mmu.c 30.1 KB
Newer Older
1 2 3 4 5 6 7 8 9
/*
 *  linux/arch/arm/mm/mmu.c
 *
 *  Copyright (C) 1995-2005 Russell King
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
 */
10
#include <linux/module.h>
11 12 13 14 15
#include <linux/kernel.h>
#include <linux/errno.h>
#include <linux/init.h>
#include <linux/mman.h>
#include <linux/nodemask.h>
R
Russell King 已提交
16
#include <linux/memblock.h>
17
#include <linux/fs.h>
18
#include <linux/vmalloc.h>
19

20
#include <asm/cp15.h>
21
#include <asm/cputype.h>
R
Russell King 已提交
22
#include <asm/sections.h>
23
#include <asm/cachetype.h>
24 25
#include <asm/setup.h>
#include <asm/sizes.h>
26
#include <asm/smp_plat.h>
27
#include <asm/tlb.h>
N
Nicolas Pitre 已提交
28
#include <asm/highmem.h>
29
#include <asm/traps.h>
30 31 32 33 34 35 36 37 38 39 40

#include <asm/mach/arch.h>
#include <asm/mach/map.h>

#include "mm.h"

/*
 * empty_zero_page is a special page that is used for
 * zero-initialized data and COW.
 */
struct page *empty_zero_page;
41
EXPORT_SYMBOL(empty_zero_page);
42 43 44 45 46 47

/*
 * The pmd table for the upper-most set of pages.
 */
pmd_t *top_pmd;

48 49 50 51 52 53 54 55
#define CPOLICY_UNCACHED	0
#define CPOLICY_BUFFERED	1
#define CPOLICY_WRITETHROUGH	2
#define CPOLICY_WRITEBACK	3
#define CPOLICY_WRITEALLOC	4

static unsigned int cachepolicy __initdata = CPOLICY_WRITEBACK;
static unsigned int ecc_mask __initdata = 0;
56
pgprot_t pgprot_user;
57 58
pgprot_t pgprot_kernel;

59
EXPORT_SYMBOL(pgprot_user);
60 61 62 63 64
EXPORT_SYMBOL(pgprot_kernel);

struct cachepolicy {
	const char	policy[16];
	unsigned int	cr_mask;
65
	pmdval_t	pmd;
66
	pteval_t	pte;
67 68 69 70 71 72 73
};

static struct cachepolicy cache_policies[] __initdata = {
	{
		.policy		= "uncached",
		.cr_mask	= CR_W|CR_C,
		.pmd		= PMD_SECT_UNCACHED,
74
		.pte		= L_PTE_MT_UNCACHED,
75 76 77 78
	}, {
		.policy		= "buffered",
		.cr_mask	= CR_C,
		.pmd		= PMD_SECT_BUFFERED,
79
		.pte		= L_PTE_MT_BUFFERABLE,
80 81 82 83
	}, {
		.policy		= "writethrough",
		.cr_mask	= 0,
		.pmd		= PMD_SECT_WT,
84
		.pte		= L_PTE_MT_WRITETHROUGH,
85 86 87 88
	}, {
		.policy		= "writeback",
		.cr_mask	= 0,
		.pmd		= PMD_SECT_WB,
89
		.pte		= L_PTE_MT_WRITEBACK,
90 91 92 93
	}, {
		.policy		= "writealloc",
		.cr_mask	= 0,
		.pmd		= PMD_SECT_WBWA,
94
		.pte		= L_PTE_MT_WRITEALLOC,
95 96 97 98
	}
};

/*
S
Simon Arlott 已提交
99
 * These are useful for identifying cache coherency
100 101 102 103
 * problems by allowing the cache or the cache and
 * writebuffer to be turned off.  (Note: the write
 * buffer should not be on and the cache off).
 */
104
static int __init early_cachepolicy(char *p)
105 106 107 108 109 110
{
	int i;

	for (i = 0; i < ARRAY_SIZE(cache_policies); i++) {
		int len = strlen(cache_policies[i].policy);

111
		if (memcmp(p, cache_policies[i].policy, len) == 0) {
112 113 114 115 116 117 118 119
			cachepolicy = i;
			cr_alignment &= ~cache_policies[i].cr_mask;
			cr_no_alignment &= ~cache_policies[i].cr_mask;
			break;
		}
	}
	if (i == ARRAY_SIZE(cache_policies))
		printk(KERN_ERR "ERROR: unknown or unsupported cache policy\n");
120 121 122 123 124 125 126
	/*
	 * This restriction is partly to do with the way we boot; it is
	 * unpredictable to have memory mapped using two different sets of
	 * memory attributes (shared, type, and cache attribs).  We can not
	 * change these attributes once the initial assembly has setup the
	 * page tables.
	 */
127 128 129 130
	if (cpu_architecture() >= CPU_ARCH_ARMv6) {
		printk(KERN_WARNING "Only cachepolicy=writeback supported on ARMv6 and later\n");
		cachepolicy = CPOLICY_WRITEBACK;
	}
131 132
	flush_cache_all();
	set_cr(cr_alignment);
133
	return 0;
134
}
135
early_param("cachepolicy", early_cachepolicy);
136

137
static int __init early_nocache(char *__unused)
138 139 140
{
	char *p = "buffered";
	printk(KERN_WARNING "nocache is deprecated; use cachepolicy=%s\n", p);
141 142
	early_cachepolicy(p);
	return 0;
143
}
144
early_param("nocache", early_nocache);
145

146
static int __init early_nowrite(char *__unused)
147 148 149
{
	char *p = "uncached";
	printk(KERN_WARNING "nowb is deprecated; use cachepolicy=%s\n", p);
150 151
	early_cachepolicy(p);
	return 0;
152
}
153
early_param("nowb", early_nowrite);
154

