1361
	vaddr = reloc_vaddr(vma->obj, &eb->reloc_cache, offset >> PAGE_SHIFT);
1362 1363 1364 1365 1366
	if (IS_ERR(vaddr))
		return PTR_ERR(vaddr);

	clflush_write32(vaddr + offset_in_page(offset),
			lower_32_bits(target_offset),
1367
			eb->reloc_cache.vaddr);
1368 1369 1370 1371 1372 1373

	if (wide) {
		offset += sizeof(u32);
		target_offset >>= 32;
		wide = false;
		goto repeat;
1374 1375
	}

1376
out:
1377
	return target->node.start | UPDATE;
1378 1379
}

1380 1381 1382 1383
static u64
eb_relocate_entry(struct i915_execbuffer *eb,
		  struct i915_vma *vma,
		  const struct drm_i915_gem_relocation_entry *reloc)
1384
{
1385
	struct i915_vma *target;
1386
	int err;
1387

1388
	/* we've already hold a reference to all valid objects */
1389 1390
	target = eb_get_vma(eb, reloc->target_handle);
	if (unlikely(!target))
1391
		return -ENOENT;
1392

1393
	/* Validate that the target is in a valid r/w GPU domain */
1394
	if (unlikely(reloc->write_domain & (reloc->write_domain - 1))) {
1395
		DRM_DEBUG("reloc with multiple write domains: "
1396
			  "target %d offset %d "
1397
			  "read %08x write %08x",
1398
			  reloc->target_handle,
1399 1400 1401
			  (int) reloc->offset,
			  reloc->read_domains,
			  reloc->write_domain);
1402
		return -EINVAL;
1403
	}
1404 1405
	if (unlikely((reloc->write_domain | reloc->read_domains)
		     & ~I915_GEM_GPU_DOMAINS)) {
1406
		DRM_DEBUG("reloc with read/write non-GPU domains: "
1407
			  "target %d offset %d "
1408
			  "read %08x write %08x",
1409
			  reloc->target_handle,
1410 1411 1412
			  (int) reloc->offset,
			  reloc->read_domains,
			  reloc->write_domain);
1413
		return -EINVAL;
1414 1415
	}

1416
	if (reloc->write_domain) {
1417
		*target->exec_flags |= EXEC_OBJECT_WRITE;
1418

1419 1420 1421 1422 1423 1424 1425
		/*
		 * Sandybridge PPGTT errata: We need a global gtt mapping
		 * for MI and pipe_control writes because the gpu doesn't
		 * properly redirect them through the ppgtt for non_secure
		 * batchbuffers.
		 */
		if (reloc->write_domain == I915_GEM_DOMAIN_INSTRUCTION &&
1426
		    IS_GEN(eb->i915, 6)) {
1427
			err = i915_vma_bind(target, target->obj->cache_level,
1428
					    PIN_GLOBAL, NULL);
1429 1430 1431 1432
			if (WARN_ONCE(err,
				      "Unexpected failure to bind target VMA!"))
				return err;
		}
1433
	}
1434

1435 1436
	/*
	 * If the relocation already has the right value in it, no
1437 1438
	 * more work needs to be done.
	 */
1439 1440
	if (!DBG_FORCE_RELOC &&
	    gen8_canonical_addr(target->node.start) == reloc->presumed_offset)
1441
		return 0;
1442 1443

	/* Check that the relocation address is valid... */
1444
	if (unlikely(reloc->offset >
1445
		     vma->size - (eb->reloc_cache.use_64bit_reloc ? 8 : 4))) {
1446
		DRM_DEBUG("Relocation beyond object bounds: "
1447 1448 1449 1450
			  "target %d offset %d size %d.\n",
			  reloc->target_handle,
			  (int)reloc->offset,
			  (int)vma->size);
1451
		return -EINVAL;
1452
	}
1453
	if (unlikely(reloc->offset & 3)) {
1454
		DRM_DEBUG("Relocation not 4-byte aligned: "
1455 1456 1457
			  "target %d offset %d.\n",
			  reloc->target_handle,
			  (int)reloc->offset);
1458
		return -EINVAL;
1459 1460
	}

1461 1462 1463 1464 1465 1466
	/*
	 * If we write into the object, we need to force the synchronisation
	 * barrier, either with an asynchronous clflush or if we executed the
	 * patching using the GPU (though that should be serialised by the
	 * timeline). To be completely sure, and since we are required to
	 * do relocations we are already stalling, disable the user's opt
1467
	 * out of our synchronisation.
1468
	 */
1469
	*vma->exec_flags &= ~EXEC_OBJECT_ASYNC;
1470

1471
	/* and update the user's relocation entry */
1472
	return relocate_entry(vma, reloc, eb, target);
1473 1474
}

1475
static int eb_relocate_vma(struct i915_execbuffer *eb, struct i915_vma *vma)
1476
{
1477
#define N_RELOC(x) ((x) / sizeof(struct drm_i915_gem_relocation_entry))
1478 1479
	struct drm_i915_gem_relocation_entry stack[N_RELOC(512)];
	struct drm_i915_gem_relocation_entry __user *urelocs;
1480
	const struct drm_i915_gem_exec_object2 *entry = exec_entry(eb, vma);
1481
	unsigned int remain;
1482

1483
	urelocs = u64_to_user_ptr(entry->relocs_ptr);
1484
	remain = entry->relocation_count;
1485 1486
	if (unlikely(remain > N_RELOC(ULONG_MAX)))
		return -EINVAL;
1487

1488 1489 1490 1491 1492
	/*
	 * We must check that the entire relocation array is safe
	 * to read. However, if the array is not writable the user loses
	 * the updated relocation values.
	 */
1493
	if (unlikely(!access_ok(urelocs, remain*sizeof(*urelocs))))
1494 1495 1496 1497 1498 1499 1500
		return -EFAULT;

	do {
		struct drm_i915_gem_relocation_entry *r = stack;
		unsigned int count =
			min_t(unsigned int, remain, ARRAY_SIZE(stack));
		unsigned int copied;
1501

1502 1503
		/*
		 * This is the fast path and we cannot handle a pagefault
1504 1505 1506 1507 1508 1509 1510
		 * whilst holding the struct mutex lest the user pass in the
		 * relocations contained within a mmaped bo. For in such a case
		 * we, the page fault handler would call i915_gem_fault() and
		 * we would try to acquire the struct mutex again. Obviously
		 * this is bad and so lockdep complains vehemently.
		 */
		pagefault_disable();
1511
		copied = __copy_from_user_inatomic(r, urelocs, count * sizeof(r[0]));
1512
		pagefault_enable();
1513 1514
		if (unlikely(copied)) {
			remain = -EFAULT;
1515 1516
			goto out;
		}
1517

1518
		remain -= count;
1519
		do {
1520
			u64 offset = eb_relocate_entry(eb, vma, r);
1521

