mmu.c 29.0 KB
Newer Older
1 2 3 4 5 6 7 8 9
/*
 *  linux/arch/arm/mm/mmu.c
 *
 *  Copyright (C) 1995-2005 Russell King
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
 */
10
#include <linux/module.h>
11 12 13 14 15
#include <linux/kernel.h>
#include <linux/errno.h>
#include <linux/init.h>
#include <linux/mman.h>
#include <linux/nodemask.h>
R
Russell King 已提交
16
#include <linux/memblock.h>
17
#include <linux/fs.h>
18
#include <linux/vmalloc.h>
19

20
#include <asm/cputype.h>
R
Russell King 已提交
21
#include <asm/sections.h>
22
#include <asm/cachetype.h>
23 24
#include <asm/setup.h>
#include <asm/sizes.h>
25
#include <asm/smp_plat.h>
26
#include <asm/tlb.h>
N
Nicolas Pitre 已提交
27
#include <asm/highmem.h>
28
#include <asm/traps.h>
29 30 31 32 33 34 35 36 37 38 39

#include <asm/mach/arch.h>
#include <asm/mach/map.h>

#include "mm.h"

/*
 * empty_zero_page is a special page that is used for
 * zero-initialized data and COW.
 */
struct page *empty_zero_page;
40
EXPORT_SYMBOL(empty_zero_page);
41 42 43 44 45 46

/*
 * The pmd table for the upper-most set of pages.
 */
pmd_t *top_pmd;

47 48 49 50 51 52 53 54
#define CPOLICY_UNCACHED	0
#define CPOLICY_BUFFERED	1
#define CPOLICY_WRITETHROUGH	2
#define CPOLICY_WRITEBACK	3
#define CPOLICY_WRITEALLOC	4

static unsigned int cachepolicy __initdata = CPOLICY_WRITEBACK;
static unsigned int ecc_mask __initdata = 0;
55
pgprot_t pgprot_user;
56 57
pgprot_t pgprot_kernel;

58
EXPORT_SYMBOL(pgprot_user);
59 60 61 62 63
EXPORT_SYMBOL(pgprot_kernel);

struct cachepolicy {
	const char	policy[16];
	unsigned int	cr_mask;
64
	pmdval_t	pmd;
65
	pteval_t	pte;
66 67 68 69 70 71 72
};

static struct cachepolicy cache_policies[] __initdata = {
	{
		.policy		= "uncached",
		.cr_mask	= CR_W|CR_C,
		.pmd		= PMD_SECT_UNCACHED,
73
		.pte		= L_PTE_MT_UNCACHED,
74 75 76 77
	}, {
		.policy		= "buffered",
		.cr_mask	= CR_C,
		.pmd		= PMD_SECT_BUFFERED,
78
		.pte		= L_PTE_MT_BUFFERABLE,
79 80 81 82
	}, {
		.policy		= "writethrough",
		.cr_mask	= 0,
		.pmd		= PMD_SECT_WT,
83
		.pte		= L_PTE_MT_WRITETHROUGH,
84 85 86 87
	}, {
		.policy		= "writeback",
		.cr_mask	= 0,
		.pmd		= PMD_SECT_WB,
88
		.pte		= L_PTE_MT_WRITEBACK,
89 90 91 92
	}, {
		.policy		= "writealloc",
		.cr_mask	= 0,
		.pmd		= PMD_SECT_WBWA,
93
		.pte		= L_PTE_MT_WRITEALLOC,
94 95 96 97
	}
};

/*
S
Simon Arlott 已提交
98
 * These are useful for identifying cache coherency
99 100 101 102
 * problems by allowing the cache or the cache and
 * writebuffer to be turned off.  (Note: the write
 * buffer should not be on and the cache off).
 */
103
static int __init early_cachepolicy(char *p)
104 105 106 107 108 109
{
	int i;

	for (i = 0; i < ARRAY_SIZE(cache_policies); i++) {
		int len = strlen(cache_policies[i].policy);

110
		if (memcmp(p, cache_policies[i].policy, len) == 0) {
111 112 113 114 115 116 117 118
			cachepolicy = i;
			cr_alignment &= ~cache_policies[i].cr_mask;
			cr_no_alignment &= ~cache_policies[i].cr_mask;
			break;
		}
	}
	if (i == ARRAY_SIZE(cache_policies))
		printk(KERN_ERR "ERROR: unknown or unsupported cache policy\n");
119 120 121 122 123 124 125
	/*
	 * This restriction is partly to do with the way we boot; it is
	 * unpredictable to have memory mapped using two different sets of
	 * memory attributes (shared, type, and cache attribs).  We can not
	 * change these attributes once the initial assembly has setup the
	 * page tables.
	 */
126 127 128 129
	if (cpu_architecture() >= CPU_ARCH_ARMv6) {
		printk(KERN_WARNING "Only cachepolicy=writeback supported on ARMv6 and later\n");
		cachepolicy = CPOLICY_WRITEBACK;
	}
130 131
	flush_cache_all();
	set_cr(cr_alignment);
132
	return 0;
133
}
134
early_param("cachepolicy", early_cachepolicy);
135

136
static int __init early_nocache(char *__unused)
137 138 139
{
	char *p = "buffered";
	printk(KERN_WARNING "nocache is deprecated; use cachepolicy=%s\n", p);
140 141
	early_cachepolicy(p);
	return 0;
142
}
143
early_param("nocache", early_nocache);
144

145
static int __init early_nowrite(char *__unused)
146 147 148
{
	char *p = "uncached";
	printk(KERN_WARNING "nowb is deprecated; use cachepolicy=%s\n", p);
149 150
	early_cachepolicy(p);
	return 0;
151
}
152
early_param("nowb", early_nowrite);
153

