mmu.c 44.2 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0-only
2 3 4 5 6
/*
 *  linux/arch/arm/mm/mmu.c
 *
 *  Copyright (C) 1995-2005 Russell King
 */
7
#include <linux/module.h>
8 9 10 11 12
#include <linux/kernel.h>
#include <linux/errno.h>
#include <linux/init.h>
#include <linux/mman.h>
#include <linux/nodemask.h>
R
Russell King 已提交
13
#include <linux/memblock.h>
14
#include <linux/fs.h>
15
#include <linux/vmalloc.h>
16
#include <linux/sizes.h>
17

18
#include <asm/cp15.h>
19
#include <asm/cputype.h>
R
Russell King 已提交
20
#include <asm/sections.h>
21
#include <asm/cachetype.h>
K
Kees Cook 已提交
22
#include <asm/fixmap.h>
23
#include <asm/sections.h>
24
#include <asm/setup.h>
25
#include <asm/smp_plat.h>
26
#include <asm/tlb.h>
N
Nicolas Pitre 已提交
27
#include <asm/highmem.h>
28
#include <asm/system_info.h>
29
#include <asm/traps.h>
30 31
#include <asm/procinfo.h>
#include <asm/memory.h>
32 33 34

#include <asm/mach/arch.h>
#include <asm/mach/map.h>
R
Rob Herring 已提交
35
#include <asm/mach/pci.h>
36
#include <asm/fixmap.h>
37

38
#include "fault.h"
39
#include "mm.h"
40
#include "tcm.h"
41 42 43 44 45 46

/*
 * empty_zero_page is a special page that is used for
 * zero-initialized data and COW.
 */
struct page *empty_zero_page;
47
EXPORT_SYMBOL(empty_zero_page);
48 49 50 51 52 53

/*
 * The pmd table for the upper-most set of pages.
 */
pmd_t *top_pmd;

54 55
pmdval_t user_pmd_table = _PAGE_USER_TABLE;

56 57 58 59 60 61 62 63
#define CPOLICY_UNCACHED	0
#define CPOLICY_BUFFERED	1
#define CPOLICY_WRITETHROUGH	2
#define CPOLICY_WRITEBACK	3
#define CPOLICY_WRITEALLOC	4

static unsigned int cachepolicy __initdata = CPOLICY_WRITEBACK;
static unsigned int ecc_mask __initdata = 0;
64
pgprot_t pgprot_user;
65 66
pgprot_t pgprot_kernel;

67
EXPORT_SYMBOL(pgprot_user);
68 69 70 71 72
EXPORT_SYMBOL(pgprot_kernel);

struct cachepolicy {
	const char	policy[16];
	unsigned int	cr_mask;
73
	pmdval_t	pmd;
74
	pteval_t	pte;
75 76
};

M
Marc Zyngier 已提交
77 78
unsigned long kimage_voffset __ro_after_init;

79 80 81 82 83
static struct cachepolicy cache_policies[] __initdata = {
	{
		.policy		= "uncached",
		.cr_mask	= CR_W|CR_C,
		.pmd		= PMD_SECT_UNCACHED,
84
		.pte		= L_PTE_MT_UNCACHED,
85 86 87 88
	}, {
		.policy		= "buffered",
		.cr_mask	= CR_C,
		.pmd		= PMD_SECT_BUFFERED,
89
		.pte		= L_PTE_MT_BUFFERABLE,
90 91 92 93
	}, {
		.policy		= "writethrough",
		.cr_mask	= 0,
		.pmd		= PMD_SECT_WT,
94
		.pte		= L_PTE_MT_WRITETHROUGH,
95 96 97 98
	}, {
		.policy		= "writeback",
		.cr_mask	= 0,
		.pmd		= PMD_SECT_WB,
99
		.pte		= L_PTE_MT_WRITEBACK,
100 101 102 103
	}, {
		.policy		= "writealloc",
		.cr_mask	= 0,
		.pmd		= PMD_SECT_WBWA,
104
		.pte		= L_PTE_MT_WRITEALLOC,
105 106 107
	}
};

108
#ifdef CONFIG_CPU_CP15
109 110
static unsigned long initial_pmd_value __initdata = 0;

111
/*
112 113 114 115 116
 * Initialise the cache_policy variable with the initial state specified
 * via the "pmd" value.  This is used to ensure that on ARMv6 and later,
 * the C code sets the page tables up with the same policy as the head
 * assembly code, which avoids an illegal state where the TLBs can get
 * confused.  See comments in early_cachepolicy() for more information.
117
 */
118
void __init init_default_cache_policy(unsigned long pmd)
119 120 121
{
	int i;

122 123
	initial_pmd_value = pmd;

124
	pmd &= PMD_SECT_CACHE_MASK;
125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144

	for (i = 0; i < ARRAY_SIZE(cache_policies); i++)
		if (cache_policies[i].pmd == pmd) {
			cachepolicy = i;
			break;
		}

	if (i == ARRAY_SIZE(cache_policies))
		pr_err("ERROR: could not find cache policy\n");
}

/*
 * These are useful for identifying cache coherency problems by allowing
 * the cache or the cache and writebuffer to be turned off.  (Note: the
 * write buffer should not be on and the cache off).
 */
static int __init early_cachepolicy(char *p)
{
	int i, selected = -1;

145 146 147
	for (i = 0; i < ARRAY_SIZE(cache_policies); i++) {
		int len = strlen(cache_policies[i].policy);

148
		if (memcmp(p, cache_policies[i].policy, len) == 0) {
149
			selected = i;
150 151 152
			break;
		}
	}
153 154 155 156

	if (selected == -1)
		pr_err("ERROR: unknown or unsupported cache policy\n");

157 158 159 160 161 162 163
	/*
	 * This restriction is partly to do with the way we boot; it is
	 * unpredictable to have memory mapped using two different sets of
	 * memory attributes (shared, type, and cache attribs).  We can not
	 * change these attributes once the initial assembly has setup the
	 * page tables.
	 */
164 165 166 167 168 169 170 171 172 173 174
	if (cpu_architecture() >= CPU_ARCH_ARMv6 && selected != cachepolicy) {
		pr_warn("Only cachepolicy=%s supported on ARMv6 and later\n",
			cache_policies[cachepolicy].policy);
		return 0;
	}

	if (selected != cachepolicy) {
		unsigned long cr = __clear_cr(cache_policies[selected].cr_mask);
		cachepolicy = selected;
		flush_cache_all();
		set_cr(cr);
175
	}
176
	return 0;
177
}
178
early_param("cachepolicy", early_cachepolicy);
179

180
static int __init early_nocache(char *__unused)
181 182
{
	char *p = "buffered";
R
Russell King 已提交
183
	pr_warn("nocache is deprecated; use cachepolicy=%s\n", p);
184 185
	early_cachepolicy(p);
	return 0;
186
}
187
early_param("nocache", early_nocache);
188

189
static int __init early_nowrite(char *__unused)
190 191
{
	char *p = "uncached";
R
Russell King 已提交
192
	pr_warn("nowb is deprecated; use cachepolicy=%s\n", p);
193 194
	early_cachepolicy(p);
	return 0;
195
}
196
early_param("nowb", early_nowrite);
197

198
#ifndef CONFIG_ARM_LPAE
199
static int __init early_ecc(char *p)
200
{
201
	if (memcmp(p, "on", 2) == 0)
202
		ecc_mask = PMD_PROTECTION;
203
	else if (memcmp(p, "off", 3) == 0)
204
		ecc_mask = 0;
205
	return 0;
206
}
207
early_param("ecc", early_ecc);
208
#endif
209

210 211 212 213
#else /* ifdef CONFIG_CPU_CP15 */

static int __init early_cachepolicy(char *p)
{
214
	pr_warn("cachepolicy kernel parameter not supported without cp15\n");
215 216 217 218 219
}
early_param("cachepolicy", early_cachepolicy);

static int __init noalign_setup(char *__unused)
{
220
	pr_warn("noalign kernel parameter not supported without cp15\n");
221 222 223 224 225
}
__setup("noalign", noalign_setup);

#endif /* ifdef CONFIG_CPU_CP15 / else */

226
#define PROT_PTE_DEVICE		L_PTE_PRESENT|L_PTE_YOUNG|L_PTE_DIRTY|L_PTE_XN
227
#define PROT_PTE_S2_DEVICE	PROT_PTE_DEVICE
228
#define PROT_SECT_DEVICE	PMD_TYPE_SECT|PMD_SECT_AP_WRITE
229

