mmu.c 27.9 KB
Newer Older
1 2 3 4 5 6 7 8 9
/*
 *  linux/arch/arm/mm/mmu.c
 *
 *  Copyright (C) 1995-2005 Russell King
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
 */
10
#include <linux/module.h>
11 12 13 14 15
#include <linux/kernel.h>
#include <linux/errno.h>
#include <linux/init.h>
#include <linux/mman.h>
#include <linux/nodemask.h>
R
Russell King 已提交
16
#include <linux/memblock.h>
17
#include <linux/fs.h>
18

19
#include <asm/cputype.h>
R
Russell King 已提交
20
#include <asm/sections.h>
21
#include <asm/cachetype.h>
22 23
#include <asm/setup.h>
#include <asm/sizes.h>
24
#include <asm/smp_plat.h>
25
#include <asm/tlb.h>
N
Nicolas Pitre 已提交
26
#include <asm/highmem.h>
27 28 29 30 31 32 33 34 35 36 37 38 39

#include <asm/mach/arch.h>
#include <asm/mach/map.h>

#include "mm.h"

DEFINE_PER_CPU(struct mmu_gather, mmu_gathers);

/*
 * empty_zero_page is a special page that is used for
 * zero-initialized data and COW.
 */
struct page *empty_zero_page;
40
EXPORT_SYMBOL(empty_zero_page);
41 42 43 44 45 46

/*
 * The pmd table for the upper-most set of pages.
 */
pmd_t *top_pmd;

47 48 49 50 51 52 53 54
#define CPOLICY_UNCACHED	0
#define CPOLICY_BUFFERED	1
#define CPOLICY_WRITETHROUGH	2
#define CPOLICY_WRITEBACK	3
#define CPOLICY_WRITEALLOC	4

static unsigned int cachepolicy __initdata = CPOLICY_WRITEBACK;
static unsigned int ecc_mask __initdata = 0;
55
pgprot_t pgprot_user;
56 57
pgprot_t pgprot_kernel;

58
EXPORT_SYMBOL(pgprot_user);
59 60 61 62 63 64
EXPORT_SYMBOL(pgprot_kernel);

struct cachepolicy {
	const char	policy[16];
	unsigned int	cr_mask;
	unsigned int	pmd;
65
	pteval_t	pte;
66 67 68 69 70 71 72
};

static struct cachepolicy cache_policies[] __initdata = {
	{
		.policy		= "uncached",
		.cr_mask	= CR_W|CR_C,
		.pmd		= PMD_SECT_UNCACHED,
73
		.pte		= L_PTE_MT_UNCACHED,
74 75 76 77
	}, {
		.policy		= "buffered",
		.cr_mask	= CR_C,
		.pmd		= PMD_SECT_BUFFERED,
78
		.pte		= L_PTE_MT_BUFFERABLE,
79 80 81 82
	}, {
		.policy		= "writethrough",
		.cr_mask	= 0,
		.pmd		= PMD_SECT_WT,
83
		.pte		= L_PTE_MT_WRITETHROUGH,
84 85 86 87
	}, {
		.policy		= "writeback",
		.cr_mask	= 0,
		.pmd		= PMD_SECT_WB,
88
		.pte		= L_PTE_MT_WRITEBACK,
89 90 91 92
	}, {
		.policy		= "writealloc",
		.cr_mask	= 0,
		.pmd		= PMD_SECT_WBWA,
93
		.pte		= L_PTE_MT_WRITEALLOC,
94 95 96 97
	}
};

/*
S
Simon Arlott 已提交
98
 * These are useful for identifying cache coherency
99 100 101 102
 * problems by allowing the cache or the cache and
 * writebuffer to be turned off.  (Note: the write
 * buffer should not be on and the cache off).
 */
103
static int __init early_cachepolicy(char *p)
104 105 106 107 108 109
{
	int i;

	for (i = 0; i < ARRAY_SIZE(cache_policies); i++) {
		int len = strlen(cache_policies[i].policy);

110
		if (memcmp(p, cache_policies[i].policy, len) == 0) {
111 112 113 114 115 116 117 118
			cachepolicy = i;
			cr_alignment &= ~cache_policies[i].cr_mask;
			cr_no_alignment &= ~cache_policies[i].cr_mask;
			break;
		}
	}
	if (i == ARRAY_SIZE(cache_policies))
		printk(KERN_ERR "ERROR: unknown or unsupported cache policy\n");
119 120 121 122 123 124 125
	/*
	 * This restriction is partly to do with the way we boot; it is
	 * unpredictable to have memory mapped using two different sets of
	 * memory attributes (shared, type, and cache attribs).  We can not
	 * change these attributes once the initial assembly has setup the
	 * page tables.
	 */
126 127 128 129
	if (cpu_architecture() >= CPU_ARCH_ARMv6) {
		printk(KERN_WARNING "Only cachepolicy=writeback supported on ARMv6 and later\n");
		cachepolicy = CPOLICY_WRITEBACK;
	}
130 131
	flush_cache_all();
	set_cr(cr_alignment);
132
	return 0;
133
}
134
early_param("cachepolicy", early_cachepolicy);
135

136
static int __init early_nocache(char *__unused)
137 138 139
{
	char *p = "buffered";
	printk(KERN_WARNING "nocache is deprecated; use cachepolicy=%s\n", p);
140 141
	early_cachepolicy(p);
	return 0;
142
}
143
early_param("nocache", early_nocache);
144