154
static int __init early_ecc(char *p)
155
{
156
	if (memcmp(p, "on", 2) == 0)
157
		ecc_mask = PMD_PROTECTION;
158
	else if (memcmp(p, "off", 3) == 0)
159
		ecc_mask = 0;
160
	return 0;
161
}
162
early_param("ecc", early_ecc);
163 164 165 166 167 168 169 170 171 172

static int __init noalign_setup(char *__unused)
{
	cr_alignment &= ~CR_A;
	cr_no_alignment &= ~CR_A;
	set_cr(cr_alignment);
	return 1;
}
__setup("noalign", noalign_setup);

173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192
#ifndef CONFIG_SMP
void adjust_cr(unsigned long mask, unsigned long set)
{
	unsigned long flags;

	mask &= ~CR_A;

	set &= mask;

	local_irq_save(flags);

	cr_no_alignment = (cr_no_alignment & ~mask) | set;
	cr_alignment = (cr_alignment & ~mask) | set;

	set_cr((get_cr() & ~mask) | set);

	local_irq_restore(flags);
}
#endif

193
#define PROT_PTE_DEVICE		L_PTE_PRESENT|L_PTE_YOUNG|L_PTE_DIRTY|L_PTE_XN
194
#define PROT_SECT_DEVICE	PMD_TYPE_SECT|PMD_SECT_AP_WRITE
195

196
static struct mem_type mem_types[] = {
197
	[MT_DEVICE] = {		  /* Strongly ordered / ARMv6 shared device */
198 199
		.prot_pte	= PROT_PTE_DEVICE | L_PTE_MT_DEV_SHARED |
				  L_PTE_SHARED,
200
		.prot_l1	= PMD_TYPE_TABLE,
201
		.prot_sect	= PROT_SECT_DEVICE | PMD_SECT_S,
202 203 204
		.domain		= DOMAIN_IO,
	},
	[MT_DEVICE_NONSHARED] = { /* ARMv6 non-shared device */
205
		.prot_pte	= PROT_PTE_DEVICE | L_PTE_MT_DEV_NONSHARED,
206
		.prot_l1	= PMD_TYPE_TABLE,
207
		.prot_sect	= PROT_SECT_DEVICE,
208 209 210
		.domain		= DOMAIN_IO,
	},
	[MT_DEVICE_CACHED] = {	  /* ioremap_cached */
211
		.prot_pte	= PROT_PTE_DEVICE | L_PTE_MT_DEV_CACHED,
212 213 214 215
		.prot_l1	= PMD_TYPE_TABLE,
		.prot_sect	= PROT_SECT_DEVICE | PMD_SECT_WB,
		.domain		= DOMAIN_IO,
	},	
216
	[MT_DEVICE_WC] = {	/* ioremap_wc */
217
		.prot_pte	= PROT_PTE_DEVICE | L_PTE_MT_DEV_WC,
218
		.prot_l1	= PMD_TYPE_TABLE,
219
		.prot_sect	= PROT_SECT_DEVICE,
220
		.domain		= DOMAIN_IO,
221
	},
222 223 224 225 226 227
	[MT_UNCACHED] = {
		.prot_pte	= PROT_PTE_DEVICE,
		.prot_l1	= PMD_TYPE_TABLE,
		.prot_sect	= PMD_TYPE_SECT | PMD_SECT_XN,
		.domain		= DOMAIN_IO,
	},
228
	[MT_CACHECLEAN] = {
229
		.prot_sect = PMD_TYPE_SECT | PMD_SECT_XN,
230 231 232
		.domain    = DOMAIN_KERNEL,
	},
	[MT_MINICLEAN] = {
233
		.prot_sect = PMD_TYPE_SECT | PMD_SECT_XN | PMD_SECT_MINICACHE,
234 235 236 237
		.domain    = DOMAIN_KERNEL,
	},
	[MT_LOW_VECTORS] = {
		.prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
238
				L_PTE_RDONLY,
239 240 241 242 243
		.prot_l1   = PMD_TYPE_TABLE,
		.domain    = DOMAIN_USER,
	},
	[MT_HIGH_VECTORS] = {
		.prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
244
				L_PTE_USER | L_PTE_RDONLY,
245 246 247 248
		.prot_l1   = PMD_TYPE_TABLE,
		.domain    = DOMAIN_USER,
	},
	[MT_MEMORY] = {
249
		.prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY,
250
		.prot_l1   = PMD_TYPE_TABLE,
251
		.prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE,
252 253 254
		.domain    = DOMAIN_KERNEL,
	},
	[MT_ROM] = {
255
		.prot_sect = PMD_TYPE_SECT,
256 257
		.domain    = DOMAIN_KERNEL,
	},
258
	[MT_MEMORY_NONCACHED] = {
259
		.prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
260
				L_PTE_MT_BUFFERABLE,
261
		.prot_l1   = PMD_TYPE_TABLE,
262 263 264
		.prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE,
		.domain    = DOMAIN_KERNEL,
	},
265
	[MT_MEMORY_DTCM] = {
266
		.prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
267
				L_PTE_XN,
268 269 270
		.prot_l1   = PMD_TYPE_TABLE,
		.prot_sect = PMD_TYPE_SECT | PMD_SECT_XN,
		.domain    = DOMAIN_KERNEL,
271 272
	},
	[MT_MEMORY_ITCM] = {
273
		.prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY,
274
		.prot_l1   = PMD_TYPE_TABLE,
275
		.domain    = DOMAIN_KERNEL,
276
	},
277 278 279 280 281 282 283 284
	[MT_MEMORY_SO] = {
		.prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
				L_PTE_MT_UNCACHED,
		.prot_l1   = PMD_TYPE_TABLE,
		.prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE | PMD_SECT_S |
				PMD_SECT_UNCACHED | PMD_SECT_XN,
		.domain    = DOMAIN_KERNEL,
	},
285 286
};

