vmscan.c 122.5 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0
L
Linus Torvalds 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14
/*
 *  linux/mm/vmscan.c
 *
 *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
 *
 *  Swap reorganised 29.12.95, Stephen Tweedie.
 *  kswapd added: 7.1.96  sct
 *  Removed kswapd_ctl limits, and swap out as many pages as needed
 *  to bring the system back to freepages.high: 2.4.97, Rik van Riel.
 *  Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
 *  Multiqueue VM started 5.8.00, Rik van Riel.
 */

15 16
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt

L
Linus Torvalds 已提交
17
#include <linux/mm.h>
18
#include <linux/sched/mm.h>
L
Linus Torvalds 已提交
19
#include <linux/module.h>
20
#include <linux/gfp.h>
L
Linus Torvalds 已提交
21 22 23 24 25
#include <linux/kernel_stat.h>
#include <linux/swap.h>
#include <linux/pagemap.h>
#include <linux/init.h>
#include <linux/highmem.h>
26
#include <linux/vmpressure.h>
27
#include <linux/vmstat.h>
L
Linus Torvalds 已提交
28 29 30 31 32 33 34 35 36 37 38
#include <linux/file.h>
#include <linux/writeback.h>
#include <linux/blkdev.h>
#include <linux/buffer_head.h>	/* for try_to_release_page(),
					buffer_heads_over_limit */
#include <linux/mm_inline.h>
#include <linux/backing-dev.h>
#include <linux/rmap.h>
#include <linux/topology.h>
#include <linux/cpu.h>
#include <linux/cpuset.h>
39
#include <linux/compaction.h>
L
Linus Torvalds 已提交
40 41
#include <linux/notifier.h>
#include <linux/rwsem.h>
42
#include <linux/delay.h>
43
#include <linux/kthread.h>
44
#include <linux/freezer.h>
45
#include <linux/memcontrol.h>
46
#include <linux/delayacct.h>
47
#include <linux/sysctl.h>
48
#include <linux/oom.h>
49
#include <linux/pagevec.h>
50
#include <linux/prefetch.h>
51
#include <linux/printk.h>
52
#include <linux/dax.h>
53
#include <linux/psi.h>
L
Linus Torvalds 已提交
54 55 56 57 58

#include <asm/tlbflush.h>
#include <asm/div64.h>

#include <linux/swapops.h>
59
#include <linux/balloon_compaction.h>
L
Linus Torvalds 已提交
60

61 62
#include "internal.h"

63 64 65
#define CREATE_TRACE_POINTS
#include <trace/events/vmscan.h>

L
Linus Torvalds 已提交
66
struct scan_control {
67 68 69
	/* How many pages shrink_list() should reclaim */
	unsigned long nr_to_reclaim;

70 71 72 73 74
	/*
	 * Nodemask of nodes allowed by the caller. If NULL, all nodes
	 * are scanned.
	 */
	nodemask_t	*nodemask;
75

76 77 78 79 80
	/*
	 * The memory cgroup that hit its limit and as a result is the
	 * primary target of this reclaim invocation.
	 */
	struct mem_cgroup *target_mem_cgroup;
81

82
	/* Writepage batching in laptop mode; RECLAIM_WRITE */
83 84 85 86 87 88 89 90
	unsigned int may_writepage:1;

	/* Can mapped pages be reclaimed? */
	unsigned int may_unmap:1;

	/* Can pages be swapped as part of reclaim? */
	unsigned int may_swap:1;

91 92 93
	/* e.g. boosted watermark reclaim leaves slabs alone */
	unsigned int may_shrinkslab:1;

94 95 96 97 98 99 100
	/*
	 * Cgroups are not reclaimed below their configured memory.low,
	 * unless we threaten to OOM. If any cgroups are skipped due to
	 * memory.low and nothing was reclaimed, go back for memory.low.
	 */
	unsigned int memcg_low_reclaim:1;
	unsigned int memcg_low_skipped:1;
101

102 103 104 105 106
	unsigned int hibernation_mode:1;

	/* One of the zones is ready for compaction */
	unsigned int compaction_ready:1;

G
Greg Thelen 已提交
107 108 109 110 111 112 113 114 115 116 117 118
	/* Allocation order */
	s8 order;

	/* Scan (total_size >> priority) pages at once */
	s8 priority;

	/* The highest zone to isolate pages for reclaim from */
	s8 reclaim_idx;

	/* This context's GFP mask */
	gfp_t gfp_mask;

119 120 121 122 123
	/* Incremented by the number of inactive pages that were scanned */
	unsigned long nr_scanned;

	/* Number of pages freed so far during a call to shrink_zones() */
	unsigned long nr_reclaimed;
124 125 126 127 128 129 130 131 132 133

	struct {
		unsigned int dirty;
		unsigned int unqueued_dirty;
		unsigned int congested;
		unsigned int writeback;
		unsigned int immediate;
		unsigned int file_taken;
		unsigned int taken;
	} nr;
L
Linus Torvalds 已提交
134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167
};

#ifdef ARCH_HAS_PREFETCH
#define prefetch_prev_lru_page(_page, _base, _field)			\
	do {								\
		if ((_page)->lru.prev != _base) {			\
			struct page *prev;				\
									\
			prev = lru_to_page(&(_page->lru));		\
			prefetch(&prev->_field);			\
		}							\
	} while (0)
#else
#define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
#endif

#ifdef ARCH_HAS_PREFETCHW
#define prefetchw_prev_lru_page(_page, _base, _field)			\
	do {								\
		if ((_page)->lru.prev != _base) {			\
			struct page *prev;				\
									\
			prev = lru_to_page(&(_page->lru));		\
			prefetchw(&prev->_field);			\
		}							\
	} while (0)
#else
#define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
#endif

/*
 * From 0 .. 100.  Higher means more swappy.
 */
int vm_swappiness = 60;
168 169 170 171 172
/*
 * The total number of pages which are beyond the high watermark within all
 * zones.
 */
unsigned long vm_total_pages;
L
Linus Torvalds 已提交
173 174 175 176

static LIST_HEAD(shrinker_list);
static DECLARE_RWSEM(shrinker_rwsem);

177
#ifdef CONFIG_MEMCG_KMEM
178 179 180 181 182 183 184 185 186 187 188 189 190 191

/*
 * We allow subsystems to populate their shrinker-related
 * LRU lists before register_shrinker_prepared() is called
 * for the shrinker, since we don't want to impose
 * restrictions on their internal registration order.
 * In this case shrink_slab_memcg() may find corresponding
 * bit is set in the shrinkers map.
 *
 * This value is used by the function to detect registering
 * shrinkers and to skip do_shrink_slab() calls for them.
 */
#define SHRINKER_REGISTERING ((struct shrinker *)~0UL)

192 193 194 195 196 197 198 199 200
static DEFINE_IDR(shrinker_idr);
static int shrinker_nr_max;

static int prealloc_memcg_shrinker(struct shrinker *shrinker)
{
	int id, ret = -ENOMEM;

	down_write(&shrinker_rwsem);
	/* This may call shrinker, so it must use down_read_trylock() */
201
	id = idr_alloc(&shrinker_idr, SHRINKER_REGISTERING, 0, 0, GFP_KERNEL);
202 203 204
	if (id < 0)
		goto unlock;

205 206 207 208 209 210
	if (id >= shrinker_nr_max) {
		if (memcg_expand_shrinker_maps(id)) {
			idr_remove(&shrinker_idr, id);
			goto unlock;
		}

211
		shrinker_nr_max = id + 1;
212
	}
213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240
	shrinker->id = id;
	ret = 0;
unlock:
	up_write(&shrinker_rwsem);
	return ret;
}

static void unregister_memcg_shrinker(struct shrinker *shrinker)
{
	int id = shrinker->id;

	BUG_ON(id < 0);

	down_write(&shrinker_rwsem);
	idr_remove(&shrinker_idr, id);
	up_write(&shrinker_rwsem);
}
#else /* CONFIG_MEMCG_KMEM */
static int prealloc_memcg_shrinker(struct shrinker *shrinker)
{
	return 0;
}

static void unregister_memcg_shrinker(struct shrinker *shrinker)
{
}
#endif /* CONFIG_MEMCG_KMEM */

A
Andrew Morton 已提交
241
#ifdef CONFIG_MEMCG
242 243
static bool global_reclaim(struct scan_control *sc)
{
244
	return !sc->target_mem_cgroup;
245
}
246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266

/**
 * sane_reclaim - is the usual dirty throttling mechanism operational?
 * @sc: scan_control in question
 *
 * The normal page dirty throttling mechanism in balance_dirty_pages() is
 * completely broken with the legacy memcg and direct stalling in
 * shrink_page_list() is used for throttling instead, which lacks all the
 * niceties such as fairness, adaptive pausing, bandwidth proportional
 * allocation and configurability.
 *
 * This function tests whether the vmscan currently in progress can assume
 * that the normal dirty throttling mechanism is operational.
 */
static bool sane_reclaim(struct scan_control *sc)
{
	struct mem_cgroup *memcg = sc->target_mem_cgroup;

	if (!memcg)
		return true;
#ifdef CONFIG_CGROUP_WRITEBACK
267
	if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
268 269 270 271
		return true;
#endif
	return false;
}
272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294

static void set_memcg_congestion(pg_data_t *pgdat,
				struct mem_cgroup *memcg,
				bool congested)
{
	struct mem_cgroup_per_node *mn;

	if (!memcg)
		return;

	mn = mem_cgroup_nodeinfo(memcg, pgdat->node_id);
	WRITE_ONCE(mn->congested, congested);
}

static bool memcg_congested(pg_data_t *pgdat,
			struct mem_cgroup *memcg)
{
	struct mem_cgroup_per_node *mn;

	mn = mem_cgroup_nodeinfo(memcg, pgdat->node_id);
	return READ_ONCE(mn->congested);

}
295
#else
296 297 298 299
static bool global_reclaim(struct scan_control *sc)
{
	return true;
}
300 301 302 303 304

static bool sane_reclaim(struct scan_control *sc)
{
	return true;
}
305 306 307 308 309 310 311 312 313 314 315 316

static inline void set_memcg_congestion(struct pglist_data *pgdat,
				struct mem_cgroup *memcg, bool congested)
{
}

static inline bool memcg_congested(struct pglist_data *pgdat,
			struct mem_cgroup *memcg)
{
	return false;

}
317 318
#endif

319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336
/*
 * This misses isolated pages which are not accounted for to save counters.
 * As the data only determines if reclaim or compaction continues, it is
 * not expected that isolated pages will be a dominating factor.
 */
unsigned long zone_reclaimable_pages(struct zone *zone)
{
	unsigned long nr;

	nr = zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_FILE) +
		zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_FILE);
	if (get_nr_swap_pages() > 0)
		nr += zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_ANON) +
			zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_ANON);

	return nr;
}

337 338 339 340 341 342 343
/**
 * lruvec_lru_size -  Returns the number of pages on the given LRU list.
 * @lruvec: lru vector
 * @lru: lru to use
 * @zone_idx: zones to consider (use MAX_NR_ZONES for the whole LRU list)
 */
unsigned long lruvec_lru_size(struct lruvec *lruvec, enum lru_list lru, int zone_idx)
344
{
345 346 347
	unsigned long lru_size;
	int zid;

348
	if (!mem_cgroup_disabled())
349 350 351
		lru_size = mem_cgroup_get_lru_size(lruvec, lru);
	else
		lru_size = node_page_state(lruvec_pgdat(lruvec), NR_LRU_BASE + lru);
352

353 354 355
	for (zid = zone_idx + 1; zid < MAX_NR_ZONES; zid++) {
		struct zone *zone = &lruvec_pgdat(lruvec)->node_zones[zid];
		unsigned long size;
356

357 358 359 360 361 362 363 364 365 366 367 368
		if (!managed_zone(zone))
			continue;

		if (!mem_cgroup_disabled())
			size = mem_cgroup_get_zone_lru_size(lruvec, lru, zid);
		else
			size = zone_page_state(&lruvec_pgdat(lruvec)->node_zones[zid],
				       NR_ZONE_LRU_BASE + lru);
		lru_size -= min(size, lru_size);
	}

	return lru_size;
369 370 371

}

L
Linus Torvalds 已提交
372
/*
G
Glauber Costa 已提交
373
 * Add a shrinker callback to be called from the vm.
L
Linus Torvalds 已提交
374
 */
375
int prealloc_shrinker(struct shrinker *shrinker)
L
Linus Torvalds 已提交
376
{
377
	unsigned int size = sizeof(*shrinker->nr_deferred);
G
Glauber Costa 已提交
378 379 380 381 382 383 384

	if (shrinker->flags & SHRINKER_NUMA_AWARE)
		size *= nr_node_ids;

	shrinker->nr_deferred = kzalloc(size, GFP_KERNEL);
	if (!shrinker->nr_deferred)
		return -ENOMEM;
385 386 387 388 389 390

	if (shrinker->flags & SHRINKER_MEMCG_AWARE) {
		if (prealloc_memcg_shrinker(shrinker))
			goto free_deferred;
	}

391
	return 0;
392 393 394 395 396

free_deferred:
	kfree(shrinker->nr_deferred);
	shrinker->nr_deferred = NULL;
	return -ENOMEM;
397 398 399 400
}

void free_prealloced_shrinker(struct shrinker *shrinker)
{
401 402 403 404 405 406
	if (!shrinker->nr_deferred)
		return;

	if (shrinker->flags & SHRINKER_MEMCG_AWARE)
		unregister_memcg_shrinker(shrinker);

407 408 409
	kfree(shrinker->nr_deferred);
	shrinker->nr_deferred = NULL;
}
G
Glauber Costa 已提交
410

411 412
void register_shrinker_prepared(struct shrinker *shrinker)
{
413 414
	down_write(&shrinker_rwsem);
	list_add_tail(&shrinker->list, &shrinker_list);
415
#ifdef CONFIG_MEMCG_KMEM
416 417
	if (shrinker->flags & SHRINKER_MEMCG_AWARE)
		idr_replace(&shrinker_idr, shrinker, shrinker->id);
418
#endif
419
	up_write(&shrinker_rwsem);
420 421 422 423 424 425 426 427 428
}

int register_shrinker(struct shrinker *shrinker)
{
	int err = prealloc_shrinker(shrinker);

	if (err)
		return err;
	register_shrinker_prepared(shrinker);
G
Glauber Costa 已提交
429
	return 0;
L
Linus Torvalds 已提交
430
}
431
EXPORT_SYMBOL(register_shrinker);
L
Linus Torvalds 已提交
432 433 434 435

/*
 * Remove one
 */
436
void unregister_shrinker(struct shrinker *shrinker)
L
Linus Torvalds 已提交
437
{
438 439
	if (!shrinker->nr_deferred)
		return;
440 441
	if (shrinker->flags & SHRINKER_MEMCG_AWARE)
		unregister_memcg_shrinker(shrinker);
L
Linus Torvalds 已提交
442 443 444
	down_write(&shrinker_rwsem);
	list_del(&shrinker->list);
	up_write(&shrinker_rwsem);
445
	kfree(shrinker->nr_deferred);
446
	shrinker->nr_deferred = NULL;
L
Linus Torvalds 已提交
447
}
448
EXPORT_SYMBOL(unregister_shrinker);
L
Linus Torvalds 已提交
449 450

#define SHRINK_BATCH 128
G
Glauber Costa 已提交
451

452
static unsigned long do_shrink_slab(struct shrink_control *shrinkctl,
453
				    struct shrinker *shrinker, int priority)
G
Glauber Costa 已提交
454 455 456 457
{
	unsigned long freed = 0;
	unsigned long long delta;
	long total_scan;
458
	long freeable;
G
Glauber Costa 已提交
459 460 461 462 463
	long nr;
	long new_nr;
	int nid = shrinkctl->nid;
	long batch_size = shrinker->batch ? shrinker->batch
					  : SHRINK_BATCH;
464
	long scanned = 0, next_deferred;
G
Glauber Costa 已提交
465

466 467 468
	if (!(shrinker->flags & SHRINKER_NUMA_AWARE))
		nid = 0;

469
	freeable = shrinker->count_objects(shrinker, shrinkctl);
470 471
	if (freeable == 0 || freeable == SHRINK_EMPTY)
		return freeable;
G
Glauber Costa 已提交
472 473 474 475 476 477 478 479 480

	/*
	 * copy the current shrinker scan count into a local variable
	 * and zero it so that other concurrent shrinker invocations
	 * don't also do this scanning work.
	 */
	nr = atomic_long_xchg(&shrinker->nr_deferred[nid], 0);

	total_scan = nr;
J
Johannes Weiner 已提交
481 482 483 484 485 486 487 488 489 490 491 492
	if (shrinker->seeks) {
		delta = freeable >> priority;
		delta *= 4;
		do_div(delta, shrinker->seeks);
	} else {
		/*
		 * These objects don't require any IO to create. Trim
		 * them aggressively under memory pressure to keep
		 * them from causing refetches in the IO caches.
		 */
		delta = freeable / 2;
	}
493

G
Glauber Costa 已提交
494 495
	total_scan += delta;
	if (total_scan < 0) {
496
		pr_err("shrink_slab: %pF negative objects to delete nr=%ld\n",
D
Dave Chinner 已提交
497
		       shrinker->scan_objects, total_scan);
498
		total_scan = freeable;
499 500 501
		next_deferred = nr;
	} else
		next_deferred = total_scan;
G
Glauber Costa 已提交
502 503 504 505 506 507 508

	/*
	 * We need to avoid excessive windup on filesystem shrinkers
	 * due to large numbers of GFP_NOFS allocations causing the
	 * shrinkers to return -1 all the time. This results in a large
	 * nr being built up so when a shrink that can do some work
	 * comes along it empties the entire cache due to nr >>>
509
	 * freeable. This is bad for sustaining a working set in
G
Glauber Costa 已提交
510 511 512 513 514
	 * memory.
	 *
	 * Hence only allow the shrinker to scan the entire cache when
	 * a large delta change is calculated directly.
	 */
515 516
	if (delta < freeable / 4)
		total_scan = min(total_scan, freeable / 2);
G
Glauber Costa 已提交
517 518 519 520 521 522

	/*
	 * Avoid risking looping forever due to too large nr value:
	 * never try to free more than twice the estimate number of
	 * freeable entries.
	 */
523 524
	if (total_scan > freeable * 2)
		total_scan = freeable * 2;
G
Glauber Costa 已提交
525 526

	trace_mm_shrink_slab_start(shrinker, shrinkctl, nr,
527
				   freeable, delta, total_scan, priority);
G
Glauber Costa 已提交
528

529 530 531 532 533 534 535 536 537 538 539
	/*
	 * Normally, we should not scan less than batch_size objects in one
	 * pass to avoid too frequent shrinker calls, but if the slab has less
	 * than batch_size objects in total and we are really tight on memory,
	 * we will try to reclaim all available objects, otherwise we can end
	 * up failing allocations although there are plenty of reclaimable
	 * objects spread over several slabs with usage less than the
	 * batch_size.
	 *
	 * We detect the "tight on memory" situations by looking at the total
	 * number of objects we want to scan (total_scan). If it is greater
540
	 * than the total number of objects on slab (freeable), we must be
541 542 543 544
	 * scanning at high prio and therefore should try to reclaim as much as
	 * possible.
	 */
	while (total_scan >= batch_size ||
545
	       total_scan >= freeable) {
D
Dave Chinner 已提交
546
		unsigned long ret;
547
		unsigned long nr_to_scan = min(batch_size, total_scan);
G
Glauber Costa 已提交
548

549
		shrinkctl->nr_to_scan = nr_to_scan;
550
		shrinkctl->nr_scanned = nr_to_scan;
D
Dave Chinner 已提交
551 552 553 554
		ret = shrinker->scan_objects(shrinker, shrinkctl);
		if (ret == SHRINK_STOP)
			break;
		freed += ret;
G
Glauber Costa 已提交
555

556 557 558
		count_vm_events(SLABS_SCANNED, shrinkctl->nr_scanned);
		total_scan -= shrinkctl->nr_scanned;
		scanned += shrinkctl->nr_scanned;
G
Glauber Costa 已提交
559 560 561 562

		cond_resched();
	}

563 564 565 566
	if (next_deferred >= scanned)
		next_deferred -= scanned;
	else
		next_deferred = 0;
G
Glauber Costa 已提交
567 568 569 570 571
	/*
	 * move the unused scan count back into the shrinker in a
	 * manner that handles concurrent updates. If we exhausted the
	 * scan, there is no need to do an update.
	 */
572 573
	if (next_deferred > 0)
		new_nr = atomic_long_add_return(next_deferred,
G
Glauber Costa 已提交
574 575 576 577
						&shrinker->nr_deferred[nid]);
	else
		new_nr = atomic_long_read(&shrinker->nr_deferred[nid]);

578
	trace_mm_shrink_slab_end(shrinker, nid, freed, nr, new_nr, total_scan);
G
Glauber Costa 已提交
579
	return freed;
580 581
}

