mmu.c 32.6 KB
Newer Older
1 2 3 4 5 6 7 8 9
/*
 *  linux/arch/arm/mm/mmu.c
 *
 *  Copyright (C) 1995-2005 Russell King
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
 */
10
#include <linux/module.h>
11 12 13 14 15
#include <linux/kernel.h>
#include <linux/errno.h>
#include <linux/init.h>
#include <linux/mman.h>
#include <linux/nodemask.h>
R
Russell King 已提交
16
#include <linux/memblock.h>
17
#include <linux/fs.h>
18
#include <linux/vmalloc.h>
19

20
#include <asm/cp15.h>
21
#include <asm/cputype.h>
R
Russell King 已提交
22
#include <asm/sections.h>
23
#include <asm/cachetype.h>
24 25
#include <asm/setup.h>
#include <asm/sizes.h>
26
#include <asm/smp_plat.h>
27
#include <asm/tlb.h>
N
Nicolas Pitre 已提交
28
#include <asm/highmem.h>
29
#include <asm/system_info.h>
30
#include <asm/traps.h>
31 32 33 34 35 36 37 38 39 40 41

#include <asm/mach/arch.h>
#include <asm/mach/map.h>

#include "mm.h"

/*
 * empty_zero_page is a special page that is used for
 * zero-initialized data and COW.
 */
struct page *empty_zero_page;
42
EXPORT_SYMBOL(empty_zero_page);
43 44 45 46 47 48

/*
 * The pmd table for the upper-most set of pages.
 */
pmd_t *top_pmd;

49 50 51 52 53 54 55 56
#define CPOLICY_UNCACHED	0
#define CPOLICY_BUFFERED	1
#define CPOLICY_WRITETHROUGH	2
#define CPOLICY_WRITEBACK	3
#define CPOLICY_WRITEALLOC	4

static unsigned int cachepolicy __initdata = CPOLICY_WRITEBACK;
static unsigned int ecc_mask __initdata = 0;
57
pgprot_t pgprot_user;
58 59
pgprot_t pgprot_kernel;

60
EXPORT_SYMBOL(pgprot_user);
61 62 63 64 65
EXPORT_SYMBOL(pgprot_kernel);

struct cachepolicy {
	const char	policy[16];
	unsigned int	cr_mask;
66
	pmdval_t	pmd;
67
	pteval_t	pte;
68 69 70 71 72 73 74
};

static struct cachepolicy cache_policies[] __initdata = {
	{
		.policy		= "uncached",
		.cr_mask	= CR_W|CR_C,
		.pmd		= PMD_SECT_UNCACHED,
75
		.pte		= L_PTE_MT_UNCACHED,
76 77 78 79
	}, {
		.policy		= "buffered",
		.cr_mask	= CR_C,
		.pmd		= PMD_SECT_BUFFERED,
80
		.pte		= L_PTE_MT_BUFFERABLE,
81 82 83 84
	}, {
		.policy		= "writethrough",
		.cr_mask	= 0,
		.pmd		= PMD_SECT_WT,
85
		.pte		= L_PTE_MT_WRITETHROUGH,
86 87 88 89
	}, {
		.policy		= "writeback",
		.cr_mask	= 0,
		.pmd		= PMD_SECT_WB,
90
		.pte		= L_PTE_MT_WRITEBACK,
91 92 93 94
	}, {
		.policy		= "writealloc",
		.cr_mask	= 0,
		.pmd		= PMD_SECT_WBWA,
95
		.pte		= L_PTE_MT_WRITEALLOC,
96 97 98 99
	}
};

/*
S
Simon Arlott 已提交
100
 * These are useful for identifying cache coherency
101 102 103 104
 * problems by allowing the cache or the cache and
 * writebuffer to be turned off.  (Note: the write
 * buffer should not be on and the cache off).
 */
105
static int __init early_cachepolicy(char *p)
106 107 108 109 110 111
{
	int i;

	for (i = 0; i < ARRAY_SIZE(cache_policies); i++) {
		int len = strlen(cache_policies[i].policy);

112
		if (memcmp(p, cache_policies[i].policy, len) == 0) {
113 114 115 116 117 118 119 120
			cachepolicy = i;
			cr_alignment &= ~cache_policies[i].cr_mask;
			cr_no_alignment &= ~cache_policies[i].cr_mask;
			break;
		}
	}
	if (i == ARRAY_SIZE(cache_policies))
		printk(KERN_ERR "ERROR: unknown or unsupported cache policy\n");
121 122 123 124 125 126 127
	/*
	 * This restriction is partly to do with the way we boot; it is
	 * unpredictable to have memory mapped using two different sets of
	 * memory attributes (shared, type, and cache attribs).  We can not
	 * change these attributes once the initial assembly has setup the
	 * page tables.
	 */
128 129 130 131
	if (cpu_architecture() >= CPU_ARCH_ARMv6) {
		printk(KERN_WARNING "Only cachepolicy=writeback supported on ARMv6 and later\n");
		cachepolicy = CPOLICY_WRITEBACK;
	}
132 133
	flush_cache_all();
	set_cr(cr_alignment);
134
	return 0;
135
}
136
early_param("cachepolicy", early_cachepolicy);
137

138
static int __init early_nocache(char *__unused)
139 140 141
{
	char *p = "buffered";
	printk(KERN_WARNING "nocache is deprecated; use cachepolicy=%s\n", p);
142 143
	early_cachepolicy(p);
	return 0;
144
}
145
early_param("nocache", early_nocache);
146

147
static int __init early_nowrite(char *__unused)
148 149 150
{
	char *p = "uncached";
	printk(KERN_WARNING "nowb is deprecated; use cachepolicy=%s\n", p);
151 152
	early_cachepolicy(p);
	return 0;
153
}
154
early_param("nowb", early_nowrite);
155

156
#ifndef CONFIG_ARM_LPAE
157
static int __init early_ecc(char *p)
158
{
159
	if (memcmp(p, "on", 2) == 0)
160
		ecc_mask = PMD_PROTECTION;
161
	else if (memcmp(p, "off", 3) == 0)
162
		ecc_mask = 0;
163
	return 0;
164
}
165
early_param("ecc", early_ecc);
166
#endif
167 168 169 170 171 172 173 174 175 176

static int __init noalign_setup(char *__unused)
{
	cr_alignment &= ~CR_A;
	cr_no_alignment &= ~CR_A;
	set_cr(cr_alignment);
	return 1;
}
__setup("noalign", noalign_setup);