287 288 289 290
const struct mem_type *get_mem_type(unsigned int type)
{
	return type < ARRAY_SIZE(mem_types) ? &mem_types[type] : NULL;
}
291
EXPORT_SYMBOL(get_mem_type);
292

293 294 295 296 297 298 299
/*
 * Adjust the PMD section entries according to the CPU in use.
 */
static void __init build_mem_type_table(void)
{
	struct cachepolicy *cp;
	unsigned int cr = get_cr();
300
	pteval_t user_pgprot, kern_pgprot, vecs_pgprot;
301 302 303
	int cpu_arch = cpu_architecture();
	int i;

304
	if (cpu_arch < CPU_ARCH_ARMv6) {
305
#if defined(CONFIG_CPU_DCACHE_DISABLE)
306 307
		if (cachepolicy > CPOLICY_BUFFERED)
			cachepolicy = CPOLICY_BUFFERED;
308
#elif defined(CONFIG_CPU_DCACHE_WRITETHROUGH)
309 310
		if (cachepolicy > CPOLICY_WRITETHROUGH)
			cachepolicy = CPOLICY_WRITETHROUGH;
311
#endif
312
	}
313 314 315 316 317
	if (cpu_arch < CPU_ARCH_ARMv5) {
		if (cachepolicy >= CPOLICY_WRITEALLOC)
			cachepolicy = CPOLICY_WRITEBACK;
		ecc_mask = 0;
	}
318 319
	if (is_smp())
		cachepolicy = CPOLICY_WRITEALLOC;
320

321
	/*
322 323 324
	 * Strip out features not present on earlier architectures.
	 * Pre-ARMv5 CPUs don't have TEX bits.  Pre-ARMv6 CPUs or those
	 * without extended page tables don't have the 'Shared' bit.
325
	 */
326 327 328 329 330 331
	if (cpu_arch < CPU_ARCH_ARMv5)
		for (i = 0; i < ARRAY_SIZE(mem_types); i++)
			mem_types[i].prot_sect &= ~PMD_SECT_TEX(7);
	if ((cpu_arch < CPU_ARCH_ARMv6 || !(cr & CR_XP)) && !cpu_is_xsc3())
		for (i = 0; i < ARRAY_SIZE(mem_types); i++)
			mem_types[i].prot_sect &= ~PMD_SECT_S;
332 333

	/*
334 335 336
	 * ARMv5 and lower, bit 4 must be set for page tables (was: cache
	 * "update-able on write" bit on ARM610).  However, Xscale and
	 * Xscale3 require this bit to be cleared.
337
	 */
338
	if (cpu_is_xscale() || cpu_is_xsc3()) {
339
		for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
340
			mem_types[i].prot_sect &= ~PMD_BIT4;
341 342 343 344
			mem_types[i].prot_l1 &= ~PMD_BIT4;
		}
	} else if (cpu_arch < CPU_ARCH_ARMv6) {
		for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
345 346
			if (mem_types[i].prot_l1)
				mem_types[i].prot_l1 |= PMD_BIT4;
347 348 349 350
			if (mem_types[i].prot_sect)
				mem_types[i].prot_sect |= PMD_BIT4;
		}
	}
351

352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409
	/*
	 * Mark the device areas according to the CPU/architecture.
	 */
	if (cpu_is_xsc3() || (cpu_arch >= CPU_ARCH_ARMv6 && (cr & CR_XP))) {
		if (!cpu_is_xsc3()) {
			/*
			 * Mark device regions on ARMv6+ as execute-never
			 * to prevent speculative instruction fetches.
			 */
			mem_types[MT_DEVICE].prot_sect |= PMD_SECT_XN;
			mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_XN;
			mem_types[MT_DEVICE_CACHED].prot_sect |= PMD_SECT_XN;
			mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_XN;
		}
		if (cpu_arch >= CPU_ARCH_ARMv7 && (cr & CR_TRE)) {
			/*
			 * For ARMv7 with TEX remapping,
			 * - shared device is SXCB=1100
			 * - nonshared device is SXCB=0100
			 * - write combine device mem is SXCB=0001
			 * (Uncached Normal memory)
			 */
			mem_types[MT_DEVICE].prot_sect |= PMD_SECT_TEX(1);
			mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(1);
			mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_BUFFERABLE;
		} else if (cpu_is_xsc3()) {
			/*
			 * For Xscale3,
			 * - shared device is TEXCB=00101
			 * - nonshared device is TEXCB=01000
			 * - write combine device mem is TEXCB=00100
			 * (Inner/Outer Uncacheable in xsc3 parlance)
			 */
			mem_types[MT_DEVICE].prot_sect |= PMD_SECT_TEX(1) | PMD_SECT_BUFFERED;
			mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(2);
			mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_TEX(1);
		} else {
			/*
			 * For ARMv6 and ARMv7 without TEX remapping,
			 * - shared device is TEXCB=00001
			 * - nonshared device is TEXCB=01000
			 * - write combine device mem is TEXCB=00100
			 * (Uncached Normal in ARMv6 parlance).
			 */
			mem_types[MT_DEVICE].prot_sect |= PMD_SECT_BUFFERED;
			mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(2);
			mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_TEX(1);
		}
	} else {
		/*
		 * On others, write combining is "Uncached/Buffered"
		 */
		mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_BUFFERABLE;
	}

