mmu.c 42.9 KB
Newer Older
1 2 3 4 5 6 7 8 9
/*
 *  linux/arch/arm/mm/mmu.c
 *
 *  Copyright (C) 1995-2005 Russell King
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
 */
10
#include <linux/module.h>
11 12 13 14 15
#include <linux/kernel.h>
#include <linux/errno.h>
#include <linux/init.h>
#include <linux/mman.h>
#include <linux/nodemask.h>
R
Russell King 已提交
16
#include <linux/memblock.h>
17
#include <linux/fs.h>
18
#include <linux/vmalloc.h>
19
#include <linux/sizes.h>
20

21
#include <asm/cp15.h>
22
#include <asm/cputype.h>
R
Russell King 已提交
23
#include <asm/sections.h>
24
#include <asm/cachetype.h>
K
Kees Cook 已提交
25
#include <asm/fixmap.h>
26
#include <asm/sections.h>
27
#include <asm/setup.h>
28
#include <asm/smp_plat.h>
29
#include <asm/tlb.h>
N
Nicolas Pitre 已提交
30
#include <asm/highmem.h>
31
#include <asm/system_info.h>
32
#include <asm/traps.h>
33 34
#include <asm/procinfo.h>
#include <asm/memory.h>
35 36 37

#include <asm/mach/arch.h>
#include <asm/mach/map.h>
R
Rob Herring 已提交
38
#include <asm/mach/pci.h>
39
#include <asm/fixmap.h>
40 41

#include "mm.h"
42
#include "tcm.h"
43 44 45 46 47 48

/*
 * empty_zero_page is a special page that is used for
 * zero-initialized data and COW.
 */
struct page *empty_zero_page;
49
EXPORT_SYMBOL(empty_zero_page);
50 51 52 53 54 55

/*
 * The pmd table for the upper-most set of pages.
 */
pmd_t *top_pmd;

56 57
pmdval_t user_pmd_table = _PAGE_USER_TABLE;

58 59 60 61 62 63 64 65
#define CPOLICY_UNCACHED	0
#define CPOLICY_BUFFERED	1
#define CPOLICY_WRITETHROUGH	2
#define CPOLICY_WRITEBACK	3
#define CPOLICY_WRITEALLOC	4

static unsigned int cachepolicy __initdata = CPOLICY_WRITEBACK;
static unsigned int ecc_mask __initdata = 0;
66
pgprot_t pgprot_user;
67
pgprot_t pgprot_kernel;
68 69 70
pgprot_t pgprot_hyp_device;
pgprot_t pgprot_s2;
pgprot_t pgprot_s2_device;
71

72
EXPORT_SYMBOL(pgprot_user);
73 74 75 76 77
EXPORT_SYMBOL(pgprot_kernel);

struct cachepolicy {
	const char	policy[16];
	unsigned int	cr_mask;
78
	pmdval_t	pmd;
79
	pteval_t	pte;
80
	pteval_t	pte_s2;
81 82
};

83 84 85 86 87 88
#ifdef CONFIG_ARM_LPAE
#define s2_policy(policy)	policy
#else
#define s2_policy(policy)	0
#endif

89 90 91 92 93
static struct cachepolicy cache_policies[] __initdata = {
	{
		.policy		= "uncached",
		.cr_mask	= CR_W|CR_C,
		.pmd		= PMD_SECT_UNCACHED,
94
		.pte		= L_PTE_MT_UNCACHED,
95
		.pte_s2		= s2_policy(L_PTE_S2_MT_UNCACHED),
96 97 98 99
	}, {
		.policy		= "buffered",
		.cr_mask	= CR_C,
		.pmd		= PMD_SECT_BUFFERED,
100
		.pte		= L_PTE_MT_BUFFERABLE,
101
		.pte_s2		= s2_policy(L_PTE_S2_MT_UNCACHED),
102 103 104 105
	}, {
		.policy		= "writethrough",
		.cr_mask	= 0,
		.pmd		= PMD_SECT_WT,
106
		.pte		= L_PTE_MT_WRITETHROUGH,
107
		.pte_s2		= s2_policy(L_PTE_S2_MT_WRITETHROUGH),
108 109 110 111
	}, {
		.policy		= "writeback",
		.cr_mask	= 0,
		.pmd		= PMD_SECT_WB,
112
		.pte		= L_PTE_MT_WRITEBACK,
113
		.pte_s2		= s2_policy(L_PTE_S2_MT_WRITEBACK),
114 115 116 117
	}, {
		.policy		= "writealloc",
		.cr_mask	= 0,
		.pmd		= PMD_SECT_WBWA,
118
		.pte		= L_PTE_MT_WRITEALLOC,
119
		.pte_s2		= s2_policy(L_PTE_S2_MT_WRITEBACK),
120 121 122
	}
};

123
#ifdef CONFIG_CPU_CP15
124 125
static unsigned long initial_pmd_value __initdata = 0;

126
/*
127 128 129 130 131
 * Initialise the cache_policy variable with the initial state specified
 * via the "pmd" value.  This is used to ensure that on ARMv6 and later,
 * the C code sets the page tables up with the same policy as the head
 * assembly code, which avoids an illegal state where the TLBs can get
 * confused.  See comments in early_cachepolicy() for more information.
132
 */
133
void __init init_default_cache_policy(unsigned long pmd)
134 135 136
{
	int i;

137 138
	initial_pmd_value = pmd;

139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159
	pmd &= PMD_SECT_TEX(1) | PMD_SECT_BUFFERABLE | PMD_SECT_CACHEABLE;

	for (i = 0; i < ARRAY_SIZE(cache_policies); i++)
		if (cache_policies[i].pmd == pmd) {
			cachepolicy = i;
			break;
		}

	if (i == ARRAY_SIZE(cache_policies))
		pr_err("ERROR: could not find cache policy\n");
}

/*
 * These are useful for identifying cache coherency problems by allowing
 * the cache or the cache and writebuffer to be turned off.  (Note: the
 * write buffer should not be on and the cache off).
 */
static int __init early_cachepolicy(char *p)
{
	int i, selected = -1;

160 161 162
	for (i = 0; i < ARRAY_SIZE(cache_policies); i++) {
		int len = strlen(cache_policies[i].policy);

163
		if (memcmp(p, cache_policies[i].policy, len) == 0) {
164
			selected = i;
165 166 167
			break;
		}
	}
168 169 170 171

	if (selected == -1)
		pr_err("ERROR: unknown or unsupported cache policy\n");

172 173 174 175 176 177 178
	/*
	 * This restriction is partly to do with the way we boot; it is
	 * unpredictable to have memory mapped using two different sets of
	 * memory attributes (shared, type, and cache attribs).  We can not
	 * change these attributes once the initial assembly has setup the
	 * page tables.
	 */
179 180 181 182 183 184 185 186 187 188 189
	if (cpu_architecture() >= CPU_ARCH_ARMv6 && selected != cachepolicy) {
		pr_warn("Only cachepolicy=%s supported on ARMv6 and later\n",
			cache_policies[cachepolicy].policy);
		return 0;
	}

	if (selected != cachepolicy) {
		unsigned long cr = __clear_cr(cache_policies[selected].cr_mask);
		cachepolicy = selected;
		flush_cache_all();
		set_cr(cr);
190
	}
191
	return 0;
192
}
193
early_param("cachepolicy", early_cachepolicy);
194

195
static int __init early_nocache(char *__unused)
196 197
{
	char *p = "buffered";
R
Russell King 已提交
198
	pr_warn("nocache is deprecated; use cachepolicy=%s\n", p);
199 200
	early_cachepolicy(p);
	return 0;
201
}
202
early_param("nocache", early_nocache);
203

204
static int __init early_nowrite(char *__unused)
205 206
{
	char *p = "uncached";
R
Russell King 已提交
207
	pr_warn("nowb is deprecated; use cachepolicy=%s\n", p);
208 209
	early_cachepolicy(p);
	return 0;
210
}
211
early_param("nowb", early_nowrite);
212

213
#ifndef CONFIG_ARM_LPAE
214
static int __init early_ecc(char *p)
215
{
216
	if (memcmp(p, "on", 2) == 0)
217
		ecc_mask = PMD_PROTECTION;
218
	else if (memcmp(p, "off", 3) == 0)
219
		ecc_mask = 0;
220
	return 0;
221
}
222
early_param("ecc", early_ecc);
223
#endif
224