155
#ifndef CONFIG_ARM_LPAE
156
static int __init early_ecc(char *p)
157
{
158
	if (memcmp(p, "on", 2) == 0)
159
		ecc_mask = PMD_PROTECTION;
160
	else if (memcmp(p, "off", 3) == 0)
161
		ecc_mask = 0;
162
	return 0;
163
}
164
early_param("ecc", early_ecc);
165
#endif
166 167 168 169 170 171 172 173 174 175

static int __init noalign_setup(char *__unused)
{
	cr_alignment &= ~CR_A;
	cr_no_alignment &= ~CR_A;
	set_cr(cr_alignment);
	return 1;
}
__setup("noalign", noalign_setup);

176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195
#ifndef CONFIG_SMP
void adjust_cr(unsigned long mask, unsigned long set)
{
	unsigned long flags;

	mask &= ~CR_A;

	set &= mask;

	local_irq_save(flags);

	cr_no_alignment = (cr_no_alignment & ~mask) | set;
	cr_alignment = (cr_alignment & ~mask) | set;

	set_cr((get_cr() & ~mask) | set);

	local_irq_restore(flags);
}
#endif

196
#define PROT_PTE_DEVICE		L_PTE_PRESENT|L_PTE_YOUNG|L_PTE_DIRTY|L_PTE_XN
197
#define PROT_SECT_DEVICE	PMD_TYPE_SECT|PMD_SECT_AP_WRITE
198

199
static struct mem_type mem_types[] = {
200
	[MT_DEVICE] = {		  /* Strongly ordered / ARMv6 shared device */
201 202
		.prot_pte	= PROT_PTE_DEVICE | L_PTE_MT_DEV_SHARED |
				  L_PTE_SHARED,
203
		.prot_l1	= PMD_TYPE_TABLE,
204
		.prot_sect	= PROT_SECT_DEVICE | PMD_SECT_S,
205 206 207
		.domain		= DOMAIN_IO,
	},
	[MT_DEVICE_NONSHARED] = { /* ARMv6 non-shared device */
208
		.prot_pte	= PROT_PTE_DEVICE | L_PTE_MT_DEV_NONSHARED,
209
		.prot_l1	= PMD_TYPE_TABLE,
210
		.prot_sect	= PROT_SECT_DEVICE,
211 212 213
		.domain		= DOMAIN_IO,
	},
	[MT_DEVICE_CACHED] = {	  /* ioremap_cached */
214
		.prot_pte	= PROT_PTE_DEVICE | L_PTE_MT_DEV_CACHED,
215 216 217 218
		.prot_l1	= PMD_TYPE_TABLE,
		.prot_sect	= PROT_SECT_DEVICE | PMD_SECT_WB,
		.domain		= DOMAIN_IO,
	},	
219
	[MT_DEVICE_WC] = {	/* ioremap_wc */
220
		.prot_pte	= PROT_PTE_DEVICE | L_PTE_MT_DEV_WC,
221
		.prot_l1	= PMD_TYPE_TABLE,
222
		.prot_sect	= PROT_SECT_DEVICE,
223
		.domain		= DOMAIN_IO,
224
	},
225 226 227 228 229 230
	[MT_UNCACHED] = {
		.prot_pte	= PROT_PTE_DEVICE,
		.prot_l1	= PMD_TYPE_TABLE,
		.prot_sect	= PMD_TYPE_SECT | PMD_SECT_XN,
		.domain		= DOMAIN_IO,
	},
231
	[MT_CACHECLEAN] = {
232
		.prot_sect = PMD_TYPE_SECT | PMD_SECT_XN,
233 234
		.domain    = DOMAIN_KERNEL,
	},
235
#ifndef CONFIG_ARM_LPAE
236
	[MT_MINICLEAN] = {
237
		.prot_sect = PMD_TYPE_SECT | PMD_SECT_XN | PMD_SECT_MINICACHE,
238 239
		.domain    = DOMAIN_KERNEL,
	},
240
#endif
241 242
	[MT_LOW_VECTORS] = {
		.prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
243
				L_PTE_RDONLY,
244 245 246 247 248
		.prot_l1   = PMD_TYPE_TABLE,
		.domain    = DOMAIN_USER,
	},
	[MT_HIGH_VECTORS] = {
		.prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
249
				L_PTE_USER | L_PTE_RDONLY,
250 251 252 253
		.prot_l1   = PMD_TYPE_TABLE,
		.domain    = DOMAIN_USER,
	},
	[MT_MEMORY] = {
254
		.prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY,
255
		.prot_l1   = PMD_TYPE_TABLE,
256
		.prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE,
257 258 259
		.domain    = DOMAIN_KERNEL,
	},
	[MT_ROM] = {
260
		.prot_sect = PMD_TYPE_SECT,
261 262
		.domain    = DOMAIN_KERNEL,
	},
263
	[MT_MEMORY_NONCACHED] = {
264
		.prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
265
				L_PTE_MT_BUFFERABLE,
266
		.prot_l1   = PMD_TYPE_TABLE,
267 268 269
		.prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE,
		.domain    = DOMAIN_KERNEL,
	},
270
	[MT_MEMORY_DTCM] = {
271
		.prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
272
				L_PTE_XN,
273 274 275
		.prot_l1   = PMD_TYPE_TABLE,
		.prot_sect = PMD_TYPE_SECT | PMD_SECT_XN,
		.domain    = DOMAIN_KERNEL,
276 277
	},
	[MT_MEMORY_ITCM] = {
278
		.prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY,
279
		.prot_l1   = PMD_TYPE_TABLE,
280
		.domain    = DOMAIN_KERNEL,
281
	},
282 283 284 285 286 287 288 289
	[MT_MEMORY_SO] = {
		.prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
				L_PTE_MT_UNCACHED,
		.prot_l1   = PMD_TYPE_TABLE,
		.prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE | PMD_SECT_S |
				PMD_SECT_UNCACHED | PMD_SECT_XN,
		.domain    = DOMAIN_KERNEL,
	},
290 291
};

