mmu.c 42.1 KB
Newer Older
1 2 3 4 5 6 7 8 9
/*
 *  linux/arch/arm/mm/mmu.c
 *
 *  Copyright (C) 1995-2005 Russell King
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
 */
10
#include <linux/module.h>
11 12 13 14 15
#include <linux/kernel.h>
#include <linux/errno.h>
#include <linux/init.h>
#include <linux/mman.h>
#include <linux/nodemask.h>
R
Russell King 已提交
16
#include <linux/memblock.h>
17
#include <linux/fs.h>
18
#include <linux/vmalloc.h>
19
#include <linux/sizes.h>
20

21
#include <asm/cp15.h>
22
#include <asm/cputype.h>
R
Russell King 已提交
23
#include <asm/sections.h>
24
#include <asm/cachetype.h>
K
Kees Cook 已提交
25
#include <asm/fixmap.h>
26
#include <asm/sections.h>
27
#include <asm/setup.h>
28
#include <asm/smp_plat.h>
29
#include <asm/tlb.h>
N
Nicolas Pitre 已提交
30
#include <asm/highmem.h>
31
#include <asm/system_info.h>
32
#include <asm/traps.h>
33 34
#include <asm/procinfo.h>
#include <asm/memory.h>
35 36 37

#include <asm/mach/arch.h>
#include <asm/mach/map.h>
R
Rob Herring 已提交
38
#include <asm/mach/pci.h>
39
#include <asm/fixmap.h>
40 41

#include "mm.h"
42
#include "tcm.h"
43 44 45 46 47 48

/*
 * empty_zero_page is a special page that is used for
 * zero-initialized data and COW.
 */
struct page *empty_zero_page;
49
EXPORT_SYMBOL(empty_zero_page);
50 51 52 53 54 55

/*
 * The pmd table for the upper-most set of pages.
 */
pmd_t *top_pmd;

56 57 58 59 60 61 62 63
#define CPOLICY_UNCACHED	0
#define CPOLICY_BUFFERED	1
#define CPOLICY_WRITETHROUGH	2
#define CPOLICY_WRITEBACK	3
#define CPOLICY_WRITEALLOC	4

static unsigned int cachepolicy __initdata = CPOLICY_WRITEBACK;
static unsigned int ecc_mask __initdata = 0;
64
pgprot_t pgprot_user;
65
pgprot_t pgprot_kernel;
66 67 68
pgprot_t pgprot_hyp_device;
pgprot_t pgprot_s2;
pgprot_t pgprot_s2_device;
69

70
EXPORT_SYMBOL(pgprot_user);
71 72 73 74 75
EXPORT_SYMBOL(pgprot_kernel);

struct cachepolicy {
	const char	policy[16];
	unsigned int	cr_mask;
76
	pmdval_t	pmd;
77
	pteval_t	pte;
78
	pteval_t	pte_s2;
79 80
};

81 82 83 84 85 86
#ifdef CONFIG_ARM_LPAE
#define s2_policy(policy)	policy
#else
#define s2_policy(policy)	0
#endif

87 88 89 90 91
static struct cachepolicy cache_policies[] __initdata = {
	{
		.policy		= "uncached",
		.cr_mask	= CR_W|CR_C,
		.pmd		= PMD_SECT_UNCACHED,
92
		.pte		= L_PTE_MT_UNCACHED,
93
		.pte_s2		= s2_policy(L_PTE_S2_MT_UNCACHED),
94 95 96 97
	}, {
		.policy		= "buffered",
		.cr_mask	= CR_C,
		.pmd		= PMD_SECT_BUFFERED,
98
		.pte		= L_PTE_MT_BUFFERABLE,
99
		.pte_s2		= s2_policy(L_PTE_S2_MT_UNCACHED),
100 101 102 103
	}, {
		.policy		= "writethrough",
		.cr_mask	= 0,
		.pmd		= PMD_SECT_WT,
104
		.pte		= L_PTE_MT_WRITETHROUGH,
105
		.pte_s2		= s2_policy(L_PTE_S2_MT_WRITETHROUGH),
106 107 108 109
	}, {
		.policy		= "writeback",
		.cr_mask	= 0,
		.pmd		= PMD_SECT_WB,
110
		.pte		= L_PTE_MT_WRITEBACK,
111
		.pte_s2		= s2_policy(L_PTE_S2_MT_WRITEBACK),
112 113 114 115
	}, {
		.policy		= "writealloc",
		.cr_mask	= 0,
		.pmd		= PMD_SECT_WBWA,
116
		.pte		= L_PTE_MT_WRITEALLOC,
117
		.pte_s2		= s2_policy(L_PTE_S2_MT_WRITEBACK),
118 119 120
	}
};

121
#ifdef CONFIG_CPU_CP15
122 123
static unsigned long initial_pmd_value __initdata = 0;

124
/*
125 126 127 128 129
 * Initialise the cache_policy variable with the initial state specified
 * via the "pmd" value.  This is used to ensure that on ARMv6 and later,
 * the C code sets the page tables up with the same policy as the head
 * assembly code, which avoids an illegal state where the TLBs can get
 * confused.  See comments in early_cachepolicy() for more information.
130
 */
131
void __init init_default_cache_policy(unsigned long pmd)
132 133 134
{
	int i;

135 136
	initial_pmd_value = pmd;

137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157
	pmd &= PMD_SECT_TEX(1) | PMD_SECT_BUFFERABLE | PMD_SECT_CACHEABLE;

	for (i = 0; i < ARRAY_SIZE(cache_policies); i++)
		if (cache_policies[i].pmd == pmd) {
			cachepolicy = i;
			break;
		}

	if (i == ARRAY_SIZE(cache_policies))
		pr_err("ERROR: could not find cache policy\n");
}

/*
 * These are useful for identifying cache coherency problems by allowing
 * the cache or the cache and writebuffer to be turned off.  (Note: the
 * write buffer should not be on and the cache off).
 */
static int __init early_cachepolicy(char *p)
{
	int i, selected = -1;

158 159 160
	for (i = 0; i < ARRAY_SIZE(cache_policies); i++) {
		int len = strlen(cache_policies[i].policy);

161
		if (memcmp(p, cache_policies[i].policy, len) == 0) {
162
			selected = i;
163 164 165
			break;
		}
	}
166 167 168 169

	if (selected == -1)
		pr_err("ERROR: unknown or unsupported cache policy\n");

170 171 172 173 174 175 176
	/*
	 * This restriction is partly to do with the way we boot; it is
	 * unpredictable to have memory mapped using two different sets of
	 * memory attributes (shared, type, and cache attribs).  We can not
	 * change these attributes once the initial assembly has setup the
	 * page tables.
	 */
177 178 179 180 181 182 183 184 185 186 187
	if (cpu_architecture() >= CPU_ARCH_ARMv6 && selected != cachepolicy) {
		pr_warn("Only cachepolicy=%s supported on ARMv6 and later\n",
			cache_policies[cachepolicy].policy);
		return 0;
	}

	if (selected != cachepolicy) {
		unsigned long cr = __clear_cr(cache_policies[selected].cr_mask);
		cachepolicy = selected;
		flush_cache_all();
		set_cr(cr);
188
	}
189
	return 0;
190
}
191
early_param("cachepolicy", early_cachepolicy);
192

193
static int __init early_nocache(char *__unused)
194 195 196
{
	char *p = "buffered";
	printk(KERN_WARNING "nocache is deprecated; use cachepolicy=%s\n", p);
197 198
	early_cachepolicy(p);
	return 0;
199
}
200
early_param("nocache", early_nocache);
201

202
static int __init early_nowrite(char *__unused)
203 204 205
{
	char *p = "uncached";
	printk(KERN_WARNING "nowb is deprecated; use cachepolicy=%s\n", p);
206 207
	early_cachepolicy(p);
	return 0;
208
}
209
early_param("nowb", early_nowrite);
210

211
#ifndef CONFIG_ARM_LPAE
212
static int __init early_ecc(char *p)
213
{
214
	if (memcmp(p, "on", 2) == 0)
215
		ecc_mask = PMD_PROTECTION;
216
	else if (memcmp(p, "off", 3) == 0)
217
		ecc_mask = 0;
218
	return 0;
219
}
220
early_param("ecc", early_ecc);
221
#endif
222