230
static struct mem_type mem_types[] __ro_after_init = {
231
	[MT_DEVICE] = {		  /* Strongly ordered / ARMv6 shared device */
232 233
		.prot_pte	= PROT_PTE_DEVICE | L_PTE_MT_DEV_SHARED |
				  L_PTE_SHARED,
234
		.prot_l1	= PMD_TYPE_TABLE,
235
		.prot_sect	= PROT_SECT_DEVICE | PMD_SECT_S,
236 237 238
		.domain		= DOMAIN_IO,
	},
	[MT_DEVICE_NONSHARED] = { /* ARMv6 non-shared device */
239
		.prot_pte	= PROT_PTE_DEVICE | L_PTE_MT_DEV_NONSHARED,
240
		.prot_l1	= PMD_TYPE_TABLE,
241
		.prot_sect	= PROT_SECT_DEVICE,
242 243
		.domain		= DOMAIN_IO,
	},
C
Christoph Hellwig 已提交
244
	[MT_DEVICE_CACHED] = {	  /* ioremap_cache */
245
		.prot_pte	= PROT_PTE_DEVICE | L_PTE_MT_DEV_CACHED,
246 247 248
		.prot_l1	= PMD_TYPE_TABLE,
		.prot_sect	= PROT_SECT_DEVICE | PMD_SECT_WB,
		.domain		= DOMAIN_IO,
R
Rob Herring 已提交
249
	},
250
	[MT_DEVICE_WC] = {	/* ioremap_wc */
251
		.prot_pte	= PROT_PTE_DEVICE | L_PTE_MT_DEV_WC,
252
		.prot_l1	= PMD_TYPE_TABLE,
253
		.prot_sect	= PROT_SECT_DEVICE,
254
		.domain		= DOMAIN_IO,
255
	},
256 257 258 259 260 261
	[MT_UNCACHED] = {
		.prot_pte	= PROT_PTE_DEVICE,
		.prot_l1	= PMD_TYPE_TABLE,
		.prot_sect	= PMD_TYPE_SECT | PMD_SECT_XN,
		.domain		= DOMAIN_IO,
	},
262
	[MT_CACHECLEAN] = {
263
		.prot_sect = PMD_TYPE_SECT | PMD_SECT_XN,
264 265
		.domain    = DOMAIN_KERNEL,
	},
266
#ifndef CONFIG_ARM_LPAE
267
	[MT_MINICLEAN] = {
268
		.prot_sect = PMD_TYPE_SECT | PMD_SECT_XN | PMD_SECT_MINICACHE,
269 270
		.domain    = DOMAIN_KERNEL,
	},
271
#endif
272 273
	[MT_LOW_VECTORS] = {
		.prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
274
				L_PTE_RDONLY,
275
		.prot_l1   = PMD_TYPE_TABLE,
276
		.domain    = DOMAIN_VECTORS,
277 278 279
	},
	[MT_HIGH_VECTORS] = {
		.prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
280
				L_PTE_USER | L_PTE_RDONLY,
281
		.prot_l1   = PMD_TYPE_TABLE,
282
		.domain    = DOMAIN_VECTORS,
283
	},
284
	[MT_MEMORY_RWX] = {
285
		.prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY,
286
		.prot_l1   = PMD_TYPE_TABLE,
287
		.prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE,
288 289
		.domain    = DOMAIN_KERNEL,
	},
290 291 292 293 294 295 296
	[MT_MEMORY_RW] = {
		.prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
			     L_PTE_XN,
		.prot_l1   = PMD_TYPE_TABLE,
		.prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE,
		.domain    = DOMAIN_KERNEL,
	},
297
	[MT_ROM] = {
298
		.prot_sect = PMD_TYPE_SECT,
299 300
		.domain    = DOMAIN_KERNEL,
	},
301
	[MT_MEMORY_RWX_NONCACHED] = {
302
		.prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
303
				L_PTE_MT_BUFFERABLE,
304
		.prot_l1   = PMD_TYPE_TABLE,
305 306 307
		.prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE,
		.domain    = DOMAIN_KERNEL,
	},
308
	[MT_MEMORY_RW_DTCM] = {
309
		.prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
310
				L_PTE_XN,
311 312 313
		.prot_l1   = PMD_TYPE_TABLE,
		.prot_sect = PMD_TYPE_SECT | PMD_SECT_XN,
		.domain    = DOMAIN_KERNEL,
314
	},
315
	[MT_MEMORY_RWX_ITCM] = {
316
		.prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY,
317
		.prot_l1   = PMD_TYPE_TABLE,
318
		.domain    = DOMAIN_KERNEL,
319
	},
320
	[MT_MEMORY_RW_SO] = {
321
		.prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
322
				L_PTE_MT_UNCACHED | L_PTE_XN,
323 324 325 326 327
		.prot_l1   = PMD_TYPE_TABLE,
		.prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE | PMD_SECT_S |
				PMD_SECT_UNCACHED | PMD_SECT_XN,
		.domain    = DOMAIN_KERNEL,
	},
328
	[MT_MEMORY_DMA_READY] = {
329 330
		.prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
				L_PTE_XN,
331 332 333
		.prot_l1   = PMD_TYPE_TABLE,
		.domain    = DOMAIN_KERNEL,
	},
334 335
};

336 337 338 339
const struct mem_type *get_mem_type(unsigned int type)
{
	return type < ARRAY_SIZE(mem_types) ? &mem_types[type] : NULL;
}
340
EXPORT_SYMBOL(get_mem_type);
341

342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373
static pte_t *(*pte_offset_fixmap)(pmd_t *dir, unsigned long addr);

static pte_t bm_pte[PTRS_PER_PTE + PTE_HWTABLE_PTRS]
	__aligned(PTE_HWTABLE_OFF + PTE_HWTABLE_SIZE) __initdata;

static pte_t * __init pte_offset_early_fixmap(pmd_t *dir, unsigned long addr)
{
	return &bm_pte[pte_index(addr)];
}

static pte_t *pte_offset_late_fixmap(pmd_t *dir, unsigned long addr)
{
	return pte_offset_kernel(dir, addr);
}

static inline pmd_t * __init fixmap_pmd(unsigned long addr)
{
	pgd_t *pgd = pgd_offset_k(addr);
	pud_t *pud = pud_offset(pgd, addr);
	pmd_t *pmd = pmd_offset(pud, addr);

	return pmd;
}

void __init early_fixmap_init(void)
{
	pmd_t *pmd;

	/*
	 * The early fixmap range spans multiple pmds, for which
	 * we are not prepared:
	 */
374
	BUILD_BUG_ON((__fix_to_virt(__end_of_early_ioremap_region) >> PMD_SHIFT)
375 376 377 378 379 380 381 382
		     != FIXADDR_TOP >> PMD_SHIFT);

	pmd = fixmap_pmd(FIXADDR_TOP);
	pmd_populate_kernel(&init_mm, pmd, bm_pte);

	pte_offset_fixmap = pte_offset_early_fixmap;
}

K
Kees Cook 已提交
383 384 385 386 387 388 389 390
/*
 * To avoid TLB flush broadcasts, this uses local_flush_tlb_kernel_range().
 * As a result, this can only be called with preemption disabled, as under
 * stop_machine().
 */
void __set_fixmap(enum fixed_addresses idx, phys_addr_t phys, pgprot_t prot)
{
	unsigned long vaddr = __fix_to_virt(idx);
391
	pte_t *pte = pte_offset_fixmap(pmd_off_k(vaddr), vaddr);
K
Kees Cook 已提交
392 393 394 395 396 397

	/* Make sure fixmap region does not exceed available allocation. */
	BUILD_BUG_ON(FIXADDR_START + (__end_of_fixed_addresses * PAGE_SIZE) >
		     FIXADDR_END);
	BUG_ON(idx >= __end_of_fixed_addresses);

398 399 400 401 402
	/* we only support device mappings until pgprot_kernel has been set */
	if (WARN_ON(pgprot_val(prot) != pgprot_val(FIXMAP_PAGE_IO) &&
		    pgprot_val(pgprot_kernel) == 0))
		return;

K
Kees Cook 已提交
403 404 405 406 407 408 409 410
	if (pgprot_val(prot))
		set_pte_at(NULL, vaddr, pte,
			pfn_pte(phys >> PAGE_SHIFT, prot));
	else
		pte_clear(NULL, vaddr, pte);
	local_flush_tlb_kernel_range(vaddr, vaddr + PAGE_SIZE);
}

411 412 413 414 415 416 417
/*
 * Adjust the PMD section entries according to the CPU in use.
 */
static void __init build_mem_type_table(void)
{
	struct cachepolicy *cp;
	unsigned int cr = get_cr();
418
	pteval_t user_pgprot, kern_pgprot, vecs_pgprot;
419 420 421
	int cpu_arch = cpu_architecture();
	int i;

