mmu.c 41.3 KB
Newer Older
1 2 3 4 5 6 7 8 9
/*
 *  linux/arch/arm/mm/mmu.c
 *
 *  Copyright (C) 1995-2005 Russell King
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
 */
10
#include <linux/module.h>
11 12 13 14 15
#include <linux/kernel.h>
#include <linux/errno.h>
#include <linux/init.h>
#include <linux/mman.h>
#include <linux/nodemask.h>
R
Russell King 已提交
16
#include <linux/memblock.h>
17
#include <linux/fs.h>
18
#include <linux/vmalloc.h>
19
#include <linux/sizes.h>
20

21
#include <asm/cp15.h>
22
#include <asm/cputype.h>
R
Russell King 已提交
23
#include <asm/sections.h>
24
#include <asm/cachetype.h>
25
#include <asm/sections.h>
26
#include <asm/setup.h>
27
#include <asm/smp_plat.h>
28
#include <asm/tlb.h>
N
Nicolas Pitre 已提交
29
#include <asm/highmem.h>
30
#include <asm/system_info.h>
31
#include <asm/traps.h>
32 33
#include <asm/procinfo.h>
#include <asm/memory.h>
34 35 36

#include <asm/mach/arch.h>
#include <asm/mach/map.h>
R
Rob Herring 已提交
37
#include <asm/mach/pci.h>
38
#include <asm/fixmap.h>
39 40

#include "mm.h"
41
#include "tcm.h"
42 43 44 45 46 47

/*
 * empty_zero_page is a special page that is used for
 * zero-initialized data and COW.
 */
struct page *empty_zero_page;
48
EXPORT_SYMBOL(empty_zero_page);
49 50 51 52 53 54

/*
 * The pmd table for the upper-most set of pages.
 */
pmd_t *top_pmd;

55 56 57 58 59 60 61 62
#define CPOLICY_UNCACHED	0
#define CPOLICY_BUFFERED	1
#define CPOLICY_WRITETHROUGH	2
#define CPOLICY_WRITEBACK	3
#define CPOLICY_WRITEALLOC	4

static unsigned int cachepolicy __initdata = CPOLICY_WRITEBACK;
static unsigned int ecc_mask __initdata = 0;
63
pgprot_t pgprot_user;
64
pgprot_t pgprot_kernel;
65 66 67
pgprot_t pgprot_hyp_device;
pgprot_t pgprot_s2;
pgprot_t pgprot_s2_device;
68

69
EXPORT_SYMBOL(pgprot_user);
70 71 72 73 74
EXPORT_SYMBOL(pgprot_kernel);

struct cachepolicy {
	const char	policy[16];
	unsigned int	cr_mask;
75
	pmdval_t	pmd;
76
	pteval_t	pte;
77
	pteval_t	pte_s2;
78 79
};

80 81 82 83 84 85
#ifdef CONFIG_ARM_LPAE
#define s2_policy(policy)	policy
#else
#define s2_policy(policy)	0
#endif

86 87 88 89 90
static struct cachepolicy cache_policies[] __initdata = {
	{
		.policy		= "uncached",
		.cr_mask	= CR_W|CR_C,
		.pmd		= PMD_SECT_UNCACHED,
91
		.pte		= L_PTE_MT_UNCACHED,
92
		.pte_s2		= s2_policy(L_PTE_S2_MT_UNCACHED),
93 94 95 96
	}, {
		.policy		= "buffered",
		.cr_mask	= CR_C,
		.pmd		= PMD_SECT_BUFFERED,
97
		.pte		= L_PTE_MT_BUFFERABLE,
98
		.pte_s2		= s2_policy(L_PTE_S2_MT_UNCACHED),
99 100 101 102
	}, {
		.policy		= "writethrough",
		.cr_mask	= 0,
		.pmd		= PMD_SECT_WT,
103
		.pte		= L_PTE_MT_WRITETHROUGH,
104
		.pte_s2		= s2_policy(L_PTE_S2_MT_WRITETHROUGH),
105 106 107 108
	}, {
		.policy		= "writeback",
		.cr_mask	= 0,
		.pmd		= PMD_SECT_WB,
109
		.pte		= L_PTE_MT_WRITEBACK,
110
		.pte_s2		= s2_policy(L_PTE_S2_MT_WRITEBACK),
111 112 113 114
	}, {
		.policy		= "writealloc",
		.cr_mask	= 0,
		.pmd		= PMD_SECT_WBWA,
115
		.pte		= L_PTE_MT_WRITEALLOC,
116
		.pte_s2		= s2_policy(L_PTE_S2_MT_WRITEBACK),
117 118 119
	}
};

120
#ifdef CONFIG_CPU_CP15
121 122
static unsigned long initial_pmd_value __initdata = 0;

123
/*
124 125 126 127 128
 * Initialise the cache_policy variable with the initial state specified
 * via the "pmd" value.  This is used to ensure that on ARMv6 and later,
 * the C code sets the page tables up with the same policy as the head
 * assembly code, which avoids an illegal state where the TLBs can get
 * confused.  See comments in early_cachepolicy() for more information.
129
 */
130
void __init init_default_cache_policy(unsigned long pmd)
131 132 133
{
	int i;

134 135
	initial_pmd_value = pmd;

136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156
	pmd &= PMD_SECT_TEX(1) | PMD_SECT_BUFFERABLE | PMD_SECT_CACHEABLE;

	for (i = 0; i < ARRAY_SIZE(cache_policies); i++)
		if (cache_policies[i].pmd == pmd) {
			cachepolicy = i;
			break;
		}

	if (i == ARRAY_SIZE(cache_policies))
		pr_err("ERROR: could not find cache policy\n");
}

/*
 * These are useful for identifying cache coherency problems by allowing
 * the cache or the cache and writebuffer to be turned off.  (Note: the
 * write buffer should not be on and the cache off).
 */
static int __init early_cachepolicy(char *p)
{
	int i, selected = -1;

157 158 159
	for (i = 0; i < ARRAY_SIZE(cache_policies); i++) {
		int len = strlen(cache_policies[i].policy);

160
		if (memcmp(p, cache_policies[i].policy, len) == 0) {
161
			selected = i;
162 163 164
			break;
		}
	}
165 166 167 168

	if (selected == -1)
		pr_err("ERROR: unknown or unsupported cache policy\n");

169 170 171 172 173 174 175
	/*
	 * This restriction is partly to do with the way we boot; it is
	 * unpredictable to have memory mapped using two different sets of
	 * memory attributes (shared, type, and cache attribs).  We can not
	 * change these attributes once the initial assembly has setup the
	 * page tables.
	 */
176 177 178 179 180 181 182 183 184 185 186
	if (cpu_architecture() >= CPU_ARCH_ARMv6 && selected != cachepolicy) {
		pr_warn("Only cachepolicy=%s supported on ARMv6 and later\n",
			cache_policies[cachepolicy].policy);
		return 0;
	}

	if (selected != cachepolicy) {
		unsigned long cr = __clear_cr(cache_policies[selected].cr_mask);
		cachepolicy = selected;
		flush_cache_all();
		set_cr(cr);
187
	}
188
	return 0;
189
}
190
early_param("cachepolicy", early_cachepolicy);
191

192
static int __init early_nocache(char *__unused)
193 194 195
{
	char *p = "buffered";
	printk(KERN_WARNING "nocache is deprecated; use cachepolicy=%s\n", p);
196 197
	early_cachepolicy(p);
	return 0;
198
}
199
early_param("nocache", early_nocache);
200

201
static int __init early_nowrite(char *__unused)
202 203 204
{
	char *p = "uncached";
	printk(KERN_WARNING "nowb is deprecated; use cachepolicy=%s\n", p);
205 206
	early_cachepolicy(p);
	return 0;
207
}
208
early_param("nowb", early_nowrite);
209

210
#ifndef CONFIG_ARM_LPAE
211
static int __init early_ecc(char *p)
212
{
213
	if (memcmp(p, "on", 2) == 0)
214
		ecc_mask = PMD_PROTECTION;
215
	else if (memcmp(p, "off", 3) == 0)
216
		ecc_mask = 0;
217
	return 0;
218
}
219
early_param("ecc", early_ecc);
220
#endif
221

