mmu.c 30.0 KB
Newer Older
1 2 3 4 5 6 7 8 9
/*
 *  linux/arch/arm/mm/mmu.c
 *
 *  Copyright (C) 1995-2005 Russell King
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
 */
10
#include <linux/module.h>
11 12 13 14 15
#include <linux/kernel.h>
#include <linux/errno.h>
#include <linux/init.h>
#include <linux/mman.h>
#include <linux/nodemask.h>
R
Russell King 已提交
16
#include <linux/memblock.h>
17
#include <linux/fs.h>
18
#include <linux/vmalloc.h>
19

20
#include <asm/cputype.h>
R
Russell King 已提交
21
#include <asm/sections.h>
22
#include <asm/cachetype.h>
23 24
#include <asm/setup.h>
#include <asm/sizes.h>
25
#include <asm/smp_plat.h>
26
#include <asm/tlb.h>
N
Nicolas Pitre 已提交
27
#include <asm/highmem.h>
28
#include <asm/traps.h>
29 30 31 32 33 34 35 36 37 38 39

#include <asm/mach/arch.h>
#include <asm/mach/map.h>

#include "mm.h"

/*
 * empty_zero_page is a special page that is used for
 * zero-initialized data and COW.
 */
struct page *empty_zero_page;
40
EXPORT_SYMBOL(empty_zero_page);
41 42 43 44 45 46

/*
 * The pmd table for the upper-most set of pages.
 */
pmd_t *top_pmd;

47 48 49 50 51 52 53 54
#define CPOLICY_UNCACHED	0
#define CPOLICY_BUFFERED	1
#define CPOLICY_WRITETHROUGH	2
#define CPOLICY_WRITEBACK	3
#define CPOLICY_WRITEALLOC	4

static unsigned int cachepolicy __initdata = CPOLICY_WRITEBACK;
static unsigned int ecc_mask __initdata = 0;
55
pgprot_t pgprot_user;
56 57
pgprot_t pgprot_kernel;

58
EXPORT_SYMBOL(pgprot_user);
59 60 61 62 63
EXPORT_SYMBOL(pgprot_kernel);

struct cachepolicy {
	const char	policy[16];
	unsigned int	cr_mask;
64
	pmdval_t	pmd;
65
	pteval_t	pte;
66 67 68 69 70 71 72
};

static struct cachepolicy cache_policies[] __initdata = {
	{
		.policy		= "uncached",
		.cr_mask	= CR_W|CR_C,
		.pmd		= PMD_SECT_UNCACHED,
73
		.pte		= L_PTE_MT_UNCACHED,
74 75 76 77
	}, {
		.policy		= "buffered",
		.cr_mask	= CR_C,
		.pmd		= PMD_SECT_BUFFERED,
78
		.pte		= L_PTE_MT_BUFFERABLE,
79 80 81 82
	}, {
		.policy		= "writethrough",
		.cr_mask	= 0,
		.pmd		= PMD_SECT_WT,
83
		.pte		= L_PTE_MT_WRITETHROUGH,
84 85 86 87
	}, {
		.policy		= "writeback",
		.cr_mask	= 0,
		.pmd		= PMD_SECT_WB,
88
		.pte		= L_PTE_MT_WRITEBACK,
89 90 91 92
	}, {
		.policy		= "writealloc",
		.cr_mask	= 0,
		.pmd		= PMD_SECT_WBWA,
93
		.pte		= L_PTE_MT_WRITEALLOC,
94 95 96 97
	}
};

/*
S
Simon Arlott 已提交
98
 * These are useful for identifying cache coherency
99 100 101 102
 * problems by allowing the cache or the cache and
 * writebuffer to be turned off.  (Note: the write
 * buffer should not be on and the cache off).
 */
103
static int __init early_cachepolicy(char *p)
104 105 106 107 108 109
{
	int i;

	for (i = 0; i < ARRAY_SIZE(cache_policies); i++) {
		int len = strlen(cache_policies[i].policy);

110
		if (memcmp(p, cache_policies[i].policy, len) == 0) {
111 112 113 114 115 116 117 118
			cachepolicy = i;
			cr_alignment &= ~cache_policies[i].cr_mask;
			cr_no_alignment &= ~cache_policies[i].cr_mask;
			break;
		}
	}
	if (i == ARRAY_SIZE(cache_policies))
		printk(KERN_ERR "ERROR: unknown or unsupported cache policy\n");
119 120 121 122 123 124 125
	/*
	 * This restriction is partly to do with the way we boot; it is
	 * unpredictable to have memory mapped using two different sets of
	 * memory attributes (shared, type, and cache attribs).  We can not
	 * change these attributes once the initial assembly has setup the
	 * page tables.
	 */
126 127 128 129
	if (cpu_architecture() >= CPU_ARCH_ARMv6) {
		printk(KERN_WARNING "Only cachepolicy=writeback supported on ARMv6 and later\n");
		cachepolicy = CPOLICY_WRITEBACK;
	}
130 131
	flush_cache_all();
	set_cr(cr_alignment);
132
	return 0;
133
}
134
early_param("cachepolicy", early_cachepolicy);
135

136
static int __init early_nocache(char *__unused)
137 138 139
{
	char *p = "buffered";
	printk(KERN_WARNING "nocache is deprecated; use cachepolicy=%s\n", p);
140 141
	early_cachepolicy(p);
	return 0;
142
}
143
early_param("nocache", early_nocache);
144

145
static int __init early_nowrite(char *__unused)
146 147 148
{
	char *p = "uncached";
	printk(KERN_WARNING "nowb is deprecated; use cachepolicy=%s\n", p);
149 150
	early_cachepolicy(p);
	return 0;
151
}
152
early_param("nowb", early_nowrite);
153

