mmu.c 43.1 KB
Newer Older
1 2 3 4 5 6 7 8 9
/*
 *  linux/arch/arm/mm/mmu.c
 *
 *  Copyright (C) 1995-2005 Russell King
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
 */
10
#include <linux/module.h>
11 12 13 14 15
#include <linux/kernel.h>
#include <linux/errno.h>
#include <linux/init.h>
#include <linux/mman.h>
#include <linux/nodemask.h>
R
Russell King 已提交
16
#include <linux/memblock.h>
17
#include <linux/fs.h>
18
#include <linux/vmalloc.h>
19
#include <linux/sizes.h>
20

21
#include <asm/cp15.h>
22
#include <asm/cputype.h>
R
Russell King 已提交
23
#include <asm/sections.h>
24
#include <asm/cachetype.h>
K
Kees Cook 已提交
25
#include <asm/fixmap.h>
26
#include <asm/sections.h>
27
#include <asm/setup.h>
28
#include <asm/smp_plat.h>
29
#include <asm/tlb.h>
N
Nicolas Pitre 已提交
30
#include <asm/highmem.h>
31
#include <asm/system_info.h>
32
#include <asm/traps.h>
33 34
#include <asm/procinfo.h>
#include <asm/memory.h>
35 36 37

#include <asm/mach/arch.h>
#include <asm/mach/map.h>
R
Rob Herring 已提交
38
#include <asm/mach/pci.h>
39
#include <asm/fixmap.h>
40

41
#include "fault.h"
42
#include "mm.h"
43
#include "tcm.h"
44 45 46 47 48 49

/*
 * empty_zero_page is a special page that is used for
 * zero-initialized data and COW.
 */
struct page *empty_zero_page;
50
EXPORT_SYMBOL(empty_zero_page);
51 52 53 54 55 56

/*
 * The pmd table for the upper-most set of pages.
 */
pmd_t *top_pmd;

57 58
pmdval_t user_pmd_table = _PAGE_USER_TABLE;

59 60 61 62 63 64 65 66
#define CPOLICY_UNCACHED	0
#define CPOLICY_BUFFERED	1
#define CPOLICY_WRITETHROUGH	2
#define CPOLICY_WRITEBACK	3
#define CPOLICY_WRITEALLOC	4

static unsigned int cachepolicy __initdata = CPOLICY_WRITEBACK;
static unsigned int ecc_mask __initdata = 0;
67
pgprot_t pgprot_user;
68
pgprot_t pgprot_kernel;
69 70 71
pgprot_t pgprot_hyp_device;
pgprot_t pgprot_s2;
pgprot_t pgprot_s2_device;
72

73
EXPORT_SYMBOL(pgprot_user);
74 75 76 77 78
EXPORT_SYMBOL(pgprot_kernel);

struct cachepolicy {
	const char	policy[16];
	unsigned int	cr_mask;
79
	pmdval_t	pmd;
80
	pteval_t	pte;
81
	pteval_t	pte_s2;
82 83
};

84 85 86 87 88 89
#ifdef CONFIG_ARM_LPAE
#define s2_policy(policy)	policy
#else
#define s2_policy(policy)	0
#endif

90 91 92 93 94
static struct cachepolicy cache_policies[] __initdata = {
	{
		.policy		= "uncached",
		.cr_mask	= CR_W|CR_C,
		.pmd		= PMD_SECT_UNCACHED,
95
		.pte		= L_PTE_MT_UNCACHED,
96
		.pte_s2		= s2_policy(L_PTE_S2_MT_UNCACHED),
97 98 99 100
	}, {
		.policy		= "buffered",
		.cr_mask	= CR_C,
		.pmd		= PMD_SECT_BUFFERED,
101
		.pte		= L_PTE_MT_BUFFERABLE,
102
		.pte_s2		= s2_policy(L_PTE_S2_MT_UNCACHED),
103 104 105 106
	}, {
		.policy		= "writethrough",
		.cr_mask	= 0,
		.pmd		= PMD_SECT_WT,
107
		.pte		= L_PTE_MT_WRITETHROUGH,
108
		.pte_s2		= s2_policy(L_PTE_S2_MT_WRITETHROUGH),
109 110 111 112
	}, {
		.policy		= "writeback",
		.cr_mask	= 0,
		.pmd		= PMD_SECT_WB,
113
		.pte		= L_PTE_MT_WRITEBACK,
114
		.pte_s2		= s2_policy(L_PTE_S2_MT_WRITEBACK),
115 116 117 118
	}, {
		.policy		= "writealloc",
		.cr_mask	= 0,
		.pmd		= PMD_SECT_WBWA,
119
		.pte		= L_PTE_MT_WRITEALLOC,
120
		.pte_s2		= s2_policy(L_PTE_S2_MT_WRITEBACK),
121 122 123
	}
};

124
#ifdef CONFIG_CPU_CP15
125 126
static unsigned long initial_pmd_value __initdata = 0;

127
/*
128 129 130 131 132
 * Initialise the cache_policy variable with the initial state specified
 * via the "pmd" value.  This is used to ensure that on ARMv6 and later,
 * the C code sets the page tables up with the same policy as the head
 * assembly code, which avoids an illegal state where the TLBs can get
 * confused.  See comments in early_cachepolicy() for more information.
133
 */
134
void __init init_default_cache_policy(unsigned long pmd)
135 136 137
{
	int i;

138 139
	initial_pmd_value = pmd;

140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160
	pmd &= PMD_SECT_TEX(1) | PMD_SECT_BUFFERABLE | PMD_SECT_CACHEABLE;

	for (i = 0; i < ARRAY_SIZE(cache_policies); i++)
		if (cache_policies[i].pmd == pmd) {
			cachepolicy = i;
			break;
		}

	if (i == ARRAY_SIZE(cache_policies))
		pr_err("ERROR: could not find cache policy\n");
}

/*
 * These are useful for identifying cache coherency problems by allowing
 * the cache or the cache and writebuffer to be turned off.  (Note: the
 * write buffer should not be on and the cache off).
 */
static int __init early_cachepolicy(char *p)
{
	int i, selected = -1;

161 162 163
	for (i = 0; i < ARRAY_SIZE(cache_policies); i++) {
		int len = strlen(cache_policies[i].policy);

164
		if (memcmp(p, cache_policies[i].policy, len) == 0) {
165
			selected = i;
166 167 168
			break;
		}
	}
169 170 171 172

	if (selected == -1)
		pr_err("ERROR: unknown or unsupported cache policy\n");

173 174 175 176 177 178 179
	/*
	 * This restriction is partly to do with the way we boot; it is
	 * unpredictable to have memory mapped using two different sets of
	 * memory attributes (shared, type, and cache attribs).  We can not
	 * change these attributes once the initial assembly has setup the
	 * page tables.
	 */
180 181 182 183 184 185 186 187 188 189 190
	if (cpu_architecture() >= CPU_ARCH_ARMv6 && selected != cachepolicy) {
		pr_warn("Only cachepolicy=%s supported on ARMv6 and later\n",
			cache_policies[cachepolicy].policy);
		return 0;
	}

	if (selected != cachepolicy) {
		unsigned long cr = __clear_cr(cache_policies[selected].cr_mask);
		cachepolicy = selected;
		flush_cache_all();
		set_cr(cr);
191
	}
192
	return 0;
193
}
194
early_param("cachepolicy", early_cachepolicy);
195

196
static int __init early_nocache(char *__unused)
197 198
{
	char *p = "buffered";
R
Russell King 已提交
199
	pr_warn("nocache is deprecated; use cachepolicy=%s\n", p);
200 201
	early_cachepolicy(p);
	return 0;
202
}
203
early_param("nocache", early_nocache);
204

205
static int __init early_nowrite(char *__unused)
206 207
{
	char *p = "uncached";
R
Russell King 已提交
208
	pr_warn("nowb is deprecated; use cachepolicy=%s\n", p);
209 210
	early_cachepolicy(p);
	return 0;
211
}
212
early_param("nowb", early_nowrite);
213

214
#ifndef CONFIG_ARM_LPAE
215
static int __init early_ecc(char *p)
216
{
217
	if (memcmp(p, "on", 2) == 0)
218
		ecc_mask = PMD_PROTECTION;
219
	else if (memcmp(p, "off", 3) == 0)
220
		ecc_mask = 0;
221
	return 0;
222
}
223
early_param("ecc", early_ecc);
224
#endif
225

