mmu.c 34.1 KB
Newer Older
1 2 3 4 5 6 7 8 9
/*
 *  linux/arch/arm/mm/mmu.c
 *
 *  Copyright (C) 1995-2005 Russell King
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
 */
10
#include <linux/module.h>
11 12 13 14 15
#include <linux/kernel.h>
#include <linux/errno.h>
#include <linux/init.h>
#include <linux/mman.h>
#include <linux/nodemask.h>
R
Russell King 已提交
16
#include <linux/memblock.h>
17
#include <linux/fs.h>
18
#include <linux/vmalloc.h>
19
#include <linux/sizes.h>
20

21
#include <asm/cp15.h>
22
#include <asm/cputype.h>
R
Russell King 已提交
23
#include <asm/sections.h>
24
#include <asm/cachetype.h>
25
#include <asm/setup.h>
26
#include <asm/smp_plat.h>
27
#include <asm/tlb.h>
N
Nicolas Pitre 已提交
28
#include <asm/highmem.h>
29
#include <asm/system_info.h>
30
#include <asm/traps.h>
31 32 33

#include <asm/mach/arch.h>
#include <asm/mach/map.h>
R
Rob Herring 已提交
34
#include <asm/mach/pci.h>
35 36

#include "mm.h"
37
#include "tcm.h"
38 39 40 41 42 43

/*
 * empty_zero_page is a special page that is used for
 * zero-initialized data and COW.
 */
struct page *empty_zero_page;
44
EXPORT_SYMBOL(empty_zero_page);
45 46 47 48 49 50

/*
 * The pmd table for the upper-most set of pages.
 */
pmd_t *top_pmd;

51 52 53 54 55 56 57 58
#define CPOLICY_UNCACHED	0
#define CPOLICY_BUFFERED	1
#define CPOLICY_WRITETHROUGH	2
#define CPOLICY_WRITEBACK	3
#define CPOLICY_WRITEALLOC	4

static unsigned int cachepolicy __initdata = CPOLICY_WRITEBACK;
static unsigned int ecc_mask __initdata = 0;
59
pgprot_t pgprot_user;
60
pgprot_t pgprot_kernel;
61 62 63
pgprot_t pgprot_hyp_device;
pgprot_t pgprot_s2;
pgprot_t pgprot_s2_device;
64

65
EXPORT_SYMBOL(pgprot_user);
66 67 68 69 70
EXPORT_SYMBOL(pgprot_kernel);

struct cachepolicy {
	const char	policy[16];
	unsigned int	cr_mask;
71
	pmdval_t	pmd;
72
	pteval_t	pte;
73
	pteval_t	pte_s2;
74 75
};

76 77 78 79 80 81
#ifdef CONFIG_ARM_LPAE
#define s2_policy(policy)	policy
#else
#define s2_policy(policy)	0
#endif

82 83 84 85 86
static struct cachepolicy cache_policies[] __initdata = {
	{
		.policy		= "uncached",
		.cr_mask	= CR_W|CR_C,
		.pmd		= PMD_SECT_UNCACHED,
87
		.pte		= L_PTE_MT_UNCACHED,
88
		.pte_s2		= s2_policy(L_PTE_S2_MT_UNCACHED),
89 90 91 92
	}, {
		.policy		= "buffered",
		.cr_mask	= CR_C,
		.pmd		= PMD_SECT_BUFFERED,
93
		.pte		= L_PTE_MT_BUFFERABLE,
94
		.pte_s2		= s2_policy(L_PTE_S2_MT_UNCACHED),
95 96 97 98
	}, {
		.policy		= "writethrough",
		.cr_mask	= 0,
		.pmd		= PMD_SECT_WT,
99
		.pte		= L_PTE_MT_WRITETHROUGH,
100
		.pte_s2		= s2_policy(L_PTE_S2_MT_WRITETHROUGH),
101 102 103 104
	}, {
		.policy		= "writeback",
		.cr_mask	= 0,
		.pmd		= PMD_SECT_WB,
105
		.pte		= L_PTE_MT_WRITEBACK,
106
		.pte_s2		= s2_policy(L_PTE_S2_MT_WRITEBACK),
107 108 109 110
	}, {
		.policy		= "writealloc",
		.cr_mask	= 0,
		.pmd		= PMD_SECT_WBWA,
111
		.pte		= L_PTE_MT_WRITEALLOC,
112
		.pte_s2		= s2_policy(L_PTE_S2_MT_WRITEBACK),
113 114 115
	}
};

116
#ifdef CONFIG_CPU_CP15
117
/*
S
Simon Arlott 已提交
118
 * These are useful for identifying cache coherency
119 120 121 122
 * problems by allowing the cache or the cache and
 * writebuffer to be turned off.  (Note: the write
 * buffer should not be on and the cache off).
 */
123
static int __init early_cachepolicy(char *p)
124 125 126 127 128 129
{
	int i;

	for (i = 0; i < ARRAY_SIZE(cache_policies); i++) {
		int len = strlen(cache_policies[i].policy);

130
		if (memcmp(p, cache_policies[i].policy, len) == 0) {
131 132 133 134 135 136 137 138
			cachepolicy = i;
			cr_alignment &= ~cache_policies[i].cr_mask;
			cr_no_alignment &= ~cache_policies[i].cr_mask;
			break;
		}
	}
	if (i == ARRAY_SIZE(cache_policies))
		printk(KERN_ERR "ERROR: unknown or unsupported cache policy\n");
139 140 141 142 143 144 145
	/*
	 * This restriction is partly to do with the way we boot; it is
	 * unpredictable to have memory mapped using two different sets of
	 * memory attributes (shared, type, and cache attribs).  We can not
	 * change these attributes once the initial assembly has setup the
	 * page tables.
	 */
146 147 148 149
	if (cpu_architecture() >= CPU_ARCH_ARMv6) {
		printk(KERN_WARNING "Only cachepolicy=writeback supported on ARMv6 and later\n");
		cachepolicy = CPOLICY_WRITEBACK;
	}
150 151
	flush_cache_all();
	set_cr(cr_alignment);
152
	return 0;
153
}
154
early_param("cachepolicy", early_cachepolicy);
155

156
static int __init early_nocache(char *__unused)
157 158 159
{
	char *p = "buffered";
	printk(KERN_WARNING "nocache is deprecated; use cachepolicy=%s\n", p);
160 161
	early_cachepolicy(p);
	return 0;
162
}
163
early_param("nocache", early_nocache);
164

165
static int __init early_nowrite(char *__unused)
166 167 168
{
	char *p = "uncached";
	printk(KERN_WARNING "nowb is deprecated; use cachepolicy=%s\n", p);
169 170
	early_cachepolicy(p);
	return 0;
171
}
172
early_param("nowb", early_nowrite);
173