177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196
#ifndef CONFIG_SMP
void adjust_cr(unsigned long mask, unsigned long set)
{
	unsigned long flags;

	mask &= ~CR_A;

	set &= mask;

	local_irq_save(flags);

	cr_no_alignment = (cr_no_alignment & ~mask) | set;
	cr_alignment = (cr_alignment & ~mask) | set;

	set_cr((get_cr() & ~mask) | set);

	local_irq_restore(flags);
}
#endif

197
#define PROT_PTE_DEVICE		L_PTE_PRESENT|L_PTE_YOUNG|L_PTE_DIRTY|L_PTE_XN
198
#define PROT_SECT_DEVICE	PMD_TYPE_SECT|PMD_SECT_AP_WRITE
199

200
static struct mem_type mem_types[] = {
201
	[MT_DEVICE] = {		  /* Strongly ordered / ARMv6 shared device */
202 203
		.prot_pte	= PROT_PTE_DEVICE | L_PTE_MT_DEV_SHARED |
				  L_PTE_SHARED,
204
		.prot_l1	= PMD_TYPE_TABLE,
205
		.prot_sect	= PROT_SECT_DEVICE | PMD_SECT_S,
206 207 208
		.domain		= DOMAIN_IO,
	},
	[MT_DEVICE_NONSHARED] = { /* ARMv6 non-shared device */
209
		.prot_pte	= PROT_PTE_DEVICE | L_PTE_MT_DEV_NONSHARED,
210
		.prot_l1	= PMD_TYPE_TABLE,
211
		.prot_sect	= PROT_SECT_DEVICE,
212 213 214
		.domain		= DOMAIN_IO,
	},
	[MT_DEVICE_CACHED] = {	  /* ioremap_cached */
215
		.prot_pte	= PROT_PTE_DEVICE | L_PTE_MT_DEV_CACHED,
216 217 218 219
		.prot_l1	= PMD_TYPE_TABLE,
		.prot_sect	= PROT_SECT_DEVICE | PMD_SECT_WB,
		.domain		= DOMAIN_IO,
	},	
220
	[MT_DEVICE_WC] = {	/* ioremap_wc */
221
		.prot_pte	= PROT_PTE_DEVICE | L_PTE_MT_DEV_WC,
222
		.prot_l1	= PMD_TYPE_TABLE,
223
		.prot_sect	= PROT_SECT_DEVICE,
224
		.domain		= DOMAIN_IO,
225
	},
226 227 228 229 230 231
	[MT_UNCACHED] = {
		.prot_pte	= PROT_PTE_DEVICE,
		.prot_l1	= PMD_TYPE_TABLE,
		.prot_sect	= PMD_TYPE_SECT | PMD_SECT_XN,
		.domain		= DOMAIN_IO,
	},
232
	[MT_CACHECLEAN] = {
233
		.prot_sect = PMD_TYPE_SECT | PMD_SECT_XN,
234 235
		.domain    = DOMAIN_KERNEL,
	},
236
#ifndef CONFIG_ARM_LPAE
237
	[MT_MINICLEAN] = {
238
		.prot_sect = PMD_TYPE_SECT | PMD_SECT_XN | PMD_SECT_MINICACHE,
239 240
		.domain    = DOMAIN_KERNEL,
	},
241
#endif
242 243
	[MT_LOW_VECTORS] = {
		.prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
244
				L_PTE_RDONLY,
245 246 247 248 249
		.prot_l1   = PMD_TYPE_TABLE,
		.domain    = DOMAIN_USER,
	},
	[MT_HIGH_VECTORS] = {
		.prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
250
				L_PTE_USER | L_PTE_RDONLY,
251 252 253 254
		.prot_l1   = PMD_TYPE_TABLE,
		.domain    = DOMAIN_USER,
	},
	[MT_MEMORY] = {
255
		.prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY,
256
		.prot_l1   = PMD_TYPE_TABLE,
257
		.prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE,
258 259 260
		.domain    = DOMAIN_KERNEL,
	},
	[MT_ROM] = {
261
		.prot_sect = PMD_TYPE_SECT,
262 263
		.domain    = DOMAIN_KERNEL,
	},
264
	[MT_MEMORY_NONCACHED] = {
265
		.prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
266
				L_PTE_MT_BUFFERABLE,
267
		.prot_l1   = PMD_TYPE_TABLE,
268 269 270
		.prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE,
		.domain    = DOMAIN_KERNEL,
	},
271
	[MT_MEMORY_DTCM] = {
272
		.prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
273
				L_PTE_XN,
274 275 276
		.prot_l1   = PMD_TYPE_TABLE,
		.prot_sect = PMD_TYPE_SECT | PMD_SECT_XN,
		.domain    = DOMAIN_KERNEL,
277 278
	},
	[MT_MEMORY_ITCM] = {
279
		.prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY,
280
		.prot_l1   = PMD_TYPE_TABLE,
281
		.domain    = DOMAIN_KERNEL,
282
	},
283 284 285 286 287 288 289 290
	[MT_MEMORY_SO] = {
		.prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
				L_PTE_MT_UNCACHED,
		.prot_l1   = PMD_TYPE_TABLE,
		.prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE | PMD_SECT_S |
				PMD_SECT_UNCACHED | PMD_SECT_XN,
		.domain    = DOMAIN_KERNEL,
	},
291 292 293 294 295
	[MT_MEMORY_DMA_READY] = {
		.prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY,
		.prot_l1   = PMD_TYPE_TABLE,
		.domain    = DOMAIN_KERNEL,
	},
296 297
};

298 299 300 301
const struct mem_type *get_mem_type(unsigned int type)
{
	return type < ARRAY_SIZE(mem_types) ? &mem_types[type] : NULL;
}
302
EXPORT_SYMBOL(get_mem_type);
303

304 305 306 307 308 309 310
/*
 * Adjust the PMD section entries according to the CPU in use.
 */
static void __init build_mem_type_table(void)
{
	struct cachepolicy *cp;
	unsigned int cr = get_cr();
311
	pteval_t user_pgprot, kern_pgprot, vecs_pgprot;
312 313 314
	int cpu_arch = cpu_architecture();
	int i;