226 227 228 229
#else /* ifdef CONFIG_CPU_CP15 */

static int __init early_cachepolicy(char *p)
{
230
	pr_warn("cachepolicy kernel parameter not supported without cp15\n");
231 232 233 234 235
}
early_param("cachepolicy", early_cachepolicy);

static int __init noalign_setup(char *__unused)
{
236
	pr_warn("noalign kernel parameter not supported without cp15\n");
237 238 239 240 241
}
__setup("noalign", noalign_setup);

#endif /* ifdef CONFIG_CPU_CP15 / else */

242
#define PROT_PTE_DEVICE		L_PTE_PRESENT|L_PTE_YOUNG|L_PTE_DIRTY|L_PTE_XN
243
#define PROT_PTE_S2_DEVICE	PROT_PTE_DEVICE
244
#define PROT_SECT_DEVICE	PMD_TYPE_SECT|PMD_SECT_AP_WRITE
245

246
static struct mem_type mem_types[] = {
247
	[MT_DEVICE] = {		  /* Strongly ordered / ARMv6 shared device */
248 249
		.prot_pte	= PROT_PTE_DEVICE | L_PTE_MT_DEV_SHARED |
				  L_PTE_SHARED,
250 251 252
		.prot_pte_s2	= s2_policy(PROT_PTE_S2_DEVICE) |
				  s2_policy(L_PTE_S2_MT_DEV_SHARED) |
				  L_PTE_SHARED,
253
		.prot_l1	= PMD_TYPE_TABLE,
254
		.prot_sect	= PROT_SECT_DEVICE | PMD_SECT_S,
255 256 257
		.domain		= DOMAIN_IO,
	},
	[MT_DEVICE_NONSHARED] = { /* ARMv6 non-shared device */
258
		.prot_pte	= PROT_PTE_DEVICE | L_PTE_MT_DEV_NONSHARED,
259
		.prot_l1	= PMD_TYPE_TABLE,
260
		.prot_sect	= PROT_SECT_DEVICE,
261 262 263
		.domain		= DOMAIN_IO,
	},
	[MT_DEVICE_CACHED] = {	  /* ioremap_cached */
264
		.prot_pte	= PROT_PTE_DEVICE | L_PTE_MT_DEV_CACHED,
265 266 267
		.prot_l1	= PMD_TYPE_TABLE,
		.prot_sect	= PROT_SECT_DEVICE | PMD_SECT_WB,
		.domain		= DOMAIN_IO,
R
Rob Herring 已提交
268
	},
269
	[MT_DEVICE_WC] = {	/* ioremap_wc */
270
		.prot_pte	= PROT_PTE_DEVICE | L_PTE_MT_DEV_WC,
271
		.prot_l1	= PMD_TYPE_TABLE,
272
		.prot_sect	= PROT_SECT_DEVICE,
273
		.domain		= DOMAIN_IO,
274
	},
275 276 277 278 279 280
	[MT_UNCACHED] = {
		.prot_pte	= PROT_PTE_DEVICE,
		.prot_l1	= PMD_TYPE_TABLE,
		.prot_sect	= PMD_TYPE_SECT | PMD_SECT_XN,
		.domain		= DOMAIN_IO,
	},
281
	[MT_CACHECLEAN] = {
282
		.prot_sect = PMD_TYPE_SECT | PMD_SECT_XN,
283 284
		.domain    = DOMAIN_KERNEL,
	},
285
#ifndef CONFIG_ARM_LPAE
286
	[MT_MINICLEAN] = {
287
		.prot_sect = PMD_TYPE_SECT | PMD_SECT_XN | PMD_SECT_MINICACHE,
288 289
		.domain    = DOMAIN_KERNEL,
	},
290
#endif
291 292
	[MT_LOW_VECTORS] = {
		.prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
293
				L_PTE_RDONLY,
294
		.prot_l1   = PMD_TYPE_TABLE,
295
		.domain    = DOMAIN_VECTORS,
296 297 298
	},
	[MT_HIGH_VECTORS] = {
		.prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
299
				L_PTE_USER | L_PTE_RDONLY,
300
		.prot_l1   = PMD_TYPE_TABLE,
301
		.domain    = DOMAIN_VECTORS,
302
	},
303
	[MT_MEMORY_RWX] = {
304
		.prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY,
305
		.prot_l1   = PMD_TYPE_TABLE,
306
		.prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE,
307 308
		.domain    = DOMAIN_KERNEL,
	},
309 310 311 312 313 314 315
	[MT_MEMORY_RW] = {
		.prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
			     L_PTE_XN,
		.prot_l1   = PMD_TYPE_TABLE,
		.prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE,
		.domain    = DOMAIN_KERNEL,
	},
316
	[MT_ROM] = {
317
		.prot_sect = PMD_TYPE_SECT,
318 319
		.domain    = DOMAIN_KERNEL,
	},
320
	[MT_MEMORY_RWX_NONCACHED] = {
321
		.prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
322
				L_PTE_MT_BUFFERABLE,
323
		.prot_l1   = PMD_TYPE_TABLE,
324 325 326
		.prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE,
		.domain    = DOMAIN_KERNEL,
	},
327
	[MT_MEMORY_RW_DTCM] = {
328
		.prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
329
				L_PTE_XN,
330 331 332
		.prot_l1   = PMD_TYPE_TABLE,
		.prot_sect = PMD_TYPE_SECT | PMD_SECT_XN,
		.domain    = DOMAIN_KERNEL,
333
	},
334
	[MT_MEMORY_RWX_ITCM] = {
335
		.prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY,
336
		.prot_l1   = PMD_TYPE_TABLE,
337
		.domain    = DOMAIN_KERNEL,
338
	},
339
	[MT_MEMORY_RW_SO] = {
340
		.prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
341
				L_PTE_MT_UNCACHED | L_PTE_XN,
342 343 344 345 346
		.prot_l1   = PMD_TYPE_TABLE,
		.prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE | PMD_SECT_S |
				PMD_SECT_UNCACHED | PMD_SECT_XN,
		.domain    = DOMAIN_KERNEL,
	},
347
	[MT_MEMORY_DMA_READY] = {
348 349
		.prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
				L_PTE_XN,
350 351 352
		.prot_l1   = PMD_TYPE_TABLE,
		.domain    = DOMAIN_KERNEL,
	},
353 354
};

355 356 357 358
const struct mem_type *get_mem_type(unsigned int type)
{
	return type < ARRAY_SIZE(mem_types) ? &mem_types[type] : NULL;
}
359
EXPORT_SYMBOL(get_mem_type);
360

361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392
static pte_t *(*pte_offset_fixmap)(pmd_t *dir, unsigned long addr);

static pte_t bm_pte[PTRS_PER_PTE + PTE_HWTABLE_PTRS]
	__aligned(PTE_HWTABLE_OFF + PTE_HWTABLE_SIZE) __initdata;

static pte_t * __init pte_offset_early_fixmap(pmd_t *dir, unsigned long addr)
{
	return &bm_pte[pte_index(addr)];
}

static pte_t *pte_offset_late_fixmap(pmd_t *dir, unsigned long addr)
{
	return pte_offset_kernel(dir, addr);
}

static inline pmd_t * __init fixmap_pmd(unsigned long addr)
{
	pgd_t *pgd = pgd_offset_k(addr);
	pud_t *pud = pud_offset(pgd, addr);
	pmd_t *pmd = pmd_offset(pud, addr);

	return pmd;
}

void __init early_fixmap_init(void)
{
	pmd_t *pmd;

	/*
	 * The early fixmap range spans multiple pmds, for which
	 * we are not prepared:
	 */
393
	BUILD_BUG_ON((__fix_to_virt(__end_of_early_ioremap_region) >> PMD_SHIFT)
394 395 396 397 398 399 400 401
		     != FIXADDR_TOP >> PMD_SHIFT);

	pmd = fixmap_pmd(FIXADDR_TOP);
	pmd_populate_kernel(&init_mm, pmd, bm_pte);

	pte_offset_fixmap = pte_offset_early_fixmap;
}

K
Kees Cook 已提交
402 403 404 405 406 407 408 409
/*
 * To avoid TLB flush broadcasts, this uses local_flush_tlb_kernel_range().
 * As a result, this can only be called with preemption disabled, as under
 * stop_machine().
 */
void __set_fixmap(enum fixed_addresses idx, phys_addr_t phys, pgprot_t prot)
{
	unsigned long vaddr = __fix_to_virt(idx);
410
	pte_t *pte = pte_offset_fixmap(pmd_off_k(vaddr), vaddr);
K
Kees Cook 已提交
411 412 413 414 415 416 417 418 419 420 421 422 423 424

