mmu.c 44.7 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0-only
2 3 4 5 6
/*
 *  linux/arch/arm/mm/mmu.c
 *
 *  Copyright (C) 1995-2005 Russell King
 */
7
#include <linux/module.h>
8 9 10 11 12
#include <linux/kernel.h>
#include <linux/errno.h>
#include <linux/init.h>
#include <linux/mman.h>
#include <linux/nodemask.h>
R
Russell King 已提交
13
#include <linux/memblock.h>
14
#include <linux/fs.h>
15
#include <linux/vmalloc.h>
16
#include <linux/sizes.h>
17

18
#include <asm/cp15.h>
19
#include <asm/cputype.h>
R
Russell King 已提交
20
#include <asm/sections.h>
21
#include <asm/cachetype.h>
K
Kees Cook 已提交
22
#include <asm/fixmap.h>
23
#include <asm/sections.h>
24
#include <asm/setup.h>
25
#include <asm/smp_plat.h>
26
#include <asm/tlb.h>
N
Nicolas Pitre 已提交
27
#include <asm/highmem.h>
28
#include <asm/system_info.h>
29
#include <asm/traps.h>
30 31
#include <asm/procinfo.h>
#include <asm/memory.h>
32 33 34

#include <asm/mach/arch.h>
#include <asm/mach/map.h>
R
Rob Herring 已提交
35
#include <asm/mach/pci.h>
36
#include <asm/fixmap.h>
37

38
#include "fault.h"
39
#include "mm.h"
40
#include "tcm.h"
41 42 43 44 45 46

/*
 * empty_zero_page is a special page that is used for
 * zero-initialized data and COW.
 */
struct page *empty_zero_page;
47
EXPORT_SYMBOL(empty_zero_page);
48 49 50 51 52 53

/*
 * The pmd table for the upper-most set of pages.
 */
pmd_t *top_pmd;

54 55
pmdval_t user_pmd_table = _PAGE_USER_TABLE;

56 57 58 59 60 61 62 63
#define CPOLICY_UNCACHED	0
#define CPOLICY_BUFFERED	1
#define CPOLICY_WRITETHROUGH	2
#define CPOLICY_WRITEBACK	3
#define CPOLICY_WRITEALLOC	4

static unsigned int cachepolicy __initdata = CPOLICY_WRITEBACK;
static unsigned int ecc_mask __initdata = 0;
64
pgprot_t pgprot_user;
65
pgprot_t pgprot_kernel;
66 67 68
pgprot_t pgprot_hyp_device;
pgprot_t pgprot_s2;
pgprot_t pgprot_s2_device;
69

70
EXPORT_SYMBOL(pgprot_user);
71 72 73 74 75
EXPORT_SYMBOL(pgprot_kernel);

struct cachepolicy {
	const char	policy[16];
	unsigned int	cr_mask;
76
	pmdval_t	pmd;
77
	pteval_t	pte;
78
	pteval_t	pte_s2;
79 80
};

81 82 83 84 85 86
#ifdef CONFIG_ARM_LPAE
#define s2_policy(policy)	policy
#else
#define s2_policy(policy)	0
#endif

M
Marc Zyngier 已提交
87 88
unsigned long kimage_voffset __ro_after_init;

89 90 91 92 93
static struct cachepolicy cache_policies[] __initdata = {
	{
		.policy		= "uncached",
		.cr_mask	= CR_W|CR_C,
		.pmd		= PMD_SECT_UNCACHED,
94
		.pte		= L_PTE_MT_UNCACHED,
95
		.pte_s2		= s2_policy(L_PTE_S2_MT_UNCACHED),
96 97 98 99
	}, {
		.policy		= "buffered",
		.cr_mask	= CR_C,
		.pmd		= PMD_SECT_BUFFERED,
100
		.pte		= L_PTE_MT_BUFFERABLE,
101
		.pte_s2		= s2_policy(L_PTE_S2_MT_UNCACHED),
102 103 104 105
	}, {
		.policy		= "writethrough",
		.cr_mask	= 0,
		.pmd		= PMD_SECT_WT,
106
		.pte		= L_PTE_MT_WRITETHROUGH,
107
		.pte_s2		= s2_policy(L_PTE_S2_MT_WRITETHROUGH),
108 109 110 111
	}, {
		.policy		= "writeback",
		.cr_mask	= 0,
		.pmd		= PMD_SECT_WB,
112
		.pte		= L_PTE_MT_WRITEBACK,
113
		.pte_s2		= s2_policy(L_PTE_S2_MT_WRITEBACK),
114 115 116 117
	}, {
		.policy		= "writealloc",
		.cr_mask	= 0,
		.pmd		= PMD_SECT_WBWA,
118
		.pte		= L_PTE_MT_WRITEALLOC,
119
		.pte_s2		= s2_policy(L_PTE_S2_MT_WRITEBACK),
120 121 122
	}
};

123
#ifdef CONFIG_CPU_CP15
124 125
static unsigned long initial_pmd_value __initdata = 0;

126
/*
127 128 129 130 131
 * Initialise the cache_policy variable with the initial state specified
 * via the "pmd" value.  This is used to ensure that on ARMv6 and later,
 * the C code sets the page tables up with the same policy as the head
 * assembly code, which avoids an illegal state where the TLBs can get
 * confused.  See comments in early_cachepolicy() for more information.
132
 */
133
void __init init_default_cache_policy(unsigned long pmd)
134 135 136
{
	int i;

137 138
	initial_pmd_value = pmd;

139
	pmd &= PMD_SECT_CACHE_MASK;
140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159

	for (i = 0; i < ARRAY_SIZE(cache_policies); i++)
		if (cache_policies[i].pmd == pmd) {
			cachepolicy = i;
			break;
		}

	if (i == ARRAY_SIZE(cache_policies))
		pr_err("ERROR: could not find cache policy\n");
}

/*
 * These are useful for identifying cache coherency problems by allowing
 * the cache or the cache and writebuffer to be turned off.  (Note: the
 * write buffer should not be on and the cache off).
 */
static int __init early_cachepolicy(char *p)
{
	int i, selected = -1;

160 161 162
	for (i = 0; i < ARRAY_SIZE(cache_policies); i++) {
		int len = strlen(cache_policies[i].policy);

163
		if (memcmp(p, cache_policies[i].policy, len) == 0) {
164
			selected = i;
165 166 167
			break;
		}
	}
168 169 170 171

	if (selected == -1)
		pr_err("ERROR: unknown or unsupported cache policy\n");

172 173 174 175 176 177 178
	/*
	 * This restriction is partly to do with the way we boot; it is
	 * unpredictable to have memory mapped using two different sets of
	 * memory attributes (shared, type, and cache attribs).  We can not
	 * change these attributes once the initial assembly has setup the
	 * page tables.
	 */
179 180 181 182 183 184 185 186 187 188 189
	if (cpu_architecture() >= CPU_ARCH_ARMv6 && selected != cachepolicy) {
		pr_warn("Only cachepolicy=%s supported on ARMv6 and later\n",
			cache_policies[cachepolicy].policy);
		return 0;
	}

	if (selected != cachepolicy) {
		unsigned long cr = __clear_cr(cache_policies[selected].cr_mask);
		cachepolicy = selected;
		flush_cache_all();
		set_cr(cr);
190
	}
191
	return 0;
192
}
193
early_param("cachepolicy", early_cachepolicy);
194

195
static int __init early_nocache(char *__unused)
196 197
{
	char *p = "buffered";
R
Russell King 已提交
198
	pr_warn("nocache is deprecated; use cachepolicy=%s\n", p);
199 200
	early_cachepolicy(p);
	return 0;
201
}
202
early_param("nocache", early_nocache);
203

204
static int __init early_nowrite(char *__unused)
205 206
{
	char *p = "uncached";
R
Russell King 已提交
207
	pr_warn("nowb is deprecated; use cachepolicy=%s\n", p);
208 209
	early_cachepolicy(p);
	return 0;
210
}
211
early_param("nowb", early_nowrite);
212

213
#ifndef CONFIG_ARM_LPAE
214
static int __init early_ecc(char *p)
215
{
216
	if (memcmp(p, "on", 2) == 0)
217
		ecc_mask = PMD_PROTECTION;
218
	else if (memcmp(p, "off", 3) == 0)
219
		ecc_mask = 0;
220
	return 0;
221
}
222
early_param("ecc", early_ecc);
223
#endif
224

225 226 227 228
#else /* ifdef CONFIG_CPU_CP15 */

static int __init early_cachepolicy(char *p)
{
229
	pr_warn("cachepolicy kernel parameter not supported without cp15\n");
230 231 232 233 234
}
early_param("cachepolicy", early_cachepolicy);

static int __init noalign_setup(char *__unused)
{
235
	pr_warn("noalign kernel parameter not supported without cp15\n");
236 237 238 239 240
}
__setup("noalign", noalign_setup);