145
static int __init early_nowrite(char *__unused)
146 147 148
{
	char *p = "uncached";
	printk(KERN_WARNING "nowb is deprecated; use cachepolicy=%s\n", p);
149 150
	early_cachepolicy(p);
	return 0;
151
}
152
early_param("nowb", early_nowrite);
153

154
static int __init early_ecc(char *p)
155
{
156
	if (memcmp(p, "on", 2) == 0)
157
		ecc_mask = PMD_PROTECTION;
158
	else if (memcmp(p, "off", 3) == 0)
159
		ecc_mask = 0;
160
	return 0;
161
}
162
early_param("ecc", early_ecc);
163 164 165 166 167 168 169 170 171 172

static int __init noalign_setup(char *__unused)
{
	cr_alignment &= ~CR_A;
	cr_no_alignment &= ~CR_A;
	set_cr(cr_alignment);
	return 1;
}
__setup("noalign", noalign_setup);

173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192
#ifndef CONFIG_SMP
void adjust_cr(unsigned long mask, unsigned long set)
{
	unsigned long flags;

	mask &= ~CR_A;

	set &= mask;

	local_irq_save(flags);

	cr_no_alignment = (cr_no_alignment & ~mask) | set;
	cr_alignment = (cr_alignment & ~mask) | set;

	set_cr((get_cr() & ~mask) | set);

	local_irq_restore(flags);
}
#endif

193
#define PROT_PTE_DEVICE		L_PTE_PRESENT|L_PTE_YOUNG|L_PTE_DIRTY|L_PTE_XN
194
#define PROT_SECT_DEVICE	PMD_TYPE_SECT|PMD_SECT_AP_WRITE
195

196
static struct mem_type mem_types[] = {
197
	[MT_DEVICE] = {		  /* Strongly ordered / ARMv6 shared device */
198 199
		.prot_pte	= PROT_PTE_DEVICE | L_PTE_MT_DEV_SHARED |
				  L_PTE_SHARED,
200
		.prot_l1	= PMD_TYPE_TABLE,
201
		.prot_sect	= PROT_SECT_DEVICE | PMD_SECT_S,
202 203 204
		.domain		= DOMAIN_IO,
	},
	[MT_DEVICE_NONSHARED] = { /* ARMv6 non-shared device */
205
		.prot_pte	= PROT_PTE_DEVICE | L_PTE_MT_DEV_NONSHARED,
206
		.prot_l1	= PMD_TYPE_TABLE,
207
		.prot_sect	= PROT_SECT_DEVICE,
208 209 210
		.domain		= DOMAIN_IO,
	},
	[MT_DEVICE_CACHED] = {	  /* ioremap_cached */
211
		.prot_pte	= PROT_PTE_DEVICE | L_PTE_MT_DEV_CACHED,
212 213 214 215
		.prot_l1	= PMD_TYPE_TABLE,
		.prot_sect	= PROT_SECT_DEVICE | PMD_SECT_WB,
		.domain		= DOMAIN_IO,
	},	
216
	[MT_DEVICE_WC] = {	/* ioremap_wc */
217
		.prot_pte	= PROT_PTE_DEVICE | L_PTE_MT_DEV_WC,
218
		.prot_l1	= PMD_TYPE_TABLE,
219
		.prot_sect	= PROT_SECT_DEVICE,
220
		.domain		= DOMAIN_IO,
221
	},
222 223 224 225 226 227
	[MT_UNCACHED] = {
		.prot_pte	= PROT_PTE_DEVICE,
		.prot_l1	= PMD_TYPE_TABLE,
		.prot_sect	= PMD_TYPE_SECT | PMD_SECT_XN,
		.domain		= DOMAIN_IO,
	},
228
	[MT_CACHECLEAN] = {
229
		.prot_sect = PMD_TYPE_SECT | PMD_SECT_XN,
230 231 232
		.domain    = DOMAIN_KERNEL,
	},
	[MT_MINICLEAN] = {
233
		.prot_sect = PMD_TYPE_SECT | PMD_SECT_XN | PMD_SECT_MINICACHE,
234 235 236
		.domain    = DOMAIN_KERNEL,
	},
	[MT_LOW_VECTORS] = {
237 238
		.prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
				L_PTE_RDONLY,
239 240 241 242 243
		.prot_l1   = PMD_TYPE_TABLE,
		.domain    = DOMAIN_USER,
	},
	[MT_HIGH_VECTORS] = {
		.prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
244
				L_PTE_USER | L_PTE_RDONLY,
245 246 247 248
		.prot_l1   = PMD_TYPE_TABLE,
		.domain    = DOMAIN_USER,
	},
	[MT_MEMORY] = {
249
		.prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY,
250
		.prot_l1   = PMD_TYPE_TABLE,
251
		.prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE,
252 253 254
		.domain    = DOMAIN_KERNEL,
	},
	[MT_ROM] = {
255
		.prot_sect = PMD_TYPE_SECT,
256 257
		.domain    = DOMAIN_KERNEL,
	},
258
	[MT_MEMORY_NONCACHED] = {
259
		.prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
260
				L_PTE_MT_BUFFERABLE,
261
		.prot_l1   = PMD_TYPE_TABLE,
262 263 264
		.prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE,
		.domain    = DOMAIN_KERNEL,
	},
265
	[MT_MEMORY_DTCM] = {
266
		.prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
267
				L_PTE_XN,
268 269 270
		.prot_l1   = PMD_TYPE_TABLE,
		.prot_sect = PMD_TYPE_SECT | PMD_SECT_XN,
		.domain    = DOMAIN_KERNEL,
271 272
	},
	[MT_MEMORY_ITCM] = {
273
		.prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY,
274
		.prot_l1   = PMD_TYPE_TABLE,
275
		.domain    = DOMAIN_KERNEL,
276
	},
277 278
};