292 293 294 295
const struct mem_type *get_mem_type(unsigned int type)
{
	return type < ARRAY_SIZE(mem_types) ? &mem_types[type] : NULL;
}
296
EXPORT_SYMBOL(get_mem_type);
297

298 299 300 301 302 303 304
/*
 * Adjust the PMD section entries according to the CPU in use.
 */
static void __init build_mem_type_table(void)
{
	struct cachepolicy *cp;
	unsigned int cr = get_cr();
305
	pteval_t user_pgprot, kern_pgprot, vecs_pgprot;
306 307 308
	int cpu_arch = cpu_architecture();
	int i;

309
	if (cpu_arch < CPU_ARCH_ARMv6) {
310
#if defined(CONFIG_CPU_DCACHE_DISABLE)
311 312
		if (cachepolicy > CPOLICY_BUFFERED)
			cachepolicy = CPOLICY_BUFFERED;
313
#elif defined(CONFIG_CPU_DCACHE_WRITETHROUGH)
314 315
		if (cachepolicy > CPOLICY_WRITETHROUGH)
			cachepolicy = CPOLICY_WRITETHROUGH;
316
#endif
317
	}
318 319 320 321 322
	if (cpu_arch < CPU_ARCH_ARMv5) {
		if (cachepolicy >= CPOLICY_WRITEALLOC)
			cachepolicy = CPOLICY_WRITEBACK;
		ecc_mask = 0;
	}
323 324
	if (is_smp())
		cachepolicy = CPOLICY_WRITEALLOC;
325

326
	/*
327 328 329
	 * Strip out features not present on earlier architectures.
	 * Pre-ARMv5 CPUs don't have TEX bits.  Pre-ARMv6 CPUs or those
	 * without extended page tables don't have the 'Shared' bit.
330
	 */
331 332 333 334 335 336
	if (cpu_arch < CPU_ARCH_ARMv5)
		for (i = 0; i < ARRAY_SIZE(mem_types); i++)
			mem_types[i].prot_sect &= ~PMD_SECT_TEX(7);
	if ((cpu_arch < CPU_ARCH_ARMv6 || !(cr & CR_XP)) && !cpu_is_xsc3())
		for (i = 0; i < ARRAY_SIZE(mem_types); i++)
			mem_types[i].prot_sect &= ~PMD_SECT_S;
337 338

	/*
339 340 341
	 * ARMv5 and lower, bit 4 must be set for page tables (was: cache
	 * "update-able on write" bit on ARM610).  However, Xscale and
	 * Xscale3 require this bit to be cleared.
342
	 */
343
	if (cpu_is_xscale() || cpu_is_xsc3()) {
344
		for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
345
			mem_types[i].prot_sect &= ~PMD_BIT4;
346 347 348 349
			mem_types[i].prot_l1 &= ~PMD_BIT4;
		}
	} else if (cpu_arch < CPU_ARCH_ARMv6) {
		for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
350 351
			if (mem_types[i].prot_l1)
				mem_types[i].prot_l1 |= PMD_BIT4;
352 353 354 355
			if (mem_types[i].prot_sect)
				mem_types[i].prot_sect |= PMD_BIT4;
		}
	}
356

357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414
	/*
	 * Mark the device areas according to the CPU/architecture.
	 */
	if (cpu_is_xsc3() || (cpu_arch >= CPU_ARCH_ARMv6 && (cr & CR_XP))) {
		if (!cpu_is_xsc3()) {
			/*
			 * Mark device regions on ARMv6+ as execute-never
			 * to prevent speculative instruction fetches.
			 */
			mem_types[MT_DEVICE].prot_sect |= PMD_SECT_XN;
			mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_XN;
			mem_types[MT_DEVICE_CACHED].prot_sect |= PMD_SECT_XN;
			mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_XN;
		}
		if (cpu_arch >= CPU_ARCH_ARMv7 && (cr & CR_TRE)) {
			/*
			 * For ARMv7 with TEX remapping,
			 * - shared device is SXCB=1100
			 * - nonshared device is SXCB=0100
			 * - write combine device mem is SXCB=0001
			 * (Uncached Normal memory)
			 */
			mem_types[MT_DEVICE].prot_sect |= PMD_SECT_TEX(1);
			mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(1);
			mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_BUFFERABLE;
		} else if (cpu_is_xsc3()) {
			/*
			 * For Xscale3,
			 * - shared device is TEXCB=00101
			 * - nonshared device is TEXCB=01000
			 * - write combine device mem is TEXCB=00100
			 * (Inner/Outer Uncacheable in xsc3 parlance)
			 */
			mem_types[MT_DEVICE].prot_sect |= PMD_SECT_TEX(1) | PMD_SECT_BUFFERED;
			mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(2);
			mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_TEX(1);
		} else {
			/*
			 * For ARMv6 and ARMv7 without TEX remapping,
			 * - shared device is TEXCB=00001
			 * - nonshared device is TEXCB=01000
			 * - write combine device mem is TEXCB=00100
			 * (Uncached Normal in ARMv6 parlance).
			 */
			mem_types[MT_DEVICE].prot_sect |= PMD_SECT_BUFFERED;
			mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(2);
			mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_TEX(1);
		}
	} else {
		/*
		 * On others, write combining is "Uncached/Buffered"
		 */
		mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_BUFFERABLE;
	}

	/*
	 * Now deal with the memory-type mappings
	 */
415
	cp = &cache_policies[cachepolicy];
416 417 418 419 420
	vecs_pgprot = kern_pgprot = user_pgprot = cp->pte;

	/*
	 * Only use write-through for non-SMP systems
	 */
421
	if (!is_smp() && cpu_arch >= CPU_ARCH_ARMv5 && cachepolicy > CPOLICY_WRITETHROUGH)
422
		vecs_pgprot = cache_policies[CPOLICY_WRITETHROUGH].pte;
423 424 425 426 427