#endif /* ifdef CONFIG_CPU_CP15 / else */

241
#define PROT_PTE_DEVICE		L_PTE_PRESENT|L_PTE_YOUNG|L_PTE_DIRTY|L_PTE_XN
242
#define PROT_PTE_S2_DEVICE	PROT_PTE_DEVICE
243
#define PROT_SECT_DEVICE	PMD_TYPE_SECT|PMD_SECT_AP_WRITE
244

245
static struct mem_type mem_types[] __ro_after_init = {
246
	[MT_DEVICE] = {		  /* Strongly ordered / ARMv6 shared device */
247 248
		.prot_pte	= PROT_PTE_DEVICE | L_PTE_MT_DEV_SHARED |
				  L_PTE_SHARED,
249 250 251
		.prot_pte_s2	= s2_policy(PROT_PTE_S2_DEVICE) |
				  s2_policy(L_PTE_S2_MT_DEV_SHARED) |
				  L_PTE_SHARED,
252
		.prot_l1	= PMD_TYPE_TABLE,
253
		.prot_sect	= PROT_SECT_DEVICE | PMD_SECT_S,
254 255 256
		.domain		= DOMAIN_IO,
	},
	[MT_DEVICE_NONSHARED] = { /* ARMv6 non-shared device */
257
		.prot_pte	= PROT_PTE_DEVICE | L_PTE_MT_DEV_NONSHARED,
258
		.prot_l1	= PMD_TYPE_TABLE,
259
		.prot_sect	= PROT_SECT_DEVICE,
260 261 262
		.domain		= DOMAIN_IO,
	},
	[MT_DEVICE_CACHED] = {	  /* ioremap_cached */
263
		.prot_pte	= PROT_PTE_DEVICE | L_PTE_MT_DEV_CACHED,
264 265 266
		.prot_l1	= PMD_TYPE_TABLE,
		.prot_sect	= PROT_SECT_DEVICE | PMD_SECT_WB,
		.domain		= DOMAIN_IO,
R
Rob Herring 已提交
267
	},
268
	[MT_DEVICE_WC] = {	/* ioremap_wc */
269
		.prot_pte	= PROT_PTE_DEVICE | L_PTE_MT_DEV_WC,
270
		.prot_l1	= PMD_TYPE_TABLE,
271
		.prot_sect	= PROT_SECT_DEVICE,
272
		.domain		= DOMAIN_IO,
273
	},
274 275 276 277 278 279
	[MT_UNCACHED] = {
		.prot_pte	= PROT_PTE_DEVICE,
		.prot_l1	= PMD_TYPE_TABLE,
		.prot_sect	= PMD_TYPE_SECT | PMD_SECT_XN,
		.domain		= DOMAIN_IO,
	},
280
	[MT_CACHECLEAN] = {
281
		.prot_sect = PMD_TYPE_SECT | PMD_SECT_XN,
282 283
		.domain    = DOMAIN_KERNEL,
	},
284
#ifndef CONFIG_ARM_LPAE
285
	[MT_MINICLEAN] = {
286
		.prot_sect = PMD_TYPE_SECT | PMD_SECT_XN | PMD_SECT_MINICACHE,
287 288
		.domain    = DOMAIN_KERNEL,
	},
289
#endif
290 291
	[MT_LOW_VECTORS] = {
		.prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
292
				L_PTE_RDONLY,
293
		.prot_l1   = PMD_TYPE_TABLE,
294
		.domain    = DOMAIN_VECTORS,
295 296 297
	},
	[MT_HIGH_VECTORS] = {
		.prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
298
				L_PTE_USER | L_PTE_RDONLY,
299
		.prot_l1   = PMD_TYPE_TABLE,
300
		.domain    = DOMAIN_VECTORS,
301
	},
302
	[MT_MEMORY_RWX] = {
303
		.prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY,
304
		.prot_l1   = PMD_TYPE_TABLE,
305
		.prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE,
306 307
		.domain    = DOMAIN_KERNEL,
	},
308 309 310 311 312 313 314
	[MT_MEMORY_RW] = {
		.prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
			     L_PTE_XN,
		.prot_l1   = PMD_TYPE_TABLE,
		.prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE,
		.domain    = DOMAIN_KERNEL,
	},
315
	[MT_ROM] = {
316
		.prot_sect = PMD_TYPE_SECT,
317 318
		.domain    = DOMAIN_KERNEL,
	},
319
	[MT_MEMORY_RWX_NONCACHED] = {
320
		.prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
321
				L_PTE_MT_BUFFERABLE,
322
		.prot_l1   = PMD_TYPE_TABLE,
323 324 325
		.prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE,
		.domain    = DOMAIN_KERNEL,
	},
326
	[MT_MEMORY_RW_DTCM] = {
327
		.prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
328
				L_PTE_XN,
329 330 331
		.prot_l1   = PMD_TYPE_TABLE,
		.prot_sect = PMD_TYPE_SECT | PMD_SECT_XN,
		.domain    = DOMAIN_KERNEL,
332
	},
333
	[MT_MEMORY_RWX_ITCM] = {
334
		.prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY,
335
		.prot_l1   = PMD_TYPE_TABLE,
336
		.domain    = DOMAIN_KERNEL,
337
	},
338
	[MT_MEMORY_RW_SO] = {
339
		.prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
340
				L_PTE_MT_UNCACHED | L_PTE_XN,
341 342 343 344 345
		.prot_l1   = PMD_TYPE_TABLE,
		.prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE | PMD_SECT_S |
				PMD_SECT_UNCACHED | PMD_SECT_XN,
		.domain    = DOMAIN_KERNEL,
	},
346
	[MT_MEMORY_DMA_READY] = {
347 348
		.prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
				L_PTE_XN,
349 350 351
		.prot_l1   = PMD_TYPE_TABLE,
		.domain    = DOMAIN_KERNEL,
	},
352 353
};

354 355 356 357
const struct mem_type *get_mem_type(unsigned int type)
{
	return type < ARRAY_SIZE(mem_types) ? &mem_types[type] : NULL;
}
358
EXPORT_SYMBOL(get_mem_type);
359

360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391
static pte_t *(*pte_offset_fixmap)(pmd_t *dir, unsigned long addr);

static pte_t bm_pte[PTRS_PER_PTE + PTE_HWTABLE_PTRS]
	__aligned(PTE_HWTABLE_OFF + PTE_HWTABLE_SIZE) __initdata;

static pte_t * __init pte_offset_early_fixmap(pmd_t *dir, unsigned long addr)
{
	return &bm_pte[pte_index(addr)];
}

static pte_t *pte_offset_late_fixmap(pmd_t *dir, unsigned long addr)
{
	return pte_offset_kernel(dir, addr);
}

static inline pmd_t * __init fixmap_pmd(unsigned long addr)
{
	pgd_t *pgd = pgd_offset_k(addr);
	pud_t *pud = pud_offset(pgd, addr);
	pmd_t *pmd = pmd_offset(pud, addr);

	return pmd;
}

void __init early_fixmap_init(void)
{
	pmd_t *pmd;

	/*
	 * The early fixmap range spans multiple pmds, for which
	 * we are not prepared:
	 */
392
	BUILD_BUG_ON((__fix_to_virt(__end_of_early_ioremap_region) >> PMD_SHIFT)
393 394 395 396 397 398 399 400
		     != FIXADDR_TOP >> PMD_SHIFT);

	pmd = fixmap_pmd(FIXADDR_TOP);
	pmd_populate_kernel(&init_mm, pmd, bm_pte);

	pte_offset_fixmap = pte_offset_early_fixmap;
}

K
Kees Cook 已提交
401 402 403 404 405 406 407 408
/*
 * To avoid TLB flush broadcasts, this uses local_flush_tlb_kernel_range().
 * As a result, this can only be called with preemption disabled, as under
 * stop_machine().
 */
void __set_fixmap(enum fixed_addresses idx, phys_addr_t phys, pgprot_t prot)
{
	unsigned long vaddr = __fix_to_virt(idx);
409
	pte_t *pte = pte_offset_fixmap(pmd_off_k(vaddr), vaddr);
K
Kees Cook 已提交
410 411 412 413 414 415

	/* Make sure fixmap region does not exceed available allocation. */
	BUILD_BUG_ON(FIXADDR_START + (__end_of_fixed_addresses * PAGE_SIZE) >
		     FIXADDR_END);
	BUG_ON(idx >= __end_of_fixed_addresses);

416 417 418 419 420
	/* we only support device mappings until pgprot_kernel has been set */
	if (WARN_ON(pgprot_val(prot) != pgprot_val(FIXMAP_PAGE_IO) &&
		    pgprot_val(pgprot_kernel) == 0))
		return;

