vmscan.c 112.0 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13
/*
 *  linux/mm/vmscan.c
 *
 *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
 *
 *  Swap reorganised 29.12.95, Stephen Tweedie.
 *  kswapd added: 7.1.96  sct
 *  Removed kswapd_ctl limits, and swap out as many pages as needed
 *  to bring the system back to freepages.high: 2.4.97, Rik van Riel.
 *  Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
 *  Multiqueue VM started 5.8.00, Rik van Riel.
 */

14 15
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt

L
Linus Torvalds 已提交
16 17
#include <linux/mm.h>
#include <linux/module.h>
18
#include <linux/gfp.h>
L
Linus Torvalds 已提交
19 20 21 22 23
#include <linux/kernel_stat.h>
#include <linux/swap.h>
#include <linux/pagemap.h>
#include <linux/init.h>
#include <linux/highmem.h>
24
#include <linux/vmpressure.h>
25
#include <linux/vmstat.h>
L
Linus Torvalds 已提交
26 27 28 29 30 31 32 33 34 35 36
#include <linux/file.h>
#include <linux/writeback.h>
#include <linux/blkdev.h>
#include <linux/buffer_head.h>	/* for try_to_release_page(),
					buffer_heads_over_limit */
#include <linux/mm_inline.h>
#include <linux/backing-dev.h>
#include <linux/rmap.h>
#include <linux/topology.h>
#include <linux/cpu.h>
#include <linux/cpuset.h>
37
#include <linux/compaction.h>
L
Linus Torvalds 已提交
38 39
#include <linux/notifier.h>
#include <linux/rwsem.h>
40
#include <linux/delay.h>
41
#include <linux/kthread.h>
42
#include <linux/freezer.h>
43
#include <linux/memcontrol.h>
44
#include <linux/delayacct.h>
45
#include <linux/sysctl.h>
46
#include <linux/oom.h>
47
#include <linux/prefetch.h>
48
#include <linux/printk.h>
49
#include <linux/dax.h>
L
Linus Torvalds 已提交
50 51 52 53 54

#include <asm/tlbflush.h>
#include <asm/div64.h>

#include <linux/swapops.h>
55
#include <linux/balloon_compaction.h>
L
Linus Torvalds 已提交
56

57 58
#include "internal.h"

59 60 61
#define CREATE_TRACE_POINTS
#include <trace/events/vmscan.h>

L
Linus Torvalds 已提交
62
struct scan_control {
63 64 65
	/* How many pages shrink_list() should reclaim */
	unsigned long nr_to_reclaim;

L
Linus Torvalds 已提交
66
	/* This context's GFP mask */
A
Al Viro 已提交
67
	gfp_t gfp_mask;
L
Linus Torvalds 已提交
68

69
	/* Allocation order */
A
Andy Whitcroft 已提交
70
	int order;
71

72 73 74 75 76
	/*
	 * Nodemask of nodes allowed by the caller. If NULL, all nodes
	 * are scanned.
	 */
	nodemask_t	*nodemask;
77

78 79 80 81 82
	/*
	 * The memory cgroup that hit its limit and as a result is the
	 * primary target of this reclaim invocation.
	 */
	struct mem_cgroup *target_mem_cgroup;
83

84 85 86
	/* Scan (total_size >> priority) pages at once */
	int priority;

87 88 89
	/* The highest zone to isolate pages for reclaim from */
	enum zone_type reclaim_idx;

90 91 92 93 94 95 96 97
	unsigned int may_writepage:1;

	/* Can mapped pages be reclaimed? */
	unsigned int may_unmap:1;

	/* Can pages be swapped as part of reclaim? */
	unsigned int may_swap:1;

98 99 100
	/* Can cgroups be reclaimed below their normal consumption range? */
	unsigned int may_thrash:1;

101 102 103 104 105 106 107 108 109 110
	unsigned int hibernation_mode:1;

	/* One of the zones is ready for compaction */
	unsigned int compaction_ready:1;

	/* Incremented by the number of inactive pages that were scanned */
	unsigned long nr_scanned;

	/* Number of pages freed so far during a call to shrink_zones() */
	unsigned long nr_reclaimed;
L
Linus Torvalds 已提交
111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144
};