1522 1523 1524
			if (likely(offset == 0)) {
			} else if ((s64)offset < 0) {
				remain = (int)offset;
1525
				goto out;
1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548
			} else {
				/*
				 * Note that reporting an error now
				 * leaves everything in an inconsistent
				 * state as we have *already* changed
				 * the relocation value inside the
				 * object. As we have not changed the
				 * reloc.presumed_offset or will not
				 * change the execobject.offset, on the
				 * call we may not rewrite the value
				 * inside the object, leaving it
				 * dangling and causing a GPU hang. Unless
				 * userspace dynamically rebuilds the
				 * relocations on each execbuf rather than
				 * presume a static tree.
				 *
				 * We did previously check if the relocations
				 * were writable (access_ok), an error now
				 * would be a strange race with mprotect,
				 * having already demonstrated that we
				 * can read from this userspace address.
				 */
				offset = gen8_canonical_addr(offset & ~UPDATE);
1549 1550 1551 1552
				if (unlikely(__put_user(offset, &urelocs[r-stack].presumed_offset))) {
					remain = -EFAULT;
					goto out;
				}
1553
			}
1554 1555 1556
		} while (r++, --count);
		urelocs += ARRAY_SIZE(stack);
	} while (remain);
1557
out:
1558
	reloc_cache_reset(&eb->reloc_cache);
1559
	return remain;
1560 1561 1562
}

static int
1563
eb_relocate_vma_slow(struct i915_execbuffer *eb, struct i915_vma *vma)
1564
{
1565
	const struct drm_i915_gem_exec_object2 *entry = exec_entry(eb, vma);
1566 1567 1568 1569
	struct drm_i915_gem_relocation_entry *relocs =
		u64_to_ptr(typeof(*relocs), entry->relocs_ptr);
	unsigned int i;
	int err;
1570 1571

	for (i = 0; i < entry->relocation_count; i++) {
1572
		u64 offset = eb_relocate_entry(eb, vma, &relocs[i]);
1573

1574 1575 1576 1577
		if ((s64)offset < 0) {
			err = (int)offset;
			goto err;
		}
1578
	}
1579 1580 1581 1582
	err = 0;
err:
	reloc_cache_reset(&eb->reloc_cache);
	return err;
1583 1584
}

1585
static int check_relocations(const struct drm_i915_gem_exec_object2 *entry)
1586
{
1587 1588 1589
	const char __user *addr, *end;
	unsigned long size;
	char __maybe_unused c;
1590

1591 1592 1593
	size = entry->relocation_count;
	if (size == 0)
		return 0;
1594

1595 1596
	if (size > N_RELOC(ULONG_MAX))
		return -EINVAL;
1597

1598 1599
	addr = u64_to_user_ptr(entry->relocs_ptr);
	size *= sizeof(struct drm_i915_gem_relocation_entry);
1600
	if (!access_ok(addr, size))
1601
		return -EFAULT;
1602

1603 1604 1605 1606 1607
	end = addr + size;
	for (; addr < end; addr += PAGE_SIZE) {
		int err = __get_user(c, addr);
		if (err)
			return err;
1608
	}
1609
	return __get_user(c, end - 1);
1610
}
1611

1612
static int eb_copy_relocations(const struct i915_execbuffer *eb)
1613
{
1614
	struct drm_i915_gem_relocation_entry *relocs;
1615 1616 1617
	const unsigned int count = eb->buffer_count;
	unsigned int i;
	int err;
1618

1619 1620 1621 1622 1623
	for (i = 0; i < count; i++) {
		const unsigned int nreloc = eb->exec[i].relocation_count;
		struct drm_i915_gem_relocation_entry __user *urelocs;
		unsigned long size;
		unsigned long copied;
1624

1625 1626
		if (nreloc == 0)
			continue;
1627

1628 1629 1630
		err = check_relocations(&eb->exec[i]);
		if (err)
			goto err;
1631

1632 1633
		urelocs = u64_to_user_ptr(eb->exec[i].relocs_ptr);
		size = nreloc * sizeof(*relocs);
1634

1635
		relocs = kvmalloc_array(size, 1, GFP_KERNEL);
1636 1637 1638 1639
		if (!relocs) {
			err = -ENOMEM;
			goto err;
		}
1640

1641 1642 1643 1644 1645 1646 1647
		/* copy_from_user is limited to < 4GiB */
		copied = 0;
		do {
			unsigned int len =
				min_t(u64, BIT_ULL(31), size - copied);

			if (__copy_from_user((char *)relocs + copied,
1648
					     (char __user *)urelocs + copied,
1649 1650
					     len))
				goto end;
1651

1652 1653
			copied += len;
		} while (copied < size);
1654

1655 1656 1657 1658 1659 1660 1661 1662 1663 1664
		/*
		 * As we do not update the known relocation offsets after
		 * relocating (due to the complexities in lock handling),
		 * we need to mark them as invalid now so that we force the
		 * relocation processing next time. Just in case the target
		 * object is evicted and then rebound into its old
		 * presumed_offset before the next execbuffer - if that
		 * happened we would make the mistake of assuming that the
		 * relocations were valid.
		 */
1665
		if (!user_access_begin(urelocs, size))
1666
			goto end;
1667

1668 1669 1670 1671 1672
		for (copied = 0; copied < nreloc; copied++)
			unsafe_put_user(-1,
					&urelocs[copied].presumed_offset,
					end_user);
		user_access_end();
1673

1674 1675
		eb->exec[i].relocs_ptr = (uintptr_t)relocs;
	}
1676

1677
	return 0;
1678

1679 1680 1681 1682 1683
end_user:
	user_access_end();
end:
	kvfree(relocs);
	err = -EFAULT;
1684 1685
err:
	while (i--) {
1686
		relocs = u64_to_ptr(typeof(*relocs), eb->exec[i].relocs_ptr);
1687 1688 1689 1690
		if (eb->exec[i].relocation_count)
			kvfree(relocs);
	}
	return err;
1691 1692
}

1693
static int eb_prefault_relocations(const struct i915_execbuffer *eb)
1694
{
1695 1696
	const unsigned int count = eb->buffer_count;
	unsigned int i;
1697

1698
	if (unlikely(i915_modparams.prefault_disable))
1699
		return 0;
1700

1701 1702
	for (i = 0; i < count; i++) {
		int err;
1703

1704 1705 1706 1707
		err = check_relocations(&eb->exec[i]);
		if (err)
			return err;
	}
1708

1709
	return 0;
1710 1711
}

1712
static noinline int eb_relocate_slow(struct i915_execbuffer *eb)
1713
{
1714
	struct drm_device *dev = &eb->i915->drm;
1715
	bool have_copy = false;
1716
	struct i915_vma *vma;
1717 1718 1719 1720 1721 1722 1723
	int err = 0;

repeat:
	if (signal_pending(current)) {
		err = -ERESTARTSYS;
		goto out;
	}
1724

1725
	/* We may process another execbuffer during the unlock... */
1726
	eb_reset_vmas(eb);
1727 1728
	mutex_unlock(&dev->struct_mutex);

1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749
	/*
	 * We take 3 passes through the slowpatch.
	 *
	 * 1 - we try to just prefault all the user relocation entries and
	 * then attempt to reuse the atomic pagefault disabled fast path again.
	 *
	 * 2 - we copy the user entries to a local buffer here outside of the
	 * local and allow ourselves to wait upon any rendering before
	 * relocations
	 *
	 * 3 - we already have a local copy of the relocation entries, but
	 * were interrupted (EAGAIN) whilst waiting for the objects, try again.
	 */
	if (!err) {
		err = eb_prefault_relocations(eb);
	} else if (!have_copy) {
		err = eb_copy_relocations(eb);
		have_copy = err == 0;
	} else {
		cond_resched();
		err = 0;
1750
	}
1751 1752 1753
	if (err) {
		mutex_lock(&dev->struct_mutex);
		goto out;
1754 1755
	}

1756 1757 1758
	/* A frequent cause for EAGAIN are currently unavailable client pages */
	flush_workqueue(eb->i915->mm.userptr_wq);