223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238
#else /* ifdef CONFIG_CPU_CP15 */

static int __init early_cachepolicy(char *p)
{
	pr_warning("cachepolicy kernel parameter not supported without cp15\n");
}
early_param("cachepolicy", early_cachepolicy);

static int __init noalign_setup(char *__unused)
{
	pr_warning("noalign kernel parameter not supported without cp15\n");
}
__setup("noalign", noalign_setup);

#endif /* ifdef CONFIG_CPU_CP15 / else */

239
#define PROT_PTE_DEVICE		L_PTE_PRESENT|L_PTE_YOUNG|L_PTE_DIRTY|L_PTE_XN
240
#define PROT_PTE_S2_DEVICE	PROT_PTE_DEVICE
241
#define PROT_SECT_DEVICE	PMD_TYPE_SECT|PMD_SECT_AP_WRITE
242

243
static struct mem_type mem_types[] = {
244
	[MT_DEVICE] = {		  /* Strongly ordered / ARMv6 shared device */
245 246
		.prot_pte	= PROT_PTE_DEVICE | L_PTE_MT_DEV_SHARED |
				  L_PTE_SHARED,
247 248 249
		.prot_pte_s2	= s2_policy(PROT_PTE_S2_DEVICE) |
				  s2_policy(L_PTE_S2_MT_DEV_SHARED) |
				  L_PTE_SHARED,
250
		.prot_l1	= PMD_TYPE_TABLE,
251
		.prot_sect	= PROT_SECT_DEVICE | PMD_SECT_S,
252 253 254
		.domain		= DOMAIN_IO,
	},
	[MT_DEVICE_NONSHARED] = { /* ARMv6 non-shared device */
255
		.prot_pte	= PROT_PTE_DEVICE | L_PTE_MT_DEV_NONSHARED,
256
		.prot_l1	= PMD_TYPE_TABLE,
257
		.prot_sect	= PROT_SECT_DEVICE,
258 259 260
		.domain		= DOMAIN_IO,
	},
	[MT_DEVICE_CACHED] = {	  /* ioremap_cached */
261
		.prot_pte	= PROT_PTE_DEVICE | L_PTE_MT_DEV_CACHED,
262 263 264
		.prot_l1	= PMD_TYPE_TABLE,
		.prot_sect	= PROT_SECT_DEVICE | PMD_SECT_WB,
		.domain		= DOMAIN_IO,
R
Rob Herring 已提交
265
	},
266
	[MT_DEVICE_WC] = {	/* ioremap_wc */
267
		.prot_pte	= PROT_PTE_DEVICE | L_PTE_MT_DEV_WC,
268
		.prot_l1	= PMD_TYPE_TABLE,
269
		.prot_sect	= PROT_SECT_DEVICE,
270
		.domain		= DOMAIN_IO,
271
	},
272 273 274 275 276 277
	[MT_UNCACHED] = {
		.prot_pte	= PROT_PTE_DEVICE,
		.prot_l1	= PMD_TYPE_TABLE,
		.prot_sect	= PMD_TYPE_SECT | PMD_SECT_XN,
		.domain		= DOMAIN_IO,
	},
278
	[MT_CACHECLEAN] = {
279
		.prot_sect = PMD_TYPE_SECT | PMD_SECT_XN,
280 281
		.domain    = DOMAIN_KERNEL,
	},
282
#ifndef CONFIG_ARM_LPAE
283
	[MT_MINICLEAN] = {
284
		.prot_sect = PMD_TYPE_SECT | PMD_SECT_XN | PMD_SECT_MINICACHE,
285 286
		.domain    = DOMAIN_KERNEL,
	},
287
#endif
288 289
	[MT_LOW_VECTORS] = {
		.prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
290
				L_PTE_RDONLY,
291 292 293 294 295
		.prot_l1   = PMD_TYPE_TABLE,
		.domain    = DOMAIN_USER,
	},
	[MT_HIGH_VECTORS] = {
		.prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
296
				L_PTE_USER | L_PTE_RDONLY,
297 298 299
		.prot_l1   = PMD_TYPE_TABLE,
		.domain    = DOMAIN_USER,
	},
300
	[MT_MEMORY_RWX] = {
301
		.prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY,
302
		.prot_l1   = PMD_TYPE_TABLE,
303
		.prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE,
304 305
		.domain    = DOMAIN_KERNEL,
	},
306 307 308 309 310 311 312
	[MT_MEMORY_RW] = {
		.prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
			     L_PTE_XN,
		.prot_l1   = PMD_TYPE_TABLE,
		.prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE,
		.domain    = DOMAIN_KERNEL,
	},
313
	[MT_ROM] = {
314
		.prot_sect = PMD_TYPE_SECT,
315 316
		.domain    = DOMAIN_KERNEL,
	},
317
	[MT_MEMORY_RWX_NONCACHED] = {
318
		.prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
319
				L_PTE_MT_BUFFERABLE,
320
		.prot_l1   = PMD_TYPE_TABLE,
321 322 323
		.prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE,
		.domain    = DOMAIN_KERNEL,
	},
324
	[MT_MEMORY_RW_DTCM] = {
325
		.prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
326
				L_PTE_XN,
327 328 329
		.prot_l1   = PMD_TYPE_TABLE,
		.prot_sect = PMD_TYPE_SECT | PMD_SECT_XN,
		.domain    = DOMAIN_KERNEL,
330
	},
331
	[MT_MEMORY_RWX_ITCM] = {
332
		.prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY,
333
		.prot_l1   = PMD_TYPE_TABLE,
334
		.domain    = DOMAIN_KERNEL,
335
	},
336
	[MT_MEMORY_RW_SO] = {
337
		.prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
338
				L_PTE_MT_UNCACHED | L_PTE_XN,
339 340 341 342 343
		.prot_l1   = PMD_TYPE_TABLE,
		.prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE | PMD_SECT_S |
				PMD_SECT_UNCACHED | PMD_SECT_XN,
		.domain    = DOMAIN_KERNEL,
	},
344
	[MT_MEMORY_DMA_READY] = {
345 346
		.prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
				L_PTE_XN,
347 348 349
		.prot_l1   = PMD_TYPE_TABLE,
		.domain    = DOMAIN_KERNEL,
	},
350 351
};

352 353 354 355
const struct mem_type *get_mem_type(unsigned int type)
{
	return type < ARRAY_SIZE(mem_types) ? &mem_types[type] : NULL;
}
356
EXPORT_SYMBOL(get_mem_type);
357

358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395
#define PTE_SET_FN(_name, pteop) \
static int pte_set_##_name(pte_t *ptep, pgtable_t token, unsigned long addr, \
			void *data) \
{ \
	pte_t pte = pteop(*ptep); \
\
	set_pte_ext(ptep, pte, 0); \
	return 0; \
} \

#define SET_MEMORY_FN(_name, callback) \
int set_memory_##_name(unsigned long addr, int numpages) \
{ \
	unsigned long start = addr; \
	unsigned long size = PAGE_SIZE*numpages; \
	unsigned end = start + size; \
\
	if (start < MODULES_VADDR || start >= MODULES_END) \
		return -EINVAL;\
\
	if (end < MODULES_VADDR || end >= MODULES_END) \
		return -EINVAL; \
\
	apply_to_page_range(&init_mm, start, size, callback, NULL); \
	flush_tlb_kernel_range(start, end); \
	return 0;\
}

PTE_SET_FN(ro, pte_wrprotect)
PTE_SET_FN(rw, pte_mkwrite)
PTE_SET_FN(x, pte_mkexec)
PTE_SET_FN(nx, pte_mknexec)

SET_MEMORY_FN(ro, pte_set_ro)
SET_MEMORY_FN(rw, pte_set_rw)
SET_MEMORY_FN(x, pte_set_x)
SET_MEMORY_FN(nx, pte_set_nx)

