mmu.c 44.6 KB
Newer Older
1 2 3 4 5 6 7 8 9
/*
 *  linux/arch/arm/mm/mmu.c
 *
 *  Copyright (C) 1995-2005 Russell King
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
 */
10
#include <linux/module.h>
11 12 13 14 15
#include <linux/kernel.h>
#include <linux/errno.h>
#include <linux/init.h>
#include <linux/mman.h>
#include <linux/nodemask.h>
R
Russell King 已提交
16
#include <linux/memblock.h>
17
#include <linux/fs.h>
18
#include <linux/vmalloc.h>
19
#include <linux/sizes.h>
20

21
#include <asm/cp15.h>
22
#include <asm/cputype.h>
R
Russell King 已提交
23
#include <asm/sections.h>
24
#include <asm/cachetype.h>
K
Kees Cook 已提交
25
#include <asm/fixmap.h>
26
#include <asm/sections.h>
27
#include <asm/setup.h>
28
#include <asm/smp_plat.h>
29
#include <asm/tlb.h>
N
Nicolas Pitre 已提交
30
#include <asm/highmem.h>
31
#include <asm/system_info.h>
32
#include <asm/traps.h>
33 34
#include <asm/procinfo.h>
#include <asm/memory.h>
35 36 37

#include <asm/mach/arch.h>
#include <asm/mach/map.h>
R
Rob Herring 已提交
38
#include <asm/mach/pci.h>
39
#include <asm/fixmap.h>
40

41
#include "fault.h"
42
#include "mm.h"
43
#include "tcm.h"
44 45 46 47 48 49

/*
 * empty_zero_page is a special page that is used for
 * zero-initialized data and COW.
 */
struct page *empty_zero_page;
50
EXPORT_SYMBOL(empty_zero_page);
51 52 53 54 55 56

/*
 * The pmd table for the upper-most set of pages.
 */
pmd_t *top_pmd;

57 58
pmdval_t user_pmd_table = _PAGE_USER_TABLE;

59 60 61 62 63 64 65 66
#define CPOLICY_UNCACHED	0
#define CPOLICY_BUFFERED	1
#define CPOLICY_WRITETHROUGH	2
#define CPOLICY_WRITEBACK	3
#define CPOLICY_WRITEALLOC	4

static unsigned int cachepolicy __initdata = CPOLICY_WRITEBACK;
static unsigned int ecc_mask __initdata = 0;
67
pgprot_t pgprot_user;
68
pgprot_t pgprot_kernel;
69 70 71
pgprot_t pgprot_hyp_device;
pgprot_t pgprot_s2;
pgprot_t pgprot_s2_device;
72

73
EXPORT_SYMBOL(pgprot_user);
74 75 76 77 78
EXPORT_SYMBOL(pgprot_kernel);

struct cachepolicy {
	const char	policy[16];
	unsigned int	cr_mask;
79
	pmdval_t	pmd;
80
	pteval_t	pte;
81
	pteval_t	pte_s2;
82 83
};

84 85 86 87 88 89
#ifdef CONFIG_ARM_LPAE
#define s2_policy(policy)	policy
#else
#define s2_policy(policy)	0
#endif

M
Marc Zyngier 已提交
90 91
unsigned long kimage_voffset __ro_after_init;

92 93 94 95 96
static struct cachepolicy cache_policies[] __initdata = {
	{
		.policy		= "uncached",
		.cr_mask	= CR_W|CR_C,
		.pmd		= PMD_SECT_UNCACHED,
97
		.pte		= L_PTE_MT_UNCACHED,
98
		.pte_s2		= s2_policy(L_PTE_S2_MT_UNCACHED),
99 100 101 102
	}, {
		.policy		= "buffered",
		.cr_mask	= CR_C,
		.pmd		= PMD_SECT_BUFFERED,
103
		.pte		= L_PTE_MT_BUFFERABLE,
104
		.pte_s2		= s2_policy(L_PTE_S2_MT_UNCACHED),
105 106 107 108
	}, {
		.policy		= "writethrough",
		.cr_mask	= 0,
		.pmd		= PMD_SECT_WT,
109
		.pte		= L_PTE_MT_WRITETHROUGH,
110
		.pte_s2		= s2_policy(L_PTE_S2_MT_WRITETHROUGH),
111 112 113 114
	}, {
		.policy		= "writeback",
		.cr_mask	= 0,
		.pmd		= PMD_SECT_WB,
115
		.pte		= L_PTE_MT_WRITEBACK,
116
		.pte_s2		= s2_policy(L_PTE_S2_MT_WRITEBACK),
117 118 119 120
	}, {
		.policy		= "writealloc",
		.cr_mask	= 0,
		.pmd		= PMD_SECT_WBWA,
121
		.pte		= L_PTE_MT_WRITEALLOC,
122
		.pte_s2		= s2_policy(L_PTE_S2_MT_WRITEBACK),
123 124 125
	}
};

126
#ifdef CONFIG_CPU_CP15
127 128
static unsigned long initial_pmd_value __initdata = 0;

129
/*
130 131 132 133 134
 * Initialise the cache_policy variable with the initial state specified
 * via the "pmd" value.  This is used to ensure that on ARMv6 and later,
 * the C code sets the page tables up with the same policy as the head
 * assembly code, which avoids an illegal state where the TLBs can get
 * confused.  See comments in early_cachepolicy() for more information.
135
 */
136
void __init init_default_cache_policy(unsigned long pmd)
137 138 139
{
	int i;

140 141
	initial_pmd_value = pmd;

142
	pmd &= PMD_SECT_CACHE_MASK;
143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162

	for (i = 0; i < ARRAY_SIZE(cache_policies); i++)
		if (cache_policies[i].pmd == pmd) {
			cachepolicy = i;
			break;
		}

	if (i == ARRAY_SIZE(cache_policies))
		pr_err("ERROR: could not find cache policy\n");
}

/*
 * These are useful for identifying cache coherency problems by allowing
 * the cache or the cache and writebuffer to be turned off.  (Note: the
 * write buffer should not be on and the cache off).
 */
static int __init early_cachepolicy(char *p)
{
	int i, selected = -1;

163 164 165
	for (i = 0; i < ARRAY_SIZE(cache_policies); i++) {
		int len = strlen(cache_policies[i].policy);

166
		if (memcmp(p, cache_policies[i].policy, len) == 0) {
167
			selected = i;
168 169 170
			break;
		}
	}
171 172 173 174

	if (selected == -1)
		pr_err("ERROR: unknown or unsupported cache policy\n");

175 176 177 178 179 180 181
	/*
	 * This restriction is partly to do with the way we boot; it is
	 * unpredictable to have memory mapped using two different sets of
	 * memory attributes (shared, type, and cache attribs).  We can not
	 * change these attributes once the initial assembly has setup the
	 * page tables.
	 */
182 183 184 185 186 187 188 189 190 191 192
	if (cpu_architecture() >= CPU_ARCH_ARMv6 && selected != cachepolicy) {
		pr_warn("Only cachepolicy=%s supported on ARMv6 and later\n",
			cache_policies[cachepolicy].policy);
		return 0;
	}

	if (selected != cachepolicy) {
		unsigned long cr = __clear_cr(cache_policies[selected].cr_mask);
		cachepolicy = selected;
		flush_cache_all();
		set_cr(cr);
193
	}
194
	return 0;
195
}
196
early_param("cachepolicy", early_cachepolicy);
197

198
static int __init early_nocache(char *__unused)
199 200
{
	char *p = "buffered";
R
Russell King 已提交
201
	pr_warn("nocache is deprecated; use cachepolicy=%s\n", p);
202 203
	early_cachepolicy(p);
	return 0;
204
}
205
early_param("nocache", early_nocache);
206

207
static int __init early_nowrite(char *__unused)
208 209
{
	char *p = "uncached";
R
Russell King 已提交
210
	pr_warn("nowb is deprecated; use cachepolicy=%s\n", p);
211 212
	early_cachepolicy(p);
	return 0;
213
}
214
early_param("nowb", early_nowrite);
215

216
#ifndef CONFIG_ARM_LPAE
217
static int __init early_ecc(char *p)
218
{
219
	if (memcmp(p, "on", 2) == 0)
220
		ecc_mask = PMD_PROTECTION;
221
	else if (memcmp(p, "off", 3) == 0)
222
		ecc_mask = 0;
223
	return 0;
224
}
225
early_param("ecc", early_ecc);
226
#endif
227

228 229 230 231
#else /* ifdef CONFIG_CPU_CP15 */

static int __init early_cachepolicy(char *p)
{
232
	pr_warn("cachepolicy kernel parameter not supported without cp15\n");
233 234 235 236 237
}
early_param("cachepolicy", early_cachepolicy);

static int __init noalign_setup(char *__unused)
{
238
	pr_warn("noalign kernel parameter not supported without cp15\n");
239 240 241 242 243
}
__setup("noalign", noalign_setup);