279 280 281 282
const struct mem_type *get_mem_type(unsigned int type)
{
	return type < ARRAY_SIZE(mem_types) ? &mem_types[type] : NULL;
}
283
EXPORT_SYMBOL(get_mem_type);
284

285 286 287 288 289 290 291
/*
 * Adjust the PMD section entries according to the CPU in use.
 */
static void __init build_mem_type_table(void)
{
	struct cachepolicy *cp;
	unsigned int cr = get_cr();
292
	unsigned int user_pgprot, kern_pgprot, vecs_pgprot;
293 294 295
	int cpu_arch = cpu_architecture();
	int i;

296
	if (cpu_arch < CPU_ARCH_ARMv6) {
297
#if defined(CONFIG_CPU_DCACHE_DISABLE)
298 299
		if (cachepolicy > CPOLICY_BUFFERED)
			cachepolicy = CPOLICY_BUFFERED;
300
#elif defined(CONFIG_CPU_DCACHE_WRITETHROUGH)
301 302
		if (cachepolicy > CPOLICY_WRITETHROUGH)
			cachepolicy = CPOLICY_WRITETHROUGH;
303
#endif
304
	}
305 306 307 308 309
	if (cpu_arch < CPU_ARCH_ARMv5) {
		if (cachepolicy >= CPOLICY_WRITEALLOC)
			cachepolicy = CPOLICY_WRITEBACK;
		ecc_mask = 0;
	}
310 311
	if (is_smp())
		cachepolicy = CPOLICY_WRITEALLOC;
312

313
	/*
314 315 316
	 * Strip out features not present on earlier architectures.
	 * Pre-ARMv5 CPUs don't have TEX bits.  Pre-ARMv6 CPUs or those
	 * without extended page tables don't have the 'Shared' bit.
317
	 */
318 319 320 321 322 323
	if (cpu_arch < CPU_ARCH_ARMv5)
		for (i = 0; i < ARRAY_SIZE(mem_types); i++)
			mem_types[i].prot_sect &= ~PMD_SECT_TEX(7);
	if ((cpu_arch < CPU_ARCH_ARMv6 || !(cr & CR_XP)) && !cpu_is_xsc3())
		for (i = 0; i < ARRAY_SIZE(mem_types); i++)
			mem_types[i].prot_sect &= ~PMD_SECT_S;
324 325

	/*
326 327 328
	 * ARMv5 and lower, bit 4 must be set for page tables (was: cache
	 * "update-able on write" bit on ARM610).  However, Xscale and
	 * Xscale3 require this bit to be cleared.
329
	 */
330
	if (cpu_is_xscale() || cpu_is_xsc3()) {
331
		for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
332
			mem_types[i].prot_sect &= ~PMD_BIT4;
333 334 335 336
			mem_types[i].prot_l1 &= ~PMD_BIT4;
		}
	} else if (cpu_arch < CPU_ARCH_ARMv6) {
		for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
337 338
			if (mem_types[i].prot_l1)
				mem_types[i].prot_l1 |= PMD_BIT4;
339 340 341 342
			if (mem_types[i].prot_sect)
				mem_types[i].prot_sect |= PMD_BIT4;
		}
	}
343

344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401
	/*
	 * Mark the device areas according to the CPU/architecture.
	 */
	if (cpu_is_xsc3() || (cpu_arch >= CPU_ARCH_ARMv6 && (cr & CR_XP))) {
		if (!cpu_is_xsc3()) {
			/*
			 * Mark device regions on ARMv6+ as execute-never
			 * to prevent speculative instruction fetches.
			 */
			mem_types[MT_DEVICE].prot_sect |= PMD_SECT_XN;
			mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_XN;
			mem_types[MT_DEVICE_CACHED].prot_sect |= PMD_SECT_XN;
			mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_XN;
		}
		if (cpu_arch >= CPU_ARCH_ARMv7 && (cr & CR_TRE)) {
			/*
			 * For ARMv7 with TEX remapping,
			 * - shared device is SXCB=1100
			 * - nonshared device is SXCB=0100
			 * - write combine device mem is SXCB=0001
			 * (Uncached Normal memory)
			 */
			mem_types[MT_DEVICE].prot_sect |= PMD_SECT_TEX(1);
			mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(1);
			mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_BUFFERABLE;
		} else if (cpu_is_xsc3()) {
			/*
			 * For Xscale3,
			 * - shared device is TEXCB=00101
			 * - nonshared device is TEXCB=01000
			 * - write combine device mem is TEXCB=00100
			 * (Inner/Outer Uncacheable in xsc3 parlance)
			 */
			mem_types[MT_DEVICE].prot_sect |= PMD_SECT_TEX(1) | PMD_SECT_BUFFERED;
			mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(2);
			mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_TEX(1);
		} else {
			/*
			 * For ARMv6 and ARMv7 without TEX remapping,
			 * - shared device is TEXCB=00001
			 * - nonshared device is TEXCB=01000
			 * - write combine device mem is TEXCB=00100
			 * (Uncached Normal in ARMv6 parlance).
			 */
			mem_types[MT_DEVICE].prot_sect |= PMD_SECT_BUFFERED;
			mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(2);
			mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_TEX(1);
		}
	} else {
		/*
		 * On others, write combining is "Uncached/Buffered"
		 */
		mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_BUFFERABLE;
	}