	/* Make sure fixmap region does not exceed available allocation. */
	BUILD_BUG_ON(FIXADDR_START + (__end_of_fixed_addresses * PAGE_SIZE) >
		     FIXADDR_END);
	BUG_ON(idx >= __end_of_fixed_addresses);

	if (pgprot_val(prot))
		set_pte_at(NULL, vaddr, pte,
			pfn_pte(phys >> PAGE_SHIFT, prot));
	else
		pte_clear(NULL, vaddr, pte);
	local_flush_tlb_kernel_range(vaddr, vaddr + PAGE_SIZE);
}

425 426 427 428 429 430 431
/*
 * Adjust the PMD section entries according to the CPU in use.
 */
static void __init build_mem_type_table(void)
{
	struct cachepolicy *cp;
	unsigned int cr = get_cr();
432
	pteval_t user_pgprot, kern_pgprot, vecs_pgprot;
433
	pteval_t hyp_device_pgprot, s2_pgprot, s2_device_pgprot;
434 435 436
	int cpu_arch = cpu_architecture();
	int i;

437
	if (cpu_arch < CPU_ARCH_ARMv6) {
438
#if defined(CONFIG_CPU_DCACHE_DISABLE)
439 440
		if (cachepolicy > CPOLICY_BUFFERED)
			cachepolicy = CPOLICY_BUFFERED;
441
#elif defined(CONFIG_CPU_DCACHE_WRITETHROUGH)
442 443
		if (cachepolicy > CPOLICY_WRITETHROUGH)
			cachepolicy = CPOLICY_WRITETHROUGH;
444
#endif
445
	}
446 447 448 449 450
	if (cpu_arch < CPU_ARCH_ARMv5) {
		if (cachepolicy >= CPOLICY_WRITEALLOC)
			cachepolicy = CPOLICY_WRITEBACK;
		ecc_mask = 0;
	}
451

452 453 454 455 456 457 458 459 460
	if (is_smp()) {
		if (cachepolicy != CPOLICY_WRITEALLOC) {
			pr_warn("Forcing write-allocate cache policy for SMP\n");
			cachepolicy = CPOLICY_WRITEALLOC;
		}
		if (!(initial_pmd_value & PMD_SECT_S)) {
			pr_warn("Forcing shared mappings for SMP\n");
			initial_pmd_value |= PMD_SECT_S;
		}
461
	}
462

463
	/*
464 465 466
	 * Strip out features not present on earlier architectures.
	 * Pre-ARMv5 CPUs don't have TEX bits.  Pre-ARMv6 CPUs or those
	 * without extended page tables don't have the 'Shared' bit.
467
	 */
468 469 470 471 472 473
	if (cpu_arch < CPU_ARCH_ARMv5)
		for (i = 0; i < ARRAY_SIZE(mem_types); i++)
			mem_types[i].prot_sect &= ~PMD_SECT_TEX(7);
	if ((cpu_arch < CPU_ARCH_ARMv6 || !(cr & CR_XP)) && !cpu_is_xsc3())
		for (i = 0; i < ARRAY_SIZE(mem_types); i++)
			mem_types[i].prot_sect &= ~PMD_SECT_S;
474 475

	/*
476 477 478
	 * ARMv5 and lower, bit 4 must be set for page tables (was: cache
	 * "update-able on write" bit on ARM610).  However, Xscale and
	 * Xscale3 require this bit to be cleared.
479
	 */
480
	if (cpu_is_xscale() || cpu_is_xsc3()) {
481
		for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
482
			mem_types[i].prot_sect &= ~PMD_BIT4;
483 484 485 486
			mem_types[i].prot_l1 &= ~PMD_BIT4;
		}
	} else if (cpu_arch < CPU_ARCH_ARMv6) {
		for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
487 488
			if (mem_types[i].prot_l1)
				mem_types[i].prot_l1 |= PMD_BIT4;
489 490 491 492
			if (mem_types[i].prot_sect)
				mem_types[i].prot_sect |= PMD_BIT4;
		}
	}
493

494 495 496 497 498 499 500 501 502 503 504 505 506
	/*
	 * Mark the device areas according to the CPU/architecture.
	 */
	if (cpu_is_xsc3() || (cpu_arch >= CPU_ARCH_ARMv6 && (cr & CR_XP))) {
		if (!cpu_is_xsc3()) {
			/*
			 * Mark device regions on ARMv6+ as execute-never
			 * to prevent speculative instruction fetches.
			 */
			mem_types[MT_DEVICE].prot_sect |= PMD_SECT_XN;
			mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_XN;
			mem_types[MT_DEVICE_CACHED].prot_sect |= PMD_SECT_XN;
			mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_XN;
507 508 509

			/* Also setup NX memory mapping */
			mem_types[MT_MEMORY_RW].prot_sect |= PMD_SECT_XN;
510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554
		}
		if (cpu_arch >= CPU_ARCH_ARMv7 && (cr & CR_TRE)) {
			/*
			 * For ARMv7 with TEX remapping,
			 * - shared device is SXCB=1100
			 * - nonshared device is SXCB=0100
			 * - write combine device mem is SXCB=0001
			 * (Uncached Normal memory)
			 */
			mem_types[MT_DEVICE].prot_sect |= PMD_SECT_TEX(1);
			mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(1);
			mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_BUFFERABLE;
		} else if (cpu_is_xsc3()) {
			/*
			 * For Xscale3,
			 * - shared device is TEXCB=00101
			 * - nonshared device is TEXCB=01000
			 * - write combine device mem is TEXCB=00100
			 * (Inner/Outer Uncacheable in xsc3 parlance)
			 */
			mem_types[MT_DEVICE].prot_sect |= PMD_SECT_TEX(1) | PMD_SECT_BUFFERED;
			mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(2);
			mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_TEX(1);
		} else {
			/*
			 * For ARMv6 and ARMv7 without TEX remapping,
			 * - shared device is TEXCB=00001
			 * - nonshared device is TEXCB=01000
			 * - write combine device mem is TEXCB=00100
			 * (Uncached Normal in ARMv6 parlance).
			 */
			mem_types[MT_DEVICE].prot_sect |= PMD_SECT_BUFFERED;
			mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(2);
			mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_TEX(1);
		}
	} else {
		/*
		 * On others, write combining is "Uncached/Buffered"
		 */
		mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_BUFFERABLE;
	}

	/*
	 * Now deal with the memory-type mappings
	 */
555
	cp = &cache_policies[cachepolicy];
556
	vecs_pgprot = kern_pgprot = user_pgprot = cp->pte;
557
	s2_pgprot = cp->pte_s2;
558 559
	hyp_device_pgprot = mem_types[MT_DEVICE].prot_pte;
	s2_device_pgprot = mem_types[MT_DEVICE].prot_pte_s2;
560

561
#ifndef CONFIG_ARM_LPAE
562 563 564 565 566 567 568
	/*
	 * We don't use domains on ARMv6 (since this causes problems with
	 * v6/v7 kernels), so we must use a separate memory type for user
	 * r/o, kernel r/w to map the vectors page.
	 */
	if (cpu_arch == CPU_ARCH_ARMv6)
		vecs_pgprot |= L_PTE_MT_VECTORS;
569 570 571 572 573 574 575 576 577

	/*
	 * Check is it with support for the PXN bit
	 * in the Short-descriptor translation table format descriptors.
	 */
	if (cpu_arch == CPU_ARCH_ARMv7 &&
		(read_cpuid_ext(CPUID_EXT_MMFR0) & 0xF) == 4) {
		user_pmd_table |= PMD_PXNTABLE;
	}
578
#endif
579

580 581 582 583
	/*
	 * ARMv6 and above have extended page tables.
	 */
	if (cpu_arch >= CPU_ARCH_ARMv6 && (cr & CR_XP)) {
584
#ifndef CONFIG_ARM_LPAE
585 586 587 588 589 590 591
		/*
		 * Mark cache clean areas and XIP ROM read only
		 * from SVC mode and no access from userspace.
		 */
		mem_types[MT_ROM].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
		mem_types[MT_MINICLEAN].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
		mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
592
#endif
593