315
	if (cpu_arch < CPU_ARCH_ARMv6) {
316
#if defined(CONFIG_CPU_DCACHE_DISABLE)
317 318
		if (cachepolicy > CPOLICY_BUFFERED)
			cachepolicy = CPOLICY_BUFFERED;
319
#elif defined(CONFIG_CPU_DCACHE_WRITETHROUGH)
320 321
		if (cachepolicy > CPOLICY_WRITETHROUGH)
			cachepolicy = CPOLICY_WRITETHROUGH;
322
#endif
323
	}
324 325 326 327 328
	if (cpu_arch < CPU_ARCH_ARMv5) {
		if (cachepolicy >= CPOLICY_WRITEALLOC)
			cachepolicy = CPOLICY_WRITEBACK;
		ecc_mask = 0;
	}
329 330
	if (is_smp())
		cachepolicy = CPOLICY_WRITEALLOC;
331

332
	/*
333 334 335
	 * Strip out features not present on earlier architectures.
	 * Pre-ARMv5 CPUs don't have TEX bits.  Pre-ARMv6 CPUs or those
	 * without extended page tables don't have the 'Shared' bit.
336
	 */
337 338 339 340 341 342
	if (cpu_arch < CPU_ARCH_ARMv5)
		for (i = 0; i < ARRAY_SIZE(mem_types); i++)
			mem_types[i].prot_sect &= ~PMD_SECT_TEX(7);
	if ((cpu_arch < CPU_ARCH_ARMv6 || !(cr & CR_XP)) && !cpu_is_xsc3())
		for (i = 0; i < ARRAY_SIZE(mem_types); i++)
			mem_types[i].prot_sect &= ~PMD_SECT_S;
343 344

	/*
345 346 347
	 * ARMv5 and lower, bit 4 must be set for page tables (was: cache
	 * "update-able on write" bit on ARM610).  However, Xscale and
	 * Xscale3 require this bit to be cleared.
348
	 */
349
	if (cpu_is_xscale() || cpu_is_xsc3()) {
350
		for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
351
			mem_types[i].prot_sect &= ~PMD_BIT4;
352 353 354 355
			mem_types[i].prot_l1 &= ~PMD_BIT4;
		}
	} else if (cpu_arch < CPU_ARCH_ARMv6) {
		for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
356 357
			if (mem_types[i].prot_l1)
				mem_types[i].prot_l1 |= PMD_BIT4;
358 359 360 361
			if (mem_types[i].prot_sect)
				mem_types[i].prot_sect |= PMD_BIT4;
		}
	}
362

363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420
	/*
	 * Mark the device areas according to the CPU/architecture.
	 */
	if (cpu_is_xsc3() || (cpu_arch >= CPU_ARCH_ARMv6 && (cr & CR_XP))) {
		if (!cpu_is_xsc3()) {
			/*
			 * Mark device regions on ARMv6+ as execute-never
			 * to prevent speculative instruction fetches.
			 */
			mem_types[MT_DEVICE].prot_sect |= PMD_SECT_XN;
			mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_XN;
			mem_types[MT_DEVICE_CACHED].prot_sect |= PMD_SECT_XN;
			mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_XN;
		}
		if (cpu_arch >= CPU_ARCH_ARMv7 && (cr & CR_TRE)) {
			/*
			 * For ARMv7 with TEX remapping,
			 * - shared device is SXCB=1100
			 * - nonshared device is SXCB=0100
			 * - write combine device mem is SXCB=0001
			 * (Uncached Normal memory)
			 */
			mem_types[MT_DEVICE].prot_sect |= PMD_SECT_TEX(1);
			mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(1);
			mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_BUFFERABLE;
		} else if (cpu_is_xsc3()) {
			/*
			 * For Xscale3,
			 * - shared device is TEXCB=00101
			 * - nonshared device is TEXCB=01000
			 * - write combine device mem is TEXCB=00100
			 * (Inner/Outer Uncacheable in xsc3 parlance)
			 */
			mem_types[MT_DEVICE].prot_sect |= PMD_SECT_TEX(1) | PMD_SECT_BUFFERED;
			mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(2);
			mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_TEX(1);
		} else {
			/*
			 * For ARMv6 and ARMv7 without TEX remapping,
			 * - shared device is TEXCB=00001
			 * - nonshared device is TEXCB=01000
			 * - write combine device mem is TEXCB=00100
			 * (Uncached Normal in ARMv6 parlance).
			 */
			mem_types[MT_DEVICE].prot_sect |= PMD_SECT_BUFFERED;
			mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(2);
			mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_TEX(1);
		}
	} else {
		/*
		 * On others, write combining is "Uncached/Buffered"
		 */
		mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_BUFFERABLE;
	}

	/*
	 * Now deal with the memory-type mappings
	 */
421
	cp = &cache_policies[cachepolicy];
422 423 424 425 426
	vecs_pgprot = kern_pgprot = user_pgprot = cp->pte;

	/*
	 * Only use write-through for non-SMP systems
	 */
427
	if (!is_smp() && cpu_arch >= CPU_ARCH_ARMv5 && cachepolicy > CPOLICY_WRITETHROUGH)
428
		vecs_pgprot = cache_policies[CPOLICY_WRITETHROUGH].pte;
429 430 431 432 433

	/*
	 * Enable CPU-specific coherency if supported.
	 * (Only available on XSC3 at the moment.)
	 */
434
	if (arch_is_coherent() && cpu_is_xsc3()) {
435
		mem_types[MT_MEMORY].prot_sect |= PMD_SECT_S;
436
		mem_types[MT_MEMORY].prot_pte |= L_PTE_SHARED;
437
		mem_types[MT_MEMORY_DMA_READY].prot_pte |= L_PTE_SHARED;
438 439 440
		mem_types[MT_MEMORY_NONCACHED].prot_sect |= PMD_SECT_S;
		mem_types[MT_MEMORY_NONCACHED].prot_pte |= L_PTE_SHARED;
	}
441 442 443 444
	/*
	 * ARMv6 and above have extended page tables.
	 */
	if (cpu_arch >= CPU_ARCH_ARMv6 && (cr & CR_XP)) {
445
#ifndef CONFIG_ARM_LPAE
446 447 448 449 450 451 452
		/*
		 * Mark cache clean areas and XIP ROM read only
		 * from SVC mode and no access from userspace.
		 */
		mem_types[MT_ROM].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
		mem_types[MT_MINICLEAN].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
		mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
453
#endif
454