	/*
	 * Enable CPU-specific coherency if supported.
	 * (Only available on XSC3 at the moment.)
	 */
428
	if (arch_is_coherent() && cpu_is_xsc3()) {
429
		mem_types[MT_MEMORY].prot_sect |= PMD_SECT_S;
430 431 432 433
		mem_types[MT_MEMORY].prot_pte |= L_PTE_SHARED;
		mem_types[MT_MEMORY_NONCACHED].prot_sect |= PMD_SECT_S;
		mem_types[MT_MEMORY_NONCACHED].prot_pte |= L_PTE_SHARED;
	}
434 435 436 437
	/*
	 * ARMv6 and above have extended page tables.
	 */
	if (cpu_arch >= CPU_ARCH_ARMv6 && (cr & CR_XP)) {
438
#ifndef CONFIG_ARM_LPAE
439 440 441 442 443 444 445
		/*
		 * Mark cache clean areas and XIP ROM read only
		 * from SVC mode and no access from userspace.
		 */
		mem_types[MT_ROM].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
		mem_types[MT_MINICLEAN].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
		mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
446
#endif
447

448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464
		if (is_smp()) {
			/*
			 * Mark memory with the "shared" attribute
			 * for SMP systems
			 */
			user_pgprot |= L_PTE_SHARED;
			kern_pgprot |= L_PTE_SHARED;
			vecs_pgprot |= L_PTE_SHARED;
			mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_S;
			mem_types[MT_DEVICE_WC].prot_pte |= L_PTE_SHARED;
			mem_types[MT_DEVICE_CACHED].prot_sect |= PMD_SECT_S;
			mem_types[MT_DEVICE_CACHED].prot_pte |= L_PTE_SHARED;
			mem_types[MT_MEMORY].prot_sect |= PMD_SECT_S;
			mem_types[MT_MEMORY].prot_pte |= L_PTE_SHARED;
			mem_types[MT_MEMORY_NONCACHED].prot_sect |= PMD_SECT_S;
			mem_types[MT_MEMORY_NONCACHED].prot_pte |= L_PTE_SHARED;
		}
465 466
	}

467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484
	/*
	 * Non-cacheable Normal - intended for memory areas that must
	 * not cause dirty cache line writebacks when used
	 */
	if (cpu_arch >= CPU_ARCH_ARMv6) {
		if (cpu_arch >= CPU_ARCH_ARMv7 && (cr & CR_TRE)) {
			/* Non-cacheable Normal is XCB = 001 */
			mem_types[MT_MEMORY_NONCACHED].prot_sect |=
				PMD_SECT_BUFFERED;
		} else {
			/* For both ARMv6 and non-TEX-remapping ARMv7 */
			mem_types[MT_MEMORY_NONCACHED].prot_sect |=
				PMD_SECT_TEX(1);
		}
	} else {
		mem_types[MT_MEMORY_NONCACHED].prot_sect |= PMD_SECT_BUFFERABLE;
	}

485 486 487 488 489 490 491 492 493 494 495 496
#ifdef CONFIG_ARM_LPAE
	/*
	 * Do not generate access flag faults for the kernel mappings.
	 */
	for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
		mem_types[i].prot_pte |= PTE_EXT_AF;
		mem_types[i].prot_sect |= PMD_SECT_AF;
	}
	kern_pgprot |= PTE_EXT_AF;
	vecs_pgprot |= PTE_EXT_AF;
#endif

497 498
	for (i = 0; i < 16; i++) {
		unsigned long v = pgprot_val(protection_map[i]);
499
		protection_map[i] = __pgprot(v | user_pgprot);
500 501
	}

502 503
	mem_types[MT_LOW_VECTORS].prot_pte |= vecs_pgprot;
	mem_types[MT_HIGH_VECTORS].prot_pte |= vecs_pgprot;
504

505
	pgprot_user   = __pgprot(L_PTE_PRESENT | L_PTE_YOUNG | user_pgprot);
506
	pgprot_kernel = __pgprot(L_PTE_PRESENT | L_PTE_YOUNG |
507
				 L_PTE_DIRTY | kern_pgprot);
508 509 510 511

	mem_types[MT_LOW_VECTORS].prot_l1 |= ecc_mask;
	mem_types[MT_HIGH_VECTORS].prot_l1 |= ecc_mask;
	mem_types[MT_MEMORY].prot_sect |= ecc_mask | cp->pmd;
512 513
	mem_types[MT_MEMORY].prot_pte |= kern_pgprot;
	mem_types[MT_MEMORY_NONCACHED].prot_sect |= ecc_mask;
514 515 516 517 518 519 520 521 522 523 524 525 526
	mem_types[MT_ROM].prot_sect |= cp->pmd;

	switch (cp->pmd) {
	case PMD_SECT_WT:
		mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_WT;
		break;
	case PMD_SECT_WB:
	case PMD_SECT_WBWA:
		mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_WB;
		break;
	}
	printk("Memory policy: ECC %sabled, Data cache %s\n",
		ecc_mask ? "en" : "dis", cp->policy);
527 528 529 530 531 532 533 534

	for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
		struct mem_type *t = &mem_types[i];
		if (t->prot_l1)
			t->prot_l1 |= PMD_DOMAIN(t->domain);
		if (t->prot_sect)
			t->prot_sect |= PMD_DOMAIN(t->domain);
	}
535 536
}

537 538 539 540 541 542 543 544 545 546 547 548 549
#ifdef CONFIG_ARM_DMA_MEM_BUFFERABLE
pgprot_t phys_mem_access_prot(struct file *file, unsigned long pfn,
			      unsigned long size, pgprot_t vma_prot)
{
	if (!pfn_valid(pfn))
		return pgprot_noncached(vma_prot);
	else if (file->f_flags & O_SYNC)
		return pgprot_writecombine(vma_prot);
	return vma_prot;
}
EXPORT_SYMBOL(phys_mem_access_prot);
#endif