	/*
	 * Now deal with the memory-type mappings
	 */
410
	cp = &cache_policies[cachepolicy];
411 412 413 414 415
	vecs_pgprot = kern_pgprot = user_pgprot = cp->pte;

	/*
	 * Only use write-through for non-SMP systems
	 */
416
	if (!is_smp() && cpu_arch >= CPU_ARCH_ARMv5 && cachepolicy > CPOLICY_WRITETHROUGH)
417
		vecs_pgprot = cache_policies[CPOLICY_WRITETHROUGH].pte;
418 419 420 421 422

	/*
	 * Enable CPU-specific coherency if supported.
	 * (Only available on XSC3 at the moment.)
	 */
423
	if (arch_is_coherent() && cpu_is_xsc3()) {
424
		mem_types[MT_MEMORY].prot_sect |= PMD_SECT_S;
425 426 427 428
		mem_types[MT_MEMORY].prot_pte |= L_PTE_SHARED;
		mem_types[MT_MEMORY_NONCACHED].prot_sect |= PMD_SECT_S;
		mem_types[MT_MEMORY_NONCACHED].prot_pte |= L_PTE_SHARED;
	}
429 430 431 432 433 434 435 436 437 438 439 440
	/*
	 * ARMv6 and above have extended page tables.
	 */
	if (cpu_arch >= CPU_ARCH_ARMv6 && (cr & CR_XP)) {
		/*
		 * Mark cache clean areas and XIP ROM read only
		 * from SVC mode and no access from userspace.
		 */
		mem_types[MT_ROM].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
		mem_types[MT_MINICLEAN].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
		mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;

441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457
		if (is_smp()) {
			/*
			 * Mark memory with the "shared" attribute
			 * for SMP systems
			 */
			user_pgprot |= L_PTE_SHARED;
			kern_pgprot |= L_PTE_SHARED;
			vecs_pgprot |= L_PTE_SHARED;
			mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_S;
			mem_types[MT_DEVICE_WC].prot_pte |= L_PTE_SHARED;
			mem_types[MT_DEVICE_CACHED].prot_sect |= PMD_SECT_S;
			mem_types[MT_DEVICE_CACHED].prot_pte |= L_PTE_SHARED;
			mem_types[MT_MEMORY].prot_sect |= PMD_SECT_S;
			mem_types[MT_MEMORY].prot_pte |= L_PTE_SHARED;
			mem_types[MT_MEMORY_NONCACHED].prot_sect |= PMD_SECT_S;
			mem_types[MT_MEMORY_NONCACHED].prot_pte |= L_PTE_SHARED;
		}
458 459
	}

460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477
	/*
	 * Non-cacheable Normal - intended for memory areas that must
	 * not cause dirty cache line writebacks when used
	 */
	if (cpu_arch >= CPU_ARCH_ARMv6) {
		if (cpu_arch >= CPU_ARCH_ARMv7 && (cr & CR_TRE)) {
			/* Non-cacheable Normal is XCB = 001 */
			mem_types[MT_MEMORY_NONCACHED].prot_sect |=
				PMD_SECT_BUFFERED;
		} else {
			/* For both ARMv6 and non-TEX-remapping ARMv7 */
			mem_types[MT_MEMORY_NONCACHED].prot_sect |=
				PMD_SECT_TEX(1);
		}
	} else {
		mem_types[MT_MEMORY_NONCACHED].prot_sect |= PMD_SECT_BUFFERABLE;
	}

478 479
	for (i = 0; i < 16; i++) {
		unsigned long v = pgprot_val(protection_map[i]);
480
		protection_map[i] = __pgprot(v | user_pgprot);
481 482
	}

483 484
	mem_types[MT_LOW_VECTORS].prot_pte |= vecs_pgprot;
	mem_types[MT_HIGH_VECTORS].prot_pte |= vecs_pgprot;
485

486
	pgprot_user   = __pgprot(L_PTE_PRESENT | L_PTE_YOUNG | user_pgprot);
487
	pgprot_kernel = __pgprot(L_PTE_PRESENT | L_PTE_YOUNG |
488
				 L_PTE_DIRTY | kern_pgprot);
489 490 491 492

	mem_types[MT_LOW_VECTORS].prot_l1 |= ecc_mask;
	mem_types[MT_HIGH_VECTORS].prot_l1 |= ecc_mask;
	mem_types[MT_MEMORY].prot_sect |= ecc_mask | cp->pmd;
493 494
	mem_types[MT_MEMORY].prot_pte |= kern_pgprot;
	mem_types[MT_MEMORY_NONCACHED].prot_sect |= ecc_mask;
495 496 497 498 499 500 501 502 503 504 505 506 507
	mem_types[MT_ROM].prot_sect |= cp->pmd;

	switch (cp->pmd) {
	case PMD_SECT_WT:
		mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_WT;
		break;
	case PMD_SECT_WB:
	case PMD_SECT_WBWA:
		mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_WB;
		break;
	}
	printk("Memory policy: ECC %sabled, Data cache %s\n",
		ecc_mask ? "en" : "dis", cp->policy);
508 509 510 511 512 513 514 515

	for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
		struct mem_type *t = &mem_types[i];
		if (t->prot_l1)
			t->prot_l1 |= PMD_DOMAIN(t->domain);
		if (t->prot_sect)
			t->prot_sect |= PMD_DOMAIN(t->domain);
	}
516 517
}