K
Kees Cook 已提交
396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418
/*
 * To avoid TLB flush broadcasts, this uses local_flush_tlb_kernel_range().
 * As a result, this can only be called with preemption disabled, as under
 * stop_machine().
 */
void __set_fixmap(enum fixed_addresses idx, phys_addr_t phys, pgprot_t prot)
{
	unsigned long vaddr = __fix_to_virt(idx);
	pte_t *pte = pte_offset_kernel(pmd_off_k(vaddr), vaddr);

	/* Make sure fixmap region does not exceed available allocation. */
	BUILD_BUG_ON(FIXADDR_START + (__end_of_fixed_addresses * PAGE_SIZE) >
		     FIXADDR_END);
	BUG_ON(idx >= __end_of_fixed_addresses);

	if (pgprot_val(prot))
		set_pte_at(NULL, vaddr, pte,
			pfn_pte(phys >> PAGE_SHIFT, prot));
	else
		pte_clear(NULL, vaddr, pte);
	local_flush_tlb_kernel_range(vaddr, vaddr + PAGE_SIZE);
}

419 420 421 422 423 424 425
/*
 * Adjust the PMD section entries according to the CPU in use.
 */
static void __init build_mem_type_table(void)
{
	struct cachepolicy *cp;
	unsigned int cr = get_cr();
426
	pteval_t user_pgprot, kern_pgprot, vecs_pgprot;
427
	pteval_t hyp_device_pgprot, s2_pgprot, s2_device_pgprot;
428 429 430
	int cpu_arch = cpu_architecture();
	int i;

431
	if (cpu_arch < CPU_ARCH_ARMv6) {
432
#if defined(CONFIG_CPU_DCACHE_DISABLE)
433 434
		if (cachepolicy > CPOLICY_BUFFERED)
			cachepolicy = CPOLICY_BUFFERED;
435
#elif defined(CONFIG_CPU_DCACHE_WRITETHROUGH)
436 437
		if (cachepolicy > CPOLICY_WRITETHROUGH)
			cachepolicy = CPOLICY_WRITETHROUGH;
438
#endif
439
	}
440 441 442 443 444
	if (cpu_arch < CPU_ARCH_ARMv5) {
		if (cachepolicy >= CPOLICY_WRITEALLOC)
			cachepolicy = CPOLICY_WRITEBACK;
		ecc_mask = 0;
	}
445

446 447 448 449 450 451 452 453 454
	if (is_smp()) {
		if (cachepolicy != CPOLICY_WRITEALLOC) {
			pr_warn("Forcing write-allocate cache policy for SMP\n");
			cachepolicy = CPOLICY_WRITEALLOC;
		}
		if (!(initial_pmd_value & PMD_SECT_S)) {
			pr_warn("Forcing shared mappings for SMP\n");
			initial_pmd_value |= PMD_SECT_S;
		}
455
	}
456

457
	/*
458 459 460
	 * Strip out features not present on earlier architectures.
	 * Pre-ARMv5 CPUs don't have TEX bits.  Pre-ARMv6 CPUs or those
	 * without extended page tables don't have the 'Shared' bit.
461
	 */
462 463 464 465 466 467
	if (cpu_arch < CPU_ARCH_ARMv5)
		for (i = 0; i < ARRAY_SIZE(mem_types); i++)
			mem_types[i].prot_sect &= ~PMD_SECT_TEX(7);
	if ((cpu_arch < CPU_ARCH_ARMv6 || !(cr & CR_XP)) && !cpu_is_xsc3())
		for (i = 0; i < ARRAY_SIZE(mem_types); i++)
			mem_types[i].prot_sect &= ~PMD_SECT_S;
468 469

	/*
470 471 472
	 * ARMv5 and lower, bit 4 must be set for page tables (was: cache
	 * "update-able on write" bit on ARM610).  However, Xscale and
	 * Xscale3 require this bit to be cleared.
473
	 */
474
	if (cpu_is_xscale() || cpu_is_xsc3()) {
475
		for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
476
			mem_types[i].prot_sect &= ~PMD_BIT4;
477 478 479 480
			mem_types[i].prot_l1 &= ~PMD_BIT4;
		}
	} else if (cpu_arch < CPU_ARCH_ARMv6) {
		for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
481 482
			if (mem_types[i].prot_l1)
				mem_types[i].prot_l1 |= PMD_BIT4;
483 484 485 486
			if (mem_types[i].prot_sect)
				mem_types[i].prot_sect |= PMD_BIT4;
		}
	}
487

488 489 490 491 492 493 494 495 496 497 498 499 500
	/*
	 * Mark the device areas according to the CPU/architecture.
	 */
	if (cpu_is_xsc3() || (cpu_arch >= CPU_ARCH_ARMv6 && (cr & CR_XP))) {
		if (!cpu_is_xsc3()) {
			/*
			 * Mark device regions on ARMv6+ as execute-never
			 * to prevent speculative instruction fetches.
			 */
			mem_types[MT_DEVICE].prot_sect |= PMD_SECT_XN;
			mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_XN;
			mem_types[MT_DEVICE_CACHED].prot_sect |= PMD_SECT_XN;
			mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_XN;
501 502 503

			/* Also setup NX memory mapping */
			mem_types[MT_MEMORY_RW].prot_sect |= PMD_SECT_XN;
504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548
		}
		if (cpu_arch >= CPU_ARCH_ARMv7 && (cr & CR_TRE)) {
			/*
			 * For ARMv7 with TEX remapping,
			 * - shared device is SXCB=1100
			 * - nonshared device is SXCB=0100
			 * - write combine device mem is SXCB=0001
			 * (Uncached Normal memory)
			 */
			mem_types[MT_DEVICE].prot_sect |= PMD_SECT_TEX(1);
			mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(1);
			mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_BUFFERABLE;
		} else if (cpu_is_xsc3()) {
			/*
			 * For Xscale3,
			 * - shared device is TEXCB=00101
			 * - nonshared device is TEXCB=01000
			 * - write combine device mem is TEXCB=00100
			 * (Inner/Outer Uncacheable in xsc3 parlance)
			 */
			mem_types[MT_DEVICE].prot_sect |= PMD_SECT_TEX(1) | PMD_SECT_BUFFERED;
			mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(2);
			mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_TEX(1);
		} else {
			/*
			 * For ARMv6 and ARMv7 without TEX remapping,
			 * - shared device is TEXCB=00001
			 * - nonshared device is TEXCB=01000
			 * - write combine device mem is TEXCB=00100
			 * (Uncached Normal in ARMv6 parlance).
			 */
			mem_types[MT_DEVICE].prot_sect |= PMD_SECT_BUFFERED;
			mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(2);
			mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_TEX(1);
		}
	} else {
		/*
		 * On others, write combining is "Uncached/Buffered"
		 */
		mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_BUFFERABLE;
	}

	/*
	 * Now deal with the memory-type mappings
	 */
549
	cp = &cache_policies[cachepolicy];
550
	vecs_pgprot = kern_pgprot = user_pgprot = cp->pte;
551
	s2_pgprot = cp->pte_s2;
552 553
	hyp_device_pgprot = mem_types[MT_DEVICE].prot_pte;
	s2_device_pgprot = mem_types[MT_DEVICE].prot_pte_s2;
554

555 556 557 558 559 560 561 562 563
	/*
	 * We don't use domains on ARMv6 (since this causes problems with
	 * v6/v7 kernels), so we must use a separate memory type for user
	 * r/o, kernel r/w to map the vectors page.
	 */
#ifndef CONFIG_ARM_LPAE
	if (cpu_arch == CPU_ARCH_ARMv6)
		vecs_pgprot |= L_PTE_MT_VECTORS;
#endif
564

565 566 567 568
	/*
	 * ARMv6 and above have extended page tables.
	 */
	if (cpu_arch >= CPU_ARCH_ARMv6 && (cr & CR_XP)) {
569
#ifndef CONFIG_ARM_LPAE
570 571 572 573 574 575 576
		/*
		 * Mark cache clean areas and XIP ROM read only
		 * from SVC mode and no access from userspace.
		 */
		mem_types[MT_ROM].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
		mem_types[MT_MINICLEAN].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
		mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
577
#endif
578