225 226 227 228
#else /* ifdef CONFIG_CPU_CP15 */

static int __init early_cachepolicy(char *p)
{
229
	pr_warn("cachepolicy kernel parameter not supported without cp15\n");
230 231 232 233 234
}
early_param("cachepolicy", early_cachepolicy);

static int __init noalign_setup(char *__unused)
{
235
	pr_warn("noalign kernel parameter not supported without cp15\n");
236 237 238 239 240
}
__setup("noalign", noalign_setup);

#endif /* ifdef CONFIG_CPU_CP15 / else */

241
#define PROT_PTE_DEVICE		L_PTE_PRESENT|L_PTE_YOUNG|L_PTE_DIRTY|L_PTE_XN
242
#define PROT_PTE_S2_DEVICE	PROT_PTE_DEVICE
243
#define PROT_SECT_DEVICE	PMD_TYPE_SECT|PMD_SECT_AP_WRITE
244

245
static struct mem_type mem_types[] = {
246
	[MT_DEVICE] = {		  /* Strongly ordered / ARMv6 shared device */
247 248
		.prot_pte	= PROT_PTE_DEVICE | L_PTE_MT_DEV_SHARED |
				  L_PTE_SHARED,
249 250 251
		.prot_pte_s2	= s2_policy(PROT_PTE_S2_DEVICE) |
				  s2_policy(L_PTE_S2_MT_DEV_SHARED) |
				  L_PTE_SHARED,
252
		.prot_l1	= PMD_TYPE_TABLE,
253
		.prot_sect	= PROT_SECT_DEVICE | PMD_SECT_S,
254 255 256
		.domain		= DOMAIN_IO,
	},
	[MT_DEVICE_NONSHARED] = { /* ARMv6 non-shared device */
257
		.prot_pte	= PROT_PTE_DEVICE | L_PTE_MT_DEV_NONSHARED,
258
		.prot_l1	= PMD_TYPE_TABLE,
259
		.prot_sect	= PROT_SECT_DEVICE,
260 261 262
		.domain		= DOMAIN_IO,
	},
	[MT_DEVICE_CACHED] = {	  /* ioremap_cached */
263
		.prot_pte	= PROT_PTE_DEVICE | L_PTE_MT_DEV_CACHED,
264 265 266
		.prot_l1	= PMD_TYPE_TABLE,
		.prot_sect	= PROT_SECT_DEVICE | PMD_SECT_WB,
		.domain		= DOMAIN_IO,
R
Rob Herring 已提交
267
	},
268
	[MT_DEVICE_WC] = {	/* ioremap_wc */
269
		.prot_pte	= PROT_PTE_DEVICE | L_PTE_MT_DEV_WC,
270
		.prot_l1	= PMD_TYPE_TABLE,
271
		.prot_sect	= PROT_SECT_DEVICE,
272
		.domain		= DOMAIN_IO,
273
	},
274 275 276 277 278 279
	[MT_UNCACHED] = {
		.prot_pte	= PROT_PTE_DEVICE,
		.prot_l1	= PMD_TYPE_TABLE,
		.prot_sect	= PMD_TYPE_SECT | PMD_SECT_XN,
		.domain		= DOMAIN_IO,
	},
280
	[MT_CACHECLEAN] = {
281
		.prot_sect = PMD_TYPE_SECT | PMD_SECT_XN,
282 283
		.domain    = DOMAIN_KERNEL,
	},
284
#ifndef CONFIG_ARM_LPAE
285
	[MT_MINICLEAN] = {
286
		.prot_sect = PMD_TYPE_SECT | PMD_SECT_XN | PMD_SECT_MINICACHE,
287 288
		.domain    = DOMAIN_KERNEL,
	},
289
#endif
290 291
	[MT_LOW_VECTORS] = {
		.prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
292
				L_PTE_RDONLY,
293
		.prot_l1   = PMD_TYPE_TABLE,
294
		.domain    = DOMAIN_VECTORS,
295 296 297
	},
	[MT_HIGH_VECTORS] = {
		.prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
298
				L_PTE_USER | L_PTE_RDONLY,
299
		.prot_l1   = PMD_TYPE_TABLE,
300
		.domain    = DOMAIN_VECTORS,
301
	},
302
	[MT_MEMORY_RWX] = {
303
		.prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY,
304
		.prot_l1   = PMD_TYPE_TABLE,
305
		.prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE,
306 307
		.domain    = DOMAIN_KERNEL,
	},
308 309 310 311 312 313 314
	[MT_MEMORY_RW] = {
		.prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
			     L_PTE_XN,
		.prot_l1   = PMD_TYPE_TABLE,
		.prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE,
		.domain    = DOMAIN_KERNEL,
	},
315
	[MT_ROM] = {
316
		.prot_sect = PMD_TYPE_SECT,
317 318
		.domain    = DOMAIN_KERNEL,
	},
319
	[MT_MEMORY_RWX_NONCACHED] = {
320
		.prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
321
				L_PTE_MT_BUFFERABLE,
322
		.prot_l1   = PMD_TYPE_TABLE,
323 324 325
		.prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE,
		.domain    = DOMAIN_KERNEL,
	},
326
	[MT_MEMORY_RW_DTCM] = {
327
		.prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
328
				L_PTE_XN,
329 330 331
		.prot_l1   = PMD_TYPE_TABLE,
		.prot_sect = PMD_TYPE_SECT | PMD_SECT_XN,
		.domain    = DOMAIN_KERNEL,
332
	},
333
	[MT_MEMORY_RWX_ITCM] = {
334
		.prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY,
335
		.prot_l1   = PMD_TYPE_TABLE,
336
		.domain    = DOMAIN_KERNEL,
337
	},
338
	[MT_MEMORY_RW_SO] = {
339
		.prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
340
				L_PTE_MT_UNCACHED | L_PTE_XN,
341 342 343 344 345
		.prot_l1   = PMD_TYPE_TABLE,
		.prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE | PMD_SECT_S |
				PMD_SECT_UNCACHED | PMD_SECT_XN,
		.domain    = DOMAIN_KERNEL,
	},
346
	[MT_MEMORY_DMA_READY] = {
347 348
		.prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
				L_PTE_XN,
349 350 351
		.prot_l1   = PMD_TYPE_TABLE,
		.domain    = DOMAIN_KERNEL,
	},
352 353
};

354 355 356 357
const struct mem_type *get_mem_type(unsigned int type)
{
	return type < ARRAY_SIZE(mem_types) ? &mem_types[type] : NULL;
}
358
EXPORT_SYMBOL(get_mem_type);
359

360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400
static pte_t *(*pte_offset_fixmap)(pmd_t *dir, unsigned long addr);

static pte_t bm_pte[PTRS_PER_PTE + PTE_HWTABLE_PTRS]
	__aligned(PTE_HWTABLE_OFF + PTE_HWTABLE_SIZE) __initdata;

static pte_t * __init pte_offset_early_fixmap(pmd_t *dir, unsigned long addr)
{
	return &bm_pte[pte_index(addr)];
}

static pte_t *pte_offset_late_fixmap(pmd_t *dir, unsigned long addr)
{
	return pte_offset_kernel(dir, addr);
}

static inline pmd_t * __init fixmap_pmd(unsigned long addr)
{
	pgd_t *pgd = pgd_offset_k(addr);
	pud_t *pud = pud_offset(pgd, addr);
	pmd_t *pmd = pmd_offset(pud, addr);

	return pmd;
}

void __init early_fixmap_init(void)
{
	pmd_t *pmd;

	/*
	 * The early fixmap range spans multiple pmds, for which
	 * we are not prepared:
	 */
	BUILD_BUG_ON((__fix_to_virt(__end_of_permanent_fixed_addresses) >> PMD_SHIFT)
		     != FIXADDR_TOP >> PMD_SHIFT);

	pmd = fixmap_pmd(FIXADDR_TOP);
	pmd_populate_kernel(&init_mm, pmd, bm_pte);

	pte_offset_fixmap = pte_offset_early_fixmap;
}

K
Kees Cook 已提交
401 402 403 404 405 406 407 408
/*
 * To avoid TLB flush broadcasts, this uses local_flush_tlb_kernel_range().
 * As a result, this can only be called with preemption disabled, as under
 * stop_machine().
 */
void __set_fixmap(enum fixed_addresses idx, phys_addr_t phys, pgprot_t prot)
{
	unsigned long vaddr = __fix_to_virt(idx);
409
	pte_t *pte = pte_offset_fixmap(pmd_off_k(vaddr), vaddr);
K
Kees Cook 已提交
410 411 412 413 414 415 416 417 418 419 420 421 422 423