582 583 584 585 586
#ifdef CONFIG_MEMCG_KMEM
static unsigned long shrink_slab_memcg(gfp_t gfp_mask, int nid,
			struct mem_cgroup *memcg, int priority)
{
	struct memcg_shrinker_map *map;
587 588
	unsigned long ret, freed = 0;
	int i;
589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609

	if (!memcg_kmem_enabled() || !mem_cgroup_online(memcg))
		return 0;

	if (!down_read_trylock(&shrinker_rwsem))
		return 0;

	map = rcu_dereference_protected(memcg->nodeinfo[nid]->shrinker_map,
					true);
	if (unlikely(!map))
		goto unlock;

	for_each_set_bit(i, map->map, shrinker_nr_max) {
		struct shrink_control sc = {
			.gfp_mask = gfp_mask,
			.nid = nid,
			.memcg = memcg,
		};
		struct shrinker *shrinker;

		shrinker = idr_find(&shrinker_idr, i);
610 611 612
		if (unlikely(!shrinker || shrinker == SHRINKER_REGISTERING)) {
			if (!shrinker)
				clear_bit(i, map->map);
613 614 615 616
			continue;
		}

		ret = do_shrink_slab(&sc, shrinker, priority);
617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640
		if (ret == SHRINK_EMPTY) {
			clear_bit(i, map->map);
			/*
			 * After the shrinker reported that it had no objects to
			 * free, but before we cleared the corresponding bit in
			 * the memcg shrinker map, a new object might have been
			 * added. To make sure, we have the bit set in this
			 * case, we invoke the shrinker one more time and reset
			 * the bit if it reports that it is not empty anymore.
			 * The memory barrier here pairs with the barrier in
			 * memcg_set_shrinker_bit():
			 *
			 * list_lru_add()     shrink_slab_memcg()
			 *   list_add_tail()    clear_bit()
			 *   <MB>               <MB>
			 *   set_bit()          do_shrink_slab()
			 */
			smp_mb__after_atomic();
			ret = do_shrink_slab(&sc, shrinker, priority);
			if (ret == SHRINK_EMPTY)
				ret = 0;
			else
				memcg_set_shrinker_bit(memcg, nid, i);
		}
641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659
		freed += ret;

		if (rwsem_is_contended(&shrinker_rwsem)) {
			freed = freed ? : 1;
			break;
		}
	}
unlock:
	up_read(&shrinker_rwsem);
	return freed;
}
#else /* CONFIG_MEMCG_KMEM */
static unsigned long shrink_slab_memcg(gfp_t gfp_mask, int nid,
			struct mem_cgroup *memcg, int priority)
{
	return 0;
}
#endif /* CONFIG_MEMCG_KMEM */

660
/**
661
 * shrink_slab - shrink slab caches
662 663
 * @gfp_mask: allocation context
 * @nid: node whose slab caches to target
664
 * @memcg: memory cgroup whose slab caches to target
665
 * @priority: the reclaim priority
L
Linus Torvalds 已提交
666
 *
667
 * Call the shrink functions to age shrinkable caches.
L
Linus Torvalds 已提交
668
 *
669 670
 * @nid is passed along to shrinkers with SHRINKER_NUMA_AWARE set,
 * unaware shrinkers will receive a node id of 0 instead.
L
Linus Torvalds 已提交
671
 *
672 673
 * @memcg specifies the memory cgroup to target. Unaware shrinkers
 * are called only if it is the root cgroup.
674
 *
675 676
 * @priority is sc->priority, we take the number of objects and >> by priority
 * in order to get the scan target.
677
 *
678
 * Returns the number of reclaimed slab objects.
L
Linus Torvalds 已提交
679
 */
680 681
static unsigned long shrink_slab(gfp_t gfp_mask, int nid,
				 struct mem_cgroup *memcg,
682
				 int priority)
L
Linus Torvalds 已提交
683
{
684
	unsigned long ret, freed = 0;
L
Linus Torvalds 已提交
685 686
	struct shrinker *shrinker;

687
	if (!mem_cgroup_is_root(memcg))
688
		return shrink_slab_memcg(gfp_mask, nid, memcg, priority);
689

690
	if (!down_read_trylock(&shrinker_rwsem))
691
		goto out;
L
Linus Torvalds 已提交
692 693

	list_for_each_entry(shrinker, &shrinker_list, list) {
694 695 696
		struct shrink_control sc = {
			.gfp_mask = gfp_mask,
			.nid = nid,
697
			.memcg = memcg,
698
		};
699

700 701 702 703
		ret = do_shrink_slab(&sc, shrinker, priority);
		if (ret == SHRINK_EMPTY)
			ret = 0;
		freed += ret;
704 705 706 707 708 709 710 711 712
		/*
		 * Bail out if someone want to register a new shrinker to
		 * prevent the regsitration from being stalled for long periods
		 * by parallel ongoing shrinking.
		 */
		if (rwsem_is_contended(&shrinker_rwsem)) {
			freed = freed ? : 1;
			break;
		}
L
Linus Torvalds 已提交
713
	}
714

L
Linus Torvalds 已提交
715
	up_read(&shrinker_rwsem);
716 717
out:
	cond_resched();
D
Dave Chinner 已提交
718
	return freed;
L
Linus Torvalds 已提交
719 720
}

721 722 723 724 725 726 727 728
void drop_slab_node(int nid)
{
	unsigned long freed;

	do {
		struct mem_cgroup *memcg = NULL;

		freed = 0;
729
		memcg = mem_cgroup_iter(NULL, NULL, NULL);
730
		do {
731
			freed += shrink_slab(GFP_KERNEL, nid, memcg, 0);
732 733 734 735 736 737 738 739 740 741 742 743
		} while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)) != NULL);
	} while (freed > 10);
}

void drop_slab(void)
{
	int nid;

	for_each_online_node(nid)
		drop_slab_node(nid);
}

L
Linus Torvalds 已提交
744 745
static inline int is_page_cache_freeable(struct page *page)
{
746 747
	/*
	 * A freeable page cache page is referenced only by the caller
748 749
	 * that isolated the page, the page cache and optional buffer
	 * heads at page->private.
750
	 */
751
	int page_cache_pins = PageTransHuge(page) && PageSwapCache(page) ?
752
		HPAGE_PMD_NR : 1;
753
	return page_count(page) - page_has_private(page) == 1 + page_cache_pins;
L
Linus Torvalds 已提交
754 755
}

756
static int may_write_to_inode(struct inode *inode, struct scan_control *sc)
L
Linus Torvalds 已提交
757
{
758
	if (current->flags & PF_SWAPWRITE)
L
Linus Torvalds 已提交
759
		return 1;
760
	if (!inode_write_congested(inode))
L
Linus Torvalds 已提交
761
		return 1;
762
	if (inode_to_bdi(inode) == current->backing_dev_info)
L
Linus Torvalds 已提交
763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781
		return 1;
	return 0;
}

/*
 * We detected a synchronous write error writing a page out.  Probably
 * -ENOSPC.  We need to propagate that into the address_space for a subsequent
 * fsync(), msync() or close().
 *
 * The tricky part is that after writepage we cannot touch the mapping: nothing
 * prevents it from being freed up.  But we have a ref on the page and once
 * that page is locked, the mapping is pinned.
 *
 * We're allowed to run sleeping lock_page() here because we know the caller has
 * __GFP_FS.
 */
static void handle_write_error(struct address_space *mapping,
				struct page *page, int error)
{
J
Jens Axboe 已提交
782
	lock_page(page);
783 784
	if (page_mapping(page) == mapping)
		mapping_set_error(mapping, error);
L
Linus Torvalds 已提交
785 786 787
	unlock_page(page);
}

788 789 790 791 792 793 794 795 796 797 798 799
/* possible outcome of pageout() */
typedef enum {
	/* failed to write page out, page is locked */
	PAGE_KEEP,
	/* move page to the active list, page is locked */
	PAGE_ACTIVATE,
	/* page has been sent to the disk successfully, page is unlocked */
	PAGE_SUCCESS,
	/* page is clean and locked */
	PAGE_CLEAN,
} pageout_t;

L
Linus Torvalds 已提交
800
/*
A
Andrew Morton 已提交
801 802
 * pageout is called by shrink_page_list() for each dirty page.
 * Calls ->writepage().
L
Linus Torvalds 已提交
803
 */
804
static pageout_t pageout(struct page *page, struct address_space *mapping,
805
			 struct scan_control *sc)
L
Linus Torvalds 已提交
806 807 808 809 810 811 812 813
{
	/*
	 * If the page is dirty, only perform writeback if that write
	 * will be non-blocking.  To prevent this allocation from being
	 * stalled by pagecache activity.  But note that there may be
	 * stalls if we need to run get_block().  We could test
	 * PagePrivate for that.
	 *
814
	 * If this process is currently in __generic_file_write_iter() against
L
Linus Torvalds 已提交
815 816 817 818 819 820 821 822 823 824 825 826 827 828 829
	 * this page's queue, we can perform writeback even if that
	 * will block.
	 *
	 * If the page is swapcache, write it back even if that would
	 * block, for some throttling. This happens by accident, because
	 * swap_backing_dev_info is bust: it doesn't reflect the
	 * congestion state of the swapdevs.  Easy to fix, if needed.
	 */
	if (!is_page_cache_freeable(page))
		return PAGE_KEEP;
	if (!mapping) {
		/*
		 * Some data journaling orphaned pages can have
		 * page->mapping == NULL while being dirty with clean buffers.
		 */
830
		if (page_has_private(page)) {
L
Linus Torvalds 已提交
831 832
			if (try_to_free_buffers(page)) {
				ClearPageDirty(page);
833
				pr_info("%s: orphaned page\n", __func__);
L
Linus Torvalds 已提交
834 835 836 837 838 839 840
				return PAGE_CLEAN;
			}
		}
		return PAGE_KEEP;
	}
	if (mapping->a_ops->writepage == NULL)
		return PAGE_ACTIVATE;
841
	if (!may_write_to_inode(mapping->host, sc))
L
Linus Torvalds 已提交
842 843 844 845 846 847 848
		return PAGE_KEEP;

	if (clear_page_dirty_for_io(page)) {
		int res;
		struct writeback_control wbc = {
			.sync_mode = WB_SYNC_NONE,
			.nr_to_write = SWAP_CLUSTER_MAX,
849 850
			.range_start = 0,
			.range_end = LLONG_MAX,
L
Linus Torvalds 已提交
851 852 853 854 855 856 857
			.for_reclaim = 1,
		};

		SetPageReclaim(page);
		res = mapping->a_ops->writepage(page, &wbc);
		if (res < 0)
			handle_write_error(mapping, page, res);
858
		if (res == AOP_WRITEPAGE_ACTIVATE) {
L
Linus Torvalds 已提交
859 860 861
			ClearPageReclaim(page);
			return PAGE_ACTIVATE;
		}
862

L
Linus Torvalds 已提交
863 864 865 866
		if (!PageWriteback(page)) {
			/* synchronous write or broken a_ops? */
			ClearPageReclaim(page);
		}
867
		trace_mm_vmscan_writepage(page);
868
		inc_node_page_state(page, NR_VMSCAN_WRITE);
L
Linus Torvalds 已提交
869 870 871 872 873 874
		return PAGE_SUCCESS;
	}

	return PAGE_CLEAN;
}

875
/*
N
Nick Piggin 已提交
876 877
 * Same as remove_mapping, but if the page is removed from the mapping, it
 * gets returned with a refcount of 0.
878
 */
879 880
static int __remove_mapping(struct address_space *mapping, struct page *page,
			    bool reclaimed)
881
{
882
	unsigned long flags;
883
	int refcount;
884

885 886
	BUG_ON(!PageLocked(page));
	BUG_ON(mapping != page_mapping(page));
887

M
Matthew Wilcox 已提交
888
	xa_lock_irqsave(&mapping->i_pages, flags);
889
	/*
N
Nick Piggin 已提交
890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908
	 * The non racy check for a busy page.
	 *
	 * Must be careful with the order of the tests. When someone has
	 * a ref to the page, it may be possible that they dirty it then
	 * drop the reference. So if PageDirty is tested before page_count
	 * here, then the following race may occur:
	 *
	 * get_user_pages(&page);
	 * [user mapping goes away]
	 * write_to(page);
	 *				!PageDirty(page)    [good]
	 * SetPageDirty(page);
	 * put_page(page);
	 *				!page_count(page)   [good, discard it]
	 *
	 * [oops, our write_to data is lost]
	 *
	 * Reversing the order of the tests ensures such a situation cannot
	 * escape unnoticed. The smp_rmb is needed to ensure the page->flags
909
	 * load is not satisfied before that of page->_refcount.
N
Nick Piggin 已提交
910 911
	 *
	 * Note that if SetPageDirty is always performed via set_page_dirty,
M
Matthew Wilcox 已提交
912
	 * and thus under the i_pages lock, then this ordering is not required.
913
	 */
914 915 916 917 918
	if (unlikely(PageTransHuge(page)) && PageSwapCache(page))
		refcount = 1 + HPAGE_PMD_NR;
	else
		refcount = 2;
	if (!page_ref_freeze(page, refcount))
919
		goto cannot_free;
920
	/* note: atomic_cmpxchg in page_ref_freeze provides the smp_rmb */
N
Nick Piggin 已提交
921
	if (unlikely(PageDirty(page))) {
922
		page_ref_unfreeze(page, refcount);
923
		goto cannot_free;
N
Nick Piggin 已提交
924
	}
925 926 927

	if (PageSwapCache(page)) {
		swp_entry_t swap = { .val = page_private(page) };
928
		mem_cgroup_swapout(page, swap);
929
		__delete_from_swap_cache(page, swap);
M
Matthew Wilcox 已提交
930
		xa_unlock_irqrestore(&mapping->i_pages, flags);
931
		put_swap_page(page, swap);
N
Nick Piggin 已提交
932
	} else {
933
		void (*freepage)(struct page *);
934
		void *shadow = NULL;
935 936

		freepage = mapping->a_ops->freepage;
937 938 939 940 941 942 943 944 945
		/*
		 * Remember a shadow entry for reclaimed file cache in
		 * order to detect refaults, thus thrashing, later on.
		 *
		 * But don't store shadows in an address space that is
		 * already exiting.  This is not just an optizimation,
		 * inode reclaim needs to empty out the radix tree or
		 * the nodes are lost.  Don't plant shadows behind its
		 * back.
946 947 948 949 950
		 *
		 * We also don't store shadows for DAX mappings because the
		 * only page cache pages found in these are zero pages
		 * covering holes, and because we don't want to mix DAX
		 * exceptional entries and shadow exceptional entries in the
M
Matthew Wilcox 已提交
951
		 * same address_space.
952 953
		 */
		if (reclaimed && page_is_file_cache(page) &&
954
		    !mapping_exiting(mapping) && !dax_mapping(mapping))
955
			shadow = workingset_eviction(page);
J
Johannes Weiner 已提交
956
		__delete_from_page_cache(page, shadow);
M
Matthew Wilcox 已提交
957
		xa_unlock_irqrestore(&mapping->i_pages, flags);
958 959 960

		if (freepage != NULL)
			freepage(page);
961 962 963 964 965
	}

	return 1;

cannot_free:
M
Matthew Wilcox 已提交
966
	xa_unlock_irqrestore(&mapping->i_pages, flags);
967 968 969
	return 0;
}

N
Nick Piggin 已提交
970 971 972 973 974 975 976 977
/*
 * Attempt to detach a locked page from its ->mapping.  If it is dirty or if
 * someone else has a ref on the page, abort and return 0.  If it was
 * successfully detached, return 1.  Assumes the caller has a single ref on
 * this page.
 */
int remove_mapping(struct address_space *mapping, struct page *page)
{
978
	if (__remove_mapping(mapping, page, false)) {
N
Nick Piggin 已提交
979 980 981 982 983
		/*
		 * Unfreezing the refcount with 1 rather than 2 effectively
		 * drops the pagecache ref for us without requiring another
		 * atomic operation.
		 */
984
		page_ref_unfreeze(page, 1);
N
Nick Piggin 已提交
985 986 987 988 989
		return 1;
	}
	return 0;
}

L
Lee Schermerhorn 已提交
990 991 992 993 994 995 996 997 998 999 1000
/**
 * putback_lru_page - put previously isolated page onto appropriate LRU list
 * @page: page to be put back to appropriate lru list
 *
 * Add previously isolated @page to appropriate LRU list.
 * Page may still be unevictable for other reasons.
 *
 * lru_lock must not be held, interrupts must be enabled.
 */
void putback_lru_page(struct page *page)
{
1001
	lru_cache_add(page);
L
Lee Schermerhorn 已提交
1002 1003 1004
	put_page(page);		/* drop ref from isolate */
}

1005 1006 1007
enum page_references {
	PAGEREF_RECLAIM,
	PAGEREF_RECLAIM_CLEAN,
1008
	PAGEREF_KEEP,
1009 1010 1011 1012 1013 1014
	PAGEREF_ACTIVATE,
};

static enum page_references page_check_references(struct page *page,
						  struct scan_control *sc)
{
1015
	int referenced_ptes, referenced_page;
1016 1017
	unsigned long vm_flags;

1018 1019
	referenced_ptes = page_referenced(page, 1, sc->target_mem_cgroup,
					  &vm_flags);
1020
	referenced_page = TestClearPageReferenced(page);
1021 1022 1023 1024 1025 1026 1027 1028

	/*
	 * Mlock lost the isolation race with us.  Let try_to_unmap()
	 * move the page to the unevictable list.
	 */
	if (vm_flags & VM_LOCKED)
		return PAGEREF_RECLAIM;

1029
	if (referenced_ptes) {
1030
		if (PageSwapBacked(page))
1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047
			return PAGEREF_ACTIVATE;
		/*
		 * All mapped pages start out with page table
		 * references from the instantiating fault, so we need
		 * to look twice if a mapped file page is used more
		 * than once.
		 *
		 * Mark it and spare it for another trip around the
		 * inactive list.  Another page table reference will
		 * lead to its activation.
		 *
		 * Note: the mark is set for activated pages as well
		 * so that recently deactivated but used pages are
		 * quickly recovered.
		 */
		SetPageReferenced(page);

1048
		if (referenced_page || referenced_ptes > 1)
1049 1050
			return PAGEREF_ACTIVATE;

1051 1052 1053 1054 1055 1056
		/*
		 * Activate file-backed executable pages after first usage.
		 */
		if (vm_flags & VM_EXEC)
			return PAGEREF_ACTIVATE;

1057 1058
		return PAGEREF_KEEP;
	}
1059 1060

	/* Reclaim if clean, defer dirty pages to writeback */
1061
	if (referenced_page && !PageSwapBacked(page))
1062 1063 1064
		return PAGEREF_RECLAIM_CLEAN;

	return PAGEREF_RECLAIM;
1065 1066
}

1067 1068 1069 1070
/* Check if a page is dirty or under writeback */
static void page_check_dirty_writeback(struct page *page,
				       bool *dirty, bool *writeback)
{
1071 1072
	struct address_space *mapping;

1073 1074 1075 1076
	/*
	 * Anonymous pages are not handled by flushers and must be written
	 * from reclaim context. Do not stall reclaim based on them
	 */
S
Shaohua Li 已提交
1077 1078
	if (!page_is_file_cache(page) ||
	    (PageAnon(page) && !PageSwapBacked(page))) {
1079 1080 1081 1082 1083 1084 1085 1086
		*dirty = false;
		*writeback = false;
		return;
	}

	/* By default assume that the page flags are accurate */
	*dirty = PageDirty(page);
	*writeback = PageWriteback(page);
1087 1088 1089 1090 1091 1092 1093 1094

	/* Verify dirty/writeback state if the filesystem supports it */
	if (!page_has_private(page))
		return;

	mapping = page_mapping(page);
	if (mapping && mapping->a_ops->is_dirty_writeback)
		mapping->a_ops->is_dirty_writeback(page, dirty, writeback);
1095 1096
}

L
Linus Torvalds 已提交
1097
/*
A
Andrew Morton 已提交
1098
 * shrink_page_list() returns the number of reclaimed pages
L
Linus Torvalds 已提交
1099
 */
A
Andrew Morton 已提交
1100
static unsigned long shrink_page_list(struct list_head *page_list,
M
Mel Gorman 已提交
1101
				      struct pglist_data *pgdat,
1102
				      struct scan_control *sc,
1103
				      enum ttu_flags ttu_flags,
1104
				      struct reclaim_stat *stat,
1105
				      bool force_reclaim)
L
Linus Torvalds 已提交
1106 1107
{
	LIST_HEAD(ret_pages);
1108
	LIST_HEAD(free_pages);
1109
	unsigned nr_reclaimed = 0;
L
Linus Torvalds 已提交
1110

1111
	memset(stat, 0, sizeof(*stat));
L
Linus Torvalds 已提交
1112 1113 1114 1115 1116 1117
	cond_resched();

	while (!list_empty(page_list)) {
		struct address_space *mapping;
		struct page *page;
		int may_enter_fs;
1118
		enum page_references references = PAGEREF_RECLAIM_CLEAN;
1119
		bool dirty, writeback;
L
Linus Torvalds 已提交
1120 1121 1122 1123 1124 1125

		cond_resched();

		page = lru_to_page(page_list);
		list_del(&page->lru);

N
Nick Piggin 已提交
1126
		if (!trylock_page(page))
L
Linus Torvalds 已提交
1127 1128
			goto keep;

1129
		VM_BUG_ON_PAGE(PageActive(page), page);
L
Linus Torvalds 已提交
1130 1131

		sc->nr_scanned++;
1132

1133
		if (unlikely(!page_evictable(page)))
M
Minchan Kim 已提交
1134
			goto activate_locked;
L
Lee Schermerhorn 已提交
1135

1136
		if (!sc->may_unmap && page_mapped(page))
1137 1138
			goto keep_locked;

L
Linus Torvalds 已提交
1139
		/* Double the slab pressure for mapped and swapcache pages */
S
Shaohua Li 已提交
1140 1141
		if ((page_mapped(page) || PageSwapCache(page)) &&
		    !(PageAnon(page) && !PageSwapBacked(page)))
L
Linus Torvalds 已提交
1142 1143
			sc->nr_scanned++;

1144 1145 1146
		may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
			(PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));

1147
		/*
1148
		 * The number of dirty pages determines if a node is marked
1149 1150 1151 1152 1153 1154
		 * reclaim_congested which affects wait_iff_congested. kswapd
		 * will stall and start writing pages if the tail of the LRU
		 * is all dirty unqueued pages.
		 */
		page_check_dirty_writeback(page, &dirty, &writeback);
		if (dirty || writeback)
1155
			stat->nr_dirty++;
1156 1157

		if (dirty && !writeback)
1158
			stat->nr_unqueued_dirty++;
1159

1160 1161 1162 1163 1164 1165
		/*
		 * Treat this page as congested if the underlying BDI is or if
		 * pages are cycling through the LRU so quickly that the
		 * pages marked for immediate reclaim are making it to the
		 * end of the LRU a second time.
		 */
1166
		mapping = page_mapping(page);
1167
		if (((dirty || writeback) && mapping &&
1168
		     inode_write_congested(mapping->host)) ||
1169
		    (writeback && PageReclaim(page)))
1170
			stat->nr_congested++;
1171