#endif /* ifdef CONFIG_CPU_CP15 / else */

244
#define PROT_PTE_DEVICE		L_PTE_PRESENT|L_PTE_YOUNG|L_PTE_DIRTY|L_PTE_XN
245
#define PROT_PTE_S2_DEVICE	PROT_PTE_DEVICE
246
#define PROT_SECT_DEVICE	PMD_TYPE_SECT|PMD_SECT_AP_WRITE
247

248
static struct mem_type mem_types[] __ro_after_init = {
249
	[MT_DEVICE] = {		  /* Strongly ordered / ARMv6 shared device */
250 251
		.prot_pte	= PROT_PTE_DEVICE | L_PTE_MT_DEV_SHARED |
				  L_PTE_SHARED,
252 253 254
		.prot_pte_s2	= s2_policy(PROT_PTE_S2_DEVICE) |
				  s2_policy(L_PTE_S2_MT_DEV_SHARED) |
				  L_PTE_SHARED,
255
		.prot_l1	= PMD_TYPE_TABLE,
256
		.prot_sect	= PROT_SECT_DEVICE | PMD_SECT_S,
257 258 259
		.domain		= DOMAIN_IO,
	},
	[MT_DEVICE_NONSHARED] = { /* ARMv6 non-shared device */
260
		.prot_pte	= PROT_PTE_DEVICE | L_PTE_MT_DEV_NONSHARED,
261
		.prot_l1	= PMD_TYPE_TABLE,
262
		.prot_sect	= PROT_SECT_DEVICE,
263 264 265
		.domain		= DOMAIN_IO,
	},
	[MT_DEVICE_CACHED] = {	  /* ioremap_cached */
266
		.prot_pte	= PROT_PTE_DEVICE | L_PTE_MT_DEV_CACHED,
267 268 269
		.prot_l1	= PMD_TYPE_TABLE,
		.prot_sect	= PROT_SECT_DEVICE | PMD_SECT_WB,
		.domain		= DOMAIN_IO,
R
Rob Herring 已提交
270
	},
271
	[MT_DEVICE_WC] = {	/* ioremap_wc */
272
		.prot_pte	= PROT_PTE_DEVICE | L_PTE_MT_DEV_WC,
273
		.prot_l1	= PMD_TYPE_TABLE,
274
		.prot_sect	= PROT_SECT_DEVICE,
275
		.domain		= DOMAIN_IO,
276
	},
277 278 279 280 281 282
	[MT_UNCACHED] = {
		.prot_pte	= PROT_PTE_DEVICE,
		.prot_l1	= PMD_TYPE_TABLE,
		.prot_sect	= PMD_TYPE_SECT | PMD_SECT_XN,
		.domain		= DOMAIN_IO,
	},
283
	[MT_CACHECLEAN] = {
284
		.prot_sect = PMD_TYPE_SECT | PMD_SECT_XN,
285 286
		.domain    = DOMAIN_KERNEL,
	},
287
#ifndef CONFIG_ARM_LPAE
288
	[MT_MINICLEAN] = {
289
		.prot_sect = PMD_TYPE_SECT | PMD_SECT_XN | PMD_SECT_MINICACHE,
290 291
		.domain    = DOMAIN_KERNEL,
	},
292
#endif
293 294
	[MT_LOW_VECTORS] = {
		.prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
295
				L_PTE_RDONLY,
296
		.prot_l1   = PMD_TYPE_TABLE,
297
		.domain    = DOMAIN_VECTORS,
298 299 300
	},
	[MT_HIGH_VECTORS] = {
		.prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
301
				L_PTE_USER | L_PTE_RDONLY,
302
		.prot_l1   = PMD_TYPE_TABLE,
303
		.domain    = DOMAIN_VECTORS,
304
	},
305
	[MT_MEMORY_RWX] = {
306
		.prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY,
307
		.prot_l1   = PMD_TYPE_TABLE,
308
		.prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE,
309 310
		.domain    = DOMAIN_KERNEL,
	},
311 312 313 314 315 316 317
	[MT_MEMORY_RW] = {
		.prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
			     L_PTE_XN,
		.prot_l1   = PMD_TYPE_TABLE,
		.prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE,
		.domain    = DOMAIN_KERNEL,
	},
318
	[MT_ROM] = {
319
		.prot_sect = PMD_TYPE_SECT,
320 321
		.domain    = DOMAIN_KERNEL,
	},
322
	[MT_MEMORY_RWX_NONCACHED] = {
323
		.prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
324
				L_PTE_MT_BUFFERABLE,
325
		.prot_l1   = PMD_TYPE_TABLE,
326 327 328
		.prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE,
		.domain    = DOMAIN_KERNEL,
	},
329
	[MT_MEMORY_RW_DTCM] = {
330
		.prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
331
				L_PTE_XN,
332 333 334
		.prot_l1   = PMD_TYPE_TABLE,
		.prot_sect = PMD_TYPE_SECT | PMD_SECT_XN,
		.domain    = DOMAIN_KERNEL,
335
	},
336
	[MT_MEMORY_RWX_ITCM] = {
337
		.prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY,
338
		.prot_l1   = PMD_TYPE_TABLE,
339
		.domain    = DOMAIN_KERNEL,
340
	},
341
	[MT_MEMORY_RW_SO] = {
342
		.prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
343
				L_PTE_MT_UNCACHED | L_PTE_XN,
344 345 346 347 348
		.prot_l1   = PMD_TYPE_TABLE,
		.prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE | PMD_SECT_S |
				PMD_SECT_UNCACHED | PMD_SECT_XN,
		.domain    = DOMAIN_KERNEL,
	},
349
	[MT_MEMORY_DMA_READY] = {
350 351
		.prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
				L_PTE_XN,
352 353 354
		.prot_l1   = PMD_TYPE_TABLE,
		.domain    = DOMAIN_KERNEL,
	},
355 356
};

357 358 359 360
const struct mem_type *get_mem_type(unsigned int type)
{
	return type < ARRAY_SIZE(mem_types) ? &mem_types[type] : NULL;
}
361
EXPORT_SYMBOL(get_mem_type);
362

363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394
static pte_t *(*pte_offset_fixmap)(pmd_t *dir, unsigned long addr);

static pte_t bm_pte[PTRS_PER_PTE + PTE_HWTABLE_PTRS]
	__aligned(PTE_HWTABLE_OFF + PTE_HWTABLE_SIZE) __initdata;

static pte_t * __init pte_offset_early_fixmap(pmd_t *dir, unsigned long addr)
{
	return &bm_pte[pte_index(addr)];
}

static pte_t *pte_offset_late_fixmap(pmd_t *dir, unsigned long addr)
{
	return pte_offset_kernel(dir, addr);
}

static inline pmd_t * __init fixmap_pmd(unsigned long addr)
{
	pgd_t *pgd = pgd_offset_k(addr);
	pud_t *pud = pud_offset(pgd, addr);
	pmd_t *pmd = pmd_offset(pud, addr);

	return pmd;
}

void __init early_fixmap_init(void)
{
	pmd_t *pmd;

	/*
	 * The early fixmap range spans multiple pmds, for which
	 * we are not prepared:
	 */
395
	BUILD_BUG_ON((__fix_to_virt(__end_of_early_ioremap_region) >> PMD_SHIFT)
396 397 398 399 400 401 402 403
		     != FIXADDR_TOP >> PMD_SHIFT);

	pmd = fixmap_pmd(FIXADDR_TOP);
	pmd_populate_kernel(&init_mm, pmd, bm_pte);

	pte_offset_fixmap = pte_offset_early_fixmap;
}

K
Kees Cook 已提交
404 405 406 407 408 409 410 411
/*
 * To avoid TLB flush broadcasts, this uses local_flush_tlb_kernel_range().
 * As a result, this can only be called with preemption disabled, as under
 * stop_machine().
 */
void __set_fixmap(enum fixed_addresses idx, phys_addr_t phys, pgprot_t prot)
{
	unsigned long vaddr = __fix_to_virt(idx);
412
	pte_t *pte = pte_offset_fixmap(pmd_off_k(vaddr), vaddr);
K
Kees Cook 已提交
413 414 415 416 417 418

	/* Make sure fixmap region does not exceed available allocation. */
	BUILD_BUG_ON(FIXADDR_START + (__end_of_fixed_addresses * PAGE_SIZE) >
		     FIXADDR_END);
	BUG_ON(idx >= __end_of_fixed_addresses);

419 420 421 422 423
	/* we only support device mappings until pgprot_kernel has been set */
	if (WARN_ON(pgprot_val(prot) != pgprot_val(FIXMAP_PAGE_IO) &&
		    pgprot_val(pgprot_kernel) == 0))
		return;