518 519 520 521 522 523 524 525 526 527 528 529 530
#ifdef CONFIG_ARM_DMA_MEM_BUFFERABLE
pgprot_t phys_mem_access_prot(struct file *file, unsigned long pfn,
			      unsigned long size, pgprot_t vma_prot)
{
	if (!pfn_valid(pfn))
		return pgprot_noncached(vma_prot);
	else if (file->f_flags & O_SYNC)
		return pgprot_writecombine(vma_prot);
	return vma_prot;
}
EXPORT_SYMBOL(phys_mem_access_prot);
#endif

531 532
#define vectors_base()	(vectors_high() ? 0xffff0000 : 0)

533
static void __init *early_alloc_aligned(unsigned long sz, unsigned long align)
R
Russell King 已提交
534
{
535
	void *ptr = __va(memblock_alloc(sz, align));
R
Russell King 已提交
536 537
	memset(ptr, 0, sz);
	return ptr;
R
Russell King 已提交
538 539
}

540 541 542 543 544
static void __init *early_alloc(unsigned long sz)
{
	return early_alloc_aligned(sz, sz);
}

R
Russell King 已提交
545
static pte_t * __init early_pte_alloc(pmd_t *pmd, unsigned long addr, unsigned long prot)
546
{
547
	if (pmd_none(*pmd)) {
548
		pte_t *pte = early_alloc(PTE_HWTABLE_OFF + PTE_HWTABLE_SIZE);
549
		__pmd_populate(pmd, __pa(pte), prot);
550
	}
R
Russell King 已提交
551 552 553
	BUG_ON(pmd_bad(*pmd));
	return pte_offset_kernel(pmd, addr);
}
554

R
Russell King 已提交
555 556 557 558 559
static void __init alloc_init_pte(pmd_t *pmd, unsigned long addr,
				  unsigned long end, unsigned long pfn,
				  const struct mem_type *type)
{
	pte_t *pte = early_pte_alloc(pmd, addr, type->prot_l1);
560
	do {
561
		set_pte_ext(pte, pfn_pte(pfn, __pgprot(type->prot_pte)), 0);
562 563
		pfn++;
	} while (pte++, addr += PAGE_SIZE, addr != end);
564 565
}

R
Russell King 已提交
566
static void __init alloc_init_section(pud_t *pud, unsigned long addr,
567
				      unsigned long end, phys_addr_t phys,
568
				      const struct mem_type *type)
569
{
R
Russell King 已提交
570
	pmd_t *pmd = pmd_offset(pud, addr);
571

572 573 574 575 576 577 578 579
	/*
	 * Try a section mapping - end, addr and phys must all be aligned
	 * to a section boundary.  Note that PMDs refer to the individual
	 * L1 entries, whereas PGDs refer to a group of L1 entries making
	 * up one logical pointer to an L2 table.
	 */
	if (((addr | end | phys) & ~SECTION_MASK) == 0) {
		pmd_t *p = pmd;
580

581 582 583 584 585 586 587
		if (addr & SECTION_SIZE)
			pmd++;

		do {
			*pmd = __pmd(phys | type->prot_sect);
			phys += SECTION_SIZE;
		} while (pmd++, addr += SECTION_SIZE, addr != end);
588

589 590 591 592 593 594 595 596
		flush_pmd_entry(p);
	} else {
		/*
		 * No need to loop; pte's aren't interested in the
		 * individual L1 entries.
		 */
		alloc_init_pte(pmd, addr, end, __phys_to_pfn(phys), type);
	}
597 598
}

R
Russell King 已提交
599 600 601 602 603 604 605 606 607 608 609 610 611
static void alloc_init_pud(pgd_t *pgd, unsigned long addr, unsigned long end,
	unsigned long phys, const struct mem_type *type)
{
	pud_t *pud = pud_offset(pgd, addr);
	unsigned long next;

	do {
		next = pud_addr_end(addr, end);
		alloc_init_section(pud, addr, next, phys, type);
		phys += next - addr;
	} while (pud++, addr = next, addr != end);
}

612 613 614
static void __init create_36bit_mapping(struct map_desc *md,
					const struct mem_type *type)
{
615 616
	unsigned long addr, length, end;
	phys_addr_t phys;
617 618 619
	pgd_t *pgd;

	addr = md->virtual;
620
	phys = __pfn_to_phys(md->pfn);
621 622 623 624 625
	length = PAGE_ALIGN(md->length);

	if (!(cpu_architecture() >= CPU_ARCH_ARMv6 || cpu_is_xsc3())) {
		printk(KERN_ERR "MM: CPU does not support supersection "
		       "mapping for 0x%08llx at 0x%08lx\n",
626
		       (long long)__pfn_to_phys((u64)md->pfn), addr);
627 628 629 630 631 632 633 634 635 636 637 638
		return;
	}

	/* N.B.	ARMv6 supersections are only defined to work with domain 0.
	 *	Since domain assignments can in fact be arbitrary, the
	 *	'domain == 0' check below is required to insure that ARMv6
	 *	supersections are only allocated for domain 0 regardless
	 *	of the actual domain assignments in use.
	 */
	if (type->domain) {
		printk(KERN_ERR "MM: invalid domain in supersection "
		       "mapping for 0x%08llx at 0x%08lx\n",
639
		       (long long)__pfn_to_phys((u64)md->pfn), addr);
640 641 642 643
		return;
	}

	if ((addr | length | __pfn_to_phys(md->pfn)) & ~SUPERSECTION_MASK) {
644 645 646
		printk(KERN_ERR "MM: cannot create mapping for 0x%08llx"
		       " at 0x%08lx invalid alignment\n",
		       (long long)__pfn_to_phys((u64)md->pfn), addr);
647 648 649 650 651 652 653 654 655 656 657 658
		return;
	}