222 223 224 225
#else /* ifdef CONFIG_CPU_CP15 */

static int __init early_cachepolicy(char *p)
{
226
	pr_warn("cachepolicy kernel parameter not supported without cp15\n");
227 228 229 230 231
}
early_param("cachepolicy", early_cachepolicy);

static int __init noalign_setup(char *__unused)
{
232
	pr_warn("noalign kernel parameter not supported without cp15\n");
233 234 235 236 237
}
__setup("noalign", noalign_setup);

#endif /* ifdef CONFIG_CPU_CP15 / else */

238
#define PROT_PTE_DEVICE		L_PTE_PRESENT|L_PTE_YOUNG|L_PTE_DIRTY|L_PTE_XN
239
#define PROT_PTE_S2_DEVICE	PROT_PTE_DEVICE
240
#define PROT_SECT_DEVICE	PMD_TYPE_SECT|PMD_SECT_AP_WRITE
241

242
static struct mem_type mem_types[] = {
243
	[MT_DEVICE] = {		  /* Strongly ordered / ARMv6 shared device */
244 245
		.prot_pte	= PROT_PTE_DEVICE | L_PTE_MT_DEV_SHARED |
				  L_PTE_SHARED,
246 247 248
		.prot_pte_s2	= s2_policy(PROT_PTE_S2_DEVICE) |
				  s2_policy(L_PTE_S2_MT_DEV_SHARED) |
				  L_PTE_SHARED,
249
		.prot_l1	= PMD_TYPE_TABLE,
250
		.prot_sect	= PROT_SECT_DEVICE | PMD_SECT_S,
251 252 253
		.domain		= DOMAIN_IO,
	},
	[MT_DEVICE_NONSHARED] = { /* ARMv6 non-shared device */
254
		.prot_pte	= PROT_PTE_DEVICE | L_PTE_MT_DEV_NONSHARED,
255
		.prot_l1	= PMD_TYPE_TABLE,
256
		.prot_sect	= PROT_SECT_DEVICE,
257 258 259
		.domain		= DOMAIN_IO,
	},
	[MT_DEVICE_CACHED] = {	  /* ioremap_cached */
260
		.prot_pte	= PROT_PTE_DEVICE | L_PTE_MT_DEV_CACHED,
261 262 263
		.prot_l1	= PMD_TYPE_TABLE,
		.prot_sect	= PROT_SECT_DEVICE | PMD_SECT_WB,
		.domain		= DOMAIN_IO,
R
Rob Herring 已提交
264
	},
265
	[MT_DEVICE_WC] = {	/* ioremap_wc */
266
		.prot_pte	= PROT_PTE_DEVICE | L_PTE_MT_DEV_WC,
267
		.prot_l1	= PMD_TYPE_TABLE,
268
		.prot_sect	= PROT_SECT_DEVICE,
269
		.domain		= DOMAIN_IO,
270
	},
271 272 273 274 275 276
	[MT_UNCACHED] = {
		.prot_pte	= PROT_PTE_DEVICE,
		.prot_l1	= PMD_TYPE_TABLE,
		.prot_sect	= PMD_TYPE_SECT | PMD_SECT_XN,
		.domain		= DOMAIN_IO,
	},
277
	[MT_CACHECLEAN] = {
278
		.prot_sect = PMD_TYPE_SECT | PMD_SECT_XN,
279 280
		.domain    = DOMAIN_KERNEL,
	},
281
#ifndef CONFIG_ARM_LPAE
282
	[MT_MINICLEAN] = {
283
		.prot_sect = PMD_TYPE_SECT | PMD_SECT_XN | PMD_SECT_MINICACHE,
284 285
		.domain    = DOMAIN_KERNEL,
	},
286
#endif
287 288
	[MT_LOW_VECTORS] = {
		.prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
289
				L_PTE_RDONLY,
290 291 292 293 294
		.prot_l1   = PMD_TYPE_TABLE,
		.domain    = DOMAIN_USER,
	},
	[MT_HIGH_VECTORS] = {
		.prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
295
				L_PTE_USER | L_PTE_RDONLY,
296 297 298
		.prot_l1   = PMD_TYPE_TABLE,
		.domain    = DOMAIN_USER,
	},
299
	[MT_MEMORY_RWX] = {
300
		.prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY,
301
		.prot_l1   = PMD_TYPE_TABLE,
302
		.prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE,
303 304
		.domain    = DOMAIN_KERNEL,
	},
305 306 307 308 309 310 311
	[MT_MEMORY_RW] = {
		.prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
			     L_PTE_XN,
		.prot_l1   = PMD_TYPE_TABLE,
		.prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE,
		.domain    = DOMAIN_KERNEL,
	},
312
	[MT_ROM] = {
313
		.prot_sect = PMD_TYPE_SECT,
314 315
		.domain    = DOMAIN_KERNEL,
	},
316
	[MT_MEMORY_RWX_NONCACHED] = {
317
		.prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
318
				L_PTE_MT_BUFFERABLE,
319
		.prot_l1   = PMD_TYPE_TABLE,
320 321 322
		.prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE,
		.domain    = DOMAIN_KERNEL,
	},
323
	[MT_MEMORY_RW_DTCM] = {
324
		.prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
325
				L_PTE_XN,
326 327 328
		.prot_l1   = PMD_TYPE_TABLE,
		.prot_sect = PMD_TYPE_SECT | PMD_SECT_XN,
		.domain    = DOMAIN_KERNEL,
329
	},
330
	[MT_MEMORY_RWX_ITCM] = {
331
		.prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY,
332
		.prot_l1   = PMD_TYPE_TABLE,
333
		.domain    = DOMAIN_KERNEL,
334
	},
335
	[MT_MEMORY_RW_SO] = {
336
		.prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
337
				L_PTE_MT_UNCACHED | L_PTE_XN,
338 339 340 341 342
		.prot_l1   = PMD_TYPE_TABLE,
		.prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE | PMD_SECT_S |
				PMD_SECT_UNCACHED | PMD_SECT_XN,
		.domain    = DOMAIN_KERNEL,
	},
343
	[MT_MEMORY_DMA_READY] = {
344 345
		.prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
				L_PTE_XN,
346 347 348
		.prot_l1   = PMD_TYPE_TABLE,
		.domain    = DOMAIN_KERNEL,
	},
349 350
};

351 352 353 354
const struct mem_type *get_mem_type(unsigned int type)
{
	return type < ARRAY_SIZE(mem_types) ? &mem_types[type] : NULL;
}
355
EXPORT_SYMBOL(get_mem_type);
356

357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394
#define PTE_SET_FN(_name, pteop) \
static int pte_set_##_name(pte_t *ptep, pgtable_t token, unsigned long addr, \
			void *data) \
{ \
	pte_t pte = pteop(*ptep); \
\
	set_pte_ext(ptep, pte, 0); \
	return 0; \
} \

#define SET_MEMORY_FN(_name, callback) \
int set_memory_##_name(unsigned long addr, int numpages) \
{ \
	unsigned long start = addr; \
	unsigned long size = PAGE_SIZE*numpages; \
	unsigned end = start + size; \
\
	if (start < MODULES_VADDR || start >= MODULES_END) \
		return -EINVAL;\
\
	if (end < MODULES_VADDR || end >= MODULES_END) \
		return -EINVAL; \
\
	apply_to_page_range(&init_mm, start, size, callback, NULL); \
	flush_tlb_kernel_range(start, end); \
	return 0;\
}

PTE_SET_FN(ro, pte_wrprotect)
PTE_SET_FN(rw, pte_mkwrite)
PTE_SET_FN(x, pte_mkexec)
PTE_SET_FN(nx, pte_mknexec)

SET_MEMORY_FN(ro, pte_set_ro)
SET_MEMORY_FN(rw, pte_set_rw)
SET_MEMORY_FN(x, pte_set_x)
SET_MEMORY_FN(nx, pte_set_nx)