K
Kees Cook 已提交
424 425 426 427 428 429 430 431
	if (pgprot_val(prot))
		set_pte_at(NULL, vaddr, pte,
			pfn_pte(phys >> PAGE_SHIFT, prot));
	else
		pte_clear(NULL, vaddr, pte);
	local_flush_tlb_kernel_range(vaddr, vaddr + PAGE_SIZE);
}

432 433 434 435 436 437 438
/*
 * Adjust the PMD section entries according to the CPU in use.
 */
static void __init build_mem_type_table(void)
{
	struct cachepolicy *cp;
	unsigned int cr = get_cr();
439
	pteval_t user_pgprot, kern_pgprot, vecs_pgprot;
440
	pteval_t hyp_device_pgprot, s2_pgprot, s2_device_pgprot;
441 442 443
	int cpu_arch = cpu_architecture();
	int i;

444
	if (cpu_arch < CPU_ARCH_ARMv6) {
445
#if defined(CONFIG_CPU_DCACHE_DISABLE)
446 447
		if (cachepolicy > CPOLICY_BUFFERED)
			cachepolicy = CPOLICY_BUFFERED;
448
#elif defined(CONFIG_CPU_DCACHE_WRITETHROUGH)
449 450
		if (cachepolicy > CPOLICY_WRITETHROUGH)
			cachepolicy = CPOLICY_WRITETHROUGH;
451
#endif
452
	}
453 454 455 456 457
	if (cpu_arch < CPU_ARCH_ARMv5) {
		if (cachepolicy >= CPOLICY_WRITEALLOC)
			cachepolicy = CPOLICY_WRITEBACK;
		ecc_mask = 0;
	}
458

459 460 461 462 463 464 465 466 467
	if (is_smp()) {
		if (cachepolicy != CPOLICY_WRITEALLOC) {
			pr_warn("Forcing write-allocate cache policy for SMP\n");
			cachepolicy = CPOLICY_WRITEALLOC;
		}
		if (!(initial_pmd_value & PMD_SECT_S)) {
			pr_warn("Forcing shared mappings for SMP\n");
			initial_pmd_value |= PMD_SECT_S;
		}
468
	}
469

470
	/*
471 472 473
	 * Strip out features not present on earlier architectures.
	 * Pre-ARMv5 CPUs don't have TEX bits.  Pre-ARMv6 CPUs or those
	 * without extended page tables don't have the 'Shared' bit.
474
	 */
475 476 477 478 479 480
	if (cpu_arch < CPU_ARCH_ARMv5)
		for (i = 0; i < ARRAY_SIZE(mem_types); i++)
			mem_types[i].prot_sect &= ~PMD_SECT_TEX(7);
	if ((cpu_arch < CPU_ARCH_ARMv6 || !(cr & CR_XP)) && !cpu_is_xsc3())
		for (i = 0; i < ARRAY_SIZE(mem_types); i++)
			mem_types[i].prot_sect &= ~PMD_SECT_S;
481 482

	/*
483 484 485
	 * ARMv5 and lower, bit 4 must be set for page tables (was: cache
	 * "update-able on write" bit on ARM610).  However, Xscale and
	 * Xscale3 require this bit to be cleared.
486
	 */
487
	if (cpu_is_xscale_family()) {
488
		for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
489
			mem_types[i].prot_sect &= ~PMD_BIT4;
490 491 492 493
			mem_types[i].prot_l1 &= ~PMD_BIT4;
		}
	} else if (cpu_arch < CPU_ARCH_ARMv6) {
		for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
494 495
			if (mem_types[i].prot_l1)
				mem_types[i].prot_l1 |= PMD_BIT4;
496 497 498 499
			if (mem_types[i].prot_sect)
				mem_types[i].prot_sect |= PMD_BIT4;
		}
	}
500

501 502 503 504 505 506 507 508 509 510 511 512 513
	/*
	 * Mark the device areas according to the CPU/architecture.
	 */
	if (cpu_is_xsc3() || (cpu_arch >= CPU_ARCH_ARMv6 && (cr & CR_XP))) {
		if (!cpu_is_xsc3()) {
			/*
			 * Mark device regions on ARMv6+ as execute-never
			 * to prevent speculative instruction fetches.
			 */
			mem_types[MT_DEVICE].prot_sect |= PMD_SECT_XN;
			mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_XN;
			mem_types[MT_DEVICE_CACHED].prot_sect |= PMD_SECT_XN;
			mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_XN;
514 515 516

			/* Also setup NX memory mapping */
			mem_types[MT_MEMORY_RW].prot_sect |= PMD_SECT_XN;
517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561
		}
		if (cpu_arch >= CPU_ARCH_ARMv7 && (cr & CR_TRE)) {
			/*
			 * For ARMv7 with TEX remapping,
			 * - shared device is SXCB=1100
			 * - nonshared device is SXCB=0100
			 * - write combine device mem is SXCB=0001
			 * (Uncached Normal memory)
			 */
			mem_types[MT_DEVICE].prot_sect |= PMD_SECT_TEX(1);
			mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(1);
			mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_BUFFERABLE;
		} else if (cpu_is_xsc3()) {
			/*
			 * For Xscale3,
			 * - shared device is TEXCB=00101
			 * - nonshared device is TEXCB=01000
			 * - write combine device mem is TEXCB=00100
			 * (Inner/Outer Uncacheable in xsc3 parlance)
			 */
			mem_types[MT_DEVICE].prot_sect |= PMD_SECT_TEX(1) | PMD_SECT_BUFFERED;
			mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(2);
			mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_TEX(1);
		} else {
			/*
			 * For ARMv6 and ARMv7 without TEX remapping,
			 * - shared device is TEXCB=00001
			 * - nonshared device is TEXCB=01000
			 * - write combine device mem is TEXCB=00100
			 * (Uncached Normal in ARMv6 parlance).
			 */
			mem_types[MT_DEVICE].prot_sect |= PMD_SECT_BUFFERED;
			mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(2);
			mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_TEX(1);
		}
	} else {
		/*
		 * On others, write combining is "Uncached/Buffered"
		 */
		mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_BUFFERABLE;
	}

	/*
	 * Now deal with the memory-type mappings
	 */
562
	cp = &cache_policies[cachepolicy];
563
	vecs_pgprot = kern_pgprot = user_pgprot = cp->pte;
564
	s2_pgprot = cp->pte_s2;
565 566
	hyp_device_pgprot = mem_types[MT_DEVICE].prot_pte;
	s2_device_pgprot = mem_types[MT_DEVICE].prot_pte_s2;
567

568
#ifndef CONFIG_ARM_LPAE
569 570 571 572 573 574 575
	/*
	 * We don't use domains on ARMv6 (since this causes problems with
	 * v6/v7 kernels), so we must use a separate memory type for user
	 * r/o, kernel r/w to map the vectors page.
	 */
	if (cpu_arch == CPU_ARCH_ARMv6)
		vecs_pgprot |= L_PTE_MT_VECTORS;
576 577 578 579 580 581

	/*
	 * Check is it with support for the PXN bit
	 * in the Short-descriptor translation table format descriptors.
	 */
	if (cpu_arch == CPU_ARCH_ARMv7 &&
582
		(read_cpuid_ext(CPUID_EXT_MMFR0) & 0xF) >= 4) {
583 584
		user_pmd_table |= PMD_PXNTABLE;
	}
585
#endif
586

587 588 589 590
	/*
	 * ARMv6 and above have extended page tables.
	 */
	if (cpu_arch >= CPU_ARCH_ARMv6 && (cr & CR_XP)) {
591
#ifndef CONFIG_ARM_LPAE
592 593 594 595 596 597 598
		/*
		 * Mark cache clean areas and XIP ROM read only
		 * from SVC mode and no access from userspace.
		 */
		mem_types[MT_ROM].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
		mem_types[MT_MINICLEAN].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
		mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
599
#endif
600

601 602 603 604 605 606
		/*
		 * If the initial page tables were created with the S bit
		 * set, then we need to do the same here for the same
		 * reasons given in early_cachepolicy().
		 */
		if (initial_pmd_value & PMD_SECT_S) {
607 608 609
			user_pgprot |= L_PTE_SHARED;
			kern_pgprot |= L_PTE_SHARED;
			vecs_pgprot |= L_PTE_SHARED;
610
			s2_pgprot |= L_PTE_SHARED;
611 612 613 614
			mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_S;
			mem_types[MT_DEVICE_WC].prot_pte |= L_PTE_SHARED;
			mem_types[MT_DEVICE_CACHED].prot_sect |= PMD_SECT_S;
			mem_types[MT_DEVICE_CACHED].prot_pte |= L_PTE_SHARED;
615 616
			mem_types[MT_MEMORY_RWX].prot_sect |= PMD_SECT_S;
			mem_types[MT_MEMORY_RWX].prot_pte |= L_PTE_SHARED;
617 618
			mem_types[MT_MEMORY_RW].prot_sect |= PMD_SECT_S;
			mem_types[MT_MEMORY_RW].prot_pte |= L_PTE_SHARED;
619
			mem_types[MT_MEMORY_DMA_READY].prot_pte |= L_PTE_SHARED;
620 621
			mem_types[MT_MEMORY_RWX_NONCACHED].prot_sect |= PMD_SECT_S;
			mem_types[MT_MEMORY_RWX_NONCACHED].prot_pte |= L_PTE_SHARED;
622
		}
623 624
	}