	/*
	 * Shift bits [35:32] of address into bits [23:20] of PMD
	 * (See ARMv6 spec).
	 */
	phys |= (((md->pfn >> (32 - PAGE_SHIFT)) & 0xF) << 20);

	pgd = pgd_offset_k(addr);
	end = addr + length;
	do {
R
Russell King 已提交
659 660
		pud_t *pud = pud_offset(pgd, addr);
		pmd_t *pmd = pmd_offset(pud, addr);
661 662 663 664 665 666 667 668 669 670 671
		int i;

		for (i = 0; i < 16; i++)
			*pmd++ = __pmd(phys | type->prot_sect | PMD_SECT_SUPER);

		addr += SUPERSECTION_SIZE;
		phys += SUPERSECTION_SIZE;
		pgd += SUPERSECTION_SIZE >> PGDIR_SHIFT;
	} while (addr != end);
}

672 673 674 675 676 677 678
/*
 * Create the page directory entries and any necessary
 * page tables for the mapping specified by `md'.  We
 * are able to cope here with varying sizes and address
 * offsets, and we take full advantage of sections and
 * supersections.
 */
679
static void __init create_mapping(struct map_desc *md)
680
{
681 682
	unsigned long addr, length, end;
	phys_addr_t phys;
683
	const struct mem_type *type;
684
	pgd_t *pgd;
685 686

	if (md->virtual != vectors_base() && md->virtual < TASK_SIZE) {
687 688 689
		printk(KERN_WARNING "BUG: not creating mapping for 0x%08llx"
		       " at 0x%08lx in user region\n",
		       (long long)__pfn_to_phys((u64)md->pfn), md->virtual);
690 691 692 693
		return;
	}

	if ((md->type == MT_DEVICE || md->type == MT_ROM) &&
694 695
	    md->virtual >= PAGE_OFFSET &&
	    (md->virtual < VMALLOC_START || md->virtual >= VMALLOC_END)) {
696
		printk(KERN_WARNING "BUG: mapping for 0x%08llx"
697
		       " at 0x%08lx out of vmalloc space\n",
698
		       (long long)__pfn_to_phys((u64)md->pfn), md->virtual);
699 700
	}

701
	type = &mem_types[md->type];
702 703 704 705

	/*
	 * Catch 36-bit addresses
	 */
706 707 708
	if (md->pfn >= 0x100000) {
		create_36bit_mapping(md, type);
		return;
709 710
	}

711
	addr = md->virtual & PAGE_MASK;
712
	phys = __pfn_to_phys(md->pfn);
713
	length = PAGE_ALIGN(md->length + (md->virtual & ~PAGE_MASK));
714

715
	if (type->prot_l1 == 0 && ((addr | phys | length) & ~SECTION_MASK)) {
716
		printk(KERN_WARNING "BUG: map for 0x%08llx at 0x%08lx can not "
717
		       "be mapped using pages, ignoring.\n",
718
		       (long long)__pfn_to_phys(md->pfn), addr);
719 720 721
		return;
	}

722 723 724 725
	pgd = pgd_offset_k(addr);
	end = addr + length;
	do {
		unsigned long next = pgd_addr_end(addr, end);
726

R
Russell King 已提交
727
		alloc_init_pud(pgd, addr, next, phys, type);
728

729 730 731
		phys += next - addr;
		addr = next;
	} while (pgd++, addr != end);
732 733 734 735 736 737 738
}

/*
 * Create the architecture specific mappings
 */
void __init iotable_init(struct map_desc *io_desc, int nr)
{
739 740 741 742 743
	struct map_desc *md;
	struct vm_struct *vm;

	if (!nr)
		return;
744

745 746 747 748 749 750 751 752 753 754 755
	vm = early_alloc_aligned(sizeof(*vm) * nr, __alignof__(*vm));

	for (md = io_desc; nr; md++, nr--) {
		create_mapping(md);
		vm->addr = (void *)(md->virtual & PAGE_MASK);
		vm->size = PAGE_ALIGN(md->length + (md->virtual & ~PAGE_MASK));
		vm->phys_addr = __pfn_to_phys(md->pfn); 
		vm->flags = VM_IOREMAP;
		vm->caller = iotable_init;
		vm_area_add_early(vm++);
	}
756 757
}

758 759
static void * __initdata vmalloc_min =
	(void *)(VMALLOC_END - (240 << 20) - VMALLOC_OFFSET);
760 761 762 763

/*
 * vmalloc=size forces the vmalloc area to be exactly 'size'
 * bytes. This can be used to increase (or decrease) the vmalloc
764
 * area - the default is 240m.
765
 */
766
static int __init early_vmalloc(char *arg)
767
{
R
Russell King 已提交
768
	unsigned long vmalloc_reserve = memparse(arg, NULL);
769 770 771 772 773 774 775

	if (vmalloc_reserve < SZ_16M) {
		vmalloc_reserve = SZ_16M;
		printk(KERN_WARNING
			"vmalloc area too small, limiting to %luMB\n",
			vmalloc_reserve >> 20);
	}
776 777 778 779 780 781 782

	if (vmalloc_reserve > VMALLOC_END - (PAGE_OFFSET + SZ_32M)) {
		vmalloc_reserve = VMALLOC_END - (PAGE_OFFSET + SZ_32M);
		printk(KERN_WARNING
			"vmalloc area is too big, limiting to %luMB\n",
			vmalloc_reserve >> 20);
	}
R
Russell King 已提交
783 784

	vmalloc_min = (void *)(VMALLOC_END - vmalloc_reserve);
785
	return 0;
786
}
787
early_param("vmalloc", early_vmalloc);
788

789 790
static phys_addr_t lowmem_limit __initdata = 0;

791
void __init sanity_check_meminfo(void)
792
{
R
Russell King 已提交
793
	int i, j, highmem = 0;
794