395 396 397 398 399 400 401
/*
 * Adjust the PMD section entries according to the CPU in use.
 */
static void __init build_mem_type_table(void)
{
	struct cachepolicy *cp;
	unsigned int cr = get_cr();
402
	pteval_t user_pgprot, kern_pgprot, vecs_pgprot;
403
	pteval_t hyp_device_pgprot, s2_pgprot, s2_device_pgprot;
404 405 406
	int cpu_arch = cpu_architecture();
	int i;

407
	if (cpu_arch < CPU_ARCH_ARMv6) {
408
#if defined(CONFIG_CPU_DCACHE_DISABLE)
409 410
		if (cachepolicy > CPOLICY_BUFFERED)
			cachepolicy = CPOLICY_BUFFERED;
411
#elif defined(CONFIG_CPU_DCACHE_WRITETHROUGH)
412 413
		if (cachepolicy > CPOLICY_WRITETHROUGH)
			cachepolicy = CPOLICY_WRITETHROUGH;
414
#endif
415
	}
416 417 418 419 420
	if (cpu_arch < CPU_ARCH_ARMv5) {
		if (cachepolicy >= CPOLICY_WRITEALLOC)
			cachepolicy = CPOLICY_WRITEBACK;
		ecc_mask = 0;
	}
421

422 423 424 425 426 427 428 429 430
	if (is_smp()) {
		if (cachepolicy != CPOLICY_WRITEALLOC) {
			pr_warn("Forcing write-allocate cache policy for SMP\n");
			cachepolicy = CPOLICY_WRITEALLOC;
		}
		if (!(initial_pmd_value & PMD_SECT_S)) {
			pr_warn("Forcing shared mappings for SMP\n");
			initial_pmd_value |= PMD_SECT_S;
		}
431
	}
432

433
	/*
434 435 436
	 * Strip out features not present on earlier architectures.
	 * Pre-ARMv5 CPUs don't have TEX bits.  Pre-ARMv6 CPUs or those
	 * without extended page tables don't have the 'Shared' bit.
437
	 */
438 439 440 441 442 443
	if (cpu_arch < CPU_ARCH_ARMv5)
		for (i = 0; i < ARRAY_SIZE(mem_types); i++)
			mem_types[i].prot_sect &= ~PMD_SECT_TEX(7);
	if ((cpu_arch < CPU_ARCH_ARMv6 || !(cr & CR_XP)) && !cpu_is_xsc3())
		for (i = 0; i < ARRAY_SIZE(mem_types); i++)
			mem_types[i].prot_sect &= ~PMD_SECT_S;
444 445

	/*
446 447 448
	 * ARMv5 and lower, bit 4 must be set for page tables (was: cache
	 * "update-able on write" bit on ARM610).  However, Xscale and
	 * Xscale3 require this bit to be cleared.
449
	 */
450
	if (cpu_is_xscale() || cpu_is_xsc3()) {
451
		for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
452
			mem_types[i].prot_sect &= ~PMD_BIT4;
453 454 455 456
			mem_types[i].prot_l1 &= ~PMD_BIT4;
		}
	} else if (cpu_arch < CPU_ARCH_ARMv6) {
		for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
457 458
			if (mem_types[i].prot_l1)
				mem_types[i].prot_l1 |= PMD_BIT4;
459 460 461 462
			if (mem_types[i].prot_sect)
				mem_types[i].prot_sect |= PMD_BIT4;
		}
	}
463

464 465 466 467 468 469 470 471 472 473 474 475 476
	/*
	 * Mark the device areas according to the CPU/architecture.
	 */
	if (cpu_is_xsc3() || (cpu_arch >= CPU_ARCH_ARMv6 && (cr & CR_XP))) {
		if (!cpu_is_xsc3()) {
			/*
			 * Mark device regions on ARMv6+ as execute-never
			 * to prevent speculative instruction fetches.
			 */
			mem_types[MT_DEVICE].prot_sect |= PMD_SECT_XN;
			mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_XN;
			mem_types[MT_DEVICE_CACHED].prot_sect |= PMD_SECT_XN;
			mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_XN;
477 478 479

			/* Also setup NX memory mapping */
			mem_types[MT_MEMORY_RW].prot_sect |= PMD_SECT_XN;
480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524
		}
		if (cpu_arch >= CPU_ARCH_ARMv7 && (cr & CR_TRE)) {
			/*
			 * For ARMv7 with TEX remapping,
			 * - shared device is SXCB=1100
			 * - nonshared device is SXCB=0100
			 * - write combine device mem is SXCB=0001
			 * (Uncached Normal memory)
			 */
			mem_types[MT_DEVICE].prot_sect |= PMD_SECT_TEX(1);
			mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(1);
			mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_BUFFERABLE;
		} else if (cpu_is_xsc3()) {
			/*
			 * For Xscale3,
			 * - shared device is TEXCB=00101
			 * - nonshared device is TEXCB=01000
			 * - write combine device mem is TEXCB=00100
			 * (Inner/Outer Uncacheable in xsc3 parlance)
			 */
			mem_types[MT_DEVICE].prot_sect |= PMD_SECT_TEX(1) | PMD_SECT_BUFFERED;
			mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(2);
			mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_TEX(1);
		} else {
			/*
			 * For ARMv6 and ARMv7 without TEX remapping,
			 * - shared device is TEXCB=00001
			 * - nonshared device is TEXCB=01000
			 * - write combine device mem is TEXCB=00100
			 * (Uncached Normal in ARMv6 parlance).
			 */
			mem_types[MT_DEVICE].prot_sect |= PMD_SECT_BUFFERED;
			mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(2);
			mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_TEX(1);
		}
	} else {
		/*
		 * On others, write combining is "Uncached/Buffered"
		 */
		mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_BUFFERABLE;
	}

	/*
	 * Now deal with the memory-type mappings
	 */
525
	cp = &cache_policies[cachepolicy];
526
	vecs_pgprot = kern_pgprot = user_pgprot = cp->pte;
527
	s2_pgprot = cp->pte_s2;
528 529
	hyp_device_pgprot = mem_types[MT_DEVICE].prot_pte;
	s2_device_pgprot = mem_types[MT_DEVICE].prot_pte_s2;
530

531 532 533 534 535 536 537 538 539
	/*
	 * We don't use domains on ARMv6 (since this causes problems with
	 * v6/v7 kernels), so we must use a separate memory type for user
	 * r/o, kernel r/w to map the vectors page.
	 */
#ifndef CONFIG_ARM_LPAE
	if (cpu_arch == CPU_ARCH_ARMv6)
		vecs_pgprot |= L_PTE_MT_VECTORS;
#endif
540

541 542 543 544
	/*
	 * ARMv6 and above have extended page tables.
	 */
	if (cpu_arch >= CPU_ARCH_ARMv6 && (cr & CR_XP)) {
545
#ifndef CONFIG_ARM_LPAE
546 547 548 549 550 551 552
		/*
		 * Mark cache clean areas and XIP ROM read only
		 * from SVC mode and no access from userspace.
		 */
		mem_types[MT_ROM].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
		mem_types[MT_MINICLEAN].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
		mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
553
#endif
554

555 556 557 558 559 560
		/*
		 * If the initial page tables were created with the S bit
		 * set, then we need to do the same here for the same
		 * reasons given in early_cachepolicy().
		 */
		if (initial_pmd_value & PMD_SECT_S) {
561 562 563
			user_pgprot |= L_PTE_SHARED;
			kern_pgprot |= L_PTE_SHARED;
			vecs_pgprot |= L_PTE_SHARED;
564
			s2_pgprot |= L_PTE_SHARED;
565 566 567 568
			mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_S;
			mem_types[MT_DEVICE_WC].prot_pte |= L_PTE_SHARED;
			mem_types[MT_DEVICE_CACHED].prot_sect |= PMD_SECT_S;
			mem_types[MT_DEVICE_CACHED].prot_pte |= L_PTE_SHARED;
569 570
			mem_types[MT_MEMORY_RWX].prot_sect |= PMD_SECT_S;
			mem_types[MT_MEMORY_RWX].prot_pte |= L_PTE_SHARED;
571 572
			mem_types[MT_MEMORY_RW].prot_sect |= PMD_SECT_S;
			mem_types[MT_MEMORY_RW].prot_pte |= L_PTE_SHARED;
573
			mem_types[MT_MEMORY_DMA_READY].prot_pte |= L_PTE_SHARED;
574 575
			mem_types[MT_MEMORY_RWX_NONCACHED].prot_sect |= PMD_SECT_S;
			mem_types[MT_MEMORY_RWX_NONCACHED].prot_pte |= L_PTE_SHARED;
576
		}
577 578
	}