422
	if (cpu_arch < CPU_ARCH_ARMv6) {
423
#if defined(CONFIG_CPU_DCACHE_DISABLE)
424 425
		if (cachepolicy > CPOLICY_BUFFERED)
			cachepolicy = CPOLICY_BUFFERED;
426
#elif defined(CONFIG_CPU_DCACHE_WRITETHROUGH)
427 428
		if (cachepolicy > CPOLICY_WRITETHROUGH)
			cachepolicy = CPOLICY_WRITETHROUGH;
429
#endif
430
	}
431 432 433 434 435
	if (cpu_arch < CPU_ARCH_ARMv5) {
		if (cachepolicy >= CPOLICY_WRITEALLOC)
			cachepolicy = CPOLICY_WRITEBACK;
		ecc_mask = 0;
	}
436

437 438 439 440 441 442 443 444 445
	if (is_smp()) {
		if (cachepolicy != CPOLICY_WRITEALLOC) {
			pr_warn("Forcing write-allocate cache policy for SMP\n");
			cachepolicy = CPOLICY_WRITEALLOC;
		}
		if (!(initial_pmd_value & PMD_SECT_S)) {
			pr_warn("Forcing shared mappings for SMP\n");
			initial_pmd_value |= PMD_SECT_S;
		}
446
	}
447

448
	/*
449 450 451
	 * Strip out features not present on earlier architectures.
	 * Pre-ARMv5 CPUs don't have TEX bits.  Pre-ARMv6 CPUs or those
	 * without extended page tables don't have the 'Shared' bit.
452
	 */
453 454 455 456 457 458
	if (cpu_arch < CPU_ARCH_ARMv5)
		for (i = 0; i < ARRAY_SIZE(mem_types); i++)
			mem_types[i].prot_sect &= ~PMD_SECT_TEX(7);
	if ((cpu_arch < CPU_ARCH_ARMv6 || !(cr & CR_XP)) && !cpu_is_xsc3())
		for (i = 0; i < ARRAY_SIZE(mem_types); i++)
			mem_types[i].prot_sect &= ~PMD_SECT_S;
459 460

	/*
461 462 463
	 * ARMv5 and lower, bit 4 must be set for page tables (was: cache
	 * "update-able on write" bit on ARM610).  However, Xscale and
	 * Xscale3 require this bit to be cleared.
464
	 */
465
	if (cpu_is_xscale_family()) {
466
		for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
467
			mem_types[i].prot_sect &= ~PMD_BIT4;
468 469 470 471
			mem_types[i].prot_l1 &= ~PMD_BIT4;
		}
	} else if (cpu_arch < CPU_ARCH_ARMv6) {
		for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
472 473
			if (mem_types[i].prot_l1)
				mem_types[i].prot_l1 |= PMD_BIT4;
474 475 476 477
			if (mem_types[i].prot_sect)
				mem_types[i].prot_sect |= PMD_BIT4;
		}
	}
478

479 480 481 482 483 484 485 486 487 488 489 490 491
	/*
	 * Mark the device areas according to the CPU/architecture.
	 */
	if (cpu_is_xsc3() || (cpu_arch >= CPU_ARCH_ARMv6 && (cr & CR_XP))) {
		if (!cpu_is_xsc3()) {
			/*
			 * Mark device regions on ARMv6+ as execute-never
			 * to prevent speculative instruction fetches.
			 */
			mem_types[MT_DEVICE].prot_sect |= PMD_SECT_XN;
			mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_XN;
			mem_types[MT_DEVICE_CACHED].prot_sect |= PMD_SECT_XN;
			mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_XN;
492 493 494

			/* Also setup NX memory mapping */
			mem_types[MT_MEMORY_RW].prot_sect |= PMD_SECT_XN;
495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539
		}
		if (cpu_arch >= CPU_ARCH_ARMv7 && (cr & CR_TRE)) {
			/*
			 * For ARMv7 with TEX remapping,
			 * - shared device is SXCB=1100
			 * - nonshared device is SXCB=0100
			 * - write combine device mem is SXCB=0001
			 * (Uncached Normal memory)
			 */
			mem_types[MT_DEVICE].prot_sect |= PMD_SECT_TEX(1);
			mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(1);
			mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_BUFFERABLE;
		} else if (cpu_is_xsc3()) {
			/*
			 * For Xscale3,
			 * - shared device is TEXCB=00101
			 * - nonshared device is TEXCB=01000
			 * - write combine device mem is TEXCB=00100
			 * (Inner/Outer Uncacheable in xsc3 parlance)
			 */
			mem_types[MT_DEVICE].prot_sect |= PMD_SECT_TEX(1) | PMD_SECT_BUFFERED;
			mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(2);
			mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_TEX(1);
		} else {
			/*
			 * For ARMv6 and ARMv7 without TEX remapping,
			 * - shared device is TEXCB=00001
			 * - nonshared device is TEXCB=01000
			 * - write combine device mem is TEXCB=00100
			 * (Uncached Normal in ARMv6 parlance).
			 */
			mem_types[MT_DEVICE].prot_sect |= PMD_SECT_BUFFERED;
			mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(2);
			mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_TEX(1);
		}
	} else {
		/*
		 * On others, write combining is "Uncached/Buffered"
		 */
		mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_BUFFERABLE;
	}

	/*
	 * Now deal with the memory-type mappings
	 */
540
	cp = &cache_policies[cachepolicy];
541 542
	vecs_pgprot = kern_pgprot = user_pgprot = cp->pte;

543
#ifndef CONFIG_ARM_LPAE
544 545 546 547 548 549 550
	/*
	 * We don't use domains on ARMv6 (since this causes problems with
	 * v6/v7 kernels), so we must use a separate memory type for user
	 * r/o, kernel r/w to map the vectors page.
	 */
	if (cpu_arch == CPU_ARCH_ARMv6)
		vecs_pgprot |= L_PTE_MT_VECTORS;
551 552 553 554 555 556

	/*
	 * Check is it with support for the PXN bit
	 * in the Short-descriptor translation table format descriptors.
	 */
	if (cpu_arch == CPU_ARCH_ARMv7 &&
557
		(read_cpuid_ext(CPUID_EXT_MMFR0) & 0xF) >= 4) {
558 559
		user_pmd_table |= PMD_PXNTABLE;
	}
560
#endif
561

562 563 564 565
	/*
	 * ARMv6 and above have extended page tables.
	 */
	if (cpu_arch >= CPU_ARCH_ARMv6 && (cr & CR_XP)) {
566
#ifndef CONFIG_ARM_LPAE
567 568 569 570 571 572 573
		/*
		 * Mark cache clean areas and XIP ROM read only
		 * from SVC mode and no access from userspace.
		 */
		mem_types[MT_ROM].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
		mem_types[MT_MINICLEAN].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
		mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
574
#endif
575

576 577 578 579 580 581
		/*
		 * If the initial page tables were created with the S bit
		 * set, then we need to do the same here for the same
		 * reasons given in early_cachepolicy().
		 */
		if (initial_pmd_value & PMD_SECT_S) {
582 583 584 585 586 587 588
			user_pgprot |= L_PTE_SHARED;
			kern_pgprot |= L_PTE_SHARED;
			vecs_pgprot |= L_PTE_SHARED;
			mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_S;
			mem_types[MT_DEVICE_WC].prot_pte |= L_PTE_SHARED;
			mem_types[MT_DEVICE_CACHED].prot_sect |= PMD_SECT_S;
			mem_types[MT_DEVICE_CACHED].prot_pte |= L_PTE_SHARED;
589 590
			mem_types[MT_MEMORY_RWX].prot_sect |= PMD_SECT_S;
			mem_types[MT_MEMORY_RWX].prot_pte |= L_PTE_SHARED;
591 592
			mem_types[MT_MEMORY_RW].prot_sect |= PMD_SECT_S;
			mem_types[MT_MEMORY_RW].prot_pte |= L_PTE_SHARED;
593
			mem_types[MT_MEMORY_DMA_READY].prot_pte |= L_PTE_SHARED;
594 595
			mem_types[MT_MEMORY_RWX_NONCACHED].prot_sect |= PMD_SECT_S;
			mem_types[MT_MEMORY_RWX_NONCACHED].prot_pte |= L_PTE_SHARED;
596
		}
597 598
	}