154
#ifndef CONFIG_ARM_LPAE
155
static int __init early_ecc(char *p)
156
{
157
	if (memcmp(p, "on", 2) == 0)
158
		ecc_mask = PMD_PROTECTION;
159
	else if (memcmp(p, "off", 3) == 0)
160
		ecc_mask = 0;
161
	return 0;
162
}
163
early_param("ecc", early_ecc);
164
#endif
165 166 167 168 169 170 171 172 173 174

static int __init noalign_setup(char *__unused)
{
	cr_alignment &= ~CR_A;
	cr_no_alignment &= ~CR_A;
	set_cr(cr_alignment);
	return 1;
}
__setup("noalign", noalign_setup);

175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194
#ifndef CONFIG_SMP
void adjust_cr(unsigned long mask, unsigned long set)
{
	unsigned long flags;

	mask &= ~CR_A;

	set &= mask;

	local_irq_save(flags);

	cr_no_alignment = (cr_no_alignment & ~mask) | set;
	cr_alignment = (cr_alignment & ~mask) | set;

	set_cr((get_cr() & ~mask) | set);

	local_irq_restore(flags);
}
#endif

195
#define PROT_PTE_DEVICE		L_PTE_PRESENT|L_PTE_YOUNG|L_PTE_DIRTY|L_PTE_XN
196
#define PROT_SECT_DEVICE	PMD_TYPE_SECT|PMD_SECT_AP_WRITE
197

198
static struct mem_type mem_types[] = {
199
	[MT_DEVICE] = {		  /* Strongly ordered / ARMv6 shared device */
200 201
		.prot_pte	= PROT_PTE_DEVICE | L_PTE_MT_DEV_SHARED |
				  L_PTE_SHARED,
202
		.prot_l1	= PMD_TYPE_TABLE,
203
		.prot_sect	= PROT_SECT_DEVICE | PMD_SECT_S,
204 205 206
		.domain		= DOMAIN_IO,
	},
	[MT_DEVICE_NONSHARED] = { /* ARMv6 non-shared device */
207
		.prot_pte	= PROT_PTE_DEVICE | L_PTE_MT_DEV_NONSHARED,
208
		.prot_l1	= PMD_TYPE_TABLE,
209
		.prot_sect	= PROT_SECT_DEVICE,
210 211 212
		.domain		= DOMAIN_IO,
	},
	[MT_DEVICE_CACHED] = {	  /* ioremap_cached */
213
		.prot_pte	= PROT_PTE_DEVICE | L_PTE_MT_DEV_CACHED,
214 215 216 217
		.prot_l1	= PMD_TYPE_TABLE,
		.prot_sect	= PROT_SECT_DEVICE | PMD_SECT_WB,
		.domain		= DOMAIN_IO,
	},	
218
	[MT_DEVICE_WC] = {	/* ioremap_wc */
219
		.prot_pte	= PROT_PTE_DEVICE | L_PTE_MT_DEV_WC,
220
		.prot_l1	= PMD_TYPE_TABLE,
221
		.prot_sect	= PROT_SECT_DEVICE,
222
		.domain		= DOMAIN_IO,
223
	},
224 225 226 227 228 229
	[MT_UNCACHED] = {
		.prot_pte	= PROT_PTE_DEVICE,
		.prot_l1	= PMD_TYPE_TABLE,
		.prot_sect	= PMD_TYPE_SECT | PMD_SECT_XN,
		.domain		= DOMAIN_IO,
	},
230
	[MT_CACHECLEAN] = {
231
		.prot_sect = PMD_TYPE_SECT | PMD_SECT_XN,
232 233
		.domain    = DOMAIN_KERNEL,
	},
234
#ifndef CONFIG_ARM_LPAE
235
	[MT_MINICLEAN] = {
236
		.prot_sect = PMD_TYPE_SECT | PMD_SECT_XN | PMD_SECT_MINICACHE,
237 238
		.domain    = DOMAIN_KERNEL,
	},
239
#endif
240 241
	[MT_LOW_VECTORS] = {
		.prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
242
				L_PTE_RDONLY,
243 244 245 246 247
		.prot_l1   = PMD_TYPE_TABLE,
		.domain    = DOMAIN_USER,
	},
	[MT_HIGH_VECTORS] = {
		.prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
248
				L_PTE_USER | L_PTE_RDONLY,
249 250 251 252
		.prot_l1   = PMD_TYPE_TABLE,
		.domain    = DOMAIN_USER,
	},
	[MT_MEMORY] = {
253
		.prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY,
254
		.prot_l1   = PMD_TYPE_TABLE,
255
		.prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE,
256 257 258
		.domain    = DOMAIN_KERNEL,
	},
	[MT_ROM] = {
259
		.prot_sect = PMD_TYPE_SECT,
260 261
		.domain    = DOMAIN_KERNEL,
	},
262
	[MT_MEMORY_NONCACHED] = {
263
		.prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
264
				L_PTE_MT_BUFFERABLE,
265
		.prot_l1   = PMD_TYPE_TABLE,
266 267 268
		.prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE,
		.domain    = DOMAIN_KERNEL,
	},
269
	[MT_MEMORY_DTCM] = {
270
		.prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
271
				L_PTE_XN,
272 273 274
		.prot_l1   = PMD_TYPE_TABLE,
		.prot_sect = PMD_TYPE_SECT | PMD_SECT_XN,
		.domain    = DOMAIN_KERNEL,
275 276
	},
	[MT_MEMORY_ITCM] = {
277
		.prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY,
278
		.prot_l1   = PMD_TYPE_TABLE,
279
		.domain    = DOMAIN_KERNEL,
280
	},
281 282 283 284 285 286 287 288
	[MT_MEMORY_SO] = {
		.prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
				L_PTE_MT_UNCACHED,
		.prot_l1   = PMD_TYPE_TABLE,
		.prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE | PMD_SECT_S |
				PMD_SECT_UNCACHED | PMD_SECT_XN,
		.domain    = DOMAIN_KERNEL,
	},
289 290
};