455 456 457 458 459 460 461 462 463 464 465 466 467 468
		if (is_smp()) {
			/*
			 * Mark memory with the "shared" attribute
			 * for SMP systems
			 */
			user_pgprot |= L_PTE_SHARED;
			kern_pgprot |= L_PTE_SHARED;
			vecs_pgprot |= L_PTE_SHARED;
			mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_S;
			mem_types[MT_DEVICE_WC].prot_pte |= L_PTE_SHARED;
			mem_types[MT_DEVICE_CACHED].prot_sect |= PMD_SECT_S;
			mem_types[MT_DEVICE_CACHED].prot_pte |= L_PTE_SHARED;
			mem_types[MT_MEMORY].prot_sect |= PMD_SECT_S;
			mem_types[MT_MEMORY].prot_pte |= L_PTE_SHARED;
469
			mem_types[MT_MEMORY_DMA_READY].prot_pte |= L_PTE_SHARED;
470 471 472
			mem_types[MT_MEMORY_NONCACHED].prot_sect |= PMD_SECT_S;
			mem_types[MT_MEMORY_NONCACHED].prot_pte |= L_PTE_SHARED;
		}
473 474
	}

475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492
	/*
	 * Non-cacheable Normal - intended for memory areas that must
	 * not cause dirty cache line writebacks when used
	 */
	if (cpu_arch >= CPU_ARCH_ARMv6) {
		if (cpu_arch >= CPU_ARCH_ARMv7 && (cr & CR_TRE)) {
			/* Non-cacheable Normal is XCB = 001 */
			mem_types[MT_MEMORY_NONCACHED].prot_sect |=
				PMD_SECT_BUFFERED;
		} else {
			/* For both ARMv6 and non-TEX-remapping ARMv7 */
			mem_types[MT_MEMORY_NONCACHED].prot_sect |=
				PMD_SECT_TEX(1);
		}
	} else {
		mem_types[MT_MEMORY_NONCACHED].prot_sect |= PMD_SECT_BUFFERABLE;
	}

493 494 495 496 497 498
#ifdef CONFIG_ARM_LPAE
	/*
	 * Do not generate access flag faults for the kernel mappings.
	 */
	for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
		mem_types[i].prot_pte |= PTE_EXT_AF;
499 500
		if (mem_types[i].prot_sect)
			mem_types[i].prot_sect |= PMD_SECT_AF;
501 502 503 504 505
	}
	kern_pgprot |= PTE_EXT_AF;
	vecs_pgprot |= PTE_EXT_AF;
#endif

506 507
	for (i = 0; i < 16; i++) {
		unsigned long v = pgprot_val(protection_map[i]);
508
		protection_map[i] = __pgprot(v | user_pgprot);
509 510
	}

511 512
	mem_types[MT_LOW_VECTORS].prot_pte |= vecs_pgprot;
	mem_types[MT_HIGH_VECTORS].prot_pte |= vecs_pgprot;
513

514
	pgprot_user   = __pgprot(L_PTE_PRESENT | L_PTE_YOUNG | user_pgprot);
515
	pgprot_kernel = __pgprot(L_PTE_PRESENT | L_PTE_YOUNG |
516
				 L_PTE_DIRTY | kern_pgprot);
517 518 519 520

	mem_types[MT_LOW_VECTORS].prot_l1 |= ecc_mask;
	mem_types[MT_HIGH_VECTORS].prot_l1 |= ecc_mask;
	mem_types[MT_MEMORY].prot_sect |= ecc_mask | cp->pmd;
521
	mem_types[MT_MEMORY].prot_pte |= kern_pgprot;
522
	mem_types[MT_MEMORY_DMA_READY].prot_pte |= kern_pgprot;
523
	mem_types[MT_MEMORY_NONCACHED].prot_sect |= ecc_mask;
524 525 526 527 528 529 530 531 532 533 534 535 536
	mem_types[MT_ROM].prot_sect |= cp->pmd;

	switch (cp->pmd) {
	case PMD_SECT_WT:
		mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_WT;
		break;
	case PMD_SECT_WB:
	case PMD_SECT_WBWA:
		mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_WB;
		break;
	}
	printk("Memory policy: ECC %sabled, Data cache %s\n",
		ecc_mask ? "en" : "dis", cp->policy);
537 538 539 540 541 542 543 544

	for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
		struct mem_type *t = &mem_types[i];
		if (t->prot_l1)
			t->prot_l1 |= PMD_DOMAIN(t->domain);
		if (t->prot_sect)
			t->prot_sect |= PMD_DOMAIN(t->domain);
	}
545 546
}

547 548 549 550 551 552 553 554 555 556 557 558 559
#ifdef CONFIG_ARM_DMA_MEM_BUFFERABLE
pgprot_t phys_mem_access_prot(struct file *file, unsigned long pfn,
			      unsigned long size, pgprot_t vma_prot)
{
	if (!pfn_valid(pfn))
		return pgprot_noncached(vma_prot);
	else if (file->f_flags & O_SYNC)
		return pgprot_writecombine(vma_prot);
	return vma_prot;
}
EXPORT_SYMBOL(phys_mem_access_prot);
#endif

560 561
#define vectors_base()	(vectors_high() ? 0xffff0000 : 0)

562
static void __init *early_alloc_aligned(unsigned long sz, unsigned long align)
R
Russell King 已提交
563
{
564
	void *ptr = __va(memblock_alloc(sz, align));
R
Russell King 已提交
565 566
	memset(ptr, 0, sz);
	return ptr;
R
Russell King 已提交
567 568
}

569 570 571 572 573
static void __init *early_alloc(unsigned long sz)
{
	return early_alloc_aligned(sz, sz);
}

R
Russell King 已提交
574
static pte_t * __init early_pte_alloc(pmd_t *pmd, unsigned long addr, unsigned long prot)
575
{
576
	if (pmd_none(*pmd)) {
577
		pte_t *pte = early_alloc(PTE_HWTABLE_OFF + PTE_HWTABLE_SIZE);
578
		__pmd_populate(pmd, __pa(pte), prot);
579
	}
R
Russell King 已提交
580 581 582
	BUG_ON(pmd_bad(*pmd));
	return pte_offset_kernel(pmd, addr);
}
583