	/*
	 * Now deal with the memory-type mappings
	 */
402
	cp = &cache_policies[cachepolicy];
403 404 405 406 407
	vecs_pgprot = kern_pgprot = user_pgprot = cp->pte;

	/*
	 * Only use write-through for non-SMP systems
	 */
408
	if (!is_smp() && cpu_arch >= CPU_ARCH_ARMv5 && cachepolicy > CPOLICY_WRITETHROUGH)
409
		vecs_pgprot = cache_policies[CPOLICY_WRITETHROUGH].pte;
410 411 412 413 414

	/*
	 * Enable CPU-specific coherency if supported.
	 * (Only available on XSC3 at the moment.)
	 */
415
	if (arch_is_coherent() && cpu_is_xsc3()) {
416
		mem_types[MT_MEMORY].prot_sect |= PMD_SECT_S;
417 418 419 420
		mem_types[MT_MEMORY].prot_pte |= L_PTE_SHARED;
		mem_types[MT_MEMORY_NONCACHED].prot_sect |= PMD_SECT_S;
		mem_types[MT_MEMORY_NONCACHED].prot_pte |= L_PTE_SHARED;
	}
421 422 423 424 425 426 427 428 429 430 431 432
	/*
	 * ARMv6 and above have extended page tables.
	 */
	if (cpu_arch >= CPU_ARCH_ARMv6 && (cr & CR_XP)) {
		/*
		 * Mark cache clean areas and XIP ROM read only
		 * from SVC mode and no access from userspace.
		 */
		mem_types[MT_ROM].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
		mem_types[MT_MINICLEAN].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
		mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;

433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449
		if (is_smp()) {
			/*
			 * Mark memory with the "shared" attribute
			 * for SMP systems
			 */
			user_pgprot |= L_PTE_SHARED;
			kern_pgprot |= L_PTE_SHARED;
			vecs_pgprot |= L_PTE_SHARED;
			mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_S;
			mem_types[MT_DEVICE_WC].prot_pte |= L_PTE_SHARED;
			mem_types[MT_DEVICE_CACHED].prot_sect |= PMD_SECT_S;
			mem_types[MT_DEVICE_CACHED].prot_pte |= L_PTE_SHARED;
			mem_types[MT_MEMORY].prot_sect |= PMD_SECT_S;
			mem_types[MT_MEMORY].prot_pte |= L_PTE_SHARED;
			mem_types[MT_MEMORY_NONCACHED].prot_sect |= PMD_SECT_S;
			mem_types[MT_MEMORY_NONCACHED].prot_pte |= L_PTE_SHARED;
		}
450 451
	}

452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469
	/*
	 * Non-cacheable Normal - intended for memory areas that must
	 * not cause dirty cache line writebacks when used
	 */
	if (cpu_arch >= CPU_ARCH_ARMv6) {
		if (cpu_arch >= CPU_ARCH_ARMv7 && (cr & CR_TRE)) {
			/* Non-cacheable Normal is XCB = 001 */
			mem_types[MT_MEMORY_NONCACHED].prot_sect |=
				PMD_SECT_BUFFERED;
		} else {
			/* For both ARMv6 and non-TEX-remapping ARMv7 */
			mem_types[MT_MEMORY_NONCACHED].prot_sect |=
				PMD_SECT_TEX(1);
		}
	} else {
		mem_types[MT_MEMORY_NONCACHED].prot_sect |= PMD_SECT_BUFFERABLE;
	}

470 471
	for (i = 0; i < 16; i++) {
		unsigned long v = pgprot_val(protection_map[i]);
472
		protection_map[i] = __pgprot(v | user_pgprot);
473 474
	}

475 476
	mem_types[MT_LOW_VECTORS].prot_pte |= vecs_pgprot;
	mem_types[MT_HIGH_VECTORS].prot_pte |= vecs_pgprot;
477

478
	pgprot_user   = __pgprot(L_PTE_PRESENT | L_PTE_YOUNG | user_pgprot);
479
	pgprot_kernel = __pgprot(L_PTE_PRESENT | L_PTE_YOUNG |
480
				 L_PTE_DIRTY | kern_pgprot);
481 482 483 484

	mem_types[MT_LOW_VECTORS].prot_l1 |= ecc_mask;
	mem_types[MT_HIGH_VECTORS].prot_l1 |= ecc_mask;
	mem_types[MT_MEMORY].prot_sect |= ecc_mask | cp->pmd;
485 486
	mem_types[MT_MEMORY].prot_pte |= kern_pgprot;
	mem_types[MT_MEMORY_NONCACHED].prot_sect |= ecc_mask;
487 488 489 490 491 492 493 494 495 496 497 498 499
	mem_types[MT_ROM].prot_sect |= cp->pmd;

	switch (cp->pmd) {
	case PMD_SECT_WT:
		mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_WT;
		break;
	case PMD_SECT_WB:
	case PMD_SECT_WBWA:
		mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_WB;
		break;
	}
	printk("Memory policy: ECC %sabled, Data cache %s\n",
		ecc_mask ? "en" : "dis", cp->policy);
500 501 502 503 504 505 506 507

	for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
		struct mem_type *t = &mem_types[i];
		if (t->prot_l1)
			t->prot_l1 |= PMD_DOMAIN(t->domain);
		if (t->prot_sect)
			t->prot_sect |= PMD_DOMAIN(t->domain);
	}
508 509
}