579 580 581 582 583 584
		/*
		 * If the initial page tables were created with the S bit
		 * set, then we need to do the same here for the same
		 * reasons given in early_cachepolicy().
		 */
		if (initial_pmd_value & PMD_SECT_S) {
585 586 587
			user_pgprot |= L_PTE_SHARED;
			kern_pgprot |= L_PTE_SHARED;
			vecs_pgprot |= L_PTE_SHARED;
588
			s2_pgprot |= L_PTE_SHARED;
589 590 591 592
			mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_S;
			mem_types[MT_DEVICE_WC].prot_pte |= L_PTE_SHARED;
			mem_types[MT_DEVICE_CACHED].prot_sect |= PMD_SECT_S;
			mem_types[MT_DEVICE_CACHED].prot_pte |= L_PTE_SHARED;
593 594
			mem_types[MT_MEMORY_RWX].prot_sect |= PMD_SECT_S;
			mem_types[MT_MEMORY_RWX].prot_pte |= L_PTE_SHARED;
595 596
			mem_types[MT_MEMORY_RW].prot_sect |= PMD_SECT_S;
			mem_types[MT_MEMORY_RW].prot_pte |= L_PTE_SHARED;
597
			mem_types[MT_MEMORY_DMA_READY].prot_pte |= L_PTE_SHARED;
598 599
			mem_types[MT_MEMORY_RWX_NONCACHED].prot_sect |= PMD_SECT_S;
			mem_types[MT_MEMORY_RWX_NONCACHED].prot_pte |= L_PTE_SHARED;
600
		}
601 602
	}

603 604 605 606 607 608 609
	/*
	 * Non-cacheable Normal - intended for memory areas that must
	 * not cause dirty cache line writebacks when used
	 */
	if (cpu_arch >= CPU_ARCH_ARMv6) {
		if (cpu_arch >= CPU_ARCH_ARMv7 && (cr & CR_TRE)) {
			/* Non-cacheable Normal is XCB = 001 */
610
			mem_types[MT_MEMORY_RWX_NONCACHED].prot_sect |=
611 612 613
				PMD_SECT_BUFFERED;
		} else {
			/* For both ARMv6 and non-TEX-remapping ARMv7 */
614
			mem_types[MT_MEMORY_RWX_NONCACHED].prot_sect |=
615 616 617
				PMD_SECT_TEX(1);
		}
	} else {
618
		mem_types[MT_MEMORY_RWX_NONCACHED].prot_sect |= PMD_SECT_BUFFERABLE;
619 620
	}

621 622 623 624 625 626
#ifdef CONFIG_ARM_LPAE
	/*
	 * Do not generate access flag faults for the kernel mappings.
	 */
	for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
		mem_types[i].prot_pte |= PTE_EXT_AF;
627 628
		if (mem_types[i].prot_sect)
			mem_types[i].prot_sect |= PMD_SECT_AF;
629 630 631 632 633
	}
	kern_pgprot |= PTE_EXT_AF;
	vecs_pgprot |= PTE_EXT_AF;
#endif

634
	for (i = 0; i < 16; i++) {
635
		pteval_t v = pgprot_val(protection_map[i]);
636
		protection_map[i] = __pgprot(v | user_pgprot);
637 638
	}

639 640
	mem_types[MT_LOW_VECTORS].prot_pte |= vecs_pgprot;
	mem_types[MT_HIGH_VECTORS].prot_pte |= vecs_pgprot;
641

642
	pgprot_user   = __pgprot(L_PTE_PRESENT | L_PTE_YOUNG | user_pgprot);
643
	pgprot_kernel = __pgprot(L_PTE_PRESENT | L_PTE_YOUNG |
644
				 L_PTE_DIRTY | kern_pgprot);
645 646 647
	pgprot_s2  = __pgprot(L_PTE_PRESENT | L_PTE_YOUNG | s2_pgprot);
	pgprot_s2_device  = __pgprot(s2_device_pgprot);
	pgprot_hyp_device  = __pgprot(hyp_device_pgprot);
648 649 650

	mem_types[MT_LOW_VECTORS].prot_l1 |= ecc_mask;
	mem_types[MT_HIGH_VECTORS].prot_l1 |= ecc_mask;
651 652
	mem_types[MT_MEMORY_RWX].prot_sect |= ecc_mask | cp->pmd;
	mem_types[MT_MEMORY_RWX].prot_pte |= kern_pgprot;
653 654
	mem_types[MT_MEMORY_RW].prot_sect |= ecc_mask | cp->pmd;
	mem_types[MT_MEMORY_RW].prot_pte |= kern_pgprot;
655
	mem_types[MT_MEMORY_DMA_READY].prot_pte |= kern_pgprot;
656
	mem_types[MT_MEMORY_RWX_NONCACHED].prot_sect |= ecc_mask;
657 658 659 660 661 662 663 664 665 666 667
	mem_types[MT_ROM].prot_sect |= cp->pmd;

	switch (cp->pmd) {
	case PMD_SECT_WT:
		mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_WT;
		break;
	case PMD_SECT_WB:
	case PMD_SECT_WBWA:
		mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_WB;
		break;
	}
668 669
	pr_info("Memory policy: %sData cache %s\n",
		ecc_mask ? "ECC enabled, " : "", cp->policy);
670 671 672 673 674 675 676 677

	for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
		struct mem_type *t = &mem_types[i];
		if (t->prot_l1)
			t->prot_l1 |= PMD_DOMAIN(t->domain);
		if (t->prot_sect)
			t->prot_sect |= PMD_DOMAIN(t->domain);
	}
678 679
}

680 681 682 683 684 685 686 687 688 689 690 691 692
#ifdef CONFIG_ARM_DMA_MEM_BUFFERABLE
pgprot_t phys_mem_access_prot(struct file *file, unsigned long pfn,
			      unsigned long size, pgprot_t vma_prot)
{
	if (!pfn_valid(pfn))
		return pgprot_noncached(vma_prot);
	else if (file->f_flags & O_SYNC)
		return pgprot_writecombine(vma_prot);
	return vma_prot;
}
EXPORT_SYMBOL(phys_mem_access_prot);
#endif

693 694
#define vectors_base()	(vectors_high() ? 0xffff0000 : 0)

695
static void __init *early_alloc_aligned(unsigned long sz, unsigned long align)
R
Russell King 已提交
696
{
697
	void *ptr = __va(memblock_alloc(sz, align));
R
Russell King 已提交
698 699
	memset(ptr, 0, sz);
	return ptr;
R
Russell King 已提交
700 701
}

702 703 704 705 706
static void __init *early_alloc(unsigned long sz)
{
	return early_alloc_aligned(sz, sz);
}

R
Russell King 已提交
707
static pte_t * __init early_pte_alloc(pmd_t *pmd, unsigned long addr, unsigned long prot)
708
{
709
	if (pmd_none(*pmd)) {
710
		pte_t *pte = early_alloc(PTE_HWTABLE_OFF + PTE_HWTABLE_SIZE);
711
		__pmd_populate(pmd, __pa(pte), prot);
712
	}
R
Russell King 已提交
713 714 715
	BUG_ON(pmd_bad(*pmd));
	return pte_offset_kernel(pmd, addr);
}
716

R
Russell King 已提交
717 718 719 720 721
static void __init alloc_init_pte(pmd_t *pmd, unsigned long addr,
				  unsigned long end, unsigned long pfn,
				  const struct mem_type *type)
{
	pte_t *pte = early_pte_alloc(pmd, addr, type->prot_l1);
722
	do {
723
		set_pte_ext(pte, pfn_pte(pfn, __pgprot(type->prot_pte)), 0);
724 725
		pfn++;
	} while (pte++, addr += PAGE_SIZE, addr != end);
726 727
}

728
static void __init __map_init_section(pmd_t *pmd, unsigned long addr,
729 730
			unsigned long end, phys_addr_t phys,
			const struct mem_type *type)
731
{
732 733
	pmd_t *p = pmd;