	/* Make sure fixmap region does not exceed available allocation. */
	BUILD_BUG_ON(FIXADDR_START + (__end_of_fixed_addresses * PAGE_SIZE) >
		     FIXADDR_END);
	BUG_ON(idx >= __end_of_fixed_addresses);

	if (pgprot_val(prot))
		set_pte_at(NULL, vaddr, pte,
			pfn_pte(phys >> PAGE_SHIFT, prot));
	else
		pte_clear(NULL, vaddr, pte);
	local_flush_tlb_kernel_range(vaddr, vaddr + PAGE_SIZE);
}

424 425 426 427 428 429 430
/*
 * Adjust the PMD section entries according to the CPU in use.
 */
static void __init build_mem_type_table(void)
{
	struct cachepolicy *cp;
	unsigned int cr = get_cr();
431
	pteval_t user_pgprot, kern_pgprot, vecs_pgprot;
432
	pteval_t hyp_device_pgprot, s2_pgprot, s2_device_pgprot;
433 434 435
	int cpu_arch = cpu_architecture();
	int i;

436
	if (cpu_arch < CPU_ARCH_ARMv6) {
437
#if defined(CONFIG_CPU_DCACHE_DISABLE)
438 439
		if (cachepolicy > CPOLICY_BUFFERED)
			cachepolicy = CPOLICY_BUFFERED;
440
#elif defined(CONFIG_CPU_DCACHE_WRITETHROUGH)
441 442
		if (cachepolicy > CPOLICY_WRITETHROUGH)
			cachepolicy = CPOLICY_WRITETHROUGH;
443
#endif
444
	}
445 446 447 448 449
	if (cpu_arch < CPU_ARCH_ARMv5) {
		if (cachepolicy >= CPOLICY_WRITEALLOC)
			cachepolicy = CPOLICY_WRITEBACK;
		ecc_mask = 0;
	}
450

451 452 453 454 455 456 457 458 459
	if (is_smp()) {
		if (cachepolicy != CPOLICY_WRITEALLOC) {
			pr_warn("Forcing write-allocate cache policy for SMP\n");
			cachepolicy = CPOLICY_WRITEALLOC;
		}
		if (!(initial_pmd_value & PMD_SECT_S)) {
			pr_warn("Forcing shared mappings for SMP\n");
			initial_pmd_value |= PMD_SECT_S;
		}
460
	}
461

462
	/*
463 464 465
	 * Strip out features not present on earlier architectures.
	 * Pre-ARMv5 CPUs don't have TEX bits.  Pre-ARMv6 CPUs or those
	 * without extended page tables don't have the 'Shared' bit.
466
	 */
467 468 469 470 471 472
	if (cpu_arch < CPU_ARCH_ARMv5)
		for (i = 0; i < ARRAY_SIZE(mem_types); i++)
			mem_types[i].prot_sect &= ~PMD_SECT_TEX(7);
	if ((cpu_arch < CPU_ARCH_ARMv6 || !(cr & CR_XP)) && !cpu_is_xsc3())
		for (i = 0; i < ARRAY_SIZE(mem_types); i++)
			mem_types[i].prot_sect &= ~PMD_SECT_S;
473 474

	/*
475 476 477
	 * ARMv5 and lower, bit 4 must be set for page tables (was: cache
	 * "update-able on write" bit on ARM610).  However, Xscale and
	 * Xscale3 require this bit to be cleared.
478
	 */
479
	if (cpu_is_xscale() || cpu_is_xsc3()) {
480
		for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
481
			mem_types[i].prot_sect &= ~PMD_BIT4;
482 483 484 485
			mem_types[i].prot_l1 &= ~PMD_BIT4;
		}
	} else if (cpu_arch < CPU_ARCH_ARMv6) {
		for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
486 487
			if (mem_types[i].prot_l1)
				mem_types[i].prot_l1 |= PMD_BIT4;
488 489 490 491
			if (mem_types[i].prot_sect)
				mem_types[i].prot_sect |= PMD_BIT4;
		}
	}
492

493 494 495 496 497 498 499 500 501 502 503 504 505
	/*
	 * Mark the device areas according to the CPU/architecture.
	 */
	if (cpu_is_xsc3() || (cpu_arch >= CPU_ARCH_ARMv6 && (cr & CR_XP))) {
		if (!cpu_is_xsc3()) {
			/*
			 * Mark device regions on ARMv6+ as execute-never
			 * to prevent speculative instruction fetches.
			 */
			mem_types[MT_DEVICE].prot_sect |= PMD_SECT_XN;
			mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_XN;
			mem_types[MT_DEVICE_CACHED].prot_sect |= PMD_SECT_XN;
			mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_XN;
506 507 508

			/* Also setup NX memory mapping */
			mem_types[MT_MEMORY_RW].prot_sect |= PMD_SECT_XN;
509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553
		}
		if (cpu_arch >= CPU_ARCH_ARMv7 && (cr & CR_TRE)) {
			/*
			 * For ARMv7 with TEX remapping,
			 * - shared device is SXCB=1100
			 * - nonshared device is SXCB=0100
			 * - write combine device mem is SXCB=0001
			 * (Uncached Normal memory)
			 */
			mem_types[MT_DEVICE].prot_sect |= PMD_SECT_TEX(1);
			mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(1);
			mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_BUFFERABLE;
		} else if (cpu_is_xsc3()) {
			/*
			 * For Xscale3,
			 * - shared device is TEXCB=00101
			 * - nonshared device is TEXCB=01000
			 * - write combine device mem is TEXCB=00100
			 * (Inner/Outer Uncacheable in xsc3 parlance)
			 */
			mem_types[MT_DEVICE].prot_sect |= PMD_SECT_TEX(1) | PMD_SECT_BUFFERED;
			mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(2);
			mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_TEX(1);
		} else {
			/*
			 * For ARMv6 and ARMv7 without TEX remapping,
			 * - shared device is TEXCB=00001
			 * - nonshared device is TEXCB=01000
			 * - write combine device mem is TEXCB=00100
			 * (Uncached Normal in ARMv6 parlance).
			 */
			mem_types[MT_DEVICE].prot_sect |= PMD_SECT_BUFFERED;
			mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(2);
			mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_TEX(1);
		}
	} else {
		/*
		 * On others, write combining is "Uncached/Buffered"
		 */
		mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_BUFFERABLE;
	}

	/*
	 * Now deal with the memory-type mappings
	 */
554
	cp = &cache_policies[cachepolicy];
555
	vecs_pgprot = kern_pgprot = user_pgprot = cp->pte;
556
	s2_pgprot = cp->pte_s2;
557 558
	hyp_device_pgprot = mem_types[MT_DEVICE].prot_pte;
	s2_device_pgprot = mem_types[MT_DEVICE].prot_pte_s2;
559

560
#ifndef CONFIG_ARM_LPAE
561 562 563 564 565 566 567
	/*
	 * We don't use domains on ARMv6 (since this causes problems with
	 * v6/v7 kernels), so we must use a separate memory type for user
	 * r/o, kernel r/w to map the vectors page.
	 */
	if (cpu_arch == CPU_ARCH_ARMv6)
		vecs_pgprot |= L_PTE_MT_VECTORS;
568 569 570 571 572 573 574 575 576

	/*
	 * Check is it with support for the PXN bit
	 * in the Short-descriptor translation table format descriptors.
	 */
	if (cpu_arch == CPU_ARCH_ARMv7 &&
		(read_cpuid_ext(CPUID_EXT_MMFR0) & 0xF) == 4) {
		user_pmd_table |= PMD_PXNTABLE;
	}
577
#endif
578

579 580 581 582
	/*
	 * ARMv6 and above have extended page tables.
	 */
	if (cpu_arch >= CPU_ARCH_ARMv6 && (cr & CR_XP)) {
583
#ifndef CONFIG_ARM_LPAE
584 585 586 587 588 589 590
		/*
		 * Mark cache clean areas and XIP ROM read only
		 * from SVC mode and no access from userspace.
		 */
		mem_types[MT_ROM].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
		mem_types[MT_MINICLEAN].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
		mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
591
#endif
592