1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182
		/*
		 * If a page at the tail of the LRU is under writeback, there
		 * are three cases to consider.
		 *
		 * 1) If reclaim is encountering an excessive number of pages
		 *    under writeback and this page is both under writeback and
		 *    PageReclaim then it indicates that pages are being queued
		 *    for IO but are being recycled through the LRU before the
		 *    IO can complete. Waiting on the page itself risks an
		 *    indefinite stall if it is impossible to writeback the
		 *    page due to IO error or disconnected storage so instead
1183 1184
		 *    note that the LRU is being scanned too quickly and the
		 *    caller can stall after page list has been processed.
1185
		 *
1186
		 * 2) Global or new memcg reclaim encounters a page that is
1187 1188 1189
		 *    not marked for immediate reclaim, or the caller does not
		 *    have __GFP_FS (or __GFP_IO if it's simply going to swap,
		 *    not to fs). In this case mark the page for immediate
1190
		 *    reclaim and continue scanning.
1191
		 *
1192 1193
		 *    Require may_enter_fs because we would wait on fs, which
		 *    may not have submitted IO yet. And the loop driver might
1194 1195 1196 1197 1198
		 *    enter reclaim, and deadlock if it waits on a page for
		 *    which it is needed to do the write (loop masks off
		 *    __GFP_IO|__GFP_FS for this reason); but more thought
		 *    would probably show more reasons.
		 *
1199
		 * 3) Legacy memcg encounters a page that is already marked
1200 1201 1202 1203
		 *    PageReclaim. memcg does not have any dirty pages
		 *    throttling so we could easily OOM just because too many
		 *    pages are in writeback and there is nothing else to
		 *    reclaim. Wait for the writeback to complete.
1204 1205 1206 1207 1208 1209 1210 1211 1212
		 *
		 * In cases 1) and 2) we activate the pages to get them out of
		 * the way while we continue scanning for clean pages on the
		 * inactive list and refilling from the active list. The
		 * observation here is that waiting for disk writes is more
		 * expensive than potentially causing reloads down the line.
		 * Since they're marked for immediate reclaim, they won't put
		 * memory pressure on the cache working set any longer than it
		 * takes to write them to disk.
1213
		 */
1214
		if (PageWriteback(page)) {
1215 1216 1217
			/* Case 1 above */
			if (current_is_kswapd() &&
			    PageReclaim(page) &&
M
Mel Gorman 已提交
1218
			    test_bit(PGDAT_WRITEBACK, &pgdat->flags)) {
1219
				stat->nr_immediate++;
1220
				goto activate_locked;
1221 1222

			/* Case 2 above */
1223
			} else if (sane_reclaim(sc) ||
1224
			    !PageReclaim(page) || !may_enter_fs) {
1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236
				/*
				 * This is slightly racy - end_page_writeback()
				 * might have just cleared PageReclaim, then
				 * setting PageReclaim here end up interpreted
				 * as PageReadahead - but that does not matter
				 * enough to care.  What we do want is for this
				 * page to have PageReclaim set next time memcg
				 * reclaim reaches the tests above, so it will
				 * then wait_on_page_writeback() to avoid OOM;
				 * and it's also appropriate in global reclaim.
				 */
				SetPageReclaim(page);
1237
				stat->nr_writeback++;
1238
				goto activate_locked;
1239 1240 1241

			/* Case 3 above */
			} else {
1242
				unlock_page(page);
1243
				wait_on_page_writeback(page);
1244 1245 1246
				/* then go back and try same page again */
				list_add_tail(&page->lru, page_list);
				continue;
1247
			}
1248
		}
L
Linus Torvalds 已提交
1249

1250 1251 1252
		if (!force_reclaim)
			references = page_check_references(page, sc);

1253 1254
		switch (references) {
		case PAGEREF_ACTIVATE:
L
Linus Torvalds 已提交
1255
			goto activate_locked;
1256
		case PAGEREF_KEEP:
1257
			stat->nr_ref_keep++;
1258
			goto keep_locked;
1259 1260 1261 1262
		case PAGEREF_RECLAIM:
		case PAGEREF_RECLAIM_CLEAN:
			; /* try to reclaim the page below */
		}
L
Linus Torvalds 已提交
1263 1264 1265 1266

		/*
		 * Anonymous process memory has backing store?
		 * Try to allocate it some swap space here.
S
Shaohua Li 已提交
1267
		 * Lazyfree page could be freed directly
L
Linus Torvalds 已提交
1268
		 */
1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293
		if (PageAnon(page) && PageSwapBacked(page)) {
			if (!PageSwapCache(page)) {
				if (!(sc->gfp_mask & __GFP_IO))
					goto keep_locked;
				if (PageTransHuge(page)) {
					/* cannot split THP, skip it */
					if (!can_split_huge_page(page, NULL))
						goto activate_locked;
					/*
					 * Split pages without a PMD map right
					 * away. Chances are some or all of the
					 * tail pages can be freed without IO.
					 */
					if (!compound_mapcount(page) &&
					    split_huge_page_to_list(page,
								    page_list))
						goto activate_locked;
				}
				if (!add_to_swap(page)) {
					if (!PageTransHuge(page))
						goto activate_locked;
					/* Fallback to swap normal pages */
					if (split_huge_page_to_list(page,
								    page_list))
						goto activate_locked;
1294 1295 1296
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
					count_vm_event(THP_SWPOUT_FALLBACK);
#endif
1297 1298 1299
					if (!add_to_swap(page))
						goto activate_locked;
				}
1300

1301
				may_enter_fs = 1;
L
Linus Torvalds 已提交
1302

1303 1304 1305
				/* Adding to swap updated mapping */
				mapping = page_mapping(page);
			}
1306 1307 1308 1309
		} else if (unlikely(PageTransHuge(page))) {
			/* Split file THP */
			if (split_huge_page_to_list(page, page_list))
				goto keep_locked;
1310
		}
L
Linus Torvalds 已提交
1311 1312 1313 1314 1315

		/*
		 * The page is mapped into the page tables of one or more
		 * processes. Try to unmap it here.
		 */
S
Shaohua Li 已提交
1316
		if (page_mapped(page)) {
1317 1318 1319 1320 1321
			enum ttu_flags flags = ttu_flags | TTU_BATCH_FLUSH;

			if (unlikely(PageTransHuge(page)))
				flags |= TTU_SPLIT_HUGE_PMD;
			if (!try_to_unmap(page, flags)) {
1322
				stat->nr_unmap_fail++;
L
Linus Torvalds 已提交
1323 1324 1325 1326 1327
				goto activate_locked;
			}
		}

		if (PageDirty(page)) {
1328
			/*
1329 1330 1331 1332 1333 1334 1335 1336
			 * Only kswapd can writeback filesystem pages
			 * to avoid risk of stack overflow. But avoid
			 * injecting inefficient single-page IO into
			 * flusher writeback as much as possible: only
			 * write pages when we've encountered many
			 * dirty pages, and when we've already scanned
			 * the rest of the LRU for clean pages and see
			 * the same dirty pages again (PageReclaim).
1337
			 */
1338
			if (page_is_file_cache(page) &&
1339 1340
			    (!current_is_kswapd() || !PageReclaim(page) ||
			     !test_bit(PGDAT_DIRTY, &pgdat->flags))) {
1341 1342 1343 1344 1345 1346
				/*
				 * Immediately reclaim when written back.
				 * Similar in principal to deactivate_page()
				 * except we already have the page isolated
				 * and know it's dirty
				 */
1347
				inc_node_page_state(page, NR_VMSCAN_IMMEDIATE);
1348 1349
				SetPageReclaim(page);

1350
				goto activate_locked;
1351 1352
			}

1353
			if (references == PAGEREF_RECLAIM_CLEAN)
L
Linus Torvalds 已提交
1354
				goto keep_locked;
1355
			if (!may_enter_fs)
L
Linus Torvalds 已提交
1356
				goto keep_locked;
1357
			if (!sc->may_writepage)
L
Linus Torvalds 已提交
1358 1359
				goto keep_locked;

1360 1361 1362 1363 1364 1365
			/*
			 * Page is dirty. Flush the TLB if a writable entry
			 * potentially exists to avoid CPU writes after IO
			 * starts and then write it out here.
			 */
			try_to_unmap_flush_dirty();
1366
			switch (pageout(page, mapping, sc)) {
L
Linus Torvalds 已提交
1367 1368 1369 1370 1371
			case PAGE_KEEP:
				goto keep_locked;
			case PAGE_ACTIVATE:
				goto activate_locked;
			case PAGE_SUCCESS:
1372
				if (PageWriteback(page))
1373
					goto keep;
1374
				if (PageDirty(page))
L
Linus Torvalds 已提交
1375
					goto keep;
1376

L
Linus Torvalds 已提交
1377 1378 1379 1380
				/*
				 * A synchronous write - probably a ramdisk.  Go
				 * ahead and try to reclaim the page.
				 */
N
Nick Piggin 已提交
1381
				if (!trylock_page(page))
L
Linus Torvalds 已提交
1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400
					goto keep;
				if (PageDirty(page) || PageWriteback(page))
					goto keep_locked;
				mapping = page_mapping(page);
			case PAGE_CLEAN:
				; /* try to free the page below */
			}
		}

		/*
		 * If the page has buffers, try to free the buffer mappings
		 * associated with this page. If we succeed we try to free
		 * the page as well.
		 *
		 * We do this even if the page is PageDirty().
		 * try_to_release_page() does not perform I/O, but it is
		 * possible for a page to have PageDirty set, but it is actually
		 * clean (all its buffers are clean).  This happens if the
		 * buffers were written out directly, with submit_bh(). ext3
L
Lee Schermerhorn 已提交
1401
		 * will do this, as well as the blockdev mapping.
L
Linus Torvalds 已提交
1402 1403 1404 1405 1406 1407 1408 1409 1410 1411
		 * try_to_release_page() will discover that cleanness and will
		 * drop the buffers and mark the page clean - it can be freed.
		 *
		 * Rarely, pages can have buffers and no ->mapping.  These are
		 * the pages which were not successfully invalidated in
		 * truncate_complete_page().  We try to drop those buffers here
		 * and if that worked, and the page is no longer mapped into
		 * process address space (page_count == 1) it can be freed.
		 * Otherwise, leave the page on the LRU so it is swappable.
		 */
1412
		if (page_has_private(page)) {
L
Linus Torvalds 已提交
1413 1414
			if (!try_to_release_page(page, sc->gfp_mask))
				goto activate_locked;
N
Nick Piggin 已提交
1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430
			if (!mapping && page_count(page) == 1) {
				unlock_page(page);
				if (put_page_testzero(page))
					goto free_it;
				else {
					/*
					 * rare race with speculative reference.
					 * the speculative reference will free
					 * this page shortly, so we may
					 * increment nr_reclaimed here (and
					 * leave it off the LRU).
					 */
					nr_reclaimed++;
					continue;
				}
			}
L
Linus Torvalds 已提交
1431 1432
		}

S
Shaohua Li 已提交
1433 1434 1435 1436 1437 1438 1439 1440
		if (PageAnon(page) && !PageSwapBacked(page)) {
			/* follow __remove_mapping for reference */
			if (!page_ref_freeze(page, 1))
				goto keep_locked;
			if (PageDirty(page)) {
				page_ref_unfreeze(page, 1);
				goto keep_locked;
			}
L
Linus Torvalds 已提交
1441

S
Shaohua Li 已提交
1442
			count_vm_event(PGLAZYFREED);
1443
			count_memcg_page_event(page, PGLAZYFREED);
S
Shaohua Li 已提交
1444 1445
		} else if (!mapping || !__remove_mapping(mapping, page, true))
			goto keep_locked;
1446 1447

		unlock_page(page);
N
Nick Piggin 已提交
1448
free_it:
1449
		nr_reclaimed++;
1450 1451 1452 1453 1454

		/*
		 * Is there need to periodically free_page_list? It would
		 * appear not as the counts should be low
		 */
1455 1456 1457 1458 1459
		if (unlikely(PageTransHuge(page))) {
			mem_cgroup_uncharge(page);
			(*get_compound_page_dtor(page))(page);
		} else
			list_add(&page->lru, &free_pages);
L
Linus Torvalds 已提交
1460 1461 1462
		continue;

activate_locked:
1463
		/* Not a candidate for swapping, so reclaim swap space. */
M
Minchan Kim 已提交
1464 1465
		if (PageSwapCache(page) && (mem_cgroup_swap_full(page) ||
						PageMlocked(page)))
1466
			try_to_free_swap(page);
1467
		VM_BUG_ON_PAGE(PageActive(page), page);
M
Minchan Kim 已提交
1468 1469
		if (!PageMlocked(page)) {
			SetPageActive(page);
1470
			stat->nr_activate++;
1471
			count_memcg_page_event(page, PGACTIVATE);
M
Minchan Kim 已提交
1472
		}
L
Linus Torvalds 已提交
1473 1474 1475 1476
keep_locked:
		unlock_page(page);
keep:
		list_add(&page->lru, &ret_pages);
1477
		VM_BUG_ON_PAGE(PageLRU(page) || PageUnevictable(page), page);
L
Linus Torvalds 已提交
1478
	}
1479

1480
	mem_cgroup_uncharge_list(&free_pages);
1481
	try_to_unmap_flush();
1482
	free_unref_page_list(&free_pages);
1483

L
Linus Torvalds 已提交
1484
	list_splice(&ret_pages, page_list);
1485 1486
	count_vm_events(PGACTIVATE, stat->nr_activate);

1487
	return nr_reclaimed;
L
Linus Torvalds 已提交
1488 1489
}

1490 1491 1492 1493 1494 1495 1496 1497
unsigned long reclaim_clean_pages_from_list(struct zone *zone,
					    struct list_head *page_list)
{
	struct scan_control sc = {
		.gfp_mask = GFP_KERNEL,
		.priority = DEF_PRIORITY,
		.may_unmap = 1,
	};
1498
	struct reclaim_stat dummy_stat;
1499
	unsigned long ret;
1500 1501 1502 1503
	struct page *page, *next;
	LIST_HEAD(clean_pages);

	list_for_each_entry_safe(page, next, page_list, lru) {
1504
		if (page_is_file_cache(page) && !PageDirty(page) &&
1505
		    !__PageMovable(page)) {
1506 1507 1508 1509 1510
			ClearPageActive(page);
			list_move(&page->lru, &clean_pages);
		}
	}

M
Mel Gorman 已提交
1511
	ret = shrink_page_list(&clean_pages, zone->zone_pgdat, &sc,
1512
			TTU_IGNORE_ACCESS, &dummy_stat, true);
1513
	list_splice(&clean_pages, page_list);
M
Mel Gorman 已提交
1514
	mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE, -ret);
1515 1516 1517
	return ret;
}

A
Andy Whitcroft 已提交
1518 1519 1520 1521 1522 1523 1524 1525 1526 1527
/*
 * Attempt to remove the specified page from its LRU.  Only take this page
 * if it is of the appropriate PageActive status.  Pages which are being
 * freed elsewhere are also ignored.
 *
 * page:	page to consider
 * mode:	one of the LRU isolation modes defined above
 *
 * returns 0 on success, -ve errno on failure.
 */
1528
int __isolate_lru_page(struct page *page, isolate_mode_t mode)
A
Andy Whitcroft 已提交
1529 1530 1531 1532 1533 1534 1535
{
	int ret = -EINVAL;

	/* Only take pages on the LRU. */
	if (!PageLRU(page))
		return ret;

M
Minchan Kim 已提交
1536 1537
	/* Compaction should not handle unevictable pages but CMA can do so */
	if (PageUnevictable(page) && !(mode & ISOLATE_UNEVICTABLE))
L
Lee Schermerhorn 已提交
1538 1539
		return ret;

A
Andy Whitcroft 已提交
1540
	ret = -EBUSY;
K
KAMEZAWA Hiroyuki 已提交
1541

1542 1543 1544 1545 1546 1547 1548 1549
	/*
	 * To minimise LRU disruption, the caller can indicate that it only
	 * wants to isolate pages it will be able to operate on without
	 * blocking - clean pages for the most part.
	 *
	 * ISOLATE_ASYNC_MIGRATE is used to indicate that it only wants to pages
	 * that it is possible to migrate without blocking
	 */
1550
	if (mode & ISOLATE_ASYNC_MIGRATE) {
1551 1552 1553 1554 1555 1556
		/* All the caller can do on PageWriteback is block */
		if (PageWriteback(page))
			return ret;

		if (PageDirty(page)) {
			struct address_space *mapping;
1557
			bool migrate_dirty;
1558 1559 1560 1561

			/*
			 * Only pages without mappings or that have a
			 * ->migratepage callback are possible to migrate
1562 1563 1564 1565 1566
			 * without blocking. However, we can be racing with
			 * truncation so it's necessary to lock the page
			 * to stabilise the mapping as truncation holds
			 * the page lock until after the page is removed
			 * from the page cache.
1567
			 */
1568 1569 1570
			if (!trylock_page(page))
				return ret;

1571
			mapping = page_mapping(page);
1572
			migrate_dirty = !mapping || mapping->a_ops->migratepage;
1573 1574
			unlock_page(page);
			if (!migrate_dirty)
1575 1576 1577
				return ret;
		}
	}
1578

1579 1580 1581
	if ((mode & ISOLATE_UNMAPPED) && page_mapped(page))
		return ret;

A
Andy Whitcroft 已提交
1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594
	if (likely(get_page_unless_zero(page))) {
		/*
		 * Be careful not to clear PageLRU until after we're
		 * sure the page is not being freed elsewhere -- the
		 * page release code relies on it.
		 */
		ClearPageLRU(page);
		ret = 0;
	}

	return ret;
}

1595 1596 1597 1598 1599 1600

/*
 * Update LRU sizes after isolating pages. The LRU size updates must
 * be complete before mem_cgroup_update_lru_size due to a santity check.
 */
static __always_inline void update_lru_sizes(struct lruvec *lruvec,
1601
			enum lru_list lru, unsigned long *nr_zone_taken)
1602 1603 1604 1605 1606 1607 1608 1609 1610
{
	int zid;

	for (zid = 0; zid < MAX_NR_ZONES; zid++) {
		if (!nr_zone_taken[zid])
			continue;

		__update_lru_size(lruvec, lru, zid, -nr_zone_taken[zid]);
#ifdef CONFIG_MEMCG
1611
		mem_cgroup_update_lru_size(lruvec, lru, zid, -nr_zone_taken[zid]);
1612
#endif
1613 1614
	}

1615 1616
}

1617 1618
/**
 * pgdat->lru_lock is heavily contended.  Some of the functions that
L
Linus Torvalds 已提交
1619 1620 1621 1622 1623 1624 1625 1626
 * shrink the lists perform better by taking out a batch of pages
 * and working on them outside the LRU lock.
 *
 * For pagecache intensive workloads, this function is the hottest
 * spot in the kernel (apart from copy_*_user functions).
 *
 * Appropriate locks must be held before calling this function.
 *
1627
 * @nr_to_scan:	The number of eligible pages to look through on the list.
1628
 * @lruvec:	The LRU vector to pull pages from.
L
Linus Torvalds 已提交
1629
 * @dst:	The temp list to put pages on to.
H
Hugh Dickins 已提交
1630
 * @nr_scanned:	The number of pages that were scanned.
1631
 * @sc:		The scan_control struct for this reclaim session
A
Andy Whitcroft 已提交
1632
 * @mode:	One of the LRU isolation modes
1633
 * @lru:	LRU list id for isolating
L
Linus Torvalds 已提交
1634 1635 1636
 *
 * returns how many pages were moved onto *@dst.
 */
1637
static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
1638
		struct lruvec *lruvec, struct list_head *dst,
1639
		unsigned long *nr_scanned, struct scan_control *sc,
1640
		enum lru_list lru)
L
Linus Torvalds 已提交
1641
{
H
Hugh Dickins 已提交
1642
	struct list_head *src = &lruvec->lists[lru];
1643
	unsigned long nr_taken = 0;
M
Mel Gorman 已提交
1644
	unsigned long nr_zone_taken[MAX_NR_ZONES] = { 0 };
1645
	unsigned long nr_skipped[MAX_NR_ZONES] = { 0, };
1646
	unsigned long skipped = 0;
1647
	unsigned long scan, total_scan, nr_pages;
1648
	LIST_HEAD(pages_skipped);
1649
	isolate_mode_t mode = (sc->may_unmap ? 0 : ISOLATE_UNMAPPED);
L
Linus Torvalds 已提交
1650

1651 1652 1653 1654
	scan = 0;
	for (total_scan = 0;
	     scan < nr_to_scan && nr_taken < nr_to_scan && !list_empty(src);
	     total_scan++) {
A
Andy Whitcroft 已提交
1655 1656
		struct page *page;

L
Linus Torvalds 已提交
1657 1658 1659
		page = lru_to_page(src);
		prefetchw_prev_lru_page(page, src, flags);

1660
		VM_BUG_ON_PAGE(!PageLRU(page), page);
N
Nick Piggin 已提交
1661

1662 1663
		if (page_zonenum(page) > sc->reclaim_idx) {
			list_move(&page->lru, &pages_skipped);
1664
			nr_skipped[page_zonenum(page)]++;
1665 1666 1667
			continue;
		}

1668 1669 1670 1671 1672 1673 1674
		/*
		 * Do not count skipped pages because that makes the function
		 * return with no isolated pages if the LRU mostly contains
		 * ineligible pages.  This causes the VM to not reclaim any
		 * pages, triggering a premature OOM.
		 */
		scan++;
1675
		switch (__isolate_lru_page(page, mode)) {
A
Andy Whitcroft 已提交
1676
		case 0:
M
Mel Gorman 已提交
1677 1678 1679
			nr_pages = hpage_nr_pages(page);
			nr_taken += nr_pages;
			nr_zone_taken[page_zonenum(page)] += nr_pages;
A
Andy Whitcroft 已提交
1680 1681 1682 1683 1684 1685 1686
			list_move(&page->lru, dst);
			break;

		case -EBUSY:
			/* else it is being freed elsewhere */
			list_move(&page->lru, src);
			continue;
1687