594 595 596 597 598 599
		/*
		 * If the initial page tables were created with the S bit
		 * set, then we need to do the same here for the same
		 * reasons given in early_cachepolicy().
		 */
		if (initial_pmd_value & PMD_SECT_S) {
600 601 602
			user_pgprot |= L_PTE_SHARED;
			kern_pgprot |= L_PTE_SHARED;
			vecs_pgprot |= L_PTE_SHARED;
603
			s2_pgprot |= L_PTE_SHARED;
604 605 606 607
			mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_S;
			mem_types[MT_DEVICE_WC].prot_pte |= L_PTE_SHARED;
			mem_types[MT_DEVICE_CACHED].prot_sect |= PMD_SECT_S;
			mem_types[MT_DEVICE_CACHED].prot_pte |= L_PTE_SHARED;
608 609
			mem_types[MT_MEMORY_RWX].prot_sect |= PMD_SECT_S;
			mem_types[MT_MEMORY_RWX].prot_pte |= L_PTE_SHARED;
610 611
			mem_types[MT_MEMORY_RW].prot_sect |= PMD_SECT_S;
			mem_types[MT_MEMORY_RW].prot_pte |= L_PTE_SHARED;
612
			mem_types[MT_MEMORY_DMA_READY].prot_pte |= L_PTE_SHARED;
613 614
			mem_types[MT_MEMORY_RWX_NONCACHED].prot_sect |= PMD_SECT_S;
			mem_types[MT_MEMORY_RWX_NONCACHED].prot_pte |= L_PTE_SHARED;
615
		}
616 617
	}

618 619 620 621 622 623 624
	/*
	 * Non-cacheable Normal - intended for memory areas that must
	 * not cause dirty cache line writebacks when used
	 */
	if (cpu_arch >= CPU_ARCH_ARMv6) {
		if (cpu_arch >= CPU_ARCH_ARMv7 && (cr & CR_TRE)) {
			/* Non-cacheable Normal is XCB = 001 */
625
			mem_types[MT_MEMORY_RWX_NONCACHED].prot_sect |=
626 627 628
				PMD_SECT_BUFFERED;
		} else {
			/* For both ARMv6 and non-TEX-remapping ARMv7 */
629
			mem_types[MT_MEMORY_RWX_NONCACHED].prot_sect |=
630 631 632
				PMD_SECT_TEX(1);
		}
	} else {
633
		mem_types[MT_MEMORY_RWX_NONCACHED].prot_sect |= PMD_SECT_BUFFERABLE;
634 635
	}

636 637 638 639 640 641
#ifdef CONFIG_ARM_LPAE
	/*
	 * Do not generate access flag faults for the kernel mappings.
	 */
	for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
		mem_types[i].prot_pte |= PTE_EXT_AF;
642 643
		if (mem_types[i].prot_sect)
			mem_types[i].prot_sect |= PMD_SECT_AF;
644 645 646
	}
	kern_pgprot |= PTE_EXT_AF;
	vecs_pgprot |= PTE_EXT_AF;
647 648 649 650 651

	/*
	 * Set PXN for user mappings
	 */
	user_pgprot |= PTE_EXT_PXN;
652 653
#endif

654
	for (i = 0; i < 16; i++) {
655
		pteval_t v = pgprot_val(protection_map[i]);
656
		protection_map[i] = __pgprot(v | user_pgprot);
657 658
	}

659 660
	mem_types[MT_LOW_VECTORS].prot_pte |= vecs_pgprot;
	mem_types[MT_HIGH_VECTORS].prot_pte |= vecs_pgprot;
661

662
	pgprot_user   = __pgprot(L_PTE_PRESENT | L_PTE_YOUNG | user_pgprot);
663
	pgprot_kernel = __pgprot(L_PTE_PRESENT | L_PTE_YOUNG |
664
				 L_PTE_DIRTY | kern_pgprot);
665 666 667
	pgprot_s2  = __pgprot(L_PTE_PRESENT | L_PTE_YOUNG | s2_pgprot);
	pgprot_s2_device  = __pgprot(s2_device_pgprot);
	pgprot_hyp_device  = __pgprot(hyp_device_pgprot);
668 669 670

	mem_types[MT_LOW_VECTORS].prot_l1 |= ecc_mask;
	mem_types[MT_HIGH_VECTORS].prot_l1 |= ecc_mask;
671 672
	mem_types[MT_MEMORY_RWX].prot_sect |= ecc_mask | cp->pmd;
	mem_types[MT_MEMORY_RWX].prot_pte |= kern_pgprot;
673 674
	mem_types[MT_MEMORY_RW].prot_sect |= ecc_mask | cp->pmd;
	mem_types[MT_MEMORY_RW].prot_pte |= kern_pgprot;
675
	mem_types[MT_MEMORY_DMA_READY].prot_pte |= kern_pgprot;
676
	mem_types[MT_MEMORY_RWX_NONCACHED].prot_sect |= ecc_mask;
677 678 679 680 681 682 683 684 685 686 687
	mem_types[MT_ROM].prot_sect |= cp->pmd;

	switch (cp->pmd) {
	case PMD_SECT_WT:
		mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_WT;
		break;
	case PMD_SECT_WB:
	case PMD_SECT_WBWA:
		mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_WB;
		break;
	}
688 689
	pr_info("Memory policy: %sData cache %s\n",
		ecc_mask ? "ECC enabled, " : "", cp->policy);
690 691 692 693 694 695 696 697

	for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
		struct mem_type *t = &mem_types[i];
		if (t->prot_l1)
			t->prot_l1 |= PMD_DOMAIN(t->domain);
		if (t->prot_sect)
			t->prot_sect |= PMD_DOMAIN(t->domain);
	}
698 699
}

700 701 702 703 704 705 706 707 708 709 710 711 712
#ifdef CONFIG_ARM_DMA_MEM_BUFFERABLE
pgprot_t phys_mem_access_prot(struct file *file, unsigned long pfn,
			      unsigned long size, pgprot_t vma_prot)
{
	if (!pfn_valid(pfn))
		return pgprot_noncached(vma_prot);
	else if (file->f_flags & O_SYNC)
		return pgprot_writecombine(vma_prot);
	return vma_prot;
}
EXPORT_SYMBOL(phys_mem_access_prot);
#endif

713 714
#define vectors_base()	(vectors_high() ? 0xffff0000 : 0)

715
static void __init *early_alloc_aligned(unsigned long sz, unsigned long align)
R
Russell King 已提交
716
{
717
	void *ptr = __va(memblock_alloc(sz, align));
R
Russell King 已提交
718 719
	memset(ptr, 0, sz);
	return ptr;
R
Russell King 已提交
720 721
}

722 723 724 725 726
static void __init *early_alloc(unsigned long sz)
{
	return early_alloc_aligned(sz, sz);
}

R
Russell King 已提交
727
static pte_t * __init early_pte_alloc(pmd_t *pmd, unsigned long addr, unsigned long prot)
728
{
729
	if (pmd_none(*pmd)) {
730
		pte_t *pte = early_alloc(PTE_HWTABLE_OFF + PTE_HWTABLE_SIZE);
731
		__pmd_populate(pmd, __pa(pte), prot);
732
	}
R
Russell King 已提交
733 734 735
	BUG_ON(pmd_bad(*pmd));
	return pte_offset_kernel(pmd, addr);
}
736

R
Russell King 已提交
737 738 739 740 741
static void __init alloc_init_pte(pmd_t *pmd, unsigned long addr,
				  unsigned long end, unsigned long pfn,
				  const struct mem_type *type)
{
	pte_t *pte = early_pte_alloc(pmd, addr, type->prot_l1);
742
	do {
743
		set_pte_ext(pte, pfn_pte(pfn, __pgprot(type->prot_pte)), 0);
744 745
		pfn++;
	} while (pte++, addr += PAGE_SIZE, addr != end);
746 747
}

748
static void __init __map_init_section(pmd_t *pmd, unsigned long addr,
749 750
			unsigned long end, phys_addr_t phys,
			const struct mem_type *type)
751
{
752 753
	pmd_t *p = pmd;

754
#ifndef CONFIG_ARM_LPAE
755
	/*
756 757 758 759 760 761 762
	 * In classic MMU format, puds and pmds are folded in to
	 * the pgds. pmd_offset gives the PGD entry. PGDs refer to a
	 * group of L1 entries making up one logical pointer to
	 * an L2 table (2MB), where as PMDs refer to the individual
	 * L1 entries (1MB). Hence increment to get the correct
	 * offset for odd 1MB sections.
	 * (See arch/arm/include/asm/pgtable-2level.h)
763
	 */
764 765
	if (addr & SECTION_SIZE)
		pmd++;
766
#endif
767 768 769 770
	do {
		*pmd = __pmd(phys | type->prot_sect);
		phys += SECTION_SIZE;
	} while (pmd++, addr += SECTION_SIZE, addr != end);
771