550 551
#define vectors_base()	(vectors_high() ? 0xffff0000 : 0)

552
static void __init *early_alloc_aligned(unsigned long sz, unsigned long align)
R
Russell King 已提交
553
{
554
	void *ptr = __va(memblock_alloc(sz, align));
R
Russell King 已提交
555 556
	memset(ptr, 0, sz);
	return ptr;
R
Russell King 已提交
557 558
}

559 560 561 562 563
static void __init *early_alloc(unsigned long sz)
{
	return early_alloc_aligned(sz, sz);
}

R
Russell King 已提交
564
static pte_t * __init early_pte_alloc(pmd_t *pmd, unsigned long addr, unsigned long prot)
565
{
566
	if (pmd_none(*pmd)) {
567
		pte_t *pte = early_alloc(PTE_HWTABLE_OFF + PTE_HWTABLE_SIZE);
568
		__pmd_populate(pmd, __pa(pte), prot);
569
	}
R
Russell King 已提交
570 571 572
	BUG_ON(pmd_bad(*pmd));
	return pte_offset_kernel(pmd, addr);
}
573

R
Russell King 已提交
574 575 576 577 578
static void __init alloc_init_pte(pmd_t *pmd, unsigned long addr,
				  unsigned long end, unsigned long pfn,
				  const struct mem_type *type)
{
	pte_t *pte = early_pte_alloc(pmd, addr, type->prot_l1);
579
	do {
580
		set_pte_ext(pte, pfn_pte(pfn, __pgprot(type->prot_pte)), 0);
581 582
		pfn++;
	} while (pte++, addr += PAGE_SIZE, addr != end);
583 584
}

R
Russell King 已提交
585
static void __init alloc_init_section(pud_t *pud, unsigned long addr,
586
				      unsigned long end, phys_addr_t phys,
587
				      const struct mem_type *type)
588
{
R
Russell King 已提交
589
	pmd_t *pmd = pmd_offset(pud, addr);
590

591 592 593 594 595 596 597 598
	/*
	 * Try a section mapping - end, addr and phys must all be aligned
	 * to a section boundary.  Note that PMDs refer to the individual
	 * L1 entries, whereas PGDs refer to a group of L1 entries making
	 * up one logical pointer to an L2 table.
	 */
	if (((addr | end | phys) & ~SECTION_MASK) == 0) {
		pmd_t *p = pmd;
599

600
#ifndef CONFIG_ARM_LPAE
601 602
		if (addr & SECTION_SIZE)
			pmd++;
603
#endif
604 605 606 607 608

		do {
			*pmd = __pmd(phys | type->prot_sect);
			phys += SECTION_SIZE;
		} while (pmd++, addr += SECTION_SIZE, addr != end);
609

610 611 612 613 614 615 616 617
		flush_pmd_entry(p);
	} else {
		/*
		 * No need to loop; pte's aren't interested in the
		 * individual L1 entries.
		 */
		alloc_init_pte(pmd, addr, end, __phys_to_pfn(phys), type);
	}
618 619
}

R
Russell King 已提交
620 621 622 623 624 625 626 627 628 629 630 631 632
static void alloc_init_pud(pgd_t *pgd, unsigned long addr, unsigned long end,
	unsigned long phys, const struct mem_type *type)
{
	pud_t *pud = pud_offset(pgd, addr);
	unsigned long next;

	do {
		next = pud_addr_end(addr, end);
		alloc_init_section(pud, addr, next, phys, type);
		phys += next - addr;
	} while (pud++, addr = next, addr != end);
}

633
#ifndef CONFIG_ARM_LPAE
634 635 636
static void __init create_36bit_mapping(struct map_desc *md,
					const struct mem_type *type)
{
637 638
	unsigned long addr, length, end;
	phys_addr_t phys;
639 640 641
	pgd_t *pgd;

	addr = md->virtual;
642
	phys = __pfn_to_phys(md->pfn);
643 644 645 646 647
	length = PAGE_ALIGN(md->length);

	if (!(cpu_architecture() >= CPU_ARCH_ARMv6 || cpu_is_xsc3())) {
		printk(KERN_ERR "MM: CPU does not support supersection "
		       "mapping for 0x%08llx at 0x%08lx\n",
648
		       (long long)__pfn_to_phys((u64)md->pfn), addr);
649 650 651 652 653 654 655 656 657 658 659 660
		return;
	}

	/* N.B.	ARMv6 supersections are only defined to work with domain 0.
	 *	Since domain assignments can in fact be arbitrary, the
	 *	'domain == 0' check below is required to insure that ARMv6
	 *	supersections are only allocated for domain 0 regardless
	 *	of the actual domain assignments in use.
	 */
	if (type->domain) {
		printk(KERN_ERR "MM: invalid domain in supersection "
		       "mapping for 0x%08llx at 0x%08lx\n",
661
		       (long long)__pfn_to_phys((u64)md->pfn), addr);
662 663 664 665
		return;
	}

	if ((addr | length | __pfn_to_phys(md->pfn)) & ~SUPERSECTION_MASK) {
666 667 668
		printk(KERN_ERR "MM: cannot create mapping for 0x%08llx"
		       " at 0x%08lx invalid alignment\n",
		       (long long)__pfn_to_phys((u64)md->pfn), addr);
669 670 671 672 673 674 675 676 677 678 679 680
		return;
	}

	/*
	 * Shift bits [35:32] of address into bits [23:20] of PMD
	 * (See ARMv6 spec).
	 */
	phys |= (((md->pfn >> (32 - PAGE_SHIFT)) & 0xF) << 20);

	pgd = pgd_offset_k(addr);
	end = addr + length;
	do {
R
Russell King 已提交
681 682
		pud_t *pud = pud_offset(pgd, addr);
		pmd_t *pmd = pmd_offset(pud, addr);
683 684 685 686 687 688 689 690 691 692
		int i;

		for (i = 0; i < 16; i++)
			*pmd++ = __pmd(phys | type->prot_sect | PMD_SECT_SUPER);

		addr += SUPERSECTION_SIZE;
		phys += SUPERSECTION_SIZE;
		pgd += SUPERSECTION_SIZE >> PGDIR_SHIFT;
	} while (addr != end);
}
693
#endif	/* !CONFIG_ARM_LPAE */
694