A
Andy Whitcroft 已提交
1688 1689 1690
		default:
			BUG();
		}
L
Linus Torvalds 已提交
1691 1692
	}

1693 1694 1695 1696 1697 1698 1699
	/*
	 * Splice any skipped pages to the start of the LRU list. Note that
	 * this disrupts the LRU order when reclaiming for lower zones but
	 * we cannot splice to the tail. If we did then the SWAP_CLUSTER_MAX
	 * scanning would soon rescan the same pages to skip and put the
	 * system at risk of premature OOM.
	 */
1700 1701 1702
	if (!list_empty(&pages_skipped)) {
		int zid;

1703
		list_splice(&pages_skipped, src);
1704 1705 1706 1707 1708
		for (zid = 0; zid < MAX_NR_ZONES; zid++) {
			if (!nr_skipped[zid])
				continue;

			__count_zid_vm_events(PGSCAN_SKIP, zid, nr_skipped[zid]);
1709
			skipped += nr_skipped[zid];
1710 1711
		}
	}
1712
	*nr_scanned = total_scan;
1713
	trace_mm_vmscan_lru_isolate(sc->reclaim_idx, sc->order, nr_to_scan,
1714
				    total_scan, skipped, nr_taken, mode, lru);
1715
	update_lru_sizes(lruvec, lru, nr_zone_taken);
L
Linus Torvalds 已提交
1716 1717 1718
	return nr_taken;
}

1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729
/**
 * isolate_lru_page - tries to isolate a page from its LRU list
 * @page: page to isolate from its LRU list
 *
 * Isolates a @page from an LRU list, clears PageLRU and adjusts the
 * vmstat statistic corresponding to whatever LRU list the page was on.
 *
 * Returns 0 if the page was removed from an LRU list.
 * Returns -EBUSY if the page was not on an LRU list.
 *
 * The returned page will have PageLRU() cleared.  If it was found on
L
Lee Schermerhorn 已提交
1730 1731 1732
 * the active list, it will have PageActive set.  If it was found on
 * the unevictable list, it will have the PageUnevictable bit set. That flag
 * may need to be cleared by the caller before letting the page go.
1733 1734 1735 1736 1737
 *
 * The vmstat statistic corresponding to the list on which the page was
 * found will be decremented.
 *
 * Restrictions:
1738
 *
1739 1740 1741 1742 1743 1744 1745 1746 1747 1748
 * (1) Must be called with an elevated refcount on the page. This is a
 *     fundamentnal difference from isolate_lru_pages (which is called
 *     without a stable reference).
 * (2) the lru_lock must not be held.
 * (3) interrupts must be enabled.
 */
int isolate_lru_page(struct page *page)
{
	int ret = -EBUSY;

1749
	VM_BUG_ON_PAGE(!page_count(page), page);
1750
	WARN_RATELIMIT(PageTail(page), "trying to isolate tail page");
1751

1752
	if (PageLRU(page)) {
1753
		pg_data_t *pgdat = page_pgdat(page);
1754
		struct lruvec *lruvec;
1755

1756 1757
		spin_lock_irq(&pgdat->lru_lock);
		lruvec = mem_cgroup_page_lruvec(page, pgdat);
1758
		if (PageLRU(page)) {
L
Lee Schermerhorn 已提交
1759
			int lru = page_lru(page);
1760
			get_page(page);
1761
			ClearPageLRU(page);
1762 1763
			del_page_from_lru_list(page, lruvec, lru);
			ret = 0;
1764
		}
1765
		spin_unlock_irq(&pgdat->lru_lock);
1766 1767 1768 1769
	}
	return ret;
}

1770
/*
F
Fengguang Wu 已提交
1771 1772 1773 1774 1775
 * A direct reclaimer may isolate SWAP_CLUSTER_MAX pages from the LRU list and
 * then get resheduled. When there are massive number of tasks doing page
 * allocation, such sleeping direct reclaimers may keep piling up on each CPU,
 * the LRU list will go small and be scanned faster than necessary, leading to
 * unnecessary swapping, thrashing and OOM.
1776
 */
M
Mel Gorman 已提交
1777
static int too_many_isolated(struct pglist_data *pgdat, int file,
1778 1779 1780 1781 1782 1783 1784
		struct scan_control *sc)
{
	unsigned long inactive, isolated;

	if (current_is_kswapd())
		return 0;

1785
	if (!sane_reclaim(sc))
1786 1787 1788
		return 0;

	if (file) {
M
Mel Gorman 已提交
1789 1790
		inactive = node_page_state(pgdat, NR_INACTIVE_FILE);
		isolated = node_page_state(pgdat, NR_ISOLATED_FILE);
1791
	} else {
M
Mel Gorman 已提交
1792 1793
		inactive = node_page_state(pgdat, NR_INACTIVE_ANON);
		isolated = node_page_state(pgdat, NR_ISOLATED_ANON);
1794 1795
	}

1796 1797 1798 1799 1800
	/*
	 * GFP_NOIO/GFP_NOFS callers are allowed to isolate more pages, so they
	 * won't get blocked by normal direct-reclaimers, forming a circular
	 * deadlock.
	 */
1801
	if ((sc->gfp_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
1802 1803
		inactive >>= 3;

1804 1805 1806
	return isolated > inactive;
}

1807
static noinline_for_stack void
H
Hugh Dickins 已提交
1808
putback_inactive_pages(struct lruvec *lruvec, struct list_head *page_list)
1809
{
1810
	struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
M
Mel Gorman 已提交
1811
	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
1812
	LIST_HEAD(pages_to_free);
1813 1814 1815 1816 1817

	/*
	 * Put back any unfreeable pages.
	 */
	while (!list_empty(page_list)) {
1818
		struct page *page = lru_to_page(page_list);
1819
		int lru;
1820

1821
		VM_BUG_ON_PAGE(PageLRU(page), page);
1822
		list_del(&page->lru);
1823
		if (unlikely(!page_evictable(page))) {
M
Mel Gorman 已提交
1824
			spin_unlock_irq(&pgdat->lru_lock);
1825
			putback_lru_page(page);
M
Mel Gorman 已提交
1826
			spin_lock_irq(&pgdat->lru_lock);
1827 1828
			continue;
		}
1829

M
Mel Gorman 已提交
1830
		lruvec = mem_cgroup_page_lruvec(page, pgdat);
1831

1832
		SetPageLRU(page);
1833
		lru = page_lru(page);
1834 1835
		add_page_to_lru_list(page, lruvec, lru);

1836 1837
		if (is_active_lru(lru)) {
			int file = is_file_lru(lru);
1838 1839
			int numpages = hpage_nr_pages(page);
			reclaim_stat->recent_rotated[file] += numpages;
1840
		}
1841 1842 1843
		if (put_page_testzero(page)) {
			__ClearPageLRU(page);
			__ClearPageActive(page);
1844
			del_page_from_lru_list(page, lruvec, lru);
1845 1846

			if (unlikely(PageCompound(page))) {
M
Mel Gorman 已提交
1847
				spin_unlock_irq(&pgdat->lru_lock);
1848
				mem_cgroup_uncharge(page);
1849
				(*get_compound_page_dtor(page))(page);
M
Mel Gorman 已提交
1850
				spin_lock_irq(&pgdat->lru_lock);
1851 1852
			} else
				list_add(&page->lru, &pages_to_free);
1853 1854 1855
		}
	}

1856 1857 1858 1859
	/*
	 * To save our caller's stack, now use input list for pages to free.
	 */
	list_splice(&pages_to_free, page_list);
1860 1861
}

1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874
/*
 * If a kernel thread (such as nfsd for loop-back mounts) services
 * a backing device by writing to the page cache it sets PF_LESS_THROTTLE.
 * In that case we should only throttle if the backing device it is
 * writing to is congested.  In other cases it is safe to throttle.
 */
static int current_may_throttle(void)
{
	return !(current->flags & PF_LESS_THROTTLE) ||
		current->backing_dev_info == NULL ||
		bdi_write_congested(current->backing_dev_info);
}

L
Linus Torvalds 已提交
1875
/*
1876
 * shrink_inactive_list() is a helper for shrink_node().  It returns the number
A
Andrew Morton 已提交
1877
 * of reclaimed pages
L
Linus Torvalds 已提交
1878
 */
1879
static noinline_for_stack unsigned long
1880
shrink_inactive_list(unsigned long nr_to_scan, struct lruvec *lruvec,
1881
		     struct scan_control *sc, enum lru_list lru)
L
Linus Torvalds 已提交
1882 1883
{
	LIST_HEAD(page_list);
1884
	unsigned long nr_scanned;
1885
	unsigned long nr_reclaimed = 0;
1886
	unsigned long nr_taken;
1887
	struct reclaim_stat stat;
1888
	int file = is_file_lru(lru);
M
Mel Gorman 已提交
1889
	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
1890
	struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1891
	bool stalled = false;
1892

M
Mel Gorman 已提交
1893
	while (unlikely(too_many_isolated(pgdat, file, sc))) {
1894 1895 1896 1897 1898 1899
		if (stalled)
			return 0;

		/* wait a bit for the reclaimer. */
		msleep(100);
		stalled = true;
1900 1901 1902 1903 1904 1905

		/* We are about to die and free our memory. Return now. */
		if (fatal_signal_pending(current))
			return SWAP_CLUSTER_MAX;
	}

L
Linus Torvalds 已提交
1906
	lru_add_drain();
1907

M
Mel Gorman 已提交
1908
	spin_lock_irq(&pgdat->lru_lock);
1909

1910
	nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &page_list,
1911
				     &nr_scanned, sc, lru);
1912

M
Mel Gorman 已提交
1913
	__mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken);
1914
	reclaim_stat->recent_scanned[file] += nr_taken;
1915

1916 1917
	if (current_is_kswapd()) {
		if (global_reclaim(sc))
M
Mel Gorman 已提交
1918
			__count_vm_events(PGSCAN_KSWAPD, nr_scanned);
1919 1920 1921 1922
		count_memcg_events(lruvec_memcg(lruvec), PGSCAN_KSWAPD,
				   nr_scanned);
	} else {
		if (global_reclaim(sc))
M
Mel Gorman 已提交
1923
			__count_vm_events(PGSCAN_DIRECT, nr_scanned);
1924 1925
		count_memcg_events(lruvec_memcg(lruvec), PGSCAN_DIRECT,
				   nr_scanned);
1926
	}
M
Mel Gorman 已提交
1927
	spin_unlock_irq(&pgdat->lru_lock);
1928

1929
	if (nr_taken == 0)
1930
		return 0;
A
Andy Whitcroft 已提交
1931

S
Shaohua Li 已提交
1932
	nr_reclaimed = shrink_page_list(&page_list, pgdat, sc, 0,
1933
				&stat, false);
1934

M
Mel Gorman 已提交
1935
	spin_lock_irq(&pgdat->lru_lock);
1936

1937 1938
	if (current_is_kswapd()) {
		if (global_reclaim(sc))
M
Mel Gorman 已提交
1939
			__count_vm_events(PGSTEAL_KSWAPD, nr_reclaimed);
1940 1941 1942 1943
		count_memcg_events(lruvec_memcg(lruvec), PGSTEAL_KSWAPD,
				   nr_reclaimed);
	} else {
		if (global_reclaim(sc))
M
Mel Gorman 已提交
1944
			__count_vm_events(PGSTEAL_DIRECT, nr_reclaimed);
1945 1946
		count_memcg_events(lruvec_memcg(lruvec), PGSTEAL_DIRECT,
				   nr_reclaimed);
Y
Ying Han 已提交
1947
	}
N
Nick Piggin 已提交
1948

1949
	putback_inactive_pages(lruvec, &page_list);
1950

M
Mel Gorman 已提交
1951
	__mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken);
1952

M
Mel Gorman 已提交
1953
	spin_unlock_irq(&pgdat->lru_lock);
1954

1955
	mem_cgroup_uncharge_list(&page_list);
1956
	free_unref_page_list(&page_list);
1957

1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971
	/*
	 * If dirty pages are scanned that are not queued for IO, it
	 * implies that flushers are not doing their job. This can
	 * happen when memory pressure pushes dirty pages to the end of
	 * the LRU before the dirty limits are breached and the dirty
	 * data has expired. It can also happen when the proportion of
	 * dirty pages grows not through writes but through memory
	 * pressure reclaiming all the clean cache. And in some cases,
	 * the flushers simply cannot keep up with the allocation
	 * rate. Nudge the flusher threads in case they are asleep.
	 */
	if (stat.nr_unqueued_dirty == nr_taken)
		wakeup_flusher_threads(WB_REASON_VMSCAN);

1972 1973 1974 1975 1976 1977 1978 1979
	sc->nr.dirty += stat.nr_dirty;
	sc->nr.congested += stat.nr_congested;
	sc->nr.unqueued_dirty += stat.nr_unqueued_dirty;
	sc->nr.writeback += stat.nr_writeback;
	sc->nr.immediate += stat.nr_immediate;
	sc->nr.taken += nr_taken;
	if (file)
		sc->nr.file_taken += nr_taken;
1980

M
Mel Gorman 已提交
1981
	trace_mm_vmscan_lru_shrink_inactive(pgdat->node_id,
1982
			nr_scanned, nr_reclaimed, &stat, sc->priority, file);
1983
	return nr_reclaimed;
L
Linus Torvalds 已提交
1984 1985 1986 1987 1988 1989 1990 1991 1992
}

/*
 * This moves pages from the active list to the inactive list.
 *
 * We move them the other way if the page is referenced by one or more
 * processes, from rmap.
 *
 * If the pages are mostly unmapped, the processing is fast and it is
1993
 * appropriate to hold pgdat->lru_lock across the whole operation.  But if
L
Linus Torvalds 已提交
1994
 * the pages are mapped, the processing is slow (page_referenced()) so we
1995
 * should drop pgdat->lru_lock around each page.  It's impossible to balance
L
Linus Torvalds 已提交
1996 1997 1998 1999
 * this, so instead we remove the pages from the LRU while processing them.
 * It is safe to rely on PG_active against the non-LRU pages in here because
 * nobody will play with that bit on a non-LRU page.
 *
2000
 * The downside is that we have to touch page->_refcount against each page.
L
Linus Torvalds 已提交
2001
 * But we had to alter page->flags anyway.
2002 2003
 *
 * Returns the number of pages moved to the given lru.
L
Linus Torvalds 已提交
2004
 */
2005

2006
static unsigned move_active_pages_to_lru(struct lruvec *lruvec,
2007
				     struct list_head *list,
2008
				     struct list_head *pages_to_free,
2009 2010
				     enum lru_list lru)
{
M
Mel Gorman 已提交
2011
	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
2012
	struct page *page;
2013
	int nr_pages;
2014
	int nr_moved = 0;
2015 2016 2017

	while (!list_empty(list)) {
		page = lru_to_page(list);
M
Mel Gorman 已提交
2018
		lruvec = mem_cgroup_page_lruvec(page, pgdat);
2019

2020
		VM_BUG_ON_PAGE(PageLRU(page), page);
2021 2022
		SetPageLRU(page);

2023
		nr_pages = hpage_nr_pages(page);
M
Mel Gorman 已提交
2024
		update_lru_size(lruvec, lru, page_zonenum(page), nr_pages);
2025
		list_move(&page->lru, &lruvec->lists[lru]);
2026

2027 2028 2029
		if (put_page_testzero(page)) {
			__ClearPageLRU(page);
			__ClearPageActive(page);
2030
			del_page_from_lru_list(page, lruvec, lru);
2031 2032

			if (unlikely(PageCompound(page))) {
M
Mel Gorman 已提交
2033
				spin_unlock_irq(&pgdat->lru_lock);
2034
				mem_cgroup_uncharge(page);
2035
				(*get_compound_page_dtor(page))(page);
M
Mel Gorman 已提交
2036
				spin_lock_irq(&pgdat->lru_lock);
2037 2038
			} else
				list_add(&page->lru, pages_to_free);
2039 2040
		} else {
			nr_moved += nr_pages;
2041 2042
		}
	}
2043

2044
	if (!is_active_lru(lru)) {
2045
		__count_vm_events(PGDEACTIVATE, nr_moved);
2046 2047 2048
		count_memcg_events(lruvec_memcg(lruvec), PGDEACTIVATE,
				   nr_moved);
	}
2049 2050

	return nr_moved;
2051
}
2052

H
Hugh Dickins 已提交
2053
static void shrink_active_list(unsigned long nr_to_scan,
2054
			       struct lruvec *lruvec,
2055
			       struct scan_control *sc,
2056
			       enum lru_list lru)
L
Linus Torvalds 已提交
2057
{
2058
	unsigned long nr_taken;
H
Hugh Dickins 已提交
2059
	unsigned long nr_scanned;
2060
	unsigned long vm_flags;
L
Linus Torvalds 已提交
2061
	LIST_HEAD(l_hold);	/* The pages which were snipped off */
2062
	LIST_HEAD(l_active);
2063
	LIST_HEAD(l_inactive);
L
Linus Torvalds 已提交
2064
	struct page *page;
2065
	struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
2066 2067
	unsigned nr_deactivate, nr_activate;
	unsigned nr_rotated = 0;
2068
	int file = is_file_lru(lru);
M
Mel Gorman 已提交
2069
	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
L
Linus Torvalds 已提交
2070 2071

	lru_add_drain();
2072

M
Mel Gorman 已提交
2073
	spin_lock_irq(&pgdat->lru_lock);
2074

2075
	nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &l_hold,
2076
				     &nr_scanned, sc, lru);
2077

M
Mel Gorman 已提交
2078
	__mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken);
2079
	reclaim_stat->recent_scanned[file] += nr_taken;
2080

M
Mel Gorman 已提交
2081
	__count_vm_events(PGREFILL, nr_scanned);
2082
	count_memcg_events(lruvec_memcg(lruvec), PGREFILL, nr_scanned);
2083

M
Mel Gorman 已提交
2084
	spin_unlock_irq(&pgdat->lru_lock);
L
Linus Torvalds 已提交
2085 2086 2087 2088 2089

	while (!list_empty(&l_hold)) {
		cond_resched();
		page = lru_to_page(&l_hold);
		list_del(&page->lru);
2090

2091
		if (unlikely(!page_evictable(page))) {
L
Lee Schermerhorn 已提交
2092 2093 2094 2095
			putback_lru_page(page);
			continue;
		}

2096 2097 2098 2099 2100 2101 2102 2103
		if (unlikely(buffer_heads_over_limit)) {
			if (page_has_private(page) && trylock_page(page)) {
				if (page_has_private(page))
					try_to_release_page(page, 0);
				unlock_page(page);
			}
		}

2104 2105
		if (page_referenced(page, 0, sc->target_mem_cgroup,
				    &vm_flags)) {
2106
			nr_rotated += hpage_nr_pages(page);
2107 2108 2109 2110 2111 2112 2113 2114 2115
			/*
			 * Identify referenced, file-backed active pages and
			 * give them one more trip around the active list. So
			 * that executable code get better chances to stay in
			 * memory under moderate memory pressure.  Anon pages
			 * are not likely to be evicted by use-once streaming
			 * IO, plus JVM can create lots of anon VM_EXEC pages,
			 * so we ignore them here.
			 */
2116
			if ((vm_flags & VM_EXEC) && page_is_file_cache(page)) {
2117 2118 2119 2120
				list_add(&page->lru, &l_active);
				continue;
			}
		}
2121

2122
		ClearPageActive(page);	/* we are de-activating */
2123
		SetPageWorkingset(page);
L
Linus Torvalds 已提交
2124 2125 2126
		list_add(&page->lru, &l_inactive);
	}

2127
	/*
2128
	 * Move pages back to the lru list.
2129
	 */
M
Mel Gorman 已提交
2130
	spin_lock_irq(&pgdat->lru_lock);
2131
	/*
2132 2133 2134
	 * Count referenced pages from currently used mappings as rotated,
	 * even though only some of them are actually re-activated.  This
	 * helps balance scan pressure between file and anonymous pages in
2135
	 * get_scan_count.
2136
	 */
2137
	reclaim_stat->recent_rotated[file] += nr_rotated;
2138

2139 2140
	nr_activate = move_active_pages_to_lru(lruvec, &l_active, &l_hold, lru);
	nr_deactivate = move_active_pages_to_lru(lruvec, &l_inactive, &l_hold, lru - LRU_ACTIVE);
M
Mel Gorman 已提交
2141 2142
	__mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken);
	spin_unlock_irq(&pgdat->lru_lock);
2143

2144
	mem_cgroup_uncharge_list(&l_hold);
2145
	free_unref_page_list(&l_hold);
2146 2147
	trace_mm_vmscan_lru_shrink_active(pgdat->node_id, nr_taken, nr_activate,
			nr_deactivate, nr_rotated, sc->priority, file);
L
Linus Torvalds 已提交
2148 2149
}

2150 2151 2152
/*
 * The inactive anon list should be small enough that the VM never has
 * to do too much work.
2153
 *
2154 2155 2156
 * The inactive file list should be small enough to leave most memory
 * to the established workingset on the scan-resistant active list,
 * but large enough to avoid thrashing the aggregate readahead window.
2157
 *
2158 2159
 * Both inactive lists should also be large enough that each inactive
 * page has a chance to be referenced again before it is reclaimed.
2160
 *
2161 2162
 * If that fails and refaulting is observed, the inactive list grows.
 *
2163
 * The inactive_ratio is the target ratio of ACTIVE to INACTIVE pages
2164
 * on this LRU, maintained by the pageout code. An inactive_ratio
2165
 * of 3 means 3:1 or 25% of the pages are kept on the inactive list.
2166
 *
2167 2168 2169 2170 2171 2172 2173 2174 2175 2176
 * total     target    max
 * memory    ratio     inactive
 * -------------------------------------
 *   10MB       1         5MB
 *  100MB       1        50MB
 *    1GB       3       250MB
 *   10GB      10       0.9GB
 *  100GB      31         3GB
 *    1TB     101        10GB
 *   10TB     320        32GB
2177
 */
2178
static bool inactive_list_is_low(struct lruvec *lruvec, bool file,
2179
				 struct scan_control *sc, bool actual_reclaim)
2180
{
2181
	enum lru_list active_lru = file * LRU_FILE + LRU_ACTIVE;
2182 2183 2184 2185 2186
	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
	enum lru_list inactive_lru = file * LRU_FILE;
	unsigned long inactive, active;
	unsigned long inactive_ratio;
	unsigned long refaults;
2187
	unsigned long gb;
2188