1759 1760
	err = i915_mutex_lock_interruptible(dev);
	if (err) {
1761
		mutex_lock(&dev->struct_mutex);
1762
		goto out;
1763 1764
	}

1765
	/* reacquire the objects */
1766 1767
	err = eb_lookup_vmas(eb);
	if (err)
1768
		goto err;
1769

1770 1771
	GEM_BUG_ON(!eb->batch);

1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783
	list_for_each_entry(vma, &eb->relocs, reloc_link) {
		if (!have_copy) {
			pagefault_disable();
			err = eb_relocate_vma(eb, vma);
			pagefault_enable();
			if (err)
				goto repeat;
		} else {
			err = eb_relocate_vma_slow(eb, vma);
			if (err)
				goto err;
		}
1784 1785
	}

1786 1787
	/*
	 * Leave the user relocations as are, this is the painfully slow path,
1788 1789 1790 1791 1792 1793
	 * and we want to avoid the complication of dropping the lock whilst
	 * having buffers reserved in the aperture and so causing spurious
	 * ENOSPC for random operations.
	 */

err:
1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814
	if (err == -EAGAIN)
		goto repeat;

out:
	if (have_copy) {
		const unsigned int count = eb->buffer_count;
		unsigned int i;

		for (i = 0; i < count; i++) {
			const struct drm_i915_gem_exec_object2 *entry =
				&eb->exec[i];
			struct drm_i915_gem_relocation_entry *relocs;

			if (!entry->relocation_count)
				continue;

			relocs = u64_to_ptr(typeof(*relocs), entry->relocs_ptr);
			kvfree(relocs);
		}
	}

1815
	return err;
1816 1817
}

1818
static int eb_relocate(struct i915_execbuffer *eb)
1819
{
1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841
	if (eb_lookup_vmas(eb))
		goto slow;

	/* The objects are in their final locations, apply the relocations. */
	if (eb->args->flags & __EXEC_HAS_RELOC) {
		struct i915_vma *vma;

		list_for_each_entry(vma, &eb->relocs, reloc_link) {
			if (eb_relocate_vma(eb, vma))
				goto slow;
		}
	}

	return 0;

slow:
	return eb_relocate_slow(eb);
}

static int eb_move_to_gpu(struct i915_execbuffer *eb)
{
	const unsigned int count = eb->buffer_count;
1842
	struct ww_acquire_ctx acquire;
1843
	unsigned int i;
1844 1845 1846
	int err = 0;

	ww_acquire_init(&acquire, &reservation_ww_class);
1847

1848
	for (i = 0; i < count; i++) {
1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879
		struct i915_vma *vma = eb->vma[i];

		err = ww_mutex_lock_interruptible(&vma->resv->lock, &acquire);
		if (!err)
			continue;

		GEM_BUG_ON(err == -EALREADY); /* No duplicate vma */

		if (err == -EDEADLK) {
			GEM_BUG_ON(i == 0);
			do {
				int j = i - 1;

				ww_mutex_unlock(&eb->vma[j]->resv->lock);

				swap(eb->flags[i], eb->flags[j]);
				swap(eb->vma[i],  eb->vma[j]);
				eb->vma[i]->exec_flags = &eb->flags[i];
			} while (--i);
			GEM_BUG_ON(vma != eb->vma[0]);
			vma->exec_flags = &eb->flags[0];

			err = ww_mutex_lock_slow_interruptible(&vma->resv->lock,
							       &acquire);
		}
		if (err)
			break;
	}
	ww_acquire_done(&acquire);

	while (i--) {
1880 1881
		unsigned int flags = eb->flags[i];
		struct i915_vma *vma = eb->vma[i];
1882
		struct drm_i915_gem_object *obj = vma->obj;
1883

1884 1885
		assert_vma_held(vma);

1886
		if (flags & EXEC_OBJECT_CAPTURE) {
1887
			struct i915_capture_list *capture;
1888 1889

			capture = kmalloc(sizeof(*capture), GFP_KERNEL);
1890 1891 1892 1893 1894
			if (capture) {
				capture->next = eb->request->capture_list;
				capture->vma = vma;
				eb->request->capture_list = capture;
			}
1895 1896
		}

1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909
		/*
		 * If the GPU is not _reading_ through the CPU cache, we need
		 * to make sure that any writes (both previous GPU writes from
		 * before a change in snooping levels and normal CPU writes)
		 * caught in that cache are flushed to main memory.
		 *
		 * We want to say
		 *   obj->cache_dirty &&
		 *   !(obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_READ)
		 * but gcc's optimiser doesn't handle that as well and emits
		 * two jumps instead of one. Maybe one day...
		 */
		if (unlikely(obj->cache_dirty & ~obj->cache_coherent)) {
1910
			if (i915_gem_clflush_object(obj, 0))
1911
				flags &= ~EXEC_OBJECT_ASYNC;
1912 1913
		}

1914 1915 1916 1917
		if (err == 0 && !(flags & EXEC_OBJECT_ASYNC)) {
			err = i915_request_await_object
				(eb->request, obj, flags & EXEC_OBJECT_WRITE);
		}
1918

1919 1920
		if (err == 0)
			err = i915_vma_move_to_active(vma, eb->request, flags);
1921

1922
		i915_vma_unlock(vma);
1923

1924 1925 1926 1927
		__eb_unreserve_vma(vma, flags);
		vma->exec_flags = NULL;

		if (unlikely(flags & __EXEC_OBJECT_HAS_REF))
1928
			i915_vma_put(vma);
1929
	}
1930 1931 1932 1933 1934
	ww_acquire_fini(&acquire);

	if (unlikely(err))
		goto err_skip;

1935
	eb->exec = NULL;
1936

1937
	/* Unconditionally flush any chipset caches (for streaming writes). */
1938
	intel_gt_chipset_flush(eb->engine->gt);
1939
	return 0;
1940 1941 1942 1943

err_skip:
	i915_request_skip(eb->request, err);
	return err;
1944 1945
}

1946
static bool i915_gem_check_execbuffer(struct drm_i915_gem_execbuffer2 *exec)
1947
{
1948
	if (exec->flags & __I915_EXEC_ILLEGAL_FLAGS)
1949 1950
		return false;

C
Chris Wilson 已提交
1951
	/* Kernel clipping was a DRI1 misfeature */
1952 1953 1954 1955
	if (!(exec->flags & I915_EXEC_FENCE_ARRAY)) {
		if (exec->num_cliprects || exec->cliprects_ptr)
			return false;
	}
C
Chris Wilson 已提交
1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967

	if (exec->DR4 == 0xffffffff) {
		DRM_DEBUG("UXA submitting garbage DR4, fixing up\n");
		exec->DR4 = 0;
	}
	if (exec->DR1 || exec->DR4)
		return false;

	if ((exec->batch_start_offset | exec->batch_len) & 0x7)
		return false;

	return true;
1968 1969
}

1970
static int i915_reset_gen7_sol_offsets(struct i915_request *rq)
1971
{
1972 1973
	u32 *cs;
	int i;
1974

1975
	if (!IS_GEN(rq->i915, 7) || rq->engine->id != RCS0) {
1976 1977 1978
		DRM_DEBUG("sol reset is gen7/rcs only\n");
		return -EINVAL;
	}
1979

1980
	cs = intel_ring_begin(rq, 4 * 2 + 2);
1981 1982
	if (IS_ERR(cs))
		return PTR_ERR(cs);
1983