695 696 697 698 699 700 701
/*
 * Create the page directory entries and any necessary
 * page tables for the mapping specified by `md'.  We
 * are able to cope here with varying sizes and address
 * offsets, and we take full advantage of sections and
 * supersections.
 */
702
static void __init create_mapping(struct map_desc *md)
703
{
704 705
	unsigned long addr, length, end;
	phys_addr_t phys;
706
	const struct mem_type *type;
707
	pgd_t *pgd;
708 709

	if (md->virtual != vectors_base() && md->virtual < TASK_SIZE) {
710 711 712
		printk(KERN_WARNING "BUG: not creating mapping for 0x%08llx"
		       " at 0x%08lx in user region\n",
		       (long long)__pfn_to_phys((u64)md->pfn), md->virtual);
713 714 715 716
		return;
	}

	if ((md->type == MT_DEVICE || md->type == MT_ROM) &&
717 718
	    md->virtual >= PAGE_OFFSET &&
	    (md->virtual < VMALLOC_START || md->virtual >= VMALLOC_END)) {
719
		printk(KERN_WARNING "BUG: mapping for 0x%08llx"
720
		       " at 0x%08lx out of vmalloc space\n",
721
		       (long long)__pfn_to_phys((u64)md->pfn), md->virtual);
722 723
	}

724
	type = &mem_types[md->type];
725

726
#ifndef CONFIG_ARM_LPAE
727 728 729
	/*
	 * Catch 36-bit addresses
	 */
730 731 732
	if (md->pfn >= 0x100000) {
		create_36bit_mapping(md, type);
		return;
733
	}
734
#endif
735

736
	addr = md->virtual & PAGE_MASK;
737
	phys = __pfn_to_phys(md->pfn);
738
	length = PAGE_ALIGN(md->length + (md->virtual & ~PAGE_MASK));
739

740
	if (type->prot_l1 == 0 && ((addr | phys | length) & ~SECTION_MASK)) {
741
		printk(KERN_WARNING "BUG: map for 0x%08llx at 0x%08lx can not "
742
		       "be mapped using pages, ignoring.\n",
743
		       (long long)__pfn_to_phys(md->pfn), addr);
744 745 746
		return;
	}

747 748 749 750
	pgd = pgd_offset_k(addr);
	end = addr + length;
	do {
		unsigned long next = pgd_addr_end(addr, end);
751

R
Russell King 已提交
752
		alloc_init_pud(pgd, addr, next, phys, type);
753

754 755 756
		phys += next - addr;
		addr = next;
	} while (pgd++, addr != end);
757 758 759 760 761 762 763
}

/*
 * Create the architecture specific mappings
 */
void __init iotable_init(struct map_desc *io_desc, int nr)
{
764 765 766 767 768
	struct map_desc *md;
	struct vm_struct *vm;

	if (!nr)
		return;
769

770 771 772 773 774 775 776
	vm = early_alloc_aligned(sizeof(*vm) * nr, __alignof__(*vm));

	for (md = io_desc; nr; md++, nr--) {
		create_mapping(md);
		vm->addr = (void *)(md->virtual & PAGE_MASK);
		vm->size = PAGE_ALIGN(md->length + (md->virtual & ~PAGE_MASK));
		vm->phys_addr = __pfn_to_phys(md->pfn); 
777 778
		vm->flags = VM_IOREMAP | VM_ARM_STATIC_MAPPING; 
		vm->flags |= VM_ARM_MTYPE(md->type);
779 780 781
		vm->caller = iotable_init;
		vm_area_add_early(vm++);
	}
782 783
}

784 785
static void * __initdata vmalloc_min =
	(void *)(VMALLOC_END - (240 << 20) - VMALLOC_OFFSET);
786 787 788 789

/*
 * vmalloc=size forces the vmalloc area to be exactly 'size'
 * bytes. This can be used to increase (or decrease) the vmalloc
790
 * area - the default is 240m.
791
 */
792
static int __init early_vmalloc(char *arg)
793
{
R
Russell King 已提交
794
	unsigned long vmalloc_reserve = memparse(arg, NULL);
795 796 797 798 799 800 801

	if (vmalloc_reserve < SZ_16M) {
		vmalloc_reserve = SZ_16M;
		printk(KERN_WARNING
			"vmalloc area too small, limiting to %luMB\n",
			vmalloc_reserve >> 20);
	}
802 803 804 805 806 807 808

	if (vmalloc_reserve > VMALLOC_END - (PAGE_OFFSET + SZ_32M)) {
		vmalloc_reserve = VMALLOC_END - (PAGE_OFFSET + SZ_32M);
		printk(KERN_WARNING
			"vmalloc area is too big, limiting to %luMB\n",
			vmalloc_reserve >> 20);
	}
R
Russell King 已提交
809 810

	vmalloc_min = (void *)(VMALLOC_END - vmalloc_reserve);
811
	return 0;
812
}
813
early_param("vmalloc", early_vmalloc);
814

815 816
static phys_addr_t lowmem_limit __initdata = 0;

817
void __init sanity_check_meminfo(void)
818
{
R
Russell King 已提交
819
	int i, j, highmem = 0;
820

821
	for (i = 0, j = 0; i < meminfo.nr_banks; i++) {
822 823
		struct membank *bank = &meminfo.bank[j];
		*bank = meminfo.bank[i];
824

825 826 827
		if (bank->start > ULONG_MAX)
			highmem = 1;