2189 2190 2191 2192 2193 2194
	/*
	 * If we don't have swap space, anonymous page deactivation
	 * is pointless.
	 */
	if (!file && !total_swap_pages)
		return false;
2195

2196 2197
	inactive = lruvec_lru_size(lruvec, inactive_lru, sc->reclaim_idx);
	active = lruvec_lru_size(lruvec, active_lru, sc->reclaim_idx);
2198

2199 2200 2201 2202 2203
	/*
	 * When refaults are being observed, it means a new workingset
	 * is being established. Disable active list protection to get
	 * rid of the stale workingset quickly.
	 */
2204
	refaults = lruvec_page_state(lruvec, WORKINGSET_ACTIVATE);
2205 2206 2207 2208 2209 2210 2211 2212 2213
	if (file && actual_reclaim && lruvec->refaults != refaults) {
		inactive_ratio = 0;
	} else {
		gb = (inactive + active) >> (30 - PAGE_SHIFT);
		if (gb)
			inactive_ratio = int_sqrt(10 * gb);
		else
			inactive_ratio = 1;
	}
2214

2215 2216 2217 2218 2219
	if (actual_reclaim)
		trace_mm_vmscan_inactive_list_is_low(pgdat->node_id, sc->reclaim_idx,
			lruvec_lru_size(lruvec, inactive_lru, MAX_NR_ZONES), inactive,
			lruvec_lru_size(lruvec, active_lru, MAX_NR_ZONES), active,
			inactive_ratio, file);
2220

2221
	return inactive * inactive_ratio < active;
2222 2223
}

2224
static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
2225
				 struct lruvec *lruvec, struct scan_control *sc)
2226
{
2227
	if (is_active_lru(lru)) {
2228
		if (inactive_list_is_low(lruvec, is_file_lru(lru), sc, true))
2229
			shrink_active_list(nr_to_scan, lruvec, sc, lru);
2230 2231 2232
		return 0;
	}

2233
	return shrink_inactive_list(nr_to_scan, lruvec, sc, lru);
2234 2235
}

2236 2237 2238 2239 2240 2241 2242
enum scan_balance {
	SCAN_EQUAL,
	SCAN_FRACT,
	SCAN_ANON,
	SCAN_FILE,
};

2243 2244 2245 2246 2247 2248
/*
 * Determine how aggressively the anon and file LRU lists should be
 * scanned.  The relative value of each set of LRU lists is determined
 * by looking at the fraction of the pages scanned we did rotate back
 * onto the active list instead of evict.
 *
W
Wanpeng Li 已提交
2249 2250
 * nr[0] = anon inactive pages to scan; nr[1] = anon active pages to scan
 * nr[2] = file inactive pages to scan; nr[3] = file active pages to scan
2251
 */
2252
static void get_scan_count(struct lruvec *lruvec, struct mem_cgroup *memcg,
2253 2254
			   struct scan_control *sc, unsigned long *nr,
			   unsigned long *lru_pages)
2255
{
2256
	int swappiness = mem_cgroup_swappiness(memcg);
2257 2258 2259
	struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
	u64 fraction[2];
	u64 denominator = 0;	/* gcc */
M
Mel Gorman 已提交
2260
	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
2261
	unsigned long anon_prio, file_prio;
2262
	enum scan_balance scan_balance;
2263
	unsigned long anon, file;
2264
	unsigned long ap, fp;
H
Hugh Dickins 已提交
2265
	enum lru_list lru;
2266 2267

	/* If we have no swap space, do not bother scanning anon pages. */
2268
	if (!sc->may_swap || mem_cgroup_get_nr_swap_pages(memcg) <= 0) {
2269
		scan_balance = SCAN_FILE;
2270 2271
		goto out;
	}
2272

2273 2274 2275 2276 2277 2278 2279
	/*
	 * Global reclaim will swap to prevent OOM even with no
	 * swappiness, but memcg users want to use this knob to
	 * disable swapping for individual groups completely when
	 * using the memory controller's swap limit feature would be
	 * too expensive.
	 */
2280
	if (!global_reclaim(sc) && !swappiness) {
2281
		scan_balance = SCAN_FILE;
2282 2283 2284 2285 2286 2287 2288 2289
		goto out;
	}

	/*
	 * Do not apply any pressure balancing cleverness when the
	 * system is close to OOM, scan both anon and file equally
	 * (unless the swappiness setting disagrees with swapping).
	 */
2290
	if (!sc->priority && swappiness) {
2291
		scan_balance = SCAN_EQUAL;
2292 2293 2294
		goto out;
	}

2295 2296 2297 2298 2299 2300 2301 2302 2303 2304
	/*
	 * Prevent the reclaimer from falling into the cache trap: as
	 * cache pages start out inactive, every cache fault will tip
	 * the scan balance towards the file LRU.  And as the file LRU
	 * shrinks, so does the window for rotation from references.
	 * This means we have a runaway feedback loop where a tiny
	 * thrashing file LRU becomes infinitely more attractive than
	 * anon pages.  Try to detect this based on file LRU size.
	 */
	if (global_reclaim(sc)) {
M
Mel Gorman 已提交
2305 2306 2307 2308
		unsigned long pgdatfile;
		unsigned long pgdatfree;
		int z;
		unsigned long total_high_wmark = 0;
2309

M
Mel Gorman 已提交
2310 2311 2312 2313 2314 2315
		pgdatfree = sum_zone_node_page_state(pgdat->node_id, NR_FREE_PAGES);
		pgdatfile = node_page_state(pgdat, NR_ACTIVE_FILE) +
			   node_page_state(pgdat, NR_INACTIVE_FILE);

		for (z = 0; z < MAX_NR_ZONES; z++) {
			struct zone *zone = &pgdat->node_zones[z];
2316
			if (!managed_zone(zone))
M
Mel Gorman 已提交
2317 2318 2319 2320
				continue;

			total_high_wmark += high_wmark_pages(zone);
		}
2321

M
Mel Gorman 已提交
2322
		if (unlikely(pgdatfile + pgdatfree <= total_high_wmark)) {
2323 2324 2325 2326 2327
			/*
			 * Force SCAN_ANON if there are enough inactive
			 * anonymous pages on the LRU in eligible zones.
			 * Otherwise, the small LRU gets thrashed.
			 */
2328
			if (!inactive_list_is_low(lruvec, false, sc, false) &&
2329 2330 2331 2332 2333
			    lruvec_lru_size(lruvec, LRU_INACTIVE_ANON, sc->reclaim_idx)
					>> sc->priority) {
				scan_balance = SCAN_ANON;
				goto out;
			}
2334 2335 2336
		}
	}

2337
	/*
2338 2339 2340 2341 2342 2343 2344
	 * If there is enough inactive page cache, i.e. if the size of the
	 * inactive list is greater than that of the active list *and* the
	 * inactive list actually has some pages to scan on this priority, we
	 * do not reclaim anything from the anonymous working set right now.
	 * Without the second condition we could end up never scanning an
	 * lruvec even if it has plenty of old anonymous pages unless the
	 * system is under heavy pressure.
2345
	 */
2346
	if (!inactive_list_is_low(lruvec, true, sc, false) &&
2347
	    lruvec_lru_size(lruvec, LRU_INACTIVE_FILE, sc->reclaim_idx) >> sc->priority) {
2348
		scan_balance = SCAN_FILE;
2349 2350 2351
		goto out;
	}

2352 2353
	scan_balance = SCAN_FRACT;

2354 2355 2356 2357
	/*
	 * With swappiness at 100, anonymous and file have the same priority.
	 * This scanning priority is essentially the inverse of IO cost.
	 */
2358
	anon_prio = swappiness;
H
Hugh Dickins 已提交
2359
	file_prio = 200 - anon_prio;
2360

2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371
	/*
	 * OK, so we have swap space and a fair amount of page cache
	 * pages.  We use the recently rotated / recently scanned
	 * ratios to determine how valuable each cache is.
	 *
	 * Because workloads change over time (and to avoid overflow)
	 * we keep these statistics as a floating average, which ends
	 * up weighing recent references more than old ones.
	 *
	 * anon in [0], file in [1]
	 */
2372

2373 2374 2375 2376
	anon  = lruvec_lru_size(lruvec, LRU_ACTIVE_ANON, MAX_NR_ZONES) +
		lruvec_lru_size(lruvec, LRU_INACTIVE_ANON, MAX_NR_ZONES);
	file  = lruvec_lru_size(lruvec, LRU_ACTIVE_FILE, MAX_NR_ZONES) +
		lruvec_lru_size(lruvec, LRU_INACTIVE_FILE, MAX_NR_ZONES);
2377

M
Mel Gorman 已提交
2378
	spin_lock_irq(&pgdat->lru_lock);
2379 2380 2381
	if (unlikely(reclaim_stat->recent_scanned[0] > anon / 4)) {
		reclaim_stat->recent_scanned[0] /= 2;
		reclaim_stat->recent_rotated[0] /= 2;
2382 2383
	}

2384 2385 2386
	if (unlikely(reclaim_stat->recent_scanned[1] > file / 4)) {
		reclaim_stat->recent_scanned[1] /= 2;
		reclaim_stat->recent_rotated[1] /= 2;
2387 2388 2389
	}

	/*
2390 2391 2392
	 * The amount of pressure on anon vs file pages is inversely
	 * proportional to the fraction of recently scanned pages on
	 * each list that were recently referenced and in active use.
2393
	 */
2394
	ap = anon_prio * (reclaim_stat->recent_scanned[0] + 1);
2395
	ap /= reclaim_stat->recent_rotated[0] + 1;
2396

2397
	fp = file_prio * (reclaim_stat->recent_scanned[1] + 1);
2398
	fp /= reclaim_stat->recent_rotated[1] + 1;
M
Mel Gorman 已提交
2399
	spin_unlock_irq(&pgdat->lru_lock);
2400

2401 2402 2403 2404
	fraction[0] = ap;
	fraction[1] = fp;
	denominator = ap + fp + 1;
out:
2405 2406 2407 2408 2409
	*lru_pages = 0;
	for_each_evictable_lru(lru) {
		int file = is_file_lru(lru);
		unsigned long size;
		unsigned long scan;
2410

2411 2412 2413 2414 2415 2416 2417 2418
		size = lruvec_lru_size(lruvec, lru, sc->reclaim_idx);
		scan = size >> sc->priority;
		/*
		 * If the cgroup's already been deleted, make sure to
		 * scrape out the remaining cache.
		 */
		if (!scan && !mem_cgroup_online(memcg))
			scan = min(size, SWAP_CLUSTER_MAX);
2419

2420 2421 2422 2423 2424
		switch (scan_balance) {
		case SCAN_EQUAL:
			/* Scan lists relative to size */
			break;
		case SCAN_FRACT:
2425
			/*
2426 2427
			 * Scan types proportional to swappiness and
			 * their relative recent reclaim efficiency.
2428 2429
			 * Make sure we don't miss the last page
			 * because of a round-off error.
2430
			 */
2431 2432
			scan = DIV64_U64_ROUND_UP(scan * fraction[file],
						  denominator);
2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444
			break;
		case SCAN_FILE:
		case SCAN_ANON:
			/* Scan one type exclusively */
			if ((scan_balance == SCAN_FILE) != file) {
				size = 0;
				scan = 0;
			}
			break;
		default:
			/* Look ma, no brain */
			BUG();
2445
		}
2446 2447 2448

		*lru_pages += size;
		nr[lru] = scan;
2449
	}
2450
}
2451

2452
/*
2453
 * This is a basic per-node page freer.  Used by both kswapd and direct reclaim.
2454
 */
2455
static void shrink_node_memcg(struct pglist_data *pgdat, struct mem_cgroup *memcg,
2456
			      struct scan_control *sc, unsigned long *lru_pages)
2457
{
2458
	struct lruvec *lruvec = mem_cgroup_lruvec(pgdat, memcg);
2459
	unsigned long nr[NR_LRU_LISTS];
2460
	unsigned long targets[NR_LRU_LISTS];
2461 2462 2463 2464 2465
	unsigned long nr_to_scan;
	enum lru_list lru;
	unsigned long nr_reclaimed = 0;
	unsigned long nr_to_reclaim = sc->nr_to_reclaim;
	struct blk_plug plug;
2466
	bool scan_adjusted;
2467

2468
	get_scan_count(lruvec, memcg, sc, nr, lru_pages);
2469

2470 2471 2472
	/* Record the original scan target for proportional adjustments later */
	memcpy(targets, nr, sizeof(nr));

2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486
	/*
	 * Global reclaiming within direct reclaim at DEF_PRIORITY is a normal
	 * event that can occur when there is little memory pressure e.g.
	 * multiple streaming readers/writers. Hence, we do not abort scanning
	 * when the requested number of pages are reclaimed when scanning at
	 * DEF_PRIORITY on the assumption that the fact we are direct
	 * reclaiming implies that kswapd is not keeping up and it is best to
	 * do a batch of work at once. For memcg reclaim one check is made to
	 * abort proportional reclaim if either the file or anon lru has already
	 * dropped to zero at the first pass.
	 */
	scan_adjusted = (global_reclaim(sc) && !current_is_kswapd() &&
			 sc->priority == DEF_PRIORITY);

2487 2488 2489
	blk_start_plug(&plug);
	while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
					nr[LRU_INACTIVE_FILE]) {
2490 2491 2492
		unsigned long nr_anon, nr_file, percentage;
		unsigned long nr_scanned;

2493 2494 2495 2496 2497 2498
		for_each_evictable_lru(lru) {
			if (nr[lru]) {
				nr_to_scan = min(nr[lru], SWAP_CLUSTER_MAX);
				nr[lru] -= nr_to_scan;

				nr_reclaimed += shrink_list(lru, nr_to_scan,
2499
							    lruvec, sc);
2500 2501
			}
		}
2502

2503 2504
		cond_resched();

2505 2506 2507 2508 2509
		if (nr_reclaimed < nr_to_reclaim || scan_adjusted)
			continue;

		/*
		 * For kswapd and memcg, reclaim at least the number of pages
2510
		 * requested. Ensure that the anon and file LRUs are scanned
2511 2512 2513 2514 2515 2516 2517
		 * proportionally what was requested by get_scan_count(). We
		 * stop reclaiming one LRU and reduce the amount scanning
		 * proportional to the original scan target.
		 */
		nr_file = nr[LRU_INACTIVE_FILE] + nr[LRU_ACTIVE_FILE];
		nr_anon = nr[LRU_INACTIVE_ANON] + nr[LRU_ACTIVE_ANON];

2518 2519 2520 2521 2522 2523 2524 2525 2526
		/*
		 * It's just vindictive to attack the larger once the smaller
		 * has gone to zero.  And given the way we stop scanning the
		 * smaller below, this makes sure that we only make one nudge
		 * towards proportionality once we've got nr_to_reclaim.
		 */
		if (!nr_file || !nr_anon)
			break;

2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557
		if (nr_file > nr_anon) {
			unsigned long scan_target = targets[LRU_INACTIVE_ANON] +
						targets[LRU_ACTIVE_ANON] + 1;
			lru = LRU_BASE;
			percentage = nr_anon * 100 / scan_target;
		} else {
			unsigned long scan_target = targets[LRU_INACTIVE_FILE] +
						targets[LRU_ACTIVE_FILE] + 1;
			lru = LRU_FILE;
			percentage = nr_file * 100 / scan_target;
		}

		/* Stop scanning the smaller of the LRU */
		nr[lru] = 0;
		nr[lru + LRU_ACTIVE] = 0;

		/*
		 * Recalculate the other LRU scan count based on its original
		 * scan target and the percentage scanning already complete
		 */
		lru = (lru == LRU_FILE) ? LRU_BASE : LRU_FILE;
		nr_scanned = targets[lru] - nr[lru];
		nr[lru] = targets[lru] * (100 - percentage) / 100;
		nr[lru] -= min(nr[lru], nr_scanned);

		lru += LRU_ACTIVE;
		nr_scanned = targets[lru] - nr[lru];
		nr[lru] = targets[lru] * (100 - percentage) / 100;
		nr[lru] -= min(nr[lru], nr_scanned);

		scan_adjusted = true;
2558 2559 2560 2561 2562 2563 2564 2565
	}
	blk_finish_plug(&plug);
	sc->nr_reclaimed += nr_reclaimed;

	/*
	 * Even if we did not try to evict anon pages at all, we want to
	 * rebalance the anon lru active/inactive ratio.
	 */
2566
	if (inactive_list_is_low(lruvec, false, sc, true))
2567 2568 2569 2570
		shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
				   sc, LRU_ACTIVE_ANON);
}

M
Mel Gorman 已提交
2571
/* Use reclaim/compaction for costly allocs or under memory pressure */
2572
static bool in_reclaim_compaction(struct scan_control *sc)
M
Mel Gorman 已提交
2573
{
2574
	if (IS_ENABLED(CONFIG_COMPACTION) && sc->order &&
M
Mel Gorman 已提交
2575
			(sc->order > PAGE_ALLOC_COSTLY_ORDER ||
2576
			 sc->priority < DEF_PRIORITY - 2))
M
Mel Gorman 已提交
2577 2578 2579 2580 2581
		return true;

	return false;
}

2582
/*
M
Mel Gorman 已提交
2583 2584 2585 2586 2587
 * Reclaim/compaction is used for high-order allocation requests. It reclaims
 * order-0 pages before compacting the zone. should_continue_reclaim() returns
 * true if more pages should be reclaimed such that when the page allocator
 * calls try_to_compact_zone() that it will have enough free pages to succeed.
 * It will give up earlier than that if there is difficulty reclaiming pages.
2588
 */
2589
static inline bool should_continue_reclaim(struct pglist_data *pgdat,
2590 2591 2592 2593 2594 2595
					unsigned long nr_reclaimed,
					unsigned long nr_scanned,
					struct scan_control *sc)
{
	unsigned long pages_for_compaction;
	unsigned long inactive_lru_pages;
2596
	int z;
2597 2598

	/* If not in reclaim/compaction mode, stop */
2599
	if (!in_reclaim_compaction(sc))
2600 2601
		return false;

2602
	/* Consider stopping depending on scan and reclaim activity */
2603
	if (sc->gfp_mask & __GFP_RETRY_MAYFAIL) {
2604
		/*
2605
		 * For __GFP_RETRY_MAYFAIL allocations, stop reclaiming if the
2606 2607
		 * full LRU list has been scanned and we are still failing
		 * to reclaim pages. This full LRU scan is potentially
2608
		 * expensive but a __GFP_RETRY_MAYFAIL caller really wants to succeed
2609 2610 2611 2612 2613
		 */
		if (!nr_reclaimed && !nr_scanned)
			return false;
	} else {
		/*
2614
		 * For non-__GFP_RETRY_MAYFAIL allocations which can presumably
2615 2616 2617 2618 2619 2620 2621 2622 2623
		 * fail without consequence, stop if we failed to reclaim
		 * any pages from the last SWAP_CLUSTER_MAX number of
		 * pages that were scanned. This will return to the
		 * caller faster at the risk reclaim/compaction and
		 * the resulting allocation attempt fails
		 */
		if (!nr_reclaimed)
			return false;
	}
2624 2625 2626 2627 2628

	/*
	 * If we have not reclaimed enough pages for compaction and the
	 * inactive lists are large enough, continue reclaiming
	 */
2629
	pages_for_compaction = compact_gap(sc->order);
2630
	inactive_lru_pages = node_page_state(pgdat, NR_INACTIVE_FILE);
2631
	if (get_nr_swap_pages() > 0)
2632
		inactive_lru_pages += node_page_state(pgdat, NR_INACTIVE_ANON);
2633 2634 2635 2636 2637
	if (sc->nr_reclaimed < pages_for_compaction &&
			inactive_lru_pages > pages_for_compaction)
		return true;

	/* If compaction would go ahead or the allocation would succeed, stop */
2638 2639
	for (z = 0; z <= sc->reclaim_idx; z++) {
		struct zone *zone = &pgdat->node_zones[z];
2640
		if (!managed_zone(zone))
2641 2642 2643
			continue;

		switch (compaction_suitable(zone, sc->order, 0, sc->reclaim_idx)) {
2644
		case COMPACT_SUCCESS:
2645 2646 2647 2648 2649 2650
		case COMPACT_CONTINUE:
			return false;
		default:
			/* check next zone */
			;
		}
2651
	}
2652
	return true;
2653 2654
}

2655 2656 2657 2658 2659 2660
static bool pgdat_memcg_congested(pg_data_t *pgdat, struct mem_cgroup *memcg)
{
	return test_bit(PGDAT_CONGESTED, &pgdat->flags) ||
		(memcg && memcg_congested(pgdat, memcg));
}

2661
static bool shrink_node(pg_data_t *pgdat, struct scan_control *sc)
L
Linus Torvalds 已提交
2662
{
2663
	struct reclaim_state *reclaim_state = current->reclaim_state;
2664
	unsigned long nr_reclaimed, nr_scanned;
2665
	bool reclaimable = false;
L
Linus Torvalds 已提交
2666

2667 2668 2669
	do {
		struct mem_cgroup *root = sc->target_mem_cgroup;
		struct mem_cgroup_reclaim_cookie reclaim = {
2670
			.pgdat = pgdat,
2671 2672
			.priority = sc->priority,
		};
2673
		unsigned long node_lru_pages = 0;
2674
		struct mem_cgroup *memcg;
2675

2676 2677
		memset(&sc->nr, 0, sizeof(sc->nr));