R
Russell King 已提交
584 585 586 587 588
static void __init alloc_init_pte(pmd_t *pmd, unsigned long addr,
				  unsigned long end, unsigned long pfn,
				  const struct mem_type *type)
{
	pte_t *pte = early_pte_alloc(pmd, addr, type->prot_l1);
589
	do {
590
		set_pte_ext(pte, pfn_pte(pfn, __pgprot(type->prot_pte)), 0);
591 592
		pfn++;
	} while (pte++, addr += PAGE_SIZE, addr != end);
593 594
}

R
Russell King 已提交
595
static void __init alloc_init_section(pud_t *pud, unsigned long addr,
596
				      unsigned long end, phys_addr_t phys,
597
				      const struct mem_type *type)
598
{
R
Russell King 已提交
599
	pmd_t *pmd = pmd_offset(pud, addr);
600

601 602 603 604 605 606
	/*
	 * Try a section mapping - end, addr and phys must all be aligned
	 * to a section boundary.  Note that PMDs refer to the individual
	 * L1 entries, whereas PGDs refer to a group of L1 entries making
	 * up one logical pointer to an L2 table.
	 */
607
	if (type->prot_sect && ((addr | end | phys) & ~SECTION_MASK) == 0) {
608
		pmd_t *p = pmd;
609

610
#ifndef CONFIG_ARM_LPAE
611 612
		if (addr & SECTION_SIZE)
			pmd++;
613
#endif
614 615 616 617 618

		do {
			*pmd = __pmd(phys | type->prot_sect);
			phys += SECTION_SIZE;
		} while (pmd++, addr += SECTION_SIZE, addr != end);
619

620 621 622 623 624 625 626 627
		flush_pmd_entry(p);
	} else {
		/*
		 * No need to loop; pte's aren't interested in the
		 * individual L1 entries.
		 */
		alloc_init_pte(pmd, addr, end, __phys_to_pfn(phys), type);
	}
628 629
}

630 631
static void __init alloc_init_pud(pgd_t *pgd, unsigned long addr,
	unsigned long end, unsigned long phys, const struct mem_type *type)
R
Russell King 已提交
632 633 634 635 636 637 638 639 640 641 642
{
	pud_t *pud = pud_offset(pgd, addr);
	unsigned long next;

	do {
		next = pud_addr_end(addr, end);
		alloc_init_section(pud, addr, next, phys, type);
		phys += next - addr;
	} while (pud++, addr = next, addr != end);
}

643
#ifndef CONFIG_ARM_LPAE
644 645 646
static void __init create_36bit_mapping(struct map_desc *md,
					const struct mem_type *type)
{
647 648
	unsigned long addr, length, end;
	phys_addr_t phys;
649 650 651
	pgd_t *pgd;

	addr = md->virtual;
652
	phys = __pfn_to_phys(md->pfn);
653 654 655 656 657
	length = PAGE_ALIGN(md->length);

	if (!(cpu_architecture() >= CPU_ARCH_ARMv6 || cpu_is_xsc3())) {
		printk(KERN_ERR "MM: CPU does not support supersection "
		       "mapping for 0x%08llx at 0x%08lx\n",
658
		       (long long)__pfn_to_phys((u64)md->pfn), addr);
659 660 661 662 663 664 665 666 667 668 669 670
		return;
	}

	/* N.B.	ARMv6 supersections are only defined to work with domain 0.
	 *	Since domain assignments can in fact be arbitrary, the
	 *	'domain == 0' check below is required to insure that ARMv6
	 *	supersections are only allocated for domain 0 regardless
	 *	of the actual domain assignments in use.
	 */
	if (type->domain) {
		printk(KERN_ERR "MM: invalid domain in supersection "
		       "mapping for 0x%08llx at 0x%08lx\n",
671
		       (long long)__pfn_to_phys((u64)md->pfn), addr);
672 673 674 675
		return;
	}

	if ((addr | length | __pfn_to_phys(md->pfn)) & ~SUPERSECTION_MASK) {
676 677 678
		printk(KERN_ERR "MM: cannot create mapping for 0x%08llx"
		       " at 0x%08lx invalid alignment\n",
		       (long long)__pfn_to_phys((u64)md->pfn), addr);
679 680 681 682 683 684 685 686 687 688 689 690
		return;
	}

	/*
	 * Shift bits [35:32] of address into bits [23:20] of PMD
	 * (See ARMv6 spec).
	 */
	phys |= (((md->pfn >> (32 - PAGE_SHIFT)) & 0xF) << 20);

	pgd = pgd_offset_k(addr);
	end = addr + length;
	do {
R
Russell King 已提交
691 692
		pud_t *pud = pud_offset(pgd, addr);
		pmd_t *pmd = pmd_offset(pud, addr);
693 694 695 696 697 698 699 700 701 702
		int i;

		for (i = 0; i < 16; i++)
			*pmd++ = __pmd(phys | type->prot_sect | PMD_SECT_SUPER);

		addr += SUPERSECTION_SIZE;
		phys += SUPERSECTION_SIZE;
		pgd += SUPERSECTION_SIZE >> PGDIR_SHIFT;
	} while (addr != end);
}
703
#endif	/* !CONFIG_ARM_LPAE */
704

705 706 707 708 709 710 711
/*
 * Create the page directory entries and any necessary
 * page tables for the mapping specified by `md'.  We
 * are able to cope here with varying sizes and address
 * offsets, and we take full advantage of sections and
 * supersections.
 */
712
static void __init create_mapping(struct map_desc *md)
713
{
714 715
	unsigned long addr, length, end;
	phys_addr_t phys;
716
	const struct mem_type *type;
717
	pgd_t *pgd;
718 719

	if (md->virtual != vectors_base() && md->virtual < TASK_SIZE) {
720 721 722
		printk(KERN_WARNING "BUG: not creating mapping for 0x%08llx"
		       " at 0x%08lx in user region\n",
		       (long long)__pfn_to_phys((u64)md->pfn), md->virtual);
723 724 725 726
		return;
	}

	if ((md->type == MT_DEVICE || md->type == MT_ROM) &&
727 728
	    md->virtual >= PAGE_OFFSET &&
	    (md->virtual < VMALLOC_START || md->virtual >= VMALLOC_END)) {
729
		printk(KERN_WARNING "BUG: mapping for 0x%08llx"
730
		       " at 0x%08lx out of vmalloc space\n",
731
		       (long long)__pfn_to_phys((u64)md->pfn), md->virtual);
732 733
	}