593 594 595 596 597 598
		/*
		 * If the initial page tables were created with the S bit
		 * set, then we need to do the same here for the same
		 * reasons given in early_cachepolicy().
		 */
		if (initial_pmd_value & PMD_SECT_S) {
599 600 601
			user_pgprot |= L_PTE_SHARED;
			kern_pgprot |= L_PTE_SHARED;
			vecs_pgprot |= L_PTE_SHARED;
602
			s2_pgprot |= L_PTE_SHARED;
603 604 605 606
			mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_S;
			mem_types[MT_DEVICE_WC].prot_pte |= L_PTE_SHARED;
			mem_types[MT_DEVICE_CACHED].prot_sect |= PMD_SECT_S;
			mem_types[MT_DEVICE_CACHED].prot_pte |= L_PTE_SHARED;
607 608
			mem_types[MT_MEMORY_RWX].prot_sect |= PMD_SECT_S;
			mem_types[MT_MEMORY_RWX].prot_pte |= L_PTE_SHARED;
609 610
			mem_types[MT_MEMORY_RW].prot_sect |= PMD_SECT_S;
			mem_types[MT_MEMORY_RW].prot_pte |= L_PTE_SHARED;
611
			mem_types[MT_MEMORY_DMA_READY].prot_pte |= L_PTE_SHARED;
612 613
			mem_types[MT_MEMORY_RWX_NONCACHED].prot_sect |= PMD_SECT_S;
			mem_types[MT_MEMORY_RWX_NONCACHED].prot_pte |= L_PTE_SHARED;
614
		}
615 616
	}

617 618 619 620 621 622 623
	/*
	 * Non-cacheable Normal - intended for memory areas that must
	 * not cause dirty cache line writebacks when used
	 */
	if (cpu_arch >= CPU_ARCH_ARMv6) {
		if (cpu_arch >= CPU_ARCH_ARMv7 && (cr & CR_TRE)) {
			/* Non-cacheable Normal is XCB = 001 */
624
			mem_types[MT_MEMORY_RWX_NONCACHED].prot_sect |=
625 626 627
				PMD_SECT_BUFFERED;
		} else {
			/* For both ARMv6 and non-TEX-remapping ARMv7 */
628
			mem_types[MT_MEMORY_RWX_NONCACHED].prot_sect |=
629 630 631
				PMD_SECT_TEX(1);
		}
	} else {
632
		mem_types[MT_MEMORY_RWX_NONCACHED].prot_sect |= PMD_SECT_BUFFERABLE;
633 634
	}

635 636 637 638 639 640
#ifdef CONFIG_ARM_LPAE
	/*
	 * Do not generate access flag faults for the kernel mappings.
	 */
	for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
		mem_types[i].prot_pte |= PTE_EXT_AF;
641 642
		if (mem_types[i].prot_sect)
			mem_types[i].prot_sect |= PMD_SECT_AF;
643 644 645
	}
	kern_pgprot |= PTE_EXT_AF;
	vecs_pgprot |= PTE_EXT_AF;
646 647 648 649 650

	/*
	 * Set PXN for user mappings
	 */
	user_pgprot |= PTE_EXT_PXN;
651 652
#endif

653
	for (i = 0; i < 16; i++) {
654
		pteval_t v = pgprot_val(protection_map[i]);
655
		protection_map[i] = __pgprot(v | user_pgprot);
656 657
	}

658 659
	mem_types[MT_LOW_VECTORS].prot_pte |= vecs_pgprot;
	mem_types[MT_HIGH_VECTORS].prot_pte |= vecs_pgprot;
660

661
	pgprot_user   = __pgprot(L_PTE_PRESENT | L_PTE_YOUNG | user_pgprot);
662
	pgprot_kernel = __pgprot(L_PTE_PRESENT | L_PTE_YOUNG |
663
				 L_PTE_DIRTY | kern_pgprot);
664 665 666
	pgprot_s2  = __pgprot(L_PTE_PRESENT | L_PTE_YOUNG | s2_pgprot);
	pgprot_s2_device  = __pgprot(s2_device_pgprot);
	pgprot_hyp_device  = __pgprot(hyp_device_pgprot);
667 668 669

	mem_types[MT_LOW_VECTORS].prot_l1 |= ecc_mask;
	mem_types[MT_HIGH_VECTORS].prot_l1 |= ecc_mask;
670 671
	mem_types[MT_MEMORY_RWX].prot_sect |= ecc_mask | cp->pmd;
	mem_types[MT_MEMORY_RWX].prot_pte |= kern_pgprot;
672 673
	mem_types[MT_MEMORY_RW].prot_sect |= ecc_mask | cp->pmd;
	mem_types[MT_MEMORY_RW].prot_pte |= kern_pgprot;
674
	mem_types[MT_MEMORY_DMA_READY].prot_pte |= kern_pgprot;
675
	mem_types[MT_MEMORY_RWX_NONCACHED].prot_sect |= ecc_mask;
676 677 678 679 680 681 682 683 684 685 686
	mem_types[MT_ROM].prot_sect |= cp->pmd;

	switch (cp->pmd) {
	case PMD_SECT_WT:
		mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_WT;
		break;
	case PMD_SECT_WB:
	case PMD_SECT_WBWA:
		mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_WB;
		break;
	}
687 688
	pr_info("Memory policy: %sData cache %s\n",
		ecc_mask ? "ECC enabled, " : "", cp->policy);
689 690 691 692 693 694 695 696

	for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
		struct mem_type *t = &mem_types[i];
		if (t->prot_l1)
			t->prot_l1 |= PMD_DOMAIN(t->domain);
		if (t->prot_sect)
			t->prot_sect |= PMD_DOMAIN(t->domain);
	}
697 698
}

699 700 701 702 703 704 705 706 707 708 709 710 711
#ifdef CONFIG_ARM_DMA_MEM_BUFFERABLE
pgprot_t phys_mem_access_prot(struct file *file, unsigned long pfn,
			      unsigned long size, pgprot_t vma_prot)
{
	if (!pfn_valid(pfn))
		return pgprot_noncached(vma_prot);
	else if (file->f_flags & O_SYNC)
		return pgprot_writecombine(vma_prot);
	return vma_prot;
}
EXPORT_SYMBOL(phys_mem_access_prot);
#endif

712 713
#define vectors_base()	(vectors_high() ? 0xffff0000 : 0)

714
static void __init *early_alloc_aligned(unsigned long sz, unsigned long align)
R
Russell King 已提交
715
{
716
	void *ptr = __va(memblock_alloc(sz, align));
R
Russell King 已提交
717 718
	memset(ptr, 0, sz);
	return ptr;
R
Russell King 已提交
719 720
}

721 722 723 724 725
static void __init *early_alloc(unsigned long sz)
{
	return early_alloc_aligned(sz, sz);
}

R
Russell King 已提交
726
static pte_t * __init early_pte_alloc(pmd_t *pmd, unsigned long addr, unsigned long prot)
727
{
728
	if (pmd_none(*pmd)) {
729
		pte_t *pte = early_alloc(PTE_HWTABLE_OFF + PTE_HWTABLE_SIZE);
730
		__pmd_populate(pmd, __pa(pte), prot);
731
	}
R
Russell King 已提交
732 733 734
	BUG_ON(pmd_bad(*pmd));
	return pte_offset_kernel(pmd, addr);
}
735

R
Russell King 已提交
736 737 738 739 740
static void __init alloc_init_pte(pmd_t *pmd, unsigned long addr,
				  unsigned long end, unsigned long pfn,
				  const struct mem_type *type)
{
	pte_t *pte = early_pte_alloc(pmd, addr, type->prot_l1);
741
	do {
742
		set_pte_ext(pte, pfn_pte(pfn, __pgprot(type->prot_pte)), 0);
743 744
		pfn++;
	} while (pte++, addr += PAGE_SIZE, addr != end);
745 746
}

747
static void __init __map_init_section(pmd_t *pmd, unsigned long addr,
748 749
			unsigned long end, phys_addr_t phys,
			const struct mem_type *type)
750
{
751 752
	pmd_t *p = pmd;

753
#ifndef CONFIG_ARM_LPAE
754
	/*
755 756 757 758 759 760 761
	 * In classic MMU format, puds and pmds are folded in to
	 * the pgds. pmd_offset gives the PGD entry. PGDs refer to a
	 * group of L1 entries making up one logical pointer to
	 * an L2 table (2MB), where as PMDs refer to the individual
	 * L1 entries (1MB). Hence increment to get the correct
	 * offset for odd 1MB sections.
	 * (See arch/arm/include/asm/pgtable-2level.h)
762
	 */
763 764
	if (addr & SECTION_SIZE)
		pmd++;
765
#endif
766 767 768 769
	do {
		*pmd = __pmd(phys | type->prot_sect);
		phys += SECTION_SIZE;
	} while (pmd++, addr += SECTION_SIZE, addr != end);
770