#ifdef ARCH_HAS_PREFETCH
#define prefetch_prev_lru_page(_page, _base, _field)			\
	do {								\
		if ((_page)->lru.prev != _base) {			\
			struct page *prev;				\
									\
			prev = lru_to_page(&(_page->lru));		\
			prefetch(&prev->_field);			\
		}							\
	} while (0)
#else
#define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
#endif

#ifdef ARCH_HAS_PREFETCHW
#define prefetchw_prev_lru_page(_page, _base, _field)			\
	do {								\
		if ((_page)->lru.prev != _base) {			\
			struct page *prev;				\
									\
			prev = lru_to_page(&(_page->lru));		\
			prefetchw(&prev->_field);			\
		}							\
	} while (0)
#else
#define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
#endif

/*
 * From 0 .. 100.  Higher means more swappy.
 */
int vm_swappiness = 60;
145 146 147 148 149
/*
 * The total number of pages which are beyond the high watermark within all
 * zones.
 */
unsigned long vm_total_pages;
L
Linus Torvalds 已提交
150 151 152 153

static LIST_HEAD(shrinker_list);
static DECLARE_RWSEM(shrinker_rwsem);

A
Andrew Morton 已提交
154
#ifdef CONFIG_MEMCG
155 156
static bool global_reclaim(struct scan_control *sc)
{
157
	return !sc->target_mem_cgroup;
158
}
159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179

/**
 * sane_reclaim - is the usual dirty throttling mechanism operational?
 * @sc: scan_control in question
 *
 * The normal page dirty throttling mechanism in balance_dirty_pages() is
 * completely broken with the legacy memcg and direct stalling in
 * shrink_page_list() is used for throttling instead, which lacks all the
 * niceties such as fairness, adaptive pausing, bandwidth proportional
 * allocation and configurability.
 *
 * This function tests whether the vmscan currently in progress can assume
 * that the normal dirty throttling mechanism is operational.
 */
static bool sane_reclaim(struct scan_control *sc)
{
	struct mem_cgroup *memcg = sc->target_mem_cgroup;

	if (!memcg)
		return true;
#ifdef CONFIG_CGROUP_WRITEBACK
180
	if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
181 182 183 184
		return true;
#endif
	return false;
}
185
#else
186 187 188 189
static bool global_reclaim(struct scan_control *sc)
{
	return true;
}
190 191 192 193 194

static bool sane_reclaim(struct scan_control *sc)
{
	return true;
}
195 196
#endif

197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214
/*
 * This misses isolated pages which are not accounted for to save counters.
 * As the data only determines if reclaim or compaction continues, it is
 * not expected that isolated pages will be a dominating factor.
 */
unsigned long zone_reclaimable_pages(struct zone *zone)
{
	unsigned long nr;

	nr = zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_FILE) +
		zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_FILE);
	if (get_nr_swap_pages() > 0)
		nr += zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_ANON) +
			zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_ANON);

	return nr;
}

M
Mel Gorman 已提交
215 216 217 218 219 220 221
unsigned long pgdat_reclaimable_pages(struct pglist_data *pgdat)
{
	unsigned long nr;

	nr = node_page_state_snapshot(pgdat, NR_ACTIVE_FILE) +
	     node_page_state_snapshot(pgdat, NR_INACTIVE_FILE) +
	     node_page_state_snapshot(pgdat, NR_ISOLATED_FILE);
222 223

	if (get_nr_swap_pages() > 0)
M
Mel Gorman 已提交
224 225 226
		nr += node_page_state_snapshot(pgdat, NR_ACTIVE_ANON) +
		      node_page_state_snapshot(pgdat, NR_INACTIVE_ANON) +
		      node_page_state_snapshot(pgdat, NR_ISOLATED_ANON);
227 228 229 230

	return nr;
}

M
Mel Gorman 已提交
231
bool pgdat_reclaimable(struct pglist_data *pgdat)
232
{
M
Mel Gorman 已提交
233 234
	return node_page_state_snapshot(pgdat, NR_PAGES_SCANNED) <
		pgdat_reclaimable_pages(pgdat) * 6;
235 236
}

237
unsigned long lruvec_lru_size(struct lruvec *lruvec, enum lru_list lru)
238
{
239
	if (!mem_cgroup_disabled())
240
		return mem_cgroup_get_lru_size(lruvec, lru);
241