734
	type = &mem_types[md->type];
735

736
#ifndef CONFIG_ARM_LPAE
737 738 739
	/*
	 * Catch 36-bit addresses
	 */
740 741 742
	if (md->pfn >= 0x100000) {
		create_36bit_mapping(md, type);
		return;
743
	}
744
#endif
745

746
	addr = md->virtual & PAGE_MASK;
747
	phys = __pfn_to_phys(md->pfn);
748
	length = PAGE_ALIGN(md->length + (md->virtual & ~PAGE_MASK));
749

750
	if (type->prot_l1 == 0 && ((addr | phys | length) & ~SECTION_MASK)) {
751
		printk(KERN_WARNING "BUG: map for 0x%08llx at 0x%08lx can not "
752
		       "be mapped using pages, ignoring.\n",
753
		       (long long)__pfn_to_phys(md->pfn), addr);
754 755 756
		return;
	}

757 758 759 760
	pgd = pgd_offset_k(addr);
	end = addr + length;
	do {
		unsigned long next = pgd_addr_end(addr, end);
761

R
Russell King 已提交
762
		alloc_init_pud(pgd, addr, next, phys, type);
763

764 765 766
		phys += next - addr;
		addr = next;
	} while (pgd++, addr != end);
767 768 769 770 771 772 773
}

/*
 * Create the architecture specific mappings
 */
void __init iotable_init(struct map_desc *io_desc, int nr)
{
774 775 776 777 778
	struct map_desc *md;
	struct vm_struct *vm;

	if (!nr)
		return;
779

780 781 782 783 784 785 786
	vm = early_alloc_aligned(sizeof(*vm) * nr, __alignof__(*vm));

	for (md = io_desc; nr; md++, nr--) {
		create_mapping(md);
		vm->addr = (void *)(md->virtual & PAGE_MASK);
		vm->size = PAGE_ALIGN(md->length + (md->virtual & ~PAGE_MASK));
		vm->phys_addr = __pfn_to_phys(md->pfn); 
787 788
		vm->flags = VM_IOREMAP | VM_ARM_STATIC_MAPPING; 
		vm->flags |= VM_ARM_MTYPE(md->type);
789 790 791
		vm->caller = iotable_init;
		vm_area_add_early(vm++);
	}
792 793
}

794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866
#ifndef CONFIG_ARM_LPAE

/*
 * The Linux PMD is made of two consecutive section entries covering 2MB
 * (see definition in include/asm/pgtable-2level.h).  However a call to
 * create_mapping() may optimize static mappings by using individual
 * 1MB section mappings.  This leaves the actual PMD potentially half
 * initialized if the top or bottom section entry isn't used, leaving it
 * open to problems if a subsequent ioremap() or vmalloc() tries to use
 * the virtual space left free by that unused section entry.
 *
 * Let's avoid the issue by inserting dummy vm entries covering the unused
 * PMD halves once the static mappings are in place.
 */

static void __init pmd_empty_section_gap(unsigned long addr)
{
	struct vm_struct *vm;

	vm = early_alloc_aligned(sizeof(*vm), __alignof__(*vm));
	vm->addr = (void *)addr;
	vm->size = SECTION_SIZE;
	vm->flags = VM_IOREMAP | VM_ARM_STATIC_MAPPING;
	vm->caller = pmd_empty_section_gap;
	vm_area_add_early(vm);
}

static void __init fill_pmd_gaps(void)
{
	struct vm_struct *vm;
	unsigned long addr, next = 0;
	pmd_t *pmd;

	/* we're still single threaded hence no lock needed here */
	for (vm = vmlist; vm; vm = vm->next) {
		if (!(vm->flags & VM_ARM_STATIC_MAPPING))
			continue;
		addr = (unsigned long)vm->addr;
		if (addr < next)
			continue;

		/*
		 * Check if this vm starts on an odd section boundary.
		 * If so and the first section entry for this PMD is free
		 * then we block the corresponding virtual address.
		 */
		if ((addr & ~PMD_MASK) == SECTION_SIZE) {
			pmd = pmd_off_k(addr);
			if (pmd_none(*pmd))
				pmd_empty_section_gap(addr & PMD_MASK);
		}

		/*
		 * Then check if this vm ends on an odd section boundary.
		 * If so and the second section entry for this PMD is empty
		 * then we block the corresponding virtual address.
		 */
		addr += vm->size;
		if ((addr & ~PMD_MASK) == SECTION_SIZE) {
			pmd = pmd_off_k(addr) + 1;
			if (pmd_none(*pmd))
				pmd_empty_section_gap(addr);
		}

		/* no need to look at any vm entry until we hit the next PMD */
		next = (addr + PMD_SIZE - 1) & PMD_MASK;
	}
}

#else
#define fill_pmd_gaps() do { } while (0)
#endif

867 868
static void * __initdata vmalloc_min =
	(void *)(VMALLOC_END - (240 << 20) - VMALLOC_OFFSET);
869 870 871 872

/*
 * vmalloc=size forces the vmalloc area to be exactly 'size'
 * bytes. This can be used to increase (or decrease) the vmalloc
873
 * area - the default is 240m.
874
 */
875
static int __init early_vmalloc(char *arg)
876
{
R
Russell King 已提交
877
	unsigned long vmalloc_reserve = memparse(arg, NULL);
878 879 880 881 882 883 884

	if (vmalloc_reserve < SZ_16M) {
		vmalloc_reserve = SZ_16M;
		printk(KERN_WARNING
			"vmalloc area too small, limiting to %luMB\n",
			vmalloc_reserve >> 20);
	}
885 886 887 888 889 890 891

	if (vmalloc_reserve > VMALLOC_END - (PAGE_OFFSET + SZ_32M)) {
		vmalloc_reserve = VMALLOC_END - (PAGE_OFFSET + SZ_32M);
		printk(KERN_WARNING
			"vmalloc area is too big, limiting to %luMB\n",
			vmalloc_reserve >> 20);
	}
R
Russell King 已提交
892 893

	vmalloc_min = (void *)(VMALLOC_END - vmalloc_reserve);
894
	return 0;
895
}
896
early_param("vmalloc", early_vmalloc);
897

898
phys_addr_t arm_lowmem_limit __initdata = 0;
899

900
void __init sanity_check_meminfo(void)
901
{
R
Russell King 已提交
902
	int i, j, highmem = 0;
903