291 292 293 294
const struct mem_type *get_mem_type(unsigned int type)
{
	return type < ARRAY_SIZE(mem_types) ? &mem_types[type] : NULL;
}
295
EXPORT_SYMBOL(get_mem_type);
296

297 298 299 300 301 302 303
/*
 * Adjust the PMD section entries according to the CPU in use.
 */
static void __init build_mem_type_table(void)
{
	struct cachepolicy *cp;
	unsigned int cr = get_cr();
304
	pteval_t user_pgprot, kern_pgprot, vecs_pgprot;
305 306 307
	int cpu_arch = cpu_architecture();
	int i;

308
	if (cpu_arch < CPU_ARCH_ARMv6) {
309
#if defined(CONFIG_CPU_DCACHE_DISABLE)
310 311
		if (cachepolicy > CPOLICY_BUFFERED)
			cachepolicy = CPOLICY_BUFFERED;
312
#elif defined(CONFIG_CPU_DCACHE_WRITETHROUGH)
313 314
		if (cachepolicy > CPOLICY_WRITETHROUGH)
			cachepolicy = CPOLICY_WRITETHROUGH;
315
#endif
316
	}
317 318 319 320 321
	if (cpu_arch < CPU_ARCH_ARMv5) {
		if (cachepolicy >= CPOLICY_WRITEALLOC)
			cachepolicy = CPOLICY_WRITEBACK;
		ecc_mask = 0;
	}
322 323
	if (is_smp())
		cachepolicy = CPOLICY_WRITEALLOC;
324

325
	/*
326 327 328
	 * Strip out features not present on earlier architectures.
	 * Pre-ARMv5 CPUs don't have TEX bits.  Pre-ARMv6 CPUs or those
	 * without extended page tables don't have the 'Shared' bit.
329
	 */
330 331 332 333 334 335
	if (cpu_arch < CPU_ARCH_ARMv5)
		for (i = 0; i < ARRAY_SIZE(mem_types); i++)
			mem_types[i].prot_sect &= ~PMD_SECT_TEX(7);
	if ((cpu_arch < CPU_ARCH_ARMv6 || !(cr & CR_XP)) && !cpu_is_xsc3())
		for (i = 0; i < ARRAY_SIZE(mem_types); i++)
			mem_types[i].prot_sect &= ~PMD_SECT_S;
336 337

	/*
338 339 340
	 * ARMv5 and lower, bit 4 must be set for page tables (was: cache
	 * "update-able on write" bit on ARM610).  However, Xscale and
	 * Xscale3 require this bit to be cleared.
341
	 */
342
	if (cpu_is_xscale() || cpu_is_xsc3()) {
343
		for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
344
			mem_types[i].prot_sect &= ~PMD_BIT4;
345 346 347 348
			mem_types[i].prot_l1 &= ~PMD_BIT4;
		}
	} else if (cpu_arch < CPU_ARCH_ARMv6) {
		for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
349 350
			if (mem_types[i].prot_l1)
				mem_types[i].prot_l1 |= PMD_BIT4;
351 352 353 354
			if (mem_types[i].prot_sect)
				mem_types[i].prot_sect |= PMD_BIT4;
		}
	}
355

356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413
	/*
	 * Mark the device areas according to the CPU/architecture.
	 */
	if (cpu_is_xsc3() || (cpu_arch >= CPU_ARCH_ARMv6 && (cr & CR_XP))) {
		if (!cpu_is_xsc3()) {
			/*
			 * Mark device regions on ARMv6+ as execute-never
			 * to prevent speculative instruction fetches.
			 */
			mem_types[MT_DEVICE].prot_sect |= PMD_SECT_XN;
			mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_XN;
			mem_types[MT_DEVICE_CACHED].prot_sect |= PMD_SECT_XN;
			mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_XN;
		}
		if (cpu_arch >= CPU_ARCH_ARMv7 && (cr & CR_TRE)) {
			/*
			 * For ARMv7 with TEX remapping,
			 * - shared device is SXCB=1100
			 * - nonshared device is SXCB=0100
			 * - write combine device mem is SXCB=0001
			 * (Uncached Normal memory)
			 */
			mem_types[MT_DEVICE].prot_sect |= PMD_SECT_TEX(1);
			mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(1);
			mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_BUFFERABLE;
		} else if (cpu_is_xsc3()) {
			/*
			 * For Xscale3,
			 * - shared device is TEXCB=00101
			 * - nonshared device is TEXCB=01000
			 * - write combine device mem is TEXCB=00100
			 * (Inner/Outer Uncacheable in xsc3 parlance)
			 */
			mem_types[MT_DEVICE].prot_sect |= PMD_SECT_TEX(1) | PMD_SECT_BUFFERED;
			mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(2);
			mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_TEX(1);
		} else {
			/*
			 * For ARMv6 and ARMv7 without TEX remapping,
			 * - shared device is TEXCB=00001
			 * - nonshared device is TEXCB=01000
			 * - write combine device mem is TEXCB=00100
			 * (Uncached Normal in ARMv6 parlance).
			 */
			mem_types[MT_DEVICE].prot_sect |= PMD_SECT_BUFFERED;
			mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(2);
			mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_TEX(1);
		}
	} else {
		/*
		 * On others, write combining is "Uncached/Buffered"
		 */
		mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_BUFFERABLE;
	}

	/*
	 * Now deal with the memory-type mappings
	 */
414
	cp = &cache_policies[cachepolicy];
415 416 417 418 419
	vecs_pgprot = kern_pgprot = user_pgprot = cp->pte;

	/*
	 * Only use write-through for non-SMP systems
	 */
420
	if (!is_smp() && cpu_arch >= CPU_ARCH_ARMv5 && cachepolicy > CPOLICY_WRITETHROUGH)
421
		vecs_pgprot = cache_policies[CPOLICY_WRITETHROUGH].pte;
422 423 424 425 426