2678 2679
		nr_reclaimed = sc->nr_reclaimed;
		nr_scanned = sc->nr_scanned;
L
Linus Torvalds 已提交
2680

2681 2682
		memcg = mem_cgroup_iter(root, NULL, &reclaim);
		do {
2683
			unsigned long lru_pages;
2684
			unsigned long reclaimed;
2685
			unsigned long scanned;
2686

R
Roman Gushchin 已提交
2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700
			switch (mem_cgroup_protected(root, memcg)) {
			case MEMCG_PROT_MIN:
				/*
				 * Hard protection.
				 * If there is no reclaimable memory, OOM.
				 */
				continue;
			case MEMCG_PROT_LOW:
				/*
				 * Soft protection.
				 * Respect the protection only as long as
				 * there is an unprotected supply
				 * of reclaimable memory from other cgroups.
				 */
2701 2702
				if (!sc->memcg_low_reclaim) {
					sc->memcg_low_skipped = 1;
2703
					continue;
2704
				}
2705
				memcg_memory_event(memcg, MEMCG_LOW);
R
Roman Gushchin 已提交
2706 2707 2708
				break;
			case MEMCG_PROT_NONE:
				break;
2709 2710
			}

2711
			reclaimed = sc->nr_reclaimed;
2712
			scanned = sc->nr_scanned;
2713 2714
			shrink_node_memcg(pgdat, memcg, sc, &lru_pages);
			node_lru_pages += lru_pages;
2715

2716 2717
			if (sc->may_shrinkslab) {
				shrink_slab(sc->gfp_mask, pgdat->node_id,
2718
				    memcg, sc->priority);
2719
			}
2720

2721 2722 2723 2724 2725
			/* Record the group's reclaim efficiency */
			vmpressure(sc->gfp_mask, memcg, false,
				   sc->nr_scanned - scanned,
				   sc->nr_reclaimed - reclaimed);

2726
			/*
2727 2728
			 * Kswapd have to scan all memory cgroups to fulfill
			 * the overall scan target for the node.
2729 2730 2731 2732 2733
			 *
			 * Limit reclaim, on the other hand, only cares about
			 * nr_to_reclaim pages to be reclaimed and it will
			 * retry with decreasing priority if one round over the
			 * whole hierarchy is not sufficient.
2734
			 */
2735
			if (!current_is_kswapd() &&
2736
					sc->nr_reclaimed >= sc->nr_to_reclaim) {
2737 2738 2739
				mem_cgroup_iter_break(root, memcg);
				break;
			}
2740
		} while ((memcg = mem_cgroup_iter(root, memcg, &reclaim)));
2741

2742 2743 2744
		if (reclaim_state) {
			sc->nr_reclaimed += reclaim_state->reclaimed_slab;
			reclaim_state->reclaimed_slab = 0;
2745 2746
		}

2747 2748
		/* Record the subtree's reclaim efficiency */
		vmpressure(sc->gfp_mask, sc->target_mem_cgroup, true,
2749 2750 2751
			   sc->nr_scanned - nr_scanned,
			   sc->nr_reclaimed - nr_reclaimed);

2752 2753 2754
		if (sc->nr_reclaimed - nr_reclaimed)
			reclaimable = true;

2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774
		if (current_is_kswapd()) {
			/*
			 * If reclaim is isolating dirty pages under writeback,
			 * it implies that the long-lived page allocation rate
			 * is exceeding the page laundering rate. Either the
			 * global limits are not being effective at throttling
			 * processes due to the page distribution throughout
			 * zones or there is heavy usage of a slow backing
			 * device. The only option is to throttle from reclaim
			 * context which is not ideal as there is no guarantee
			 * the dirtying process is throttled in the same way
			 * balance_dirty_pages() manages.
			 *
			 * Once a node is flagged PGDAT_WRITEBACK, kswapd will
			 * count the number of pages under pages flagged for
			 * immediate reclaim and stall if any are encountered
			 * in the nr_immediate check below.
			 */
			if (sc->nr.writeback && sc->nr.writeback == sc->nr.taken)
				set_bit(PGDAT_WRITEBACK, &pgdat->flags);
2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797

			/*
			 * Tag a node as congested if all the dirty pages
			 * scanned were backed by a congested BDI and
			 * wait_iff_congested will stall.
			 */
			if (sc->nr.dirty && sc->nr.dirty == sc->nr.congested)
				set_bit(PGDAT_CONGESTED, &pgdat->flags);

			/* Allow kswapd to start writing pages during reclaim.*/
			if (sc->nr.unqueued_dirty == sc->nr.file_taken)
				set_bit(PGDAT_DIRTY, &pgdat->flags);

			/*
			 * If kswapd scans pages marked marked for immediate
			 * reclaim and under writeback (nr_immediate), it
			 * implies that pages are cycling through the LRU
			 * faster than they are written so also forcibly stall.
			 */
			if (sc->nr.immediate)
				congestion_wait(BLK_RW_ASYNC, HZ/10);
		}

2798 2799 2800 2801 2802 2803 2804 2805
		/*
		 * Legacy memcg will stall in page writeback so avoid forcibly
		 * stalling in wait_iff_congested().
		 */
		if (!global_reclaim(sc) && sane_reclaim(sc) &&
		    sc->nr.dirty && sc->nr.dirty == sc->nr.congested)
			set_memcg_congestion(pgdat, root, true);

2806 2807 2808 2809 2810 2811 2812
		/*
		 * Stall direct reclaim for IO completions if underlying BDIs
		 * and node is congested. Allow kswapd to continue until it
		 * starts encountering unqueued dirty pages or cycling through
		 * the LRU too quickly.
		 */
		if (!sc->hibernation_mode && !current_is_kswapd() &&
2813 2814
		   current_may_throttle() && pgdat_memcg_congested(pgdat, root))
			wait_iff_congested(BLK_RW_ASYNC, HZ/10);
2815

2816
	} while (should_continue_reclaim(pgdat, sc->nr_reclaimed - nr_reclaimed,
2817
					 sc->nr_scanned - nr_scanned, sc));
2818

2819 2820 2821 2822 2823 2824 2825 2826 2827
	/*
	 * Kswapd gives up on balancing particular nodes after too
	 * many failures to reclaim anything from them and goes to
	 * sleep. On reclaim progress, reset the failure counter. A
	 * successful direct reclaim run will revive a dormant kswapd.
	 */
	if (reclaimable)
		pgdat->kswapd_failures = 0;

2828
	return reclaimable;
2829 2830
}

2831
/*
2832 2833 2834
 * Returns true if compaction should go ahead for a costly-order request, or
 * the allocation would already succeed without compaction. Return false if we
 * should reclaim first.
2835
 */
2836
static inline bool compaction_ready(struct zone *zone, struct scan_control *sc)
2837
{
M
Mel Gorman 已提交
2838
	unsigned long watermark;
2839
	enum compact_result suitable;
2840

2841 2842 2843 2844 2845 2846 2847
	suitable = compaction_suitable(zone, sc->order, 0, sc->reclaim_idx);
	if (suitable == COMPACT_SUCCESS)
		/* Allocation should succeed already. Don't reclaim. */
		return true;
	if (suitable == COMPACT_SKIPPED)
		/* Compaction cannot yet proceed. Do reclaim. */
		return false;
2848

2849
	/*
2850 2851 2852 2853 2854 2855 2856
	 * Compaction is already possible, but it takes time to run and there
	 * are potentially other callers using the pages just freed. So proceed
	 * with reclaim to make a buffer of free pages available to give
	 * compaction a reasonable chance of completing and allocating the page.
	 * Note that we won't actually reclaim the whole buffer in one attempt
	 * as the target watermark in should_continue_reclaim() is lower. But if
	 * we are already above the high+gap watermark, don't reclaim at all.
2857
	 */
2858
	watermark = high_wmark_pages(zone) + compact_gap(sc->order);
2859

2860
	return zone_watermark_ok_safe(zone, 0, watermark, sc->reclaim_idx);
2861 2862
}

L
Linus Torvalds 已提交
2863 2864 2865 2866 2867 2868 2869 2870
/*
 * This is the direct reclaim path, for page-allocating processes.  We only
 * try to reclaim pages from zones which will satisfy the caller's allocation
 * request.
 *
 * If a zone is deemed to be full of pinned pages then just give it a light
 * scan then give up on it.
 */
M
Michal Hocko 已提交
2871
static void shrink_zones(struct zonelist *zonelist, struct scan_control *sc)
L
Linus Torvalds 已提交
2872
{
2873
	struct zoneref *z;
2874
	struct zone *zone;
2875 2876
	unsigned long nr_soft_reclaimed;
	unsigned long nr_soft_scanned;
2877
	gfp_t orig_mask;
2878
	pg_data_t *last_pgdat = NULL;
2879

2880 2881 2882 2883 2884
	/*
	 * If the number of buffer_heads in the machine exceeds the maximum
	 * allowed level, force direct reclaim to scan the highmem zone as
	 * highmem pages could be pinning lowmem pages storing buffer_heads
	 */
2885
	orig_mask = sc->gfp_mask;
2886
	if (buffer_heads_over_limit) {
2887
		sc->gfp_mask |= __GFP_HIGHMEM;
2888
		sc->reclaim_idx = gfp_zone(sc->gfp_mask);
2889
	}
2890

2891
	for_each_zone_zonelist_nodemask(zone, z, zonelist,
2892
					sc->reclaim_idx, sc->nodemask) {
2893 2894 2895 2896
		/*
		 * Take care memory controller reclaiming has small influence
		 * to global LRU.
		 */
2897
		if (global_reclaim(sc)) {
2898 2899
			if (!cpuset_zone_allowed(zone,
						 GFP_KERNEL | __GFP_HARDWALL))
2900
				continue;
2901

2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912
			/*
			 * If we already have plenty of memory free for
			 * compaction in this zone, don't free any more.
			 * Even though compaction is invoked for any
			 * non-zero order, only frequent costly order
			 * reclamation is disruptive enough to become a
			 * noticeable problem, like transparent huge
			 * page allocations.
			 */
			if (IS_ENABLED(CONFIG_COMPACTION) &&
			    sc->order > PAGE_ALLOC_COSTLY_ORDER &&
2913
			    compaction_ready(zone, sc)) {
2914 2915
				sc->compaction_ready = true;
				continue;
2916
			}
2917

2918 2919 2920 2921 2922 2923 2924 2925 2926
			/*
			 * Shrink each node in the zonelist once. If the
			 * zonelist is ordered by zone (not the default) then a
			 * node may be shrunk multiple times but in that case
			 * the user prefers lower zones being preserved.
			 */
			if (zone->zone_pgdat == last_pgdat)
				continue;

2927 2928 2929 2930 2931 2932 2933
			/*
			 * This steals pages from memory cgroups over softlimit
			 * and returns the number of reclaimed pages and
			 * scanned pages. This works for global memory pressure
			 * and balancing, not for a memcg's limit.
			 */
			nr_soft_scanned = 0;
2934
			nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone->zone_pgdat,
2935 2936 2937 2938
						sc->order, sc->gfp_mask,
						&nr_soft_scanned);
			sc->nr_reclaimed += nr_soft_reclaimed;
			sc->nr_scanned += nr_soft_scanned;
2939
			/* need some check for avoid more shrink_zone() */
2940
		}
2941

2942 2943 2944 2945
		/* See comment about same check for global reclaim above */
		if (zone->zone_pgdat == last_pgdat)
			continue;
		last_pgdat = zone->zone_pgdat;
2946
		shrink_node(zone->zone_pgdat, sc);
L
Linus Torvalds 已提交
2947
	}
2948

2949 2950 2951 2952 2953
	/*
	 * Restore to original mask to avoid the impact on the caller if we
	 * promoted it to __GFP_HIGHMEM.
	 */
	sc->gfp_mask = orig_mask;
L
Linus Torvalds 已提交
2954
}
2955

2956 2957 2958 2959 2960 2961 2962 2963 2964 2965
static void snapshot_refaults(struct mem_cgroup *root_memcg, pg_data_t *pgdat)
{
	struct mem_cgroup *memcg;

	memcg = mem_cgroup_iter(root_memcg, NULL, NULL);
	do {
		unsigned long refaults;
		struct lruvec *lruvec;

		lruvec = mem_cgroup_lruvec(pgdat, memcg);
2966
		refaults = lruvec_page_state(lruvec, WORKINGSET_ACTIVATE);
2967 2968 2969 2970
		lruvec->refaults = refaults;
	} while ((memcg = mem_cgroup_iter(root_memcg, memcg, NULL)));
}

L
Linus Torvalds 已提交
2971 2972 2973 2974 2975 2976 2977 2978
/*
 * This is the main entry point to direct page reclaim.
 *
 * If a full scan of the inactive list fails to free enough memory then we
 * are "out of memory" and something needs to be killed.
 *
 * If the caller is !__GFP_FS then the probability of a failure is reasonably
 * high - the zone may be full of dirty or under-writeback pages, which this
2979 2980 2981 2982
 * caller can't do much about.  We kick the writeback threads and take explicit
 * naps in the hope that some of these pages can be written.  But if the
 * allocating task holds filesystem locks which prevent writeout this might not
 * work, and the allocation attempt will fail.
2983 2984 2985
 *
 * returns:	0, if no pages reclaimed
 * 		else, the number of pages reclaimed
L
Linus Torvalds 已提交
2986
 */
2987
static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
2988
					  struct scan_control *sc)
L
Linus Torvalds 已提交
2989
{
2990
	int initial_priority = sc->priority;
2991 2992 2993
	pg_data_t *last_pgdat;
	struct zoneref *z;
	struct zone *zone;
2994
retry:
2995 2996
	delayacct_freepages_start();

2997
	if (global_reclaim(sc))
2998
		__count_zid_vm_events(ALLOCSTALL, sc->reclaim_idx, 1);
L
Linus Torvalds 已提交
2999

3000
	do {
3001 3002
		vmpressure_prio(sc->gfp_mask, sc->target_mem_cgroup,
				sc->priority);
3003
		sc->nr_scanned = 0;
M
Michal Hocko 已提交
3004
		shrink_zones(zonelist, sc);
3005

3006
		if (sc->nr_reclaimed >= sc->nr_to_reclaim)
3007 3008 3009 3010
			break;

		if (sc->compaction_ready)
			break;
L
Linus Torvalds 已提交
3011

3012 3013 3014 3015 3016 3017
		/*
		 * If we're getting trouble reclaiming, start doing
		 * writepage even in laptop mode.
		 */
		if (sc->priority < DEF_PRIORITY - 2)
			sc->may_writepage = 1;
3018
	} while (--sc->priority >= 0);
3019

3020 3021 3022 3023 3024 3025 3026
	last_pgdat = NULL;
	for_each_zone_zonelist_nodemask(zone, z, zonelist, sc->reclaim_idx,
					sc->nodemask) {
		if (zone->zone_pgdat == last_pgdat)
			continue;
		last_pgdat = zone->zone_pgdat;
		snapshot_refaults(sc->target_mem_cgroup, zone->zone_pgdat);
3027
		set_memcg_congestion(last_pgdat, sc->target_mem_cgroup, false);
3028 3029
	}

3030 3031
	delayacct_freepages_end();

3032 3033 3034
	if (sc->nr_reclaimed)
		return sc->nr_reclaimed;

3035
	/* Aborted reclaim to try compaction? don't OOM, then */
3036
	if (sc->compaction_ready)
3037 3038
		return 1;

3039
	/* Untapped cgroup reserves?  Don't OOM, retry. */
3040
	if (sc->memcg_low_skipped) {
3041
		sc->priority = initial_priority;
3042 3043
		sc->memcg_low_reclaim = 1;
		sc->memcg_low_skipped = 0;
3044 3045 3046
		goto retry;
	}

3047
	return 0;
L
Linus Torvalds 已提交
3048 3049
}

3050
static bool allow_direct_reclaim(pg_data_t *pgdat)
3051 3052 3053 3054 3055 3056 3057
{
	struct zone *zone;
	unsigned long pfmemalloc_reserve = 0;
	unsigned long free_pages = 0;
	int i;
	bool wmark_ok;

3058 3059 3060
	if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
		return true;

3061 3062
	for (i = 0; i <= ZONE_NORMAL; i++) {
		zone = &pgdat->node_zones[i];
3063 3064 3065 3066
		if (!managed_zone(zone))
			continue;

		if (!zone_reclaimable_pages(zone))
3067 3068
			continue;

3069 3070 3071 3072
		pfmemalloc_reserve += min_wmark_pages(zone);
		free_pages += zone_page_state(zone, NR_FREE_PAGES);
	}

3073 3074 3075 3076
	/* If there are no reserves (unexpected config) then do not throttle */
	if (!pfmemalloc_reserve)
		return true;

3077 3078 3079 3080
	wmark_ok = free_pages > pfmemalloc_reserve / 2;

	/* kswapd must be awake if processes are being throttled */
	if (!wmark_ok && waitqueue_active(&pgdat->kswapd_wait)) {
3081
		pgdat->kswapd_classzone_idx = min(pgdat->kswapd_classzone_idx,
3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092
						(enum zone_type)ZONE_NORMAL);
		wake_up_interruptible(&pgdat->kswapd_wait);
	}

	return wmark_ok;
}

/*
 * Throttle direct reclaimers if backing storage is backed by the network
 * and the PFMEMALLOC reserve for the preferred node is getting dangerously
 * depleted. kswapd will continue to make progress and wake the processes
3093 3094 3095 3096
 * when the low watermark is reached.
 *
 * Returns true if a fatal signal was delivered during throttling. If this
 * happens, the page allocator should not consider triggering the OOM killer.
3097
 */
3098
static bool throttle_direct_reclaim(gfp_t gfp_mask, struct zonelist *zonelist,
3099 3100
					nodemask_t *nodemask)
{
3101
	struct zoneref *z;
3102
	struct zone *zone;
3103
	pg_data_t *pgdat = NULL;
3104 3105 3106 3107 3108 3109 3110 3111 3112

	/*
	 * Kernel threads should not be throttled as they may be indirectly
	 * responsible for cleaning pages necessary for reclaim to make forward
	 * progress. kjournald for example may enter direct reclaim while
	 * committing a transaction where throttling it could forcing other
	 * processes to block on log_wait_commit().
	 */
	if (current->flags & PF_KTHREAD)
3113 3114 3115 3116 3117 3118 3119 3120
		goto out;

	/*
	 * If a fatal signal is pending, this process should not throttle.
	 * It should return quickly so it can exit and free its memory
	 */
	if (fatal_signal_pending(current))
		goto out;
3121

3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136
	/*
	 * Check if the pfmemalloc reserves are ok by finding the first node
	 * with a usable ZONE_NORMAL or lower zone. The expectation is that
	 * GFP_KERNEL will be required for allocating network buffers when
	 * swapping over the network so ZONE_HIGHMEM is unusable.
	 *
	 * Throttling is based on the first usable node and throttled processes
	 * wait on a queue until kswapd makes progress and wakes them. There
	 * is an affinity then between processes waking up and where reclaim
	 * progress has been made assuming the process wakes on the same node.
	 * More importantly, processes running on remote nodes will not compete
	 * for remote pfmemalloc reserves and processes on different nodes
	 * should make reasonable progress.
	 */
	for_each_zone_zonelist_nodemask(zone, z, zonelist,
3137
					gfp_zone(gfp_mask), nodemask) {
3138 3139 3140 3141 3142
		if (zone_idx(zone) > ZONE_NORMAL)
			continue;

		/* Throttle based on the first usable node */
		pgdat = zone->zone_pgdat;
3143
		if (allow_direct_reclaim(pgdat))
3144 3145 3146 3147 3148 3149
			goto out;
		break;
	}

	/* If no zone was usable by the allocation flags then do not throttle */
	if (!pgdat)
3150
		goto out;
3151

3152 3153 3154
	/* Account for the throttling */
	count_vm_event(PGSCAN_DIRECT_THROTTLE);

3155 3156 3157 3158 3159 3160 3161 3162 3163 3164
	/*
	 * If the caller cannot enter the filesystem, it's possible that it
	 * is due to the caller holding an FS lock or performing a journal
	 * transaction in the case of a filesystem like ext[3|4]. In this case,
	 * it is not safe to block on pfmemalloc_wait as kswapd could be
	 * blocked waiting on the same lock. Instead, throttle for up to a
	 * second before continuing.
	 */
	if (!(gfp_mask & __GFP_FS)) {
		wait_event_interruptible_timeout(pgdat->pfmemalloc_wait,
3165
			allow_direct_reclaim(pgdat), HZ);
3166 3167

		goto check_pending;
3168 3169 3170 3171
	}

	/* Throttle until kswapd wakes the process */
	wait_event_killable(zone->zone_pgdat->pfmemalloc_wait,
3172
		allow_direct_reclaim(pgdat));
3173 3174 3175 3176 3177 3178 3179

check_pending:
	if (fatal_signal_pending(current))
		return true;

out:
	return false;
3180 3181
}

3182
unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
3183
				gfp_t gfp_mask, nodemask_t *nodemask)
3184
{
3185
	unsigned long nr_reclaimed;
3186
	struct scan_control sc = {
3187
		.nr_to_reclaim = SWAP_CLUSTER_MAX,
3188
		.gfp_mask = current_gfp_context(gfp_mask),
3189
		.reclaim_idx = gfp_zone(gfp_mask),
3190 3191 3192
		.order = order,
		.nodemask = nodemask,
		.priority = DEF_PRIORITY,
3193
		.may_writepage = !laptop_mode,
3194
		.may_unmap = 1,
3195
		.may_swap = 1,
3196
		.may_shrinkslab = 1,
3197 3198
	};

G
Greg Thelen 已提交
3199 3200 3201 3202 3203 3204 3205 3206
	/*
	 * scan_control uses s8 fields for order, priority, and reclaim_idx.
	 * Confirm they are large enough for max values.
	 */
	BUILD_BUG_ON(MAX_ORDER > S8_MAX);
	BUILD_BUG_ON(DEF_PRIORITY > S8_MAX);
	BUILD_BUG_ON(MAX_NR_ZONES > S8_MAX);