579 580 581 582 583 584 585
	/*
	 * Non-cacheable Normal - intended for memory areas that must
	 * not cause dirty cache line writebacks when used
	 */
	if (cpu_arch >= CPU_ARCH_ARMv6) {
		if (cpu_arch >= CPU_ARCH_ARMv7 && (cr & CR_TRE)) {
			/* Non-cacheable Normal is XCB = 001 */
586
			mem_types[MT_MEMORY_RWX_NONCACHED].prot_sect |=
587 588 589
				PMD_SECT_BUFFERED;
		} else {
			/* For both ARMv6 and non-TEX-remapping ARMv7 */
590
			mem_types[MT_MEMORY_RWX_NONCACHED].prot_sect |=
591 592 593
				PMD_SECT_TEX(1);
		}
	} else {
594
		mem_types[MT_MEMORY_RWX_NONCACHED].prot_sect |= PMD_SECT_BUFFERABLE;
595 596
	}

597 598 599 600 601 602
#ifdef CONFIG_ARM_LPAE
	/*
	 * Do not generate access flag faults for the kernel mappings.
	 */
	for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
		mem_types[i].prot_pte |= PTE_EXT_AF;
603 604
		if (mem_types[i].prot_sect)
			mem_types[i].prot_sect |= PMD_SECT_AF;
605 606 607 608 609
	}
	kern_pgprot |= PTE_EXT_AF;
	vecs_pgprot |= PTE_EXT_AF;
#endif

610
	for (i = 0; i < 16; i++) {
611
		pteval_t v = pgprot_val(protection_map[i]);
612
		protection_map[i] = __pgprot(v | user_pgprot);
613 614
	}

615 616
	mem_types[MT_LOW_VECTORS].prot_pte |= vecs_pgprot;
	mem_types[MT_HIGH_VECTORS].prot_pte |= vecs_pgprot;
617

618
	pgprot_user   = __pgprot(L_PTE_PRESENT | L_PTE_YOUNG | user_pgprot);
619
	pgprot_kernel = __pgprot(L_PTE_PRESENT | L_PTE_YOUNG |
620
				 L_PTE_DIRTY | kern_pgprot);
621 622 623
	pgprot_s2  = __pgprot(L_PTE_PRESENT | L_PTE_YOUNG | s2_pgprot);
	pgprot_s2_device  = __pgprot(s2_device_pgprot);
	pgprot_hyp_device  = __pgprot(hyp_device_pgprot);
624 625 626

	mem_types[MT_LOW_VECTORS].prot_l1 |= ecc_mask;
	mem_types[MT_HIGH_VECTORS].prot_l1 |= ecc_mask;
627 628
	mem_types[MT_MEMORY_RWX].prot_sect |= ecc_mask | cp->pmd;
	mem_types[MT_MEMORY_RWX].prot_pte |= kern_pgprot;
629 630
	mem_types[MT_MEMORY_RW].prot_sect |= ecc_mask | cp->pmd;
	mem_types[MT_MEMORY_RW].prot_pte |= kern_pgprot;
631
	mem_types[MT_MEMORY_DMA_READY].prot_pte |= kern_pgprot;
632
	mem_types[MT_MEMORY_RWX_NONCACHED].prot_sect |= ecc_mask;
633 634 635 636 637 638 639 640 641 642 643
	mem_types[MT_ROM].prot_sect |= cp->pmd;

	switch (cp->pmd) {
	case PMD_SECT_WT:
		mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_WT;
		break;
	case PMD_SECT_WB:
	case PMD_SECT_WBWA:
		mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_WB;
		break;
	}
644 645
	pr_info("Memory policy: %sData cache %s\n",
		ecc_mask ? "ECC enabled, " : "", cp->policy);
646 647 648 649 650 651 652 653

	for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
		struct mem_type *t = &mem_types[i];
		if (t->prot_l1)
			t->prot_l1 |= PMD_DOMAIN(t->domain);
		if (t->prot_sect)
			t->prot_sect |= PMD_DOMAIN(t->domain);
	}
654 655
}

656 657 658 659 660 661 662 663 664 665 666 667 668
#ifdef CONFIG_ARM_DMA_MEM_BUFFERABLE
pgprot_t phys_mem_access_prot(struct file *file, unsigned long pfn,
			      unsigned long size, pgprot_t vma_prot)
{
	if (!pfn_valid(pfn))
		return pgprot_noncached(vma_prot);
	else if (file->f_flags & O_SYNC)
		return pgprot_writecombine(vma_prot);
	return vma_prot;
}
EXPORT_SYMBOL(phys_mem_access_prot);
#endif

669 670
#define vectors_base()	(vectors_high() ? 0xffff0000 : 0)

671
static void __init *early_alloc_aligned(unsigned long sz, unsigned long align)
R
Russell King 已提交
672
{
673
	void *ptr = __va(memblock_alloc(sz, align));
R
Russell King 已提交
674 675
	memset(ptr, 0, sz);
	return ptr;
R
Russell King 已提交
676 677
}

678 679 680 681 682
static void __init *early_alloc(unsigned long sz)
{
	return early_alloc_aligned(sz, sz);
}

R
Russell King 已提交
683
static pte_t * __init early_pte_alloc(pmd_t *pmd, unsigned long addr, unsigned long prot)
684
{
685
	if (pmd_none(*pmd)) {
686
		pte_t *pte = early_alloc(PTE_HWTABLE_OFF + PTE_HWTABLE_SIZE);
687
		__pmd_populate(pmd, __pa(pte), prot);
688
	}
R
Russell King 已提交
689 690 691
	BUG_ON(pmd_bad(*pmd));
	return pte_offset_kernel(pmd, addr);
}
692

R
Russell King 已提交
693 694 695 696 697
static void __init alloc_init_pte(pmd_t *pmd, unsigned long addr,
				  unsigned long end, unsigned long pfn,
				  const struct mem_type *type)
{
	pte_t *pte = early_pte_alloc(pmd, addr, type->prot_l1);
698
	do {
699
		set_pte_ext(pte, pfn_pte(pfn, __pgprot(type->prot_pte)), 0);
700 701
		pfn++;
	} while (pte++, addr += PAGE_SIZE, addr != end);
702 703
}

704
static void __init __map_init_section(pmd_t *pmd, unsigned long addr,
705 706
			unsigned long end, phys_addr_t phys,
			const struct mem_type *type)
707
{
708 709
	pmd_t *p = pmd;

710
#ifndef CONFIG_ARM_LPAE
711
	/*
712 713 714 715 716 717 718
	 * In classic MMU format, puds and pmds are folded in to
	 * the pgds. pmd_offset gives the PGD entry. PGDs refer to a
	 * group of L1 entries making up one logical pointer to
	 * an L2 table (2MB), where as PMDs refer to the individual
	 * L1 entries (1MB). Hence increment to get the correct
	 * offset for odd 1MB sections.
	 * (See arch/arm/include/asm/pgtable-2level.h)
719
	 */
720 721
	if (addr & SECTION_SIZE)
		pmd++;
722
#endif
723 724 725 726
	do {
		*pmd = __pmd(phys | type->prot_sect);
		phys += SECTION_SIZE;
	} while (pmd++, addr += SECTION_SIZE, addr != end);
727