625 626 627 628 629 630 631
	/*
	 * Non-cacheable Normal - intended for memory areas that must
	 * not cause dirty cache line writebacks when used
	 */
	if (cpu_arch >= CPU_ARCH_ARMv6) {
		if (cpu_arch >= CPU_ARCH_ARMv7 && (cr & CR_TRE)) {
			/* Non-cacheable Normal is XCB = 001 */
632
			mem_types[MT_MEMORY_RWX_NONCACHED].prot_sect |=
633 634 635
				PMD_SECT_BUFFERED;
		} else {
			/* For both ARMv6 and non-TEX-remapping ARMv7 */
636
			mem_types[MT_MEMORY_RWX_NONCACHED].prot_sect |=
637 638 639
				PMD_SECT_TEX(1);
		}
	} else {
640
		mem_types[MT_MEMORY_RWX_NONCACHED].prot_sect |= PMD_SECT_BUFFERABLE;
641 642
	}

643 644 645 646 647 648
#ifdef CONFIG_ARM_LPAE
	/*
	 * Do not generate access flag faults for the kernel mappings.
	 */
	for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
		mem_types[i].prot_pte |= PTE_EXT_AF;
649 650
		if (mem_types[i].prot_sect)
			mem_types[i].prot_sect |= PMD_SECT_AF;
651 652 653
	}
	kern_pgprot |= PTE_EXT_AF;
	vecs_pgprot |= PTE_EXT_AF;
654 655 656 657 658

	/*
	 * Set PXN for user mappings
	 */
	user_pgprot |= PTE_EXT_PXN;
659 660
#endif

661
	for (i = 0; i < 16; i++) {
662
		pteval_t v = pgprot_val(protection_map[i]);
663
		protection_map[i] = __pgprot(v | user_pgprot);
664 665
	}

666 667
	mem_types[MT_LOW_VECTORS].prot_pte |= vecs_pgprot;
	mem_types[MT_HIGH_VECTORS].prot_pte |= vecs_pgprot;
668

669
	pgprot_user   = __pgprot(L_PTE_PRESENT | L_PTE_YOUNG | user_pgprot);
670
	pgprot_kernel = __pgprot(L_PTE_PRESENT | L_PTE_YOUNG |
671
				 L_PTE_DIRTY | kern_pgprot);
672 673 674
	pgprot_s2  = __pgprot(L_PTE_PRESENT | L_PTE_YOUNG | s2_pgprot);
	pgprot_s2_device  = __pgprot(s2_device_pgprot);
	pgprot_hyp_device  = __pgprot(hyp_device_pgprot);
675 676 677

	mem_types[MT_LOW_VECTORS].prot_l1 |= ecc_mask;
	mem_types[MT_HIGH_VECTORS].prot_l1 |= ecc_mask;
678 679
	mem_types[MT_MEMORY_RWX].prot_sect |= ecc_mask | cp->pmd;
	mem_types[MT_MEMORY_RWX].prot_pte |= kern_pgprot;
680 681
	mem_types[MT_MEMORY_RW].prot_sect |= ecc_mask | cp->pmd;
	mem_types[MT_MEMORY_RW].prot_pte |= kern_pgprot;
682
	mem_types[MT_MEMORY_DMA_READY].prot_pte |= kern_pgprot;
683
	mem_types[MT_MEMORY_RWX_NONCACHED].prot_sect |= ecc_mask;
684 685 686 687 688 689 690 691 692 693 694
	mem_types[MT_ROM].prot_sect |= cp->pmd;

	switch (cp->pmd) {
	case PMD_SECT_WT:
		mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_WT;
		break;
	case PMD_SECT_WB:
	case PMD_SECT_WBWA:
		mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_WB;
		break;
	}
695 696
	pr_info("Memory policy: %sData cache %s\n",
		ecc_mask ? "ECC enabled, " : "", cp->policy);
697 698 699 700 701 702 703 704

	for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
		struct mem_type *t = &mem_types[i];
		if (t->prot_l1)
			t->prot_l1 |= PMD_DOMAIN(t->domain);
		if (t->prot_sect)
			t->prot_sect |= PMD_DOMAIN(t->domain);
	}
705 706
}

707 708 709 710 711 712 713 714 715 716 717 718 719
#ifdef CONFIG_ARM_DMA_MEM_BUFFERABLE
pgprot_t phys_mem_access_prot(struct file *file, unsigned long pfn,
			      unsigned long size, pgprot_t vma_prot)
{
	if (!pfn_valid(pfn))
		return pgprot_noncached(vma_prot);
	else if (file->f_flags & O_SYNC)
		return pgprot_writecombine(vma_prot);
	return vma_prot;
}
EXPORT_SYMBOL(phys_mem_access_prot);
#endif

720 721
#define vectors_base()	(vectors_high() ? 0xffff0000 : 0)

722
static void __init *early_alloc_aligned(unsigned long sz, unsigned long align)
R
Russell King 已提交
723
{
724
	return memblock_alloc(sz, align);
R
Russell King 已提交
725 726
}

727 728 729 730 731
static void __init *early_alloc(unsigned long sz)
{
	return early_alloc_aligned(sz, sz);
}

732 733 734 735
static void *__init late_alloc(unsigned long sz)
{
	void *ptr = (void *)__get_free_pages(PGALLOC_GFP, get_order(sz));

736 737
	if (!ptr || !pgtable_page_ctor(virt_to_page(ptr)))
		BUG();
738 739 740
	return ptr;
}

741
static pte_t * __init arm_pte_alloc(pmd_t *pmd, unsigned long addr,
742 743
				unsigned long prot,
				void *(*alloc)(unsigned long sz))
744
{
745
	if (pmd_none(*pmd)) {
746
		pte_t *pte = alloc(PTE_HWTABLE_OFF + PTE_HWTABLE_SIZE);
747
		__pmd_populate(pmd, __pa(pte), prot);
748
	}
R
Russell King 已提交
749 750 751
	BUG_ON(pmd_bad(*pmd));
	return pte_offset_kernel(pmd, addr);
}
752

753 754 755
static pte_t * __init early_pte_alloc(pmd_t *pmd, unsigned long addr,
				      unsigned long prot)
{
756
	return arm_pte_alloc(pmd, addr, prot, early_alloc);
757 758
}

R
Russell King 已提交
759 760
static void __init alloc_init_pte(pmd_t *pmd, unsigned long addr,
				  unsigned long end, unsigned long pfn,
761
				  const struct mem_type *type,
762 763
				  void *(*alloc)(unsigned long sz),
				  bool ng)
R
Russell King 已提交
764
{
765
	pte_t *pte = arm_pte_alloc(pmd, addr, type->prot_l1, alloc);
766
	do {
767 768
		set_pte_ext(pte, pfn_pte(pfn, __pgprot(type->prot_pte)),
			    ng ? PTE_EXT_NG : 0);
769 770
		pfn++;
	} while (pte++, addr += PAGE_SIZE, addr != end);
771 772
}

773
static void __init __map_init_section(pmd_t *pmd, unsigned long addr,
774
			unsigned long end, phys_addr_t phys,
775
			const struct mem_type *type, bool ng)
776
{
777 778
	pmd_t *p = pmd;

779
#ifndef CONFIG_ARM_LPAE
780
	/*
781 782 783 784 785 786 787
	 * In classic MMU format, puds and pmds are folded in to
	 * the pgds. pmd_offset gives the PGD entry. PGDs refer to a
	 * group of L1 entries making up one logical pointer to
	 * an L2 table (2MB), where as PMDs refer to the individual
	 * L1 entries (1MB). Hence increment to get the correct
	 * offset for odd 1MB sections.
	 * (See arch/arm/include/asm/pgtable-2level.h)
788
	 */
789 790
	if (addr & SECTION_SIZE)
		pmd++;
791
#endif
792
	do {
793
		*pmd = __pmd(phys | type->prot_sect | (ng ? PMD_SECT_nG : 0));
794 795
		phys += SECTION_SIZE;
	} while (pmd++, addr += SECTION_SIZE, addr != end);
796