174
#ifndef CONFIG_ARM_LPAE
175
static int __init early_ecc(char *p)
176
{
177
	if (memcmp(p, "on", 2) == 0)
178
		ecc_mask = PMD_PROTECTION;
179
	else if (memcmp(p, "off", 3) == 0)
180
		ecc_mask = 0;
181
	return 0;
182
}
183
early_param("ecc", early_ecc);
184
#endif
185 186 187 188 189 190 191 192 193 194

static int __init noalign_setup(char *__unused)
{
	cr_alignment &= ~CR_A;
	cr_no_alignment &= ~CR_A;
	set_cr(cr_alignment);
	return 1;
}
__setup("noalign", noalign_setup);

195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214
#ifndef CONFIG_SMP
void adjust_cr(unsigned long mask, unsigned long set)
{
	unsigned long flags;

	mask &= ~CR_A;

	set &= mask;

	local_irq_save(flags);

	cr_no_alignment = (cr_no_alignment & ~mask) | set;
	cr_alignment = (cr_alignment & ~mask) | set;

	set_cr((get_cr() & ~mask) | set);

	local_irq_restore(flags);
}
#endif

215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230
#else /* ifdef CONFIG_CPU_CP15 */

static int __init early_cachepolicy(char *p)
{
	pr_warning("cachepolicy kernel parameter not supported without cp15\n");
}
early_param("cachepolicy", early_cachepolicy);

static int __init noalign_setup(char *__unused)
{
	pr_warning("noalign kernel parameter not supported without cp15\n");
}
__setup("noalign", noalign_setup);

#endif /* ifdef CONFIG_CPU_CP15 / else */

231
#define PROT_PTE_DEVICE		L_PTE_PRESENT|L_PTE_YOUNG|L_PTE_DIRTY|L_PTE_XN
232
#define PROT_SECT_DEVICE	PMD_TYPE_SECT|PMD_SECT_AP_WRITE
233

234
static struct mem_type mem_types[] = {
235
	[MT_DEVICE] = {		  /* Strongly ordered / ARMv6 shared device */
236 237
		.prot_pte	= PROT_PTE_DEVICE | L_PTE_MT_DEV_SHARED |
				  L_PTE_SHARED,
238
		.prot_l1	= PMD_TYPE_TABLE,
239
		.prot_sect	= PROT_SECT_DEVICE | PMD_SECT_S,
240 241 242
		.domain		= DOMAIN_IO,
	},
	[MT_DEVICE_NONSHARED] = { /* ARMv6 non-shared device */
243
		.prot_pte	= PROT_PTE_DEVICE | L_PTE_MT_DEV_NONSHARED,
244
		.prot_l1	= PMD_TYPE_TABLE,
245
		.prot_sect	= PROT_SECT_DEVICE,
246 247 248
		.domain		= DOMAIN_IO,
	},
	[MT_DEVICE_CACHED] = {	  /* ioremap_cached */
249
		.prot_pte	= PROT_PTE_DEVICE | L_PTE_MT_DEV_CACHED,
250 251 252
		.prot_l1	= PMD_TYPE_TABLE,
		.prot_sect	= PROT_SECT_DEVICE | PMD_SECT_WB,
		.domain		= DOMAIN_IO,
R
Rob Herring 已提交
253
	},
254
	[MT_DEVICE_WC] = {	/* ioremap_wc */
255
		.prot_pte	= PROT_PTE_DEVICE | L_PTE_MT_DEV_WC,
256
		.prot_l1	= PMD_TYPE_TABLE,
257
		.prot_sect	= PROT_SECT_DEVICE,
258
		.domain		= DOMAIN_IO,
259
	},
260 261 262 263 264 265
	[MT_UNCACHED] = {
		.prot_pte	= PROT_PTE_DEVICE,
		.prot_l1	= PMD_TYPE_TABLE,
		.prot_sect	= PMD_TYPE_SECT | PMD_SECT_XN,
		.domain		= DOMAIN_IO,
	},
266
	[MT_CACHECLEAN] = {
267
		.prot_sect = PMD_TYPE_SECT | PMD_SECT_XN,
268 269
		.domain    = DOMAIN_KERNEL,
	},
270
#ifndef CONFIG_ARM_LPAE
271
	[MT_MINICLEAN] = {
272
		.prot_sect = PMD_TYPE_SECT | PMD_SECT_XN | PMD_SECT_MINICACHE,
273 274
		.domain    = DOMAIN_KERNEL,
	},
275
#endif
276 277
	[MT_LOW_VECTORS] = {
		.prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
278
				L_PTE_RDONLY,
279 280 281 282 283
		.prot_l1   = PMD_TYPE_TABLE,
		.domain    = DOMAIN_USER,
	},
	[MT_HIGH_VECTORS] = {
		.prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
284
				L_PTE_USER | L_PTE_RDONLY,
285 286 287 288
		.prot_l1   = PMD_TYPE_TABLE,
		.domain    = DOMAIN_USER,
	},
	[MT_MEMORY] = {
289
		.prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY,
290
		.prot_l1   = PMD_TYPE_TABLE,
291
		.prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE,
292 293 294
		.domain    = DOMAIN_KERNEL,
	},
	[MT_ROM] = {
295
		.prot_sect = PMD_TYPE_SECT,
296 297
		.domain    = DOMAIN_KERNEL,
	},
298
	[MT_MEMORY_NONCACHED] = {
299
		.prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
300
				L_PTE_MT_BUFFERABLE,
301
		.prot_l1   = PMD_TYPE_TABLE,
302 303 304
		.prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE,
		.domain    = DOMAIN_KERNEL,
	},
305
	[MT_MEMORY_DTCM] = {
306
		.prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
307
				L_PTE_XN,
308 309 310
		.prot_l1   = PMD_TYPE_TABLE,
		.prot_sect = PMD_TYPE_SECT | PMD_SECT_XN,
		.domain    = DOMAIN_KERNEL,
311 312
	},
	[MT_MEMORY_ITCM] = {
313
		.prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY,
314
		.prot_l1   = PMD_TYPE_TABLE,
315
		.domain    = DOMAIN_KERNEL,
316
	},
317 318
	[MT_MEMORY_SO] = {
		.prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
319
				L_PTE_MT_UNCACHED | L_PTE_XN,
320 321 322 323 324
		.prot_l1   = PMD_TYPE_TABLE,
		.prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE | PMD_SECT_S |
				PMD_SECT_UNCACHED | PMD_SECT_XN,
		.domain    = DOMAIN_KERNEL,
	},
325 326 327 328 329
	[MT_MEMORY_DMA_READY] = {
		.prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY,
		.prot_l1   = PMD_TYPE_TABLE,
		.domain    = DOMAIN_KERNEL,
	},
330 331
};