795
	for (i = 0, j = 0; i < meminfo.nr_banks; i++) {
796 797
		struct membank *bank = &meminfo.bank[j];
		*bank = meminfo.bank[i];
798

799
#ifdef CONFIG_HIGHMEM
800
		if (__va(bank->start) >= vmalloc_min ||
R
Russell King 已提交
801 802 803 804 805
		    __va(bank->start) < (void *)PAGE_OFFSET)
			highmem = 1;

		bank->highmem = highmem;

806 807 808 809
		/*
		 * Split those memory banks which are partially overlapping
		 * the vmalloc area greatly simplifying things later.
		 */
R
Russell King 已提交
810 811
		if (__va(bank->start) < vmalloc_min &&
		    bank->size > vmalloc_min - __va(bank->start)) {
812 813 814 815 816 817 818 819
			if (meminfo.nr_banks >= NR_BANKS) {
				printk(KERN_CRIT "NR_BANKS too low, "
						 "ignoring high memory\n");
			} else {
				memmove(bank + 1, bank,
					(meminfo.nr_banks - i) * sizeof(*bank));
				meminfo.nr_banks++;
				i++;
R
Russell King 已提交
820 821
				bank[1].size -= vmalloc_min - __va(bank->start);
				bank[1].start = __pa(vmalloc_min - 1) + 1;
R
Russell King 已提交
822
				bank[1].highmem = highmem = 1;
823 824
				j++;
			}
R
Russell King 已提交
825
			bank->size = vmalloc_min - __va(bank->start);
826 827
		}
#else
828 829
		bank->highmem = highmem;

830 831 832 833
		/*
		 * Check whether this memory bank would entirely overlap
		 * the vmalloc area.
		 */
R
Russell King 已提交
834
		if (__va(bank->start) >= vmalloc_min ||
835
		    __va(bank->start) < (void *)PAGE_OFFSET) {
836
			printk(KERN_NOTICE "Ignoring RAM at %.8llx-%.8llx "
837
			       "(vmalloc region overlap).\n",
838 839
			       (unsigned long long)bank->start,
			       (unsigned long long)bank->start + bank->size - 1);
840 841
			continue;
		}
842

843 844 845 846
		/*
		 * Check whether this memory bank would partially overlap
		 * the vmalloc area.
		 */
R
Russell King 已提交
847
		if (__va(bank->start + bank->size) > vmalloc_min ||
848
		    __va(bank->start + bank->size) < __va(bank->start)) {
R
Russell King 已提交
849
			unsigned long newsize = vmalloc_min - __va(bank->start);
850 851 852 853 854
			printk(KERN_NOTICE "Truncating RAM at %.8llx-%.8llx "
			       "to -%.8llx (vmalloc region overlap).\n",
			       (unsigned long long)bank->start,
			       (unsigned long long)bank->start + bank->size - 1,
			       (unsigned long long)bank->start + newsize - 1);
855 856 857
			bank->size = newsize;
		}
#endif
858 859 860
		if (!bank->highmem && bank->start + bank->size > lowmem_limit)
			lowmem_limit = bank->start + bank->size;

861
		j++;
862
	}
863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882
#ifdef CONFIG_HIGHMEM
	if (highmem) {
		const char *reason = NULL;

		if (cache_is_vipt_aliasing()) {
			/*
			 * Interactions between kmap and other mappings
			 * make highmem support with aliasing VIPT caches
			 * rather difficult.
			 */
			reason = "with VIPT aliasing cache";
		}
		if (reason) {
			printk(KERN_CRIT "HIGHMEM is not supported %s, ignoring high memory\n",
				reason);
			while (j > 0 && meminfo.bank[j - 1].highmem)
				j--;
		}
	}
#endif
883
	meminfo.nr_banks = j;
884
	high_memory = __va(lowmem_limit - 1) + 1;
885
	memblock_set_current_limit(lowmem_limit);
886 887
}

888
static inline void prepare_page_table(void)
889 890
{
	unsigned long addr;
891
	phys_addr_t end;
892 893 894 895

	/*
	 * Clear out all the mappings below the kernel image.
	 */
896
	for (addr = 0; addr < MODULES_VADDR; addr += PMD_SIZE)
897 898 899 900
		pmd_clear(pmd_off_k(addr));

#ifdef CONFIG_XIP_KERNEL
	/* The XIP kernel is mapped in the module area -- skip over it */
901
	addr = ((unsigned long)_etext + PMD_SIZE - 1) & PMD_MASK;
902
#endif
903
	for ( ; addr < PAGE_OFFSET; addr += PMD_SIZE)
904 905
		pmd_clear(pmd_off_k(addr));

906 907 908 909 910 911 912
	/*
	 * Find the end of the first block of lowmem.
	 */
	end = memblock.memory.regions[0].base + memblock.memory.regions[0].size;
	if (end >= lowmem_limit)
		end = lowmem_limit;

913 914
	/*
	 * Clear out all the kernel space mappings, except for the first
915
	 * memory bank, up to the vmalloc region.
916
	 */
917
	for (addr = __phys_to_virt(end);
918
	     addr < VMALLOC_START; addr += PMD_SIZE)
919 920 921
		pmd_clear(pmd_off_k(addr));
}

922 923
#define SWAPPER_PG_DIR_SIZE	(PTRS_PER_PGD * sizeof(pgd_t))

924
/*
R
Russell King 已提交
925
 * Reserve the special regions of memory
926
 */
R
Russell King 已提交
927
void __init arm_mm_memblock_reserve(void)
928 929 930 931 932
{
	/*
	 * Reserve the page tables.  These are already in use,
	 * and can only be in node 0.
	 */
933
	memblock_reserve(__pa(swapper_pg_dir), SWAPPER_PG_DIR_SIZE);
934 935 936 937 938 939