797
	flush_pmd_entry(p);
798
}
799

800 801
static void __init alloc_init_pmd(pud_t *pud, unsigned long addr,
				      unsigned long end, phys_addr_t phys,
802
				      const struct mem_type *type,
803
				      void *(*alloc)(unsigned long sz), bool ng)
804 805 806 807 808
{
	pmd_t *pmd = pmd_offset(pud, addr);
	unsigned long next;

	do {
809
		/*
810 811
		 * With LPAE, we must loop over to map
		 * all the pmds for the given range.
812
		 */
813 814 815 816 817 818 819 820
		next = pmd_addr_end(addr, end);

		/*
		 * Try a section mapping - addr, next and phys must all be
		 * aligned to a section boundary.
		 */
		if (type->prot_sect &&
				((addr | next | phys) & ~SECTION_MASK) == 0) {
821
			__map_init_section(pmd, addr, next, phys, type, ng);
822 823
		} else {
			alloc_init_pte(pmd, addr, next,
824
				       __phys_to_pfn(phys), type, alloc, ng);
825 826 827 828 829
		}

		phys += next - addr;

	} while (pmd++, addr = next, addr != end);
830 831
}

832
static void __init alloc_init_pud(pgd_t *pgd, unsigned long addr,
833
				  unsigned long end, phys_addr_t phys,
834
				  const struct mem_type *type,
835
				  void *(*alloc)(unsigned long sz), bool ng)
R
Russell King 已提交
836 837 838 839 840 841
{
	pud_t *pud = pud_offset(pgd, addr);
	unsigned long next;

	do {
		next = pud_addr_end(addr, end);
842
		alloc_init_pmd(pud, addr, next, phys, type, alloc, ng);
R
Russell King 已提交
843 844 845 846
		phys += next - addr;
	} while (pud++, addr = next, addr != end);
}

847
#ifndef CONFIG_ARM_LPAE
848 849
static void __init create_36bit_mapping(struct mm_struct *mm,
					struct map_desc *md,
850 851
					const struct mem_type *type,
					bool ng)
852
{
853 854
	unsigned long addr, length, end;
	phys_addr_t phys;
855 856 857
	pgd_t *pgd;

	addr = md->virtual;
858
	phys = __pfn_to_phys(md->pfn);
859 860 861
	length = PAGE_ALIGN(md->length);

	if (!(cpu_architecture() >= CPU_ARCH_ARMv6 || cpu_is_xsc3())) {
R
Russell King 已提交
862
		pr_err("MM: CPU does not support supersection mapping for 0x%08llx at 0x%08lx\n",
863
		       (long long)__pfn_to_phys((u64)md->pfn), addr);
864 865 866 867 868 869 870 871 872 873
		return;
	}

	/* N.B.	ARMv6 supersections are only defined to work with domain 0.
	 *	Since domain assignments can in fact be arbitrary, the
	 *	'domain == 0' check below is required to insure that ARMv6
	 *	supersections are only allocated for domain 0 regardless
	 *	of the actual domain assignments in use.
	 */
	if (type->domain) {
R
Russell King 已提交
874
		pr_err("MM: invalid domain in supersection mapping for 0x%08llx at 0x%08lx\n",
875
		       (long long)__pfn_to_phys((u64)md->pfn), addr);
876 877 878 879
		return;
	}

	if ((addr | length | __pfn_to_phys(md->pfn)) & ~SUPERSECTION_MASK) {
R
Russell King 已提交
880
		pr_err("MM: cannot create mapping for 0x%08llx at 0x%08lx invalid alignment\n",
881
		       (long long)__pfn_to_phys((u64)md->pfn), addr);
882 883 884 885 886 887 888 889 890
		return;
	}

	/*
	 * Shift bits [35:32] of address into bits [23:20] of PMD
	 * (See ARMv6 spec).
	 */
	phys |= (((md->pfn >> (32 - PAGE_SHIFT)) & 0xF) << 20);

891
	pgd = pgd_offset(mm, addr);
892 893
	end = addr + length;
	do {
R
Russell King 已提交
894 895
		pud_t *pud = pud_offset(pgd, addr);
		pmd_t *pmd = pmd_offset(pud, addr);
896 897 898
		int i;

		for (i = 0; i < 16; i++)
899 900
			*pmd++ = __pmd(phys | type->prot_sect | PMD_SECT_SUPER |
				       (ng ? PMD_SECT_nG : 0));
901 902 903 904 905 906

		addr += SUPERSECTION_SIZE;
		phys += SUPERSECTION_SIZE;
		pgd += SUPERSECTION_SIZE >> PGDIR_SHIFT;
	} while (addr != end);
}
907
#endif	/* !CONFIG_ARM_LPAE */
908

909
static void __init __create_mapping(struct mm_struct *mm, struct map_desc *md,
910 911
				    void *(*alloc)(unsigned long sz),
				    bool ng)
912
{
913 914
	unsigned long addr, length, end;
	phys_addr_t phys;
915
	const struct mem_type *type;
916
	pgd_t *pgd;
917

918
	type = &mem_types[md->type];
919

920
#ifndef CONFIG_ARM_LPAE
921 922 923
	/*
	 * Catch 36-bit addresses
	 */
924
	if (md->pfn >= 0x100000) {
925
		create_36bit_mapping(mm, md, type, ng);
926
		return;
927
	}
928
#endif
929

930
	addr = md->virtual & PAGE_MASK;
931
	phys = __pfn_to_phys(md->pfn);
932
	length = PAGE_ALIGN(md->length + (md->virtual & ~PAGE_MASK));
933

934
	if (type->prot_l1 == 0 && ((addr | phys | length) & ~SECTION_MASK)) {
R
Russell King 已提交
935 936
		pr_warn("BUG: map for 0x%08llx at 0x%08lx can not be mapped using pages, ignoring.\n",
			(long long)__pfn_to_phys(md->pfn), addr);
937 938 939
		return;
	}

940
	pgd = pgd_offset(mm, addr);
941 942 943
	end = addr + length;
	do {
		unsigned long next = pgd_addr_end(addr, end);
944

945
		alloc_init_pud(pgd, addr, next, phys, type, alloc, ng);
946

947 948 949
		phys += next - addr;
		addr = next;
	} while (pgd++, addr != end);
950 951
}

952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973
/*
 * Create the page directory entries and any necessary
 * page tables for the mapping specified by `md'.  We
 * are able to cope here with varying sizes and address
 * offsets, and we take full advantage of sections and
 * supersections.
 */
static void __init create_mapping(struct map_desc *md)
{
	if (md->virtual != vectors_base() && md->virtual < TASK_SIZE) {
		pr_warn("BUG: not creating mapping for 0x%08llx at 0x%08lx in user region\n",
			(long long)__pfn_to_phys((u64)md->pfn), md->virtual);
		return;
	}

	if ((md->type == MT_DEVICE || md->type == MT_ROM) &&
	    md->virtual >= PAGE_OFFSET && md->virtual < FIXADDR_START &&
	    (md->virtual < VMALLOC_START || md->virtual >= VMALLOC_END)) {
		pr_warn("BUG: mapping for 0x%08llx at 0x%08lx out of vmalloc space\n",
			(long long)__pfn_to_phys((u64)md->pfn), md->virtual);
	}

974
	__create_mapping(&init_mm, md, early_alloc, false);
975 976
}

977 978 979 980 981 982 983 984 985 986 987 988
void __init create_mapping_late(struct mm_struct *mm, struct map_desc *md,
				bool ng)
{
#ifdef CONFIG_ARM_LPAE
	pud_t *pud = pud_alloc(mm, pgd_offset(mm, md->virtual), md->virtual);
	if (WARN_ON(!pud))
		return;
	pmd_alloc(mm, pud, 0);
#endif
	__create_mapping(mm, md, late_alloc, ng);
}

989 990 991 992 993
/*
 * Create the architecture specific mappings
 */
void __init iotable_init(struct map_desc *io_desc, int nr)
{
994 995
	struct map_desc *md;
	struct vm_struct *vm;
996
	struct static_vm *svm;
997 998 999

	if (!nr)
		return;
1000

1001
	svm = early_alloc_aligned(sizeof(*svm) * nr, __alignof__(*svm));
1002 1003 1004

	for (md = io_desc; nr; md++, nr--) {
		create_mapping(md);
1005 1006

		vm = &svm->vm;
1007 1008
		vm->addr = (void *)(md->virtual & PAGE_MASK);
		vm->size = PAGE_ALIGN(md->length + (md->virtual & ~PAGE_MASK));
R
Rob Herring 已提交
1009 1010
		vm->phys_addr = __pfn_to_phys(md->pfn);
		vm->flags = VM_IOREMAP | VM_ARM_STATIC_MAPPING;
1011
		vm->flags |= VM_ARM_MTYPE(md->type);
1012
		vm->caller = iotable_init;
1013
		add_static_vm_early(svm++);
1014
	}
1015 1016
}