332 333 334 335
const struct mem_type *get_mem_type(unsigned int type)
{
	return type < ARRAY_SIZE(mem_types) ? &mem_types[type] : NULL;
}
336
EXPORT_SYMBOL(get_mem_type);
337

338 339 340 341 342 343 344
/*
 * Adjust the PMD section entries according to the CPU in use.
 */
static void __init build_mem_type_table(void)
{
	struct cachepolicy *cp;
	unsigned int cr = get_cr();
345
	pteval_t user_pgprot, kern_pgprot, vecs_pgprot;
346
	pteval_t hyp_device_pgprot, s2_pgprot, s2_device_pgprot;
347 348 349
	int cpu_arch = cpu_architecture();
	int i;

350
	if (cpu_arch < CPU_ARCH_ARMv6) {
351
#if defined(CONFIG_CPU_DCACHE_DISABLE)
352 353
		if (cachepolicy > CPOLICY_BUFFERED)
			cachepolicy = CPOLICY_BUFFERED;
354
#elif defined(CONFIG_CPU_DCACHE_WRITETHROUGH)
355 356
		if (cachepolicy > CPOLICY_WRITETHROUGH)
			cachepolicy = CPOLICY_WRITETHROUGH;
357
#endif
358
	}
359 360 361 362 363
	if (cpu_arch < CPU_ARCH_ARMv5) {
		if (cachepolicy >= CPOLICY_WRITEALLOC)
			cachepolicy = CPOLICY_WRITEBACK;
		ecc_mask = 0;
	}
364 365
	if (is_smp())
		cachepolicy = CPOLICY_WRITEALLOC;
366

367
	/*
368 369 370
	 * Strip out features not present on earlier architectures.
	 * Pre-ARMv5 CPUs don't have TEX bits.  Pre-ARMv6 CPUs or those
	 * without extended page tables don't have the 'Shared' bit.
371
	 */
372 373 374 375 376 377
	if (cpu_arch < CPU_ARCH_ARMv5)
		for (i = 0; i < ARRAY_SIZE(mem_types); i++)
			mem_types[i].prot_sect &= ~PMD_SECT_TEX(7);
	if ((cpu_arch < CPU_ARCH_ARMv6 || !(cr & CR_XP)) && !cpu_is_xsc3())
		for (i = 0; i < ARRAY_SIZE(mem_types); i++)
			mem_types[i].prot_sect &= ~PMD_SECT_S;
378 379

	/*
380 381 382
	 * ARMv5 and lower, bit 4 must be set for page tables (was: cache
	 * "update-able on write" bit on ARM610).  However, Xscale and
	 * Xscale3 require this bit to be cleared.
383
	 */
384
	if (cpu_is_xscale() || cpu_is_xsc3()) {
385
		for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
386
			mem_types[i].prot_sect &= ~PMD_BIT4;
387 388 389 390
			mem_types[i].prot_l1 &= ~PMD_BIT4;
		}
	} else if (cpu_arch < CPU_ARCH_ARMv6) {
		for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
391 392
			if (mem_types[i].prot_l1)
				mem_types[i].prot_l1 |= PMD_BIT4;
393 394 395 396
			if (mem_types[i].prot_sect)
				mem_types[i].prot_sect |= PMD_BIT4;
		}
	}
397

398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455
	/*
	 * Mark the device areas according to the CPU/architecture.
	 */
	if (cpu_is_xsc3() || (cpu_arch >= CPU_ARCH_ARMv6 && (cr & CR_XP))) {
		if (!cpu_is_xsc3()) {
			/*
			 * Mark device regions on ARMv6+ as execute-never
			 * to prevent speculative instruction fetches.
			 */
			mem_types[MT_DEVICE].prot_sect |= PMD_SECT_XN;
			mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_XN;
			mem_types[MT_DEVICE_CACHED].prot_sect |= PMD_SECT_XN;
			mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_XN;
		}
		if (cpu_arch >= CPU_ARCH_ARMv7 && (cr & CR_TRE)) {
			/*
			 * For ARMv7 with TEX remapping,
			 * - shared device is SXCB=1100
			 * - nonshared device is SXCB=0100
			 * - write combine device mem is SXCB=0001
			 * (Uncached Normal memory)
			 */
			mem_types[MT_DEVICE].prot_sect |= PMD_SECT_TEX(1);
			mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(1);
			mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_BUFFERABLE;
		} else if (cpu_is_xsc3()) {
			/*
			 * For Xscale3,
			 * - shared device is TEXCB=00101
			 * - nonshared device is TEXCB=01000
			 * - write combine device mem is TEXCB=00100
			 * (Inner/Outer Uncacheable in xsc3 parlance)
			 */
			mem_types[MT_DEVICE].prot_sect |= PMD_SECT_TEX(1) | PMD_SECT_BUFFERED;
			mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(2);
			mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_TEX(1);
		} else {
			/*
			 * For ARMv6 and ARMv7 without TEX remapping,
			 * - shared device is TEXCB=00001
			 * - nonshared device is TEXCB=01000
			 * - write combine device mem is TEXCB=00100
			 * (Uncached Normal in ARMv6 parlance).
			 */
			mem_types[MT_DEVICE].prot_sect |= PMD_SECT_BUFFERED;
			mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(2);
			mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_TEX(1);
		}
	} else {
		/*
		 * On others, write combining is "Uncached/Buffered"
		 */
		mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_BUFFERABLE;
	}

	/*
	 * Now deal with the memory-type mappings
	 */
456
	cp = &cache_policies[cachepolicy];
457
	vecs_pgprot = kern_pgprot = user_pgprot = cp->pte;
458 459
	s2_pgprot = cp->pte_s2;
	hyp_device_pgprot = s2_device_pgprot = mem_types[MT_DEVICE].prot_pte;
460

461 462 463 464
	/*
	 * ARMv6 and above have extended page tables.
	 */
	if (cpu_arch >= CPU_ARCH_ARMv6 && (cr & CR_XP)) {
465
#ifndef CONFIG_ARM_LPAE
466 467 468 469 470 471 472
		/*
		 * Mark cache clean areas and XIP ROM read only
		 * from SVC mode and no access from userspace.
		 */
		mem_types[MT_ROM].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
		mem_types[MT_MINICLEAN].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
		mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
473
#endif
474