772
	flush_pmd_entry(p);
773
}
774

775 776 777 778 779 780 781 782
static void __init alloc_init_pmd(pud_t *pud, unsigned long addr,
				      unsigned long end, phys_addr_t phys,
				      const struct mem_type *type)
{
	pmd_t *pmd = pmd_offset(pud, addr);
	unsigned long next;

	do {
783
		/*
784 785
		 * With LPAE, we must loop over to map
		 * all the pmds for the given range.
786
		 */
787 788 789 790 791 792 793 794
		next = pmd_addr_end(addr, end);

		/*
		 * Try a section mapping - addr, next and phys must all be
		 * aligned to a section boundary.
		 */
		if (type->prot_sect &&
				((addr | next | phys) & ~SECTION_MASK) == 0) {
795
			__map_init_section(pmd, addr, next, phys, type);
796 797 798 799 800 801 802 803
		} else {
			alloc_init_pte(pmd, addr, next,
						__phys_to_pfn(phys), type);
		}

		phys += next - addr;

	} while (pmd++, addr = next, addr != end);
804 805
}

806
static void __init alloc_init_pud(pgd_t *pgd, unsigned long addr,
807 808
				  unsigned long end, phys_addr_t phys,
				  const struct mem_type *type)
R
Russell King 已提交
809 810 811 812 813 814
{
	pud_t *pud = pud_offset(pgd, addr);
	unsigned long next;

	do {
		next = pud_addr_end(addr, end);
815
		alloc_init_pmd(pud, addr, next, phys, type);
R
Russell King 已提交
816 817 818 819
		phys += next - addr;
	} while (pud++, addr = next, addr != end);
}

820
#ifndef CONFIG_ARM_LPAE
821 822
static void __init create_36bit_mapping(struct mm_struct *mm,
					struct map_desc *md,
823 824
					const struct mem_type *type)
{
825 826
	unsigned long addr, length, end;
	phys_addr_t phys;
827 828 829
	pgd_t *pgd;

	addr = md->virtual;
830
	phys = __pfn_to_phys(md->pfn);
831 832 833
	length = PAGE_ALIGN(md->length);

	if (!(cpu_architecture() >= CPU_ARCH_ARMv6 || cpu_is_xsc3())) {
R
Russell King 已提交
834
		pr_err("MM: CPU does not support supersection mapping for 0x%08llx at 0x%08lx\n",
835
		       (long long)__pfn_to_phys((u64)md->pfn), addr);
836 837 838 839 840 841 842 843 844 845
		return;
	}

	/* N.B.	ARMv6 supersections are only defined to work with domain 0.
	 *	Since domain assignments can in fact be arbitrary, the
	 *	'domain == 0' check below is required to insure that ARMv6
	 *	supersections are only allocated for domain 0 regardless
	 *	of the actual domain assignments in use.
	 */
	if (type->domain) {
R
Russell King 已提交
846
		pr_err("MM: invalid domain in supersection mapping for 0x%08llx at 0x%08lx\n",
847
		       (long long)__pfn_to_phys((u64)md->pfn), addr);
848 849 850 851
		return;
	}

	if ((addr | length | __pfn_to_phys(md->pfn)) & ~SUPERSECTION_MASK) {
R
Russell King 已提交
852
		pr_err("MM: cannot create mapping for 0x%08llx at 0x%08lx invalid alignment\n",
853
		       (long long)__pfn_to_phys((u64)md->pfn), addr);
854 855 856 857 858 859 860 861 862
		return;
	}

	/*
	 * Shift bits [35:32] of address into bits [23:20] of PMD
	 * (See ARMv6 spec).
	 */
	phys |= (((md->pfn >> (32 - PAGE_SHIFT)) & 0xF) << 20);

863
	pgd = pgd_offset(mm, addr);
864 865
	end = addr + length;
	do {
R
Russell King 已提交
866 867
		pud_t *pud = pud_offset(pgd, addr);
		pmd_t *pmd = pmd_offset(pud, addr);
868 869 870 871 872 873 874 875 876 877
		int i;

		for (i = 0; i < 16; i++)
			*pmd++ = __pmd(phys | type->prot_sect | PMD_SECT_SUPER);

		addr += SUPERSECTION_SIZE;
		phys += SUPERSECTION_SIZE;
		pgd += SUPERSECTION_SIZE >> PGDIR_SHIFT;
	} while (addr != end);
}
878
#endif	/* !CONFIG_ARM_LPAE */
879

880
static void __init __create_mapping(struct mm_struct *mm, struct map_desc *md)
881
{
882 883
	unsigned long addr, length, end;
	phys_addr_t phys;
884
	const struct mem_type *type;
885
	pgd_t *pgd;
886

887
	type = &mem_types[md->type];
888

889
#ifndef CONFIG_ARM_LPAE
890 891 892
	/*
	 * Catch 36-bit addresses
	 */
893
	if (md->pfn >= 0x100000) {
894
		create_36bit_mapping(mm, md, type);
895
		return;
896
	}
897
#endif
898

899
	addr = md->virtual & PAGE_MASK;
900
	phys = __pfn_to_phys(md->pfn);
901
	length = PAGE_ALIGN(md->length + (md->virtual & ~PAGE_MASK));
902

903
	if (type->prot_l1 == 0 && ((addr | phys | length) & ~SECTION_MASK)) {
R
Russell King 已提交
904 905
		pr_warn("BUG: map for 0x%08llx at 0x%08lx can not be mapped using pages, ignoring.\n",
			(long long)__pfn_to_phys(md->pfn), addr);
906 907 908
		return;
	}

909
	pgd = pgd_offset(mm, addr);
910 911 912
	end = addr + length;
	do {
		unsigned long next = pgd_addr_end(addr, end);
913

R
Russell King 已提交
914
		alloc_init_pud(pgd, addr, next, phys, type);
915

916 917 918
		phys += next - addr;
		addr = next;
	} while (pgd++, addr != end);
919 920
}

921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945
/*
 * Create the page directory entries and any necessary
 * page tables for the mapping specified by `md'.  We
 * are able to cope here with varying sizes and address
 * offsets, and we take full advantage of sections and
 * supersections.
 */
static void __init create_mapping(struct map_desc *md)
{
	if (md->virtual != vectors_base() && md->virtual < TASK_SIZE) {
		pr_warn("BUG: not creating mapping for 0x%08llx at 0x%08lx in user region\n",
			(long long)__pfn_to_phys((u64)md->pfn), md->virtual);
		return;
	}

	if ((md->type == MT_DEVICE || md->type == MT_ROM) &&
	    md->virtual >= PAGE_OFFSET && md->virtual < FIXADDR_START &&
	    (md->virtual < VMALLOC_START || md->virtual >= VMALLOC_END)) {
		pr_warn("BUG: mapping for 0x%08llx at 0x%08lx out of vmalloc space\n",
			(long long)__pfn_to_phys((u64)md->pfn), md->virtual);
	}

	__create_mapping(&init_mm, md);
}

946 947 948 949 950
/*
 * Create the architecture specific mappings
 */
void __init iotable_init(struct map_desc *io_desc, int nr)
{
951 952
	struct map_desc *md;
	struct vm_struct *vm;
953
	struct static_vm *svm;
954 955 956

	if (!nr)
		return;
957

958
	svm = early_alloc_aligned(sizeof(*svm) * nr, __alignof__(*svm));
959 960 961

	for (md = io_desc; nr; md++, nr--) {
		create_mapping(md);
962 963

		vm = &svm->vm;
964 965
		vm->addr = (void *)(md->virtual & PAGE_MASK);
		vm->size = PAGE_ALIGN(md->length + (md->virtual & ~PAGE_MASK));
R
Rob Herring 已提交
966 967
		vm->phys_addr = __pfn_to_phys(md->pfn);
		vm->flags = VM_IOREMAP | VM_ARM_STATIC_MAPPING;
968
		vm->flags |= VM_ARM_MTYPE(md->type);
969
		vm->caller = iotable_init;
970
		add_static_vm_early(svm++);
971
	}
972 973
}

R
Rob Herring 已提交
974 975 976 977
void __init vm_reserve_area_early(unsigned long addr, unsigned long size,
				  void *caller)
{
	struct vm_struct *vm;
978 979 980
	struct static_vm *svm;

	svm = early_alloc_aligned(sizeof(*svm), __alignof__(*svm));
R
Rob Herring 已提交
981

982
	vm = &svm->vm;
R
Rob Herring 已提交
983 984
	vm->addr = (void *)addr;
	vm->size = size;
985
	vm->flags = VM_IOREMAP | VM_ARM_EMPTY_MAPPING;
R
Rob Herring 已提交
986
	vm->caller = caller;
987
	add_static_vm_early(svm);
R
Rob Herring 已提交
988 989
}