599 600 601 602 603 604 605
	/*
	 * Non-cacheable Normal - intended for memory areas that must
	 * not cause dirty cache line writebacks when used
	 */
	if (cpu_arch >= CPU_ARCH_ARMv6) {
		if (cpu_arch >= CPU_ARCH_ARMv7 && (cr & CR_TRE)) {
			/* Non-cacheable Normal is XCB = 001 */
606
			mem_types[MT_MEMORY_RWX_NONCACHED].prot_sect |=
607 608 609
				PMD_SECT_BUFFERED;
		} else {
			/* For both ARMv6 and non-TEX-remapping ARMv7 */
610
			mem_types[MT_MEMORY_RWX_NONCACHED].prot_sect |=
611 612 613
				PMD_SECT_TEX(1);
		}
	} else {
614
		mem_types[MT_MEMORY_RWX_NONCACHED].prot_sect |= PMD_SECT_BUFFERABLE;
615 616
	}

617 618 619 620 621 622
#ifdef CONFIG_ARM_LPAE
	/*
	 * Do not generate access flag faults for the kernel mappings.
	 */
	for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
		mem_types[i].prot_pte |= PTE_EXT_AF;
623 624
		if (mem_types[i].prot_sect)
			mem_types[i].prot_sect |= PMD_SECT_AF;
625 626 627
	}
	kern_pgprot |= PTE_EXT_AF;
	vecs_pgprot |= PTE_EXT_AF;
628 629 630 631 632

	/*
	 * Set PXN for user mappings
	 */
	user_pgprot |= PTE_EXT_PXN;
633 634
#endif

635
	for (i = 0; i < 16; i++) {
636
		pteval_t v = pgprot_val(protection_map[i]);
637
		protection_map[i] = __pgprot(v | user_pgprot);
638 639
	}

640 641
	mem_types[MT_LOW_VECTORS].prot_pte |= vecs_pgprot;
	mem_types[MT_HIGH_VECTORS].prot_pte |= vecs_pgprot;
642

643
	pgprot_user   = __pgprot(L_PTE_PRESENT | L_PTE_YOUNG | user_pgprot);
644
	pgprot_kernel = __pgprot(L_PTE_PRESENT | L_PTE_YOUNG |
645
				 L_PTE_DIRTY | kern_pgprot);
646 647 648

	mem_types[MT_LOW_VECTORS].prot_l1 |= ecc_mask;
	mem_types[MT_HIGH_VECTORS].prot_l1 |= ecc_mask;
649 650
	mem_types[MT_MEMORY_RWX].prot_sect |= ecc_mask | cp->pmd;
	mem_types[MT_MEMORY_RWX].prot_pte |= kern_pgprot;
651 652
	mem_types[MT_MEMORY_RW].prot_sect |= ecc_mask | cp->pmd;
	mem_types[MT_MEMORY_RW].prot_pte |= kern_pgprot;
653
	mem_types[MT_MEMORY_DMA_READY].prot_pte |= kern_pgprot;
654
	mem_types[MT_MEMORY_RWX_NONCACHED].prot_sect |= ecc_mask;
655 656 657 658 659 660 661 662 663 664 665
	mem_types[MT_ROM].prot_sect |= cp->pmd;

	switch (cp->pmd) {
	case PMD_SECT_WT:
		mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_WT;
		break;
	case PMD_SECT_WB:
	case PMD_SECT_WBWA:
		mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_WB;
		break;
	}
666 667
	pr_info("Memory policy: %sData cache %s\n",
		ecc_mask ? "ECC enabled, " : "", cp->policy);
668 669 670 671 672 673 674 675

	for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
		struct mem_type *t = &mem_types[i];
		if (t->prot_l1)
			t->prot_l1 |= PMD_DOMAIN(t->domain);
		if (t->prot_sect)
			t->prot_sect |= PMD_DOMAIN(t->domain);
	}
676 677
}

678 679 680 681 682 683 684 685 686 687 688 689 690
#ifdef CONFIG_ARM_DMA_MEM_BUFFERABLE
pgprot_t phys_mem_access_prot(struct file *file, unsigned long pfn,
			      unsigned long size, pgprot_t vma_prot)
{
	if (!pfn_valid(pfn))
		return pgprot_noncached(vma_prot);
	else if (file->f_flags & O_SYNC)
		return pgprot_writecombine(vma_prot);
	return vma_prot;
}
EXPORT_SYMBOL(phys_mem_access_prot);
#endif

691 692
#define vectors_base()	(vectors_high() ? 0xffff0000 : 0)

693 694
static void __init *early_alloc(unsigned long sz)
{
695 696 697 698 699 700 701
	void *ptr = memblock_alloc(sz, sz);

	if (!ptr)
		panic("%s: Failed to allocate %lu bytes align=0x%lx\n",
		      __func__, sz, sz);

	return ptr;
702 703
}

704 705
static void *__init late_alloc(unsigned long sz)
{
706
	void *ptr = (void *)__get_free_pages(GFP_PGTABLE_KERNEL, get_order(sz));
707

708
	if (!ptr || !pgtable_pte_page_ctor(virt_to_page(ptr)))
709
		BUG();
710 711 712
	return ptr;
}

713
static pte_t * __init arm_pte_alloc(pmd_t *pmd, unsigned long addr,
714 715
				unsigned long prot,
				void *(*alloc)(unsigned long sz))
716
{
717
	if (pmd_none(*pmd)) {
718
		pte_t *pte = alloc(PTE_HWTABLE_OFF + PTE_HWTABLE_SIZE);
719
		__pmd_populate(pmd, __pa(pte), prot);
720
	}
R
Russell King 已提交
721 722 723
	BUG_ON(pmd_bad(*pmd));
	return pte_offset_kernel(pmd, addr);
}
724

725 726 727
static pte_t * __init early_pte_alloc(pmd_t *pmd, unsigned long addr,
				      unsigned long prot)
{
728
	return arm_pte_alloc(pmd, addr, prot, early_alloc);
729 730
}

R
Russell King 已提交
731 732
static void __init alloc_init_pte(pmd_t *pmd, unsigned long addr,
				  unsigned long end, unsigned long pfn,
733
				  const struct mem_type *type,
734 735
				  void *(*alloc)(unsigned long sz),
				  bool ng)
R
Russell King 已提交
736
{
737
	pte_t *pte = arm_pte_alloc(pmd, addr, type->prot_l1, alloc);
738
	do {
739 740
		set_pte_ext(pte, pfn_pte(pfn, __pgprot(type->prot_pte)),
			    ng ? PTE_EXT_NG : 0);
741 742
		pfn++;
	} while (pte++, addr += PAGE_SIZE, addr != end);
743 744
}

745
static void __init __map_init_section(pmd_t *pmd, unsigned long addr,
746
			unsigned long end, phys_addr_t phys,
747
			const struct mem_type *type, bool ng)
748
{
749 750
	pmd_t *p = pmd;

751
#ifndef CONFIG_ARM_LPAE
752
	/*
753 754 755 756 757 758 759
	 * In classic MMU format, puds and pmds are folded in to
	 * the pgds. pmd_offset gives the PGD entry. PGDs refer to a
	 * group of L1 entries making up one logical pointer to
	 * an L2 table (2MB), where as PMDs refer to the individual
	 * L1 entries (1MB). Hence increment to get the correct
	 * offset for odd 1MB sections.
	 * (See arch/arm/include/asm/pgtable-2level.h)
760
	 */
761 762
	if (addr & SECTION_SIZE)
		pmd++;
763
#endif
764
	do {
765
		*pmd = __pmd(phys | type->prot_sect | (ng ? PMD_SECT_nG : 0));
766 767
		phys += SECTION_SIZE;
	} while (pmd++, addr += SECTION_SIZE, addr != end);
768

769
	flush_pmd_entry(p);
770
}
771

772 773
static void __init alloc_init_pmd(pud_t *pud, unsigned long addr,
				      unsigned long end, phys_addr_t phys,
774
				      const struct mem_type *type,
775
				      void *(*alloc)(unsigned long sz), bool ng)
776 777 778 779 780
{
	pmd_t *pmd = pmd_offset(pud, addr);
	unsigned long next;

	do {
781
		/*
782 783
		 * With LPAE, we must loop over to map
		 * all the pmds for the given range.
784
		 */
785 786 787 788 789 790 791 792
		next = pmd_addr_end(addr, end);

		/*
		 * Try a section mapping - addr, next and phys must all be
		 * aligned to a section boundary.
		 */
		if (type->prot_sect &&
				((addr | next | phys) & ~SECTION_MASK) == 0) {
793
			__map_init_section(pmd, addr, next, phys, type, ng);
794 795
		} else {
			alloc_init_pte(pmd, addr, next,
796
				       __phys_to_pfn(phys), type, alloc, ng);
797 798 799 800 801
		}

		phys += next - addr;