	/*
	 * Enable CPU-specific coherency if supported.
	 * (Only available on XSC3 at the moment.)
	 */
427
	if (arch_is_coherent() && cpu_is_xsc3()) {
428
		mem_types[MT_MEMORY].prot_sect |= PMD_SECT_S;
429 430 431 432
		mem_types[MT_MEMORY].prot_pte |= L_PTE_SHARED;
		mem_types[MT_MEMORY_NONCACHED].prot_sect |= PMD_SECT_S;
		mem_types[MT_MEMORY_NONCACHED].prot_pte |= L_PTE_SHARED;
	}
433 434 435 436
	/*
	 * ARMv6 and above have extended page tables.
	 */
	if (cpu_arch >= CPU_ARCH_ARMv6 && (cr & CR_XP)) {
437
#ifndef CONFIG_ARM_LPAE
438 439 440 441 442 443 444
		/*
		 * Mark cache clean areas and XIP ROM read only
		 * from SVC mode and no access from userspace.
		 */
		mem_types[MT_ROM].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
		mem_types[MT_MINICLEAN].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
		mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
445
#endif
446

447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463
		if (is_smp()) {
			/*
			 * Mark memory with the "shared" attribute
			 * for SMP systems
			 */
			user_pgprot |= L_PTE_SHARED;
			kern_pgprot |= L_PTE_SHARED;
			vecs_pgprot |= L_PTE_SHARED;
			mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_S;
			mem_types[MT_DEVICE_WC].prot_pte |= L_PTE_SHARED;
			mem_types[MT_DEVICE_CACHED].prot_sect |= PMD_SECT_S;
			mem_types[MT_DEVICE_CACHED].prot_pte |= L_PTE_SHARED;
			mem_types[MT_MEMORY].prot_sect |= PMD_SECT_S;
			mem_types[MT_MEMORY].prot_pte |= L_PTE_SHARED;
			mem_types[MT_MEMORY_NONCACHED].prot_sect |= PMD_SECT_S;
			mem_types[MT_MEMORY_NONCACHED].prot_pte |= L_PTE_SHARED;
		}
464 465
	}

466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483
	/*
	 * Non-cacheable Normal - intended for memory areas that must
	 * not cause dirty cache line writebacks when used
	 */
	if (cpu_arch >= CPU_ARCH_ARMv6) {
		if (cpu_arch >= CPU_ARCH_ARMv7 && (cr & CR_TRE)) {
			/* Non-cacheable Normal is XCB = 001 */
			mem_types[MT_MEMORY_NONCACHED].prot_sect |=
				PMD_SECT_BUFFERED;
		} else {
			/* For both ARMv6 and non-TEX-remapping ARMv7 */
			mem_types[MT_MEMORY_NONCACHED].prot_sect |=
				PMD_SECT_TEX(1);
		}
	} else {
		mem_types[MT_MEMORY_NONCACHED].prot_sect |= PMD_SECT_BUFFERABLE;
	}

484 485 486 487 488 489 490 491 492 493 494 495
#ifdef CONFIG_ARM_LPAE
	/*
	 * Do not generate access flag faults for the kernel mappings.
	 */
	for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
		mem_types[i].prot_pte |= PTE_EXT_AF;
		mem_types[i].prot_sect |= PMD_SECT_AF;
	}
	kern_pgprot |= PTE_EXT_AF;
	vecs_pgprot |= PTE_EXT_AF;
#endif

496 497
	for (i = 0; i < 16; i++) {
		unsigned long v = pgprot_val(protection_map[i]);
498
		protection_map[i] = __pgprot(v | user_pgprot);
499 500
	}

501 502
	mem_types[MT_LOW_VECTORS].prot_pte |= vecs_pgprot;
	mem_types[MT_HIGH_VECTORS].prot_pte |= vecs_pgprot;
503

504
	pgprot_user   = __pgprot(L_PTE_PRESENT | L_PTE_YOUNG | user_pgprot);
505
	pgprot_kernel = __pgprot(L_PTE_PRESENT | L_PTE_YOUNG |
506
				 L_PTE_DIRTY | kern_pgprot);
507 508 509 510

	mem_types[MT_LOW_VECTORS].prot_l1 |= ecc_mask;
	mem_types[MT_HIGH_VECTORS].prot_l1 |= ecc_mask;
	mem_types[MT_MEMORY].prot_sect |= ecc_mask | cp->pmd;
511 512
	mem_types[MT_MEMORY].prot_pte |= kern_pgprot;
	mem_types[MT_MEMORY_NONCACHED].prot_sect |= ecc_mask;
513 514 515 516 517 518 519 520 521 522 523 524 525
	mem_types[MT_ROM].prot_sect |= cp->pmd;

	switch (cp->pmd) {
	case PMD_SECT_WT:
		mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_WT;
		break;
	case PMD_SECT_WB:
	case PMD_SECT_WBWA:
		mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_WB;
		break;
	}
	printk("Memory policy: ECC %sabled, Data cache %s\n",
		ecc_mask ? "en" : "dis", cp->policy);
526 527 528 529 530 531 532 533

	for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
		struct mem_type *t = &mem_types[i];
		if (t->prot_l1)
			t->prot_l1 |= PMD_DOMAIN(t->domain);
		if (t->prot_sect)
			t->prot_sect |= PMD_DOMAIN(t->domain);
	}
534 535
}

536 537 538 539 540 541 542 543 544 545 546 547 548
#ifdef CONFIG_ARM_DMA_MEM_BUFFERABLE
pgprot_t phys_mem_access_prot(struct file *file, unsigned long pfn,
			      unsigned long size, pgprot_t vma_prot)
{
	if (!pfn_valid(pfn))
		return pgprot_noncached(vma_prot);
	else if (file->f_flags & O_SYNC)
		return pgprot_writecombine(vma_prot);
	return vma_prot;
}
EXPORT_SYMBOL(phys_mem_access_prot);
#endif