K
Kees Cook 已提交
421 422 423 424 425 426 427 428
	if (pgprot_val(prot))
		set_pte_at(NULL, vaddr, pte,
			pfn_pte(phys >> PAGE_SHIFT, prot));
	else
		pte_clear(NULL, vaddr, pte);
	local_flush_tlb_kernel_range(vaddr, vaddr + PAGE_SIZE);
}

429 430 431 432 433 434 435
/*
 * Adjust the PMD section entries according to the CPU in use.
 */
static void __init build_mem_type_table(void)
{
	struct cachepolicy *cp;
	unsigned int cr = get_cr();
436
	pteval_t user_pgprot, kern_pgprot, vecs_pgprot;
437
	pteval_t hyp_device_pgprot, s2_pgprot, s2_device_pgprot;
438 439 440
	int cpu_arch = cpu_architecture();
	int i;

441
	if (cpu_arch < CPU_ARCH_ARMv6) {
442
#if defined(CONFIG_CPU_DCACHE_DISABLE)
443 444
		if (cachepolicy > CPOLICY_BUFFERED)
			cachepolicy = CPOLICY_BUFFERED;
445
#elif defined(CONFIG_CPU_DCACHE_WRITETHROUGH)
446 447
		if (cachepolicy > CPOLICY_WRITETHROUGH)
			cachepolicy = CPOLICY_WRITETHROUGH;
448
#endif
449
	}
450 451 452 453 454
	if (cpu_arch < CPU_ARCH_ARMv5) {
		if (cachepolicy >= CPOLICY_WRITEALLOC)
			cachepolicy = CPOLICY_WRITEBACK;
		ecc_mask = 0;
	}
455

456 457 458 459 460 461 462 463 464
	if (is_smp()) {
		if (cachepolicy != CPOLICY_WRITEALLOC) {
			pr_warn("Forcing write-allocate cache policy for SMP\n");
			cachepolicy = CPOLICY_WRITEALLOC;
		}
		if (!(initial_pmd_value & PMD_SECT_S)) {
			pr_warn("Forcing shared mappings for SMP\n");
			initial_pmd_value |= PMD_SECT_S;
		}
465
	}
466

467
	/*
468 469 470
	 * Strip out features not present on earlier architectures.
	 * Pre-ARMv5 CPUs don't have TEX bits.  Pre-ARMv6 CPUs or those
	 * without extended page tables don't have the 'Shared' bit.
471
	 */
472 473 474 475 476 477
	if (cpu_arch < CPU_ARCH_ARMv5)
		for (i = 0; i < ARRAY_SIZE(mem_types); i++)
			mem_types[i].prot_sect &= ~PMD_SECT_TEX(7);
	if ((cpu_arch < CPU_ARCH_ARMv6 || !(cr & CR_XP)) && !cpu_is_xsc3())
		for (i = 0; i < ARRAY_SIZE(mem_types); i++)
			mem_types[i].prot_sect &= ~PMD_SECT_S;
478 479

	/*
480 481 482
	 * ARMv5 and lower, bit 4 must be set for page tables (was: cache
	 * "update-able on write" bit on ARM610).  However, Xscale and
	 * Xscale3 require this bit to be cleared.
483
	 */
484
	if (cpu_is_xscale_family()) {
485
		for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
486
			mem_types[i].prot_sect &= ~PMD_BIT4;
487 488 489 490
			mem_types[i].prot_l1 &= ~PMD_BIT4;
		}
	} else if (cpu_arch < CPU_ARCH_ARMv6) {
		for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
491 492
			if (mem_types[i].prot_l1)
				mem_types[i].prot_l1 |= PMD_BIT4;
493 494 495 496
			if (mem_types[i].prot_sect)
				mem_types[i].prot_sect |= PMD_BIT4;
		}
	}
497

498 499 500 501 502 503 504 505 506 507 508 509 510
	/*
	 * Mark the device areas according to the CPU/architecture.
	 */
	if (cpu_is_xsc3() || (cpu_arch >= CPU_ARCH_ARMv6 && (cr & CR_XP))) {
		if (!cpu_is_xsc3()) {
			/*
			 * Mark device regions on ARMv6+ as execute-never
			 * to prevent speculative instruction fetches.
			 */
			mem_types[MT_DEVICE].prot_sect |= PMD_SECT_XN;
			mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_XN;
			mem_types[MT_DEVICE_CACHED].prot_sect |= PMD_SECT_XN;
			mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_XN;
511 512 513

			/* Also setup NX memory mapping */
			mem_types[MT_MEMORY_RW].prot_sect |= PMD_SECT_XN;
514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558
		}
		if (cpu_arch >= CPU_ARCH_ARMv7 && (cr & CR_TRE)) {
			/*
			 * For ARMv7 with TEX remapping,
			 * - shared device is SXCB=1100
			 * - nonshared device is SXCB=0100
			 * - write combine device mem is SXCB=0001
			 * (Uncached Normal memory)
			 */
			mem_types[MT_DEVICE].prot_sect |= PMD_SECT_TEX(1);
			mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(1);
			mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_BUFFERABLE;
		} else if (cpu_is_xsc3()) {
			/*
			 * For Xscale3,
			 * - shared device is TEXCB=00101
			 * - nonshared device is TEXCB=01000
			 * - write combine device mem is TEXCB=00100
			 * (Inner/Outer Uncacheable in xsc3 parlance)
			 */
			mem_types[MT_DEVICE].prot_sect |= PMD_SECT_TEX(1) | PMD_SECT_BUFFERED;
			mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(2);
			mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_TEX(1);
		} else {
			/*
			 * For ARMv6 and ARMv7 without TEX remapping,
			 * - shared device is TEXCB=00001
			 * - nonshared device is TEXCB=01000
			 * - write combine device mem is TEXCB=00100
			 * (Uncached Normal in ARMv6 parlance).
			 */
			mem_types[MT_DEVICE].prot_sect |= PMD_SECT_BUFFERED;
			mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(2);
			mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_TEX(1);
		}
	} else {
		/*
		 * On others, write combining is "Uncached/Buffered"
		 */
		mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_BUFFERABLE;
	}

	/*
	 * Now deal with the memory-type mappings
	 */
559
	cp = &cache_policies[cachepolicy];
560
	vecs_pgprot = kern_pgprot = user_pgprot = cp->pte;
561
	s2_pgprot = cp->pte_s2;
562 563
	hyp_device_pgprot = mem_types[MT_DEVICE].prot_pte;
	s2_device_pgprot = mem_types[MT_DEVICE].prot_pte_s2;
564

565
#ifndef CONFIG_ARM_LPAE
566 567 568 569 570 571 572
	/*
	 * We don't use domains on ARMv6 (since this causes problems with
	 * v6/v7 kernels), so we must use a separate memory type for user
	 * r/o, kernel r/w to map the vectors page.
	 */
	if (cpu_arch == CPU_ARCH_ARMv6)
		vecs_pgprot |= L_PTE_MT_VECTORS;
573 574 575 576 577 578

	/*
	 * Check is it with support for the PXN bit
	 * in the Short-descriptor translation table format descriptors.
	 */
	if (cpu_arch == CPU_ARCH_ARMv7 &&
579
		(read_cpuid_ext(CPUID_EXT_MMFR0) & 0xF) >= 4) {
580 581
		user_pmd_table |= PMD_PXNTABLE;
	}
582
#endif
583

584 585 586 587
	/*
	 * ARMv6 and above have extended page tables.
	 */
	if (cpu_arch >= CPU_ARCH_ARMv6 && (cr & CR_XP)) {
588
#ifndef CONFIG_ARM_LPAE
589 590 591 592 593 594 595
		/*
		 * Mark cache clean areas and XIP ROM read only
		 * from SVC mode and no access from userspace.
		 */
		mem_types[MT_ROM].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
		mem_types[MT_MINICLEAN].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
		mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
596
#endif
597

598 599 600 601 602 603
		/*
		 * If the initial page tables were created with the S bit
		 * set, then we need to do the same here for the same
		 * reasons given in early_cachepolicy().
		 */
		if (initial_pmd_value & PMD_SECT_S) {
604 605 606
			user_pgprot |= L_PTE_SHARED;
			kern_pgprot |= L_PTE_SHARED;
			vecs_pgprot |= L_PTE_SHARED;
607
			s2_pgprot |= L_PTE_SHARED;
608 609 610 611
			mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_S;
			mem_types[MT_DEVICE_WC].prot_pte |= L_PTE_SHARED;
			mem_types[MT_DEVICE_CACHED].prot_sect |= PMD_SECT_S;
			mem_types[MT_DEVICE_CACHED].prot_pte |= L_PTE_SHARED;
612 613
			mem_types[MT_MEMORY_RWX].prot_sect |= PMD_SECT_S;
			mem_types[MT_MEMORY_RWX].prot_pte |= L_PTE_SHARED;
614 615
			mem_types[MT_MEMORY_RW].prot_sect |= PMD_SECT_S;
			mem_types[MT_MEMORY_RW].prot_pte |= L_PTE_SHARED;
616
			mem_types[MT_MEMORY_DMA_READY].prot_pte |= L_PTE_SHARED;
617 618
			mem_types[MT_MEMORY_RWX_NONCACHED].prot_sect |= PMD_SECT_S;
			mem_types[MT_MEMORY_RWX_NONCACHED].prot_pte |= L_PTE_SHARED;
619
		}
620 621
	}