R
Rob Herring 已提交
1017 1018 1019 1020
void __init vm_reserve_area_early(unsigned long addr, unsigned long size,
				  void *caller)
{
	struct vm_struct *vm;
1021 1022 1023
	struct static_vm *svm;

	svm = early_alloc_aligned(sizeof(*svm), __alignof__(*svm));
R
Rob Herring 已提交
1024

1025
	vm = &svm->vm;
R
Rob Herring 已提交
1026 1027
	vm->addr = (void *)addr;
	vm->size = size;
1028
	vm->flags = VM_IOREMAP | VM_ARM_EMPTY_MAPPING;
R
Rob Herring 已提交
1029
	vm->caller = caller;
1030
	add_static_vm_early(svm);
R
Rob Herring 已提交
1031 1032
}

1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049
#ifndef CONFIG_ARM_LPAE

/*
 * The Linux PMD is made of two consecutive section entries covering 2MB
 * (see definition in include/asm/pgtable-2level.h).  However a call to
 * create_mapping() may optimize static mappings by using individual
 * 1MB section mappings.  This leaves the actual PMD potentially half
 * initialized if the top or bottom section entry isn't used, leaving it
 * open to problems if a subsequent ioremap() or vmalloc() tries to use
 * the virtual space left free by that unused section entry.
 *
 * Let's avoid the issue by inserting dummy vm entries covering the unused
 * PMD halves once the static mappings are in place.
 */

static void __init pmd_empty_section_gap(unsigned long addr)
{
R
Rob Herring 已提交
1050
	vm_reserve_area_early(addr, SECTION_SIZE, pmd_empty_section_gap);
1051 1052 1053 1054
}

static void __init fill_pmd_gaps(void)
{
1055
	struct static_vm *svm;
1056 1057 1058 1059
	struct vm_struct *vm;
	unsigned long addr, next = 0;
	pmd_t *pmd;

1060 1061
	list_for_each_entry(svm, &static_vmlist, list) {
		vm = &svm->vm;
1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097
		addr = (unsigned long)vm->addr;
		if (addr < next)
			continue;

		/*
		 * Check if this vm starts on an odd section boundary.
		 * If so and the first section entry for this PMD is free
		 * then we block the corresponding virtual address.
		 */
		if ((addr & ~PMD_MASK) == SECTION_SIZE) {
			pmd = pmd_off_k(addr);
			if (pmd_none(*pmd))
				pmd_empty_section_gap(addr & PMD_MASK);
		}

		/*
		 * Then check if this vm ends on an odd section boundary.
		 * If so and the second section entry for this PMD is empty
		 * then we block the corresponding virtual address.
		 */
		addr += vm->size;
		if ((addr & ~PMD_MASK) == SECTION_SIZE) {
			pmd = pmd_off_k(addr) + 1;
			if (pmd_none(*pmd))
				pmd_empty_section_gap(addr);
		}

		/* no need to look at any vm entry until we hit the next PMD */
		next = (addr + PMD_SIZE - 1) & PMD_MASK;
	}
}

#else
#define fill_pmd_gaps() do { } while (0)
#endif

R
Rob Herring 已提交
1098 1099 1100
#if defined(CONFIG_PCI) && !defined(CONFIG_NEED_MACH_IO_H)
static void __init pci_reserve_io(void)
{
1101
	struct static_vm *svm;
R
Rob Herring 已提交
1102

1103 1104 1105
	svm = find_static_vm_vaddr((void *)PCI_IO_VIRT_BASE);
	if (svm)
		return;
R
Rob Herring 已提交
1106 1107 1108 1109 1110 1111 1112

	vm_reserve_area_early(PCI_IO_VIRT_BASE, SZ_2M, pci_reserve_io);
}
#else
#define pci_reserve_io() do { } while (0)
#endif

R
Rob Herring 已提交
1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124
#ifdef CONFIG_DEBUG_LL
void __init debug_ll_io_init(void)
{
	struct map_desc map;

	debug_ll_addr(&map.pfn, &map.virtual);
	if (!map.pfn || !map.virtual)
		return;
	map.pfn = __phys_to_pfn(map.pfn);
	map.virtual &= PAGE_MASK;
	map.length = PAGE_SIZE;
	map.type = MT_DEVICE;
1125
	iotable_init(&map, 1);
R
Rob Herring 已提交
1126 1127 1128
}
#endif

1129 1130
static void * __initdata vmalloc_min =
	(void *)(VMALLOC_END - (240 << 20) - VMALLOC_OFFSET);
1131 1132 1133 1134

/*
 * vmalloc=size forces the vmalloc area to be exactly 'size'
 * bytes. This can be used to increase (or decrease) the vmalloc
1135
 * area - the default is 240m.
1136
 */
1137
static int __init early_vmalloc(char *arg)
1138
{
R
Russell King 已提交
1139
	unsigned long vmalloc_reserve = memparse(arg, NULL);
1140 1141 1142

	if (vmalloc_reserve < SZ_16M) {
		vmalloc_reserve = SZ_16M;
R
Russell King 已提交
1143
		pr_warn("vmalloc area too small, limiting to %luMB\n",
1144 1145
			vmalloc_reserve >> 20);
	}
1146 1147 1148

	if (vmalloc_reserve > VMALLOC_END - (PAGE_OFFSET + SZ_32M)) {
		vmalloc_reserve = VMALLOC_END - (PAGE_OFFSET + SZ_32M);
R
Russell King 已提交
1149
		pr_warn("vmalloc area is too big, limiting to %luMB\n",
1150 1151
			vmalloc_reserve >> 20);
	}
R
Russell King 已提交
1152 1153

	vmalloc_min = (void *)(VMALLOC_END - vmalloc_reserve);
1154
	return 0;
1155
}
1156
early_param("vmalloc", early_vmalloc);
1157

1158
phys_addr_t arm_lowmem_limit __initdata = 0;
1159

1160
void __init adjust_lowmem_bounds(void)
1161
{
1162
	phys_addr_t memblock_limit = 0;
1163
	u64 vmalloc_limit;
L
Laura Abbott 已提交
1164
	struct memblock_region *reg;
1165
	phys_addr_t lowmem_limit = 0;
1166

1167 1168 1169 1170 1171 1172 1173 1174 1175
	/*
	 * Let's use our own (unoptimized) equivalent of __pa() that is
	 * not affected by wrap-arounds when sizeof(phys_addr_t) == 4.
	 * The result is used as the upper bound on physical memory address
	 * and may itself be outside the valid range for which phys_addr_t
	 * and therefore __pa() is defined.
	 */
	vmalloc_limit = (u64)(uintptr_t)vmalloc_min - PAGE_OFFSET + PHYS_OFFSET;

L
Laura Abbott 已提交
1176 1177 1178
	for_each_memblock(memory, reg) {
		phys_addr_t block_start = reg->base;
		phys_addr_t block_end = reg->base + reg->size;
1179

1180
		if (reg->base < vmalloc_limit) {
1181
			if (block_end > lowmem_limit)
1182 1183 1184 1185 1186 1187
				/*
				 * Compare as u64 to ensure vmalloc_limit does
				 * not get truncated. block_end should always
				 * fit in phys_addr_t so there should be no
				 * issue with assignment.
				 */
1188
				lowmem_limit = min_t(u64,
1189 1190
							 vmalloc_limit,
							 block_end);
1191 1192

			/*
1193
			 * Find the first non-pmd-aligned page, and point
1194
			 * memblock_limit at it. This relies on rounding the
1195 1196
			 * limit down to be pmd-aligned, which happens at the
			 * end of this function.
1197 1198
			 *
			 * With this algorithm, the start or end of almost any
1199 1200
			 * bank can be non-pmd-aligned. The only exception is
			 * that the start of the bank 0 must be section-
1201 1202 1203 1204 1205
			 * aligned, since otherwise memory would need to be
			 * allocated when mapping the start of bank 0, which
			 * occurs before any free memory is mapped.
			 */
			if (!memblock_limit) {
1206
				if (!IS_ALIGNED(block_start, PMD_SIZE))
L
Laura Abbott 已提交
1207
					memblock_limit = block_start;
1208
				else if (!IS_ALIGNED(block_end, PMD_SIZE))
1209
					memblock_limit = lowmem_limit;
1210
			}
1211 1212 1213

		}
	}
L
Laura Abbott 已提交
1214

1215 1216
	arm_lowmem_limit = lowmem_limit;

1217
	high_memory = __va(arm_lowmem_limit - 1) + 1;
1218

1219 1220 1221
	if (!memblock_limit)
		memblock_limit = arm_lowmem_limit;