728
	flush_pmd_entry(p);
729
}
730

731 732 733 734 735 736 737 738
static void __init alloc_init_pmd(pud_t *pud, unsigned long addr,
				      unsigned long end, phys_addr_t phys,
				      const struct mem_type *type)
{
	pmd_t *pmd = pmd_offset(pud, addr);
	unsigned long next;

	do {
739
		/*
740 741
		 * With LPAE, we must loop over to map
		 * all the pmds for the given range.
742
		 */
743 744 745 746 747 748 749 750
		next = pmd_addr_end(addr, end);

		/*
		 * Try a section mapping - addr, next and phys must all be
		 * aligned to a section boundary.
		 */
		if (type->prot_sect &&
				((addr | next | phys) & ~SECTION_MASK) == 0) {
751
			__map_init_section(pmd, addr, next, phys, type);
752 753 754 755 756 757 758 759
		} else {
			alloc_init_pte(pmd, addr, next,
						__phys_to_pfn(phys), type);
		}

		phys += next - addr;

	} while (pmd++, addr = next, addr != end);
760 761
}

762
static void __init alloc_init_pud(pgd_t *pgd, unsigned long addr,
763 764
				  unsigned long end, phys_addr_t phys,
				  const struct mem_type *type)
R
Russell King 已提交
765 766 767 768 769 770
{
	pud_t *pud = pud_offset(pgd, addr);
	unsigned long next;

	do {
		next = pud_addr_end(addr, end);
771
		alloc_init_pmd(pud, addr, next, phys, type);
R
Russell King 已提交
772 773 774 775
		phys += next - addr;
	} while (pud++, addr = next, addr != end);
}

776
#ifndef CONFIG_ARM_LPAE
777 778 779
static void __init create_36bit_mapping(struct map_desc *md,
					const struct mem_type *type)
{
780 781
	unsigned long addr, length, end;
	phys_addr_t phys;
782 783 784
	pgd_t *pgd;

	addr = md->virtual;
785
	phys = __pfn_to_phys(md->pfn);
786 787 788 789 790
	length = PAGE_ALIGN(md->length);

	if (!(cpu_architecture() >= CPU_ARCH_ARMv6 || cpu_is_xsc3())) {
		printk(KERN_ERR "MM: CPU does not support supersection "
		       "mapping for 0x%08llx at 0x%08lx\n",
791
		       (long long)__pfn_to_phys((u64)md->pfn), addr);
792 793 794 795 796 797 798 799 800 801 802 803
		return;
	}

	/* N.B.	ARMv6 supersections are only defined to work with domain 0.
	 *	Since domain assignments can in fact be arbitrary, the
	 *	'domain == 0' check below is required to insure that ARMv6
	 *	supersections are only allocated for domain 0 regardless
	 *	of the actual domain assignments in use.
	 */
	if (type->domain) {
		printk(KERN_ERR "MM: invalid domain in supersection "
		       "mapping for 0x%08llx at 0x%08lx\n",
804
		       (long long)__pfn_to_phys((u64)md->pfn), addr);
805 806 807 808
		return;
	}

	if ((addr | length | __pfn_to_phys(md->pfn)) & ~SUPERSECTION_MASK) {
809 810 811
		printk(KERN_ERR "MM: cannot create mapping for 0x%08llx"
		       " at 0x%08lx invalid alignment\n",
		       (long long)__pfn_to_phys((u64)md->pfn), addr);
812 813 814 815 816 817 818 819 820 821 822 823
		return;
	}

	/*
	 * Shift bits [35:32] of address into bits [23:20] of PMD
	 * (See ARMv6 spec).
	 */
	phys |= (((md->pfn >> (32 - PAGE_SHIFT)) & 0xF) << 20);

	pgd = pgd_offset_k(addr);
	end = addr + length;
	do {
R
Russell King 已提交
824 825
		pud_t *pud = pud_offset(pgd, addr);
		pmd_t *pmd = pmd_offset(pud, addr);
826 827 828 829 830 831 832 833 834 835
		int i;

		for (i = 0; i < 16; i++)
			*pmd++ = __pmd(phys | type->prot_sect | PMD_SECT_SUPER);

		addr += SUPERSECTION_SIZE;
		phys += SUPERSECTION_SIZE;
		pgd += SUPERSECTION_SIZE >> PGDIR_SHIFT;
	} while (addr != end);
}
836
#endif	/* !CONFIG_ARM_LPAE */
837

838 839 840 841 842 843 844
/*
 * Create the page directory entries and any necessary
 * page tables for the mapping specified by `md'.  We
 * are able to cope here with varying sizes and address
 * offsets, and we take full advantage of sections and
 * supersections.
 */
845
static void __init create_mapping(struct map_desc *md)
846
{
847 848
	unsigned long addr, length, end;
	phys_addr_t phys;
849
	const struct mem_type *type;
850
	pgd_t *pgd;
851 852

	if (md->virtual != vectors_base() && md->virtual < TASK_SIZE) {
853 854 855
		printk(KERN_WARNING "BUG: not creating mapping for 0x%08llx"
		       " at 0x%08lx in user region\n",
		       (long long)__pfn_to_phys((u64)md->pfn), md->virtual);
856 857 858 859
		return;
	}

	if ((md->type == MT_DEVICE || md->type == MT_ROM) &&
860 861
	    md->virtual >= PAGE_OFFSET &&
	    (md->virtual < VMALLOC_START || md->virtual >= VMALLOC_END)) {
862
		printk(KERN_WARNING "BUG: mapping for 0x%08llx"
863
		       " at 0x%08lx out of vmalloc space\n",
864
		       (long long)__pfn_to_phys((u64)md->pfn), md->virtual);
865 866
	}

867
	type = &mem_types[md->type];
868

869
#ifndef CONFIG_ARM_LPAE
870 871 872
	/*
	 * Catch 36-bit addresses
	 */
873 874 875
	if (md->pfn >= 0x100000) {
		create_36bit_mapping(md, type);
		return;
876
	}
877
#endif
878

879
	addr = md->virtual & PAGE_MASK;
880
	phys = __pfn_to_phys(md->pfn);
881
	length = PAGE_ALIGN(md->length + (md->virtual & ~PAGE_MASK));
882

883
	if (type->prot_l1 == 0 && ((addr | phys | length) & ~SECTION_MASK)) {
884
		printk(KERN_WARNING "BUG: map for 0x%08llx at 0x%08lx can not "
885
		       "be mapped using pages, ignoring.\n",
886
		       (long long)__pfn_to_phys(md->pfn), addr);
887 888 889
		return;
	}

890 891 892 893
	pgd = pgd_offset_k(addr);
	end = addr + length;
	do {
		unsigned long next = pgd_addr_end(addr, end);
894

R
Russell King 已提交
895
		alloc_init_pud(pgd, addr, next, phys, type);
896

897 898 899
		phys += next - addr;
		addr = next;
	} while (pgd++, addr != end);
900 901 902 903 904 905 906
}

/*
 * Create the architecture specific mappings
 */
void __init iotable_init(struct map_desc *io_desc, int nr)
{
907 908
	struct map_desc *md;
	struct vm_struct *vm;
909
	struct static_vm *svm;
910 911 912

	if (!nr)
		return;
913

914
	svm = early_alloc_aligned(sizeof(*svm) * nr, __alignof__(*svm));
915 916 917

	for (md = io_desc; nr; md++, nr--) {
		create_mapping(md);
918 919

		vm = &svm->vm;
920 921
		vm->addr = (void *)(md->virtual & PAGE_MASK);
		vm->size = PAGE_ALIGN(md->length + (md->virtual & ~PAGE_MASK));
R
Rob Herring 已提交
922 923
		vm->phys_addr = __pfn_to_phys(md->pfn);
		vm->flags = VM_IOREMAP | VM_ARM_STATIC_MAPPING;
924
		vm->flags |= VM_ARM_MTYPE(md->type);
925
		vm->caller = iotable_init;
926
		add_static_vm_early(svm++);
927
	}
928 929
}