904
	for (i = 0, j = 0; i < meminfo.nr_banks; i++) {
905 906
		struct membank *bank = &meminfo.bank[j];
		*bank = meminfo.bank[i];
907

908 909 910
		if (bank->start > ULONG_MAX)
			highmem = 1;

911
#ifdef CONFIG_HIGHMEM
912
		if (__va(bank->start) >= vmalloc_min ||
R
Russell King 已提交
913 914 915 916 917
		    __va(bank->start) < (void *)PAGE_OFFSET)
			highmem = 1;

		bank->highmem = highmem;

918 919 920 921
		/*
		 * Split those memory banks which are partially overlapping
		 * the vmalloc area greatly simplifying things later.
		 */
922
		if (!highmem && __va(bank->start) < vmalloc_min &&
R
Russell King 已提交
923
		    bank->size > vmalloc_min - __va(bank->start)) {
924 925 926 927 928 929 930 931
			if (meminfo.nr_banks >= NR_BANKS) {
				printk(KERN_CRIT "NR_BANKS too low, "
						 "ignoring high memory\n");
			} else {
				memmove(bank + 1, bank,
					(meminfo.nr_banks - i) * sizeof(*bank));
				meminfo.nr_banks++;
				i++;
R
Russell King 已提交
932 933
				bank[1].size -= vmalloc_min - __va(bank->start);
				bank[1].start = __pa(vmalloc_min - 1) + 1;
R
Russell King 已提交
934
				bank[1].highmem = highmem = 1;
935 936
				j++;
			}
R
Russell King 已提交
937
			bank->size = vmalloc_min - __va(bank->start);
938 939
		}
#else
940 941
		bank->highmem = highmem;

942 943 944 945 946 947 948 949 950 951 952
		/*
		 * Highmem banks not allowed with !CONFIG_HIGHMEM.
		 */
		if (highmem) {
			printk(KERN_NOTICE "Ignoring RAM at %.8llx-%.8llx "
			       "(!CONFIG_HIGHMEM).\n",
			       (unsigned long long)bank->start,
			       (unsigned long long)bank->start + bank->size - 1);
			continue;
		}

953 954 955 956
		/*
		 * Check whether this memory bank would entirely overlap
		 * the vmalloc area.
		 */
R
Russell King 已提交
957
		if (__va(bank->start) >= vmalloc_min ||
958
		    __va(bank->start) < (void *)PAGE_OFFSET) {
959
			printk(KERN_NOTICE "Ignoring RAM at %.8llx-%.8llx "
960
			       "(vmalloc region overlap).\n",
961 962
			       (unsigned long long)bank->start,
			       (unsigned long long)bank->start + bank->size - 1);
963 964
			continue;
		}
965

966 967 968 969
		/*
		 * Check whether this memory bank would partially overlap
		 * the vmalloc area.
		 */
R
Russell King 已提交
970
		if (__va(bank->start + bank->size) > vmalloc_min ||
971
		    __va(bank->start + bank->size) < __va(bank->start)) {
R
Russell King 已提交
972
			unsigned long newsize = vmalloc_min - __va(bank->start);
973 974 975 976 977
			printk(KERN_NOTICE "Truncating RAM at %.8llx-%.8llx "
			       "to -%.8llx (vmalloc region overlap).\n",
			       (unsigned long long)bank->start,
			       (unsigned long long)bank->start + bank->size - 1,
			       (unsigned long long)bank->start + newsize - 1);
978 979 980
			bank->size = newsize;
		}
#endif
981 982
		if (!bank->highmem && bank->start + bank->size > arm_lowmem_limit)
			arm_lowmem_limit = bank->start + bank->size;
983

984
		j++;
985
	}
986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005
#ifdef CONFIG_HIGHMEM
	if (highmem) {
		const char *reason = NULL;

		if (cache_is_vipt_aliasing()) {
			/*
			 * Interactions between kmap and other mappings
			 * make highmem support with aliasing VIPT caches
			 * rather difficult.
			 */
			reason = "with VIPT aliasing cache";
		}
		if (reason) {
			printk(KERN_CRIT "HIGHMEM is not supported %s, ignoring high memory\n",
				reason);
			while (j > 0 && meminfo.bank[j - 1].highmem)
				j--;
		}
	}
#endif
1006
	meminfo.nr_banks = j;
1007 1008
	high_memory = __va(arm_lowmem_limit - 1) + 1;
	memblock_set_current_limit(arm_lowmem_limit);
1009 1010
}

1011
static inline void prepare_page_table(void)
1012 1013
{
	unsigned long addr;
1014
	phys_addr_t end;
1015 1016 1017 1018

	/*
	 * Clear out all the mappings below the kernel image.
	 */
1019
	for (addr = 0; addr < MODULES_VADDR; addr += PMD_SIZE)
1020 1021 1022 1023
		pmd_clear(pmd_off_k(addr));

#ifdef CONFIG_XIP_KERNEL
	/* The XIP kernel is mapped in the module area -- skip over it */
1024
	addr = ((unsigned long)_etext + PMD_SIZE - 1) & PMD_MASK;
1025
#endif
1026
	for ( ; addr < PAGE_OFFSET; addr += PMD_SIZE)
1027 1028
		pmd_clear(pmd_off_k(addr));

1029 1030 1031 1032
	/*
	 * Find the end of the first block of lowmem.
	 */
	end = memblock.memory.regions[0].base + memblock.memory.regions[0].size;
1033 1034
	if (end >= arm_lowmem_limit)
		end = arm_lowmem_limit;
1035

1036 1037
	/*
	 * Clear out all the kernel space mappings, except for the first
1038
	 * memory bank, up to the vmalloc region.
1039
	 */
1040
	for (addr = __phys_to_virt(end);
1041
	     addr < VMALLOC_START; addr += PMD_SIZE)
1042 1043 1044
		pmd_clear(pmd_off_k(addr));
}

1045 1046 1047 1048 1049
#ifdef CONFIG_ARM_LPAE
/* the first page is reserved for pgd */
#define SWAPPER_PG_DIR_SIZE	(PAGE_SIZE + \
				 PTRS_PER_PGD * PTRS_PER_PMD * sizeof(pmd_t))
#else
1050
#define SWAPPER_PG_DIR_SIZE	(PTRS_PER_PGD * sizeof(pgd_t))
1051
#endif
1052