	} while (pmd++, addr = next, addr != end);
802 803
}

804
static void __init alloc_init_pud(pgd_t *pgd, unsigned long addr,
805
				  unsigned long end, phys_addr_t phys,
806
				  const struct mem_type *type,
807
				  void *(*alloc)(unsigned long sz), bool ng)
R
Russell King 已提交
808 809 810 811 812 813
{
	pud_t *pud = pud_offset(pgd, addr);
	unsigned long next;

	do {
		next = pud_addr_end(addr, end);
814
		alloc_init_pmd(pud, addr, next, phys, type, alloc, ng);
R
Russell King 已提交
815 816 817 818
		phys += next - addr;
	} while (pud++, addr = next, addr != end);
}

819
#ifndef CONFIG_ARM_LPAE
820 821
static void __init create_36bit_mapping(struct mm_struct *mm,
					struct map_desc *md,
822 823
					const struct mem_type *type,
					bool ng)
824
{
825 826
	unsigned long addr, length, end;
	phys_addr_t phys;
827 828 829
	pgd_t *pgd;

	addr = md->virtual;
830
	phys = __pfn_to_phys(md->pfn);
831 832 833
	length = PAGE_ALIGN(md->length);

	if (!(cpu_architecture() >= CPU_ARCH_ARMv6 || cpu_is_xsc3())) {
R
Russell King 已提交
834
		pr_err("MM: CPU does not support supersection mapping for 0x%08llx at 0x%08lx\n",
835
		       (long long)__pfn_to_phys((u64)md->pfn), addr);
836 837 838 839 840 841 842 843 844 845
		return;
	}

	/* N.B.	ARMv6 supersections are only defined to work with domain 0.
	 *	Since domain assignments can in fact be arbitrary, the
	 *	'domain == 0' check below is required to insure that ARMv6
	 *	supersections are only allocated for domain 0 regardless
	 *	of the actual domain assignments in use.
	 */
	if (type->domain) {
R
Russell King 已提交
846
		pr_err("MM: invalid domain in supersection mapping for 0x%08llx at 0x%08lx\n",
847
		       (long long)__pfn_to_phys((u64)md->pfn), addr);
848 849 850 851
		return;
	}

	if ((addr | length | __pfn_to_phys(md->pfn)) & ~SUPERSECTION_MASK) {
R
Russell King 已提交
852
		pr_err("MM: cannot create mapping for 0x%08llx at 0x%08lx invalid alignment\n",
853
		       (long long)__pfn_to_phys((u64)md->pfn), addr);
854 855 856 857 858 859 860 861 862
		return;
	}

	/*
	 * Shift bits [35:32] of address into bits [23:20] of PMD
	 * (See ARMv6 spec).
	 */
	phys |= (((md->pfn >> (32 - PAGE_SHIFT)) & 0xF) << 20);

863
	pgd = pgd_offset(mm, addr);
864 865
	end = addr + length;
	do {
R
Russell King 已提交
866 867
		pud_t *pud = pud_offset(pgd, addr);
		pmd_t *pmd = pmd_offset(pud, addr);
868 869 870
		int i;

		for (i = 0; i < 16; i++)
871 872
			*pmd++ = __pmd(phys | type->prot_sect | PMD_SECT_SUPER |
				       (ng ? PMD_SECT_nG : 0));
873 874 875 876 877 878

		addr += SUPERSECTION_SIZE;
		phys += SUPERSECTION_SIZE;
		pgd += SUPERSECTION_SIZE >> PGDIR_SHIFT;
	} while (addr != end);
}
879
#endif	/* !CONFIG_ARM_LPAE */
880

881
static void __init __create_mapping(struct mm_struct *mm, struct map_desc *md,
882 883
				    void *(*alloc)(unsigned long sz),
				    bool ng)
884
{
885 886
	unsigned long addr, length, end;
	phys_addr_t phys;
887
	const struct mem_type *type;
888
	pgd_t *pgd;
889

890
	type = &mem_types[md->type];
891

892
#ifndef CONFIG_ARM_LPAE
893 894 895
	/*
	 * Catch 36-bit addresses
	 */
896
	if (md->pfn >= 0x100000) {
897
		create_36bit_mapping(mm, md, type, ng);
898
		return;
899
	}
900
#endif
901

902
	addr = md->virtual & PAGE_MASK;
903
	phys = __pfn_to_phys(md->pfn);
904
	length = PAGE_ALIGN(md->length + (md->virtual & ~PAGE_MASK));
905

906
	if (type->prot_l1 == 0 && ((addr | phys | length) & ~SECTION_MASK)) {
R
Russell King 已提交
907 908
		pr_warn("BUG: map for 0x%08llx at 0x%08lx can not be mapped using pages, ignoring.\n",
			(long long)__pfn_to_phys(md->pfn), addr);
909 910 911
		return;
	}

912
	pgd = pgd_offset(mm, addr);
913 914 915
	end = addr + length;
	do {
		unsigned long next = pgd_addr_end(addr, end);
916

917
		alloc_init_pud(pgd, addr, next, phys, type, alloc, ng);
918

919 920 921
		phys += next - addr;
		addr = next;
	} while (pgd++, addr != end);
922 923
}

924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945
/*
 * Create the page directory entries and any necessary
 * page tables for the mapping specified by `md'.  We
 * are able to cope here with varying sizes and address
 * offsets, and we take full advantage of sections and
 * supersections.
 */
static void __init create_mapping(struct map_desc *md)
{
	if (md->virtual != vectors_base() && md->virtual < TASK_SIZE) {
		pr_warn("BUG: not creating mapping for 0x%08llx at 0x%08lx in user region\n",
			(long long)__pfn_to_phys((u64)md->pfn), md->virtual);
		return;
	}

	if ((md->type == MT_DEVICE || md->type == MT_ROM) &&
	    md->virtual >= PAGE_OFFSET && md->virtual < FIXADDR_START &&
	    (md->virtual < VMALLOC_START || md->virtual >= VMALLOC_END)) {
		pr_warn("BUG: mapping for 0x%08llx at 0x%08lx out of vmalloc space\n",
			(long long)__pfn_to_phys((u64)md->pfn), md->virtual);
	}

946
	__create_mapping(&init_mm, md, early_alloc, false);
947 948
}

949 950 951 952 953 954 955 956 957 958 959 960
void __init create_mapping_late(struct mm_struct *mm, struct map_desc *md,
				bool ng)
{
#ifdef CONFIG_ARM_LPAE
	pud_t *pud = pud_alloc(mm, pgd_offset(mm, md->virtual), md->virtual);
	if (WARN_ON(!pud))
		return;
	pmd_alloc(mm, pud, 0);
#endif
	__create_mapping(mm, md, late_alloc, ng);
}

961 962 963 964 965
/*
 * Create the architecture specific mappings
 */
void __init iotable_init(struct map_desc *io_desc, int nr)
{
966 967
	struct map_desc *md;
	struct vm_struct *vm;
968
	struct static_vm *svm;
969 970 971

	if (!nr)
		return;
972

973
	svm = memblock_alloc(sizeof(*svm) * nr, __alignof__(*svm));
974 975 976
	if (!svm)
		panic("%s: Failed to allocate %zu bytes align=0x%zx\n",
		      __func__, sizeof(*svm) * nr, __alignof__(*svm));
977 978 979

	for (md = io_desc; nr; md++, nr--) {
		create_mapping(md);
980 981

		vm = &svm->vm;
982 983
		vm->addr = (void *)(md->virtual & PAGE_MASK);
		vm->size = PAGE_ALIGN(md->length + (md->virtual & ~PAGE_MASK));
R
Rob Herring 已提交
984 985
		vm->phys_addr = __pfn_to_phys(md->pfn);
		vm->flags = VM_IOREMAP | VM_ARM_STATIC_MAPPING;
986
		vm->flags |= VM_ARM_MTYPE(md->type);
987
		vm->caller = iotable_init;
988
		add_static_vm_early(svm++);
989
	}
990 991
}

R
Rob Herring 已提交
992 993 994 995
void __init vm_reserve_area_early(unsigned long addr, unsigned long size,
				  void *caller)
{
	struct vm_struct *vm;
996 997
	struct static_vm *svm;

998
	svm = memblock_alloc(sizeof(*svm), __alignof__(*svm));
999 1000 1001
	if (!svm)
		panic("%s: Failed to allocate %zu bytes align=0x%zx\n",
		      __func__, sizeof(*svm), __alignof__(*svm));
R
Rob Herring 已提交
1002

1003
	vm = &svm->vm;
R
Rob Herring 已提交
1004 1005
	vm->addr = (void *)addr;
	vm->size = size;
1006
	vm->flags = VM_IOREMAP | VM_ARM_EMPTY_MAPPING;
R
Rob Herring 已提交
1007
	vm->caller = caller;
1008
	add_static_vm_early(svm);
R
Rob Herring 已提交
1009 1010
}