R
Rob Herring 已提交
930 931 932 933
void __init vm_reserve_area_early(unsigned long addr, unsigned long size,
				  void *caller)
{
	struct vm_struct *vm;
934 935 936
	struct static_vm *svm;

	svm = early_alloc_aligned(sizeof(*svm), __alignof__(*svm));
R
Rob Herring 已提交
937

938
	vm = &svm->vm;
R
Rob Herring 已提交
939 940
	vm->addr = (void *)addr;
	vm->size = size;
941
	vm->flags = VM_IOREMAP | VM_ARM_EMPTY_MAPPING;
R
Rob Herring 已提交
942
	vm->caller = caller;
943
	add_static_vm_early(svm);
R
Rob Herring 已提交
944 945
}

946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962
#ifndef CONFIG_ARM_LPAE

/*
 * The Linux PMD is made of two consecutive section entries covering 2MB
 * (see definition in include/asm/pgtable-2level.h).  However a call to
 * create_mapping() may optimize static mappings by using individual
 * 1MB section mappings.  This leaves the actual PMD potentially half
 * initialized if the top or bottom section entry isn't used, leaving it
 * open to problems if a subsequent ioremap() or vmalloc() tries to use
 * the virtual space left free by that unused section entry.
 *
 * Let's avoid the issue by inserting dummy vm entries covering the unused
 * PMD halves once the static mappings are in place.
 */

static void __init pmd_empty_section_gap(unsigned long addr)
{
R
Rob Herring 已提交
963
	vm_reserve_area_early(addr, SECTION_SIZE, pmd_empty_section_gap);
964 965 966 967
}

static void __init fill_pmd_gaps(void)
{
968
	struct static_vm *svm;
969 970 971 972
	struct vm_struct *vm;
	unsigned long addr, next = 0;
	pmd_t *pmd;

973 974
	list_for_each_entry(svm, &static_vmlist, list) {
		vm = &svm->vm;
975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010
		addr = (unsigned long)vm->addr;
		if (addr < next)
			continue;

		/*
		 * Check if this vm starts on an odd section boundary.
		 * If so and the first section entry for this PMD is free
		 * then we block the corresponding virtual address.
		 */
		if ((addr & ~PMD_MASK) == SECTION_SIZE) {
			pmd = pmd_off_k(addr);
			if (pmd_none(*pmd))
				pmd_empty_section_gap(addr & PMD_MASK);
		}

		/*
		 * Then check if this vm ends on an odd section boundary.
		 * If so and the second section entry for this PMD is empty
		 * then we block the corresponding virtual address.
		 */
		addr += vm->size;
		if ((addr & ~PMD_MASK) == SECTION_SIZE) {
			pmd = pmd_off_k(addr) + 1;
			if (pmd_none(*pmd))
				pmd_empty_section_gap(addr);
		}

		/* no need to look at any vm entry until we hit the next PMD */
		next = (addr + PMD_SIZE - 1) & PMD_MASK;
	}
}

#else
#define fill_pmd_gaps() do { } while (0)
#endif

R
Rob Herring 已提交
1011 1012 1013
#if defined(CONFIG_PCI) && !defined(CONFIG_NEED_MACH_IO_H)
static void __init pci_reserve_io(void)
{
1014
	struct static_vm *svm;
R
Rob Herring 已提交
1015

1016 1017 1018
	svm = find_static_vm_vaddr((void *)PCI_IO_VIRT_BASE);
	if (svm)
		return;
R
Rob Herring 已提交
1019 1020 1021 1022 1023 1024 1025

	vm_reserve_area_early(PCI_IO_VIRT_BASE, SZ_2M, pci_reserve_io);
}
#else
#define pci_reserve_io() do { } while (0)
#endif

R
Rob Herring 已提交
1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037
#ifdef CONFIG_DEBUG_LL
void __init debug_ll_io_init(void)
{
	struct map_desc map;

	debug_ll_addr(&map.pfn, &map.virtual);
	if (!map.pfn || !map.virtual)
		return;
	map.pfn = __phys_to_pfn(map.pfn);
	map.virtual &= PAGE_MASK;
	map.length = PAGE_SIZE;
	map.type = MT_DEVICE;
1038
	iotable_init(&map, 1);
R
Rob Herring 已提交
1039 1040 1041
}
#endif

1042 1043
static void * __initdata vmalloc_min =
	(void *)(VMALLOC_END - (240 << 20) - VMALLOC_OFFSET);
1044 1045 1046 1047

/*
 * vmalloc=size forces the vmalloc area to be exactly 'size'
 * bytes. This can be used to increase (or decrease) the vmalloc
1048
 * area - the default is 240m.
1049
 */
1050
static int __init early_vmalloc(char *arg)
1051
{
R
Russell King 已提交
1052
	unsigned long vmalloc_reserve = memparse(arg, NULL);
1053 1054 1055 1056 1057 1058 1059

	if (vmalloc_reserve < SZ_16M) {
		vmalloc_reserve = SZ_16M;
		printk(KERN_WARNING
			"vmalloc area too small, limiting to %luMB\n",
			vmalloc_reserve >> 20);
	}
1060 1061 1062 1063 1064 1065 1066

	if (vmalloc_reserve > VMALLOC_END - (PAGE_OFFSET + SZ_32M)) {
		vmalloc_reserve = VMALLOC_END - (PAGE_OFFSET + SZ_32M);
		printk(KERN_WARNING
			"vmalloc area is too big, limiting to %luMB\n",
			vmalloc_reserve >> 20);
	}
R
Russell King 已提交
1067 1068

	vmalloc_min = (void *)(VMALLOC_END - vmalloc_reserve);
1069
	return 0;
1070
}
1071
early_param("vmalloc", early_vmalloc);
1072

1073
phys_addr_t arm_lowmem_limit __initdata = 0;
1074

1075
void __init sanity_check_meminfo(void)
1076
{
1077
	phys_addr_t memblock_limit = 0;
L
Laura Abbott 已提交
1078
	int highmem = 0;
1079
	phys_addr_t vmalloc_limit = __pa(vmalloc_min - 1) + 1;
L
Laura Abbott 已提交
1080
	struct memblock_region *reg;
1081

L
Laura Abbott 已提交
1082 1083 1084 1085
	for_each_memblock(memory, reg) {
		phys_addr_t block_start = reg->base;
		phys_addr_t block_end = reg->base + reg->size;
		phys_addr_t size_limit = reg->size;
1086

L
Laura Abbott 已提交
1087
		if (reg->base >= vmalloc_limit)
R
Russell King 已提交
1088
			highmem = 1;
1089
		else
L
Laura Abbott 已提交
1090
			size_limit = vmalloc_limit - reg->base;
R
Russell King 已提交
1091 1092


L
Laura Abbott 已提交
1093 1094 1095 1096 1097 1098 1099
		if (!IS_ENABLED(CONFIG_HIGHMEM) || cache_is_vipt_aliasing()) {

			if (highmem) {
				pr_notice("Ignoring RAM at %pa-%pa (!CONFIG_HIGHMEM)\n",
					&block_start, &block_end);
				memblock_remove(reg->base, reg->size);
				continue;
1100
			}
1101

L
Laura Abbott 已提交
1102 1103 1104 1105 1106 1107 1108 1109
			if (reg->size > size_limit) {
				phys_addr_t overlap_size = reg->size - size_limit;

				pr_notice("Truncating RAM at %pa-%pa to -%pa",
				      &block_start, &block_end, &vmalloc_limit);
				memblock_remove(vmalloc_limit, overlap_size);
				block_end = vmalloc_limit;
			}
1110
		}
1111

L
Laura Abbott 已提交
1112 1113 1114 1115 1116 1117 1118
		if (!highmem) {
			if (block_end > arm_lowmem_limit) {
				if (reg->size > size_limit)
					arm_lowmem_limit = vmalloc_limit;
				else
					arm_lowmem_limit = block_end;
			}
1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133