771
	flush_pmd_entry(p);
772
}
773

774 775 776 777 778 779 780 781
static void __init alloc_init_pmd(pud_t *pud, unsigned long addr,
				      unsigned long end, phys_addr_t phys,
				      const struct mem_type *type)
{
	pmd_t *pmd = pmd_offset(pud, addr);
	unsigned long next;

	do {
782
		/*
783 784
		 * With LPAE, we must loop over to map
		 * all the pmds for the given range.
785
		 */
786 787 788 789 790 791 792 793
		next = pmd_addr_end(addr, end);

		/*
		 * Try a section mapping - addr, next and phys must all be
		 * aligned to a section boundary.
		 */
		if (type->prot_sect &&
				((addr | next | phys) & ~SECTION_MASK) == 0) {
794
			__map_init_section(pmd, addr, next, phys, type);
795 796 797 798 799 800 801 802
		} else {
			alloc_init_pte(pmd, addr, next,
						__phys_to_pfn(phys), type);
		}

		phys += next - addr;

	} while (pmd++, addr = next, addr != end);
803 804
}

805
static void __init alloc_init_pud(pgd_t *pgd, unsigned long addr,
806 807
				  unsigned long end, phys_addr_t phys,
				  const struct mem_type *type)
R
Russell King 已提交
808 809 810 811 812 813
{
	pud_t *pud = pud_offset(pgd, addr);
	unsigned long next;

	do {
		next = pud_addr_end(addr, end);
814
		alloc_init_pmd(pud, addr, next, phys, type);
R
Russell King 已提交
815 816 817 818
		phys += next - addr;
	} while (pud++, addr = next, addr != end);
}

819
#ifndef CONFIG_ARM_LPAE
820 821 822
static void __init create_36bit_mapping(struct map_desc *md,
					const struct mem_type *type)
{
823 824
	unsigned long addr, length, end;
	phys_addr_t phys;
825 826 827
	pgd_t *pgd;

	addr = md->virtual;
828
	phys = __pfn_to_phys(md->pfn);
829 830 831
	length = PAGE_ALIGN(md->length);

	if (!(cpu_architecture() >= CPU_ARCH_ARMv6 || cpu_is_xsc3())) {
R
Russell King 已提交
832
		pr_err("MM: CPU does not support supersection mapping for 0x%08llx at 0x%08lx\n",
833
		       (long long)__pfn_to_phys((u64)md->pfn), addr);
834 835 836 837 838 839 840 841 842 843
		return;
	}

	/* N.B.	ARMv6 supersections are only defined to work with domain 0.
	 *	Since domain assignments can in fact be arbitrary, the
	 *	'domain == 0' check below is required to insure that ARMv6
	 *	supersections are only allocated for domain 0 regardless
	 *	of the actual domain assignments in use.
	 */
	if (type->domain) {
R
Russell King 已提交
844
		pr_err("MM: invalid domain in supersection mapping for 0x%08llx at 0x%08lx\n",
845
		       (long long)__pfn_to_phys((u64)md->pfn), addr);
846 847 848 849
		return;
	}

	if ((addr | length | __pfn_to_phys(md->pfn)) & ~SUPERSECTION_MASK) {
R
Russell King 已提交
850
		pr_err("MM: cannot create mapping for 0x%08llx at 0x%08lx invalid alignment\n",
851
		       (long long)__pfn_to_phys((u64)md->pfn), addr);
852 853 854 855 856 857 858 859 860 861 862 863
		return;
	}

	/*
	 * Shift bits [35:32] of address into bits [23:20] of PMD
	 * (See ARMv6 spec).
	 */
	phys |= (((md->pfn >> (32 - PAGE_SHIFT)) & 0xF) << 20);

	pgd = pgd_offset_k(addr);
	end = addr + length;
	do {
R
Russell King 已提交
864 865
		pud_t *pud = pud_offset(pgd, addr);
		pmd_t *pmd = pmd_offset(pud, addr);
866 867 868 869 870 871 872 873 874 875
		int i;

		for (i = 0; i < 16; i++)
			*pmd++ = __pmd(phys | type->prot_sect | PMD_SECT_SUPER);

		addr += SUPERSECTION_SIZE;
		phys += SUPERSECTION_SIZE;
		pgd += SUPERSECTION_SIZE >> PGDIR_SHIFT;
	} while (addr != end);
}
876
#endif	/* !CONFIG_ARM_LPAE */
877

878 879 880 881 882 883 884
/*
 * Create the page directory entries and any necessary
 * page tables for the mapping specified by `md'.  We
 * are able to cope here with varying sizes and address
 * offsets, and we take full advantage of sections and
 * supersections.
 */
885
static void __init create_mapping(struct map_desc *md)
886
{
887 888
	unsigned long addr, length, end;
	phys_addr_t phys;
889
	const struct mem_type *type;
890
	pgd_t *pgd;
891 892

	if (md->virtual != vectors_base() && md->virtual < TASK_SIZE) {
R
Russell King 已提交
893 894
		pr_warn("BUG: not creating mapping for 0x%08llx at 0x%08lx in user region\n",
			(long long)__pfn_to_phys((u64)md->pfn), md->virtual);
895 896 897 898
		return;
	}

	if ((md->type == MT_DEVICE || md->type == MT_ROM) &&
899
	    md->virtual >= PAGE_OFFSET && md->virtual < FIXADDR_START &&
900
	    (md->virtual < VMALLOC_START || md->virtual >= VMALLOC_END)) {
R
Russell King 已提交
901 902
		pr_warn("BUG: mapping for 0x%08llx at 0x%08lx out of vmalloc space\n",
			(long long)__pfn_to_phys((u64)md->pfn), md->virtual);
903 904
	}

905
	type = &mem_types[md->type];
906

907
#ifndef CONFIG_ARM_LPAE
908 909 910
	/*
	 * Catch 36-bit addresses
	 */
911 912 913
	if (md->pfn >= 0x100000) {
		create_36bit_mapping(md, type);
		return;
914
	}
915
#endif
916

917
	addr = md->virtual & PAGE_MASK;
918
	phys = __pfn_to_phys(md->pfn);
919
	length = PAGE_ALIGN(md->length + (md->virtual & ~PAGE_MASK));
920

921
	if (type->prot_l1 == 0 && ((addr | phys | length) & ~SECTION_MASK)) {
R
Russell King 已提交
922 923
		pr_warn("BUG: map for 0x%08llx at 0x%08lx can not be mapped using pages, ignoring.\n",
			(long long)__pfn_to_phys(md->pfn), addr);
924 925 926
		return;
	}

927 928 929 930
	pgd = pgd_offset_k(addr);
	end = addr + length;
	do {
		unsigned long next = pgd_addr_end(addr, end);
931

R
Russell King 已提交
932
		alloc_init_pud(pgd, addr, next, phys, type);
933

934 935 936
		phys += next - addr;
		addr = next;
	} while (pgd++, addr != end);
937 938 939 940 941 942 943
}

/*
 * Create the architecture specific mappings
 */
void __init iotable_init(struct map_desc *io_desc, int nr)
{
944 945
	struct map_desc *md;
	struct vm_struct *vm;
946
	struct static_vm *svm;
947 948 949

	if (!nr)
		return;
950

951
	svm = early_alloc_aligned(sizeof(*svm) * nr, __alignof__(*svm));
952 953 954

	for (md = io_desc; nr; md++, nr--) {
		create_mapping(md);
955 956

		vm = &svm->vm;
957 958
		vm->addr = (void *)(md->virtual & PAGE_MASK);
		vm->size = PAGE_ALIGN(md->length + (md->virtual & ~PAGE_MASK));
R
Rob Herring 已提交
959 960
		vm->phys_addr = __pfn_to_phys(md->pfn);
		vm->flags = VM_IOREMAP | VM_ARM_STATIC_MAPPING;
961
		vm->flags |= VM_ARM_MTYPE(md->type);
962
		vm->caller = iotable_init;
963
		add_static_vm_early(svm++);
964
	}
965 966
}

R
Rob Herring 已提交
967 968 969 970
void __init vm_reserve_area_early(unsigned long addr, unsigned long size,
				  void *caller)
{
	struct vm_struct *vm;
971 972 973
	struct static_vm *svm;

	svm = early_alloc_aligned(sizeof(*svm), __alignof__(*svm));
R
Rob Herring 已提交
974

975
	vm = &svm->vm;
R
Rob Herring 已提交
976 977
	vm->addr = (void *)addr;
	vm->size = size;
978
	vm->flags = VM_IOREMAP | VM_ARM_EMPTY_MAPPING;
R
Rob Herring 已提交
979
	vm->caller = caller;
980
	add_static_vm_early(svm);
R
Rob Herring 已提交
981 982
}