1984
	*cs++ = MI_LOAD_REGISTER_IMM(4);
1985
	for (i = 0; i < 4; i++) {
1986 1987
		*cs++ = i915_mmio_reg_offset(GEN7_SO_WRITE_OFFSET(i));
		*cs++ = 0;
1988
	}
1989
	*cs++ = MI_NOOP;
1990
	intel_ring_advance(rq, cs);
1991 1992 1993 1994

	return 0;
}

1995 1996 1997 1998
static struct i915_vma *
shadow_batch_pin(struct i915_execbuffer *eb, struct drm_i915_gem_object *obj)
{
	struct i915_address_space *vm;
1999
	struct i915_vma *vma;
2000
	u64 flags;
2001
	int err;
2002 2003 2004 2005 2006

	/*
	 * PPGTT backed shadow buffers must be mapped RO, to prevent
	 * post-scan tampering
	 */
2007 2008
	if (CMDPARSER_USES_GGTT(eb->i915)) {
		vm = &eb->engine->gt->ggtt->vm;
2009 2010
		flags = PIN_GLOBAL;
	} else {
2011 2012 2013 2014 2015 2016 2017 2018
		vm = eb->context->vm;
		if (!vm->has_read_only) {
			DRM_DEBUG("Cannot prevent post-scan tampering without RO capable vm\n");
			return ERR_PTR(-EINVAL);
		}

		i915_gem_object_set_readonly(obj);
		flags = PIN_USER;
2019 2020
	}

2021 2022 2023 2024 2025 2026 2027 2028 2029
	vma = i915_vma_instance(obj, vm, NULL);
	if (IS_ERR(vma))
		return vma;

	err = i915_vma_pin(vma, 0, 0, flags);
	if (err)
		return ERR_PTR(err);

	return vma;
2030 2031
}

2032
static struct i915_vma *eb_parse(struct i915_execbuffer *eb)
2033
{
2034
	struct intel_engine_pool_node *pool;
2035
	struct i915_vma *vma;
2036 2037
	u64 batch_start;
	u64 shadow_batch_start;
2038
	int err;
2039

2040
	pool = intel_engine_get_pool(eb->engine, eb->batch_len);
2041 2042
	if (IS_ERR(pool))
		return ERR_CAST(pool);
2043

2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054
	vma = shadow_batch_pin(eb, pool->obj);
	if (IS_ERR(vma))
		goto err;

	batch_start = gen8_canonical_addr(eb->batch->node.start) +
		      eb->batch_start_offset;

	shadow_batch_start = gen8_canonical_addr(vma->node.start);

	err = intel_engine_cmd_parser(eb->gem_context,
				      eb->engine,
2055
				      eb->batch->obj,
2056
				      batch_start,
2057 2058
				      eb->batch_start_offset,
				      eb->batch_len,
2059 2060 2061
				      pool->obj,
				      shadow_batch_start);

2062
	if (err) {
2063 2064
		i915_vma_unpin(vma);

2065 2066 2067 2068 2069 2070
		/*
		 * Unsafe GGTT-backed buffers can still be submitted safely
		 * as non-secure.
		 * For PPGTT backing however, we have no choice but to forcibly
		 * reject unsafe buffers
		 */
2071
		if (i915_vma_is_ggtt(vma) && err == -EACCES)
2072
			/* Execute original buffer non-secure */
C
Chris Wilson 已提交
2073 2074
			vma = NULL;
		else
2075
			vma = ERR_PTR(err);
2076
		goto err;
C
Chris Wilson 已提交
2077
	}
2078

2079 2080 2081 2082 2083
	eb->vma[eb->buffer_count] = i915_vma_get(vma);
	eb->flags[eb->buffer_count] =
		__EXEC_OBJECT_HAS_PIN | __EXEC_OBJECT_HAS_REF;
	vma->exec_flags = &eb->flags[eb->buffer_count];
	eb->buffer_count++;
2084

2085 2086
	eb->batch_start_offset = 0;
	eb->batch = vma;
2087

2088
	if (i915_vma_is_ggtt(vma))
2089 2090
		eb->batch_flags |= I915_DISPATCH_SECURE;

2091 2092
	/* eb->batch_len unchanged */

2093 2094 2095 2096 2097
	vma->private = pool;
	return vma;

err:
	intel_engine_pool_put(pool);
C
Chris Wilson 已提交
2098
	return vma;
2099
}
2100

2101
static void
2102
add_to_client(struct i915_request *rq, struct drm_file *file)
2103
{
2104 2105 2106 2107 2108 2109 2110
	struct drm_i915_file_private *file_priv = file->driver_priv;

	rq->file_priv = file_priv;

	spin_lock(&file_priv->mm.lock);
	list_add_tail(&rq->client_link, &file_priv->mm.request_list);
	spin_unlock(&file_priv->mm.lock);
2111 2112
}

2113
static int eb_submit(struct i915_execbuffer *eb)
2114
{
2115
	int err;
2116

2117 2118 2119
	err = eb_move_to_gpu(eb);
	if (err)
		return err;
2120

2121
	if (eb->args->flags & I915_EXEC_GEN7_SOL_RESET) {
2122 2123 2124
		err = i915_reset_gen7_sol_offsets(eb->request);
		if (err)
			return err;
2125 2126
	}

2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138
	/*
	 * After we completed waiting for other engines (using HW semaphores)
	 * then we can signal that this request/batch is ready to run. This
	 * allows us to determine if the batch is still waiting on the GPU
	 * or actually running by checking the breadcrumb.
	 */
	if (eb->engine->emit_init_breadcrumb) {
		err = eb->engine->emit_init_breadcrumb(eb->request);
		if (err)
			return err;
	}

2139
	err = eb->engine->emit_bb_start(eb->request,
2140 2141 2142
					eb->batch->node.start +
					eb->batch_start_offset,
					eb->batch_len,
2143 2144 2145
					eb->batch_flags);
	if (err)
		return err;
2146

2147 2148 2149
	if (i915_gem_context_nopreempt(eb->gem_context))
		eb->request->flags |= I915_REQUEST_NOPREEMPT;

C
Chris Wilson 已提交
2150
	return 0;
2151 2152
}

2153 2154 2155 2156 2157 2158
static int num_vcs_engines(const struct drm_i915_private *i915)
{
	return hweight64(INTEL_INFO(i915)->engine_mask &
			 GENMASK_ULL(VCS0 + I915_MAX_VCS - 1, VCS0));
}

2159
/*
2160
 * Find one BSD ring to dispatch the corresponding BSD command.
2161
 * The engine index is returned.
2162
 */
2163
static unsigned int
2164 2165
gen8_dispatch_bsd_engine(struct drm_i915_private *dev_priv,
			 struct drm_file *file)
2166 2167 2168
{
	struct drm_i915_file_private *file_priv = file->driver_priv;

2169
	/* Check whether the file_priv has already selected one ring. */
2170
	if ((int)file_priv->bsd_engine < 0)
2171 2172
		file_priv->bsd_engine =
			get_random_int() % num_vcs_engines(dev_priv);
2173

2174
	return file_priv->bsd_engine;
2175 2176
}

2177
static const enum intel_engine_id user_ring_map[] = {
2178 2179 2180 2181 2182
	[I915_EXEC_DEFAULT]	= RCS0,
	[I915_EXEC_RENDER]	= RCS0,
	[I915_EXEC_BLT]		= BCS0,
	[I915_EXEC_BSD]		= VCS0,
	[I915_EXEC_VEBOX]	= VECS0
2183 2184
};