M
Mel Gorman 已提交
242
	return node_page_state(lruvec_pgdat(lruvec), NR_LRU_BASE + lru);
243 244
}

245 246 247 248 249 250 251 252 253 254
unsigned long lruvec_zone_lru_size(struct lruvec *lruvec, enum lru_list lru,
				   int zone_idx)
{
	if (!mem_cgroup_disabled())
		return mem_cgroup_get_zone_lru_size(lruvec, lru, zone_idx);

	return zone_page_state(&lruvec_pgdat(lruvec)->node_zones[zone_idx],
			       NR_ZONE_LRU_BASE + lru);
}

L
Linus Torvalds 已提交
255
/*
G
Glauber Costa 已提交
256
 * Add a shrinker callback to be called from the vm.
L
Linus Torvalds 已提交
257
 */
G
Glauber Costa 已提交
258
int register_shrinker(struct shrinker *shrinker)
L
Linus Torvalds 已提交
259
{
G
Glauber Costa 已提交
260 261 262 263 264 265 266 267 268
	size_t size = sizeof(*shrinker->nr_deferred);

	if (shrinker->flags & SHRINKER_NUMA_AWARE)
		size *= nr_node_ids;

	shrinker->nr_deferred = kzalloc(size, GFP_KERNEL);
	if (!shrinker->nr_deferred)
		return -ENOMEM;

269 270 271
	down_write(&shrinker_rwsem);
	list_add_tail(&shrinker->list, &shrinker_list);
	up_write(&shrinker_rwsem);
G
Glauber Costa 已提交
272
	return 0;
L
Linus Torvalds 已提交
273
}
274
EXPORT_SYMBOL(register_shrinker);
L
Linus Torvalds 已提交
275 276 277 278

/*
 * Remove one
 */
279
void unregister_shrinker(struct shrinker *shrinker)
L
Linus Torvalds 已提交
280 281 282 283
{
	down_write(&shrinker_rwsem);
	list_del(&shrinker->list);
	up_write(&shrinker_rwsem);
284
	kfree(shrinker->nr_deferred);
L
Linus Torvalds 已提交
285
}
286
EXPORT_SYMBOL(unregister_shrinker);
L
Linus Torvalds 已提交
287 288

#define SHRINK_BATCH 128
G
Glauber Costa 已提交
289

290 291 292 293
static unsigned long do_shrink_slab(struct shrink_control *shrinkctl,
				    struct shrinker *shrinker,
				    unsigned long nr_scanned,
				    unsigned long nr_eligible)
G
Glauber Costa 已提交
294 295 296 297
{
	unsigned long freed = 0;
	unsigned long long delta;
	long total_scan;
298
	long freeable;
G
Glauber Costa 已提交
299 300 301 302 303
	long nr;
	long new_nr;
	int nid = shrinkctl->nid;
	long batch_size = shrinker->batch ? shrinker->batch
					  : SHRINK_BATCH;
304
	long scanned = 0, next_deferred;
G
Glauber Costa 已提交
305

306 307
	freeable = shrinker->count_objects(shrinker, shrinkctl);
	if (freeable == 0)
G
Glauber Costa 已提交
308 309 310 311 312 313 314 315 316 317
		return 0;

	/*
	 * copy the current shrinker scan count into a local variable
	 * and zero it so that other concurrent shrinker invocations
	 * don't also do this scanning work.
	 */
	nr = atomic_long_xchg(&shrinker->nr_deferred[nid], 0);

	total_scan = nr;
318
	delta = (4 * nr_scanned) / shrinker->seeks;
319
	delta *= freeable;
320
	do_div(delta, nr_eligible + 1);
G
Glauber Costa 已提交
321 322
	total_scan += delta;
	if (total_scan < 0) {
323
		pr_err("shrink_slab: %pF negative objects to delete nr=%ld\n",
D
Dave Chinner 已提交
324
		       shrinker->scan_objects, total_scan);
325
		total_scan = freeable;
326 327 328
		next_deferred = nr;
	} else
		next_deferred = total_scan;
G
Glauber Costa 已提交
329 330 331 332 333 334 335