510 511 512 513 514 515 516 517 518 519 520 521 522
#ifdef CONFIG_ARM_DMA_MEM_BUFFERABLE
pgprot_t phys_mem_access_prot(struct file *file, unsigned long pfn,
			      unsigned long size, pgprot_t vma_prot)
{
	if (!pfn_valid(pfn))
		return pgprot_noncached(vma_prot);
	else if (file->f_flags & O_SYNC)
		return pgprot_writecombine(vma_prot);
	return vma_prot;
}
EXPORT_SYMBOL(phys_mem_access_prot);
#endif

523 524
#define vectors_base()	(vectors_high() ? 0xffff0000 : 0)

R
Russell King 已提交
525 526
static void __init *early_alloc(unsigned long sz)
{
R
Russell King 已提交
527 528 529
	void *ptr = __va(memblock_alloc(sz, sz));
	memset(ptr, 0, sz);
	return ptr;
R
Russell King 已提交
530 531
}

R
Russell King 已提交
532
static pte_t * __init early_pte_alloc(pmd_t *pmd, unsigned long addr, unsigned long prot)
533
{
534
	if (pmd_none(*pmd)) {
535
		pte_t *pte = early_alloc(PTE_HWTABLE_OFF + PTE_HWTABLE_SIZE);
536
		__pmd_populate(pmd, __pa(pte), prot);
537
	}
R
Russell King 已提交
538 539 540
	BUG_ON(pmd_bad(*pmd));
	return pte_offset_kernel(pmd, addr);
}
541

R
Russell King 已提交
542 543 544 545 546
static void __init alloc_init_pte(pmd_t *pmd, unsigned long addr,
				  unsigned long end, unsigned long pfn,
				  const struct mem_type *type)
{
	pte_t *pte = early_pte_alloc(pmd, addr, type->prot_l1);
547
	do {
548
		set_pte_ext(pte, pfn_pte(pfn, __pgprot(type->prot_pte)), 0);
549 550
		pfn++;
	} while (pte++, addr += PAGE_SIZE, addr != end);
551 552
}

553
static void __init alloc_init_section(pgd_t *pgd, unsigned long addr,
554
				      unsigned long end, phys_addr_t phys,
555
				      const struct mem_type *type)
556
{
557
	pmd_t *pmd = pmd_offset(pgd, addr);
558

559 560 561 562 563 564 565 566
	/*
	 * Try a section mapping - end, addr and phys must all be aligned
	 * to a section boundary.  Note that PMDs refer to the individual
	 * L1 entries, whereas PGDs refer to a group of L1 entries making
	 * up one logical pointer to an L2 table.
	 */
	if (((addr | end | phys) & ~SECTION_MASK) == 0) {
		pmd_t *p = pmd;
567

568 569 570 571 572 573 574
		if (addr & SECTION_SIZE)
			pmd++;

		do {
			*pmd = __pmd(phys | type->prot_sect);
			phys += SECTION_SIZE;
		} while (pmd++, addr += SECTION_SIZE, addr != end);
575

576 577 578 579 580 581 582 583
		flush_pmd_entry(p);
	} else {
		/*
		 * No need to loop; pte's aren't interested in the
		 * individual L1 entries.
		 */
		alloc_init_pte(pmd, addr, end, __phys_to_pfn(phys), type);
	}
584 585
}

586 587 588
static void __init create_36bit_mapping(struct map_desc *md,
					const struct mem_type *type)
{
589 590
	unsigned long addr, length, end;
	phys_addr_t phys;
591 592 593 594 595 596 597 598 599
	pgd_t *pgd;

	addr = md->virtual;
	phys = (unsigned long)__pfn_to_phys(md->pfn);
	length = PAGE_ALIGN(md->length);

	if (!(cpu_architecture() >= CPU_ARCH_ARMv6 || cpu_is_xsc3())) {
		printk(KERN_ERR "MM: CPU does not support supersection "
		       "mapping for 0x%08llx at 0x%08lx\n",
600
		       (long long)__pfn_to_phys((u64)md->pfn), addr);
601 602 603 604 605 606 607 608 609 610 611 612
		return;
	}

	/* N.B.	ARMv6 supersections are only defined to work with domain 0.
	 *	Since domain assignments can in fact be arbitrary, the
	 *	'domain == 0' check below is required to insure that ARMv6
	 *	supersections are only allocated for domain 0 regardless
	 *	of the actual domain assignments in use.
	 */
	if (type->domain) {
		printk(KERN_ERR "MM: invalid domain in supersection "
		       "mapping for 0x%08llx at 0x%08lx\n",
613
		       (long long)__pfn_to_phys((u64)md->pfn), addr);
614 615 616 617
		return;
	}

	if ((addr | length | __pfn_to_phys(md->pfn)) & ~SUPERSECTION_MASK) {
618 619 620
		printk(KERN_ERR "MM: cannot create mapping for 0x%08llx"
		       " at 0x%08lx invalid alignment\n",
		       (long long)__pfn_to_phys((u64)md->pfn), addr);
621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644
		return;
	}