990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006
#ifndef CONFIG_ARM_LPAE

/*
 * The Linux PMD is made of two consecutive section entries covering 2MB
 * (see definition in include/asm/pgtable-2level.h).  However a call to
 * create_mapping() may optimize static mappings by using individual
 * 1MB section mappings.  This leaves the actual PMD potentially half
 * initialized if the top or bottom section entry isn't used, leaving it
 * open to problems if a subsequent ioremap() or vmalloc() tries to use
 * the virtual space left free by that unused section entry.
 *
 * Let's avoid the issue by inserting dummy vm entries covering the unused
 * PMD halves once the static mappings are in place.
 */

static void __init pmd_empty_section_gap(unsigned long addr)
{
R
Rob Herring 已提交
1007
	vm_reserve_area_early(addr, SECTION_SIZE, pmd_empty_section_gap);
1008 1009 1010 1011
}

static void __init fill_pmd_gaps(void)
{
1012
	struct static_vm *svm;
1013 1014 1015 1016
	struct vm_struct *vm;
	unsigned long addr, next = 0;
	pmd_t *pmd;

1017 1018
	list_for_each_entry(svm, &static_vmlist, list) {
		vm = &svm->vm;
1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054
		addr = (unsigned long)vm->addr;
		if (addr < next)
			continue;

		/*
		 * Check if this vm starts on an odd section boundary.
		 * If so and the first section entry for this PMD is free
		 * then we block the corresponding virtual address.
		 */
		if ((addr & ~PMD_MASK) == SECTION_SIZE) {
			pmd = pmd_off_k(addr);
			if (pmd_none(*pmd))
				pmd_empty_section_gap(addr & PMD_MASK);
		}

		/*
		 * Then check if this vm ends on an odd section boundary.
		 * If so and the second section entry for this PMD is empty
		 * then we block the corresponding virtual address.
		 */
		addr += vm->size;
		if ((addr & ~PMD_MASK) == SECTION_SIZE) {
			pmd = pmd_off_k(addr) + 1;
			if (pmd_none(*pmd))
				pmd_empty_section_gap(addr);
		}

		/* no need to look at any vm entry until we hit the next PMD */
		next = (addr + PMD_SIZE - 1) & PMD_MASK;
	}
}

#else
#define fill_pmd_gaps() do { } while (0)
#endif

R
Rob Herring 已提交
1055 1056 1057
#if defined(CONFIG_PCI) && !defined(CONFIG_NEED_MACH_IO_H)
static void __init pci_reserve_io(void)
{
1058
	struct static_vm *svm;
R
Rob Herring 已提交
1059

1060 1061 1062
	svm = find_static_vm_vaddr((void *)PCI_IO_VIRT_BASE);
	if (svm)
		return;
R
Rob Herring 已提交
1063 1064 1065 1066 1067 1068 1069

	vm_reserve_area_early(PCI_IO_VIRT_BASE, SZ_2M, pci_reserve_io);
}
#else
#define pci_reserve_io() do { } while (0)
#endif

R
Rob Herring 已提交
1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081
#ifdef CONFIG_DEBUG_LL
void __init debug_ll_io_init(void)
{
	struct map_desc map;

	debug_ll_addr(&map.pfn, &map.virtual);
	if (!map.pfn || !map.virtual)
		return;
	map.pfn = __phys_to_pfn(map.pfn);
	map.virtual &= PAGE_MASK;
	map.length = PAGE_SIZE;
	map.type = MT_DEVICE;
1082
	iotable_init(&map, 1);
R
Rob Herring 已提交
1083 1084 1085
}
#endif

1086 1087
static void * __initdata vmalloc_min =
	(void *)(VMALLOC_END - (240 << 20) - VMALLOC_OFFSET);
1088 1089 1090 1091

/*
 * vmalloc=size forces the vmalloc area to be exactly 'size'
 * bytes. This can be used to increase (or decrease) the vmalloc
1092
 * area - the default is 240m.
1093
 */
1094
static int __init early_vmalloc(char *arg)
1095
{
R
Russell King 已提交
1096
	unsigned long vmalloc_reserve = memparse(arg, NULL);
1097 1098 1099

	if (vmalloc_reserve < SZ_16M) {
		vmalloc_reserve = SZ_16M;
R
Russell King 已提交
1100
		pr_warn("vmalloc area too small, limiting to %luMB\n",
1101 1102
			vmalloc_reserve >> 20);
	}
1103 1104 1105

	if (vmalloc_reserve > VMALLOC_END - (PAGE_OFFSET + SZ_32M)) {
		vmalloc_reserve = VMALLOC_END - (PAGE_OFFSET + SZ_32M);
R
Russell King 已提交
1106
		pr_warn("vmalloc area is too big, limiting to %luMB\n",
1107 1108
			vmalloc_reserve >> 20);
	}
R
Russell King 已提交
1109 1110

	vmalloc_min = (void *)(VMALLOC_END - vmalloc_reserve);
1111
	return 0;
1112
}
1113
early_param("vmalloc", early_vmalloc);
1114

1115
phys_addr_t arm_lowmem_limit __initdata = 0;
1116

1117
void __init sanity_check_meminfo(void)
1118
{
1119
	phys_addr_t memblock_limit = 0;
L
Laura Abbott 已提交
1120
	int highmem = 0;
1121
	phys_addr_t vmalloc_limit = __pa(vmalloc_min - 1) + 1;
L
Laura Abbott 已提交
1122
	struct memblock_region *reg;
1123
	bool should_use_highmem = false;
1124

L
Laura Abbott 已提交
1125 1126 1127 1128
	for_each_memblock(memory, reg) {
		phys_addr_t block_start = reg->base;
		phys_addr_t block_end = reg->base + reg->size;
		phys_addr_t size_limit = reg->size;
1129

L
Laura Abbott 已提交
1130
		if (reg->base >= vmalloc_limit)
R
Russell King 已提交
1131
			highmem = 1;
1132
		else
L
Laura Abbott 已提交
1133
			size_limit = vmalloc_limit - reg->base;
R
Russell King 已提交
1134 1135


L
Laura Abbott 已提交
1136 1137 1138 1139
		if (!IS_ENABLED(CONFIG_HIGHMEM) || cache_is_vipt_aliasing()) {

			if (highmem) {
				pr_notice("Ignoring RAM at %pa-%pa (!CONFIG_HIGHMEM)\n",
R
Russell King 已提交
1140
					  &block_start, &block_end);
L
Laura Abbott 已提交
1141
				memblock_remove(reg->base, reg->size);
1142
				should_use_highmem = true;
L
Laura Abbott 已提交
1143
				continue;
1144
			}
1145

L
Laura Abbott 已提交
1146 1147 1148 1149
			if (reg->size > size_limit) {
				phys_addr_t overlap_size = reg->size - size_limit;

				pr_notice("Truncating RAM at %pa-%pa to -%pa",
R
Russell King 已提交
1150
					  &block_start, &block_end, &vmalloc_limit);
L
Laura Abbott 已提交
1151 1152
				memblock_remove(vmalloc_limit, overlap_size);
				block_end = vmalloc_limit;
1153
				should_use_highmem = true;
L
Laura Abbott 已提交
1154
			}
1155
		}
1156

L
Laura Abbott 已提交
1157 1158 1159 1160 1161 1162 1163
		if (!highmem) {
			if (block_end > arm_lowmem_limit) {
				if (reg->size > size_limit)
					arm_lowmem_limit = vmalloc_limit;
				else
					arm_lowmem_limit = block_end;
			}
1164 1165

			/*
1166
			 * Find the first non-pmd-aligned page, and point
1167
			 * memblock_limit at it. This relies on rounding the
1168 1169
			 * limit down to be pmd-aligned, which happens at the
			 * end of this function.
1170 1171
			 *
			 * With this algorithm, the start or end of almost any
1172 1173
			 * bank can be non-pmd-aligned. The only exception is
			 * that the start of the bank 0 must be section-
1174 1175 1176 1177 1178
			 * aligned, since otherwise memory would need to be
			 * allocated when mapping the start of bank 0, which
			 * occurs before any free memory is mapped.
			 */
			if (!memblock_limit) {
1179
				if (!IS_ALIGNED(block_start, PMD_SIZE))
L
Laura Abbott 已提交
1180
					memblock_limit = block_start;
1181
				else if (!IS_ALIGNED(block_end, PMD_SIZE))
L
Laura Abbott 已提交
1182
					memblock_limit = arm_lowmem_limit;
1183
			}
1184 1185 1186