549 550
#define vectors_base()	(vectors_high() ? 0xffff0000 : 0)

551
static void __init *early_alloc_aligned(unsigned long sz, unsigned long align)
R
Russell King 已提交
552
{
553
	void *ptr = __va(memblock_alloc(sz, align));
R
Russell King 已提交
554 555
	memset(ptr, 0, sz);
	return ptr;
R
Russell King 已提交
556 557
}

558 559 560 561 562
static void __init *early_alloc(unsigned long sz)
{
	return early_alloc_aligned(sz, sz);
}

R
Russell King 已提交
563
static pte_t * __init early_pte_alloc(pmd_t *pmd, unsigned long addr, unsigned long prot)
564
{
565
	if (pmd_none(*pmd)) {
566
		pte_t *pte = early_alloc(PTE_HWTABLE_OFF + PTE_HWTABLE_SIZE);
567
		__pmd_populate(pmd, __pa(pte), prot);
568
	}
R
Russell King 已提交
569 570 571
	BUG_ON(pmd_bad(*pmd));
	return pte_offset_kernel(pmd, addr);
}
572

R
Russell King 已提交
573 574 575 576 577
static void __init alloc_init_pte(pmd_t *pmd, unsigned long addr,
				  unsigned long end, unsigned long pfn,
				  const struct mem_type *type)
{
	pte_t *pte = early_pte_alloc(pmd, addr, type->prot_l1);
578
	do {
579
		set_pte_ext(pte, pfn_pte(pfn, __pgprot(type->prot_pte)), 0);
580 581
		pfn++;
	} while (pte++, addr += PAGE_SIZE, addr != end);
582 583
}

R
Russell King 已提交
584
static void __init alloc_init_section(pud_t *pud, unsigned long addr,
585
				      unsigned long end, phys_addr_t phys,
586
				      const struct mem_type *type)
587
{
R
Russell King 已提交
588
	pmd_t *pmd = pmd_offset(pud, addr);
589

590 591 592 593 594 595 596 597
	/*
	 * Try a section mapping - end, addr and phys must all be aligned
	 * to a section boundary.  Note that PMDs refer to the individual
	 * L1 entries, whereas PGDs refer to a group of L1 entries making
	 * up one logical pointer to an L2 table.
	 */
	if (((addr | end | phys) & ~SECTION_MASK) == 0) {
		pmd_t *p = pmd;
598

599
#ifndef CONFIG_ARM_LPAE
600 601
		if (addr & SECTION_SIZE)
			pmd++;
602
#endif
603 604 605 606 607

		do {
			*pmd = __pmd(phys | type->prot_sect);
			phys += SECTION_SIZE;
		} while (pmd++, addr += SECTION_SIZE, addr != end);
608

609 610 611 612 613 614 615 616
		flush_pmd_entry(p);
	} else {
		/*
		 * No need to loop; pte's aren't interested in the
		 * individual L1 entries.
		 */
		alloc_init_pte(pmd, addr, end, __phys_to_pfn(phys), type);
	}
617 618
}

R
Russell King 已提交
619 620 621 622 623 624 625 626 627 628 629 630 631
static void alloc_init_pud(pgd_t *pgd, unsigned long addr, unsigned long end,
	unsigned long phys, const struct mem_type *type)
{
	pud_t *pud = pud_offset(pgd, addr);
	unsigned long next;

	do {
		next = pud_addr_end(addr, end);
		alloc_init_section(pud, addr, next, phys, type);
		phys += next - addr;
	} while (pud++, addr = next, addr != end);
}

632
#ifndef CONFIG_ARM_LPAE
633 634 635
static void __init create_36bit_mapping(struct map_desc *md,
					const struct mem_type *type)
{
636 637
	unsigned long addr, length, end;
	phys_addr_t phys;
638 639 640
	pgd_t *pgd;

	addr = md->virtual;
641
	phys = __pfn_to_phys(md->pfn);
642 643 644 645 646
	length = PAGE_ALIGN(md->length);

	if (!(cpu_architecture() >= CPU_ARCH_ARMv6 || cpu_is_xsc3())) {
		printk(KERN_ERR "MM: CPU does not support supersection "
		       "mapping for 0x%08llx at 0x%08lx\n",
647
		       (long long)__pfn_to_phys((u64)md->pfn), addr);
648 649 650 651 652 653 654 655 656 657 658 659
		return;
	}

	/* N.B.	ARMv6 supersections are only defined to work with domain 0.
	 *	Since domain assignments can in fact be arbitrary, the
	 *	'domain == 0' check below is required to insure that ARMv6
	 *	supersections are only allocated for domain 0 regardless
	 *	of the actual domain assignments in use.
	 */
	if (type->domain) {
		printk(KERN_ERR "MM: invalid domain in supersection "
		       "mapping for 0x%08llx at 0x%08lx\n",
660
		       (long long)__pfn_to_phys((u64)md->pfn), addr);
661 662 663 664
		return;
	}

	if ((addr | length | __pfn_to_phys(md->pfn)) & ~SUPERSECTION_MASK) {
665 666 667
		printk(KERN_ERR "MM: cannot create mapping for 0x%08llx"
		       " at 0x%08lx invalid alignment\n",
		       (long long)__pfn_to_phys((u64)md->pfn), addr);
668 669 670 671 672 673 674 675 676 677 678 679
		return;
	}

	/*
	 * Shift bits [35:32] of address into bits [23:20] of PMD
	 * (See ARMv6 spec).
	 */
	phys |= (((md->pfn >> (32 - PAGE_SHIFT)) & 0xF) << 20);

	pgd = pgd_offset_k(addr);
	end = addr + length;
	do {
R
Russell King 已提交
680 681
		pud_t *pud = pud_offset(pgd, addr);
		pmd_t *pmd = pmd_offset(pud, addr);
682 683 684 685 686 687 688 689 690 691
		int i;

		for (i = 0; i < 16; i++)
			*pmd++ = __pmd(phys | type->prot_sect | PMD_SECT_SUPER);

		addr += SUPERSECTION_SIZE;
		phys += SUPERSECTION_SIZE;
		pgd += SUPERSECTION_SIZE >> PGDIR_SHIFT;
	} while (addr != end);
}
692
#endif	/* !CONFIG_ARM_LPAE */
693