	/*
	 * Shift bits [35:32] of address into bits [23:20] of PMD
	 * (See ARMv6 spec).
	 */
	phys |= (((md->pfn >> (32 - PAGE_SHIFT)) & 0xF) << 20);

	pgd = pgd_offset_k(addr);
	end = addr + length;
	do {
		pmd_t *pmd = pmd_offset(pgd, addr);
		int i;

		for (i = 0; i < 16; i++)
			*pmd++ = __pmd(phys | type->prot_sect | PMD_SECT_SUPER);

		addr += SUPERSECTION_SIZE;
		phys += SUPERSECTION_SIZE;
		pgd += SUPERSECTION_SIZE >> PGDIR_SHIFT;
	} while (addr != end);
}

645 646 647 648 649 650 651
/*
 * Create the page directory entries and any necessary
 * page tables for the mapping specified by `md'.  We
 * are able to cope here with varying sizes and address
 * offsets, and we take full advantage of sections and
 * supersections.
 */
652
static void __init create_mapping(struct map_desc *md)
653
{
654
	unsigned long phys, addr, length, end;
655
	const struct mem_type *type;
656
	pgd_t *pgd;
657 658

	if (md->virtual != vectors_base() && md->virtual < TASK_SIZE) {
659 660 661
		printk(KERN_WARNING "BUG: not creating mapping for 0x%08llx"
		       " at 0x%08lx in user region\n",
		       (long long)__pfn_to_phys((u64)md->pfn), md->virtual);
662 663 664 665 666
		return;
	}

	if ((md->type == MT_DEVICE || md->type == MT_ROM) &&
	    md->virtual >= PAGE_OFFSET && md->virtual < VMALLOC_END) {
667 668 669
		printk(KERN_WARNING "BUG: mapping for 0x%08llx"
		       " at 0x%08lx overlaps vmalloc space\n",
		       (long long)__pfn_to_phys((u64)md->pfn), md->virtual);
670 671
	}

672
	type = &mem_types[md->type];
673 674 675 676

	/*
	 * Catch 36-bit addresses
	 */
677 678 679
	if (md->pfn >= 0x100000) {
		create_36bit_mapping(md, type);
		return;
680 681
	}

682
	addr = md->virtual & PAGE_MASK;
683
	phys = (unsigned long)__pfn_to_phys(md->pfn);
684
	length = PAGE_ALIGN(md->length + (md->virtual & ~PAGE_MASK));
685

686
	if (type->prot_l1 == 0 && ((addr | phys | length) & ~SECTION_MASK)) {
687
		printk(KERN_WARNING "BUG: map for 0x%08llx at 0x%08lx can not "
688
		       "be mapped using pages, ignoring.\n",
689
		       (long long)__pfn_to_phys(md->pfn), addr);
690 691 692
		return;
	}

693 694 695 696
	pgd = pgd_offset_k(addr);
	end = addr + length;
	do {
		unsigned long next = pgd_addr_end(addr, end);
697

698
		alloc_init_section(pgd, addr, next, phys, type);
699

700 701 702
		phys += next - addr;
		addr = next;
	} while (pgd++, addr != end);
703 704 705 706 707 708 709 710 711 712 713 714 715
}

/*
 * Create the architecture specific mappings
 */
void __init iotable_init(struct map_desc *io_desc, int nr)
{
	int i;

	for (i = 0; i < nr; i++)
		create_mapping(io_desc + i);
}

R
Russell King 已提交
716
static void * __initdata vmalloc_min = (void *)(VMALLOC_END - SZ_128M);
717 718 719 720 721 722

/*
 * vmalloc=size forces the vmalloc area to be exactly 'size'
 * bytes. This can be used to increase (or decrease) the vmalloc
 * area - the default is 128m.
 */
723
static int __init early_vmalloc(char *arg)
724
{
R
Russell King 已提交
725
	unsigned long vmalloc_reserve = memparse(arg, NULL);
726 727 728 729 730 731 732

	if (vmalloc_reserve < SZ_16M) {
		vmalloc_reserve = SZ_16M;
		printk(KERN_WARNING
			"vmalloc area too small, limiting to %luMB\n",
			vmalloc_reserve >> 20);
	}
733 734 735 736 737 738 739

	if (vmalloc_reserve > VMALLOC_END - (PAGE_OFFSET + SZ_32M)) {
		vmalloc_reserve = VMALLOC_END - (PAGE_OFFSET + SZ_32M);
		printk(KERN_WARNING
			"vmalloc area is too big, limiting to %luMB\n",
			vmalloc_reserve >> 20);
	}
R
Russell King 已提交
740 741

	vmalloc_min = (void *)(VMALLOC_END - vmalloc_reserve);
742
	return 0;
743
}
744
early_param("vmalloc", early_vmalloc);
745

746 747
static phys_addr_t lowmem_limit __initdata = 0;

748
static void __init sanity_check_meminfo(void)
749
{
R
Russell King 已提交
750
	int i, j, highmem = 0;
751

752 753
	lowmem_limit = __pa(vmalloc_min - 1) + 1;
	memblock_set_current_limit(lowmem_limit);
R
Russell King 已提交
754

755
	for (i = 0, j = 0; i < meminfo.nr_banks; i++) {
756 757
		struct membank *bank = &meminfo.bank[j];
		*bank = meminfo.bank[i];
758

759
#ifdef CONFIG_HIGHMEM
R
Russell King 已提交
760
		if (__va(bank->start) > vmalloc_min ||
R
Russell King 已提交
761 762 763 764 765
		    __va(bank->start) < (void *)PAGE_OFFSET)
			highmem = 1;

		bank->highmem = highmem;