3207
	/*
3208 3209 3210
	 * Do not enter reclaim if fatal signal was delivered while throttled.
	 * 1 is returned so that the page allocator does not OOM kill at this
	 * point.
3211
	 */
3212
	if (throttle_direct_reclaim(sc.gfp_mask, zonelist, nodemask))
3213 3214
		return 1;

3215 3216
	trace_mm_vmscan_direct_reclaim_begin(order,
				sc.may_writepage,
3217
				sc.gfp_mask,
3218
				sc.reclaim_idx);
3219

3220
	nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
3221 3222 3223 3224

	trace_mm_vmscan_direct_reclaim_end(nr_reclaimed);

	return nr_reclaimed;
3225 3226
}

A
Andrew Morton 已提交
3227
#ifdef CONFIG_MEMCG
3228

3229
unsigned long mem_cgroup_shrink_node(struct mem_cgroup *memcg,
3230
						gfp_t gfp_mask, bool noswap,
3231
						pg_data_t *pgdat,
3232
						unsigned long *nr_scanned)
3233 3234
{
	struct scan_control sc = {
3235
		.nr_to_reclaim = SWAP_CLUSTER_MAX,
3236
		.target_mem_cgroup = memcg,
3237 3238
		.may_writepage = !laptop_mode,
		.may_unmap = 1,
3239
		.reclaim_idx = MAX_NR_ZONES - 1,
3240
		.may_swap = !noswap,
3241
		.may_shrinkslab = 1,
3242
	};
3243
	unsigned long lru_pages;
3244

3245 3246
	sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
			(GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
3247

3248
	trace_mm_vmscan_memcg_softlimit_reclaim_begin(sc.order,
3249
						      sc.may_writepage,
3250 3251
						      sc.gfp_mask,
						      sc.reclaim_idx);
3252

3253 3254 3255
	/*
	 * NOTE: Although we can get the priority field, using it
	 * here is not a good idea, since it limits the pages we can scan.
3256
	 * if we don't reclaim here, the shrink_node from balance_pgdat
3257 3258 3259
	 * will pick up pages from other mem cgroup's as well. We hack
	 * the priority and make it zero.
	 */
3260
	shrink_node_memcg(pgdat, memcg, &sc, &lru_pages);
3261 3262 3263

	trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed);

3264
	*nr_scanned = sc.nr_scanned;
3265 3266 3267
	return sc.nr_reclaimed;
}

3268
unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg,
3269
					   unsigned long nr_pages,
K
KOSAKI Motohiro 已提交
3270
					   gfp_t gfp_mask,
3271
					   bool may_swap)
3272
{
3273
	struct zonelist *zonelist;
3274
	unsigned long nr_reclaimed;
3275
	unsigned long pflags;
3276
	int nid;
3277
	unsigned int noreclaim_flag;
3278
	struct scan_control sc = {
3279
		.nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
3280
		.gfp_mask = (current_gfp_context(gfp_mask) & GFP_RECLAIM_MASK) |
3281
				(GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK),
3282
		.reclaim_idx = MAX_NR_ZONES - 1,
3283 3284 3285 3286
		.target_mem_cgroup = memcg,
		.priority = DEF_PRIORITY,
		.may_writepage = !laptop_mode,
		.may_unmap = 1,
3287
		.may_swap = may_swap,
3288
		.may_shrinkslab = 1,
3289
	};
3290

3291 3292 3293 3294 3295
	/*
	 * Unlike direct reclaim via alloc_pages(), memcg's reclaim doesn't
	 * take care of from where we get pages. So the node where we start the
	 * scan does not need to be the current node.
	 */
3296
	nid = mem_cgroup_select_victim_node(memcg);
3297

3298
	zonelist = &NODE_DATA(nid)->node_zonelists[ZONELIST_FALLBACK];
3299 3300 3301

	trace_mm_vmscan_memcg_reclaim_begin(0,
					    sc.may_writepage,
3302 3303
					    sc.gfp_mask,
					    sc.reclaim_idx);
3304

3305
	psi_memstall_enter(&pflags);
3306
	noreclaim_flag = memalloc_noreclaim_save();
3307

3308
	nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
3309

3310
	memalloc_noreclaim_restore(noreclaim_flag);
3311
	psi_memstall_leave(&pflags);
3312 3313 3314 3315

	trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed);

	return nr_reclaimed;
3316 3317 3318
}
#endif

3319
static void age_active_anon(struct pglist_data *pgdat,
3320
				struct scan_control *sc)
3321
{
3322
	struct mem_cgroup *memcg;
3323

3324 3325 3326 3327 3328
	if (!total_swap_pages)
		return;

	memcg = mem_cgroup_iter(NULL, NULL, NULL);
	do {
3329
		struct lruvec *lruvec = mem_cgroup_lruvec(pgdat, memcg);
3330

3331
		if (inactive_list_is_low(lruvec, false, sc, true))
3332
			shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
3333
					   sc, LRU_ACTIVE_ANON);
3334 3335 3336

		memcg = mem_cgroup_iter(NULL, memcg, NULL);
	} while (memcg);
3337 3338
}

3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362
static bool pgdat_watermark_boosted(pg_data_t *pgdat, int classzone_idx)
{
	int i;
	struct zone *zone;

	/*
	 * Check for watermark boosts top-down as the higher zones
	 * are more likely to be boosted. Both watermarks and boosts
	 * should not be checked at the time time as reclaim would
	 * start prematurely when there is no boosting and a lower
	 * zone is balanced.
	 */
	for (i = classzone_idx; i >= 0; i--) {
		zone = pgdat->node_zones + i;
		if (!managed_zone(zone))
			continue;

		if (zone->watermark_boost)
			return true;
	}

	return false;
}

3363 3364 3365 3366 3367
/*
 * Returns true if there is an eligible zone balanced for the request order
 * and classzone_idx
 */
static bool pgdat_balanced(pg_data_t *pgdat, int order, int classzone_idx)
3368
{
3369 3370 3371
	int i;
	unsigned long mark = -1;
	struct zone *zone;
3372

3373 3374 3375 3376
	/*
	 * Check watermarks bottom-up as lower zones are more likely to
	 * meet watermarks.
	 */
3377 3378
	for (i = 0; i <= classzone_idx; i++) {
		zone = pgdat->node_zones + i;
3379

3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396
		if (!managed_zone(zone))
			continue;

		mark = high_wmark_pages(zone);
		if (zone_watermark_ok_safe(zone, order, mark, classzone_idx))
			return true;
	}

	/*
	 * If a node has no populated zone within classzone_idx, it does not
	 * need balancing by definition. This can happen if a zone-restricted
	 * allocation tries to wake a remote kswapd.
	 */
	if (mark == -1)
		return true;

	return false;
3397 3398
}

3399 3400 3401 3402 3403 3404 3405 3406
/* Clear pgdat state for congested, dirty or under writeback. */
static void clear_pgdat_congested(pg_data_t *pgdat)
{
	clear_bit(PGDAT_CONGESTED, &pgdat->flags);
	clear_bit(PGDAT_DIRTY, &pgdat->flags);
	clear_bit(PGDAT_WRITEBACK, &pgdat->flags);
}

3407 3408 3409 3410 3411 3412
/*
 * Prepare kswapd for sleeping. This verifies that there are no processes
 * waiting in throttle_direct_reclaim() and that watermarks have been met.
 *
 * Returns true if kswapd is ready to sleep
 */
3413
static bool prepare_kswapd_sleep(pg_data_t *pgdat, int order, int classzone_idx)
3414
{
3415
	/*
3416
	 * The throttled processes are normally woken up in balance_pgdat() as
3417
	 * soon as allow_direct_reclaim() is true. But there is a potential
3418 3419 3420 3421 3422 3423 3424 3425 3426
	 * race between when kswapd checks the watermarks and a process gets
	 * throttled. There is also a potential race if processes get
	 * throttled, kswapd wakes, a large process exits thereby balancing the
	 * zones, which causes kswapd to exit balance_pgdat() before reaching
	 * the wake up checks. If kswapd is going to sleep, no process should
	 * be sleeping on pfmemalloc_wait, so wake them now if necessary. If
	 * the wake up is premature, processes will wake kswapd and get
	 * throttled again. The difference from wake ups in balance_pgdat() is
	 * that here we are under prepare_to_wait().
3427
	 */
3428 3429
	if (waitqueue_active(&pgdat->pfmemalloc_wait))
		wake_up_all(&pgdat->pfmemalloc_wait);
3430

3431 3432 3433 3434
	/* Hopeless node, leave it to direct reclaim */
	if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
		return true;

3435 3436 3437
	if (pgdat_balanced(pgdat, order, classzone_idx)) {
		clear_pgdat_congested(pgdat);
		return true;
3438 3439
	}

3440
	return false;
3441 3442
}

3443
/*
3444 3445
 * kswapd shrinks a node of pages that are at or below the highest usable
 * zone that is currently unbalanced.
3446 3447
 *
 * Returns true if kswapd scanned at least the requested number of pages to
3448 3449
 * reclaim or if the lack of progress was due to pages under writeback.
 * This is used to determine if the scanning priority needs to be raised.
3450
 */
3451
static bool kswapd_shrink_node(pg_data_t *pgdat,
3452
			       struct scan_control *sc)
3453
{
3454 3455
	struct zone *zone;
	int z;
3456

3457 3458
	/* Reclaim a number of pages proportional to the number of zones */
	sc->nr_to_reclaim = 0;
3459
	for (z = 0; z <= sc->reclaim_idx; z++) {
3460
		zone = pgdat->node_zones + z;
3461
		if (!managed_zone(zone))
3462
			continue;
3463

3464 3465
		sc->nr_to_reclaim += max(high_wmark_pages(zone), SWAP_CLUSTER_MAX);
	}
3466 3467

	/*
3468 3469
	 * Historically care was taken to put equal pressure on all zones but
	 * now pressure is applied based on node LRU order.
3470
	 */
3471
	shrink_node(pgdat, sc);
3472

3473
	/*
3474 3475 3476 3477 3478
	 * Fragmentation may mean that the system cannot be rebalanced for
	 * high-order allocations. If twice the allocation size has been
	 * reclaimed then recheck watermarks only at order-0 to prevent
	 * excessive reclaim. Assume that a process requested a high-order
	 * can direct reclaim/compact.
3479
	 */
3480
	if (sc->order && sc->nr_reclaimed >= compact_gap(sc->order))
3481
		sc->order = 0;
3482

3483
	return sc->nr_scanned >= sc->nr_to_reclaim;
3484 3485
}

L
Linus Torvalds 已提交
3486
/*
3487 3488 3489
 * For kswapd, balance_pgdat() will reclaim pages across a node from zones
 * that are eligible for use by the caller until at least one zone is
 * balanced.
L
Linus Torvalds 已提交
3490
 *
3491
 * Returns the order kswapd finished reclaiming at.
L
Linus Torvalds 已提交
3492 3493
 *
 * kswapd scans the zones in the highmem->normal->dma direction.  It skips
3494
 * zones which have free_pages > high_wmark_pages(zone), but once a zone is
W
Wei Yang 已提交
3495
 * found to have free_pages <= high_wmark_pages(zone), any page in that zone
3496 3497
 * or lower is eligible for reclaim until at least one usable zone is
 * balanced.
L
Linus Torvalds 已提交
3498
 */
3499
static int balance_pgdat(pg_data_t *pgdat, int order, int classzone_idx)
L
Linus Torvalds 已提交
3500 3501
{
	int i;
3502 3503
	unsigned long nr_soft_reclaimed;
	unsigned long nr_soft_scanned;
3504
	unsigned long pflags;
3505 3506 3507
	unsigned long nr_boost_reclaim;
	unsigned long zone_boosts[MAX_NR_ZONES] = { 0, };
	bool boosted;
3508
	struct zone *zone;
3509 3510
	struct scan_control sc = {
		.gfp_mask = GFP_KERNEL,
3511
		.order = order,
3512
		.may_unmap = 1,
3513
	};
3514

3515
	psi_memstall_enter(&pflags);
3516 3517
	__fs_reclaim_acquire();

3518
	count_vm_event(PAGEOUTRUN);
L
Linus Torvalds 已提交
3519

3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537
	/*
	 * Account for the reclaim boost. Note that the zone boost is left in
	 * place so that parallel allocations that are near the watermark will
	 * stall or direct reclaim until kswapd is finished.
	 */
	nr_boost_reclaim = 0;
	for (i = 0; i <= classzone_idx; i++) {
		zone = pgdat->node_zones + i;
		if (!managed_zone(zone))
			continue;

		nr_boost_reclaim += zone->watermark_boost;
		zone_boosts[i] = zone->watermark_boost;
	}
	boosted = nr_boost_reclaim;

restart:
	sc.priority = DEF_PRIORITY;
3538
	do {
3539
		unsigned long nr_reclaimed = sc.nr_reclaimed;
3540
		bool raise_priority = true;
3541
		bool balanced;
3542
		bool ret;
3543

3544
		sc.reclaim_idx = classzone_idx;
L
Linus Torvalds 已提交
3545

3546
		/*
3547 3548 3549 3550 3551 3552 3553 3554
		 * If the number of buffer_heads exceeds the maximum allowed
		 * then consider reclaiming from all zones. This has a dual
		 * purpose -- on 64-bit systems it is expected that
		 * buffer_heads are stripped during active rotation. On 32-bit
		 * systems, highmem pages can pin lowmem memory and shrinking
		 * buffers can relieve lowmem pressure. Reclaim may still not
		 * go ahead if all eligible zones for the original allocation
		 * request are balanced to avoid excessive reclaim from kswapd.
3555 3556 3557 3558
		 */
		if (buffer_heads_over_limit) {
			for (i = MAX_NR_ZONES - 1; i >= 0; i--) {
				zone = pgdat->node_zones + i;
3559
				if (!managed_zone(zone))
3560
					continue;
3561

3562
				sc.reclaim_idx = i;
A
Andrew Morton 已提交
3563
				break;
L
Linus Torvalds 已提交
3564 3565
			}
		}
3566

3567
		/*
3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583
		 * If the pgdat is imbalanced then ignore boosting and preserve
		 * the watermarks for a later time and restart. Note that the
		 * zone watermarks will be still reset at the end of balancing
		 * on the grounds that the normal reclaim should be enough to
		 * re-evaluate if boosting is required when kswapd next wakes.
		 */
		balanced = pgdat_balanced(pgdat, sc.order, classzone_idx);
		if (!balanced && nr_boost_reclaim) {
			nr_boost_reclaim = 0;
			goto restart;
		}

		/*
		 * If boosting is not active then only reclaim if there are no
		 * eligible zones. Note that sc.reclaim_idx is not used as
		 * buffer_heads_over_limit may have adjusted it.
3584
		 */
3585
		if (!nr_boost_reclaim && balanced)
3586
			goto out;
A
Andrew Morton 已提交
3587

3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601
		/* Limit the priority of boosting to avoid reclaim writeback */
		if (nr_boost_reclaim && sc.priority == DEF_PRIORITY - 2)
			raise_priority = false;

		/*
		 * Do not writeback or swap pages for boosted reclaim. The
		 * intent is to relieve pressure not issue sub-optimal IO
		 * from reclaim context. If no pages are reclaimed, the
		 * reclaim will be aborted.
		 */
		sc.may_writepage = !laptop_mode && !nr_boost_reclaim;
		sc.may_swap = !nr_boost_reclaim;
		sc.may_shrinkslab = !nr_boost_reclaim;

3602 3603 3604 3605 3606 3607
		/*
		 * Do some background aging of the anon list, to give
		 * pages a chance to be referenced before reclaiming. All
		 * pages are rotated regardless of classzone as this is
		 * about consistent aging.
		 */
3608
		age_active_anon(pgdat, &sc);
3609

3610 3611 3612 3613
		/*
		 * If we're getting trouble reclaiming, start doing writepage
		 * even in laptop mode.
		 */
3614
		if (sc.priority < DEF_PRIORITY - 2)
3615 3616
			sc.may_writepage = 1;

3617 3618 3619
		/* Call soft limit reclaim before calling shrink_node. */
		sc.nr_scanned = 0;
		nr_soft_scanned = 0;
3620
		nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(pgdat, sc.order,
3621 3622 3623
						sc.gfp_mask, &nr_soft_scanned);
		sc.nr_reclaimed += nr_soft_reclaimed;

L
Linus Torvalds 已提交
3624
		/*
3625 3626 3627
		 * There should be no need to raise the scanning priority if
		 * enough pages are already being scanned that that high
		 * watermark would be met at 100% efficiency.
L
Linus Torvalds 已提交
3628
		 */
3629
		if (kswapd_shrink_node(pgdat, &sc))
3630
			raise_priority = false;
3631 3632 3633 3634 3635 3636 3637

		/*
		 * If the low watermark is met there is no need for processes
		 * to be throttled on pfmemalloc_wait as they should not be
		 * able to safely make forward progress. Wake them
		 */
		if (waitqueue_active(&pgdat->pfmemalloc_wait) &&
3638
				allow_direct_reclaim(pgdat))
3639
			wake_up_all(&pgdat->pfmemalloc_wait);
3640

3641
		/* Check if kswapd should be suspending */
3642 3643 3644 3645
		__fs_reclaim_release();
		ret = try_to_freeze();
		__fs_reclaim_acquire();
		if (ret || kthread_should_stop())
3646
			break;
3647

3648
		/*
3649 3650
		 * Raise priority if scanning rate is too low or there was no
		 * progress in reclaiming pages
3651
		 */
3652
		nr_reclaimed = sc.nr_reclaimed - nr_reclaimed;
3653 3654 3655 3656 3657 3658 3659 3660 3661 3662
		nr_boost_reclaim -= min(nr_boost_reclaim, nr_reclaimed);

		/*
		 * If reclaim made no progress for a boost, stop reclaim as
		 * IO cannot be queued and it could be an infinite loop in
		 * extreme circumstances.
		 */
		if (nr_boost_reclaim && !nr_reclaimed)
			break;

3663
		if (raise_priority || !nr_reclaimed)
3664
			sc.priority--;
3665
	} while (sc.priority >= 1);
L
Linus Torvalds 已提交
3666

3667 3668 3669
	if (!sc.nr_reclaimed)
		pgdat->kswapd_failures++;

3670
out:
3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692
	/* If reclaim was boosted, account for the reclaim done in this pass */
	if (boosted) {
		unsigned long flags;

		for (i = 0; i <= classzone_idx; i++) {
			if (!zone_boosts[i])
				continue;

			/* Increments are under the zone lock */
			zone = pgdat->node_zones + i;
			spin_lock_irqsave(&zone->lock, flags);
			zone->watermark_boost -= min(zone->watermark_boost, zone_boosts[i]);
			spin_unlock_irqrestore(&zone->lock, flags);
		}

		/*
		 * As there is now likely space, wakeup kcompact to defragment
		 * pageblocks.
		 */
		wakeup_kcompactd(pgdat, pageblock_order, classzone_idx);
	}

3693
	snapshot_refaults(NULL, pgdat);
3694
	__fs_reclaim_release();
3695
	psi_memstall_leave(&pflags);
3696
	/*
3697 3698 3699 3700
	 * Return the order kswapd stopped reclaiming at as
	 * prepare_kswapd_sleep() takes it into account. If another caller
	 * entered the allocator slow path while kswapd was awake, order will
	 * remain at the higher level.
3701
	 */
3702
	return sc.order;
L
Linus Torvalds 已提交
3703 3704
}

3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720
/*
 * pgdat->kswapd_classzone_idx is the highest zone index that a recent
 * allocation request woke kswapd for. When kswapd has not woken recently,
 * the value is MAX_NR_ZONES which is not a valid index. This compares a
 * given classzone and returns it or the highest classzone index kswapd
 * was recently woke for.
 */
static enum zone_type kswapd_classzone_idx(pg_data_t *pgdat,
					   enum zone_type classzone_idx)
{
	if (pgdat->kswapd_classzone_idx == MAX_NR_ZONES)
		return classzone_idx;

	return max(pgdat->kswapd_classzone_idx, classzone_idx);
}

3721 3722
static void kswapd_try_to_sleep(pg_data_t *pgdat, int alloc_order, int reclaim_order,
				unsigned int classzone_idx)
3723 3724 3725 3726 3727 3728 3729 3730 3731
{
	long remaining = 0;
	DEFINE_WAIT(wait);

	if (freezing(current) || kthread_should_stop())
		return;

	prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);

3732 3733 3734 3735 3736 3737 3738
	/*
	 * Try to sleep for a short interval. Note that kcompactd will only be
	 * woken if it is possible to sleep for a short interval. This is
	 * deliberate on the assumption that if reclaim cannot keep an
	 * eligible zone balanced that it's also unlikely that compaction will
	 * succeed.
	 */
3739
	if (prepare_kswapd_sleep(pgdat, reclaim_order, classzone_idx)) {
3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751
		/*
		 * Compaction records what page blocks it recently failed to
		 * isolate pages from and skips them in the future scanning.
		 * When kswapd is going to sleep, it is reasonable to assume
		 * that pages and compaction may succeed so reset the cache.
		 */
		reset_isolation_suitable(pgdat);

		/*
		 * We have freed the memory, now we should compact it to make
		 * allocation of the requested order possible.
		 */
3752
		wakeup_kcompactd(pgdat, alloc_order, classzone_idx);
3753

3754
		remaining = schedule_timeout(HZ/10);
3755 3756 3757 3758 3759 3760 3761

		/*
		 * If woken prematurely then reset kswapd_classzone_idx and
		 * order. The values will either be from a wakeup request or
		 * the previous request that slept prematurely.
		 */
		if (remaining) {
3762
			pgdat->kswapd_classzone_idx = kswapd_classzone_idx(pgdat, classzone_idx);
3763 3764 3765
			pgdat->kswapd_order = max(pgdat->kswapd_order, reclaim_order);
		}

3766 3767 3768 3769 3770 3771 3772 3773
		finish_wait(&pgdat->kswapd_wait, &wait);
		prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
	}