475 476 477 478 479 480 481 482
		if (is_smp()) {
			/*
			 * Mark memory with the "shared" attribute
			 * for SMP systems
			 */
			user_pgprot |= L_PTE_SHARED;
			kern_pgprot |= L_PTE_SHARED;
			vecs_pgprot |= L_PTE_SHARED;
483
			s2_pgprot |= L_PTE_SHARED;
484 485 486 487 488 489
			mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_S;
			mem_types[MT_DEVICE_WC].prot_pte |= L_PTE_SHARED;
			mem_types[MT_DEVICE_CACHED].prot_sect |= PMD_SECT_S;
			mem_types[MT_DEVICE_CACHED].prot_pte |= L_PTE_SHARED;
			mem_types[MT_MEMORY].prot_sect |= PMD_SECT_S;
			mem_types[MT_MEMORY].prot_pte |= L_PTE_SHARED;
490
			mem_types[MT_MEMORY_DMA_READY].prot_pte |= L_PTE_SHARED;
491 492 493
			mem_types[MT_MEMORY_NONCACHED].prot_sect |= PMD_SECT_S;
			mem_types[MT_MEMORY_NONCACHED].prot_pte |= L_PTE_SHARED;
		}
494 495
	}

496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513
	/*
	 * Non-cacheable Normal - intended for memory areas that must
	 * not cause dirty cache line writebacks when used
	 */
	if (cpu_arch >= CPU_ARCH_ARMv6) {
		if (cpu_arch >= CPU_ARCH_ARMv7 && (cr & CR_TRE)) {
			/* Non-cacheable Normal is XCB = 001 */
			mem_types[MT_MEMORY_NONCACHED].prot_sect |=
				PMD_SECT_BUFFERED;
		} else {
			/* For both ARMv6 and non-TEX-remapping ARMv7 */
			mem_types[MT_MEMORY_NONCACHED].prot_sect |=
				PMD_SECT_TEX(1);
		}
	} else {
		mem_types[MT_MEMORY_NONCACHED].prot_sect |= PMD_SECT_BUFFERABLE;
	}

514 515 516 517 518 519
#ifdef CONFIG_ARM_LPAE
	/*
	 * Do not generate access flag faults for the kernel mappings.
	 */
	for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
		mem_types[i].prot_pte |= PTE_EXT_AF;
520 521
		if (mem_types[i].prot_sect)
			mem_types[i].prot_sect |= PMD_SECT_AF;
522 523 524 525 526
	}
	kern_pgprot |= PTE_EXT_AF;
	vecs_pgprot |= PTE_EXT_AF;
#endif

527
	for (i = 0; i < 16; i++) {
528
		pteval_t v = pgprot_val(protection_map[i]);
529
		protection_map[i] = __pgprot(v | user_pgprot);
530 531
	}

532 533
	mem_types[MT_LOW_VECTORS].prot_pte |= vecs_pgprot;
	mem_types[MT_HIGH_VECTORS].prot_pte |= vecs_pgprot;
534

535
	pgprot_user   = __pgprot(L_PTE_PRESENT | L_PTE_YOUNG | user_pgprot);
536
	pgprot_kernel = __pgprot(L_PTE_PRESENT | L_PTE_YOUNG |
537
				 L_PTE_DIRTY | kern_pgprot);
538 539 540
	pgprot_s2  = __pgprot(L_PTE_PRESENT | L_PTE_YOUNG | s2_pgprot);
	pgprot_s2_device  = __pgprot(s2_device_pgprot);
	pgprot_hyp_device  = __pgprot(hyp_device_pgprot);
541 542 543 544

	mem_types[MT_LOW_VECTORS].prot_l1 |= ecc_mask;
	mem_types[MT_HIGH_VECTORS].prot_l1 |= ecc_mask;
	mem_types[MT_MEMORY].prot_sect |= ecc_mask | cp->pmd;
545
	mem_types[MT_MEMORY].prot_pte |= kern_pgprot;
546
	mem_types[MT_MEMORY_DMA_READY].prot_pte |= kern_pgprot;
547
	mem_types[MT_MEMORY_NONCACHED].prot_sect |= ecc_mask;
548 549 550 551 552 553 554 555 556 557 558 559 560
	mem_types[MT_ROM].prot_sect |= cp->pmd;

	switch (cp->pmd) {
	case PMD_SECT_WT:
		mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_WT;
		break;
	case PMD_SECT_WB:
	case PMD_SECT_WBWA:
		mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_WB;
		break;
	}
	printk("Memory policy: ECC %sabled, Data cache %s\n",
		ecc_mask ? "en" : "dis", cp->policy);
561 562 563 564 565 566 567 568

	for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
		struct mem_type *t = &mem_types[i];
		if (t->prot_l1)
			t->prot_l1 |= PMD_DOMAIN(t->domain);
		if (t->prot_sect)
			t->prot_sect |= PMD_DOMAIN(t->domain);
	}
569 570
}

571 572 573 574 575 576 577 578 579 580 581 582 583
#ifdef CONFIG_ARM_DMA_MEM_BUFFERABLE
pgprot_t phys_mem_access_prot(struct file *file, unsigned long pfn,
			      unsigned long size, pgprot_t vma_prot)
{
	if (!pfn_valid(pfn))
		return pgprot_noncached(vma_prot);
	else if (file->f_flags & O_SYNC)
		return pgprot_writecombine(vma_prot);
	return vma_prot;
}
EXPORT_SYMBOL(phys_mem_access_prot);
#endif

584 585
#define vectors_base()	(vectors_high() ? 0xffff0000 : 0)

586
static void __init *early_alloc_aligned(unsigned long sz, unsigned long align)
R
Russell King 已提交
587
{
588
	void *ptr = __va(memblock_alloc(sz, align));
R
Russell King 已提交
589 590
	memset(ptr, 0, sz);
	return ptr;
R
Russell King 已提交
591 592
}

593 594 595 596 597
static void __init *early_alloc(unsigned long sz)
{
	return early_alloc_aligned(sz, sz);
}

R
Russell King 已提交
598
static pte_t * __init early_pte_alloc(pmd_t *pmd, unsigned long addr, unsigned long prot)
599
{
600
	if (pmd_none(*pmd)) {
601
		pte_t *pte = early_alloc(PTE_HWTABLE_OFF + PTE_HWTABLE_SIZE);
602
		__pmd_populate(pmd, __pa(pte), prot);
603
	}
R
Russell King 已提交
604 605 606
	BUG_ON(pmd_bad(*pmd));
	return pte_offset_kernel(pmd, addr);
}
607

R
Russell King 已提交
608 609 610 611 612
static void __init alloc_init_pte(pmd_t *pmd, unsigned long addr,
				  unsigned long end, unsigned long pfn,
				  const struct mem_type *type)
{
	pte_t *pte = early_pte_alloc(pmd, addr, type->prot_l1);
613
	do {
614
		set_pte_ext(pte, pfn_pte(pfn, __pgprot(type->prot_pte)), 0);
615 616
		pfn++;
	} while (pte++, addr += PAGE_SIZE, addr != end);
617 618
}