766 767 768 769
		/*
		 * Split those memory banks which are partially overlapping
		 * the vmalloc area greatly simplifying things later.
		 */
R
Russell King 已提交
770 771
		if (__va(bank->start) < vmalloc_min &&
		    bank->size > vmalloc_min - __va(bank->start)) {
772 773 774 775 776 777 778 779
			if (meminfo.nr_banks >= NR_BANKS) {
				printk(KERN_CRIT "NR_BANKS too low, "
						 "ignoring high memory\n");
			} else {
				memmove(bank + 1, bank,
					(meminfo.nr_banks - i) * sizeof(*bank));
				meminfo.nr_banks++;
				i++;
R
Russell King 已提交
780 781
				bank[1].size -= vmalloc_min - __va(bank->start);
				bank[1].start = __pa(vmalloc_min - 1) + 1;
R
Russell King 已提交
782
				bank[1].highmem = highmem = 1;
783 784
				j++;
			}
R
Russell King 已提交
785
			bank->size = vmalloc_min - __va(bank->start);
786 787
		}
#else
788 789
		bank->highmem = highmem;

790 791 792 793
		/*
		 * Check whether this memory bank would entirely overlap
		 * the vmalloc area.
		 */
R
Russell King 已提交
794
		if (__va(bank->start) >= vmalloc_min ||
795
		    __va(bank->start) < (void *)PAGE_OFFSET) {
796 797 798 799 800
			printk(KERN_NOTICE "Ignoring RAM at %.8lx-%.8lx "
			       "(vmalloc region overlap).\n",
			       bank->start, bank->start + bank->size - 1);
			continue;
		}
801

802 803 804 805
		/*
		 * Check whether this memory bank would partially overlap
		 * the vmalloc area.
		 */
R
Russell King 已提交
806
		if (__va(bank->start + bank->size) > vmalloc_min ||
807
		    __va(bank->start + bank->size) < __va(bank->start)) {
R
Russell King 已提交
808
			unsigned long newsize = vmalloc_min - __va(bank->start);
809 810 811 812 813 814 815 816
			printk(KERN_NOTICE "Truncating RAM at %.8lx-%.8lx "
			       "to -%.8lx (vmalloc region overlap).\n",
			       bank->start, bank->start + bank->size - 1,
			       bank->start + newsize - 1);
			bank->size = newsize;
		}
#endif
		j++;
817
	}
818 819 820 821 822 823 824 825 826 827 828
#ifdef CONFIG_HIGHMEM
	if (highmem) {
		const char *reason = NULL;

		if (cache_is_vipt_aliasing()) {
			/*
			 * Interactions between kmap and other mappings
			 * make highmem support with aliasing VIPT caches
			 * rather difficult.
			 */
			reason = "with VIPT aliasing cache";
829
		} else if (is_smp() && tlb_ops_need_broadcast()) {
830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847
			/*
			 * kmap_high needs to occasionally flush TLB entries,
			 * however, if the TLB entries need to be broadcast
			 * we may deadlock:
			 *  kmap_high(irqs off)->flush_all_zero_pkmaps->
			 *  flush_tlb_kernel_range->smp_call_function_many
			 *   (must not be called with irqs off)
			 */
			reason = "without hardware TLB ops broadcasting";
		}
		if (reason) {
			printk(KERN_CRIT "HIGHMEM is not supported %s, ignoring high memory\n",
				reason);
			while (j > 0 && meminfo.bank[j - 1].highmem)
				j--;
		}
	}
#endif
848
	meminfo.nr_banks = j;
849 850
}

851
static inline void prepare_page_table(void)
852 853
{
	unsigned long addr;
854
	phys_addr_t end;
855 856 857 858

	/*
	 * Clear out all the mappings below the kernel image.
	 */
859
	for (addr = 0; addr < MODULES_VADDR; addr += PGDIR_SIZE)
860 861 862 863
		pmd_clear(pmd_off_k(addr));

#ifdef CONFIG_XIP_KERNEL
	/* The XIP kernel is mapped in the module area -- skip over it */
R
Russell King 已提交
864
	addr = ((unsigned long)_etext + PGDIR_SIZE - 1) & PGDIR_MASK;
865 866 867 868
#endif
	for ( ; addr < PAGE_OFFSET; addr += PGDIR_SIZE)
		pmd_clear(pmd_off_k(addr));

869 870 871 872 873 874 875
	/*
	 * Find the end of the first block of lowmem.
	 */
	end = memblock.memory.regions[0].base + memblock.memory.regions[0].size;
	if (end >= lowmem_limit)
		end = lowmem_limit;

876 877 878 879
	/*
	 * Clear out all the kernel space mappings, except for the first
	 * memory bank, up to the end of the vmalloc region.
	 */
880
	for (addr = __phys_to_virt(end);
881 882 883 884 885
	     addr < VMALLOC_END; addr += PGDIR_SIZE)
		pmd_clear(pmd_off_k(addr));
}

/*
R
Russell King 已提交
886
 * Reserve the special regions of memory
887
 */
R
Russell King 已提交
888
void __init arm_mm_memblock_reserve(void)
889 890 891 892 893
{
	/*
	 * Reserve the page tables.  These are already in use,
	 * and can only be in node 0.
	 */
R
Russell King 已提交
894
	memblock_reserve(__pa(swapper_pg_dir), PTRS_PER_PGD * sizeof(pgd_t));
895 896 897 898 899 900