#ifdef CONFIG_SA1111
	/*
	 * Because of the SA1111 DMA bug, we want to preserve our
	 * precious DMA-able memory...
	 */
R
Russell King 已提交
940
	memblock_reserve(PHYS_OFFSET, __pa(swapper_pg_dir) - PHYS_OFFSET);
941 942 943 944
#endif
}

/*
945 946
 * Set up the device mappings.  Since we clear out the page tables for all
 * mappings above VMALLOC_START, we will remove any debug device mappings.
947 948 949 950 951 952 953 954 955 956 957 958
 * This means you have to be careful how you debug this function, or any
 * called function.  This means you can't use any function or debugging
 * method which may touch any device, otherwise the kernel _will_ crash.
 */
static void __init devicemaps_init(struct machine_desc *mdesc)
{
	struct map_desc map;
	unsigned long addr;

	/*
	 * Allocate the vector page early.
	 */
959
	vectors_page = early_alloc(PAGE_SIZE);
960

961
	for (addr = VMALLOC_START; addr; addr += PMD_SIZE)
962 963 964 965 966 967 968 969
		pmd_clear(pmd_off_k(addr));

	/*
	 * Map the kernel if it is XIP.
	 * It is always first in the modulearea.
	 */
#ifdef CONFIG_XIP_KERNEL
	map.pfn = __phys_to_pfn(CONFIG_XIP_PHYS_ADDR & SECTION_MASK);
970
	map.virtual = MODULES_VADDR;
R
Russell King 已提交
971
	map.length = ((unsigned long)_etext - map.virtual + ~SECTION_MASK) & SECTION_MASK;
972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998
	map.type = MT_ROM;
	create_mapping(&map);
#endif

	/*
	 * Map the cache flushing regions.
	 */
#ifdef FLUSH_BASE
	map.pfn = __phys_to_pfn(FLUSH_BASE_PHYS);
	map.virtual = FLUSH_BASE;
	map.length = SZ_1M;
	map.type = MT_CACHECLEAN;
	create_mapping(&map);
#endif
#ifdef FLUSH_BASE_MINICACHE
	map.pfn = __phys_to_pfn(FLUSH_BASE_PHYS + SZ_1M);
	map.virtual = FLUSH_BASE_MINICACHE;
	map.length = SZ_1M;
	map.type = MT_MINICLEAN;
	create_mapping(&map);
#endif

	/*
	 * Create a mapping for the machine vectors at the high-vectors
	 * location (0xffff0000).  If we aren't using high-vectors, also
	 * create a mapping at the low-vectors virtual address.
	 */
999
	map.pfn = __phys_to_pfn(virt_to_phys(vectors_page));
1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026
	map.virtual = 0xffff0000;
	map.length = PAGE_SIZE;
	map.type = MT_HIGH_VECTORS;
	create_mapping(&map);

	if (!vectors_high()) {
		map.virtual = 0;
		map.type = MT_LOW_VECTORS;
		create_mapping(&map);
	}

	/*
	 * Ask the machine support to map in the statically mapped devices.
	 */
	if (mdesc->map_io)
		mdesc->map_io();

	/*
	 * Finally flush the caches and tlb to ensure that we're in a
	 * consistent state wrt the writebuffer.  This also ensures that
	 * any write-allocated cache lines in the vector page are written
	 * back.  After this point, we can start to touch devices again.
	 */
	local_flush_tlb_all();
	flush_cache_all();
}

N
Nicolas Pitre 已提交
1027 1028 1029
static void __init kmap_init(void)
{
#ifdef CONFIG_HIGHMEM
R
Russell King 已提交
1030 1031
	pkmap_page_table = early_pte_alloc(pmd_off_k(PKMAP_BASE),
		PKMAP_BASE, _PAGE_KERNEL_TABLE);
N
Nicolas Pitre 已提交
1032 1033 1034
#endif
}

1035 1036
static void __init map_lowmem(void)
{
1037
	struct memblock_region *reg;
1038 1039

	/* Map all the lowmem memory banks. */
1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053
	for_each_memblock(memory, reg) {
		phys_addr_t start = reg->base;
		phys_addr_t end = start + reg->size;
		struct map_desc map;

		if (end > lowmem_limit)
			end = lowmem_limit;
		if (start >= end)
			break;

		map.pfn = __phys_to_pfn(start);
		map.virtual = __phys_to_virt(start);
		map.length = end - start;
		map.type = MT_MEMORY;
1054

1055
		create_mapping(&map);
1056 1057 1058
	}
}

1059 1060 1061 1062
/*
 * paging_init() sets up the page tables, initialises the zone memory
 * maps, and sets up the zero page, bad page and bad page tables.
 */
1063
void __init paging_init(struct machine_desc *mdesc)
1064 1065 1066
{
	void *zero_page;

1067 1068
	memblock_set_current_limit(lowmem_limit);

1069
	build_mem_type_table();
1070
	prepare_page_table();
1071
	map_lowmem();
1072
	devicemaps_init(mdesc);
N
Nicolas Pitre 已提交
1073
	kmap_init();
1074 1075 1076

	top_pmd = pmd_off_k(0xffff0000);

R
Russell King 已提交
1077 1078
	/* allocate the zero page. */
	zero_page = early_alloc(PAGE_SIZE);
R
Russell King 已提交
1079

1080
	bootmem_init();
R
Russell King 已提交
1081

1082
	empty_zero_page = virt_to_page(zero_page);
1083
	__flush_dcache_page(NULL, empty_zero_page);
1084
}