734
#ifndef CONFIG_ARM_LPAE
735
	/*
736 737 738 739 740 741 742
	 * In classic MMU format, puds and pmds are folded in to
	 * the pgds. pmd_offset gives the PGD entry. PGDs refer to a
	 * group of L1 entries making up one logical pointer to
	 * an L2 table (2MB), where as PMDs refer to the individual
	 * L1 entries (1MB). Hence increment to get the correct
	 * offset for odd 1MB sections.
	 * (See arch/arm/include/asm/pgtable-2level.h)
743
	 */
744 745
	if (addr & SECTION_SIZE)
		pmd++;
746
#endif
747 748 749 750
	do {
		*pmd = __pmd(phys | type->prot_sect);
		phys += SECTION_SIZE;
	} while (pmd++, addr += SECTION_SIZE, addr != end);
751

752
	flush_pmd_entry(p);
753
}
754

755 756 757 758 759 760 761 762
static void __init alloc_init_pmd(pud_t *pud, unsigned long addr,
				      unsigned long end, phys_addr_t phys,
				      const struct mem_type *type)
{
	pmd_t *pmd = pmd_offset(pud, addr);
	unsigned long next;

	do {
763
		/*
764 765
		 * With LPAE, we must loop over to map
		 * all the pmds for the given range.
766
		 */
767 768 769 770 771 772 773 774
		next = pmd_addr_end(addr, end);

		/*
		 * Try a section mapping - addr, next and phys must all be
		 * aligned to a section boundary.
		 */
		if (type->prot_sect &&
				((addr | next | phys) & ~SECTION_MASK) == 0) {
775
			__map_init_section(pmd, addr, next, phys, type);
776 777 778 779 780 781 782 783
		} else {
			alloc_init_pte(pmd, addr, next,
						__phys_to_pfn(phys), type);
		}

		phys += next - addr;

	} while (pmd++, addr = next, addr != end);
784 785
}

786
static void __init alloc_init_pud(pgd_t *pgd, unsigned long addr,
787 788
				  unsigned long end, phys_addr_t phys,
				  const struct mem_type *type)
R
Russell King 已提交
789 790 791 792 793 794
{
	pud_t *pud = pud_offset(pgd, addr);
	unsigned long next;

	do {
		next = pud_addr_end(addr, end);
795
		alloc_init_pmd(pud, addr, next, phys, type);
R
Russell King 已提交
796 797 798 799
		phys += next - addr;
	} while (pud++, addr = next, addr != end);
}

800
#ifndef CONFIG_ARM_LPAE
801 802 803
static void __init create_36bit_mapping(struct map_desc *md,
					const struct mem_type *type)
{
804 805
	unsigned long addr, length, end;
	phys_addr_t phys;
806 807 808
	pgd_t *pgd;

	addr = md->virtual;
809
	phys = __pfn_to_phys(md->pfn);
810 811 812 813 814
	length = PAGE_ALIGN(md->length);

	if (!(cpu_architecture() >= CPU_ARCH_ARMv6 || cpu_is_xsc3())) {
		printk(KERN_ERR "MM: CPU does not support supersection "
		       "mapping for 0x%08llx at 0x%08lx\n",
815
		       (long long)__pfn_to_phys((u64)md->pfn), addr);
816 817 818 819 820 821 822 823 824 825 826 827
		return;
	}

	/* N.B.	ARMv6 supersections are only defined to work with domain 0.
	 *	Since domain assignments can in fact be arbitrary, the
	 *	'domain == 0' check below is required to insure that ARMv6
	 *	supersections are only allocated for domain 0 regardless
	 *	of the actual domain assignments in use.
	 */
	if (type->domain) {
		printk(KERN_ERR "MM: invalid domain in supersection "
		       "mapping for 0x%08llx at 0x%08lx\n",
828
		       (long long)__pfn_to_phys((u64)md->pfn), addr);
829 830 831 832
		return;
	}

	if ((addr | length | __pfn_to_phys(md->pfn)) & ~SUPERSECTION_MASK) {
833 834 835
		printk(KERN_ERR "MM: cannot create mapping for 0x%08llx"
		       " at 0x%08lx invalid alignment\n",
		       (long long)__pfn_to_phys((u64)md->pfn), addr);
836 837 838 839 840 841 842 843 844 845 846 847
		return;
	}

	/*
	 * Shift bits [35:32] of address into bits [23:20] of PMD
	 * (See ARMv6 spec).
	 */
	phys |= (((md->pfn >> (32 - PAGE_SHIFT)) & 0xF) << 20);

	pgd = pgd_offset_k(addr);
	end = addr + length;
	do {
R
Russell King 已提交
848 849
		pud_t *pud = pud_offset(pgd, addr);
		pmd_t *pmd = pmd_offset(pud, addr);
850 851 852 853 854 855 856 857 858 859
		int i;

		for (i = 0; i < 16; i++)
			*pmd++ = __pmd(phys | type->prot_sect | PMD_SECT_SUPER);

		addr += SUPERSECTION_SIZE;
		phys += SUPERSECTION_SIZE;
		pgd += SUPERSECTION_SIZE >> PGDIR_SHIFT;
	} while (addr != end);
}
860
#endif	/* !CONFIG_ARM_LPAE */
861

862 863 864 865 866 867 868
/*
 * Create the page directory entries and any necessary
 * page tables for the mapping specified by `md'.  We
 * are able to cope here with varying sizes and address
 * offsets, and we take full advantage of sections and
 * supersections.
 */
869
static void __init create_mapping(struct map_desc *md)
870
{
871 872
	unsigned long addr, length, end;
	phys_addr_t phys;
873
	const struct mem_type *type;
874
	pgd_t *pgd;
875 876

	if (md->virtual != vectors_base() && md->virtual < TASK_SIZE) {
877 878 879
		printk(KERN_WARNING "BUG: not creating mapping for 0x%08llx"
		       " at 0x%08lx in user region\n",
		       (long long)__pfn_to_phys((u64)md->pfn), md->virtual);
880 881 882 883
		return;
	}

	if ((md->type == MT_DEVICE || md->type == MT_ROM) &&
884 885
	    md->virtual >= PAGE_OFFSET &&
	    (md->virtual < VMALLOC_START || md->virtual >= VMALLOC_END)) {
886
		printk(KERN_WARNING "BUG: mapping for 0x%08llx"
887
		       " at 0x%08lx out of vmalloc space\n",
888
		       (long long)__pfn_to_phys((u64)md->pfn), md->virtual);
889 890
	}

891
	type = &mem_types[md->type];
892

893
#ifndef CONFIG_ARM_LPAE
894 895 896
	/*
	 * Catch 36-bit addresses
	 */
897 898 899
	if (md->pfn >= 0x100000) {
		create_36bit_mapping(md, type);
		return;
900
	}
901
#endif
902

903
	addr = md->virtual & PAGE_MASK;
904
	phys = __pfn_to_phys(md->pfn);
905
	length = PAGE_ALIGN(md->length + (md->virtual & ~PAGE_MASK));
906

907
	if (type->prot_l1 == 0 && ((addr | phys | length) & ~SECTION_MASK)) {
908
		printk(KERN_WARNING "BUG: map for 0x%08llx at 0x%08lx can not "
909
		       "be mapped using pages, ignoring.\n",
910
		       (long long)__pfn_to_phys(md->pfn), addr);
911 912 913
		return;
	}

914 915 916 917
	pgd = pgd_offset_k(addr);
	end = addr + length;
	do {
		unsigned long next = pgd_addr_end(addr, end);
918

R
Russell King 已提交
919
		alloc_init_pud(pgd, addr, next, phys, type);
920

921 922 923
		phys += next - addr;
		addr = next;
	} while (pgd++, addr != end);
924 925 926 927 928 929 930
}

/*
 * Create the architecture specific mappings
 */
void __init iotable_init(struct map_desc *io_desc, int nr)
{
931 932
	struct map_desc *md;
	struct vm_struct *vm;
933
	struct static_vm *svm;
934 935 936

	if (!nr)
		return;
937

938
	svm = early_alloc_aligned(sizeof(*svm) * nr, __alignof__(*svm));
939 940 941

	for (md = io_desc; nr; md++, nr--) {
		create_mapping(md);
942 943

		vm = &svm->vm;
944 945
		vm->addr = (void *)(md->virtual & PAGE_MASK);
		vm->size = PAGE_ALIGN(md->length + (md->virtual & ~PAGE_MASK));
R
Rob Herring 已提交
946 947
		vm->phys_addr = __pfn_to_phys(md->pfn);
		vm->flags = VM_IOREMAP | VM_ARM_STATIC_MAPPING;
948
		vm->flags |= VM_ARM_MTYPE(md->type);
949
		vm->caller = iotable_init;
950
		add_static_vm_early(svm++);
951
	}
952 953
}