622 623 624 625 626 627 628
	/*
	 * Non-cacheable Normal - intended for memory areas that must
	 * not cause dirty cache line writebacks when used
	 */
	if (cpu_arch >= CPU_ARCH_ARMv6) {
		if (cpu_arch >= CPU_ARCH_ARMv7 && (cr & CR_TRE)) {
			/* Non-cacheable Normal is XCB = 001 */
629
			mem_types[MT_MEMORY_RWX_NONCACHED].prot_sect |=
630 631 632
				PMD_SECT_BUFFERED;
		} else {
			/* For both ARMv6 and non-TEX-remapping ARMv7 */
633
			mem_types[MT_MEMORY_RWX_NONCACHED].prot_sect |=
634 635 636
				PMD_SECT_TEX(1);
		}
	} else {
637
		mem_types[MT_MEMORY_RWX_NONCACHED].prot_sect |= PMD_SECT_BUFFERABLE;
638 639
	}

640 641 642 643 644 645
#ifdef CONFIG_ARM_LPAE
	/*
	 * Do not generate access flag faults for the kernel mappings.
	 */
	for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
		mem_types[i].prot_pte |= PTE_EXT_AF;
646 647
		if (mem_types[i].prot_sect)
			mem_types[i].prot_sect |= PMD_SECT_AF;
648 649 650
	}
	kern_pgprot |= PTE_EXT_AF;
	vecs_pgprot |= PTE_EXT_AF;
651 652 653 654 655

	/*
	 * Set PXN for user mappings
	 */
	user_pgprot |= PTE_EXT_PXN;
656 657
#endif

658
	for (i = 0; i < 16; i++) {
659
		pteval_t v = pgprot_val(protection_map[i]);
660
		protection_map[i] = __pgprot(v | user_pgprot);
661 662
	}

663 664
	mem_types[MT_LOW_VECTORS].prot_pte |= vecs_pgprot;
	mem_types[MT_HIGH_VECTORS].prot_pte |= vecs_pgprot;
665

666
	pgprot_user   = __pgprot(L_PTE_PRESENT | L_PTE_YOUNG | user_pgprot);
667
	pgprot_kernel = __pgprot(L_PTE_PRESENT | L_PTE_YOUNG |
668
				 L_PTE_DIRTY | kern_pgprot);
669 670 671
	pgprot_s2  = __pgprot(L_PTE_PRESENT | L_PTE_YOUNG | s2_pgprot);
	pgprot_s2_device  = __pgprot(s2_device_pgprot);
	pgprot_hyp_device  = __pgprot(hyp_device_pgprot);
672 673 674

	mem_types[MT_LOW_VECTORS].prot_l1 |= ecc_mask;
	mem_types[MT_HIGH_VECTORS].prot_l1 |= ecc_mask;
675 676
	mem_types[MT_MEMORY_RWX].prot_sect |= ecc_mask | cp->pmd;
	mem_types[MT_MEMORY_RWX].prot_pte |= kern_pgprot;
677 678
	mem_types[MT_MEMORY_RW].prot_sect |= ecc_mask | cp->pmd;
	mem_types[MT_MEMORY_RW].prot_pte |= kern_pgprot;
679
	mem_types[MT_MEMORY_DMA_READY].prot_pte |= kern_pgprot;
680
	mem_types[MT_MEMORY_RWX_NONCACHED].prot_sect |= ecc_mask;
681 682 683 684 685 686 687 688 689 690 691
	mem_types[MT_ROM].prot_sect |= cp->pmd;

	switch (cp->pmd) {
	case PMD_SECT_WT:
		mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_WT;
		break;
	case PMD_SECT_WB:
	case PMD_SECT_WBWA:
		mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_WB;
		break;
	}
692 693
	pr_info("Memory policy: %sData cache %s\n",
		ecc_mask ? "ECC enabled, " : "", cp->policy);
694 695 696 697 698 699 700 701

	for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
		struct mem_type *t = &mem_types[i];
		if (t->prot_l1)
			t->prot_l1 |= PMD_DOMAIN(t->domain);
		if (t->prot_sect)
			t->prot_sect |= PMD_DOMAIN(t->domain);
	}
702 703
}

704 705 706 707 708 709 710 711 712 713 714 715 716
#ifdef CONFIG_ARM_DMA_MEM_BUFFERABLE
pgprot_t phys_mem_access_prot(struct file *file, unsigned long pfn,
			      unsigned long size, pgprot_t vma_prot)
{
	if (!pfn_valid(pfn))
		return pgprot_noncached(vma_prot);
	else if (file->f_flags & O_SYNC)
		return pgprot_writecombine(vma_prot);
	return vma_prot;
}
EXPORT_SYMBOL(phys_mem_access_prot);
#endif

717 718
#define vectors_base()	(vectors_high() ? 0xffff0000 : 0)

719 720
static void __init *early_alloc(unsigned long sz)
{
721 722 723 724 725 726 727
	void *ptr = memblock_alloc(sz, sz);

	if (!ptr)
		panic("%s: Failed to allocate %lu bytes align=0x%lx\n",
		      __func__, sz, sz);

	return ptr;
728 729
}

730 731
static void *__init late_alloc(unsigned long sz)
{
732
	void *ptr = (void *)__get_free_pages(GFP_PGTABLE_KERNEL, get_order(sz));
733

734 735
	if (!ptr || !pgtable_page_ctor(virt_to_page(ptr)))
		BUG();
736 737 738
	return ptr;
}

739
static pte_t * __init arm_pte_alloc(pmd_t *pmd, unsigned long addr,
740 741
				unsigned long prot,
				void *(*alloc)(unsigned long sz))
742
{
743
	if (pmd_none(*pmd)) {
744
		pte_t *pte = alloc(PTE_HWTABLE_OFF + PTE_HWTABLE_SIZE);
745
		__pmd_populate(pmd, __pa(pte), prot);
746
	}
R
Russell King 已提交
747 748 749
	BUG_ON(pmd_bad(*pmd));
	return pte_offset_kernel(pmd, addr);
}
750

751 752 753
static pte_t * __init early_pte_alloc(pmd_t *pmd, unsigned long addr,
				      unsigned long prot)
{
754
	return arm_pte_alloc(pmd, addr, prot, early_alloc);
755 756
}

R
Russell King 已提交
757 758
static void __init alloc_init_pte(pmd_t *pmd, unsigned long addr,
				  unsigned long end, unsigned long pfn,
759
				  const struct mem_type *type,
760 761
				  void *(*alloc)(unsigned long sz),
				  bool ng)
R
Russell King 已提交
762
{
763
	pte_t *pte = arm_pte_alloc(pmd, addr, type->prot_l1, alloc);
764
	do {
765 766
		set_pte_ext(pte, pfn_pte(pfn, __pgprot(type->prot_pte)),
			    ng ? PTE_EXT_NG : 0);
767 768
		pfn++;
	} while (pte++, addr += PAGE_SIZE, addr != end);
769 770
}

771
static void __init __map_init_section(pmd_t *pmd, unsigned long addr,
772
			unsigned long end, phys_addr_t phys,
773
			const struct mem_type *type, bool ng)
774
{
775 776
	pmd_t *p = pmd;

777
#ifndef CONFIG_ARM_LPAE
778
	/*
779 780 781 782 783 784 785
	 * In classic MMU format, puds and pmds are folded in to
	 * the pgds. pmd_offset gives the PGD entry. PGDs refer to a
	 * group of L1 entries making up one logical pointer to
	 * an L2 table (2MB), where as PMDs refer to the individual
	 * L1 entries (1MB). Hence increment to get the correct
	 * offset for odd 1MB sections.
	 * (See arch/arm/include/asm/pgtable-2level.h)
786
	 */
787 788
	if (addr & SECTION_SIZE)
		pmd++;
789
#endif
790
	do {
791
		*pmd = __pmd(phys | type->prot_sect | (ng ? PMD_SECT_nG : 0));
792 793
		phys += SECTION_SIZE;
	} while (pmd++, addr += SECTION_SIZE, addr != end);
794