694 695 696 697 698 699 700
/*
 * Create the page directory entries and any necessary
 * page tables for the mapping specified by `md'.  We
 * are able to cope here with varying sizes and address
 * offsets, and we take full advantage of sections and
 * supersections.
 */
701
static void __init create_mapping(struct map_desc *md)
702
{
703 704
	unsigned long addr, length, end;
	phys_addr_t phys;
705
	const struct mem_type *type;
706
	pgd_t *pgd;
707 708

	if (md->virtual != vectors_base() && md->virtual < TASK_SIZE) {
709 710 711
		printk(KERN_WARNING "BUG: not creating mapping for 0x%08llx"
		       " at 0x%08lx in user region\n",
		       (long long)__pfn_to_phys((u64)md->pfn), md->virtual);
712 713 714 715
		return;
	}

	if ((md->type == MT_DEVICE || md->type == MT_ROM) &&
716 717
	    md->virtual >= PAGE_OFFSET &&
	    (md->virtual < VMALLOC_START || md->virtual >= VMALLOC_END)) {
718
		printk(KERN_WARNING "BUG: mapping for 0x%08llx"
719
		       " at 0x%08lx out of vmalloc space\n",
720
		       (long long)__pfn_to_phys((u64)md->pfn), md->virtual);
721 722
	}

723
	type = &mem_types[md->type];
724

725
#ifndef CONFIG_ARM_LPAE
726 727 728
	/*
	 * Catch 36-bit addresses
	 */
729 730 731
	if (md->pfn >= 0x100000) {
		create_36bit_mapping(md, type);
		return;
732
	}
733
#endif
734

735
	addr = md->virtual & PAGE_MASK;
736
	phys = __pfn_to_phys(md->pfn);
737
	length = PAGE_ALIGN(md->length + (md->virtual & ~PAGE_MASK));
738

739
	if (type->prot_l1 == 0 && ((addr | phys | length) & ~SECTION_MASK)) {
740
		printk(KERN_WARNING "BUG: map for 0x%08llx at 0x%08lx can not "
741
		       "be mapped using pages, ignoring.\n",
742
		       (long long)__pfn_to_phys(md->pfn), addr);
743 744 745
		return;
	}

746 747 748 749
	pgd = pgd_offset_k(addr);
	end = addr + length;
	do {
		unsigned long next = pgd_addr_end(addr, end);
750

R
Russell King 已提交
751
		alloc_init_pud(pgd, addr, next, phys, type);
752

753 754 755
		phys += next - addr;
		addr = next;
	} while (pgd++, addr != end);
756 757 758 759 760 761 762
}

/*
 * Create the architecture specific mappings
 */
void __init iotable_init(struct map_desc *io_desc, int nr)
{
763 764 765 766 767
	struct map_desc *md;
	struct vm_struct *vm;

	if (!nr)
		return;
768

769 770 771 772 773 774 775
	vm = early_alloc_aligned(sizeof(*vm) * nr, __alignof__(*vm));

	for (md = io_desc; nr; md++, nr--) {
		create_mapping(md);
		vm->addr = (void *)(md->virtual & PAGE_MASK);
		vm->size = PAGE_ALIGN(md->length + (md->virtual & ~PAGE_MASK));
		vm->phys_addr = __pfn_to_phys(md->pfn); 
776 777
		vm->flags = VM_IOREMAP | VM_ARM_STATIC_MAPPING; 
		vm->flags |= VM_ARM_MTYPE(md->type);
778 779 780
		vm->caller = iotable_init;
		vm_area_add_early(vm++);
	}
781 782
}

783 784
static void * __initdata vmalloc_min =
	(void *)(VMALLOC_END - (240 << 20) - VMALLOC_OFFSET);
785 786 787 788

/*
 * vmalloc=size forces the vmalloc area to be exactly 'size'
 * bytes. This can be used to increase (or decrease) the vmalloc
789
 * area - the default is 240m.
790
 */
791
static int __init early_vmalloc(char *arg)
792
{
R
Russell King 已提交
793
	unsigned long vmalloc_reserve = memparse(arg, NULL);
794 795 796 797 798 799 800

	if (vmalloc_reserve < SZ_16M) {
		vmalloc_reserve = SZ_16M;
		printk(KERN_WARNING
			"vmalloc area too small, limiting to %luMB\n",
			vmalloc_reserve >> 20);
	}
801 802 803 804 805 806 807

	if (vmalloc_reserve > VMALLOC_END - (PAGE_OFFSET + SZ_32M)) {
		vmalloc_reserve = VMALLOC_END - (PAGE_OFFSET + SZ_32M);
		printk(KERN_WARNING
			"vmalloc area is too big, limiting to %luMB\n",
			vmalloc_reserve >> 20);
	}
R
Russell King 已提交
808 809

	vmalloc_min = (void *)(VMALLOC_END - vmalloc_reserve);
810
	return 0;
811
}
812
early_param("vmalloc", early_vmalloc);
813

814 815
static phys_addr_t lowmem_limit __initdata = 0;

816
void __init sanity_check_meminfo(void)
817
{
R
Russell King 已提交
818
	int i, j, highmem = 0;
819

820
	for (i = 0, j = 0; i < meminfo.nr_banks; i++) {
821 822
		struct membank *bank = &meminfo.bank[j];
		*bank = meminfo.bank[i];
823

824 825 826
		if (bank->start > ULONG_MAX)
			highmem = 1;