			/*
			 * Find the first non-section-aligned page, and point
			 * memblock_limit at it. This relies on rounding the
			 * limit down to be section-aligned, which happens at
			 * the end of this function.
			 *
			 * With this algorithm, the start or end of almost any
			 * bank can be non-section-aligned. The only exception
			 * is that the start of the bank 0 must be section-
			 * aligned, since otherwise memory would need to be
			 * allocated when mapping the start of bank 0, which
			 * occurs before any free memory is mapped.
			 */
			if (!memblock_limit) {
L
Laura Abbott 已提交
1134 1135 1136 1137
				if (!IS_ALIGNED(block_start, SECTION_SIZE))
					memblock_limit = block_start;
				else if (!IS_ALIGNED(block_end, SECTION_SIZE))
					memblock_limit = arm_lowmem_limit;
1138
			}
1139 1140 1141

		}
	}
L
Laura Abbott 已提交
1142

1143
	high_memory = __va(arm_lowmem_limit - 1) + 1;
1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155

	/*
	 * Round the memblock limit down to a section size.  This
	 * helps to ensure that we will allocate memory from the
	 * last full section, which should be mapped.
	 */
	if (memblock_limit)
		memblock_limit = round_down(memblock_limit, SECTION_SIZE);
	if (!memblock_limit)
		memblock_limit = arm_lowmem_limit;

	memblock_set_current_limit(memblock_limit);
1156 1157
}

1158
static inline void prepare_page_table(void)
1159 1160
{
	unsigned long addr;
1161
	phys_addr_t end;
1162 1163 1164 1165

	/*
	 * Clear out all the mappings below the kernel image.
	 */
1166
	for (addr = 0; addr < MODULES_VADDR; addr += PMD_SIZE)
1167 1168 1169 1170
		pmd_clear(pmd_off_k(addr));

#ifdef CONFIG_XIP_KERNEL
	/* The XIP kernel is mapped in the module area -- skip over it */
1171
	addr = ((unsigned long)_etext + PMD_SIZE - 1) & PMD_MASK;
1172
#endif
1173
	for ( ; addr < PAGE_OFFSET; addr += PMD_SIZE)
1174 1175
		pmd_clear(pmd_off_k(addr));

1176 1177 1178 1179
	/*
	 * Find the end of the first block of lowmem.
	 */
	end = memblock.memory.regions[0].base + memblock.memory.regions[0].size;
1180 1181
	if (end >= arm_lowmem_limit)
		end = arm_lowmem_limit;
1182

1183 1184
	/*
	 * Clear out all the kernel space mappings, except for the first
1185
	 * memory bank, up to the vmalloc region.
1186
	 */
1187
	for (addr = __phys_to_virt(end);
1188
	     addr < VMALLOC_START; addr += PMD_SIZE)
1189 1190 1191
		pmd_clear(pmd_off_k(addr));
}

1192 1193 1194 1195 1196
#ifdef CONFIG_ARM_LPAE
/* the first page is reserved for pgd */
#define SWAPPER_PG_DIR_SIZE	(PAGE_SIZE + \
				 PTRS_PER_PGD * PTRS_PER_PMD * sizeof(pmd_t))
#else
1197
#define SWAPPER_PG_DIR_SIZE	(PTRS_PER_PGD * sizeof(pgd_t))
1198
#endif
1199

1200
/*
R
Russell King 已提交
1201
 * Reserve the special regions of memory
1202
 */
R
Russell King 已提交
1203
void __init arm_mm_memblock_reserve(void)
1204 1205 1206 1207 1208
{
	/*
	 * Reserve the page tables.  These are already in use,
	 * and can only be in node 0.
	 */
1209
	memblock_reserve(__pa(swapper_pg_dir), SWAPPER_PG_DIR_SIZE);
1210 1211 1212 1213 1214 1215

#ifdef CONFIG_SA1111
	/*
	 * Because of the SA1111 DMA bug, we want to preserve our
	 * precious DMA-able memory...
	 */
R
Russell King 已提交
1216
	memblock_reserve(PHYS_OFFSET, __pa(swapper_pg_dir) - PHYS_OFFSET);
1217 1218 1219 1220
#endif
}

/*
1221 1222
 * Set up the device mappings.  Since we clear out the page tables for all
 * mappings above VMALLOC_START, we will remove any debug device mappings.
1223 1224 1225 1226
 * This means you have to be careful how you debug this function, or any
 * called function.  This means you can't use any function or debugging
 * method which may touch any device, otherwise the kernel _will_ crash.
 */
1227
static void __init devicemaps_init(const struct machine_desc *mdesc)
1228 1229 1230
{
	struct map_desc map;
	unsigned long addr;
1231
	void *vectors;
1232 1233 1234 1235

	/*
	 * Allocate the vector page early.
	 */
R
Russell King 已提交
1236
	vectors = early_alloc(PAGE_SIZE * 2);
1237 1238

	early_trap_init(vectors);
1239

1240
	for (addr = VMALLOC_START; addr; addr += PMD_SIZE)
1241 1242 1243 1244 1245 1246 1247 1248
		pmd_clear(pmd_off_k(addr));

	/*
	 * Map the kernel if it is XIP.
	 * It is always first in the modulearea.
	 */
#ifdef CONFIG_XIP_KERNEL
	map.pfn = __phys_to_pfn(CONFIG_XIP_PHYS_ADDR & SECTION_MASK);
1249
	map.virtual = MODULES_VADDR;
R
Russell King 已提交
1250
	map.length = ((unsigned long)_etext - map.virtual + ~SECTION_MASK) & SECTION_MASK;
1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277
	map.type = MT_ROM;
	create_mapping(&map);
#endif

	/*
	 * Map the cache flushing regions.
	 */
#ifdef FLUSH_BASE
	map.pfn = __phys_to_pfn(FLUSH_BASE_PHYS);
	map.virtual = FLUSH_BASE;
	map.length = SZ_1M;
	map.type = MT_CACHECLEAN;
	create_mapping(&map);
#endif
#ifdef FLUSH_BASE_MINICACHE
	map.pfn = __phys_to_pfn(FLUSH_BASE_PHYS + SZ_1M);
	map.virtual = FLUSH_BASE_MINICACHE;
	map.length = SZ_1M;
	map.type = MT_MINICLEAN;
	create_mapping(&map);
#endif

	/*
	 * Create a mapping for the machine vectors at the high-vectors
	 * location (0xffff0000).  If we aren't using high-vectors, also
	 * create a mapping at the low-vectors virtual address.
	 */
1278
	map.pfn = __phys_to_pfn(virt_to_phys(vectors));
1279 1280
	map.virtual = 0xffff0000;
	map.length = PAGE_SIZE;
1281
#ifdef CONFIG_KUSER_HELPERS
1282
	map.type = MT_HIGH_VECTORS;
1283 1284 1285
#else
	map.type = MT_LOW_VECTORS;
#endif
1286 1287 1288 1289
	create_mapping(&map);

	if (!vectors_high()) {
		map.virtual = 0;
R
Russell King 已提交
1290
		map.length = PAGE_SIZE * 2;
1291 1292 1293 1294
		map.type = MT_LOW_VECTORS;
		create_mapping(&map);
	}

R
Russell King 已提交
1295 1296 1297 1298 1299 1300 1301
	/* Now create a kernel read-only mapping */
	map.pfn += 1;
	map.virtual = 0xffff0000 + PAGE_SIZE;
	map.length = PAGE_SIZE;
	map.type = MT_LOW_VECTORS;
	create_mapping(&map);

1302 1303 1304 1305 1306
	/*
	 * Ask the machine support to map in the statically mapped devices.
	 */
	if (mdesc->map_io)
		mdesc->map_io();
1307 1308
	else
		debug_ll_io_init();
1309
	fill_pmd_gaps();
1310

R
Rob Herring 已提交
1311 1312 1313
	/* Reserve fixed i/o space in VMALLOC region */
	pci_reserve_io();

1314 1315 1316 1317 1318 1319 1320 1321 1322 1323
	/*
	 * Finally flush the caches and tlb to ensure that we're in a
	 * consistent state wrt the writebuffer.  This also ensures that
	 * any write-allocated cache lines in the vector page are written
	 * back.  After this point, we can start to touch devices again.
	 */
	local_flush_tlb_all();
	flush_cache_all();
}