1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027
#ifndef CONFIG_ARM_LPAE

/*
 * The Linux PMD is made of two consecutive section entries covering 2MB
 * (see definition in include/asm/pgtable-2level.h).  However a call to
 * create_mapping() may optimize static mappings by using individual
 * 1MB section mappings.  This leaves the actual PMD potentially half
 * initialized if the top or bottom section entry isn't used, leaving it
 * open to problems if a subsequent ioremap() or vmalloc() tries to use
 * the virtual space left free by that unused section entry.
 *
 * Let's avoid the issue by inserting dummy vm entries covering the unused
 * PMD halves once the static mappings are in place.
 */

static void __init pmd_empty_section_gap(unsigned long addr)
{
R
Rob Herring 已提交
1028
	vm_reserve_area_early(addr, SECTION_SIZE, pmd_empty_section_gap);
1029 1030 1031 1032
}

static void __init fill_pmd_gaps(void)
{
1033
	struct static_vm *svm;
1034 1035 1036 1037
	struct vm_struct *vm;
	unsigned long addr, next = 0;
	pmd_t *pmd;

1038 1039
	list_for_each_entry(svm, &static_vmlist, list) {
		vm = &svm->vm;
1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075
		addr = (unsigned long)vm->addr;
		if (addr < next)
			continue;

		/*
		 * Check if this vm starts on an odd section boundary.
		 * If so and the first section entry for this PMD is free
		 * then we block the corresponding virtual address.
		 */
		if ((addr & ~PMD_MASK) == SECTION_SIZE) {
			pmd = pmd_off_k(addr);
			if (pmd_none(*pmd))
				pmd_empty_section_gap(addr & PMD_MASK);
		}

		/*
		 * Then check if this vm ends on an odd section boundary.
		 * If so and the second section entry for this PMD is empty
		 * then we block the corresponding virtual address.
		 */
		addr += vm->size;
		if ((addr & ~PMD_MASK) == SECTION_SIZE) {
			pmd = pmd_off_k(addr) + 1;
			if (pmd_none(*pmd))
				pmd_empty_section_gap(addr);
		}

		/* no need to look at any vm entry until we hit the next PMD */
		next = (addr + PMD_SIZE - 1) & PMD_MASK;
	}
}

#else
#define fill_pmd_gaps() do { } while (0)
#endif

R
Rob Herring 已提交
1076 1077 1078
#if defined(CONFIG_PCI) && !defined(CONFIG_NEED_MACH_IO_H)
static void __init pci_reserve_io(void)
{
1079
	struct static_vm *svm;
R
Rob Herring 已提交
1080

1081 1082 1083
	svm = find_static_vm_vaddr((void *)PCI_IO_VIRT_BASE);
	if (svm)
		return;
R
Rob Herring 已提交
1084 1085 1086 1087 1088 1089 1090

	vm_reserve_area_early(PCI_IO_VIRT_BASE, SZ_2M, pci_reserve_io);
}
#else
#define pci_reserve_io() do { } while (0)
#endif

R
Rob Herring 已提交
1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102
#ifdef CONFIG_DEBUG_LL
void __init debug_ll_io_init(void)
{
	struct map_desc map;

	debug_ll_addr(&map.pfn, &map.virtual);
	if (!map.pfn || !map.virtual)
		return;
	map.pfn = __phys_to_pfn(map.pfn);
	map.virtual &= PAGE_MASK;
	map.length = PAGE_SIZE;
	map.type = MT_DEVICE;
1103
	iotable_init(&map, 1);
R
Rob Herring 已提交
1104 1105 1106
}
#endif

1107 1108
static void * __initdata vmalloc_min =
	(void *)(VMALLOC_END - (240 << 20) - VMALLOC_OFFSET);
1109 1110 1111 1112

/*
 * vmalloc=size forces the vmalloc area to be exactly 'size'
 * bytes. This can be used to increase (or decrease) the vmalloc
1113
 * area - the default is 240m.
1114
 */
1115
static int __init early_vmalloc(char *arg)
1116
{
R
Russell King 已提交
1117
	unsigned long vmalloc_reserve = memparse(arg, NULL);
1118 1119 1120

	if (vmalloc_reserve < SZ_16M) {
		vmalloc_reserve = SZ_16M;
R
Russell King 已提交
1121
		pr_warn("vmalloc area too small, limiting to %luMB\n",
1122 1123
			vmalloc_reserve >> 20);
	}
1124 1125 1126

	if (vmalloc_reserve > VMALLOC_END - (PAGE_OFFSET + SZ_32M)) {
		vmalloc_reserve = VMALLOC_END - (PAGE_OFFSET + SZ_32M);
R
Russell King 已提交
1127
		pr_warn("vmalloc area is too big, limiting to %luMB\n",
1128 1129
			vmalloc_reserve >> 20);
	}
R
Russell King 已提交
1130 1131

	vmalloc_min = (void *)(VMALLOC_END - vmalloc_reserve);
1132
	return 0;
1133
}
1134
early_param("vmalloc", early_vmalloc);
1135

1136
phys_addr_t arm_lowmem_limit __initdata = 0;
1137

1138
void __init adjust_lowmem_bounds(void)
1139
{
1140
	phys_addr_t memblock_limit = 0;
1141
	u64 vmalloc_limit;
L
Laura Abbott 已提交
1142
	struct memblock_region *reg;
1143
	phys_addr_t lowmem_limit = 0;
1144

1145 1146 1147 1148 1149 1150 1151 1152 1153
	/*
	 * Let's use our own (unoptimized) equivalent of __pa() that is
	 * not affected by wrap-arounds when sizeof(phys_addr_t) == 4.
	 * The result is used as the upper bound on physical memory address
	 * and may itself be outside the valid range for which phys_addr_t
	 * and therefore __pa() is defined.
	 */
	vmalloc_limit = (u64)(uintptr_t)vmalloc_min - PAGE_OFFSET + PHYS_OFFSET;

1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169
	/*
	 * The first usable region must be PMD aligned. Mark its start
	 * as MEMBLOCK_NOMAP if it isn't
	 */
	for_each_memblock(memory, reg) {
		if (!memblock_is_nomap(reg)) {
			if (!IS_ALIGNED(reg->base, PMD_SIZE)) {
				phys_addr_t len;

				len = round_up(reg->base, PMD_SIZE) - reg->base;
				memblock_mark_nomap(reg->base, len);
			}
			break;
		}
	}

L
Laura Abbott 已提交
1170 1171 1172
	for_each_memblock(memory, reg) {
		phys_addr_t block_start = reg->base;
		phys_addr_t block_end = reg->base + reg->size;
1173

1174 1175 1176
		if (memblock_is_nomap(reg))
			continue;

1177
		if (reg->base < vmalloc_limit) {
1178
			if (block_end > lowmem_limit)
1179 1180 1181 1182 1183 1184
				/*
				 * Compare as u64 to ensure vmalloc_limit does
				 * not get truncated. block_end should always
				 * fit in phys_addr_t so there should be no
				 * issue with assignment.
				 */
1185
				lowmem_limit = min_t(u64,
1186 1187
							 vmalloc_limit,
							 block_end);
1188 1189

			/*
1190
			 * Find the first non-pmd-aligned page, and point
1191
			 * memblock_limit at it. This relies on rounding the
1192 1193
			 * limit down to be pmd-aligned, which happens at the
			 * end of this function.
1194 1195
			 *
			 * With this algorithm, the start or end of almost any
1196 1197
			 * bank can be non-pmd-aligned. The only exception is
			 * that the start of the bank 0 must be section-
1198 1199 1200 1201 1202
			 * aligned, since otherwise memory would need to be
			 * allocated when mapping the start of bank 0, which
			 * occurs before any free memory is mapped.
			 */
			if (!memblock_limit) {
1203
				if (!IS_ALIGNED(block_start, PMD_SIZE))
L
Laura Abbott 已提交
1204
					memblock_limit = block_start;
1205
				else if (!IS_ALIGNED(block_end, PMD_SIZE))
1206
					memblock_limit = lowmem_limit;
1207
			}
1208 1209 1210

		}
	}
L
Laura Abbott 已提交
1211

1212 1213
	arm_lowmem_limit = lowmem_limit;

1214
	high_memory = __va(arm_lowmem_limit - 1) + 1;
1215

1216 1217 1218
	if (!memblock_limit)
		memblock_limit = arm_lowmem_limit;

1219
	/*
1220
	 * Round the memblock limit down to a pmd size.  This
1221
	 * helps to ensure that we will allocate memory from the
1222
	 * last full pmd, which should be mapped.
1223
	 */
1224
	memblock_limit = round_down(memblock_limit, PMD_SIZE);
1225