827
#ifdef CONFIG_HIGHMEM
828
		if (__va(bank->start) >= vmalloc_min ||
R
Russell King 已提交
829 830 831 832 833
		    __va(bank->start) < (void *)PAGE_OFFSET)
			highmem = 1;

		bank->highmem = highmem;

834 835 836 837
		/*
		 * Split those memory banks which are partially overlapping
		 * the vmalloc area greatly simplifying things later.
		 */
838
		if (!highmem && __va(bank->start) < vmalloc_min &&
R
Russell King 已提交
839
		    bank->size > vmalloc_min - __va(bank->start)) {
840 841 842 843 844 845 846 847
			if (meminfo.nr_banks >= NR_BANKS) {
				printk(KERN_CRIT "NR_BANKS too low, "
						 "ignoring high memory\n");
			} else {
				memmove(bank + 1, bank,
					(meminfo.nr_banks - i) * sizeof(*bank));
				meminfo.nr_banks++;
				i++;
R
Russell King 已提交
848 849
				bank[1].size -= vmalloc_min - __va(bank->start);
				bank[1].start = __pa(vmalloc_min - 1) + 1;
R
Russell King 已提交
850
				bank[1].highmem = highmem = 1;
851 852
				j++;
			}
R
Russell King 已提交
853
			bank->size = vmalloc_min - __va(bank->start);
854 855
		}
#else
856 857
		bank->highmem = highmem;

858 859 860 861 862 863 864 865 866 867 868
		/*
		 * Highmem banks not allowed with !CONFIG_HIGHMEM.
		 */
		if (highmem) {
			printk(KERN_NOTICE "Ignoring RAM at %.8llx-%.8llx "
			       "(!CONFIG_HIGHMEM).\n",
			       (unsigned long long)bank->start,
			       (unsigned long long)bank->start + bank->size - 1);
			continue;
		}

869 870 871 872
		/*
		 * Check whether this memory bank would entirely overlap
		 * the vmalloc area.
		 */
R
Russell King 已提交
873
		if (__va(bank->start) >= vmalloc_min ||
874
		    __va(bank->start) < (void *)PAGE_OFFSET) {
875
			printk(KERN_NOTICE "Ignoring RAM at %.8llx-%.8llx "
876
			       "(vmalloc region overlap).\n",
877 878
			       (unsigned long long)bank->start,
			       (unsigned long long)bank->start + bank->size - 1);
879 880
			continue;
		}
881

882 883 884 885
		/*
		 * Check whether this memory bank would partially overlap
		 * the vmalloc area.
		 */
R
Russell King 已提交
886
		if (__va(bank->start + bank->size) > vmalloc_min ||
887
		    __va(bank->start + bank->size) < __va(bank->start)) {
R
Russell King 已提交
888
			unsigned long newsize = vmalloc_min - __va(bank->start);
889 890 891 892 893
			printk(KERN_NOTICE "Truncating RAM at %.8llx-%.8llx "
			       "to -%.8llx (vmalloc region overlap).\n",
			       (unsigned long long)bank->start,
			       (unsigned long long)bank->start + bank->size - 1,
			       (unsigned long long)bank->start + newsize - 1);
894 895 896
			bank->size = newsize;
		}
#endif
897 898 899
		if (!bank->highmem && bank->start + bank->size > lowmem_limit)
			lowmem_limit = bank->start + bank->size;

900
		j++;
901
	}
902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921
#ifdef CONFIG_HIGHMEM
	if (highmem) {
		const char *reason = NULL;

		if (cache_is_vipt_aliasing()) {
			/*
			 * Interactions between kmap and other mappings
			 * make highmem support with aliasing VIPT caches
			 * rather difficult.
			 */
			reason = "with VIPT aliasing cache";
		}
		if (reason) {
			printk(KERN_CRIT "HIGHMEM is not supported %s, ignoring high memory\n",
				reason);
			while (j > 0 && meminfo.bank[j - 1].highmem)
				j--;
		}
	}
#endif
922
	meminfo.nr_banks = j;
923
	high_memory = __va(lowmem_limit - 1) + 1;
924
	memblock_set_current_limit(lowmem_limit);
925 926
}

927
static inline void prepare_page_table(void)
928 929
{
	unsigned long addr;
930
	phys_addr_t end;
931 932 933 934

	/*
	 * Clear out all the mappings below the kernel image.
	 */
935
	for (addr = 0; addr < MODULES_VADDR; addr += PMD_SIZE)
936 937 938 939
		pmd_clear(pmd_off_k(addr));

#ifdef CONFIG_XIP_KERNEL
	/* The XIP kernel is mapped in the module area -- skip over it */
940
	addr = ((unsigned long)_etext + PMD_SIZE - 1) & PMD_MASK;
941
#endif
942
	for ( ; addr < PAGE_OFFSET; addr += PMD_SIZE)
943 944
		pmd_clear(pmd_off_k(addr));

945 946 947 948 949 950 951
	/*
	 * Find the end of the first block of lowmem.
	 */
	end = memblock.memory.regions[0].base + memblock.memory.regions[0].size;
	if (end >= lowmem_limit)
		end = lowmem_limit;

952 953
	/*
	 * Clear out all the kernel space mappings, except for the first
954
	 * memory bank, up to the vmalloc region.
955
	 */
956
	for (addr = __phys_to_virt(end);
957
	     addr < VMALLOC_START; addr += PMD_SIZE)
958 959 960
		pmd_clear(pmd_off_k(addr));
}

961 962 963 964 965
#ifdef CONFIG_ARM_LPAE
/* the first page is reserved for pgd */
#define SWAPPER_PG_DIR_SIZE	(PAGE_SIZE + \
				 PTRS_PER_PGD * PTRS_PER_PMD * sizeof(pmd_t))
#else
966
#define SWAPPER_PG_DIR_SIZE	(PTRS_PER_PGD * sizeof(pgd_t))
967
#endif
968