828
#ifdef CONFIG_HIGHMEM
829
		if (__va(bank->start) >= vmalloc_min ||
R
Russell King 已提交
830 831 832 833 834
		    __va(bank->start) < (void *)PAGE_OFFSET)
			highmem = 1;

		bank->highmem = highmem;

835 836 837 838
		/*
		 * Split those memory banks which are partially overlapping
		 * the vmalloc area greatly simplifying things later.
		 */
839
		if (!highmem && __va(bank->start) < vmalloc_min &&
R
Russell King 已提交
840
		    bank->size > vmalloc_min - __va(bank->start)) {
841 842 843 844 845 846 847 848
			if (meminfo.nr_banks >= NR_BANKS) {
				printk(KERN_CRIT "NR_BANKS too low, "
						 "ignoring high memory\n");
			} else {
				memmove(bank + 1, bank,
					(meminfo.nr_banks - i) * sizeof(*bank));
				meminfo.nr_banks++;
				i++;
R
Russell King 已提交
849 850
				bank[1].size -= vmalloc_min - __va(bank->start);
				bank[1].start = __pa(vmalloc_min - 1) + 1;
R
Russell King 已提交
851
				bank[1].highmem = highmem = 1;
852 853
				j++;
			}
R
Russell King 已提交
854
			bank->size = vmalloc_min - __va(bank->start);
855 856
		}
#else
857 858
		bank->highmem = highmem;

859 860 861 862 863 864 865 866 867 868 869
		/*
		 * Highmem banks not allowed with !CONFIG_HIGHMEM.
		 */
		if (highmem) {
			printk(KERN_NOTICE "Ignoring RAM at %.8llx-%.8llx "
			       "(!CONFIG_HIGHMEM).\n",
			       (unsigned long long)bank->start,
			       (unsigned long long)bank->start + bank->size - 1);
			continue;
		}

870 871 872 873
		/*
		 * Check whether this memory bank would entirely overlap
		 * the vmalloc area.
		 */
R
Russell King 已提交
874
		if (__va(bank->start) >= vmalloc_min ||
875
		    __va(bank->start) < (void *)PAGE_OFFSET) {
876
			printk(KERN_NOTICE "Ignoring RAM at %.8llx-%.8llx "
877
			       "(vmalloc region overlap).\n",
878 879
			       (unsigned long long)bank->start,
			       (unsigned long long)bank->start + bank->size - 1);
880 881
			continue;
		}
882

883 884 885 886
		/*
		 * Check whether this memory bank would partially overlap
		 * the vmalloc area.
		 */
R
Russell King 已提交
887
		if (__va(bank->start + bank->size) > vmalloc_min ||
888
		    __va(bank->start + bank->size) < __va(bank->start)) {
R
Russell King 已提交
889
			unsigned long newsize = vmalloc_min - __va(bank->start);
890 891 892 893 894
			printk(KERN_NOTICE "Truncating RAM at %.8llx-%.8llx "
			       "to -%.8llx (vmalloc region overlap).\n",
			       (unsigned long long)bank->start,
			       (unsigned long long)bank->start + bank->size - 1,
			       (unsigned long long)bank->start + newsize - 1);
895 896 897
			bank->size = newsize;
		}
#endif
898 899 900
		if (!bank->highmem && bank->start + bank->size > lowmem_limit)
			lowmem_limit = bank->start + bank->size;

901
		j++;
902
	}
903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922
#ifdef CONFIG_HIGHMEM
	if (highmem) {
		const char *reason = NULL;

		if (cache_is_vipt_aliasing()) {
			/*
			 * Interactions between kmap and other mappings
			 * make highmem support with aliasing VIPT caches
			 * rather difficult.
			 */
			reason = "with VIPT aliasing cache";
		}
		if (reason) {
			printk(KERN_CRIT "HIGHMEM is not supported %s, ignoring high memory\n",
				reason);
			while (j > 0 && meminfo.bank[j - 1].highmem)
				j--;
		}
	}
#endif
923
	meminfo.nr_banks = j;
924
	high_memory = __va(lowmem_limit - 1) + 1;
925
	memblock_set_current_limit(lowmem_limit);
926 927
}

928
static inline void prepare_page_table(void)
929 930
{
	unsigned long addr;
931
	phys_addr_t end;
932 933 934 935

	/*
	 * Clear out all the mappings below the kernel image.
	 */
936
	for (addr = 0; addr < MODULES_VADDR; addr += PMD_SIZE)
937 938 939 940
		pmd_clear(pmd_off_k(addr));

#ifdef CONFIG_XIP_KERNEL
	/* The XIP kernel is mapped in the module area -- skip over it */
941
	addr = ((unsigned long)_etext + PMD_SIZE - 1) & PMD_MASK;
942
#endif
943
	for ( ; addr < PAGE_OFFSET; addr += PMD_SIZE)
944 945
		pmd_clear(pmd_off_k(addr));

946 947 948 949 950 951 952
	/*
	 * Find the end of the first block of lowmem.
	 */
	end = memblock.memory.regions[0].base + memblock.memory.regions[0].size;
	if (end >= lowmem_limit)
		end = lowmem_limit;

953 954
	/*
	 * Clear out all the kernel space mappings, except for the first
955
	 * memory bank, up to the vmalloc region.
956
	 */
957
	for (addr = __phys_to_virt(end);
958
	     addr < VMALLOC_START; addr += PMD_SIZE)
959 960 961
		pmd_clear(pmd_off_k(addr));
}

962 963 964 965 966
#ifdef CONFIG_ARM_LPAE
/* the first page is reserved for pgd */
#define SWAPPER_PG_DIR_SIZE	(PAGE_SIZE + \
				 PTRS_PER_PGD * PTRS_PER_PMD * sizeof(pmd_t))
#else
967
#define SWAPPER_PG_DIR_SIZE	(PTRS_PER_PGD * sizeof(pgd_t))
968
#endif
969