R
Rob Herring 已提交
954 955 956 957
void __init vm_reserve_area_early(unsigned long addr, unsigned long size,
				  void *caller)
{
	struct vm_struct *vm;
958 959 960
	struct static_vm *svm;

	svm = early_alloc_aligned(sizeof(*svm), __alignof__(*svm));
R
Rob Herring 已提交
961

962
	vm = &svm->vm;
R
Rob Herring 已提交
963 964
	vm->addr = (void *)addr;
	vm->size = size;
965
	vm->flags = VM_IOREMAP | VM_ARM_EMPTY_MAPPING;
R
Rob Herring 已提交
966
	vm->caller = caller;
967
	add_static_vm_early(svm);
R
Rob Herring 已提交
968 969
}

970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986
#ifndef CONFIG_ARM_LPAE

/*
 * The Linux PMD is made of two consecutive section entries covering 2MB
 * (see definition in include/asm/pgtable-2level.h).  However a call to
 * create_mapping() may optimize static mappings by using individual
 * 1MB section mappings.  This leaves the actual PMD potentially half
 * initialized if the top or bottom section entry isn't used, leaving it
 * open to problems if a subsequent ioremap() or vmalloc() tries to use
 * the virtual space left free by that unused section entry.
 *
 * Let's avoid the issue by inserting dummy vm entries covering the unused
 * PMD halves once the static mappings are in place.
 */

static void __init pmd_empty_section_gap(unsigned long addr)
{
R
Rob Herring 已提交
987
	vm_reserve_area_early(addr, SECTION_SIZE, pmd_empty_section_gap);
988 989 990 991
}

static void __init fill_pmd_gaps(void)
{
992
	struct static_vm *svm;
993 994 995 996
	struct vm_struct *vm;
	unsigned long addr, next = 0;
	pmd_t *pmd;

997 998
	list_for_each_entry(svm, &static_vmlist, list) {
		vm = &svm->vm;
999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034
		addr = (unsigned long)vm->addr;
		if (addr < next)
			continue;

		/*
		 * Check if this vm starts on an odd section boundary.
		 * If so and the first section entry for this PMD is free
		 * then we block the corresponding virtual address.
		 */
		if ((addr & ~PMD_MASK) == SECTION_SIZE) {
			pmd = pmd_off_k(addr);
			if (pmd_none(*pmd))
				pmd_empty_section_gap(addr & PMD_MASK);
		}

		/*
		 * Then check if this vm ends on an odd section boundary.
		 * If so and the second section entry for this PMD is empty
		 * then we block the corresponding virtual address.
		 */
		addr += vm->size;
		if ((addr & ~PMD_MASK) == SECTION_SIZE) {
			pmd = pmd_off_k(addr) + 1;
			if (pmd_none(*pmd))
				pmd_empty_section_gap(addr);
		}

		/* no need to look at any vm entry until we hit the next PMD */
		next = (addr + PMD_SIZE - 1) & PMD_MASK;
	}
}

#else
#define fill_pmd_gaps() do { } while (0)
#endif

R
Rob Herring 已提交
1035 1036 1037
#if defined(CONFIG_PCI) && !defined(CONFIG_NEED_MACH_IO_H)
static void __init pci_reserve_io(void)
{
1038
	struct static_vm *svm;
R
Rob Herring 已提交
1039

1040 1041 1042
	svm = find_static_vm_vaddr((void *)PCI_IO_VIRT_BASE);
	if (svm)
		return;
R
Rob Herring 已提交
1043 1044 1045 1046 1047 1048 1049

	vm_reserve_area_early(PCI_IO_VIRT_BASE, SZ_2M, pci_reserve_io);
}
#else
#define pci_reserve_io() do { } while (0)
#endif

R
Rob Herring 已提交
1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061
#ifdef CONFIG_DEBUG_LL
void __init debug_ll_io_init(void)
{
	struct map_desc map;

	debug_ll_addr(&map.pfn, &map.virtual);
	if (!map.pfn || !map.virtual)
		return;
	map.pfn = __phys_to_pfn(map.pfn);
	map.virtual &= PAGE_MASK;
	map.length = PAGE_SIZE;
	map.type = MT_DEVICE;
1062
	iotable_init(&map, 1);
R
Rob Herring 已提交
1063 1064 1065
}
#endif

1066 1067
static void * __initdata vmalloc_min =
	(void *)(VMALLOC_END - (240 << 20) - VMALLOC_OFFSET);
1068 1069 1070 1071

/*
 * vmalloc=size forces the vmalloc area to be exactly 'size'
 * bytes. This can be used to increase (or decrease) the vmalloc
1072
 * area - the default is 240m.
1073
 */
1074
static int __init early_vmalloc(char *arg)
1075
{
R
Russell King 已提交
1076
	unsigned long vmalloc_reserve = memparse(arg, NULL);
1077 1078 1079 1080 1081 1082 1083

	if (vmalloc_reserve < SZ_16M) {
		vmalloc_reserve = SZ_16M;
		printk(KERN_WARNING
			"vmalloc area too small, limiting to %luMB\n",
			vmalloc_reserve >> 20);
	}
1084 1085 1086 1087 1088 1089 1090

	if (vmalloc_reserve > VMALLOC_END - (PAGE_OFFSET + SZ_32M)) {
		vmalloc_reserve = VMALLOC_END - (PAGE_OFFSET + SZ_32M);
		printk(KERN_WARNING
			"vmalloc area is too big, limiting to %luMB\n",
			vmalloc_reserve >> 20);
	}
R
Russell King 已提交
1091 1092

	vmalloc_min = (void *)(VMALLOC_END - vmalloc_reserve);
1093
	return 0;
1094
}
1095
early_param("vmalloc", early_vmalloc);
1096

1097
phys_addr_t arm_lowmem_limit __initdata = 0;
1098

1099
void __init sanity_check_meminfo(void)
1100
{
1101
	phys_addr_t memblock_limit = 0;
L
Laura Abbott 已提交
1102
	int highmem = 0;
1103
	phys_addr_t vmalloc_limit = __pa(vmalloc_min - 1) + 1;
L
Laura Abbott 已提交
1104
	struct memblock_region *reg;
1105

L
Laura Abbott 已提交
1106 1107 1108 1109
	for_each_memblock(memory, reg) {
		phys_addr_t block_start = reg->base;
		phys_addr_t block_end = reg->base + reg->size;
		phys_addr_t size_limit = reg->size;
1110

L
Laura Abbott 已提交
1111
		if (reg->base >= vmalloc_limit)
R
Russell King 已提交
1112
			highmem = 1;
1113
		else
L
Laura Abbott 已提交
1114
			size_limit = vmalloc_limit - reg->base;
R
Russell King 已提交
1115 1116


L
Laura Abbott 已提交
1117 1118 1119 1120 1121 1122 1123
		if (!IS_ENABLED(CONFIG_HIGHMEM) || cache_is_vipt_aliasing()) {

			if (highmem) {
				pr_notice("Ignoring RAM at %pa-%pa (!CONFIG_HIGHMEM)\n",
					&block_start, &block_end);
				memblock_remove(reg->base, reg->size);
				continue;
1124
			}
1125

L
Laura Abbott 已提交
1126 1127 1128 1129 1130 1131 1132 1133
			if (reg->size > size_limit) {
				phys_addr_t overlap_size = reg->size - size_limit;

				pr_notice("Truncating RAM at %pa-%pa to -%pa",
				      &block_start, &block_end, &vmalloc_limit);
				memblock_remove(vmalloc_limit, overlap_size);
				block_end = vmalloc_limit;
			}
1134
		}
1135

L
Laura Abbott 已提交
1136 1137 1138 1139 1140 1141 1142
		if (!highmem) {
			if (block_end > arm_lowmem_limit) {
				if (reg->size > size_limit)
					arm_lowmem_limit = vmalloc_limit;
				else
					arm_lowmem_limit = block_end;
			}
1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157