2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224
static struct i915_request *eb_throttle(struct intel_context *ce)
{
	struct intel_ring *ring = ce->ring;
	struct intel_timeline *tl = ce->timeline;
	struct i915_request *rq;

	/*
	 * Completely unscientific finger-in-the-air estimates for suitable
	 * maximum user request size (to avoid blocking) and then backoff.
	 */
	if (intel_ring_update_space(ring) >= PAGE_SIZE)
		return NULL;

	/*
	 * Find a request that after waiting upon, there will be at least half
	 * the ring available. The hysteresis allows us to compete for the
	 * shared ring and should mean that we sleep less often prior to
	 * claiming our resources, but not so long that the ring completely
	 * drains before we can submit our next request.
	 */
	list_for_each_entry(rq, &tl->requests, link) {
		if (rq->ring != ring)
			continue;

		if (__intel_ring_space(rq->postfix,
				       ring->emit, ring->size) > ring->size / 2)
			break;
	}
	if (&rq->link == &tl->requests)
		return NULL; /* weird, we will check again later for real */

	return i915_request_get(rq);
}

static int __eb_pin_engine(struct i915_execbuffer *eb, struct intel_context *ce)
{
	struct intel_timeline *tl;
	struct i915_request *rq;
	int err;

2225 2226 2227 2228
	/*
	 * ABI: Before userspace accesses the GPU (e.g. execbuffer), report
	 * EIO if the GPU is already wedged.
	 */
2229
	err = intel_gt_terminally_wedged(ce->engine->gt);
2230 2231 2232 2233 2234 2235 2236 2237
	if (err)
		return err;

	/*
	 * Pinning the contexts may generate requests in order to acquire
	 * GGTT space, so do this first before we reserve a seqno for
	 * ourselves.
	 */
2238
	err = intel_context_pin(ce);
2239 2240
	if (err)
		return err;
2241

2242 2243 2244 2245 2246 2247 2248 2249
	/*
	 * Take a local wakeref for preparing to dispatch the execbuf as
	 * we expect to access the hardware fairly frequently in the
	 * process, and require the engine to be kept awake between accesses.
	 * Upon dispatch, we acquire another prolonged wakeref that we hold
	 * until the timeline is idle, which in turn releases the wakeref
	 * taken on the engine, and the parent device.
	 */
2250 2251 2252
	tl = intel_context_timeline_lock(ce);
	if (IS_ERR(tl)) {
		err = PTR_ERR(tl);
2253
		goto err_unpin;
2254
	}
2255 2256

	intel_context_enter(ce);
2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271
	rq = eb_throttle(ce);

	intel_context_timeline_unlock(tl);

	if (rq) {
		if (i915_request_wait(rq,
				      I915_WAIT_INTERRUPTIBLE,
				      MAX_SCHEDULE_TIMEOUT) < 0) {
			i915_request_put(rq);
			err = -EINTR;
			goto err_exit;
		}

		i915_request_put(rq);
	}
2272

2273
	eb->engine = ce->engine;
2274 2275
	eb->context = ce;
	return 0;
2276

2277 2278 2279 2280
err_exit:
	mutex_lock(&tl->mutex);
	intel_context_exit(ce);
	intel_context_timeline_unlock(tl);
2281
err_unpin:
2282
	intel_context_unpin(ce);
2283
	return err;
2284 2285
}

2286
static void eb_unpin_engine(struct i915_execbuffer *eb)
2287
{
2288
	struct intel_context *ce = eb->context;
2289
	struct intel_timeline *tl = ce->timeline;
2290 2291 2292 2293 2294

	mutex_lock(&tl->mutex);
	intel_context_exit(ce);
	mutex_unlock(&tl->mutex);

2295
	intel_context_unpin(ce);
2296
}
2297

2298 2299 2300 2301
static unsigned int
eb_select_legacy_ring(struct i915_execbuffer *eb,
		      struct drm_file *file,
		      struct drm_i915_gem_execbuffer2 *args)
2302
{
2303
	struct drm_i915_private *i915 = eb->i915;
2304 2305
	unsigned int user_ring_id = args->flags & I915_EXEC_RING_MASK;

2306 2307
	if (user_ring_id != I915_EXEC_BSD &&
	    (args->flags & I915_EXEC_BSD_MASK)) {
2308 2309
		DRM_DEBUG("execbuf with non bsd ring but with invalid "
			  "bsd dispatch flags: %d\n", (int)(args->flags));
2310
		return -1;
2311 2312
	}

2313
	if (user_ring_id == I915_EXEC_BSD && num_vcs_engines(i915) > 1) {
2314 2315 2316
		unsigned int bsd_idx = args->flags & I915_EXEC_BSD_MASK;

		if (bsd_idx == I915_EXEC_BSD_DEFAULT) {
2317
			bsd_idx = gen8_dispatch_bsd_engine(i915, file);
2318 2319
		} else if (bsd_idx >= I915_EXEC_BSD_RING1 &&
			   bsd_idx <= I915_EXEC_BSD_RING2) {
2320
			bsd_idx >>= I915_EXEC_BSD_SHIFT;
2321 2322 2323 2324
			bsd_idx--;
		} else {
			DRM_DEBUG("execbuf with unknown bsd ring: %u\n",
				  bsd_idx);
2325
			return -1;
2326 2327
		}

2328
		return _VCS(bsd_idx);
2329 2330
	}

2331 2332 2333
	if (user_ring_id >= ARRAY_SIZE(user_ring_map)) {
		DRM_DEBUG("execbuf with unknown ring: %u\n", user_ring_id);
		return -1;
2334 2335
	}

2336 2337 2338 2339
	return user_ring_map[user_ring_id];
}

static int
2340 2341 2342
eb_pin_engine(struct i915_execbuffer *eb,
	      struct drm_file *file,
	      struct drm_i915_gem_execbuffer2 *args)
2343 2344 2345 2346 2347
{
	struct intel_context *ce;
	unsigned int idx;
	int err;

2348 2349 2350 2351
	if (i915_gem_context_user_engines(eb->gem_context))
		idx = args->flags & I915_EXEC_RING_MASK;
	else
		idx = eb_select_legacy_ring(eb, file, args);
2352 2353 2354 2355 2356

	ce = i915_gem_context_get_engine(eb->gem_context, idx);
	if (IS_ERR(ce))
		return PTR_ERR(ce);

2357
	err = __eb_pin_engine(eb, ce);
2358 2359 2360
	intel_context_put(ce);

	return err;
2361 2362
}

2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374
static void
__free_fence_array(struct drm_syncobj **fences, unsigned int n)
{
	while (n--)
		drm_syncobj_put(ptr_mask_bits(fences[n], 2));
	kvfree(fences);
}

static struct drm_syncobj **
get_fence_array(struct drm_i915_gem_execbuffer2 *args,
		struct drm_file *file)
{
2375
	const unsigned long nfences = args->num_cliprects;
2376 2377
	struct drm_i915_gem_exec_fence __user *user;
	struct drm_syncobj **fences;
2378
	unsigned long n;
2379 2380 2381 2382 2383
	int err;

	if (!(args->flags & I915_EXEC_FENCE_ARRAY))
		return NULL;

2384 2385 2386 2387 2388
	/* Check multiplication overflow for access_ok() and kvmalloc_array() */
	BUILD_BUG_ON(sizeof(size_t) > sizeof(unsigned long));
	if (nfences > min_t(unsigned long,
			    ULONG_MAX / sizeof(*user),
			    SIZE_MAX / sizeof(*fences)))
2389 2390 2391
		return ERR_PTR(-EINVAL);

	user = u64_to_user_ptr(args->cliprects_ptr);
2392
	if (!access_ok(user, nfences * sizeof(*user)))
2393 2394
		return ERR_PTR(-EFAULT);