619
static void __init __map_init_section(pmd_t *pmd, unsigned long addr,
620 621
			unsigned long end, phys_addr_t phys,
			const struct mem_type *type)
622
{
623 624
	pmd_t *p = pmd;

625
#ifndef CONFIG_ARM_LPAE
626
	/*
627 628 629 630 631 632 633
	 * In classic MMU format, puds and pmds are folded in to
	 * the pgds. pmd_offset gives the PGD entry. PGDs refer to a
	 * group of L1 entries making up one logical pointer to
	 * an L2 table (2MB), where as PMDs refer to the individual
	 * L1 entries (1MB). Hence increment to get the correct
	 * offset for odd 1MB sections.
	 * (See arch/arm/include/asm/pgtable-2level.h)
634
	 */
635 636
	if (addr & SECTION_SIZE)
		pmd++;
637
#endif
638 639 640 641
	do {
		*pmd = __pmd(phys | type->prot_sect);
		phys += SECTION_SIZE;
	} while (pmd++, addr += SECTION_SIZE, addr != end);
642

643
	flush_pmd_entry(p);
644
}
645

646 647 648 649 650 651 652 653
static void __init alloc_init_pmd(pud_t *pud, unsigned long addr,
				      unsigned long end, phys_addr_t phys,
				      const struct mem_type *type)
{
	pmd_t *pmd = pmd_offset(pud, addr);
	unsigned long next;

	do {
654
		/*
655 656
		 * With LPAE, we must loop over to map
		 * all the pmds for the given range.
657
		 */
658 659 660 661 662 663 664 665
		next = pmd_addr_end(addr, end);

		/*
		 * Try a section mapping - addr, next and phys must all be
		 * aligned to a section boundary.
		 */
		if (type->prot_sect &&
				((addr | next | phys) & ~SECTION_MASK) == 0) {
666
			__map_init_section(pmd, addr, next, phys, type);
667 668 669 670 671 672 673 674
		} else {
			alloc_init_pte(pmd, addr, next,
						__phys_to_pfn(phys), type);
		}

		phys += next - addr;

	} while (pmd++, addr = next, addr != end);
675 676
}

677
static void __init alloc_init_pud(pgd_t *pgd, unsigned long addr,
678 679
				  unsigned long end, phys_addr_t phys,
				  const struct mem_type *type)
R
Russell King 已提交
680 681 682 683 684 685
{
	pud_t *pud = pud_offset(pgd, addr);
	unsigned long next;

	do {
		next = pud_addr_end(addr, end);
686
		alloc_init_pmd(pud, addr, next, phys, type);
R
Russell King 已提交
687 688 689 690
		phys += next - addr;
	} while (pud++, addr = next, addr != end);
}

691
#ifndef CONFIG_ARM_LPAE
692 693 694
static void __init create_36bit_mapping(struct map_desc *md,
					const struct mem_type *type)
{
695 696
	unsigned long addr, length, end;
	phys_addr_t phys;
697 698 699
	pgd_t *pgd;

	addr = md->virtual;
700
	phys = __pfn_to_phys(md->pfn);
701 702 703 704 705
	length = PAGE_ALIGN(md->length);

	if (!(cpu_architecture() >= CPU_ARCH_ARMv6 || cpu_is_xsc3())) {
		printk(KERN_ERR "MM: CPU does not support supersection "
		       "mapping for 0x%08llx at 0x%08lx\n",
706
		       (long long)__pfn_to_phys((u64)md->pfn), addr);
707 708 709 710 711 712 713 714 715 716 717 718
		return;
	}

	/* N.B.	ARMv6 supersections are only defined to work with domain 0.
	 *	Since domain assignments can in fact be arbitrary, the
	 *	'domain == 0' check below is required to insure that ARMv6
	 *	supersections are only allocated for domain 0 regardless
	 *	of the actual domain assignments in use.
	 */
	if (type->domain) {
		printk(KERN_ERR "MM: invalid domain in supersection "
		       "mapping for 0x%08llx at 0x%08lx\n",
719
		       (long long)__pfn_to_phys((u64)md->pfn), addr);
720 721 722 723
		return;
	}

	if ((addr | length | __pfn_to_phys(md->pfn)) & ~SUPERSECTION_MASK) {
724 725 726
		printk(KERN_ERR "MM: cannot create mapping for 0x%08llx"
		       " at 0x%08lx invalid alignment\n",
		       (long long)__pfn_to_phys((u64)md->pfn), addr);
727 728 729 730 731 732 733 734 735 736 737 738
		return;
	}

	/*
	 * Shift bits [35:32] of address into bits [23:20] of PMD
	 * (See ARMv6 spec).
	 */
	phys |= (((md->pfn >> (32 - PAGE_SHIFT)) & 0xF) << 20);

	pgd = pgd_offset_k(addr);
	end = addr + length;
	do {
R
Russell King 已提交
739 740
		pud_t *pud = pud_offset(pgd, addr);
		pmd_t *pmd = pmd_offset(pud, addr);
741 742 743 744 745 746 747 748 749 750
		int i;

		for (i = 0; i < 16; i++)
			*pmd++ = __pmd(phys | type->prot_sect | PMD_SECT_SUPER);

		addr += SUPERSECTION_SIZE;
		phys += SUPERSECTION_SIZE;
		pgd += SUPERSECTION_SIZE >> PGDIR_SHIFT;
	} while (addr != end);
}
751
#endif	/* !CONFIG_ARM_LPAE */
752

753 754 755 756 757 758 759
/*
 * Create the page directory entries and any necessary
 * page tables for the mapping specified by `md'.  We
 * are able to cope here with varying sizes and address
 * offsets, and we take full advantage of sections and
 * supersections.
 */
760
static void __init create_mapping(struct map_desc *md)
761
{
762 763
	unsigned long addr, length, end;
	phys_addr_t phys;
764
	const struct mem_type *type;
765
	pgd_t *pgd;
766 767

	if (md->virtual != vectors_base() && md->virtual < TASK_SIZE) {
768 769 770
		printk(KERN_WARNING "BUG: not creating mapping for 0x%08llx"
		       " at 0x%08lx in user region\n",
		       (long long)__pfn_to_phys((u64)md->pfn), md->virtual);
771 772 773 774
		return;
	}

	if ((md->type == MT_DEVICE || md->type == MT_ROM) &&
775 776
	    md->virtual >= PAGE_OFFSET &&
	    (md->virtual < VMALLOC_START || md->virtual >= VMALLOC_END)) {
777
		printk(KERN_WARNING "BUG: mapping for 0x%08llx"
778
		       " at 0x%08lx out of vmalloc space\n",
779
		       (long long)__pfn_to_phys((u64)md->pfn), md->virtual);
780 781
	}