#ifdef CONFIG_SA1111
	/*
	 * Because of the SA1111 DMA bug, we want to preserve our
	 * precious DMA-able memory...
	 */
R
Russell King 已提交
901
	memblock_reserve(PHYS_OFFSET, __pa(swapper_pg_dir) - PHYS_OFFSET);
902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920
#endif
}

/*
 * Set up device the mappings.  Since we clear out the page tables for all
 * mappings above VMALLOC_END, we will remove any debug device mappings.
 * This means you have to be careful how you debug this function, or any
 * called function.  This means you can't use any function or debugging
 * method which may touch any device, otherwise the kernel _will_ crash.
 */
static void __init devicemaps_init(struct machine_desc *mdesc)
{
	struct map_desc map;
	unsigned long addr;
	void *vectors;

	/*
	 * Allocate the vector page early.
	 */
R
Russell King 已提交
921
	vectors = early_alloc(PAGE_SIZE);
922 923 924 925 926 927 928 929 930 931

	for (addr = VMALLOC_END; addr; addr += PGDIR_SIZE)
		pmd_clear(pmd_off_k(addr));

	/*
	 * Map the kernel if it is XIP.
	 * It is always first in the modulearea.
	 */
#ifdef CONFIG_XIP_KERNEL
	map.pfn = __phys_to_pfn(CONFIG_XIP_PHYS_ADDR & SECTION_MASK);
932
	map.virtual = MODULES_VADDR;
R
Russell King 已提交
933
	map.length = ((unsigned long)_etext - map.virtual + ~SECTION_MASK) & SECTION_MASK;
934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988
	map.type = MT_ROM;
	create_mapping(&map);
#endif

	/*
	 * Map the cache flushing regions.
	 */
#ifdef FLUSH_BASE
	map.pfn = __phys_to_pfn(FLUSH_BASE_PHYS);
	map.virtual = FLUSH_BASE;
	map.length = SZ_1M;
	map.type = MT_CACHECLEAN;
	create_mapping(&map);
#endif
#ifdef FLUSH_BASE_MINICACHE
	map.pfn = __phys_to_pfn(FLUSH_BASE_PHYS + SZ_1M);
	map.virtual = FLUSH_BASE_MINICACHE;
	map.length = SZ_1M;
	map.type = MT_MINICLEAN;
	create_mapping(&map);
#endif

	/*
	 * Create a mapping for the machine vectors at the high-vectors
	 * location (0xffff0000).  If we aren't using high-vectors, also
	 * create a mapping at the low-vectors virtual address.
	 */
	map.pfn = __phys_to_pfn(virt_to_phys(vectors));
	map.virtual = 0xffff0000;
	map.length = PAGE_SIZE;
	map.type = MT_HIGH_VECTORS;
	create_mapping(&map);

	if (!vectors_high()) {
		map.virtual = 0;
		map.type = MT_LOW_VECTORS;
		create_mapping(&map);
	}

	/*
	 * Ask the machine support to map in the statically mapped devices.
	 */
	if (mdesc->map_io)
		mdesc->map_io();

	/*
	 * Finally flush the caches and tlb to ensure that we're in a
	 * consistent state wrt the writebuffer.  This also ensures that
	 * any write-allocated cache lines in the vector page are written
	 * back.  After this point, we can start to touch devices again.
	 */
	local_flush_tlb_all();
	flush_cache_all();
}

N
Nicolas Pitre 已提交
989 990 991
static void __init kmap_init(void)
{
#ifdef CONFIG_HIGHMEM
R
Russell King 已提交
992 993
	pkmap_page_table = early_pte_alloc(pmd_off_k(PKMAP_BASE),
		PKMAP_BASE, _PAGE_KERNEL_TABLE);
N
Nicolas Pitre 已提交
994 995 996
#endif
}

997 998
static void __init map_lowmem(void)
{
999
	struct memblock_region *reg;
1000 1001

	/* Map all the lowmem memory banks. */
1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015
	for_each_memblock(memory, reg) {
		phys_addr_t start = reg->base;
		phys_addr_t end = start + reg->size;
		struct map_desc map;

		if (end > lowmem_limit)
			end = lowmem_limit;
		if (start >= end)
			break;

		map.pfn = __phys_to_pfn(start);
		map.virtual = __phys_to_virt(start);
		map.length = end - start;
		map.type = MT_MEMORY;
1016

1017
		create_mapping(&map);
1018 1019 1020
	}
}

1021 1022 1023 1024
/*
 * paging_init() sets up the page tables, initialises the zone memory
 * maps, and sets up the zero page, bad page and bad page tables.
 */
1025
void __init paging_init(struct machine_desc *mdesc)
1026 1027 1028 1029
{
	void *zero_page;

	build_mem_type_table();
1030 1031
	sanity_check_meminfo();
	prepare_page_table();
1032
	map_lowmem();
1033
	devicemaps_init(mdesc);
N
Nicolas Pitre 已提交
1034
	kmap_init();
1035 1036 1037

	top_pmd = pmd_off_k(0xffff0000);

R
Russell King 已提交
1038 1039
	/* allocate the zero page. */
	zero_page = early_alloc(PAGE_SIZE);
R
Russell King 已提交
1040

1041
	bootmem_init();
R
Russell King 已提交
1042

1043
	empty_zero_page = virt_to_page(zero_page);
1044
	__flush_dcache_page(NULL, empty_zero_page);
1045
}