983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999
#ifndef CONFIG_ARM_LPAE

/*
 * The Linux PMD is made of two consecutive section entries covering 2MB
 * (see definition in include/asm/pgtable-2level.h).  However a call to
 * create_mapping() may optimize static mappings by using individual
 * 1MB section mappings.  This leaves the actual PMD potentially half
 * initialized if the top or bottom section entry isn't used, leaving it
 * open to problems if a subsequent ioremap() or vmalloc() tries to use
 * the virtual space left free by that unused section entry.
 *
 * Let's avoid the issue by inserting dummy vm entries covering the unused
 * PMD halves once the static mappings are in place.
 */

static void __init pmd_empty_section_gap(unsigned long addr)
{
R
Rob Herring 已提交
1000
	vm_reserve_area_early(addr, SECTION_SIZE, pmd_empty_section_gap);
1001 1002 1003 1004
}

static void __init fill_pmd_gaps(void)
{
1005
	struct static_vm *svm;
1006 1007 1008 1009
	struct vm_struct *vm;
	unsigned long addr, next = 0;
	pmd_t *pmd;

1010 1011
	list_for_each_entry(svm, &static_vmlist, list) {
		vm = &svm->vm;
1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047
		addr = (unsigned long)vm->addr;
		if (addr < next)
			continue;

		/*
		 * Check if this vm starts on an odd section boundary.
		 * If so and the first section entry for this PMD is free
		 * then we block the corresponding virtual address.
		 */
		if ((addr & ~PMD_MASK) == SECTION_SIZE) {
			pmd = pmd_off_k(addr);
			if (pmd_none(*pmd))
				pmd_empty_section_gap(addr & PMD_MASK);
		}

		/*
		 * Then check if this vm ends on an odd section boundary.
		 * If so and the second section entry for this PMD is empty
		 * then we block the corresponding virtual address.
		 */
		addr += vm->size;
		if ((addr & ~PMD_MASK) == SECTION_SIZE) {
			pmd = pmd_off_k(addr) + 1;
			if (pmd_none(*pmd))
				pmd_empty_section_gap(addr);
		}

		/* no need to look at any vm entry until we hit the next PMD */
		next = (addr + PMD_SIZE - 1) & PMD_MASK;
	}
}

#else
#define fill_pmd_gaps() do { } while (0)
#endif

R
Rob Herring 已提交
1048 1049 1050
#if defined(CONFIG_PCI) && !defined(CONFIG_NEED_MACH_IO_H)
static void __init pci_reserve_io(void)
{
1051
	struct static_vm *svm;
R
Rob Herring 已提交
1052

1053 1054 1055
	svm = find_static_vm_vaddr((void *)PCI_IO_VIRT_BASE);
	if (svm)
		return;
R
Rob Herring 已提交
1056 1057 1058 1059 1060 1061 1062

	vm_reserve_area_early(PCI_IO_VIRT_BASE, SZ_2M, pci_reserve_io);
}
#else
#define pci_reserve_io() do { } while (0)
#endif

R
Rob Herring 已提交
1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074
#ifdef CONFIG_DEBUG_LL
void __init debug_ll_io_init(void)
{
	struct map_desc map;

	debug_ll_addr(&map.pfn, &map.virtual);
	if (!map.pfn || !map.virtual)
		return;
	map.pfn = __phys_to_pfn(map.pfn);
	map.virtual &= PAGE_MASK;
	map.length = PAGE_SIZE;
	map.type = MT_DEVICE;
1075
	iotable_init(&map, 1);
R
Rob Herring 已提交
1076 1077 1078
}
#endif

1079 1080
static void * __initdata vmalloc_min =
	(void *)(VMALLOC_END - (240 << 20) - VMALLOC_OFFSET);
1081 1082 1083 1084

/*
 * vmalloc=size forces the vmalloc area to be exactly 'size'
 * bytes. This can be used to increase (or decrease) the vmalloc
1085
 * area - the default is 240m.
1086
 */
1087
static int __init early_vmalloc(char *arg)
1088
{
R
Russell King 已提交
1089
	unsigned long vmalloc_reserve = memparse(arg, NULL);
1090 1091 1092

	if (vmalloc_reserve < SZ_16M) {
		vmalloc_reserve = SZ_16M;
R
Russell King 已提交
1093
		pr_warn("vmalloc area too small, limiting to %luMB\n",
1094 1095
			vmalloc_reserve >> 20);
	}
1096 1097 1098

	if (vmalloc_reserve > VMALLOC_END - (PAGE_OFFSET + SZ_32M)) {
		vmalloc_reserve = VMALLOC_END - (PAGE_OFFSET + SZ_32M);
R
Russell King 已提交
1099
		pr_warn("vmalloc area is too big, limiting to %luMB\n",
1100 1101
			vmalloc_reserve >> 20);
	}
R
Russell King 已提交
1102 1103

	vmalloc_min = (void *)(VMALLOC_END - vmalloc_reserve);
1104
	return 0;
1105
}
1106
early_param("vmalloc", early_vmalloc);
1107

1108
phys_addr_t arm_lowmem_limit __initdata = 0;
1109

1110
void __init sanity_check_meminfo(void)
1111
{
1112
	phys_addr_t memblock_limit = 0;
L
Laura Abbott 已提交
1113
	int highmem = 0;
1114
	phys_addr_t vmalloc_limit = __pa(vmalloc_min - 1) + 1;
L
Laura Abbott 已提交
1115
	struct memblock_region *reg;
1116
	bool should_use_highmem = false;
1117

L
Laura Abbott 已提交
1118 1119 1120 1121
	for_each_memblock(memory, reg) {
		phys_addr_t block_start = reg->base;
		phys_addr_t block_end = reg->base + reg->size;
		phys_addr_t size_limit = reg->size;
1122

L
Laura Abbott 已提交
1123
		if (reg->base >= vmalloc_limit)
R
Russell King 已提交
1124
			highmem = 1;
1125
		else
L
Laura Abbott 已提交
1126
			size_limit = vmalloc_limit - reg->base;
R
Russell King 已提交
1127 1128


L
Laura Abbott 已提交
1129 1130 1131 1132
		if (!IS_ENABLED(CONFIG_HIGHMEM) || cache_is_vipt_aliasing()) {

			if (highmem) {
				pr_notice("Ignoring RAM at %pa-%pa (!CONFIG_HIGHMEM)\n",
R
Russell King 已提交
1133
					  &block_start, &block_end);
L
Laura Abbott 已提交
1134
				memblock_remove(reg->base, reg->size);
1135
				should_use_highmem = true;
L
Laura Abbott 已提交
1136
				continue;
1137
			}
1138

L
Laura Abbott 已提交
1139 1140 1141 1142
			if (reg->size > size_limit) {
				phys_addr_t overlap_size = reg->size - size_limit;

				pr_notice("Truncating RAM at %pa-%pa to -%pa",
R
Russell King 已提交
1143
					  &block_start, &block_end, &vmalloc_limit);
L
Laura Abbott 已提交
1144 1145
				memblock_remove(vmalloc_limit, overlap_size);
				block_end = vmalloc_limit;
1146
				should_use_highmem = true;
L
Laura Abbott 已提交
1147
			}
1148
		}
1149

L
Laura Abbott 已提交
1150 1151 1152 1153 1154 1155 1156
		if (!highmem) {
			if (block_end > arm_lowmem_limit) {
				if (reg->size > size_limit)
					arm_lowmem_limit = vmalloc_limit;
				else
					arm_lowmem_limit = block_end;
			}
1157 1158

			/*
1159
			 * Find the first non-pmd-aligned page, and point
1160
			 * memblock_limit at it. This relies on rounding the
1161 1162
			 * limit down to be pmd-aligned, which happens at the
			 * end of this function.
1163 1164
			 *
			 * With this algorithm, the start or end of almost any
1165 1166
			 * bank can be non-pmd-aligned. The only exception is
			 * that the start of the bank 0 must be section-
1167 1168 1169 1170 1171
			 * aligned, since otherwise memory would need to be
			 * allocated when mapping the start of bank 0, which
			 * occurs before any free memory is mapped.
			 */
			if (!memblock_limit) {
1172
				if (!IS_ALIGNED(block_start, PMD_SIZE))
L
Laura Abbott 已提交
1173
					memblock_limit = block_start;
1174
				else if (!IS_ALIGNED(block_end, PMD_SIZE))
L
Laura Abbott 已提交
1175
					memblock_limit = arm_lowmem_limit;
1176
			}
1177 1178 1179