1222
	/*
1223
	 * Round the memblock limit down to a pmd size.  This
1224
	 * helps to ensure that we will allocate memory from the
1225
	 * last full pmd, which should be mapped.
1226
	 */
1227
	memblock_limit = round_down(memblock_limit, PMD_SIZE);
1228

1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240
	if (!IS_ENABLED(CONFIG_HIGHMEM) || cache_is_vipt_aliasing()) {
		if (memblock_end_of_DRAM() > arm_lowmem_limit) {
			phys_addr_t end = memblock_end_of_DRAM();

			pr_notice("Ignoring RAM at %pa-%pa\n",
				  &memblock_limit, &end);
			pr_notice("Consider using a HIGHMEM enabled kernel.\n");

			memblock_remove(memblock_limit, end - memblock_limit);
		}
	}

1241
	memblock_set_current_limit(memblock_limit);
1242 1243
}

1244
static inline void prepare_page_table(void)
1245 1246
{
	unsigned long addr;
1247
	phys_addr_t end;
1248 1249 1250 1251

	/*
	 * Clear out all the mappings below the kernel image.
	 */
1252
	for (addr = 0; addr < MODULES_VADDR; addr += PMD_SIZE)
1253 1254 1255 1256
		pmd_clear(pmd_off_k(addr));

#ifdef CONFIG_XIP_KERNEL
	/* The XIP kernel is mapped in the module area -- skip over it */
1257
	addr = ((unsigned long)_exiprom + PMD_SIZE - 1) & PMD_MASK;
1258
#endif
1259
	for ( ; addr < PAGE_OFFSET; addr += PMD_SIZE)
1260 1261
		pmd_clear(pmd_off_k(addr));

1262 1263 1264 1265
	/*
	 * Find the end of the first block of lowmem.
	 */
	end = memblock.memory.regions[0].base + memblock.memory.regions[0].size;
1266 1267
	if (end >= arm_lowmem_limit)
		end = arm_lowmem_limit;
1268

1269 1270
	/*
	 * Clear out all the kernel space mappings, except for the first
1271
	 * memory bank, up to the vmalloc region.
1272
	 */
1273
	for (addr = __phys_to_virt(end);
1274
	     addr < VMALLOC_START; addr += PMD_SIZE)
1275 1276 1277
		pmd_clear(pmd_off_k(addr));
}

1278 1279 1280 1281 1282
#ifdef CONFIG_ARM_LPAE
/* the first page is reserved for pgd */
#define SWAPPER_PG_DIR_SIZE	(PAGE_SIZE + \
				 PTRS_PER_PGD * PTRS_PER_PMD * sizeof(pmd_t))
#else
1283
#define SWAPPER_PG_DIR_SIZE	(PTRS_PER_PGD * sizeof(pgd_t))
1284
#endif
1285

1286
/*
R
Russell King 已提交
1287
 * Reserve the special regions of memory
1288
 */
R
Russell King 已提交
1289
void __init arm_mm_memblock_reserve(void)
1290 1291 1292 1293 1294
{
	/*
	 * Reserve the page tables.  These are already in use,
	 * and can only be in node 0.
	 */
1295
	memblock_reserve(__pa(swapper_pg_dir), SWAPPER_PG_DIR_SIZE);
1296 1297 1298 1299 1300 1301

#ifdef CONFIG_SA1111
	/*
	 * Because of the SA1111 DMA bug, we want to preserve our
	 * precious DMA-able memory...
	 */
R
Russell King 已提交
1302
	memblock_reserve(PHYS_OFFSET, __pa(swapper_pg_dir) - PHYS_OFFSET);
1303 1304 1305 1306
#endif
}

/*
1307
 * Set up the device mappings.  Since we clear out the page tables for all
1308 1309 1310 1311
 * mappings above VMALLOC_START, except early fixmap, we might remove debug
 * device mappings.  This means earlycon can be used to debug this function
 * Any other function or debugging method which may touch any device _will_
 * crash the kernel.
1312
 */
1313
static void __init devicemaps_init(const struct machine_desc *mdesc)
1314 1315 1316
{
	struct map_desc map;
	unsigned long addr;
1317
	void *vectors;
1318 1319 1320 1321

	/*
	 * Allocate the vector page early.
	 */
R
Russell King 已提交
1322
	vectors = early_alloc(PAGE_SIZE * 2);
1323 1324

	early_trap_init(vectors);
1325

1326 1327 1328 1329
	/*
	 * Clear page table except top pmd used by early fixmaps
	 */
	for (addr = VMALLOC_START; addr < (FIXADDR_TOP & PMD_MASK); addr += PMD_SIZE)
1330 1331 1332 1333 1334 1335 1336 1337
		pmd_clear(pmd_off_k(addr));

	/*
	 * Map the kernel if it is XIP.
	 * It is always first in the modulearea.
	 */
#ifdef CONFIG_XIP_KERNEL
	map.pfn = __phys_to_pfn(CONFIG_XIP_PHYS_ADDR & SECTION_MASK);
1338
	map.virtual = MODULES_VADDR;
1339
	map.length = ((unsigned long)_exiprom - map.virtual + ~SECTION_MASK) & SECTION_MASK;
1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366
	map.type = MT_ROM;
	create_mapping(&map);
#endif

	/*
	 * Map the cache flushing regions.
	 */
#ifdef FLUSH_BASE
	map.pfn = __phys_to_pfn(FLUSH_BASE_PHYS);
	map.virtual = FLUSH_BASE;
	map.length = SZ_1M;
	map.type = MT_CACHECLEAN;
	create_mapping(&map);
#endif
#ifdef FLUSH_BASE_MINICACHE
	map.pfn = __phys_to_pfn(FLUSH_BASE_PHYS + SZ_1M);
	map.virtual = FLUSH_BASE_MINICACHE;
	map.length = SZ_1M;
	map.type = MT_MINICLEAN;
	create_mapping(&map);
#endif

	/*
	 * Create a mapping for the machine vectors at the high-vectors
	 * location (0xffff0000).  If we aren't using high-vectors, also
	 * create a mapping at the low-vectors virtual address.
	 */
1367
	map.pfn = __phys_to_pfn(virt_to_phys(vectors));
1368 1369
	map.virtual = 0xffff0000;
	map.length = PAGE_SIZE;
1370
#ifdef CONFIG_KUSER_HELPERS
1371
	map.type = MT_HIGH_VECTORS;
1372 1373 1374
#else
	map.type = MT_LOW_VECTORS;
#endif
1375 1376 1377 1378
	create_mapping(&map);

	if (!vectors_high()) {
		map.virtual = 0;
R
Russell King 已提交
1379
		map.length = PAGE_SIZE * 2;
1380 1381 1382 1383
		map.type = MT_LOW_VECTORS;
		create_mapping(&map);
	}

R
Russell King 已提交
1384 1385 1386 1387 1388 1389 1390
	/* Now create a kernel read-only mapping */
	map.pfn += 1;
	map.virtual = 0xffff0000 + PAGE_SIZE;
	map.length = PAGE_SIZE;
	map.type = MT_LOW_VECTORS;
	create_mapping(&map);

1391 1392 1393 1394 1395
	/*
	 * Ask the machine support to map in the statically mapped devices.
	 */
	if (mdesc->map_io)
		mdesc->map_io();
1396 1397
	else
		debug_ll_io_init();
1398
	fill_pmd_gaps();
1399

R
Rob Herring 已提交
1400 1401 1402
	/* Reserve fixed i/o space in VMALLOC region */
	pci_reserve_io();

1403 1404 1405 1406 1407 1408 1409 1410
	/*
	 * Finally flush the caches and tlb to ensure that we're in a
	 * consistent state wrt the writebuffer.  This also ensures that
	 * any write-allocated cache lines in the vector page are written
	 * back.  After this point, we can start to touch devices again.
	 */
	local_flush_tlb_all();
	flush_cache_all();
1411 1412

	/* Enable asynchronous aborts */
1413
	early_abt_enable();
1414 1415
}

N
Nicolas Pitre 已提交
1416 1417 1418
static void __init kmap_init(void)
{
#ifdef CONFIG_HIGHMEM
R
Russell King 已提交
1419 1420
	pkmap_page_table = early_pte_alloc(pmd_off_k(PKMAP_BASE),
		PKMAP_BASE, _PAGE_KERNEL_TABLE);
N
Nicolas Pitre 已提交
1421
#endif
R
Rob Herring 已提交
1422 1423 1424

	early_pte_alloc(pmd_off_k(FIXADDR_START), FIXADDR_START,
			_PAGE_KERNEL_TABLE);
N
Nicolas Pitre 已提交
1425 1426
}

1427 1428
static void __init map_lowmem(void)
{
1429
	struct memblock_region *reg;
1430
	phys_addr_t kernel_x_start = round_down(__pa(KERNEL_START), SECTION_SIZE);
1431
	phys_addr_t kernel_x_end = round_up(__pa(__init_end), SECTION_SIZE);
1432 1433