795
	flush_pmd_entry(p);
796
}
797

798 799
static void __init alloc_init_pmd(pud_t *pud, unsigned long addr,
				      unsigned long end, phys_addr_t phys,
800
				      const struct mem_type *type,
801
				      void *(*alloc)(unsigned long sz), bool ng)
802 803 804 805 806
{
	pmd_t *pmd = pmd_offset(pud, addr);
	unsigned long next;

	do {
807
		/*
808 809
		 * With LPAE, we must loop over to map
		 * all the pmds for the given range.
810
		 */
811 812 813 814 815 816 817 818
		next = pmd_addr_end(addr, end);

		/*
		 * Try a section mapping - addr, next and phys must all be
		 * aligned to a section boundary.
		 */
		if (type->prot_sect &&
				((addr | next | phys) & ~SECTION_MASK) == 0) {
819
			__map_init_section(pmd, addr, next, phys, type, ng);
820 821
		} else {
			alloc_init_pte(pmd, addr, next,
822
				       __phys_to_pfn(phys), type, alloc, ng);
823 824 825 826 827
		}

		phys += next - addr;

	} while (pmd++, addr = next, addr != end);
828 829
}

830
static void __init alloc_init_pud(pgd_t *pgd, unsigned long addr,
831
				  unsigned long end, phys_addr_t phys,
832
				  const struct mem_type *type,
833
				  void *(*alloc)(unsigned long sz), bool ng)
R
Russell King 已提交
834 835 836 837 838 839
{
	pud_t *pud = pud_offset(pgd, addr);
	unsigned long next;

	do {
		next = pud_addr_end(addr, end);
840
		alloc_init_pmd(pud, addr, next, phys, type, alloc, ng);
R
Russell King 已提交
841 842 843 844
		phys += next - addr;
	} while (pud++, addr = next, addr != end);
}

845
#ifndef CONFIG_ARM_LPAE
846 847
static void __init create_36bit_mapping(struct mm_struct *mm,
					struct map_desc *md,
848 849
					const struct mem_type *type,
					bool ng)
850
{
851 852
	unsigned long addr, length, end;
	phys_addr_t phys;
853 854 855
	pgd_t *pgd;

	addr = md->virtual;
856
	phys = __pfn_to_phys(md->pfn);
857 858 859
	length = PAGE_ALIGN(md->length);

	if (!(cpu_architecture() >= CPU_ARCH_ARMv6 || cpu_is_xsc3())) {
R
Russell King 已提交
860
		pr_err("MM: CPU does not support supersection mapping for 0x%08llx at 0x%08lx\n",
861
		       (long long)__pfn_to_phys((u64)md->pfn), addr);
862 863 864 865 866 867 868 869 870 871
		return;
	}

	/* N.B.	ARMv6 supersections are only defined to work with domain 0.
	 *	Since domain assignments can in fact be arbitrary, the
	 *	'domain == 0' check below is required to insure that ARMv6
	 *	supersections are only allocated for domain 0 regardless
	 *	of the actual domain assignments in use.
	 */
	if (type->domain) {
R
Russell King 已提交
872
		pr_err("MM: invalid domain in supersection mapping for 0x%08llx at 0x%08lx\n",
873
		       (long long)__pfn_to_phys((u64)md->pfn), addr);
874 875 876 877
		return;
	}

	if ((addr | length | __pfn_to_phys(md->pfn)) & ~SUPERSECTION_MASK) {
R
Russell King 已提交
878
		pr_err("MM: cannot create mapping for 0x%08llx at 0x%08lx invalid alignment\n",
879
		       (long long)__pfn_to_phys((u64)md->pfn), addr);
880 881 882 883 884 885 886 887 888
		return;
	}

	/*
	 * Shift bits [35:32] of address into bits [23:20] of PMD
	 * (See ARMv6 spec).
	 */
	phys |= (((md->pfn >> (32 - PAGE_SHIFT)) & 0xF) << 20);

889
	pgd = pgd_offset(mm, addr);
890 891
	end = addr + length;
	do {
R
Russell King 已提交
892 893
		pud_t *pud = pud_offset(pgd, addr);
		pmd_t *pmd = pmd_offset(pud, addr);
894 895 896
		int i;

		for (i = 0; i < 16; i++)
897 898
			*pmd++ = __pmd(phys | type->prot_sect | PMD_SECT_SUPER |
				       (ng ? PMD_SECT_nG : 0));
899 900 901 902 903 904

		addr += SUPERSECTION_SIZE;
		phys += SUPERSECTION_SIZE;
		pgd += SUPERSECTION_SIZE >> PGDIR_SHIFT;
	} while (addr != end);
}
905
#endif	/* !CONFIG_ARM_LPAE */
906

907
static void __init __create_mapping(struct mm_struct *mm, struct map_desc *md,
908 909
				    void *(*alloc)(unsigned long sz),
				    bool ng)
910
{
911 912
	unsigned long addr, length, end;
	phys_addr_t phys;
913
	const struct mem_type *type;
914
	pgd_t *pgd;
915

916
	type = &mem_types[md->type];
917

918
#ifndef CONFIG_ARM_LPAE
919 920 921
	/*
	 * Catch 36-bit addresses
	 */
922
	if (md->pfn >= 0x100000) {
923
		create_36bit_mapping(mm, md, type, ng);
924
		return;
925
	}
926
#endif
927

928
	addr = md->virtual & PAGE_MASK;
929
	phys = __pfn_to_phys(md->pfn);
930
	length = PAGE_ALIGN(md->length + (md->virtual & ~PAGE_MASK));
931

932
	if (type->prot_l1 == 0 && ((addr | phys | length) & ~SECTION_MASK)) {
R
Russell King 已提交
933 934
		pr_warn("BUG: map for 0x%08llx at 0x%08lx can not be mapped using pages, ignoring.\n",
			(long long)__pfn_to_phys(md->pfn), addr);
935 936 937
		return;
	}

938
	pgd = pgd_offset(mm, addr);
939 940 941
	end = addr + length;
	do {
		unsigned long next = pgd_addr_end(addr, end);
942

943
		alloc_init_pud(pgd, addr, next, phys, type, alloc, ng);
944

945 946 947
		phys += next - addr;
		addr = next;
	} while (pgd++, addr != end);
948 949
}

950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971
/*
 * Create the page directory entries and any necessary
 * page tables for the mapping specified by `md'.  We
 * are able to cope here with varying sizes and address
 * offsets, and we take full advantage of sections and
 * supersections.
 */
static void __init create_mapping(struct map_desc *md)
{
	if (md->virtual != vectors_base() && md->virtual < TASK_SIZE) {
		pr_warn("BUG: not creating mapping for 0x%08llx at 0x%08lx in user region\n",
			(long long)__pfn_to_phys((u64)md->pfn), md->virtual);
		return;
	}

	if ((md->type == MT_DEVICE || md->type == MT_ROM) &&
	    md->virtual >= PAGE_OFFSET && md->virtual < FIXADDR_START &&
	    (md->virtual < VMALLOC_START || md->virtual >= VMALLOC_END)) {
		pr_warn("BUG: mapping for 0x%08llx at 0x%08lx out of vmalloc space\n",
			(long long)__pfn_to_phys((u64)md->pfn), md->virtual);
	}

972
	__create_mapping(&init_mm, md, early_alloc, false);
973 974
}

975 976 977 978 979 980 981 982 983 984 985 986
void __init create_mapping_late(struct mm_struct *mm, struct map_desc *md,
				bool ng)
{
#ifdef CONFIG_ARM_LPAE
	pud_t *pud = pud_alloc(mm, pgd_offset(mm, md->virtual), md->virtual);
	if (WARN_ON(!pud))
		return;
	pmd_alloc(mm, pud, 0);
#endif
	__create_mapping(mm, md, late_alloc, ng);
}

987 988 989 990 991
/*
 * Create the architecture specific mappings
 */
void __init iotable_init(struct map_desc *io_desc, int nr)
{
992 993
	struct map_desc *md;
	struct vm_struct *vm;
994
	struct static_vm *svm;
995 996 997

	if (!nr)
		return;
998

999
	svm = memblock_alloc(sizeof(*svm) * nr, __alignof__(*svm));
1000 1001 1002
	if (!svm)
		panic("%s: Failed to allocate %zu bytes align=0x%zx\n",
		      __func__, sizeof(*svm) * nr, __alignof__(*svm));
1003 1004 1005

	for (md = io_desc; nr; md++, nr--) {
		create_mapping(md);
1006 1007

		vm = &svm->vm;
1008 1009
		vm->addr = (void *)(md->virtual & PAGE_MASK);
		vm->size = PAGE_ALIGN(md->length + (md->virtual & ~PAGE_MASK));
R
Rob Herring 已提交
1010 1011
		vm->phys_addr = __pfn_to_phys(md->pfn);
		vm->flags = VM_IOREMAP | VM_ARM_STATIC_MAPPING;
1012
		vm->flags |= VM_ARM_MTYPE(md->type);
1013
		vm->caller = iotable_init;
1014
		add_static_vm_early(svm++);
1015
	}
1016 1017
}