1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237
	if (!IS_ENABLED(CONFIG_HIGHMEM) || cache_is_vipt_aliasing()) {
		if (memblock_end_of_DRAM() > arm_lowmem_limit) {
			phys_addr_t end = memblock_end_of_DRAM();

			pr_notice("Ignoring RAM at %pa-%pa\n",
				  &memblock_limit, &end);
			pr_notice("Consider using a HIGHMEM enabled kernel.\n");

			memblock_remove(memblock_limit, end - memblock_limit);
		}
	}

1238
	memblock_set_current_limit(memblock_limit);
1239 1240
}

1241
static inline void prepare_page_table(void)
1242 1243
{
	unsigned long addr;
1244
	phys_addr_t end;
1245 1246 1247 1248

	/*
	 * Clear out all the mappings below the kernel image.
	 */
1249
	for (addr = 0; addr < MODULES_VADDR; addr += PMD_SIZE)
1250 1251 1252 1253
		pmd_clear(pmd_off_k(addr));

#ifdef CONFIG_XIP_KERNEL
	/* The XIP kernel is mapped in the module area -- skip over it */
1254
	addr = ((unsigned long)_exiprom + PMD_SIZE - 1) & PMD_MASK;
1255
#endif
1256
	for ( ; addr < PAGE_OFFSET; addr += PMD_SIZE)
1257 1258
		pmd_clear(pmd_off_k(addr));

1259 1260 1261 1262
	/*
	 * Find the end of the first block of lowmem.
	 */
	end = memblock.memory.regions[0].base + memblock.memory.regions[0].size;
1263 1264
	if (end >= arm_lowmem_limit)
		end = arm_lowmem_limit;
1265

1266 1267
	/*
	 * Clear out all the kernel space mappings, except for the first
1268
	 * memory bank, up to the vmalloc region.
1269
	 */
1270
	for (addr = __phys_to_virt(end);
1271
	     addr < VMALLOC_START; addr += PMD_SIZE)
1272 1273 1274
		pmd_clear(pmd_off_k(addr));
}

1275 1276 1277 1278 1279
#ifdef CONFIG_ARM_LPAE
/* the first page is reserved for pgd */
#define SWAPPER_PG_DIR_SIZE	(PAGE_SIZE + \
				 PTRS_PER_PGD * PTRS_PER_PMD * sizeof(pmd_t))
#else
1280
#define SWAPPER_PG_DIR_SIZE	(PTRS_PER_PGD * sizeof(pgd_t))
1281
#endif
1282

1283
/*
R
Russell King 已提交
1284
 * Reserve the special regions of memory
1285
 */
R
Russell King 已提交
1286
void __init arm_mm_memblock_reserve(void)
1287 1288 1289 1290 1291
{
	/*
	 * Reserve the page tables.  These are already in use,
	 * and can only be in node 0.
	 */
1292
	memblock_reserve(__pa(swapper_pg_dir), SWAPPER_PG_DIR_SIZE);
1293 1294 1295 1296 1297 1298

#ifdef CONFIG_SA1111
	/*
	 * Because of the SA1111 DMA bug, we want to preserve our
	 * precious DMA-able memory...
	 */
R
Russell King 已提交
1299
	memblock_reserve(PHYS_OFFSET, __pa(swapper_pg_dir) - PHYS_OFFSET);
1300 1301 1302 1303
#endif
}

/*
1304
 * Set up the device mappings.  Since we clear out the page tables for all
1305 1306 1307 1308
 * mappings above VMALLOC_START, except early fixmap, we might remove debug
 * device mappings.  This means earlycon can be used to debug this function
 * Any other function or debugging method which may touch any device _will_
 * crash the kernel.
1309
 */
1310
static void __init devicemaps_init(const struct machine_desc *mdesc)
1311 1312 1313
{
	struct map_desc map;
	unsigned long addr;
1314
	void *vectors;
1315 1316 1317 1318

	/*
	 * Allocate the vector page early.
	 */
R
Russell King 已提交
1319
	vectors = early_alloc(PAGE_SIZE * 2);
1320 1321

	early_trap_init(vectors);
1322

1323 1324 1325 1326
	/*
	 * Clear page table except top pmd used by early fixmaps
	 */
	for (addr = VMALLOC_START; addr < (FIXADDR_TOP & PMD_MASK); addr += PMD_SIZE)
1327 1328 1329 1330 1331 1332 1333 1334
		pmd_clear(pmd_off_k(addr));

	/*
	 * Map the kernel if it is XIP.
	 * It is always first in the modulearea.
	 */
#ifdef CONFIG_XIP_KERNEL
	map.pfn = __phys_to_pfn(CONFIG_XIP_PHYS_ADDR & SECTION_MASK);
1335
	map.virtual = MODULES_VADDR;
1336
	map.length = ((unsigned long)_exiprom - map.virtual + ~SECTION_MASK) & SECTION_MASK;
1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363
	map.type = MT_ROM;
	create_mapping(&map);
#endif

	/*
	 * Map the cache flushing regions.
	 */
#ifdef FLUSH_BASE
	map.pfn = __phys_to_pfn(FLUSH_BASE_PHYS);
	map.virtual = FLUSH_BASE;
	map.length = SZ_1M;
	map.type = MT_CACHECLEAN;
	create_mapping(&map);
#endif
#ifdef FLUSH_BASE_MINICACHE
	map.pfn = __phys_to_pfn(FLUSH_BASE_PHYS + SZ_1M);
	map.virtual = FLUSH_BASE_MINICACHE;
	map.length = SZ_1M;
	map.type = MT_MINICLEAN;
	create_mapping(&map);
#endif

	/*
	 * Create a mapping for the machine vectors at the high-vectors
	 * location (0xffff0000).  If we aren't using high-vectors, also
	 * create a mapping at the low-vectors virtual address.
	 */
1364
	map.pfn = __phys_to_pfn(virt_to_phys(vectors));
1365 1366
	map.virtual = 0xffff0000;
	map.length = PAGE_SIZE;
1367
#ifdef CONFIG_KUSER_HELPERS
1368
	map.type = MT_HIGH_VECTORS;
1369 1370 1371
#else
	map.type = MT_LOW_VECTORS;
#endif
1372 1373 1374 1375
	create_mapping(&map);

	if (!vectors_high()) {
		map.virtual = 0;
R
Russell King 已提交
1376
		map.length = PAGE_SIZE * 2;
1377 1378 1379 1380
		map.type = MT_LOW_VECTORS;
		create_mapping(&map);
	}

R
Russell King 已提交
1381 1382 1383 1384 1385 1386 1387
	/* Now create a kernel read-only mapping */
	map.pfn += 1;
	map.virtual = 0xffff0000 + PAGE_SIZE;
	map.length = PAGE_SIZE;
	map.type = MT_LOW_VECTORS;
	create_mapping(&map);

1388 1389 1390 1391 1392
	/*
	 * Ask the machine support to map in the statically mapped devices.
	 */
	if (mdesc->map_io)
		mdesc->map_io();
1393 1394
	else
		debug_ll_io_init();
1395
	fill_pmd_gaps();
1396

R
Rob Herring 已提交
1397 1398 1399
	/* Reserve fixed i/o space in VMALLOC region */
	pci_reserve_io();

1400 1401 1402 1403 1404 1405 1406 1407
	/*
	 * Finally flush the caches and tlb to ensure that we're in a
	 * consistent state wrt the writebuffer.  This also ensures that
	 * any write-allocated cache lines in the vector page are written
	 * back.  After this point, we can start to touch devices again.
	 */
	local_flush_tlb_all();
	flush_cache_all();
1408 1409

	/* Enable asynchronous aborts */
1410
	early_abt_enable();
1411 1412
}

N
Nicolas Pitre 已提交
1413 1414 1415
static void __init kmap_init(void)
{
#ifdef CONFIG_HIGHMEM
R
Russell King 已提交
1416 1417
	pkmap_page_table = early_pte_alloc(pmd_off_k(PKMAP_BASE),
		PKMAP_BASE, _PAGE_KERNEL_TABLE);
N
Nicolas Pitre 已提交
1418
#endif
R
Rob Herring 已提交
1419 1420 1421

	early_pte_alloc(pmd_off_k(FIXADDR_START), FIXADDR_START,
			_PAGE_KERNEL_TABLE);
N
Nicolas Pitre 已提交
1422 1423
}

1424 1425
static void __init map_lowmem(void)
{
1426
	struct memblock_region *reg;
1427
	phys_addr_t kernel_x_start = round_down(__pa(KERNEL_START), SECTION_SIZE);
1428
	phys_addr_t kernel_x_end = round_up(__pa(__init_end), SECTION_SIZE);
1429 1430