	/*
	 * We need to avoid excessive windup on filesystem shrinkers
	 * due to large numbers of GFP_NOFS allocations causing the
	 * shrinkers to return -1 all the time. This results in a large
	 * nr being built up so when a shrink that can do some work
	 * comes along it empties the entire cache due to nr >>>
336
	 * freeable. This is bad for sustaining a working set in
G
Glauber Costa 已提交
337 338 339 340 341
	 * memory.
	 *
	 * Hence only allow the shrinker to scan the entire cache when
	 * a large delta change is calculated directly.
	 */
342 343
	if (delta < freeable / 4)
		total_scan = min(total_scan, freeable / 2);
G
Glauber Costa 已提交
344 345 346 347 348 349

	/*
	 * Avoid risking looping forever due to too large nr value:
	 * never try to free more than twice the estimate number of
	 * freeable entries.
	 */
350 351
	if (total_scan > freeable * 2)
		total_scan = freeable * 2;
G
Glauber Costa 已提交
352 353

	trace_mm_shrink_slab_start(shrinker, shrinkctl, nr,
354 355
				   nr_scanned, nr_eligible,
				   freeable, delta, total_scan);
G
Glauber Costa 已提交
356

357 358 359 360 361 362 363 364 365 366 367
	/*
	 * Normally, we should not scan less than batch_size objects in one
	 * pass to avoid too frequent shrinker calls, but if the slab has less
	 * than batch_size objects in total and we are really tight on memory,
	 * we will try to reclaim all available objects, otherwise we can end
	 * up failing allocations although there are plenty of reclaimable
	 * objects spread over several slabs with usage less than the
	 * batch_size.
	 *
	 * We detect the "tight on memory" situations by looking at the total
	 * number of objects we want to scan (total_scan). If it is greater
368
	 * than the total number of objects on slab (freeable), we must be
369 370 371 372
	 * scanning at high prio and therefore should try to reclaim as much as
	 * possible.
	 */
	while (total_scan >= batch_size ||
373
	       total_scan >= freeable) {
D
Dave Chinner 已提交
374
		unsigned long ret;
375
		unsigned long nr_to_scan = min(batch_size, total_scan);
G
Glauber Costa 已提交
376

377
		shrinkctl->nr_to_scan = nr_to_scan;
D
Dave Chinner 已提交
378 379 380 381
		ret = shrinker->scan_objects(shrinker, shrinkctl);
		if (ret == SHRINK_STOP)
			break;
		freed += ret;
G
Glauber Costa 已提交
382

383 384
		count_vm_events(SLABS_SCANNED, nr_to_scan);
		total_scan -= nr_to_scan;
385
		scanned += nr_to_scan;
G
Glauber Costa 已提交
386 387 388 389

		cond_resched();
	}

390 391 392 393
	if (next_deferred >= scanned)
		next_deferred -= scanned;
	else
		next_deferred = 0;
G
Glauber Costa 已提交
394 395 396 397 398
	/*
	 * move the unused scan count back into the shrinker in a
	 * manner that handles concurrent updates. If we exhausted the
	 * scan, there is no need to do an update.
	 */
399 400
	if (next_deferred > 0)
		new_nr = atomic_long_add_return(next_deferred,
G
Glauber Costa 已提交
401 402 403 404
						&shrinker->nr_deferred[nid]);
	else
		new_nr = atomic_long_read(&shrinker->nr_deferred[nid]);

405
	trace_mm_shrink_slab_end(shrinker, nid, freed, nr, new_nr, total_scan);
G
Glauber Costa 已提交
406
	return freed;
407 408
}