R
Rob Herring 已提交
1018 1019 1020 1021
void __init vm_reserve_area_early(unsigned long addr, unsigned long size,
				  void *caller)
{
	struct vm_struct *vm;
1022 1023
	struct static_vm *svm;

1024
	svm = memblock_alloc(sizeof(*svm), __alignof__(*svm));
1025 1026 1027
	if (!svm)
		panic("%s: Failed to allocate %zu bytes align=0x%zx\n",
		      __func__, sizeof(*svm), __alignof__(*svm));
R
Rob Herring 已提交
1028

1029
	vm = &svm->vm;
R
Rob Herring 已提交
1030 1031
	vm->addr = (void *)addr;
	vm->size = size;
1032
	vm->flags = VM_IOREMAP | VM_ARM_EMPTY_MAPPING;
R
Rob Herring 已提交
1033
	vm->caller = caller;
1034
	add_static_vm_early(svm);
R
Rob Herring 已提交
1035 1036
}

1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053
#ifndef CONFIG_ARM_LPAE

/*
 * The Linux PMD is made of two consecutive section entries covering 2MB
 * (see definition in include/asm/pgtable-2level.h).  However a call to
 * create_mapping() may optimize static mappings by using individual
 * 1MB section mappings.  This leaves the actual PMD potentially half
 * initialized if the top or bottom section entry isn't used, leaving it
 * open to problems if a subsequent ioremap() or vmalloc() tries to use
 * the virtual space left free by that unused section entry.
 *
 * Let's avoid the issue by inserting dummy vm entries covering the unused
 * PMD halves once the static mappings are in place.
 */

static void __init pmd_empty_section_gap(unsigned long addr)
{
R
Rob Herring 已提交
1054
	vm_reserve_area_early(addr, SECTION_SIZE, pmd_empty_section_gap);
1055 1056 1057 1058
}

static void __init fill_pmd_gaps(void)
{
1059
	struct static_vm *svm;
1060 1061 1062 1063
	struct vm_struct *vm;
	unsigned long addr, next = 0;
	pmd_t *pmd;

1064 1065
	list_for_each_entry(svm, &static_vmlist, list) {
		vm = &svm->vm;
1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101
		addr = (unsigned long)vm->addr;
		if (addr < next)
			continue;

		/*
		 * Check if this vm starts on an odd section boundary.
		 * If so and the first section entry for this PMD is free
		 * then we block the corresponding virtual address.
		 */
		if ((addr & ~PMD_MASK) == SECTION_SIZE) {
			pmd = pmd_off_k(addr);
			if (pmd_none(*pmd))
				pmd_empty_section_gap(addr & PMD_MASK);
		}

		/*
		 * Then check if this vm ends on an odd section boundary.
		 * If so and the second section entry for this PMD is empty
		 * then we block the corresponding virtual address.
		 */
		addr += vm->size;
		if ((addr & ~PMD_MASK) == SECTION_SIZE) {
			pmd = pmd_off_k(addr) + 1;
			if (pmd_none(*pmd))
				pmd_empty_section_gap(addr);
		}

		/* no need to look at any vm entry until we hit the next PMD */
		next = (addr + PMD_SIZE - 1) & PMD_MASK;
	}
}

#else
#define fill_pmd_gaps() do { } while (0)
#endif

R
Rob Herring 已提交
1102 1103 1104
#if defined(CONFIG_PCI) && !defined(CONFIG_NEED_MACH_IO_H)
static void __init pci_reserve_io(void)
{
1105
	struct static_vm *svm;
R
Rob Herring 已提交
1106

1107 1108 1109
	svm = find_static_vm_vaddr((void *)PCI_IO_VIRT_BASE);
	if (svm)
		return;
R
Rob Herring 已提交
1110 1111 1112 1113 1114 1115 1116

	vm_reserve_area_early(PCI_IO_VIRT_BASE, SZ_2M, pci_reserve_io);
}
#else
#define pci_reserve_io() do { } while (0)
#endif

R
Rob Herring 已提交
1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128
#ifdef CONFIG_DEBUG_LL
void __init debug_ll_io_init(void)
{
	struct map_desc map;

	debug_ll_addr(&map.pfn, &map.virtual);
	if (!map.pfn || !map.virtual)
		return;
	map.pfn = __phys_to_pfn(map.pfn);
	map.virtual &= PAGE_MASK;
	map.length = PAGE_SIZE;
	map.type = MT_DEVICE;
1129
	iotable_init(&map, 1);
R
Rob Herring 已提交
1130 1131 1132
}
#endif

1133 1134
static void * __initdata vmalloc_min =
	(void *)(VMALLOC_END - (240 << 20) - VMALLOC_OFFSET);
1135 1136 1137 1138

/*
 * vmalloc=size forces the vmalloc area to be exactly 'size'
 * bytes. This can be used to increase (or decrease) the vmalloc
1139
 * area - the default is 240m.
1140
 */
1141
static int __init early_vmalloc(char *arg)
1142
{
R
Russell King 已提交
1143
	unsigned long vmalloc_reserve = memparse(arg, NULL);
1144 1145 1146

	if (vmalloc_reserve < SZ_16M) {
		vmalloc_reserve = SZ_16M;
R
Russell King 已提交
1147
		pr_warn("vmalloc area too small, limiting to %luMB\n",
1148 1149
			vmalloc_reserve >> 20);
	}
1150 1151 1152

	if (vmalloc_reserve > VMALLOC_END - (PAGE_OFFSET + SZ_32M)) {
		vmalloc_reserve = VMALLOC_END - (PAGE_OFFSET + SZ_32M);
R
Russell King 已提交
1153
		pr_warn("vmalloc area is too big, limiting to %luMB\n",
1154 1155
			vmalloc_reserve >> 20);
	}
R
Russell King 已提交
1156 1157

	vmalloc_min = (void *)(VMALLOC_END - vmalloc_reserve);
1158
	return 0;
1159
}
1160
early_param("vmalloc", early_vmalloc);
1161

1162
phys_addr_t arm_lowmem_limit __initdata = 0;
1163

1164
void __init adjust_lowmem_bounds(void)
1165
{
1166
	phys_addr_t memblock_limit = 0;
1167
	u64 vmalloc_limit;
L
Laura Abbott 已提交
1168
	struct memblock_region *reg;
1169
	phys_addr_t lowmem_limit = 0;
1170

1171 1172 1173 1174 1175 1176 1177 1178 1179
	/*
	 * Let's use our own (unoptimized) equivalent of __pa() that is
	 * not affected by wrap-arounds when sizeof(phys_addr_t) == 4.
	 * The result is used as the upper bound on physical memory address
	 * and may itself be outside the valid range for which phys_addr_t
	 * and therefore __pa() is defined.
	 */
	vmalloc_limit = (u64)(uintptr_t)vmalloc_min - PAGE_OFFSET + PHYS_OFFSET;

L
Laura Abbott 已提交
1180 1181 1182
	for_each_memblock(memory, reg) {
		phys_addr_t block_start = reg->base;
		phys_addr_t block_end = reg->base + reg->size;
1183

1184
		if (reg->base < vmalloc_limit) {
1185
			if (block_end > lowmem_limit)
1186 1187 1188 1189 1190 1191
				/*
				 * Compare as u64 to ensure vmalloc_limit does
				 * not get truncated. block_end should always
				 * fit in phys_addr_t so there should be no
				 * issue with assignment.
				 */
1192
				lowmem_limit = min_t(u64,
1193 1194
							 vmalloc_limit,
							 block_end);
1195 1196

			/*
1197
			 * Find the first non-pmd-aligned page, and point
1198
			 * memblock_limit at it. This relies on rounding the
1199 1200
			 * limit down to be pmd-aligned, which happens at the
			 * end of this function.
1201 1202
			 *
			 * With this algorithm, the start or end of almost any
1203 1204
			 * bank can be non-pmd-aligned. The only exception is
			 * that the start of the bank 0 must be section-
1205 1206 1207 1208 1209
			 * aligned, since otherwise memory would need to be
			 * allocated when mapping the start of bank 0, which
			 * occurs before any free memory is mapped.
			 */
			if (!memblock_limit) {
1210
				if (!IS_ALIGNED(block_start, PMD_SIZE))
L
Laura Abbott 已提交
1211
					memblock_limit = block_start;
1212
				else if (!IS_ALIGNED(block_end, PMD_SIZE))
1213
					memblock_limit = lowmem_limit;
1214
			}
1215 1216 1217

		}
	}
L
Laura Abbott 已提交
1218

1219 1220
	arm_lowmem_limit = lowmem_limit;

1221
	high_memory = __va(arm_lowmem_limit - 1) + 1;
1222

1223 1224 1225
	if (!memblock_limit)
		memblock_limit = arm_lowmem_limit;