1053
/*
R
Russell King 已提交
1054
 * Reserve the special regions of memory
1055
 */
R
Russell King 已提交
1056
void __init arm_mm_memblock_reserve(void)
1057 1058 1059 1060 1061
{
	/*
	 * Reserve the page tables.  These are already in use,
	 * and can only be in node 0.
	 */
1062
	memblock_reserve(__pa(swapper_pg_dir), SWAPPER_PG_DIR_SIZE);
1063 1064 1065 1066 1067 1068

#ifdef CONFIG_SA1111
	/*
	 * Because of the SA1111 DMA bug, we want to preserve our
	 * precious DMA-able memory...
	 */
R
Russell King 已提交
1069
	memblock_reserve(PHYS_OFFSET, __pa(swapper_pg_dir) - PHYS_OFFSET);
1070 1071 1072 1073
#endif
}

/*
1074 1075
 * Set up the device mappings.  Since we clear out the page tables for all
 * mappings above VMALLOC_START, we will remove any debug device mappings.
1076 1077 1078 1079 1080 1081 1082 1083
 * This means you have to be careful how you debug this function, or any
 * called function.  This means you can't use any function or debugging
 * method which may touch any device, otherwise the kernel _will_ crash.
 */
static void __init devicemaps_init(struct machine_desc *mdesc)
{
	struct map_desc map;
	unsigned long addr;
1084
	void *vectors;
1085 1086 1087 1088

	/*
	 * Allocate the vector page early.
	 */
1089 1090 1091
	vectors = early_alloc(PAGE_SIZE);

	early_trap_init(vectors);
1092

1093
	for (addr = VMALLOC_START; addr; addr += PMD_SIZE)
1094 1095 1096 1097 1098 1099 1100 1101
		pmd_clear(pmd_off_k(addr));

	/*
	 * Map the kernel if it is XIP.
	 * It is always first in the modulearea.
	 */
#ifdef CONFIG_XIP_KERNEL
	map.pfn = __phys_to_pfn(CONFIG_XIP_PHYS_ADDR & SECTION_MASK);
1102
	map.virtual = MODULES_VADDR;
R
Russell King 已提交
1103
	map.length = ((unsigned long)_etext - map.virtual + ~SECTION_MASK) & SECTION_MASK;
1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130
	map.type = MT_ROM;
	create_mapping(&map);
#endif

	/*
	 * Map the cache flushing regions.
	 */
#ifdef FLUSH_BASE
	map.pfn = __phys_to_pfn(FLUSH_BASE_PHYS);
	map.virtual = FLUSH_BASE;
	map.length = SZ_1M;
	map.type = MT_CACHECLEAN;
	create_mapping(&map);
#endif
#ifdef FLUSH_BASE_MINICACHE
	map.pfn = __phys_to_pfn(FLUSH_BASE_PHYS + SZ_1M);
	map.virtual = FLUSH_BASE_MINICACHE;
	map.length = SZ_1M;
	map.type = MT_MINICLEAN;
	create_mapping(&map);
#endif

	/*
	 * Create a mapping for the machine vectors at the high-vectors
	 * location (0xffff0000).  If we aren't using high-vectors, also
	 * create a mapping at the low-vectors virtual address.
	 */
1131
	map.pfn = __phys_to_pfn(virt_to_phys(vectors));
1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147
	map.virtual = 0xffff0000;
	map.length = PAGE_SIZE;
	map.type = MT_HIGH_VECTORS;
	create_mapping(&map);

	if (!vectors_high()) {
		map.virtual = 0;
		map.type = MT_LOW_VECTORS;
		create_mapping(&map);
	}

	/*
	 * Ask the machine support to map in the statically mapped devices.
	 */
	if (mdesc->map_io)
		mdesc->map_io();
1148
	fill_pmd_gaps();
1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159

	/*
	 * Finally flush the caches and tlb to ensure that we're in a
	 * consistent state wrt the writebuffer.  This also ensures that
	 * any write-allocated cache lines in the vector page are written
	 * back.  After this point, we can start to touch devices again.
	 */
	local_flush_tlb_all();
	flush_cache_all();
}

N
Nicolas Pitre 已提交
1160 1161 1162
static void __init kmap_init(void)
{
#ifdef CONFIG_HIGHMEM
R
Russell King 已提交
1163 1164
	pkmap_page_table = early_pte_alloc(pmd_off_k(PKMAP_BASE),
		PKMAP_BASE, _PAGE_KERNEL_TABLE);
N
Nicolas Pitre 已提交
1165 1166 1167
#endif
}

1168 1169
static void __init map_lowmem(void)
{
1170
	struct memblock_region *reg;
1171 1172

	/* Map all the lowmem memory banks. */
1173 1174 1175 1176 1177
	for_each_memblock(memory, reg) {
		phys_addr_t start = reg->base;
		phys_addr_t end = start + reg->size;
		struct map_desc map;

1178 1179
		if (end > arm_lowmem_limit)
			end = arm_lowmem_limit;
1180 1181 1182 1183 1184 1185 1186
		if (start >= end)
			break;

		map.pfn = __phys_to_pfn(start);
		map.virtual = __phys_to_virt(start);
		map.length = end - start;
		map.type = MT_MEMORY;
1187

1188
		create_mapping(&map);
1189 1190 1191
	}
}

1192 1193 1194 1195
/*
 * paging_init() sets up the page tables, initialises the zone memory
 * maps, and sets up the zero page, bad page and bad page tables.
 */
1196
void __init paging_init(struct machine_desc *mdesc)
1197 1198 1199
{
	void *zero_page;

1200
	memblock_set_current_limit(arm_lowmem_limit);
1201

1202
	build_mem_type_table();
1203
	prepare_page_table();
1204
	map_lowmem();
1205
	dma_contiguous_remap();
1206
	devicemaps_init(mdesc);
N
Nicolas Pitre 已提交
1207
	kmap_init();
1208 1209 1210

	top_pmd = pmd_off_k(0xffff0000);

R
Russell King 已提交
1211 1212
	/* allocate the zero page. */
	zero_page = early_alloc(PAGE_SIZE);
R
Russell King 已提交
1213

1214
	bootmem_init();
R
Russell King 已提交
1215

1216
	empty_zero_page = virt_to_page(zero_page);
1217
	__flush_dcache_page(NULL, empty_zero_page);
1218
}