782
	type = &mem_types[md->type];
783

784
#ifndef CONFIG_ARM_LPAE
785 786 787
	/*
	 * Catch 36-bit addresses
	 */
788 789 790
	if (md->pfn >= 0x100000) {
		create_36bit_mapping(md, type);
		return;
791
	}
792
#endif
793

794
	addr = md->virtual & PAGE_MASK;
795
	phys = __pfn_to_phys(md->pfn);
796
	length = PAGE_ALIGN(md->length + (md->virtual & ~PAGE_MASK));
797

798
	if (type->prot_l1 == 0 && ((addr | phys | length) & ~SECTION_MASK)) {
799
		printk(KERN_WARNING "BUG: map for 0x%08llx at 0x%08lx can not "
800
		       "be mapped using pages, ignoring.\n",
801
		       (long long)__pfn_to_phys(md->pfn), addr);
802 803 804
		return;
	}

805 806 807 808
	pgd = pgd_offset_k(addr);
	end = addr + length;
	do {
		unsigned long next = pgd_addr_end(addr, end);
809

R
Russell King 已提交
810
		alloc_init_pud(pgd, addr, next, phys, type);
811

812 813 814
		phys += next - addr;
		addr = next;
	} while (pgd++, addr != end);
815 816 817 818 819 820 821
}

/*
 * Create the architecture specific mappings
 */
void __init iotable_init(struct map_desc *io_desc, int nr)
{
822 823
	struct map_desc *md;
	struct vm_struct *vm;
824
	struct static_vm *svm;
825 826 827

	if (!nr)
		return;
828

829
	svm = early_alloc_aligned(sizeof(*svm) * nr, __alignof__(*svm));
830 831 832

	for (md = io_desc; nr; md++, nr--) {
		create_mapping(md);
833 834

		vm = &svm->vm;
835 836
		vm->addr = (void *)(md->virtual & PAGE_MASK);
		vm->size = PAGE_ALIGN(md->length + (md->virtual & ~PAGE_MASK));
R
Rob Herring 已提交
837 838
		vm->phys_addr = __pfn_to_phys(md->pfn);
		vm->flags = VM_IOREMAP | VM_ARM_STATIC_MAPPING;
839
		vm->flags |= VM_ARM_MTYPE(md->type);
840
		vm->caller = iotable_init;
841
		add_static_vm_early(svm++);
842
	}
843 844
}

R
Rob Herring 已提交
845 846 847 848
void __init vm_reserve_area_early(unsigned long addr, unsigned long size,
				  void *caller)
{
	struct vm_struct *vm;
849 850 851
	struct static_vm *svm;

	svm = early_alloc_aligned(sizeof(*svm), __alignof__(*svm));
R
Rob Herring 已提交
852

853
	vm = &svm->vm;
R
Rob Herring 已提交
854 855
	vm->addr = (void *)addr;
	vm->size = size;
856
	vm->flags = VM_IOREMAP | VM_ARM_EMPTY_MAPPING;
R
Rob Herring 已提交
857
	vm->caller = caller;
858
	add_static_vm_early(svm);
R
Rob Herring 已提交
859 860
}

861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877
#ifndef CONFIG_ARM_LPAE

/*
 * The Linux PMD is made of two consecutive section entries covering 2MB
 * (see definition in include/asm/pgtable-2level.h).  However a call to
 * create_mapping() may optimize static mappings by using individual
 * 1MB section mappings.  This leaves the actual PMD potentially half
 * initialized if the top or bottom section entry isn't used, leaving it
 * open to problems if a subsequent ioremap() or vmalloc() tries to use
 * the virtual space left free by that unused section entry.
 *
 * Let's avoid the issue by inserting dummy vm entries covering the unused
 * PMD halves once the static mappings are in place.
 */

static void __init pmd_empty_section_gap(unsigned long addr)
{
R
Rob Herring 已提交
878
	vm_reserve_area_early(addr, SECTION_SIZE, pmd_empty_section_gap);
879 880 881 882
}

static void __init fill_pmd_gaps(void)
{
883
	struct static_vm *svm;
884 885 886 887
	struct vm_struct *vm;
	unsigned long addr, next = 0;
	pmd_t *pmd;

888 889
	list_for_each_entry(svm, &static_vmlist, list) {
		vm = &svm->vm;
890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925
		addr = (unsigned long)vm->addr;
		if (addr < next)
			continue;

		/*
		 * Check if this vm starts on an odd section boundary.
		 * If so and the first section entry for this PMD is free
		 * then we block the corresponding virtual address.
		 */
		if ((addr & ~PMD_MASK) == SECTION_SIZE) {
			pmd = pmd_off_k(addr);
			if (pmd_none(*pmd))
				pmd_empty_section_gap(addr & PMD_MASK);
		}

		/*
		 * Then check if this vm ends on an odd section boundary.
		 * If so and the second section entry for this PMD is empty
		 * then we block the corresponding virtual address.
		 */
		addr += vm->size;
		if ((addr & ~PMD_MASK) == SECTION_SIZE) {
			pmd = pmd_off_k(addr) + 1;
			if (pmd_none(*pmd))
				pmd_empty_section_gap(addr);
		}

		/* no need to look at any vm entry until we hit the next PMD */
		next = (addr + PMD_SIZE - 1) & PMD_MASK;
	}
}

#else
#define fill_pmd_gaps() do { } while (0)
#endif

R
Rob Herring 已提交
926 927 928
#if defined(CONFIG_PCI) && !defined(CONFIG_NEED_MACH_IO_H)
static void __init pci_reserve_io(void)
{
929
	struct static_vm *svm;
R
Rob Herring 已提交
930

931 932 933
	svm = find_static_vm_vaddr((void *)PCI_IO_VIRT_BASE);
	if (svm)
		return;
R
Rob Herring 已提交
934 935 936 937 938 939 940

	vm_reserve_area_early(PCI_IO_VIRT_BASE, SZ_2M, pci_reserve_io);
}
#else
#define pci_reserve_io() do { } while (0)
#endif

R
Rob Herring 已提交
941 942 943 944 945 946 947 948 949 950 951 952
#ifdef CONFIG_DEBUG_LL
void __init debug_ll_io_init(void)
{
	struct map_desc map;

	debug_ll_addr(&map.pfn, &map.virtual);
	if (!map.pfn || !map.virtual)
		return;
	map.pfn = __phys_to_pfn(map.pfn);
	map.virtual &= PAGE_MASK;
	map.length = PAGE_SIZE;
	map.type = MT_DEVICE;
953
	iotable_init(&map, 1);
R
Rob Herring 已提交
954 955 956
}
#endif

957 958
static void * __initdata vmalloc_min =
	(void *)(VMALLOC_END - (240 << 20) - VMALLOC_OFFSET);
959 960 961 962