N
Nicolas Pitre 已提交
1324 1325 1326
static void __init kmap_init(void)
{
#ifdef CONFIG_HIGHMEM
R
Russell King 已提交
1327 1328
	pkmap_page_table = early_pte_alloc(pmd_off_k(PKMAP_BASE),
		PKMAP_BASE, _PAGE_KERNEL_TABLE);
1329 1330 1331

	fixmap_page_table = early_pte_alloc(pmd_off_k(FIXADDR_START),
		FIXADDR_START, _PAGE_KERNEL_TABLE);
N
Nicolas Pitre 已提交
1332 1333 1334
#endif
}

1335 1336
static void __init map_lowmem(void)
{
1337
	struct memblock_region *reg;
1338 1339
	unsigned long kernel_x_start = round_down(__pa(_stext), SECTION_SIZE);
	unsigned long kernel_x_end = round_up(__pa(__init_end), SECTION_SIZE);
1340 1341

	/* Map all the lowmem memory banks. */
1342 1343 1344 1345 1346
	for_each_memblock(memory, reg) {
		phys_addr_t start = reg->base;
		phys_addr_t end = start + reg->size;
		struct map_desc map;

1347 1348
		if (end > arm_lowmem_limit)
			end = arm_lowmem_limit;
1349 1350 1351
		if (start >= end)
			break;

1352 1353 1354 1355 1356
		if (end < kernel_x_start || start >= kernel_x_end) {
			map.pfn = __phys_to_pfn(start);
			map.virtual = __phys_to_virt(start);
			map.length = end - start;
			map.type = MT_MEMORY_RWX;
1357

1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385
			create_mapping(&map);
		} else {
			/* This better cover the entire kernel */
			if (start < kernel_x_start) {
				map.pfn = __phys_to_pfn(start);
				map.virtual = __phys_to_virt(start);
				map.length = kernel_x_start - start;
				map.type = MT_MEMORY_RW;

				create_mapping(&map);
			}

			map.pfn = __phys_to_pfn(kernel_x_start);
			map.virtual = __phys_to_virt(kernel_x_start);
			map.length = kernel_x_end - kernel_x_start;
			map.type = MT_MEMORY_RWX;

			create_mapping(&map);

			if (kernel_x_end < end) {
				map.pfn = __phys_to_pfn(kernel_x_end);
				map.virtual = __phys_to_virt(kernel_x_end);
				map.length = end - kernel_x_end;
				map.type = MT_MEMORY_RW;

				create_mapping(&map);
			}
		}
1386 1387 1388
	}
}

1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408
#ifdef CONFIG_ARM_LPAE
/*
 * early_paging_init() recreates boot time page table setup, allowing machines
 * to switch over to a high (>4G) address space on LPAE systems
 */
void __init early_paging_init(const struct machine_desc *mdesc,
			      struct proc_info_list *procinfo)
{
	pmdval_t pmdprot = procinfo->__cpu_mm_mmu_flags;
	unsigned long map_start, map_end;
	pgd_t *pgd0, *pgdk;
	pud_t *pud0, *pudk, *pud_start;
	pmd_t *pmd0, *pmdk;
	phys_addr_t phys;
	int i;

	if (!(mdesc->init_meminfo))
		return;

	/* remap kernel code and data */
1409 1410
	map_start = init_mm.start_code & PMD_MASK;
	map_end   = ALIGN(init_mm.brk, PMD_SIZE);
1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433

	/* get a handle on things... */
	pgd0 = pgd_offset_k(0);
	pud_start = pud0 = pud_offset(pgd0, 0);
	pmd0 = pmd_offset(pud0, 0);

	pgdk = pgd_offset_k(map_start);
	pudk = pud_offset(pgdk, map_start);
	pmdk = pmd_offset(pudk, map_start);

	mdesc->init_meminfo();

	/* Run the patch stub to update the constants */
	fixup_pv_table(&__pv_table_begin,
		(&__pv_table_end - &__pv_table_begin) << 2);

	/*
	 * Cache cleaning operations for self-modifying code
	 * We should clean the entries by MVA but running a
	 * for loop over every pv_table entry pointer would
	 * just complicate the code.
	 */
	flush_cache_louis();
1434
	dsb(ishst);
1435 1436
	isb();

1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460
	/*
	 * FIXME: This code is not architecturally compliant: we modify
	 * the mappings in-place, indeed while they are in use by this
	 * very same code.  This may lead to unpredictable behaviour of
	 * the CPU.
	 *
	 * Even modifying the mappings in a separate page table does
	 * not resolve this.
	 *
	 * The architecture strongly recommends that when a mapping is
	 * changed, that it is changed by first going via an invalid
	 * mapping and back to the new mapping.  This is to ensure that
	 * no TLB conflicts (caused by the TLB having more than one TLB
	 * entry match a translation) can occur.  However, doing that
	 * here will result in unmapping the code we are running.
	 */
	pr_warn("WARNING: unsafe modification of in-place page tables - tainting kernel\n");
	add_taint(TAINT_CPU_OUT_OF_SPEC, LOCKDEP_STILL_OK);

	/*
	 * Remap level 1 table.  This changes the physical addresses
	 * used to refer to the level 2 page tables to the high
	 * physical address alias, leaving everything else the same.
	 */
1461 1462 1463 1464 1465 1466
	for (i = 0; i < PTRS_PER_PGD; pud0++, i++) {
		set_pud(pud0,
			__pud(__pa(pmd0) | PMD_TYPE_TABLE | L_PGD_SWAPPER));
		pmd0 += PTRS_PER_PMD;
	}

1467 1468 1469 1470 1471
	/*
	 * Remap the level 2 table, pointing the mappings at the high
	 * physical address alias of these pages.
	 */
	phys = __pa(map_start);
1472 1473 1474 1475 1476
	do {
		*pmdk++ = __pmd(phys | pmdprot);
		phys += PMD_SIZE;
	} while (phys < map_end);

1477 1478 1479 1480 1481 1482 1483
	/*
	 * Ensure that the above updates are flushed out of the cache.
	 * This is not strictly correct; on a system where the caches
	 * are coherent with each other, but the MMU page table walks
	 * may not be coherent, flush_cache_all() may be a no-op, and
	 * this will fail.
	 */
1484
	flush_cache_all();
1485 1486 1487 1488 1489 1490

	/*
	 * Re-write the TTBR values to point them at the high physical
	 * alias of the page tables.  We expect __va() will work on
	 * cpu_get_pgd(), which returns the value of TTBR0.
	 */
1491 1492
	cpu_switch_mm(pgd0, &init_mm);
	cpu_set_ttbr(1, __pa(pgd0) + TTBR1_OFFSET);
1493 1494

	/* Finally flush any stale TLB values. */
1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509
	local_flush_bp_all();
	local_flush_tlb_all();
}

#else

void __init early_paging_init(const struct machine_desc *mdesc,
			      struct proc_info_list *procinfo)
{
	if (mdesc->init_meminfo)
		mdesc->init_meminfo();
}

#endif

1510 1511 1512 1513
/*
 * paging_init() sets up the page tables, initialises the zone memory
 * maps, and sets up the zero page, bad page and bad page tables.
 */
1514
void __init paging_init(const struct machine_desc *mdesc)
1515 1516 1517 1518
{
	void *zero_page;

	build_mem_type_table();
1519
	prepare_page_table();
1520
	map_lowmem();
1521
	dma_contiguous_remap();
1522
	devicemaps_init(mdesc);
N
Nicolas Pitre 已提交
1523
	kmap_init();
1524
	tcm_init();
1525 1526 1527

	top_pmd = pmd_off_k(0xffff0000);

R
Russell King 已提交
1528 1529
	/* allocate the zero page. */
	zero_page = early_alloc(PAGE_SIZE);
R
Russell King 已提交
1530

1531
	bootmem_init();
R
Russell King 已提交
1532

1533
	empty_zero_page = virt_to_page(zero_page);
1534
	__flush_dcache_page(NULL, empty_zero_page);
1535
}