		}
	}
L
Laura Abbott 已提交
1187

1188 1189 1190
	if (should_use_highmem)
		pr_notice("Consider using a HIGHMEM enabled kernel.\n");

1191
	high_memory = __va(arm_lowmem_limit - 1) + 1;
1192 1193

	/*
1194
	 * Round the memblock limit down to a pmd size.  This
1195
	 * helps to ensure that we will allocate memory from the
1196
	 * last full pmd, which should be mapped.
1197 1198
	 */
	if (memblock_limit)
1199
		memblock_limit = round_down(memblock_limit, PMD_SIZE);
1200 1201 1202 1203
	if (!memblock_limit)
		memblock_limit = arm_lowmem_limit;

	memblock_set_current_limit(memblock_limit);
1204 1205
}

1206
static inline void prepare_page_table(void)
1207 1208
{
	unsigned long addr;
1209
	phys_addr_t end;
1210 1211 1212 1213

	/*
	 * Clear out all the mappings below the kernel image.
	 */
1214
	for (addr = 0; addr < MODULES_VADDR; addr += PMD_SIZE)
1215 1216 1217 1218
		pmd_clear(pmd_off_k(addr));

#ifdef CONFIG_XIP_KERNEL
	/* The XIP kernel is mapped in the module area -- skip over it */
1219
	addr = ((unsigned long)_etext + PMD_SIZE - 1) & PMD_MASK;
1220
#endif
1221
	for ( ; addr < PAGE_OFFSET; addr += PMD_SIZE)
1222 1223
		pmd_clear(pmd_off_k(addr));

1224 1225 1226 1227
	/*
	 * Find the end of the first block of lowmem.
	 */
	end = memblock.memory.regions[0].base + memblock.memory.regions[0].size;
1228 1229
	if (end >= arm_lowmem_limit)
		end = arm_lowmem_limit;
1230

1231 1232
	/*
	 * Clear out all the kernel space mappings, except for the first
1233
	 * memory bank, up to the vmalloc region.
1234
	 */
1235
	for (addr = __phys_to_virt(end);
1236
	     addr < VMALLOC_START; addr += PMD_SIZE)
1237 1238 1239
		pmd_clear(pmd_off_k(addr));
}

1240 1241 1242 1243 1244
#ifdef CONFIG_ARM_LPAE
/* the first page is reserved for pgd */
#define SWAPPER_PG_DIR_SIZE	(PAGE_SIZE + \
				 PTRS_PER_PGD * PTRS_PER_PMD * sizeof(pmd_t))
#else
1245
#define SWAPPER_PG_DIR_SIZE	(PTRS_PER_PGD * sizeof(pgd_t))
1246
#endif
1247

1248
/*
R
Russell King 已提交
1249
 * Reserve the special regions of memory
1250
 */
R
Russell King 已提交
1251
void __init arm_mm_memblock_reserve(void)
1252 1253 1254 1255 1256
{
	/*
	 * Reserve the page tables.  These are already in use,
	 * and can only be in node 0.
	 */
1257
	memblock_reserve(__pa(swapper_pg_dir), SWAPPER_PG_DIR_SIZE);
1258 1259 1260 1261 1262 1263

#ifdef CONFIG_SA1111
	/*
	 * Because of the SA1111 DMA bug, we want to preserve our
	 * precious DMA-able memory...
	 */
R
Russell King 已提交
1264
	memblock_reserve(PHYS_OFFSET, __pa(swapper_pg_dir) - PHYS_OFFSET);
1265 1266 1267 1268
#endif
}

/*
1269
 * Set up the device mappings.  Since we clear out the page tables for all
1270 1271 1272 1273
 * mappings above VMALLOC_START, except early fixmap, we might remove debug
 * device mappings.  This means earlycon can be used to debug this function
 * Any other function or debugging method which may touch any device _will_
 * crash the kernel.
1274
 */
1275
static void __init devicemaps_init(const struct machine_desc *mdesc)
1276 1277 1278
{
	struct map_desc map;
	unsigned long addr;
1279
	void *vectors;
1280 1281 1282 1283

	/*
	 * Allocate the vector page early.
	 */
R
Russell King 已提交
1284
	vectors = early_alloc(PAGE_SIZE * 2);
1285 1286

	early_trap_init(vectors);
1287

1288 1289 1290 1291
	/*
	 * Clear page table except top pmd used by early fixmaps
	 */
	for (addr = VMALLOC_START; addr < (FIXADDR_TOP & PMD_MASK); addr += PMD_SIZE)
1292 1293 1294 1295 1296 1297 1298 1299
		pmd_clear(pmd_off_k(addr));

	/*
	 * Map the kernel if it is XIP.
	 * It is always first in the modulearea.
	 */
#ifdef CONFIG_XIP_KERNEL
	map.pfn = __phys_to_pfn(CONFIG_XIP_PHYS_ADDR & SECTION_MASK);
1300
	map.virtual = MODULES_VADDR;
R
Russell King 已提交
1301
	map.length = ((unsigned long)_etext - map.virtual + ~SECTION_MASK) & SECTION_MASK;
1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328
	map.type = MT_ROM;
	create_mapping(&map);
#endif

	/*
	 * Map the cache flushing regions.
	 */
#ifdef FLUSH_BASE
	map.pfn = __phys_to_pfn(FLUSH_BASE_PHYS);
	map.virtual = FLUSH_BASE;
	map.length = SZ_1M;
	map.type = MT_CACHECLEAN;
	create_mapping(&map);
#endif
#ifdef FLUSH_BASE_MINICACHE
	map.pfn = __phys_to_pfn(FLUSH_BASE_PHYS + SZ_1M);
	map.virtual = FLUSH_BASE_MINICACHE;
	map.length = SZ_1M;
	map.type = MT_MINICLEAN;
	create_mapping(&map);
#endif

	/*
	 * Create a mapping for the machine vectors at the high-vectors
	 * location (0xffff0000).  If we aren't using high-vectors, also
	 * create a mapping at the low-vectors virtual address.
	 */
1329
	map.pfn = __phys_to_pfn(virt_to_phys(vectors));
1330 1331
	map.virtual = 0xffff0000;
	map.length = PAGE_SIZE;
1332
#ifdef CONFIG_KUSER_HELPERS
1333
	map.type = MT_HIGH_VECTORS;
1334 1335 1336
#else
	map.type = MT_LOW_VECTORS;
#endif
1337 1338 1339 1340
	create_mapping(&map);

	if (!vectors_high()) {
		map.virtual = 0;
R
Russell King 已提交
1341
		map.length = PAGE_SIZE * 2;
1342 1343 1344 1345
		map.type = MT_LOW_VECTORS;
		create_mapping(&map);
	}

R
Russell King 已提交
1346 1347 1348 1349 1350 1351 1352
	/* Now create a kernel read-only mapping */
	map.pfn += 1;
	map.virtual = 0xffff0000 + PAGE_SIZE;
	map.length = PAGE_SIZE;
	map.type = MT_LOW_VECTORS;
	create_mapping(&map);

1353 1354 1355 1356 1357
	/*
	 * Ask the machine support to map in the statically mapped devices.
	 */
	if (mdesc->map_io)
		mdesc->map_io();
1358 1359
	else
		debug_ll_io_init();
1360
	fill_pmd_gaps();
1361

R
Rob Herring 已提交
1362 1363 1364
	/* Reserve fixed i/o space in VMALLOC region */
	pci_reserve_io();

1365 1366 1367 1368 1369 1370 1371 1372
	/*
	 * Finally flush the caches and tlb to ensure that we're in a
	 * consistent state wrt the writebuffer.  This also ensures that
	 * any write-allocated cache lines in the vector page are written
	 * back.  After this point, we can start to touch devices again.
	 */
	local_flush_tlb_all();
	flush_cache_all();
1373 1374

	/* Enable asynchronous aborts */
1375
	early_abt_enable();
1376 1377
}

N
Nicolas Pitre 已提交
1378 1379 1380
static void __init kmap_init(void)
{
#ifdef CONFIG_HIGHMEM
R
Russell King 已提交
1381 1382
	pkmap_page_table = early_pte_alloc(pmd_off_k(PKMAP_BASE),
		PKMAP_BASE, _PAGE_KERNEL_TABLE);
N
Nicolas Pitre 已提交
1383
#endif
R
Rob Herring 已提交
1384 1385 1386

	early_pte_alloc(pmd_off_k(FIXADDR_START), FIXADDR_START,
			_PAGE_KERNEL_TABLE);
N
Nicolas Pitre 已提交
1387 1388
}