2395
	fences = kvmalloc_array(nfences, sizeof(*fences),
2396
				__GFP_NOWARN | GFP_KERNEL);
2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408
	if (!fences)
		return ERR_PTR(-ENOMEM);

	for (n = 0; n < nfences; n++) {
		struct drm_i915_gem_exec_fence fence;
		struct drm_syncobj *syncobj;

		if (__copy_from_user(&fence, user++, sizeof(fence))) {
			err = -EFAULT;
			goto err;
		}

2409 2410 2411 2412 2413
		if (fence.flags & __I915_EXEC_FENCE_UNKNOWN_FLAGS) {
			err = -EINVAL;
			goto err;
		}

2414 2415 2416 2417 2418 2419 2420
		syncobj = drm_syncobj_find(file, fence.handle);
		if (!syncobj) {
			DRM_DEBUG("Invalid syncobj handle provided\n");
			err = -ENOENT;
			goto err;
		}

2421 2422 2423
		BUILD_BUG_ON(~(ARCH_KMALLOC_MINALIGN - 1) &
			     ~__I915_EXEC_FENCE_UNKNOWN_FLAGS);

2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458
		fences[n] = ptr_pack_bits(syncobj, fence.flags, 2);
	}

	return fences;

err:
	__free_fence_array(fences, n);
	return ERR_PTR(err);
}

static void
put_fence_array(struct drm_i915_gem_execbuffer2 *args,
		struct drm_syncobj **fences)
{
	if (fences)
		__free_fence_array(fences, args->num_cliprects);
}

static int
await_fence_array(struct i915_execbuffer *eb,
		  struct drm_syncobj **fences)
{
	const unsigned int nfences = eb->args->num_cliprects;
	unsigned int n;
	int err;

	for (n = 0; n < nfences; n++) {
		struct drm_syncobj *syncobj;
		struct dma_fence *fence;
		unsigned int flags;

		syncobj = ptr_unpack_bits(fences[n], &flags, 2);
		if (!(flags & I915_EXEC_FENCE_WAIT))
			continue;

J
Jason Ekstrand 已提交
2459
		fence = drm_syncobj_fence_get(syncobj);
2460 2461 2462
		if (!fence)
			return -EINVAL;

2463
		err = i915_request_await_dma_fence(eb->request, fence);
2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487
		dma_fence_put(fence);
		if (err < 0)
			return err;
	}

	return 0;
}

static void
signal_fence_array(struct i915_execbuffer *eb,
		   struct drm_syncobj **fences)
{
	const unsigned int nfences = eb->args->num_cliprects;
	struct dma_fence * const fence = &eb->request->fence;
	unsigned int n;

	for (n = 0; n < nfences; n++) {
		struct drm_syncobj *syncobj;
		unsigned int flags;

		syncobj = ptr_unpack_bits(fences[n], &flags, 2);
		if (!(flags & I915_EXEC_FENCE_SIGNAL))
			continue;

2488
		drm_syncobj_replace_fence(syncobj, fence);
2489 2490 2491
	}
}

2492
static int
2493
i915_gem_do_execbuffer(struct drm_device *dev,
2494 2495
		       struct drm_file *file,
		       struct drm_i915_gem_execbuffer2 *args,
2496 2497
		       struct drm_i915_gem_exec_object2 *exec,
		       struct drm_syncobj **fences)
2498
{
2499
	struct drm_i915_private *i915 = to_i915(dev);
2500
	struct i915_execbuffer eb;
2501
	struct dma_fence *in_fence = NULL;
2502
	struct dma_fence *exec_fence = NULL;
2503 2504
	struct sync_file *out_fence = NULL;
	int out_fence_fd = -1;
2505
	int err;
2506

2507
	BUILD_BUG_ON(__EXEC_INTERNAL_FLAGS & ~__I915_EXEC_ILLEGAL_FLAGS);
2508 2509
	BUILD_BUG_ON(__EXEC_OBJECT_INTERNAL_FLAGS &
		     ~__EXEC_OBJECT_UNKNOWN_FLAGS);
2510

2511
	eb.i915 = i915;
2512 2513
	eb.file = file;
	eb.args = args;
2514
	if (DBG_FORCE_RELOC || !(args->flags & I915_EXEC_NO_RELOC))
2515
		args->flags |= __EXEC_HAS_RELOC;
2516

2517
	eb.exec = exec;
2518 2519
	eb.vma = (struct i915_vma **)(exec + args->buffer_count + 1);
	eb.vma[0] = NULL;
2520 2521
	eb.flags = (unsigned int *)(eb.vma + args->buffer_count + 1);

2522
	eb.invalid_flags = __EXEC_OBJECT_UNKNOWN_FLAGS;
2523 2524
	reloc_cache_init(&eb.reloc_cache, eb.i915);

2525
	eb.buffer_count = args->buffer_count;
2526 2527 2528
	eb.batch_start_offset = args->batch_start_offset;
	eb.batch_len = args->batch_len;

2529
	eb.batch_flags = 0;
2530
	if (args->flags & I915_EXEC_SECURE) {
2531 2532 2533 2534 2535 2536 2537
		if (INTEL_GEN(i915) >= 11)
			return -ENODEV;

		/* Return -EPERM to trigger fallback code on old binaries. */
		if (!HAS_SECURE_BATCHES(i915))
			return -EPERM;

2538
		if (!drm_is_current_master(file) || !capable(CAP_SYS_ADMIN))
2539
			return -EPERM;
2540

2541
		eb.batch_flags |= I915_DISPATCH_SECURE;
2542
	}
2543
	if (args->flags & I915_EXEC_IS_PINNED)
2544
		eb.batch_flags |= I915_DISPATCH_PINNED;
2545

2546 2547
	if (args->flags & I915_EXEC_FENCE_IN) {
		in_fence = sync_file_get_fence(lower_32_bits(args->rsvd2));
2548 2549
		if (!in_fence)
			return -EINVAL;
2550 2551
	}

2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564
	if (args->flags & I915_EXEC_FENCE_SUBMIT) {
		if (in_fence) {
			err = -EINVAL;
			goto err_in_fence;
		}

		exec_fence = sync_file_get_fence(lower_32_bits(args->rsvd2));
		if (!exec_fence) {
			err = -EINVAL;
			goto err_in_fence;
		}
	}

2565 2566 2567
	if (args->flags & I915_EXEC_FENCE_OUT) {
		out_fence_fd = get_unused_fd_flags(O_CLOEXEC);
		if (out_fence_fd < 0) {
2568
			err = out_fence_fd;
2569
			goto err_exec_fence;
2570 2571 2572
		}
	}

2573 2574 2575 2576 2577
	err = eb_create(&eb);
	if (err)
		goto err_out_fence;

	GEM_BUG_ON(!eb.lut_size);
2578

2579 2580 2581 2582
	err = eb_select_context(&eb);
	if (unlikely(err))
		goto err_destroy;

2583
	err = eb_pin_engine(&eb, file, args);
2584
	if (unlikely(err))
2585
		goto err_context;
2586

2587 2588
	err = i915_mutex_lock_interruptible(dev);
	if (err)
2589 2590
		goto err_engine;