		}
	}
L
Laura Abbott 已提交
1180

1181 1182 1183
	if (should_use_highmem)
		pr_notice("Consider using a HIGHMEM enabled kernel.\n");

1184
	high_memory = __va(arm_lowmem_limit - 1) + 1;
1185 1186

	/*
1187
	 * Round the memblock limit down to a pmd size.  This
1188
	 * helps to ensure that we will allocate memory from the
1189
	 * last full pmd, which should be mapped.
1190 1191
	 */
	if (memblock_limit)
1192
		memblock_limit = round_down(memblock_limit, PMD_SIZE);
1193 1194 1195 1196
	if (!memblock_limit)
		memblock_limit = arm_lowmem_limit;

	memblock_set_current_limit(memblock_limit);
1197 1198
}

1199
static inline void prepare_page_table(void)
1200 1201
{
	unsigned long addr;
1202
	phys_addr_t end;
1203 1204 1205 1206

	/*
	 * Clear out all the mappings below the kernel image.
	 */
1207
	for (addr = 0; addr < MODULES_VADDR; addr += PMD_SIZE)
1208 1209 1210 1211
		pmd_clear(pmd_off_k(addr));

#ifdef CONFIG_XIP_KERNEL
	/* The XIP kernel is mapped in the module area -- skip over it */
1212
	addr = ((unsigned long)_etext + PMD_SIZE - 1) & PMD_MASK;
1213
#endif
1214
	for ( ; addr < PAGE_OFFSET; addr += PMD_SIZE)
1215 1216
		pmd_clear(pmd_off_k(addr));

1217 1218 1219 1220
	/*
	 * Find the end of the first block of lowmem.
	 */
	end = memblock.memory.regions[0].base + memblock.memory.regions[0].size;
1221 1222
	if (end >= arm_lowmem_limit)
		end = arm_lowmem_limit;
1223

1224 1225
	/*
	 * Clear out all the kernel space mappings, except for the first
1226
	 * memory bank, up to the vmalloc region.
1227
	 */
1228
	for (addr = __phys_to_virt(end);
1229
	     addr < VMALLOC_START; addr += PMD_SIZE)
1230 1231 1232
		pmd_clear(pmd_off_k(addr));
}

1233 1234 1235 1236 1237
#ifdef CONFIG_ARM_LPAE
/* the first page is reserved for pgd */
#define SWAPPER_PG_DIR_SIZE	(PAGE_SIZE + \
				 PTRS_PER_PGD * PTRS_PER_PMD * sizeof(pmd_t))
#else
1238
#define SWAPPER_PG_DIR_SIZE	(PTRS_PER_PGD * sizeof(pgd_t))
1239
#endif
1240

1241
/*
R
Russell King 已提交
1242
 * Reserve the special regions of memory
1243
 */
R
Russell King 已提交
1244
void __init arm_mm_memblock_reserve(void)
1245 1246 1247 1248 1249
{
	/*
	 * Reserve the page tables.  These are already in use,
	 * and can only be in node 0.
	 */
1250
	memblock_reserve(__pa(swapper_pg_dir), SWAPPER_PG_DIR_SIZE);
1251 1252 1253 1254 1255 1256

#ifdef CONFIG_SA1111
	/*
	 * Because of the SA1111 DMA bug, we want to preserve our
	 * precious DMA-able memory...
	 */
R
Russell King 已提交
1257
	memblock_reserve(PHYS_OFFSET, __pa(swapper_pg_dir) - PHYS_OFFSET);
1258 1259 1260 1261
#endif
}

/*
1262
 * Set up the device mappings.  Since we clear out the page tables for all
1263 1264 1265 1266
 * mappings above VMALLOC_START, except early fixmap, we might remove debug
 * device mappings.  This means earlycon can be used to debug this function
 * Any other function or debugging method which may touch any device _will_
 * crash the kernel.
1267
 */
1268
static void __init devicemaps_init(const struct machine_desc *mdesc)
1269 1270 1271
{
	struct map_desc map;
	unsigned long addr;
1272
	void *vectors;
1273 1274 1275 1276

	/*
	 * Allocate the vector page early.
	 */
R
Russell King 已提交
1277
	vectors = early_alloc(PAGE_SIZE * 2);
1278 1279

	early_trap_init(vectors);
1280

1281 1282 1283 1284
	/*
	 * Clear page table except top pmd used by early fixmaps
	 */
	for (addr = VMALLOC_START; addr < (FIXADDR_TOP & PMD_MASK); addr += PMD_SIZE)
1285 1286 1287 1288 1289 1290 1291 1292
		pmd_clear(pmd_off_k(addr));

	/*
	 * Map the kernel if it is XIP.
	 * It is always first in the modulearea.
	 */
#ifdef CONFIG_XIP_KERNEL
	map.pfn = __phys_to_pfn(CONFIG_XIP_PHYS_ADDR & SECTION_MASK);
1293
	map.virtual = MODULES_VADDR;
R
Russell King 已提交
1294
	map.length = ((unsigned long)_etext - map.virtual + ~SECTION_MASK) & SECTION_MASK;
1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321
	map.type = MT_ROM;
	create_mapping(&map);
#endif

	/*
	 * Map the cache flushing regions.
	 */
#ifdef FLUSH_BASE
	map.pfn = __phys_to_pfn(FLUSH_BASE_PHYS);
	map.virtual = FLUSH_BASE;
	map.length = SZ_1M;
	map.type = MT_CACHECLEAN;
	create_mapping(&map);
#endif
#ifdef FLUSH_BASE_MINICACHE
	map.pfn = __phys_to_pfn(FLUSH_BASE_PHYS + SZ_1M);
	map.virtual = FLUSH_BASE_MINICACHE;
	map.length = SZ_1M;
	map.type = MT_MINICLEAN;
	create_mapping(&map);
#endif

	/*
	 * Create a mapping for the machine vectors at the high-vectors
	 * location (0xffff0000).  If we aren't using high-vectors, also
	 * create a mapping at the low-vectors virtual address.
	 */
1322
	map.pfn = __phys_to_pfn(virt_to_phys(vectors));
1323 1324
	map.virtual = 0xffff0000;
	map.length = PAGE_SIZE;
1325
#ifdef CONFIG_KUSER_HELPERS
1326
	map.type = MT_HIGH_VECTORS;
1327 1328 1329
#else
	map.type = MT_LOW_VECTORS;
#endif
1330 1331 1332 1333
	create_mapping(&map);

	if (!vectors_high()) {
		map.virtual = 0;
R
Russell King 已提交
1334
		map.length = PAGE_SIZE * 2;
1335 1336 1337 1338
		map.type = MT_LOW_VECTORS;
		create_mapping(&map);
	}

R
Russell King 已提交
1339 1340 1341 1342 1343 1344 1345
	/* Now create a kernel read-only mapping */
	map.pfn += 1;
	map.virtual = 0xffff0000 + PAGE_SIZE;
	map.length = PAGE_SIZE;
	map.type = MT_LOW_VECTORS;
	create_mapping(&map);

1346 1347 1348 1349 1350
	/*
	 * Ask the machine support to map in the statically mapped devices.
	 */
	if (mdesc->map_io)
		mdesc->map_io();
1351 1352
	else
		debug_ll_io_init();
1353
	fill_pmd_gaps();
1354

R
Rob Herring 已提交
1355 1356 1357
	/* Reserve fixed i/o space in VMALLOC region */
	pci_reserve_io();

1358 1359 1360 1361 1362 1363 1364 1365
	/*
	 * Finally flush the caches and tlb to ensure that we're in a
	 * consistent state wrt the writebuffer.  This also ensures that
	 * any write-allocated cache lines in the vector page are written
	 * back.  After this point, we can start to touch devices again.
	 */
	local_flush_tlb_all();
	flush_cache_all();
1366 1367 1368

	/* Enable asynchronous aborts */
	local_abt_enable();
1369 1370
}

N
Nicolas Pitre 已提交
1371 1372 1373
static void __init kmap_init(void)
{
#ifdef CONFIG_HIGHMEM
R
Russell King 已提交
1374 1375
	pkmap_page_table = early_pte_alloc(pmd_off_k(PKMAP_BASE),
		PKMAP_BASE, _PAGE_KERNEL_TABLE);
N
Nicolas Pitre 已提交
1376
#endif
R
Rob Herring 已提交
1377 1378 1379

	early_pte_alloc(pmd_off_k(FIXADDR_START), FIXADDR_START,
			_PAGE_KERNEL_TABLE);
N
Nicolas Pitre 已提交
1380 1381
}