1226
	/*
1227
	 * Round the memblock limit down to a pmd size.  This
1228
	 * helps to ensure that we will allocate memory from the
1229
	 * last full pmd, which should be mapped.
1230
	 */
1231
	memblock_limit = round_down(memblock_limit, PMD_SIZE);
1232

1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244
	if (!IS_ENABLED(CONFIG_HIGHMEM) || cache_is_vipt_aliasing()) {
		if (memblock_end_of_DRAM() > arm_lowmem_limit) {
			phys_addr_t end = memblock_end_of_DRAM();

			pr_notice("Ignoring RAM at %pa-%pa\n",
				  &memblock_limit, &end);
			pr_notice("Consider using a HIGHMEM enabled kernel.\n");

			memblock_remove(memblock_limit, end - memblock_limit);
		}
	}

1245
	memblock_set_current_limit(memblock_limit);
1246 1247
}

1248
static inline void prepare_page_table(void)
1249 1250
{
	unsigned long addr;
1251
	phys_addr_t end;
1252 1253 1254 1255

	/*
	 * Clear out all the mappings below the kernel image.
	 */
1256
	for (addr = 0; addr < MODULES_VADDR; addr += PMD_SIZE)
1257 1258 1259 1260
		pmd_clear(pmd_off_k(addr));

#ifdef CONFIG_XIP_KERNEL
	/* The XIP kernel is mapped in the module area -- skip over it */
1261
	addr = ((unsigned long)_exiprom + PMD_SIZE - 1) & PMD_MASK;
1262
#endif
1263
	for ( ; addr < PAGE_OFFSET; addr += PMD_SIZE)
1264 1265
		pmd_clear(pmd_off_k(addr));

1266 1267 1268 1269
	/*
	 * Find the end of the first block of lowmem.
	 */
	end = memblock.memory.regions[0].base + memblock.memory.regions[0].size;
1270 1271
	if (end >= arm_lowmem_limit)
		end = arm_lowmem_limit;
1272

1273 1274
	/*
	 * Clear out all the kernel space mappings, except for the first
1275
	 * memory bank, up to the vmalloc region.
1276
	 */
1277
	for (addr = __phys_to_virt(end);
1278
	     addr < VMALLOC_START; addr += PMD_SIZE)
1279 1280 1281
		pmd_clear(pmd_off_k(addr));
}

1282 1283 1284 1285 1286
#ifdef CONFIG_ARM_LPAE
/* the first page is reserved for pgd */
#define SWAPPER_PG_DIR_SIZE	(PAGE_SIZE + \
				 PTRS_PER_PGD * PTRS_PER_PMD * sizeof(pmd_t))
#else
1287
#define SWAPPER_PG_DIR_SIZE	(PTRS_PER_PGD * sizeof(pgd_t))
1288
#endif
1289

1290
/*
R
Russell King 已提交
1291
 * Reserve the special regions of memory
1292
 */
R
Russell King 已提交
1293
void __init arm_mm_memblock_reserve(void)
1294 1295 1296 1297 1298
{
	/*
	 * Reserve the page tables.  These are already in use,
	 * and can only be in node 0.
	 */
1299
	memblock_reserve(__pa(swapper_pg_dir), SWAPPER_PG_DIR_SIZE);
1300 1301 1302 1303 1304 1305

#ifdef CONFIG_SA1111
	/*
	 * Because of the SA1111 DMA bug, we want to preserve our
	 * precious DMA-able memory...
	 */
R
Russell King 已提交
1306
	memblock_reserve(PHYS_OFFSET, __pa(swapper_pg_dir) - PHYS_OFFSET);
1307 1308 1309 1310
#endif
}

/*
1311
 * Set up the device mappings.  Since we clear out the page tables for all
1312 1313 1314 1315
 * mappings above VMALLOC_START, except early fixmap, we might remove debug
 * device mappings.  This means earlycon can be used to debug this function
 * Any other function or debugging method which may touch any device _will_
 * crash the kernel.
1316
 */
1317
static void __init devicemaps_init(const struct machine_desc *mdesc)
1318 1319 1320
{
	struct map_desc map;
	unsigned long addr;
1321
	void *vectors;
1322 1323 1324 1325

	/*
	 * Allocate the vector page early.
	 */
R
Russell King 已提交
1326
	vectors = early_alloc(PAGE_SIZE * 2);
1327 1328

	early_trap_init(vectors);
1329

1330 1331 1332 1333
	/*
	 * Clear page table except top pmd used by early fixmaps
	 */
	for (addr = VMALLOC_START; addr < (FIXADDR_TOP & PMD_MASK); addr += PMD_SIZE)
1334 1335 1336 1337 1338 1339 1340 1341
		pmd_clear(pmd_off_k(addr));

	/*
	 * Map the kernel if it is XIP.
	 * It is always first in the modulearea.
	 */
#ifdef CONFIG_XIP_KERNEL
	map.pfn = __phys_to_pfn(CONFIG_XIP_PHYS_ADDR & SECTION_MASK);
1342
	map.virtual = MODULES_VADDR;
1343
	map.length = ((unsigned long)_exiprom - map.virtual + ~SECTION_MASK) & SECTION_MASK;
1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370
	map.type = MT_ROM;
	create_mapping(&map);
#endif

	/*
	 * Map the cache flushing regions.
	 */
#ifdef FLUSH_BASE
	map.pfn = __phys_to_pfn(FLUSH_BASE_PHYS);
	map.virtual = FLUSH_BASE;
	map.length = SZ_1M;
	map.type = MT_CACHECLEAN;
	create_mapping(&map);
#endif
#ifdef FLUSH_BASE_MINICACHE
	map.pfn = __phys_to_pfn(FLUSH_BASE_PHYS + SZ_1M);
	map.virtual = FLUSH_BASE_MINICACHE;
	map.length = SZ_1M;
	map.type = MT_MINICLEAN;
	create_mapping(&map);
#endif

	/*
	 * Create a mapping for the machine vectors at the high-vectors
	 * location (0xffff0000).  If we aren't using high-vectors, also
	 * create a mapping at the low-vectors virtual address.
	 */
1371
	map.pfn = __phys_to_pfn(virt_to_phys(vectors));
1372 1373
	map.virtual = 0xffff0000;
	map.length = PAGE_SIZE;
1374
#ifdef CONFIG_KUSER_HELPERS
1375
	map.type = MT_HIGH_VECTORS;
1376 1377 1378
#else
	map.type = MT_LOW_VECTORS;
#endif
1379 1380 1381 1382
	create_mapping(&map);

	if (!vectors_high()) {
		map.virtual = 0;
R
Russell King 已提交
1383
		map.length = PAGE_SIZE * 2;
1384 1385 1386 1387
		map.type = MT_LOW_VECTORS;
		create_mapping(&map);
	}

R
Russell King 已提交
1388 1389 1390 1391 1392 1393 1394
	/* Now create a kernel read-only mapping */
	map.pfn += 1;
	map.virtual = 0xffff0000 + PAGE_SIZE;
	map.length = PAGE_SIZE;
	map.type = MT_LOW_VECTORS;
	create_mapping(&map);

1395 1396 1397 1398 1399
	/*
	 * Ask the machine support to map in the statically mapped devices.
	 */
	if (mdesc->map_io)
		mdesc->map_io();
1400 1401
	else
		debug_ll_io_init();
1402
	fill_pmd_gaps();
1403

R
Rob Herring 已提交
1404 1405 1406
	/* Reserve fixed i/o space in VMALLOC region */
	pci_reserve_io();

1407 1408 1409 1410 1411 1412 1413 1414
	/*
	 * Finally flush the caches and tlb to ensure that we're in a
	 * consistent state wrt the writebuffer.  This also ensures that
	 * any write-allocated cache lines in the vector page are written
	 * back.  After this point, we can start to touch devices again.
	 */
	local_flush_tlb_all();
	flush_cache_all();
1415 1416

	/* Enable asynchronous aborts */
1417
	early_abt_enable();
1418 1419
}

N
Nicolas Pitre 已提交
1420 1421 1422
static void __init kmap_init(void)
{
#ifdef CONFIG_HIGHMEM
R
Russell King 已提交
1423 1424
	pkmap_page_table = early_pte_alloc(pmd_off_k(PKMAP_BASE),
		PKMAP_BASE, _PAGE_KERNEL_TABLE);
N
Nicolas Pitre 已提交
1425
#endif
R
Rob Herring 已提交
1426 1427 1428

	early_pte_alloc(pmd_off_k(FIXADDR_START), FIXADDR_START,
			_PAGE_KERNEL_TABLE);
N
Nicolas Pitre 已提交
1429 1430
}