2591
	err = eb_relocate(&eb);
2592
	if (err) {
2593 2594 2595 2596 2597 2598 2599 2600 2601
		/*
		 * If the user expects the execobject.offset and
		 * reloc.presumed_offset to be an exact match,
		 * as for using NO_RELOC, then we cannot update
		 * the execobject.offset until we have completed
		 * relocation.
		 */
		args->flags &= ~__EXEC_HAS_RELOC;
		goto err_vma;
2602
	}
2603

2604
	if (unlikely(*eb.batch->exec_flags & EXEC_OBJECT_WRITE)) {
2605
		DRM_DEBUG("Attempting to use self-modifying batch buffer\n");
2606 2607
		err = -EINVAL;
		goto err_vma;
2608
	}
2609 2610
	if (eb.batch_start_offset > eb.batch->size ||
	    eb.batch_len > eb.batch->size - eb.batch_start_offset) {
2611
		DRM_DEBUG("Attempting to use out-of-bounds batch\n");
2612 2613
		err = -EINVAL;
		goto err_vma;
2614
	}
2615

2616 2617 2618
	if (eb.batch_len == 0)
		eb.batch_len = eb.batch->size - eb.batch_start_offset;

2619
	if (eb_use_cmdparser(&eb)) {
2620 2621
		struct i915_vma *vma;

2622
		vma = eb_parse(&eb);
2623
		if (IS_ERR(vma)) {
2624 2625
			err = PTR_ERR(vma);
			goto err_vma;
2626
		}
2627 2628
	}

2629 2630
	/*
	 * snb/ivb/vlv conflate the "batch in ppgtt" bit with the "non-secure
2631
	 * batch" bit. Hence we need to pin secure batches into the global gtt.
B
Ben Widawsky 已提交
2632
	 * hsw should have this fixed, but bdw mucks it up again. */
2633
	if (eb.batch_flags & I915_DISPATCH_SECURE) {
C
Chris Wilson 已提交
2634
		struct i915_vma *vma;
2635

2636 2637 2638 2639 2640 2641
		/*
		 * So on first glance it looks freaky that we pin the batch here
		 * outside of the reservation loop. But:
		 * - The batch is already pinned into the relevant ppgtt, so we
		 *   already have the backing storage fully allocated.
		 * - No other BO uses the global gtt (well contexts, but meh),
2642
		 *   so we don't really have issues with multiple objects not
2643 2644 2645
		 *   fitting due to fragmentation.
		 * So this is actually safe.
		 */
2646
		vma = i915_gem_object_ggtt_pin(eb.batch->obj, NULL, 0, 0, 0);
C
Chris Wilson 已提交
2647
		if (IS_ERR(vma)) {
2648 2649
			err = PTR_ERR(vma);
			goto err_vma;
C
Chris Wilson 已提交
2650
		}
2651

2652
		eb.batch = vma;
2653
	}
2654

2655 2656 2657
	/* All GPU relocation batches must be submitted prior to the user rq */
	GEM_BUG_ON(eb.reloc_cache.rq);

2658
	/* Allocate a request for this batch buffer nice and early. */
2659
	eb.request = i915_request_create(eb.context);
2660
	if (IS_ERR(eb.request)) {
2661
		err = PTR_ERR(eb.request);
2662
		goto err_batch_unpin;
2663
	}
2664

2665
	if (in_fence) {
2666
		err = i915_request_await_dma_fence(eb.request, in_fence);
2667
		if (err < 0)
2668 2669 2670
			goto err_request;
	}

2671 2672 2673 2674 2675 2676 2677
	if (exec_fence) {
		err = i915_request_await_execution(eb.request, exec_fence,
						   eb.engine->bond_execute);
		if (err < 0)
			goto err_request;
	}

2678 2679 2680 2681 2682 2683
	if (fences) {
		err = await_fence_array(&eb, fences);
		if (err)
			goto err_request;
	}

2684
	if (out_fence_fd != -1) {
2685
		out_fence = sync_file_create(&eb.request->fence);
2686
		if (!out_fence) {
2687
			err = -ENOMEM;
2688 2689 2690 2691
			goto err_request;
		}
	}

2692 2693
	/*
	 * Whilst this request exists, batch_obj will be on the
2694 2695 2696 2697 2698
	 * active_list, and so will hold the active reference. Only when this
	 * request is retired will the the batch_obj be moved onto the
	 * inactive_list and lose its active reference. Hence we do not need
	 * to explicitly hold another reference here.
	 */
2699
	eb.request->batch = eb.batch;
2700 2701
	if (eb.batch->private)
		intel_engine_pool_mark_active(eb.batch->private, eb.request);
2702

2703
	trace_i915_request_queue(eb.request, eb.batch_flags);
2704
	err = eb_submit(&eb);
2705
err_request:
2706
	add_to_client(eb.request, file);
2707
	i915_request_add(eb.request);
2708

2709 2710 2711
	if (fences)
		signal_fence_array(&eb, fences);

2712
	if (out_fence) {
2713
		if (err == 0) {
2714
			fd_install(out_fence_fd, out_fence->file);
2715
			args->rsvd2 &= GENMASK_ULL(31, 0); /* keep in-fence */
2716 2717 2718 2719 2720 2721
			args->rsvd2 |= (u64)out_fence_fd << 32;
			out_fence_fd = -1;
		} else {
			fput(out_fence->file);
		}
	}
2722

2723
err_batch_unpin:
2724
	if (eb.batch_flags & I915_DISPATCH_SECURE)
2725
		i915_vma_unpin(eb.batch);
2726 2727
	if (eb.batch->private)
		intel_engine_pool_put(eb.batch->private);
2728 2729 2730
err_vma:
	if (eb.exec)
		eb_release_vmas(&eb);
2731
	mutex_unlock(&dev->struct_mutex);
2732 2733
err_engine:
	eb_unpin_engine(&eb);
2734
err_context:
2735
	i915_gem_context_put(eb.gem_context);
2736
err_destroy:
2737
	eb_destroy(&eb);
2738
err_out_fence:
2739 2740
	if (out_fence_fd != -1)
		put_unused_fd(out_fence_fd);
2741 2742
err_exec_fence:
	dma_fence_put(exec_fence);
2743
err_in_fence:
2744
	dma_fence_put(in_fence);
2745
	return err;
2746 2747
}

2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767
static size_t eb_element_size(void)
{
	return (sizeof(struct drm_i915_gem_exec_object2) +
		sizeof(struct i915_vma *) +
		sizeof(unsigned int));
}

static bool check_buffer_count(size_t count)
{
	const size_t sz = eb_element_size();

	/*
	 * When using LUT_HANDLE, we impose a limit of INT_MAX for the lookup
	 * array size (see eb_create()). Otherwise, we can accept an array as
	 * large as can be addressed (though use large arrays at your peril)!
	 */

	return !(count < 1 || count > INT_MAX || count > SIZE_MAX / sz - 1);
}

2768 2769 2770 2771 2772
/*
 * Legacy execbuffer just creates an exec2 list from the original exec object
 * list array and passes it to the real function.
 */
int
2773 2774
i915_gem_execbuffer_ioctl(struct drm_device *dev, void *data,
			  struct drm_file *file)
2775 2776 2777 2778 2779
{
	struct drm_i915_gem_execbuffer *args = data;
	struct drm_i915_gem_execbuffer2 exec2;
	struct drm_i915_gem_exec_object *exec_list = NULL;
	struct drm_i915_gem_exec_object2 *exec2_list = NULL;
2780
	const size_t count = args->buffer_count;
2781 2782
	unsigned int i;
	int err;
2783