970
/*
R
Russell King 已提交
971
 * Reserve the special regions of memory
972
 */
R
Russell King 已提交
973
void __init arm_mm_memblock_reserve(void)
974 975 976 977 978
{
	/*
	 * Reserve the page tables.  These are already in use,
	 * and can only be in node 0.
	 */
979
	memblock_reserve(__pa(swapper_pg_dir), SWAPPER_PG_DIR_SIZE);
980 981 982 983 984 985

#ifdef CONFIG_SA1111
	/*
	 * Because of the SA1111 DMA bug, we want to preserve our
	 * precious DMA-able memory...
	 */
R
Russell King 已提交
986
	memblock_reserve(PHYS_OFFSET, __pa(swapper_pg_dir) - PHYS_OFFSET);
987 988 989 990
#endif
}

/*
991 992
 * Set up the device mappings.  Since we clear out the page tables for all
 * mappings above VMALLOC_START, we will remove any debug device mappings.
993 994 995 996 997 998 999 1000 1001 1002 1003 1004
 * This means you have to be careful how you debug this function, or any
 * called function.  This means you can't use any function or debugging
 * method which may touch any device, otherwise the kernel _will_ crash.
 */
static void __init devicemaps_init(struct machine_desc *mdesc)
{
	struct map_desc map;
	unsigned long addr;

	/*
	 * Allocate the vector page early.
	 */
1005
	vectors_page = early_alloc(PAGE_SIZE);
1006

1007
	for (addr = VMALLOC_START; addr; addr += PMD_SIZE)
1008 1009 1010 1011 1012 1013 1014 1015
		pmd_clear(pmd_off_k(addr));

	/*
	 * Map the kernel if it is XIP.
	 * It is always first in the modulearea.
	 */
#ifdef CONFIG_XIP_KERNEL
	map.pfn = __phys_to_pfn(CONFIG_XIP_PHYS_ADDR & SECTION_MASK);
1016
	map.virtual = MODULES_VADDR;
R
Russell King 已提交
1017
	map.length = ((unsigned long)_etext - map.virtual + ~SECTION_MASK) & SECTION_MASK;
1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044
	map.type = MT_ROM;
	create_mapping(&map);
#endif

	/*
	 * Map the cache flushing regions.
	 */
#ifdef FLUSH_BASE
	map.pfn = __phys_to_pfn(FLUSH_BASE_PHYS);
	map.virtual = FLUSH_BASE;
	map.length = SZ_1M;
	map.type = MT_CACHECLEAN;
	create_mapping(&map);
#endif
#ifdef FLUSH_BASE_MINICACHE
	map.pfn = __phys_to_pfn(FLUSH_BASE_PHYS + SZ_1M);
	map.virtual = FLUSH_BASE_MINICACHE;
	map.length = SZ_1M;
	map.type = MT_MINICLEAN;
	create_mapping(&map);
#endif

	/*
	 * Create a mapping for the machine vectors at the high-vectors
	 * location (0xffff0000).  If we aren't using high-vectors, also
	 * create a mapping at the low-vectors virtual address.
	 */
1045
	map.pfn = __phys_to_pfn(virt_to_phys(vectors_page));
1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072
	map.virtual = 0xffff0000;
	map.length = PAGE_SIZE;
	map.type = MT_HIGH_VECTORS;
	create_mapping(&map);

	if (!vectors_high()) {
		map.virtual = 0;
		map.type = MT_LOW_VECTORS;
		create_mapping(&map);
	}

	/*
	 * Ask the machine support to map in the statically mapped devices.
	 */
	if (mdesc->map_io)
		mdesc->map_io();

	/*
	 * Finally flush the caches and tlb to ensure that we're in a
	 * consistent state wrt the writebuffer.  This also ensures that
	 * any write-allocated cache lines in the vector page are written
	 * back.  After this point, we can start to touch devices again.
	 */
	local_flush_tlb_all();
	flush_cache_all();
}

N
Nicolas Pitre 已提交
1073 1074 1075
static void __init kmap_init(void)
{
#ifdef CONFIG_HIGHMEM
R
Russell King 已提交
1076 1077
	pkmap_page_table = early_pte_alloc(pmd_off_k(PKMAP_BASE),
		PKMAP_BASE, _PAGE_KERNEL_TABLE);
N
Nicolas Pitre 已提交
1078 1079 1080
#endif
}

1081 1082
static void __init map_lowmem(void)
{
1083
	struct memblock_region *reg;
1084 1085

	/* Map all the lowmem memory banks. */
1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099
	for_each_memblock(memory, reg) {
		phys_addr_t start = reg->base;
		phys_addr_t end = start + reg->size;
		struct map_desc map;

		if (end > lowmem_limit)
			end = lowmem_limit;
		if (start >= end)
			break;

		map.pfn = __phys_to_pfn(start);
		map.virtual = __phys_to_virt(start);
		map.length = end - start;
		map.type = MT_MEMORY;
1100

1101
		create_mapping(&map);
1102 1103 1104
	}
}

1105 1106 1107 1108
/*
 * paging_init() sets up the page tables, initialises the zone memory
 * maps, and sets up the zero page, bad page and bad page tables.
 */
1109
void __init paging_init(struct machine_desc *mdesc)
1110 1111 1112
{
	void *zero_page;

1113 1114
	memblock_set_current_limit(lowmem_limit);

1115
	build_mem_type_table();
1116
	prepare_page_table();
1117
	map_lowmem();
1118
	devicemaps_init(mdesc);
N
Nicolas Pitre 已提交
1119
	kmap_init();
1120 1121 1122

	top_pmd = pmd_off_k(0xffff0000);

R
Russell King 已提交
1123 1124
	/* allocate the zero page. */
	zero_page = early_alloc(PAGE_SIZE);
R
Russell King 已提交
1125

1126
	bootmem_init();
R
Russell King 已提交
1127

1128
	empty_zero_page = virt_to_page(zero_page);
1129
	__flush_dcache_page(NULL, empty_zero_page);
1130
}