969
/*
R
Russell King 已提交
970
 * Reserve the special regions of memory
971
 */
R
Russell King 已提交
972
void __init arm_mm_memblock_reserve(void)
973 974 975 976 977
{
	/*
	 * Reserve the page tables.  These are already in use,
	 * and can only be in node 0.
	 */
978
	memblock_reserve(__pa(swapper_pg_dir), SWAPPER_PG_DIR_SIZE);
979 980 981 982 983 984

#ifdef CONFIG_SA1111
	/*
	 * Because of the SA1111 DMA bug, we want to preserve our
	 * precious DMA-able memory...
	 */
R
Russell King 已提交
985
	memblock_reserve(PHYS_OFFSET, __pa(swapper_pg_dir) - PHYS_OFFSET);
986 987 988 989
#endif
}

/*
990 991
 * Set up the device mappings.  Since we clear out the page tables for all
 * mappings above VMALLOC_START, we will remove any debug device mappings.
992 993 994 995 996 997 998 999 1000 1001 1002 1003
 * This means you have to be careful how you debug this function, or any
 * called function.  This means you can't use any function or debugging
 * method which may touch any device, otherwise the kernel _will_ crash.
 */
static void __init devicemaps_init(struct machine_desc *mdesc)
{
	struct map_desc map;
	unsigned long addr;

	/*
	 * Allocate the vector page early.
	 */
1004
	vectors_page = early_alloc(PAGE_SIZE);
1005

1006
	for (addr = VMALLOC_START; addr; addr += PMD_SIZE)
1007 1008 1009 1010 1011 1012 1013 1014
		pmd_clear(pmd_off_k(addr));

	/*
	 * Map the kernel if it is XIP.
	 * It is always first in the modulearea.
	 */
#ifdef CONFIG_XIP_KERNEL
	map.pfn = __phys_to_pfn(CONFIG_XIP_PHYS_ADDR & SECTION_MASK);
1015
	map.virtual = MODULES_VADDR;
R
Russell King 已提交
1016
	map.length = ((unsigned long)_etext - map.virtual + ~SECTION_MASK) & SECTION_MASK;
1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043
	map.type = MT_ROM;
	create_mapping(&map);
#endif

	/*
	 * Map the cache flushing regions.
	 */
#ifdef FLUSH_BASE
	map.pfn = __phys_to_pfn(FLUSH_BASE_PHYS);
	map.virtual = FLUSH_BASE;
	map.length = SZ_1M;
	map.type = MT_CACHECLEAN;
	create_mapping(&map);
#endif
#ifdef FLUSH_BASE_MINICACHE
	map.pfn = __phys_to_pfn(FLUSH_BASE_PHYS + SZ_1M);
	map.virtual = FLUSH_BASE_MINICACHE;
	map.length = SZ_1M;
	map.type = MT_MINICLEAN;
	create_mapping(&map);
#endif

	/*
	 * Create a mapping for the machine vectors at the high-vectors
	 * location (0xffff0000).  If we aren't using high-vectors, also
	 * create a mapping at the low-vectors virtual address.
	 */
1044
	map.pfn = __phys_to_pfn(virt_to_phys(vectors_page));
1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071
	map.virtual = 0xffff0000;
	map.length = PAGE_SIZE;
	map.type = MT_HIGH_VECTORS;
	create_mapping(&map);

	if (!vectors_high()) {
		map.virtual = 0;
		map.type = MT_LOW_VECTORS;
		create_mapping(&map);
	}

	/*
	 * Ask the machine support to map in the statically mapped devices.
	 */
	if (mdesc->map_io)
		mdesc->map_io();

	/*
	 * Finally flush the caches and tlb to ensure that we're in a
	 * consistent state wrt the writebuffer.  This also ensures that
	 * any write-allocated cache lines in the vector page are written
	 * back.  After this point, we can start to touch devices again.
	 */
	local_flush_tlb_all();
	flush_cache_all();
}

N
Nicolas Pitre 已提交
1072 1073 1074
static void __init kmap_init(void)
{
#ifdef CONFIG_HIGHMEM
R
Russell King 已提交
1075 1076
	pkmap_page_table = early_pte_alloc(pmd_off_k(PKMAP_BASE),
		PKMAP_BASE, _PAGE_KERNEL_TABLE);
N
Nicolas Pitre 已提交
1077 1078 1079
#endif
}

1080 1081
static void __init map_lowmem(void)
{
1082
	struct memblock_region *reg;
1083 1084

	/* Map all the lowmem memory banks. */
1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098
	for_each_memblock(memory, reg) {
		phys_addr_t start = reg->base;
		phys_addr_t end = start + reg->size;
		struct map_desc map;

		if (end > lowmem_limit)
			end = lowmem_limit;
		if (start >= end)
			break;

		map.pfn = __phys_to_pfn(start);
		map.virtual = __phys_to_virt(start);
		map.length = end - start;
		map.type = MT_MEMORY;
1099

1100
		create_mapping(&map);
1101 1102 1103
	}
}

1104 1105 1106 1107
/*
 * paging_init() sets up the page tables, initialises the zone memory
 * maps, and sets up the zero page, bad page and bad page tables.
 */
1108
void __init paging_init(struct machine_desc *mdesc)
1109 1110 1111
{
	void *zero_page;

1112 1113
	memblock_set_current_limit(lowmem_limit);

1114
	build_mem_type_table();
1115
	prepare_page_table();
1116
	map_lowmem();
1117
	devicemaps_init(mdesc);
N
Nicolas Pitre 已提交
1118
	kmap_init();
1119 1120 1121

	top_pmd = pmd_off_k(0xffff0000);

R
Russell King 已提交
1122 1123
	/* allocate the zero page. */
	zero_page = early_alloc(PAGE_SIZE);
R
Russell King 已提交
1124

1125
	bootmem_init();
R
Russell King 已提交
1126

1127
	empty_zero_page = virt_to_page(zero_page);
1128
	__flush_dcache_page(NULL, empty_zero_page);
1129
}