2784 2785
	if (!check_buffer_count(count)) {
		DRM_DEBUG("execbuf2 with %zd buffers\n", count);
2786 2787 2788
		return -EINVAL;
	}

2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802
	exec2.buffers_ptr = args->buffers_ptr;
	exec2.buffer_count = args->buffer_count;
	exec2.batch_start_offset = args->batch_start_offset;
	exec2.batch_len = args->batch_len;
	exec2.DR1 = args->DR1;
	exec2.DR4 = args->DR4;
	exec2.num_cliprects = args->num_cliprects;
	exec2.cliprects_ptr = args->cliprects_ptr;
	exec2.flags = I915_EXEC_RENDER;
	i915_execbuffer2_set_context_id(exec2, 0);

	if (!i915_gem_check_execbuffer(&exec2))
		return -EINVAL;

2803
	/* Copy in the exec list from userland */
2804
	exec_list = kvmalloc_array(count, sizeof(*exec_list),
2805
				   __GFP_NOWARN | GFP_KERNEL);
2806
	exec2_list = kvmalloc_array(count + 1, eb_element_size(),
2807
				    __GFP_NOWARN | GFP_KERNEL);
2808
	if (exec_list == NULL || exec2_list == NULL) {
2809
		DRM_DEBUG("Failed to allocate exec list for %d buffers\n",
2810
			  args->buffer_count);
M
Michal Hocko 已提交
2811 2812
		kvfree(exec_list);
		kvfree(exec2_list);
2813 2814
		return -ENOMEM;
	}
2815
	err = copy_from_user(exec_list,
2816
			     u64_to_user_ptr(args->buffers_ptr),
2817
			     sizeof(*exec_list) * count);
2818
	if (err) {
2819
		DRM_DEBUG("copy %d exec entries failed %d\n",
2820
			  args->buffer_count, err);
M
Michal Hocko 已提交
2821 2822
		kvfree(exec_list);
		kvfree(exec2_list);
2823 2824 2825 2826 2827 2828 2829 2830 2831
		return -EFAULT;
	}

	for (i = 0; i < args->buffer_count; i++) {
		exec2_list[i].handle = exec_list[i].handle;
		exec2_list[i].relocation_count = exec_list[i].relocation_count;
		exec2_list[i].relocs_ptr = exec_list[i].relocs_ptr;
		exec2_list[i].alignment = exec_list[i].alignment;
		exec2_list[i].offset = exec_list[i].offset;
2832
		if (INTEL_GEN(to_i915(dev)) < 4)
2833 2834 2835 2836 2837
			exec2_list[i].flags = EXEC_OBJECT_NEEDS_FENCE;
		else
			exec2_list[i].flags = 0;
	}

2838
	err = i915_gem_do_execbuffer(dev, file, &exec2, exec2_list, NULL);
2839
	if (exec2.flags & __EXEC_HAS_RELOC) {
2840
		struct drm_i915_gem_exec_object __user *user_exec_list =
2841
			u64_to_user_ptr(args->buffers_ptr);
2842

2843
		/* Copy the new buffer offsets back to the user's exec list. */
2844
		for (i = 0; i < args->buffer_count; i++) {
2845 2846 2847
			if (!(exec2_list[i].offset & UPDATE))
				continue;

2848
			exec2_list[i].offset =
2849 2850 2851 2852 2853
				gen8_canonical_addr(exec2_list[i].offset & PIN_OFFSET_MASK);
			exec2_list[i].offset &= PIN_OFFSET_MASK;
			if (__copy_to_user(&user_exec_list[i].offset,
					   &exec2_list[i].offset,
					   sizeof(user_exec_list[i].offset)))
2854
				break;
2855 2856 2857
		}
	}

M
Michal Hocko 已提交
2858 2859
	kvfree(exec_list);
	kvfree(exec2_list);
2860
	return err;
2861 2862 2863
}

int
2864 2865
i915_gem_execbuffer2_ioctl(struct drm_device *dev, void *data,
			   struct drm_file *file)
2866 2867
{
	struct drm_i915_gem_execbuffer2 *args = data;
2868
	struct drm_i915_gem_exec_object2 *exec2_list;
2869
	struct drm_syncobj **fences = NULL;
2870
	const size_t count = args->buffer_count;
2871
	int err;
2872

2873 2874
	if (!check_buffer_count(count)) {
		DRM_DEBUG("execbuf2 with %zd buffers\n", count);
2875 2876 2877
		return -EINVAL;
	}

2878 2879 2880 2881
	if (!i915_gem_check_execbuffer(args))
		return -EINVAL;

	/* Allocate an extra slot for use by the command parser */
2882
	exec2_list = kvmalloc_array(count + 1, eb_element_size(),
2883
				    __GFP_NOWARN | GFP_KERNEL);
2884
	if (exec2_list == NULL) {
2885 2886
		DRM_DEBUG("Failed to allocate exec list for %zd buffers\n",
			  count);
2887 2888
		return -ENOMEM;
	}
2889 2890
	if (copy_from_user(exec2_list,
			   u64_to_user_ptr(args->buffers_ptr),
2891 2892
			   sizeof(*exec2_list) * count)) {
		DRM_DEBUG("copy %zd exec entries failed\n", count);
M
Michal Hocko 已提交
2893
		kvfree(exec2_list);
2894 2895 2896
		return -EFAULT;
	}

2897 2898 2899 2900 2901 2902 2903 2904 2905
	if (args->flags & I915_EXEC_FENCE_ARRAY) {
		fences = get_fence_array(args, file);
		if (IS_ERR(fences)) {
			kvfree(exec2_list);
			return PTR_ERR(fences);
		}
	}

	err = i915_gem_do_execbuffer(dev, file, args, exec2_list, fences);
2906 2907 2908 2909 2910 2911 2912 2913

	/*
	 * Now that we have begun execution of the batchbuffer, we ignore
	 * any new error after this point. Also given that we have already
	 * updated the associated relocations, we try to write out the current
	 * object locations irrespective of any error.
	 */
	if (args->flags & __EXEC_HAS_RELOC) {
2914
		struct drm_i915_gem_exec_object2 __user *user_exec_list =
2915 2916
			u64_to_user_ptr(args->buffers_ptr);
		unsigned int i;
2917

2918
		/* Copy the new buffer offsets back to the user's exec list. */
2919 2920 2921 2922 2923 2924 2925 2926
		/*
		 * Note: count * sizeof(*user_exec_list) does not overflow,
		 * because we checked 'count' in check_buffer_count().
		 *
		 * And this range already got effectively checked earlier
		 * when we did the "copy_from_user()" above.
		 */
		if (!user_access_begin(user_exec_list, count * sizeof(*user_exec_list)))
2927
			goto end;
2928

2929
		for (i = 0; i < args->buffer_count; i++) {
2930 2931 2932
			if (!(exec2_list[i].offset & UPDATE))
				continue;

2933
			exec2_list[i].offset =
2934 2935 2936 2937
				gen8_canonical_addr(exec2_list[i].offset & PIN_OFFSET_MASK);
			unsafe_put_user(exec2_list[i].offset,
					&user_exec_list[i].offset,
					end_user);
2938
		}
2939 2940
end_user:
		user_access_end();
2941
end:;
2942 2943
	}

2944
	args->flags &= ~__I915_EXEC_UNKNOWN_FLAGS;
2945
	put_fence_array(args, fences);
M
Michal Hocko 已提交
2946
	kvfree(exec2_list);
2947
	return err;
2948
}