/*
 * vmalloc=size forces the vmalloc area to be exactly 'size'
 * bytes. This can be used to increase (or decrease) the vmalloc
963
 * area - the default is 240m.
964
 */
965
static int __init early_vmalloc(char *arg)
966
{
R
Russell King 已提交
967
	unsigned long vmalloc_reserve = memparse(arg, NULL);
968 969 970 971 972 973 974

	if (vmalloc_reserve < SZ_16M) {
		vmalloc_reserve = SZ_16M;
		printk(KERN_WARNING
			"vmalloc area too small, limiting to %luMB\n",
			vmalloc_reserve >> 20);
	}
975 976 977 978 979 980 981

	if (vmalloc_reserve > VMALLOC_END - (PAGE_OFFSET + SZ_32M)) {
		vmalloc_reserve = VMALLOC_END - (PAGE_OFFSET + SZ_32M);
		printk(KERN_WARNING
			"vmalloc area is too big, limiting to %luMB\n",
			vmalloc_reserve >> 20);
	}
R
Russell King 已提交
982 983

	vmalloc_min = (void *)(VMALLOC_END - vmalloc_reserve);
984
	return 0;
985
}
986
early_param("vmalloc", early_vmalloc);
987

988
phys_addr_t arm_lowmem_limit __initdata = 0;
989

990
void __init sanity_check_meminfo(void)
991
{
R
Russell King 已提交
992
	int i, j, highmem = 0;
993
	phys_addr_t vmalloc_limit = __pa(vmalloc_min - 1) + 1;
994

995
	for (i = 0, j = 0; i < meminfo.nr_banks; i++) {
996
		struct membank *bank = &meminfo.bank[j];
997
		phys_addr_t size_limit;
998

999
		*bank = meminfo.bank[i];
1000
		size_limit = bank->size;
1001

1002
		if (bank->start >= vmalloc_limit)
R
Russell King 已提交
1003
			highmem = 1;
1004 1005
		else
			size_limit = vmalloc_limit - bank->start;
R
Russell King 已提交
1006 1007 1008

		bank->highmem = highmem;

1009
#ifdef CONFIG_HIGHMEM
1010 1011 1012 1013
		/*
		 * Split those memory banks which are partially overlapping
		 * the vmalloc area greatly simplifying things later.
		 */
1014
		if (!highmem && bank->size > size_limit) {
1015 1016 1017 1018 1019 1020 1021 1022
			if (meminfo.nr_banks >= NR_BANKS) {
				printk(KERN_CRIT "NR_BANKS too low, "
						 "ignoring high memory\n");
			} else {
				memmove(bank + 1, bank,
					(meminfo.nr_banks - i) * sizeof(*bank));
				meminfo.nr_banks++;
				i++;
1023
				bank[1].size -= size_limit;
1024
				bank[1].start = vmalloc_limit;
R
Russell King 已提交
1025
				bank[1].highmem = highmem = 1;
1026 1027
				j++;
			}
1028
			bank->size = size_limit;
1029 1030
		}
#else
1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041
		/*
		 * Highmem banks not allowed with !CONFIG_HIGHMEM.
		 */
		if (highmem) {
			printk(KERN_NOTICE "Ignoring RAM at %.8llx-%.8llx "
			       "(!CONFIG_HIGHMEM).\n",
			       (unsigned long long)bank->start,
			       (unsigned long long)bank->start + bank->size - 1);
			continue;
		}

1042 1043 1044 1045
		/*
		 * Check whether this memory bank would partially overlap
		 * the vmalloc area.
		 */
1046
		if (bank->size > size_limit) {
1047 1048 1049 1050
			printk(KERN_NOTICE "Truncating RAM at %.8llx-%.8llx "
			       "to -%.8llx (vmalloc region overlap).\n",
			       (unsigned long long)bank->start,
			       (unsigned long long)bank->start + bank->size - 1,
1051 1052
			       (unsigned long long)bank->start + size_limit - 1);
			bank->size = size_limit;
1053 1054
		}
#endif
1055 1056
		if (!bank->highmem && bank->start + bank->size > arm_lowmem_limit)
			arm_lowmem_limit = bank->start + bank->size;
1057

1058
		j++;
1059
	}
1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079
#ifdef CONFIG_HIGHMEM
	if (highmem) {
		const char *reason = NULL;

		if (cache_is_vipt_aliasing()) {
			/*
			 * Interactions between kmap and other mappings
			 * make highmem support with aliasing VIPT caches
			 * rather difficult.
			 */
			reason = "with VIPT aliasing cache";
		}
		if (reason) {
			printk(KERN_CRIT "HIGHMEM is not supported %s, ignoring high memory\n",
				reason);
			while (j > 0 && meminfo.bank[j - 1].highmem)
				j--;
		}
	}
#endif
1080
	meminfo.nr_banks = j;
1081 1082
	high_memory = __va(arm_lowmem_limit - 1) + 1;
	memblock_set_current_limit(arm_lowmem_limit);
1083 1084
}

1085
static inline void prepare_page_table(void)
1086 1087
{
	unsigned long addr;
1088
	phys_addr_t end;
1089 1090 1091 1092

	/*
	 * Clear out all the mappings below the kernel image.
	 */
1093
	for (addr = 0; addr < MODULES_VADDR; addr += PMD_SIZE)
1094 1095 1096 1097
		pmd_clear(pmd_off_k(addr));

#ifdef CONFIG_XIP_KERNEL
	/* The XIP kernel is mapped in the module area -- skip over it */
1098
	addr = ((unsigned long)_etext + PMD_SIZE - 1) & PMD_MASK;
1099
#endif
1100
	for ( ; addr < PAGE_OFFSET; addr += PMD_SIZE)
1101 1102
		pmd_clear(pmd_off_k(addr));

1103 1104 1105 1106
	/*
	 * Find the end of the first block of lowmem.
	 */
	end = memblock.memory.regions[0].base + memblock.memory.regions[0].size;
1107 1108
	if (end >= arm_lowmem_limit)
		end = arm_lowmem_limit;
1109

1110 1111
	/*
	 * Clear out all the kernel space mappings, except for the first
1112
	 * memory bank, up to the vmalloc region.
1113
	 */
1114
	for (addr = __phys_to_virt(end);
1115
	     addr < VMALLOC_START; addr += PMD_SIZE)
1116 1117 1118
		pmd_clear(pmd_off_k(addr));
}

1119 1120 1121 1122 1123
#ifdef CONFIG_ARM_LPAE
/* the first page is reserved for pgd */
#define SWAPPER_PG_DIR_SIZE	(PAGE_SIZE + \
				 PTRS_PER_PGD * PTRS_PER_PMD * sizeof(pmd_t))
#else
1124
#define SWAPPER_PG_DIR_SIZE	(PTRS_PER_PGD * sizeof(pgd_t))
1125
#endif
1126