	/* Map all the lowmem memory banks. */
1434 1435 1436 1437 1438
	for_each_memblock(memory, reg) {
		phys_addr_t start = reg->base;
		phys_addr_t end = start + reg->size;
		struct map_desc map;

1439 1440 1441
		if (memblock_is_nomap(reg))
			continue;

1442 1443
		if (end > arm_lowmem_limit)
			end = arm_lowmem_limit;
1444 1445 1446
		if (start >= end)
			break;

1447
		if (end < kernel_x_start) {
1448 1449 1450 1451
			map.pfn = __phys_to_pfn(start);
			map.virtual = __phys_to_virt(start);
			map.length = end - start;
			map.type = MT_MEMORY_RWX;
1452

1453 1454 1455 1456 1457 1458 1459
			create_mapping(&map);
		} else if (start >= kernel_x_end) {
			map.pfn = __phys_to_pfn(start);
			map.virtual = __phys_to_virt(start);
			map.length = end - start;
			map.type = MT_MEMORY_RW;

1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487
			create_mapping(&map);
		} else {
			/* This better cover the entire kernel */
			if (start < kernel_x_start) {
				map.pfn = __phys_to_pfn(start);
				map.virtual = __phys_to_virt(start);
				map.length = kernel_x_start - start;
				map.type = MT_MEMORY_RW;

				create_mapping(&map);
			}

			map.pfn = __phys_to_pfn(kernel_x_start);
			map.virtual = __phys_to_virt(kernel_x_start);
			map.length = kernel_x_end - kernel_x_start;
			map.type = MT_MEMORY_RWX;

			create_mapping(&map);

			if (kernel_x_end < end) {
				map.pfn = __phys_to_pfn(kernel_x_end);
				map.virtual = __phys_to_virt(kernel_x_end);
				map.length = end - kernel_x_end;
				map.type = MT_MEMORY_RW;

				create_mapping(&map);
			}
		}
1488 1489 1490
	}
}

1491 1492 1493 1494 1495
#ifdef CONFIG_ARM_PV_FIXUP
extern unsigned long __atags_pointer;
typedef void pgtables_remap(long long offset, unsigned long pgd, void *bdata);
pgtables_remap lpae_pgtables_remap_asm;

1496 1497 1498 1499
/*
 * early_paging_init() recreates boot time page table setup, allowing machines
 * to switch over to a high (>4G) address space on LPAE systems
 */
1500
static void __init early_paging_init(const struct machine_desc *mdesc)
1501
{
1502 1503 1504
	pgtables_remap *lpae_pgtables_remap;
	unsigned long pa_pgd;
	unsigned int cr, ttbcr;
1505
	long long offset;
1506
	void *boot_data;
1507

1508
	if (!mdesc->pv_fixup)
1509 1510
		return;

1511
	offset = mdesc->pv_fixup();
1512 1513
	if (offset == 0)
		return;
1514

1515 1516 1517 1518 1519 1520 1521 1522 1523 1524
	/*
	 * Get the address of the remap function in the 1:1 identity
	 * mapping setup by the early page table assembly code.  We
	 * must get this prior to the pv update.  The following barrier
	 * ensures that this is complete before we fixup any P:V offsets.
	 */
	lpae_pgtables_remap = (pgtables_remap *)(unsigned long)__pa(lpae_pgtables_remap_asm);
	pa_pgd = __pa(swapper_pg_dir);
	boot_data = __va(__atags_pointer);
	barrier();
1525

1526 1527
	pr_info("Switching physical address space to 0x%08llx\n",
		(u64)PHYS_OFFSET + offset);
1528

1529 1530 1531
	/* Re-set the phys pfn offset, and the pv offset */
	__pv_offset += offset;
	__pv_phys_pfn_offset += PFN_DOWN(offset);
1532 1533 1534 1535 1536 1537

	/* Run the patch stub to update the constants */
	fixup_pv_table(&__pv_table_begin,
		(&__pv_table_end - &__pv_table_begin) << 2);

	/*
1538 1539 1540 1541 1542 1543 1544
	 * We changing not only the virtual to physical mapping, but also
	 * the physical addresses used to access memory.  We need to flush
	 * all levels of cache in the system with caching disabled to
	 * ensure that all data is written back, and nothing is prefetched
	 * into the caches.  We also need to prevent the TLB walkers
	 * allocating into the caches too.  Note that this is ARMv7 LPAE
	 * specific.
1545
	 */
1546 1547 1548 1549 1550
	cr = get_cr();
	set_cr(cr & ~(CR_I | CR_C));
	asm("mrc p15, 0, %0, c2, c0, 2" : "=r" (ttbcr));
	asm volatile("mcr p15, 0, %0, c2, c0, 2"
		: : "r" (ttbcr & ~(3 << 8 | 3 << 10)));
1551
	flush_cache_all();
1552 1553

	/*
1554 1555 1556 1557
	 * Fixup the page tables - this must be in the idmap region as
	 * we need to disable the MMU to do this safely, and hence it
	 * needs to be assembly.  It's fairly simple, as we're using the
	 * temporary tables setup by the initial assembly code.
1558
	 */
1559
	lpae_pgtables_remap(offset, pa_pgd, boot_data);
1560

1561 1562 1563
	/* Re-enable the caches and cacheable TLB walks */
	asm volatile("mcr p15, 0, %0, c2, c0, 2" : : "r" (ttbcr));
	set_cr(cr);
1564 1565 1566 1567
}

#else

1568
static void __init early_paging_init(const struct machine_desc *mdesc)
1569
{
1570 1571
	long long offset;

1572
	if (!mdesc->pv_fixup)
1573 1574
		return;

1575
	offset = mdesc->pv_fixup();
1576 1577 1578 1579 1580 1581 1582
	if (offset == 0)
		return;

	pr_crit("Physical address space modification is only to support Keystone2.\n");
	pr_crit("Please enable ARM_LPAE and ARM_PATCH_PHYS_VIRT support to use this\n");
	pr_crit("feature. Your kernel may crash now, have a good day.\n");
	add_taint(TAINT_CPU_OUT_OF_SPEC, LOCKDEP_STILL_OK);
1583 1584 1585 1586
}

#endif

1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615
static void __init early_fixmap_shutdown(void)
{
	int i;
	unsigned long va = fix_to_virt(__end_of_permanent_fixed_addresses - 1);

	pte_offset_fixmap = pte_offset_late_fixmap;
	pmd_clear(fixmap_pmd(va));
	local_flush_tlb_kernel_page(va);

	for (i = 0; i < __end_of_permanent_fixed_addresses; i++) {
		pte_t *pte;
		struct map_desc map;

		map.virtual = fix_to_virt(i);
		pte = pte_offset_early_fixmap(pmd_off_k(map.virtual), map.virtual);

		/* Only i/o device mappings are supported ATM */
		if (pte_none(*pte) ||
		    (pte_val(*pte) & L_PTE_MT_MASK) != L_PTE_MT_DEV_SHARED)
			continue;

		map.pfn = pte_pfn(*pte);
		map.type = MT_DEVICE;
		map.length = PAGE_SIZE;

		create_mapping(&map);
	}
}

1616 1617 1618 1619
/*
 * paging_init() sets up the page tables, initialises the zone memory
 * maps, and sets up the zero page, bad page and bad page tables.
 */
1620
void __init paging_init(const struct machine_desc *mdesc)
1621 1622 1623
{
	void *zero_page;

1624
	prepare_page_table();
1625
	map_lowmem();
1626
	memblock_set_current_limit(arm_lowmem_limit);
1627
	dma_contiguous_remap();
1628
	early_fixmap_shutdown();
1629
	devicemaps_init(mdesc);
N
Nicolas Pitre 已提交
1630
	kmap_init();
1631
	tcm_init();
1632 1633 1634

	top_pmd = pmd_off_k(0xffff0000);

R
Russell King 已提交
1635 1636
	/* allocate the zero page. */
	zero_page = early_alloc(PAGE_SIZE);
R
Russell King 已提交
1637

1638
	bootmem_init();
R
Russell King 已提交
1639

1640
	empty_zero_page = virt_to_page(zero_page);
1641
	__flush_dcache_page(NULL, empty_zero_page);
M
Marc Zyngier 已提交
1642 1643 1644

	/* Compute the virt/idmap offset, mostly for the sake of KVM */
	kimage_voffset = (unsigned long)&kimage_voffset - virt_to_idmap(&kimage_voffset);
1645
}
1646 1647 1648 1649 1650 1651

void __init early_mm_init(const struct machine_desc *mdesc)
{
	build_mem_type_table();
	early_paging_init(mdesc);
}