1431 1432
static void __init map_lowmem(void)
{
1433
	struct memblock_region *reg;
1434
	phys_addr_t kernel_x_start = round_down(__pa(KERNEL_START), SECTION_SIZE);
1435
	phys_addr_t kernel_x_end = round_up(__pa(__init_end), SECTION_SIZE);
1436 1437

	/* Map all the lowmem memory banks. */
1438 1439 1440 1441 1442
	for_each_memblock(memory, reg) {
		phys_addr_t start = reg->base;
		phys_addr_t end = start + reg->size;
		struct map_desc map;

1443 1444 1445
		if (memblock_is_nomap(reg))
			continue;

1446 1447
		if (end > arm_lowmem_limit)
			end = arm_lowmem_limit;
1448 1449 1450
		if (start >= end)
			break;

1451
		if (end < kernel_x_start) {
1452 1453 1454 1455
			map.pfn = __phys_to_pfn(start);
			map.virtual = __phys_to_virt(start);
			map.length = end - start;
			map.type = MT_MEMORY_RWX;
1456

1457 1458 1459 1460 1461 1462 1463
			create_mapping(&map);
		} else if (start >= kernel_x_end) {
			map.pfn = __phys_to_pfn(start);
			map.virtual = __phys_to_virt(start);
			map.length = end - start;
			map.type = MT_MEMORY_RW;

1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491
			create_mapping(&map);
		} else {
			/* This better cover the entire kernel */
			if (start < kernel_x_start) {
				map.pfn = __phys_to_pfn(start);
				map.virtual = __phys_to_virt(start);
				map.length = kernel_x_start - start;
				map.type = MT_MEMORY_RW;

				create_mapping(&map);
			}

			map.pfn = __phys_to_pfn(kernel_x_start);
			map.virtual = __phys_to_virt(kernel_x_start);
			map.length = kernel_x_end - kernel_x_start;
			map.type = MT_MEMORY_RWX;

			create_mapping(&map);

			if (kernel_x_end < end) {
				map.pfn = __phys_to_pfn(kernel_x_end);
				map.virtual = __phys_to_virt(kernel_x_end);
				map.length = end - kernel_x_end;
				map.type = MT_MEMORY_RW;

				create_mapping(&map);
			}
		}
1492 1493 1494
	}
}

1495 1496 1497 1498 1499
#ifdef CONFIG_ARM_PV_FIXUP
extern unsigned long __atags_pointer;
typedef void pgtables_remap(long long offset, unsigned long pgd, void *bdata);
pgtables_remap lpae_pgtables_remap_asm;

1500 1501 1502 1503
/*
 * early_paging_init() recreates boot time page table setup, allowing machines
 * to switch over to a high (>4G) address space on LPAE systems
 */
1504
static void __init early_paging_init(const struct machine_desc *mdesc)
1505
{
1506 1507 1508
	pgtables_remap *lpae_pgtables_remap;
	unsigned long pa_pgd;
	unsigned int cr, ttbcr;
1509
	long long offset;
1510
	void *boot_data;
1511

1512
	if (!mdesc->pv_fixup)
1513 1514
		return;

1515
	offset = mdesc->pv_fixup();
1516 1517
	if (offset == 0)
		return;
1518

1519 1520 1521 1522 1523 1524 1525 1526 1527 1528
	/*
	 * Get the address of the remap function in the 1:1 identity
	 * mapping setup by the early page table assembly code.  We
	 * must get this prior to the pv update.  The following barrier
	 * ensures that this is complete before we fixup any P:V offsets.
	 */
	lpae_pgtables_remap = (pgtables_remap *)(unsigned long)__pa(lpae_pgtables_remap_asm);
	pa_pgd = __pa(swapper_pg_dir);
	boot_data = __va(__atags_pointer);
	barrier();
1529

1530 1531
	pr_info("Switching physical address space to 0x%08llx\n",
		(u64)PHYS_OFFSET + offset);
1532

1533 1534 1535
	/* Re-set the phys pfn offset, and the pv offset */
	__pv_offset += offset;
	__pv_phys_pfn_offset += PFN_DOWN(offset);
1536 1537 1538 1539 1540 1541

	/* Run the patch stub to update the constants */
	fixup_pv_table(&__pv_table_begin,
		(&__pv_table_end - &__pv_table_begin) << 2);

	/*
1542 1543 1544 1545 1546 1547 1548
	 * We changing not only the virtual to physical mapping, but also
	 * the physical addresses used to access memory.  We need to flush
	 * all levels of cache in the system with caching disabled to
	 * ensure that all data is written back, and nothing is prefetched
	 * into the caches.  We also need to prevent the TLB walkers
	 * allocating into the caches too.  Note that this is ARMv7 LPAE
	 * specific.
1549
	 */
1550 1551 1552 1553 1554
	cr = get_cr();
	set_cr(cr & ~(CR_I | CR_C));
	asm("mrc p15, 0, %0, c2, c0, 2" : "=r" (ttbcr));
	asm volatile("mcr p15, 0, %0, c2, c0, 2"
		: : "r" (ttbcr & ~(3 << 8 | 3 << 10)));
1555
	flush_cache_all();
1556 1557

	/*
1558 1559 1560 1561
	 * Fixup the page tables - this must be in the idmap region as
	 * we need to disable the MMU to do this safely, and hence it
	 * needs to be assembly.  It's fairly simple, as we're using the
	 * temporary tables setup by the initial assembly code.
1562
	 */
1563
	lpae_pgtables_remap(offset, pa_pgd, boot_data);
1564

1565 1566 1567
	/* Re-enable the caches and cacheable TLB walks */
	asm volatile("mcr p15, 0, %0, c2, c0, 2" : : "r" (ttbcr));
	set_cr(cr);
1568 1569 1570 1571
}

#else

1572
static void __init early_paging_init(const struct machine_desc *mdesc)
1573
{
1574 1575
	long long offset;

1576
	if (!mdesc->pv_fixup)
1577 1578
		return;

1579
	offset = mdesc->pv_fixup();
1580 1581 1582 1583 1584 1585 1586
	if (offset == 0)
		return;

	pr_crit("Physical address space modification is only to support Keystone2.\n");
	pr_crit("Please enable ARM_LPAE and ARM_PATCH_PHYS_VIRT support to use this\n");
	pr_crit("feature. Your kernel may crash now, have a good day.\n");
	add_taint(TAINT_CPU_OUT_OF_SPEC, LOCKDEP_STILL_OK);
1587 1588 1589 1590
}

#endif

1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619
static void __init early_fixmap_shutdown(void)
{
	int i;
	unsigned long va = fix_to_virt(__end_of_permanent_fixed_addresses - 1);

	pte_offset_fixmap = pte_offset_late_fixmap;
	pmd_clear(fixmap_pmd(va));
	local_flush_tlb_kernel_page(va);

	for (i = 0; i < __end_of_permanent_fixed_addresses; i++) {
		pte_t *pte;
		struct map_desc map;

		map.virtual = fix_to_virt(i);
		pte = pte_offset_early_fixmap(pmd_off_k(map.virtual), map.virtual);

		/* Only i/o device mappings are supported ATM */
		if (pte_none(*pte) ||
		    (pte_val(*pte) & L_PTE_MT_MASK) != L_PTE_MT_DEV_SHARED)
			continue;

		map.pfn = pte_pfn(*pte);
		map.type = MT_DEVICE;
		map.length = PAGE_SIZE;

		create_mapping(&map);
	}
}

1620 1621 1622 1623
/*
 * paging_init() sets up the page tables, initialises the zone memory
 * maps, and sets up the zero page, bad page and bad page tables.
 */
1624
void __init paging_init(const struct machine_desc *mdesc)
1625 1626 1627
{
	void *zero_page;

1628
	prepare_page_table();
1629
	map_lowmem();
1630
	memblock_set_current_limit(arm_lowmem_limit);
1631
	dma_contiguous_remap();
1632
	early_fixmap_shutdown();
1633
	devicemaps_init(mdesc);
N
Nicolas Pitre 已提交
1634
	kmap_init();
1635
	tcm_init();
1636 1637 1638

	top_pmd = pmd_off_k(0xffff0000);

R
Russell King 已提交
1639 1640
	/* allocate the zero page. */
	zero_page = early_alloc(PAGE_SIZE);
R
Russell King 已提交
1641

1642
	bootmem_init();
R
Russell King 已提交
1643

1644
	empty_zero_page = virt_to_page(zero_page);
1645
	__flush_dcache_page(NULL, empty_zero_page);
M
Marc Zyngier 已提交
1646 1647 1648

	/* Compute the virt/idmap offset, mostly for the sake of KVM */
	kimage_voffset = (unsigned long)&kimage_voffset - virt_to_idmap(&kimage_voffset);
1649
}
1650 1651 1652 1653 1654 1655

void __init early_mm_init(const struct machine_desc *mdesc)
{
	build_mem_type_table();
	early_paging_init(mdesc);
}