1389 1390
static void __init map_lowmem(void)
{
1391
	struct memblock_region *reg;
1392 1393
	phys_addr_t kernel_x_start = round_down(__pa(_stext), SECTION_SIZE);
	phys_addr_t kernel_x_end = round_up(__pa(__init_end), SECTION_SIZE);
1394 1395

	/* Map all the lowmem memory banks. */
1396 1397 1398 1399 1400
	for_each_memblock(memory, reg) {
		phys_addr_t start = reg->base;
		phys_addr_t end = start + reg->size;
		struct map_desc map;

1401 1402
		if (end > arm_lowmem_limit)
			end = arm_lowmem_limit;
1403 1404 1405
		if (start >= end)
			break;

1406
		if (end < kernel_x_start) {
1407 1408 1409 1410
			map.pfn = __phys_to_pfn(start);
			map.virtual = __phys_to_virt(start);
			map.length = end - start;
			map.type = MT_MEMORY_RWX;
1411

1412 1413 1414 1415 1416 1417 1418
			create_mapping(&map);
		} else if (start >= kernel_x_end) {
			map.pfn = __phys_to_pfn(start);
			map.virtual = __phys_to_virt(start);
			map.length = end - start;
			map.type = MT_MEMORY_RW;

1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446
			create_mapping(&map);
		} else {
			/* This better cover the entire kernel */
			if (start < kernel_x_start) {
				map.pfn = __phys_to_pfn(start);
				map.virtual = __phys_to_virt(start);
				map.length = kernel_x_start - start;
				map.type = MT_MEMORY_RW;

				create_mapping(&map);
			}

			map.pfn = __phys_to_pfn(kernel_x_start);
			map.virtual = __phys_to_virt(kernel_x_start);
			map.length = kernel_x_end - kernel_x_start;
			map.type = MT_MEMORY_RWX;

			create_mapping(&map);

			if (kernel_x_end < end) {
				map.pfn = __phys_to_pfn(kernel_x_end);
				map.virtual = __phys_to_virt(kernel_x_end);
				map.length = end - kernel_x_end;
				map.type = MT_MEMORY_RW;

				create_mapping(&map);
			}
		}
1447 1448 1449
	}
}

1450 1451 1452 1453 1454
#ifdef CONFIG_ARM_PV_FIXUP
extern unsigned long __atags_pointer;
typedef void pgtables_remap(long long offset, unsigned long pgd, void *bdata);
pgtables_remap lpae_pgtables_remap_asm;

1455 1456 1457 1458
/*
 * early_paging_init() recreates boot time page table setup, allowing machines
 * to switch over to a high (>4G) address space on LPAE systems
 */
1459
void __init early_paging_init(const struct machine_desc *mdesc)
1460
{
1461 1462 1463
	pgtables_remap *lpae_pgtables_remap;
	unsigned long pa_pgd;
	unsigned int cr, ttbcr;
1464
	long long offset;
1465
	void *boot_data;
1466

1467
	if (!mdesc->pv_fixup)
1468 1469
		return;

1470
	offset = mdesc->pv_fixup();
1471 1472
	if (offset == 0)
		return;
1473

1474 1475 1476 1477 1478 1479 1480 1481 1482 1483
	/*
	 * Get the address of the remap function in the 1:1 identity
	 * mapping setup by the early page table assembly code.  We
	 * must get this prior to the pv update.  The following barrier
	 * ensures that this is complete before we fixup any P:V offsets.
	 */
	lpae_pgtables_remap = (pgtables_remap *)(unsigned long)__pa(lpae_pgtables_remap_asm);
	pa_pgd = __pa(swapper_pg_dir);
	boot_data = __va(__atags_pointer);
	barrier();
1484

1485 1486
	pr_info("Switching physical address space to 0x%08llx\n",
		(u64)PHYS_OFFSET + offset);
1487

1488 1489 1490
	/* Re-set the phys pfn offset, and the pv offset */
	__pv_offset += offset;
	__pv_phys_pfn_offset += PFN_DOWN(offset);
1491 1492 1493 1494 1495 1496

	/* Run the patch stub to update the constants */
	fixup_pv_table(&__pv_table_begin,
		(&__pv_table_end - &__pv_table_begin) << 2);

	/*
1497 1498 1499 1500 1501 1502 1503
	 * We changing not only the virtual to physical mapping, but also
	 * the physical addresses used to access memory.  We need to flush
	 * all levels of cache in the system with caching disabled to
	 * ensure that all data is written back, and nothing is prefetched
	 * into the caches.  We also need to prevent the TLB walkers
	 * allocating into the caches too.  Note that this is ARMv7 LPAE
	 * specific.
1504
	 */
1505 1506 1507 1508 1509
	cr = get_cr();
	set_cr(cr & ~(CR_I | CR_C));
	asm("mrc p15, 0, %0, c2, c0, 2" : "=r" (ttbcr));
	asm volatile("mcr p15, 0, %0, c2, c0, 2"
		: : "r" (ttbcr & ~(3 << 8 | 3 << 10)));
1510
	flush_cache_all();
1511 1512

	/*
1513 1514 1515 1516
	 * Fixup the page tables - this must be in the idmap region as
	 * we need to disable the MMU to do this safely, and hence it
	 * needs to be assembly.  It's fairly simple, as we're using the
	 * temporary tables setup by the initial assembly code.
1517
	 */
1518
	lpae_pgtables_remap(offset, pa_pgd, boot_data);
1519

1520 1521 1522
	/* Re-enable the caches and cacheable TLB walks */
	asm volatile("mcr p15, 0, %0, c2, c0, 2" : : "r" (ttbcr));
	set_cr(cr);
1523 1524 1525 1526
}

#else

1527
void __init early_paging_init(const struct machine_desc *mdesc)
1528
{
1529 1530
	long long offset;

1531
	if (!mdesc->pv_fixup)
1532 1533
		return;

1534
	offset = mdesc->pv_fixup();
1535 1536 1537 1538 1539 1540 1541
	if (offset == 0)
		return;

	pr_crit("Physical address space modification is only to support Keystone2.\n");
	pr_crit("Please enable ARM_LPAE and ARM_PATCH_PHYS_VIRT support to use this\n");
	pr_crit("feature. Your kernel may crash now, have a good day.\n");
	add_taint(TAINT_CPU_OUT_OF_SPEC, LOCKDEP_STILL_OK);
1542 1543 1544 1545
}

#endif

1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574
static void __init early_fixmap_shutdown(void)
{
	int i;
	unsigned long va = fix_to_virt(__end_of_permanent_fixed_addresses - 1);

	pte_offset_fixmap = pte_offset_late_fixmap;
	pmd_clear(fixmap_pmd(va));
	local_flush_tlb_kernel_page(va);

	for (i = 0; i < __end_of_permanent_fixed_addresses; i++) {
		pte_t *pte;
		struct map_desc map;

		map.virtual = fix_to_virt(i);
		pte = pte_offset_early_fixmap(pmd_off_k(map.virtual), map.virtual);

		/* Only i/o device mappings are supported ATM */
		if (pte_none(*pte) ||
		    (pte_val(*pte) & L_PTE_MT_MASK) != L_PTE_MT_DEV_SHARED)
			continue;

		map.pfn = pte_pfn(*pte);
		map.type = MT_DEVICE;
		map.length = PAGE_SIZE;

		create_mapping(&map);
	}
}

1575 1576 1577 1578
/*
 * paging_init() sets up the page tables, initialises the zone memory
 * maps, and sets up the zero page, bad page and bad page tables.
 */
1579
void __init paging_init(const struct machine_desc *mdesc)
1580 1581 1582 1583
{
	void *zero_page;

	build_mem_type_table();
1584
	prepare_page_table();
1585
	map_lowmem();
1586
	memblock_set_current_limit(arm_lowmem_limit);
1587
	dma_contiguous_remap();
1588
	early_fixmap_shutdown();
1589
	devicemaps_init(mdesc);
N
Nicolas Pitre 已提交
1590
	kmap_init();
1591
	tcm_init();
1592 1593 1594

	top_pmd = pmd_off_k(0xffff0000);

R
Russell King 已提交
1595 1596
	/* allocate the zero page. */
	zero_page = early_alloc(PAGE_SIZE);
R
Russell King 已提交
1597

1598
	bootmem_init();
R
Russell King 已提交
1599

1600
	empty_zero_page = virt_to_page(zero_page);
1601
	__flush_dcache_page(NULL, empty_zero_page);
1602
}