	/* Map all the lowmem memory banks. */
1431 1432 1433 1434 1435
	for_each_memblock(memory, reg) {
		phys_addr_t start = reg->base;
		phys_addr_t end = start + reg->size;
		struct map_desc map;

1436 1437 1438
		if (memblock_is_nomap(reg))
			continue;

1439 1440
		if (end > arm_lowmem_limit)
			end = arm_lowmem_limit;
1441 1442 1443
		if (start >= end)
			break;

1444
		if (end < kernel_x_start) {
1445 1446 1447 1448
			map.pfn = __phys_to_pfn(start);
			map.virtual = __phys_to_virt(start);
			map.length = end - start;
			map.type = MT_MEMORY_RWX;
1449

1450 1451 1452 1453 1454 1455 1456
			create_mapping(&map);
		} else if (start >= kernel_x_end) {
			map.pfn = __phys_to_pfn(start);
			map.virtual = __phys_to_virt(start);
			map.length = end - start;
			map.type = MT_MEMORY_RW;

1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484
			create_mapping(&map);
		} else {
			/* This better cover the entire kernel */
			if (start < kernel_x_start) {
				map.pfn = __phys_to_pfn(start);
				map.virtual = __phys_to_virt(start);
				map.length = kernel_x_start - start;
				map.type = MT_MEMORY_RW;

				create_mapping(&map);
			}

			map.pfn = __phys_to_pfn(kernel_x_start);
			map.virtual = __phys_to_virt(kernel_x_start);
			map.length = kernel_x_end - kernel_x_start;
			map.type = MT_MEMORY_RWX;

			create_mapping(&map);

			if (kernel_x_end < end) {
				map.pfn = __phys_to_pfn(kernel_x_end);
				map.virtual = __phys_to_virt(kernel_x_end);
				map.length = end - kernel_x_end;
				map.type = MT_MEMORY_RW;

				create_mapping(&map);
			}
		}
1485 1486 1487
	}
}

1488 1489 1490 1491 1492
#ifdef CONFIG_ARM_PV_FIXUP
extern unsigned long __atags_pointer;
typedef void pgtables_remap(long long offset, unsigned long pgd, void *bdata);
pgtables_remap lpae_pgtables_remap_asm;

1493 1494 1495 1496
/*
 * early_paging_init() recreates boot time page table setup, allowing machines
 * to switch over to a high (>4G) address space on LPAE systems
 */
1497
static void __init early_paging_init(const struct machine_desc *mdesc)
1498
{
1499 1500 1501
	pgtables_remap *lpae_pgtables_remap;
	unsigned long pa_pgd;
	unsigned int cr, ttbcr;
1502
	long long offset;
1503
	void *boot_data;
1504

1505
	if (!mdesc->pv_fixup)
1506 1507
		return;

1508
	offset = mdesc->pv_fixup();
1509 1510
	if (offset == 0)
		return;
1511

1512 1513 1514 1515 1516 1517 1518 1519 1520 1521
	/*
	 * Get the address of the remap function in the 1:1 identity
	 * mapping setup by the early page table assembly code.  We
	 * must get this prior to the pv update.  The following barrier
	 * ensures that this is complete before we fixup any P:V offsets.
	 */
	lpae_pgtables_remap = (pgtables_remap *)(unsigned long)__pa(lpae_pgtables_remap_asm);
	pa_pgd = __pa(swapper_pg_dir);
	boot_data = __va(__atags_pointer);
	barrier();
1522

1523 1524
	pr_info("Switching physical address space to 0x%08llx\n",
		(u64)PHYS_OFFSET + offset);
1525

1526 1527 1528
	/* Re-set the phys pfn offset, and the pv offset */
	__pv_offset += offset;
	__pv_phys_pfn_offset += PFN_DOWN(offset);
1529 1530 1531 1532 1533 1534

	/* Run the patch stub to update the constants */
	fixup_pv_table(&__pv_table_begin,
		(&__pv_table_end - &__pv_table_begin) << 2);

	/*
1535 1536 1537 1538 1539 1540 1541
	 * We changing not only the virtual to physical mapping, but also
	 * the physical addresses used to access memory.  We need to flush
	 * all levels of cache in the system with caching disabled to
	 * ensure that all data is written back, and nothing is prefetched
	 * into the caches.  We also need to prevent the TLB walkers
	 * allocating into the caches too.  Note that this is ARMv7 LPAE
	 * specific.
1542
	 */
1543 1544 1545 1546 1547
	cr = get_cr();
	set_cr(cr & ~(CR_I | CR_C));
	asm("mrc p15, 0, %0, c2, c0, 2" : "=r" (ttbcr));
	asm volatile("mcr p15, 0, %0, c2, c0, 2"
		: : "r" (ttbcr & ~(3 << 8 | 3 << 10)));
1548
	flush_cache_all();
1549 1550

	/*
1551 1552 1553 1554
	 * Fixup the page tables - this must be in the idmap region as
	 * we need to disable the MMU to do this safely, and hence it
	 * needs to be assembly.  It's fairly simple, as we're using the
	 * temporary tables setup by the initial assembly code.
1555
	 */
1556
	lpae_pgtables_remap(offset, pa_pgd, boot_data);
1557

1558 1559 1560
	/* Re-enable the caches and cacheable TLB walks */
	asm volatile("mcr p15, 0, %0, c2, c0, 2" : : "r" (ttbcr));
	set_cr(cr);
1561 1562 1563 1564
}

#else

1565
static void __init early_paging_init(const struct machine_desc *mdesc)
1566
{
1567 1568
	long long offset;

1569
	if (!mdesc->pv_fixup)
1570 1571
		return;

1572
	offset = mdesc->pv_fixup();
1573 1574 1575 1576 1577 1578 1579
	if (offset == 0)
		return;

	pr_crit("Physical address space modification is only to support Keystone2.\n");
	pr_crit("Please enable ARM_LPAE and ARM_PATCH_PHYS_VIRT support to use this\n");
	pr_crit("feature. Your kernel may crash now, have a good day.\n");
	add_taint(TAINT_CPU_OUT_OF_SPEC, LOCKDEP_STILL_OK);
1580 1581 1582 1583
}

#endif

1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612
static void __init early_fixmap_shutdown(void)
{
	int i;
	unsigned long va = fix_to_virt(__end_of_permanent_fixed_addresses - 1);

	pte_offset_fixmap = pte_offset_late_fixmap;
	pmd_clear(fixmap_pmd(va));
	local_flush_tlb_kernel_page(va);

	for (i = 0; i < __end_of_permanent_fixed_addresses; i++) {
		pte_t *pte;
		struct map_desc map;

		map.virtual = fix_to_virt(i);
		pte = pte_offset_early_fixmap(pmd_off_k(map.virtual), map.virtual);

		/* Only i/o device mappings are supported ATM */
		if (pte_none(*pte) ||
		    (pte_val(*pte) & L_PTE_MT_MASK) != L_PTE_MT_DEV_SHARED)
			continue;

		map.pfn = pte_pfn(*pte);
		map.type = MT_DEVICE;
		map.length = PAGE_SIZE;

		create_mapping(&map);
	}
}

1613 1614 1615 1616
/*
 * paging_init() sets up the page tables, initialises the zone memory
 * maps, and sets up the zero page, bad page and bad page tables.
 */
1617
void __init paging_init(const struct machine_desc *mdesc)
1618 1619 1620
{
	void *zero_page;

1621
	prepare_page_table();
1622
	map_lowmem();
1623
	memblock_set_current_limit(arm_lowmem_limit);
1624
	dma_contiguous_remap();
1625
	early_fixmap_shutdown();
1626
	devicemaps_init(mdesc);
N
Nicolas Pitre 已提交
1627
	kmap_init();
1628
	tcm_init();
1629 1630 1631

	top_pmd = pmd_off_k(0xffff0000);

R
Russell King 已提交
1632 1633
	/* allocate the zero page. */
	zero_page = early_alloc(PAGE_SIZE);
R
Russell King 已提交
1634

1635
	bootmem_init();
R
Russell King 已提交
1636

1637
	empty_zero_page = virt_to_page(zero_page);
1638
	__flush_dcache_page(NULL, empty_zero_page);
M
Marc Zyngier 已提交
1639 1640 1641

	/* Compute the virt/idmap offset, mostly for the sake of KVM */
	kimage_voffset = (unsigned long)&kimage_voffset - virt_to_idmap(&kimage_voffset);
1642
}
1643 1644 1645 1646 1647 1648

void __init early_mm_init(const struct machine_desc *mdesc)
{
	build_mem_type_table();
	early_paging_init(mdesc);
}