			/*
			 * Find the first non-section-aligned page, and point
			 * memblock_limit at it. This relies on rounding the
			 * limit down to be section-aligned, which happens at
			 * the end of this function.
			 *
			 * With this algorithm, the start or end of almost any
			 * bank can be non-section-aligned. The only exception
			 * is that the start of the bank 0 must be section-
			 * aligned, since otherwise memory would need to be
			 * allocated when mapping the start of bank 0, which
			 * occurs before any free memory is mapped.
			 */
			if (!memblock_limit) {
L
Laura Abbott 已提交
1158 1159 1160 1161
				if (!IS_ALIGNED(block_start, SECTION_SIZE))
					memblock_limit = block_start;
				else if (!IS_ALIGNED(block_end, SECTION_SIZE))
					memblock_limit = arm_lowmem_limit;
1162
			}
1163 1164 1165

		}
	}
L
Laura Abbott 已提交
1166

1167
	high_memory = __va(arm_lowmem_limit - 1) + 1;
1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179

	/*
	 * Round the memblock limit down to a section size.  This
	 * helps to ensure that we will allocate memory from the
	 * last full section, which should be mapped.
	 */
	if (memblock_limit)
		memblock_limit = round_down(memblock_limit, SECTION_SIZE);
	if (!memblock_limit)
		memblock_limit = arm_lowmem_limit;

	memblock_set_current_limit(memblock_limit);
1180 1181
}

1182
static inline void prepare_page_table(void)
1183 1184
{
	unsigned long addr;
1185
	phys_addr_t end;
1186 1187 1188 1189

	/*
	 * Clear out all the mappings below the kernel image.
	 */
1190
	for (addr = 0; addr < MODULES_VADDR; addr += PMD_SIZE)
1191 1192 1193 1194
		pmd_clear(pmd_off_k(addr));

#ifdef CONFIG_XIP_KERNEL
	/* The XIP kernel is mapped in the module area -- skip over it */
1195
	addr = ((unsigned long)_etext + PMD_SIZE - 1) & PMD_MASK;
1196
#endif
1197
	for ( ; addr < PAGE_OFFSET; addr += PMD_SIZE)
1198 1199
		pmd_clear(pmd_off_k(addr));

1200 1201 1202 1203
	/*
	 * Find the end of the first block of lowmem.
	 */
	end = memblock.memory.regions[0].base + memblock.memory.regions[0].size;
1204 1205
	if (end >= arm_lowmem_limit)
		end = arm_lowmem_limit;
1206

1207 1208
	/*
	 * Clear out all the kernel space mappings, except for the first
1209
	 * memory bank, up to the vmalloc region.
1210
	 */
1211
	for (addr = __phys_to_virt(end);
1212
	     addr < VMALLOC_START; addr += PMD_SIZE)
1213 1214 1215
		pmd_clear(pmd_off_k(addr));
}

1216 1217 1218 1219 1220
#ifdef CONFIG_ARM_LPAE
/* the first page is reserved for pgd */
#define SWAPPER_PG_DIR_SIZE	(PAGE_SIZE + \
				 PTRS_PER_PGD * PTRS_PER_PMD * sizeof(pmd_t))
#else
1221
#define SWAPPER_PG_DIR_SIZE	(PTRS_PER_PGD * sizeof(pgd_t))
1222
#endif
1223

1224
/*
R
Russell King 已提交
1225
 * Reserve the special regions of memory
1226
 */
R
Russell King 已提交
1227
void __init arm_mm_memblock_reserve(void)
1228 1229 1230 1231 1232
{
	/*
	 * Reserve the page tables.  These are already in use,
	 * and can only be in node 0.
	 */
1233
	memblock_reserve(__pa(swapper_pg_dir), SWAPPER_PG_DIR_SIZE);
1234 1235 1236 1237 1238 1239

#ifdef CONFIG_SA1111
	/*
	 * Because of the SA1111 DMA bug, we want to preserve our
	 * precious DMA-able memory...
	 */
R
Russell King 已提交
1240
	memblock_reserve(PHYS_OFFSET, __pa(swapper_pg_dir) - PHYS_OFFSET);
1241 1242 1243 1244
#endif
}

/*
1245 1246
 * Set up the device mappings.  Since we clear out the page tables for all
 * mappings above VMALLOC_START, we will remove any debug device mappings.
1247 1248 1249 1250
 * This means you have to be careful how you debug this function, or any
 * called function.  This means you can't use any function or debugging
 * method which may touch any device, otherwise the kernel _will_ crash.
 */
1251
static void __init devicemaps_init(const struct machine_desc *mdesc)
1252 1253 1254
{
	struct map_desc map;
	unsigned long addr;
1255
	void *vectors;
1256 1257 1258 1259

	/*
	 * Allocate the vector page early.
	 */
R
Russell King 已提交
1260
	vectors = early_alloc(PAGE_SIZE * 2);
1261 1262

	early_trap_init(vectors);
1263

1264
	for (addr = VMALLOC_START; addr; addr += PMD_SIZE)
1265 1266 1267 1268 1269 1270 1271 1272
		pmd_clear(pmd_off_k(addr));

	/*
	 * Map the kernel if it is XIP.
	 * It is always first in the modulearea.
	 */
#ifdef CONFIG_XIP_KERNEL
	map.pfn = __phys_to_pfn(CONFIG_XIP_PHYS_ADDR & SECTION_MASK);
1273
	map.virtual = MODULES_VADDR;
R
Russell King 已提交
1274
	map.length = ((unsigned long)_etext - map.virtual + ~SECTION_MASK) & SECTION_MASK;
1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301
	map.type = MT_ROM;
	create_mapping(&map);
#endif

	/*
	 * Map the cache flushing regions.
	 */
#ifdef FLUSH_BASE
	map.pfn = __phys_to_pfn(FLUSH_BASE_PHYS);
	map.virtual = FLUSH_BASE;
	map.length = SZ_1M;
	map.type = MT_CACHECLEAN;
	create_mapping(&map);
#endif
#ifdef FLUSH_BASE_MINICACHE
	map.pfn = __phys_to_pfn(FLUSH_BASE_PHYS + SZ_1M);
	map.virtual = FLUSH_BASE_MINICACHE;
	map.length = SZ_1M;
	map.type = MT_MINICLEAN;
	create_mapping(&map);
#endif

	/*
	 * Create a mapping for the machine vectors at the high-vectors
	 * location (0xffff0000).  If we aren't using high-vectors, also
	 * create a mapping at the low-vectors virtual address.
	 */
1302
	map.pfn = __phys_to_pfn(virt_to_phys(vectors));
1303 1304
	map.virtual = 0xffff0000;
	map.length = PAGE_SIZE;
1305
#ifdef CONFIG_KUSER_HELPERS
1306
	map.type = MT_HIGH_VECTORS;
1307 1308 1309
#else
	map.type = MT_LOW_VECTORS;
#endif
1310 1311 1312 1313
	create_mapping(&map);

	if (!vectors_high()) {
		map.virtual = 0;
R
Russell King 已提交
1314
		map.length = PAGE_SIZE * 2;
1315 1316 1317 1318
		map.type = MT_LOW_VECTORS;
		create_mapping(&map);
	}

R
Russell King 已提交
1319 1320 1321 1322 1323 1324 1325
	/* Now create a kernel read-only mapping */
	map.pfn += 1;
	map.virtual = 0xffff0000 + PAGE_SIZE;
	map.length = PAGE_SIZE;
	map.type = MT_LOW_VECTORS;
	create_mapping(&map);

1326 1327 1328 1329 1330
	/*
	 * Ask the machine support to map in the statically mapped devices.
	 */
	if (mdesc->map_io)
		mdesc->map_io();
1331 1332
	else
		debug_ll_io_init();
1333
	fill_pmd_gaps();
1334

R
Rob Herring 已提交
1335 1336 1337
	/* Reserve fixed i/o space in VMALLOC region */
	pci_reserve_io();

1338 1339 1340 1341 1342 1343 1344 1345 1346 1347
	/*
	 * Finally flush the caches and tlb to ensure that we're in a
	 * consistent state wrt the writebuffer.  This also ensures that
	 * any write-allocated cache lines in the vector page are written
	 * back.  After this point, we can start to touch devices again.
	 */
	local_flush_tlb_all();
	flush_cache_all();
}