	/*
	 * After a short sleep, check if it was a premature sleep. If not, then
	 * go fully to sleep until explicitly woken up.
	 */
3774 3775
	if (!remaining &&
	    prepare_kswapd_sleep(pgdat, reclaim_order, classzone_idx)) {
3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786
		trace_mm_vmscan_kswapd_sleep(pgdat->node_id);

		/*
		 * vmstat counters are not perfectly accurate and the estimated
		 * value for counters such as NR_FREE_PAGES can deviate from the
		 * true value by nr_online_cpus * threshold. To avoid the zone
		 * watermarks being breached while under pressure, we reduce the
		 * per-cpu vmstat threshold while kswapd is awake and restore
		 * them before going back to sleep.
		 */
		set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold);
3787 3788 3789 3790

		if (!kthread_should_stop())
			schedule();

3791 3792 3793 3794 3795 3796 3797 3798 3799 3800
		set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold);
	} else {
		if (remaining)
			count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
		else
			count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
	}
	finish_wait(&pgdat->kswapd_wait, &wait);
}

L
Linus Torvalds 已提交
3801 3802
/*
 * The background pageout daemon, started as a kernel thread
3803
 * from the init process.
L
Linus Torvalds 已提交
3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815
 *
 * This basically trickles out pages so that we have _some_
 * free memory available even if there is no other activity
 * that frees anything up. This is needed for things like routing
 * etc, where we otherwise might have all activity going on in
 * asynchronous contexts that cannot page things out.
 *
 * If there are applications that are active memory-allocators
 * (most normal use), this basically shouldn't matter.
 */
static int kswapd(void *p)
{
3816 3817
	unsigned int alloc_order, reclaim_order;
	unsigned int classzone_idx = MAX_NR_ZONES - 1;
L
Linus Torvalds 已提交
3818 3819
	pg_data_t *pgdat = (pg_data_t*)p;
	struct task_struct *tsk = current;
3820

L
Linus Torvalds 已提交
3821 3822 3823
	struct reclaim_state reclaim_state = {
		.reclaimed_slab = 0,
	};
3824
	const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
L
Linus Torvalds 已提交
3825

R
Rusty Russell 已提交
3826
	if (!cpumask_empty(cpumask))
3827
		set_cpus_allowed_ptr(tsk, cpumask);
L
Linus Torvalds 已提交
3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841
	current->reclaim_state = &reclaim_state;

	/*
	 * Tell the memory management that we're a "memory allocator",
	 * and that if we need more memory we should get access to it
	 * regardless (see "__alloc_pages()"). "kswapd" should
	 * never get caught in the normal page freeing logic.
	 *
	 * (Kswapd normally doesn't need memory anyway, but sometimes
	 * you need a small amount of memory in order to be able to
	 * page out something else, and this flag essentially protects
	 * us from recursively trying to free more memory as we're
	 * trying to free the first piece of memory in the first place).
	 */
3842
	tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
3843
	set_freezable();
L
Linus Torvalds 已提交
3844

3845 3846
	pgdat->kswapd_order = 0;
	pgdat->kswapd_classzone_idx = MAX_NR_ZONES;
L
Linus Torvalds 已提交
3847
	for ( ; ; ) {
3848
		bool ret;
3849

3850 3851 3852
		alloc_order = reclaim_order = pgdat->kswapd_order;
		classzone_idx = kswapd_classzone_idx(pgdat, classzone_idx);

3853 3854 3855
kswapd_try_sleep:
		kswapd_try_to_sleep(pgdat, alloc_order, reclaim_order,
					classzone_idx);
3856

3857 3858
		/* Read the new order and classzone_idx */
		alloc_order = reclaim_order = pgdat->kswapd_order;
3859
		classzone_idx = kswapd_classzone_idx(pgdat, 0);
3860
		pgdat->kswapd_order = 0;
3861
		pgdat->kswapd_classzone_idx = MAX_NR_ZONES;
L
Linus Torvalds 已提交
3862

3863 3864 3865 3866 3867 3868 3869 3870
		ret = try_to_freeze();
		if (kthread_should_stop())
			break;

		/*
		 * We can speed up thawing tasks if we don't call balance_pgdat
		 * after returning from the refrigerator
		 */
3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881
		if (ret)
			continue;

		/*
		 * Reclaim begins at the requested order but if a high-order
		 * reclaim fails then kswapd falls back to reclaiming for
		 * order-0. If that happens, kswapd will consider sleeping
		 * for the order it finished reclaiming at (reclaim_order)
		 * but kcompactd is woken to compact for the original
		 * request (alloc_order).
		 */
3882 3883
		trace_mm_vmscan_kswapd_wake(pgdat->node_id, classzone_idx,
						alloc_order);
3884 3885 3886
		reclaim_order = balance_pgdat(pgdat, alloc_order, classzone_idx);
		if (reclaim_order < alloc_order)
			goto kswapd_try_sleep;
L
Linus Torvalds 已提交
3887
	}
3888

3889
	tsk->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD);
3890
	current->reclaim_state = NULL;
3891

L
Linus Torvalds 已提交
3892 3893 3894 3895
	return 0;
}

/*
3896 3897 3898 3899 3900
 * A zone is low on free memory or too fragmented for high-order memory.  If
 * kswapd should reclaim (direct reclaim is deferred), wake it up for the zone's
 * pgdat.  It will wake up kcompactd after reclaiming memory.  If kswapd reclaim
 * has failed or is not needed, still wake up kcompactd if only compaction is
 * needed.
L
Linus Torvalds 已提交
3901
 */
3902 3903
void wakeup_kswapd(struct zone *zone, gfp_t gfp_flags, int order,
		   enum zone_type classzone_idx)
L
Linus Torvalds 已提交
3904 3905 3906
{
	pg_data_t *pgdat;

3907
	if (!managed_zone(zone))
L
Linus Torvalds 已提交
3908 3909
		return;

3910
	if (!cpuset_zone_allowed(zone, gfp_flags))
L
Linus Torvalds 已提交
3911
		return;
3912
	pgdat = zone->zone_pgdat;
3913 3914
	pgdat->kswapd_classzone_idx = kswapd_classzone_idx(pgdat,
							   classzone_idx);
3915
	pgdat->kswapd_order = max(pgdat->kswapd_order, order);
3916
	if (!waitqueue_active(&pgdat->kswapd_wait))
L
Linus Torvalds 已提交
3917
		return;
3918

3919 3920
	/* Hopeless node, leave it to direct reclaim if possible */
	if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES ||
3921 3922
	    (pgdat_balanced(pgdat, order, classzone_idx) &&
	     !pgdat_watermark_boosted(pgdat, classzone_idx))) {
3923 3924 3925 3926 3927 3928 3929 3930 3931
		/*
		 * There may be plenty of free memory available, but it's too
		 * fragmented for high-order allocations.  Wake up kcompactd
		 * and rely on compaction_suitable() to determine if it's
		 * needed.  If it fails, it will defer subsequent attempts to
		 * ratelimit its work.
		 */
		if (!(gfp_flags & __GFP_DIRECT_RECLAIM))
			wakeup_kcompactd(pgdat, order, classzone_idx);
3932
		return;
3933
	}
3934

3935 3936
	trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, classzone_idx, order,
				      gfp_flags);
3937
	wake_up_interruptible(&pgdat->kswapd_wait);
L
Linus Torvalds 已提交
3938 3939
}

3940
#ifdef CONFIG_HIBERNATION
L
Linus Torvalds 已提交
3941
/*
3942
 * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
3943 3944 3945 3946 3947
 * freed pages.
 *
 * Rather than trying to age LRUs the aim is to preserve the overall
 * LRU order by reclaiming preferentially
 * inactive > active > active referenced > active mapped
L
Linus Torvalds 已提交
3948
 */
3949
unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
L
Linus Torvalds 已提交
3950
{
3951 3952
	struct reclaim_state reclaim_state;
	struct scan_control sc = {
3953
		.nr_to_reclaim = nr_to_reclaim,
3954
		.gfp_mask = GFP_HIGHUSER_MOVABLE,
3955
		.reclaim_idx = MAX_NR_ZONES - 1,
3956
		.priority = DEF_PRIORITY,
3957
		.may_writepage = 1,
3958 3959
		.may_unmap = 1,
		.may_swap = 1,
3960
		.hibernation_mode = 1,
L
Linus Torvalds 已提交
3961
	};
3962
	struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
3963 3964
	struct task_struct *p = current;
	unsigned long nr_reclaimed;
3965
	unsigned int noreclaim_flag;
L
Linus Torvalds 已提交
3966

3967
	fs_reclaim_acquire(sc.gfp_mask);
3968
	noreclaim_flag = memalloc_noreclaim_save();
3969 3970
	reclaim_state.reclaimed_slab = 0;
	p->reclaim_state = &reclaim_state;
3971

3972
	nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
3973

3974
	p->reclaim_state = NULL;
3975
	memalloc_noreclaim_restore(noreclaim_flag);
3976
	fs_reclaim_release(sc.gfp_mask);
3977

3978
	return nr_reclaimed;
L
Linus Torvalds 已提交
3979
}
3980
#endif /* CONFIG_HIBERNATION */
L
Linus Torvalds 已提交
3981 3982 3983 3984 3985

/* It's optimal to keep kswapds on the same CPUs as their memory, but
   not required for correctness.  So if the last cpu in a node goes
   away, we get changed to run anywhere: as the first one comes back,
   restore their cpu bindings. */
3986
static int kswapd_cpu_online(unsigned int cpu)
L
Linus Torvalds 已提交
3987
{
3988
	int nid;
L
Linus Torvalds 已提交
3989

3990 3991 3992
	for_each_node_state(nid, N_MEMORY) {
		pg_data_t *pgdat = NODE_DATA(nid);
		const struct cpumask *mask;
3993

3994
		mask = cpumask_of_node(pgdat->node_id);
3995

3996 3997 3998
		if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
			/* One of our CPUs online: restore mask */
			set_cpus_allowed_ptr(pgdat->kswapd, mask);
L
Linus Torvalds 已提交
3999
	}
4000
	return 0;
L
Linus Torvalds 已提交
4001 4002
}

4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017
/*
 * This kswapd start function will be called by init and node-hot-add.
 * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
 */
int kswapd_run(int nid)
{
	pg_data_t *pgdat = NODE_DATA(nid);
	int ret = 0;

	if (pgdat->kswapd)
		return 0;

	pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
	if (IS_ERR(pgdat->kswapd)) {
		/* failure at boot is fatal */
4018
		BUG_ON(system_state < SYSTEM_RUNNING);
4019 4020
		pr_err("Failed to start kswapd on node %d\n", nid);
		ret = PTR_ERR(pgdat->kswapd);
4021
		pgdat->kswapd = NULL;
4022 4023 4024 4025
	}
	return ret;
}

4026
/*
4027
 * Called by memory hotplug when all memory in a node is offlined.  Caller must
4028
 * hold mem_hotplug_begin/end().
4029 4030 4031 4032 4033
 */
void kswapd_stop(int nid)
{
	struct task_struct *kswapd = NODE_DATA(nid)->kswapd;

4034
	if (kswapd) {
4035
		kthread_stop(kswapd);
4036 4037
		NODE_DATA(nid)->kswapd = NULL;
	}
4038 4039
}

L
Linus Torvalds 已提交
4040 4041
static int __init kswapd_init(void)
{
4042
	int nid, ret;
4043

L
Linus Torvalds 已提交
4044
	swap_setup();
4045
	for_each_node_state(nid, N_MEMORY)
4046
 		kswapd_run(nid);
4047 4048 4049 4050
	ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN,
					"mm/vmscan:online", kswapd_cpu_online,
					NULL);
	WARN_ON(ret < 0);
L
Linus Torvalds 已提交
4051 4052 4053 4054
	return 0;
}

module_init(kswapd_init)
4055 4056 4057

#ifdef CONFIG_NUMA
/*
4058
 * Node reclaim mode
4059
 *
4060
 * If non-zero call node_reclaim when the number of free pages falls below
4061 4062
 * the watermarks.
 */
4063
int node_reclaim_mode __read_mostly;
4064

4065
#define RECLAIM_OFF 0
4066
#define RECLAIM_ZONE (1<<0)	/* Run shrink_inactive_list on the zone */
4067
#define RECLAIM_WRITE (1<<1)	/* Writeout pages during reclaim */
4068
#define RECLAIM_UNMAP (1<<2)	/* Unmap pages during reclaim */
4069

4070
/*
4071
 * Priority for NODE_RECLAIM. This determines the fraction of pages
4072 4073 4074
 * of a node considered for each zone_reclaim. 4 scans 1/16th of
 * a zone.
 */
4075
#define NODE_RECLAIM_PRIORITY 4
4076

4077
/*
4078
 * Percentage of pages in a zone that must be unmapped for node_reclaim to
4079 4080 4081 4082
 * occur.
 */
int sysctl_min_unmapped_ratio = 1;

4083 4084 4085 4086 4087 4088
/*
 * If the number of slab pages in a zone grows beyond this percentage then
 * slab reclaim needs to occur.
 */
int sysctl_min_slab_ratio = 5;

4089
static inline unsigned long node_unmapped_file_pages(struct pglist_data *pgdat)
4090
{
4091 4092 4093
	unsigned long file_mapped = node_page_state(pgdat, NR_FILE_MAPPED);
	unsigned long file_lru = node_page_state(pgdat, NR_INACTIVE_FILE) +
		node_page_state(pgdat, NR_ACTIVE_FILE);
4094 4095 4096 4097 4098 4099 4100 4101 4102 4103

	/*
	 * It's possible for there to be more file mapped pages than
	 * accounted for by the pages on the file LRU lists because
	 * tmpfs pages accounted for as ANON can also be FILE_MAPPED
	 */
	return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
}

/* Work out how many page cache pages we can reclaim in this reclaim_mode */
4104
static unsigned long node_pagecache_reclaimable(struct pglist_data *pgdat)
4105
{
4106 4107
	unsigned long nr_pagecache_reclaimable;
	unsigned long delta = 0;
4108 4109

	/*
4110
	 * If RECLAIM_UNMAP is set, then all file pages are considered
4111
	 * potentially reclaimable. Otherwise, we have to worry about
4112
	 * pages like swapcache and node_unmapped_file_pages() provides
4113 4114
	 * a better estimate
	 */
4115 4116
	if (node_reclaim_mode & RECLAIM_UNMAP)
		nr_pagecache_reclaimable = node_page_state(pgdat, NR_FILE_PAGES);
4117
	else
4118
		nr_pagecache_reclaimable = node_unmapped_file_pages(pgdat);
4119 4120

	/* If we can't clean pages, remove dirty pages from consideration */
4121 4122
	if (!(node_reclaim_mode & RECLAIM_WRITE))
		delta += node_page_state(pgdat, NR_FILE_DIRTY);
4123 4124 4125 4126 4127 4128 4129 4130

	/* Watch for any possible underflows due to delta */
	if (unlikely(delta > nr_pagecache_reclaimable))
		delta = nr_pagecache_reclaimable;

	return nr_pagecache_reclaimable - delta;
}

4131
/*
4132
 * Try to free up some pages from this node through reclaim.
4133
 */
4134
static int __node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order)
4135
{
4136
	/* Minimum pages needed in order to stay on node */
4137
	const unsigned long nr_pages = 1 << order;
4138 4139
	struct task_struct *p = current;
	struct reclaim_state reclaim_state;
4140
	unsigned int noreclaim_flag;
4141
	struct scan_control sc = {
4142
		.nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
4143
		.gfp_mask = current_gfp_context(gfp_mask),
4144
		.order = order,
4145 4146 4147
		.priority = NODE_RECLAIM_PRIORITY,
		.may_writepage = !!(node_reclaim_mode & RECLAIM_WRITE),
		.may_unmap = !!(node_reclaim_mode & RECLAIM_UNMAP),
4148
		.may_swap = 1,
4149
		.reclaim_idx = gfp_zone(gfp_mask),
4150
	};
4151 4152

	cond_resched();
4153
	fs_reclaim_acquire(sc.gfp_mask);
4154
	/*
4155
	 * We need to be able to allocate from the reserves for RECLAIM_UNMAP
4156
	 * and we also need to be able to write out pages for RECLAIM_WRITE
4157
	 * and RECLAIM_UNMAP.
4158
	 */
4159 4160
	noreclaim_flag = memalloc_noreclaim_save();
	p->flags |= PF_SWAPWRITE;
4161 4162
	reclaim_state.reclaimed_slab = 0;
	p->reclaim_state = &reclaim_state;
4163

4164
	if (node_pagecache_reclaimable(pgdat) > pgdat->min_unmapped_pages) {
4165
		/*
4166
		 * Free memory by calling shrink node with increasing
4167 4168 4169
		 * priorities until we have enough memory freed.
		 */
		do {
4170
			shrink_node(pgdat, &sc);
4171
		} while (sc.nr_reclaimed < nr_pages && --sc.priority >= 0);
4172
	}
4173

4174
	p->reclaim_state = NULL;
4175 4176
	current->flags &= ~PF_SWAPWRITE;
	memalloc_noreclaim_restore(noreclaim_flag);
4177
	fs_reclaim_release(sc.gfp_mask);
4178
	return sc.nr_reclaimed >= nr_pages;
4179
}
4180

4181
int node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order)
4182
{
4183
	int ret;
4184 4185

	/*
4186
	 * Node reclaim reclaims unmapped file backed pages and
4187
	 * slab pages if we are over the defined limits.
4188
	 *
4189 4190
	 * A small portion of unmapped file backed pages is needed for
	 * file I/O otherwise pages read by file I/O will be immediately
4191 4192
	 * thrown out if the node is overallocated. So we do not reclaim
	 * if less than a specified percentage of the node is used by
4193
	 * unmapped file backed pages.
4194
	 */
4195
	if (node_pagecache_reclaimable(pgdat) <= pgdat->min_unmapped_pages &&
4196
	    node_page_state(pgdat, NR_SLAB_RECLAIMABLE) <= pgdat->min_slab_pages)
4197
		return NODE_RECLAIM_FULL;
4198 4199

	/*
4200
	 * Do not scan if the allocation should not be delayed.
4201
	 */
4202
	if (!gfpflags_allow_blocking(gfp_mask) || (current->flags & PF_MEMALLOC))
4203
		return NODE_RECLAIM_NOSCAN;
4204 4205

	/*
4206
	 * Only run node reclaim on the local node or on nodes that do not
4207 4208 4209 4210
	 * have associated processors. This will favor the local processor
	 * over remote processors and spread off node memory allocations
	 * as wide as possible.
	 */
4211 4212
	if (node_state(pgdat->node_id, N_CPU) && pgdat->node_id != numa_node_id())
		return NODE_RECLAIM_NOSCAN;
4213

4214 4215
	if (test_and_set_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags))
		return NODE_RECLAIM_NOSCAN;
4216

4217 4218
	ret = __node_reclaim(pgdat, gfp_mask, order);
	clear_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags);
4219

4220 4221 4222
	if (!ret)
		count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);

4223
	return ret;
4224
}
4225
#endif
L
Lee Schermerhorn 已提交
4226 4227 4228 4229 4230 4231

/*
 * page_evictable - test whether a page is evictable
 * @page: the page to test
 *
 * Test whether page is evictable--i.e., should be placed on active/inactive
4232
 * lists vs unevictable list.
L
Lee Schermerhorn 已提交
4233 4234
 *
 * Reasons page might not be evictable:
4235
 * (1) page's mapping marked unevictable
N
Nick Piggin 已提交
4236
 * (2) page is part of an mlocked VMA
4237
 *
L
Lee Schermerhorn 已提交
4238
 */
4239
int page_evictable(struct page *page)
L
Lee Schermerhorn 已提交
4240
{
4241 4242 4243 4244 4245 4246 4247
	int ret;

	/* Prevent address_space of inode and swap cache from being freed */
	rcu_read_lock();
	ret = !mapping_unevictable(page_mapping(page)) && !PageMlocked(page);
	rcu_read_unlock();
	return ret;
L
Lee Schermerhorn 已提交
4248
}
4249 4250

/**
4251 4252 4253
 * check_move_unevictable_pages - check pages for evictability and move to
 * appropriate zone lru list
 * @pvec: pagevec with lru pages to check
4254
 *
4255 4256 4257
 * Checks pages for evictability, if an evictable page is in the unevictable
 * lru list, moves it to the appropriate evictable lru list. This function
 * should be only used for lru pages.
4258
 */
4259
void check_move_unevictable_pages(struct pagevec *pvec)
4260
{
4261
	struct lruvec *lruvec;
4262
	struct pglist_data *pgdat = NULL;
4263 4264 4265
	int pgscanned = 0;
	int pgrescued = 0;
	int i;
4266

4267 4268
	for (i = 0; i < pvec->nr; i++) {
		struct page *page = pvec->pages[i];
4269
		struct pglist_data *pagepgdat = page_pgdat(page);
4270

4271
		pgscanned++;
4272 4273 4274 4275 4276
		if (pagepgdat != pgdat) {
			if (pgdat)
				spin_unlock_irq(&pgdat->lru_lock);
			pgdat = pagepgdat;
			spin_lock_irq(&pgdat->lru_lock);
4277
		}
4278
		lruvec = mem_cgroup_page_lruvec(page, pgdat);
4279

4280 4281
		if (!PageLRU(page) || !PageUnevictable(page))
			continue;
4282

4283
		if (page_evictable(page)) {
4284 4285
			enum lru_list lru = page_lru_base_type(page);

4286
			VM_BUG_ON_PAGE(PageActive(page), page);
4287
			ClearPageUnevictable(page);
4288 4289
			del_page_from_lru_list(page, lruvec, LRU_UNEVICTABLE);
			add_page_to_lru_list(page, lruvec, lru);
4290
			pgrescued++;
4291
		}
4292
	}
4293

4294
	if (pgdat) {
4295 4296
		__count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued);
		__count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
4297
		spin_unlock_irq(&pgdat->lru_lock);
4298 4299
	}
}
4300
EXPORT_SYMBOL_GPL(check_move_unevictable_pages);