1127
/*
R
Russell King 已提交
1128
 * Reserve the special regions of memory
1129
 */
R
Russell King 已提交
1130
void __init arm_mm_memblock_reserve(void)
1131 1132 1133 1134 1135
{
	/*
	 * Reserve the page tables.  These are already in use,
	 * and can only be in node 0.
	 */
1136
	memblock_reserve(__pa(swapper_pg_dir), SWAPPER_PG_DIR_SIZE);
1137 1138 1139 1140 1141 1142

#ifdef CONFIG_SA1111
	/*
	 * Because of the SA1111 DMA bug, we want to preserve our
	 * precious DMA-able memory...
	 */
R
Russell King 已提交
1143
	memblock_reserve(PHYS_OFFSET, __pa(swapper_pg_dir) - PHYS_OFFSET);
1144 1145 1146 1147
#endif
}

/*
1148 1149
 * Set up the device mappings.  Since we clear out the page tables for all
 * mappings above VMALLOC_START, we will remove any debug device mappings.
1150 1151 1152 1153 1154 1155 1156 1157
 * This means you have to be careful how you debug this function, or any
 * called function.  This means you can't use any function or debugging
 * method which may touch any device, otherwise the kernel _will_ crash.
 */
static void __init devicemaps_init(struct machine_desc *mdesc)
{
	struct map_desc map;
	unsigned long addr;
1158
	void *vectors;
1159 1160 1161 1162

	/*
	 * Allocate the vector page early.
	 */
1163 1164 1165
	vectors = early_alloc(PAGE_SIZE);

	early_trap_init(vectors);
1166

1167
	for (addr = VMALLOC_START; addr; addr += PMD_SIZE)
1168 1169 1170 1171 1172 1173 1174 1175
		pmd_clear(pmd_off_k(addr));

	/*
	 * Map the kernel if it is XIP.
	 * It is always first in the modulearea.
	 */
#ifdef CONFIG_XIP_KERNEL
	map.pfn = __phys_to_pfn(CONFIG_XIP_PHYS_ADDR & SECTION_MASK);
1176
	map.virtual = MODULES_VADDR;
R
Russell King 已提交
1177
	map.length = ((unsigned long)_etext - map.virtual + ~SECTION_MASK) & SECTION_MASK;
1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204
	map.type = MT_ROM;
	create_mapping(&map);
#endif

	/*
	 * Map the cache flushing regions.
	 */
#ifdef FLUSH_BASE
	map.pfn = __phys_to_pfn(FLUSH_BASE_PHYS);
	map.virtual = FLUSH_BASE;
	map.length = SZ_1M;
	map.type = MT_CACHECLEAN;
	create_mapping(&map);
#endif
#ifdef FLUSH_BASE_MINICACHE
	map.pfn = __phys_to_pfn(FLUSH_BASE_PHYS + SZ_1M);
	map.virtual = FLUSH_BASE_MINICACHE;
	map.length = SZ_1M;
	map.type = MT_MINICLEAN;
	create_mapping(&map);
#endif

	/*
	 * Create a mapping for the machine vectors at the high-vectors
	 * location (0xffff0000).  If we aren't using high-vectors, also
	 * create a mapping at the low-vectors virtual address.
	 */
1205
	map.pfn = __phys_to_pfn(virt_to_phys(vectors));
1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221
	map.virtual = 0xffff0000;
	map.length = PAGE_SIZE;
	map.type = MT_HIGH_VECTORS;
	create_mapping(&map);

	if (!vectors_high()) {
		map.virtual = 0;
		map.type = MT_LOW_VECTORS;
		create_mapping(&map);
	}

	/*
	 * Ask the machine support to map in the statically mapped devices.
	 */
	if (mdesc->map_io)
		mdesc->map_io();
1222 1223
	else
		debug_ll_io_init();
1224
	fill_pmd_gaps();
1225

R
Rob Herring 已提交
1226 1227 1228
	/* Reserve fixed i/o space in VMALLOC region */
	pci_reserve_io();

1229 1230 1231 1232 1233 1234 1235 1236 1237 1238
	/*
	 * Finally flush the caches and tlb to ensure that we're in a
	 * consistent state wrt the writebuffer.  This also ensures that
	 * any write-allocated cache lines in the vector page are written
	 * back.  After this point, we can start to touch devices again.
	 */
	local_flush_tlb_all();
	flush_cache_all();
}

N
Nicolas Pitre 已提交
1239 1240 1241
static void __init kmap_init(void)
{
#ifdef CONFIG_HIGHMEM
R
Russell King 已提交
1242 1243
	pkmap_page_table = early_pte_alloc(pmd_off_k(PKMAP_BASE),
		PKMAP_BASE, _PAGE_KERNEL_TABLE);
N
Nicolas Pitre 已提交
1244 1245 1246
#endif
}

1247 1248
static void __init map_lowmem(void)
{
1249
	struct memblock_region *reg;
1250 1251

	/* Map all the lowmem memory banks. */
1252 1253 1254 1255 1256
	for_each_memblock(memory, reg) {
		phys_addr_t start = reg->base;
		phys_addr_t end = start + reg->size;
		struct map_desc map;

1257 1258
		if (end > arm_lowmem_limit)
			end = arm_lowmem_limit;
1259 1260 1261 1262 1263 1264 1265
		if (start >= end)
			break;

		map.pfn = __phys_to_pfn(start);
		map.virtual = __phys_to_virt(start);
		map.length = end - start;
		map.type = MT_MEMORY;
1266

1267
		create_mapping(&map);
1268 1269 1270
	}
}

1271 1272 1273 1274
/*
 * paging_init() sets up the page tables, initialises the zone memory
 * maps, and sets up the zero page, bad page and bad page tables.
 */
1275
void __init paging_init(struct machine_desc *mdesc)
1276 1277 1278
{
	void *zero_page;

1279
	memblock_set_current_limit(arm_lowmem_limit);
1280

1281
	build_mem_type_table();
1282
	prepare_page_table();
1283
	map_lowmem();
1284
	dma_contiguous_remap();
1285
	devicemaps_init(mdesc);
N
Nicolas Pitre 已提交
1286
	kmap_init();
1287
	tcm_init();
1288 1289 1290

	top_pmd = pmd_off_k(0xffff0000);

R
Russell King 已提交
1291 1292
	/* allocate the zero page. */
	zero_page = early_alloc(PAGE_SIZE);
R
Russell King 已提交
1293

1294
	bootmem_init();
R
Russell King 已提交
1295

1296
	empty_zero_page = virt_to_page(zero_page);
1297
	__flush_dcache_page(NULL, empty_zero_page);
1298
}