N
Nicolas Pitre 已提交
1348 1349 1350
static void __init kmap_init(void)
{
#ifdef CONFIG_HIGHMEM
R
Russell King 已提交
1351 1352
	pkmap_page_table = early_pte_alloc(pmd_off_k(PKMAP_BASE),
		PKMAP_BASE, _PAGE_KERNEL_TABLE);
N
Nicolas Pitre 已提交
1353
#endif
R
Rob Herring 已提交
1354 1355 1356

	early_pte_alloc(pmd_off_k(FIXADDR_START), FIXADDR_START,
			_PAGE_KERNEL_TABLE);
N
Nicolas Pitre 已提交
1357 1358
}

1359 1360
static void __init map_lowmem(void)
{
1361
	struct memblock_region *reg;
1362 1363
	unsigned long kernel_x_start = round_down(__pa(_stext), SECTION_SIZE);
	unsigned long kernel_x_end = round_up(__pa(__init_end), SECTION_SIZE);
1364 1365

	/* Map all the lowmem memory banks. */
1366 1367 1368 1369 1370
	for_each_memblock(memory, reg) {
		phys_addr_t start = reg->base;
		phys_addr_t end = start + reg->size;
		struct map_desc map;

1371 1372
		if (end > arm_lowmem_limit)
			end = arm_lowmem_limit;
1373 1374 1375
		if (start >= end)
			break;

1376 1377 1378 1379 1380
		if (end < kernel_x_start || start >= kernel_x_end) {
			map.pfn = __phys_to_pfn(start);
			map.virtual = __phys_to_virt(start);
			map.length = end - start;
			map.type = MT_MEMORY_RWX;
1381

1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409
			create_mapping(&map);
		} else {
			/* This better cover the entire kernel */
			if (start < kernel_x_start) {
				map.pfn = __phys_to_pfn(start);
				map.virtual = __phys_to_virt(start);
				map.length = kernel_x_start - start;
				map.type = MT_MEMORY_RW;

				create_mapping(&map);
			}

			map.pfn = __phys_to_pfn(kernel_x_start);
			map.virtual = __phys_to_virt(kernel_x_start);
			map.length = kernel_x_end - kernel_x_start;
			map.type = MT_MEMORY_RWX;

			create_mapping(&map);

			if (kernel_x_end < end) {
				map.pfn = __phys_to_pfn(kernel_x_end);
				map.virtual = __phys_to_virt(kernel_x_end);
				map.length = end - kernel_x_end;
				map.type = MT_MEMORY_RW;

				create_mapping(&map);
			}
		}
1410 1411 1412
	}
}

1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432
#ifdef CONFIG_ARM_LPAE
/*
 * early_paging_init() recreates boot time page table setup, allowing machines
 * to switch over to a high (>4G) address space on LPAE systems
 */
void __init early_paging_init(const struct machine_desc *mdesc,
			      struct proc_info_list *procinfo)
{
	pmdval_t pmdprot = procinfo->__cpu_mm_mmu_flags;
	unsigned long map_start, map_end;
	pgd_t *pgd0, *pgdk;
	pud_t *pud0, *pudk, *pud_start;
	pmd_t *pmd0, *pmdk;
	phys_addr_t phys;
	int i;

	if (!(mdesc->init_meminfo))
		return;

	/* remap kernel code and data */
1433 1434
	map_start = init_mm.start_code & PMD_MASK;
	map_end   = ALIGN(init_mm.brk, PMD_SIZE);
1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457

	/* get a handle on things... */
	pgd0 = pgd_offset_k(0);
	pud_start = pud0 = pud_offset(pgd0, 0);
	pmd0 = pmd_offset(pud0, 0);

	pgdk = pgd_offset_k(map_start);
	pudk = pud_offset(pgdk, map_start);
	pmdk = pmd_offset(pudk, map_start);

	mdesc->init_meminfo();

	/* Run the patch stub to update the constants */
	fixup_pv_table(&__pv_table_begin,
		(&__pv_table_end - &__pv_table_begin) << 2);

	/*
	 * Cache cleaning operations for self-modifying code
	 * We should clean the entries by MVA but running a
	 * for loop over every pv_table entry pointer would
	 * just complicate the code.
	 */
	flush_cache_louis();
1458
	dsb(ishst);
1459 1460
	isb();

1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484
	/*
	 * FIXME: This code is not architecturally compliant: we modify
	 * the mappings in-place, indeed while they are in use by this
	 * very same code.  This may lead to unpredictable behaviour of
	 * the CPU.
	 *
	 * Even modifying the mappings in a separate page table does
	 * not resolve this.
	 *
	 * The architecture strongly recommends that when a mapping is
	 * changed, that it is changed by first going via an invalid
	 * mapping and back to the new mapping.  This is to ensure that
	 * no TLB conflicts (caused by the TLB having more than one TLB
	 * entry match a translation) can occur.  However, doing that
	 * here will result in unmapping the code we are running.
	 */
	pr_warn("WARNING: unsafe modification of in-place page tables - tainting kernel\n");
	add_taint(TAINT_CPU_OUT_OF_SPEC, LOCKDEP_STILL_OK);

	/*
	 * Remap level 1 table.  This changes the physical addresses
	 * used to refer to the level 2 page tables to the high
	 * physical address alias, leaving everything else the same.
	 */
1485 1486 1487 1488 1489 1490
	for (i = 0; i < PTRS_PER_PGD; pud0++, i++) {
		set_pud(pud0,
			__pud(__pa(pmd0) | PMD_TYPE_TABLE | L_PGD_SWAPPER));
		pmd0 += PTRS_PER_PMD;
	}

1491 1492 1493 1494 1495
	/*
	 * Remap the level 2 table, pointing the mappings at the high
	 * physical address alias of these pages.
	 */
	phys = __pa(map_start);
1496 1497 1498 1499 1500
	do {
		*pmdk++ = __pmd(phys | pmdprot);
		phys += PMD_SIZE;
	} while (phys < map_end);

1501 1502 1503 1504 1505 1506 1507
	/*
	 * Ensure that the above updates are flushed out of the cache.
	 * This is not strictly correct; on a system where the caches
	 * are coherent with each other, but the MMU page table walks
	 * may not be coherent, flush_cache_all() may be a no-op, and
	 * this will fail.
	 */
1508
	flush_cache_all();
1509 1510 1511 1512 1513 1514

	/*
	 * Re-write the TTBR values to point them at the high physical
	 * alias of the page tables.  We expect __va() will work on
	 * cpu_get_pgd(), which returns the value of TTBR0.
	 */
1515 1516
	cpu_switch_mm(pgd0, &init_mm);
	cpu_set_ttbr(1, __pa(pgd0) + TTBR1_OFFSET);
1517 1518

	/* Finally flush any stale TLB values. */
1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533
	local_flush_bp_all();
	local_flush_tlb_all();
}

#else

void __init early_paging_init(const struct machine_desc *mdesc,
			      struct proc_info_list *procinfo)
{
	if (mdesc->init_meminfo)
		mdesc->init_meminfo();
}

#endif

1534 1535 1536 1537
/*
 * paging_init() sets up the page tables, initialises the zone memory
 * maps, and sets up the zero page, bad page and bad page tables.
 */
1538
void __init paging_init(const struct machine_desc *mdesc)
1539 1540 1541 1542
{
	void *zero_page;

	build_mem_type_table();
1543
	prepare_page_table();
1544
	map_lowmem();
1545
	dma_contiguous_remap();
1546
	devicemaps_init(mdesc);
N
Nicolas Pitre 已提交
1547
	kmap_init();
1548
	tcm_init();
1549 1550 1551

	top_pmd = pmd_off_k(0xffff0000);

R
Russell King 已提交
1552 1553
	/* allocate the zero page. */
	zero_page = early_alloc(PAGE_SIZE);
R
Russell King 已提交
1554

1555
	bootmem_init();
R
Russell King 已提交
1556

1557
	empty_zero_page = virt_to_page(zero_page);
1558
	__flush_dcache_page(NULL, empty_zero_page);
1559
}