1382 1383
static void __init map_lowmem(void)
{
1384
	struct memblock_region *reg;
1385 1386
	phys_addr_t kernel_x_start = round_down(__pa(_stext), SECTION_SIZE);
	phys_addr_t kernel_x_end = round_up(__pa(__init_end), SECTION_SIZE);
1387 1388

	/* Map all the lowmem memory banks. */
1389 1390 1391 1392 1393
	for_each_memblock(memory, reg) {
		phys_addr_t start = reg->base;
		phys_addr_t end = start + reg->size;
		struct map_desc map;

1394 1395
		if (end > arm_lowmem_limit)
			end = arm_lowmem_limit;
1396 1397 1398
		if (start >= end)
			break;

1399
		if (end < kernel_x_start) {
1400 1401 1402 1403
			map.pfn = __phys_to_pfn(start);
			map.virtual = __phys_to_virt(start);
			map.length = end - start;
			map.type = MT_MEMORY_RWX;
1404

1405 1406 1407 1408 1409 1410 1411
			create_mapping(&map);
		} else if (start >= kernel_x_end) {
			map.pfn = __phys_to_pfn(start);
			map.virtual = __phys_to_virt(start);
			map.length = end - start;
			map.type = MT_MEMORY_RW;

1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439
			create_mapping(&map);
		} else {
			/* This better cover the entire kernel */
			if (start < kernel_x_start) {
				map.pfn = __phys_to_pfn(start);
				map.virtual = __phys_to_virt(start);
				map.length = kernel_x_start - start;
				map.type = MT_MEMORY_RW;

				create_mapping(&map);
			}

			map.pfn = __phys_to_pfn(kernel_x_start);
			map.virtual = __phys_to_virt(kernel_x_start);
			map.length = kernel_x_end - kernel_x_start;
			map.type = MT_MEMORY_RWX;

			create_mapping(&map);

			if (kernel_x_end < end) {
				map.pfn = __phys_to_pfn(kernel_x_end);
				map.virtual = __phys_to_virt(kernel_x_end);
				map.length = end - kernel_x_end;
				map.type = MT_MEMORY_RW;

				create_mapping(&map);
			}
		}
1440 1441 1442
	}
}

1443 1444 1445 1446 1447
#ifdef CONFIG_ARM_PV_FIXUP
extern unsigned long __atags_pointer;
typedef void pgtables_remap(long long offset, unsigned long pgd, void *bdata);
pgtables_remap lpae_pgtables_remap_asm;

1448 1449 1450 1451
/*
 * early_paging_init() recreates boot time page table setup, allowing machines
 * to switch over to a high (>4G) address space on LPAE systems
 */
1452
void __init early_paging_init(const struct machine_desc *mdesc)
1453
{
1454 1455 1456
	pgtables_remap *lpae_pgtables_remap;
	unsigned long pa_pgd;
	unsigned int cr, ttbcr;
1457
	long long offset;
1458
	void *boot_data;
1459

1460
	if (!mdesc->pv_fixup)
1461 1462
		return;

1463
	offset = mdesc->pv_fixup();
1464 1465
	if (offset == 0)
		return;
1466

1467 1468 1469 1470 1471 1472 1473 1474 1475 1476
	/*
	 * Get the address of the remap function in the 1:1 identity
	 * mapping setup by the early page table assembly code.  We
	 * must get this prior to the pv update.  The following barrier
	 * ensures that this is complete before we fixup any P:V offsets.
	 */
	lpae_pgtables_remap = (pgtables_remap *)(unsigned long)__pa(lpae_pgtables_remap_asm);
	pa_pgd = __pa(swapper_pg_dir);
	boot_data = __va(__atags_pointer);
	barrier();
1477

1478 1479
	pr_info("Switching physical address space to 0x%08llx\n",
		(u64)PHYS_OFFSET + offset);
1480

1481 1482 1483
	/* Re-set the phys pfn offset, and the pv offset */
	__pv_offset += offset;
	__pv_phys_pfn_offset += PFN_DOWN(offset);
1484 1485 1486 1487 1488 1489

	/* Run the patch stub to update the constants */
	fixup_pv_table(&__pv_table_begin,
		(&__pv_table_end - &__pv_table_begin) << 2);

	/*
1490 1491 1492 1493 1494 1495 1496
	 * We changing not only the virtual to physical mapping, but also
	 * the physical addresses used to access memory.  We need to flush
	 * all levels of cache in the system with caching disabled to
	 * ensure that all data is written back, and nothing is prefetched
	 * into the caches.  We also need to prevent the TLB walkers
	 * allocating into the caches too.  Note that this is ARMv7 LPAE
	 * specific.
1497
	 */
1498 1499 1500 1501 1502
	cr = get_cr();
	set_cr(cr & ~(CR_I | CR_C));
	asm("mrc p15, 0, %0, c2, c0, 2" : "=r" (ttbcr));
	asm volatile("mcr p15, 0, %0, c2, c0, 2"
		: : "r" (ttbcr & ~(3 << 8 | 3 << 10)));
1503
	flush_cache_all();
1504 1505

	/*
1506 1507 1508 1509
	 * Fixup the page tables - this must be in the idmap region as
	 * we need to disable the MMU to do this safely, and hence it
	 * needs to be assembly.  It's fairly simple, as we're using the
	 * temporary tables setup by the initial assembly code.
1510
	 */
1511
	lpae_pgtables_remap(offset, pa_pgd, boot_data);
1512

1513 1514 1515
	/* Re-enable the caches and cacheable TLB walks */
	asm volatile("mcr p15, 0, %0, c2, c0, 2" : : "r" (ttbcr));
	set_cr(cr);
1516 1517 1518 1519
}

#else

1520
void __init early_paging_init(const struct machine_desc *mdesc)
1521
{
1522 1523
	long long offset;

1524
	if (!mdesc->pv_fixup)
1525 1526
		return;

1527
	offset = mdesc->pv_fixup();
1528 1529 1530 1531 1532 1533 1534
	if (offset == 0)
		return;

	pr_crit("Physical address space modification is only to support Keystone2.\n");
	pr_crit("Please enable ARM_LPAE and ARM_PATCH_PHYS_VIRT support to use this\n");
	pr_crit("feature. Your kernel may crash now, have a good day.\n");
	add_taint(TAINT_CPU_OUT_OF_SPEC, LOCKDEP_STILL_OK);
1535 1536 1537 1538
}

#endif

1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567
static void __init early_fixmap_shutdown(void)
{
	int i;
	unsigned long va = fix_to_virt(__end_of_permanent_fixed_addresses - 1);

	pte_offset_fixmap = pte_offset_late_fixmap;
	pmd_clear(fixmap_pmd(va));
	local_flush_tlb_kernel_page(va);

	for (i = 0; i < __end_of_permanent_fixed_addresses; i++) {
		pte_t *pte;
		struct map_desc map;

		map.virtual = fix_to_virt(i);
		pte = pte_offset_early_fixmap(pmd_off_k(map.virtual), map.virtual);

		/* Only i/o device mappings are supported ATM */
		if (pte_none(*pte) ||
		    (pte_val(*pte) & L_PTE_MT_MASK) != L_PTE_MT_DEV_SHARED)
			continue;

		map.pfn = pte_pfn(*pte);
		map.type = MT_DEVICE;
		map.length = PAGE_SIZE;

		create_mapping(&map);
	}
}

1568 1569 1570 1571
/*
 * paging_init() sets up the page tables, initialises the zone memory
 * maps, and sets up the zero page, bad page and bad page tables.
 */
1572
void __init paging_init(const struct machine_desc *mdesc)
1573 1574 1575 1576
{
	void *zero_page;

	build_mem_type_table();
1577
	prepare_page_table();
1578
	map_lowmem();
1579
	memblock_set_current_limit(arm_lowmem_limit);
1580
	dma_contiguous_remap();
1581
	early_fixmap_shutdown();
1582
	devicemaps_init(mdesc);
N
Nicolas Pitre 已提交
1583
	kmap_init();
1584
	tcm_init();
1585 1586 1587

	top_pmd = pmd_off_k(0xffff0000);

R
Russell King 已提交
1588 1589
	/* allocate the zero page. */
	zero_page = early_alloc(PAGE_SIZE);
R
Russell King 已提交
1590

1591
	bootmem_init();
R
Russell King 已提交
1592

1593
	empty_zero_page = virt_to_page(zero_page);
1594
	__flush_dcache_page(NULL, empty_zero_page);
1595
}