409
/**
410
 * shrink_slab - shrink slab caches
411 412
 * @gfp_mask: allocation context
 * @nid: node whose slab caches to target
413
 * @memcg: memory cgroup whose slab caches to target
414 415
 * @nr_scanned: pressure numerator
 * @nr_eligible: pressure denominator
L
Linus Torvalds 已提交
416
 *
417
 * Call the shrink functions to age shrinkable caches.
L
Linus Torvalds 已提交
418
 *
419 420
 * @nid is passed along to shrinkers with SHRINKER_NUMA_AWARE set,
 * unaware shrinkers will receive a node id of 0 instead.
L
Linus Torvalds 已提交
421
 *
422 423
 * @memcg specifies the memory cgroup to target. If it is not NULL,
 * only shrinkers with SHRINKER_MEMCG_AWARE set will be called to scan
424 425
 * objects from the memory cgroup specified. Otherwise, only unaware
 * shrinkers are called.
426
 *
427 428 429 430 431 432 433
 * @nr_scanned and @nr_eligible form a ratio that indicate how much of
 * the available objects should be scanned.  Page reclaim for example
 * passes the number of pages scanned and the number of pages on the
 * LRU lists that it considered on @nid, plus a bias in @nr_scanned
 * when it encountered mapped pages.  The ratio is further biased by
 * the ->seeks setting of the shrink function, which indicates the
 * cost to recreate an object relative to that of an LRU page.
434
 *
435
 * Returns the number of reclaimed slab objects.
L
Linus Torvalds 已提交
436
 */
437 438 439 440
static unsigned long shrink_slab(gfp_t gfp_mask, int nid,
				 struct mem_cgroup *memcg,
				 unsigned long nr_scanned,
				 unsigned long nr_eligible)
L
Linus Torvalds 已提交
441 442
{
	struct shrinker *shrinker;
D
Dave Chinner 已提交
443
	unsigned long freed = 0;
L
Linus Torvalds 已提交
444

445
	if (memcg && (!memcg_kmem_enabled() || !mem_cgroup_online(memcg)))
446 447
		return 0;

448 449
	if (nr_scanned == 0)
		nr_scanned = SWAP_CLUSTER_MAX;
L
Linus Torvalds 已提交
450

451
	if (!down_read_trylock(&shrinker_rwsem)) {
D
Dave Chinner 已提交
452 453 454 455 456 457 458
		/*
		 * If we would return 0, our callers would understand that we
		 * have nothing else to shrink and give up trying. By returning
		 * 1 we keep it going and assume we'll be able to shrink next
		 * time.
		 */
		freed = 1;
459 460
		goto out;
	}
L
Linus Torvalds 已提交
461 462

	list_for_each_entry(shrinker, &shrinker_list, list) {
463 464 465
		struct shrink_control sc = {
			.gfp_mask = gfp_mask,
			.nid = nid,
466
			.memcg = memcg,
467
		};
468

469 470 471 472 473 474 475
		/*
		 * If kernel memory accounting is disabled, we ignore
		 * SHRINKER_MEMCG_AWARE flag and call all shrinkers
		 * passing NULL for memcg.
		 */
		if (memcg_kmem_enabled() &&
		    !!memcg != !!(shrinker->flags & SHRINKER_MEMCG_AWARE))
476 477
			continue;

478 479
		if (!(shrinker->flags & SHRINKER_NUMA_AWARE))
			sc.nid = 0;
L
Linus Torvalds 已提交
480

481
		freed += do_shrink_slab(&sc, shrinker, nr_scanned, nr_eligible);
L
Linus Torvalds 已提交
482
	}
483

L
Linus Torvalds 已提交
484
	up_read(&shrinker_rwsem);
485 486
out:
	cond_resched();
D
Dave Chinner 已提交
487
	return freed;
L
Linus Torvalds 已提交
488 489
}

490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512
void drop_slab_node(int nid)
{
	unsigned long freed;

	do {
		struct mem_cgroup *memcg = NULL;

		freed = 0;
		do {
			freed += shrink_slab(GFP_KERNEL, nid, memcg,
					     1000, 1000);
		} while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)) != NULL);
	} while (freed > 10);
}

void drop_slab(void)
{
	int nid;

	for_each_online_node(nid)
		drop_slab_node(nid);
}

L
Linus Torvalds 已提交
513 514
static inline int is_page_cache_freeable(struct page *page)
{
515 516 517 518 519
	/*
	 * A freeable page cache page is referenced only by the caller
	 * that isolated the page, the page cache radix tree and
	 * optional buffer heads at page->private.
	 */
520
	return page_count(page) - page_has_private(page) == 2;
L
Linus Torvalds 已提交
521 522
}

523
static int may_write_to_inode(struct inode *inode, struct scan_control *sc)
L
Linus Torvalds 已提交
524
{
525
	if (current->flags & PF_SWAPWRITE)
L
Linus Torvalds 已提交
526
		return 1;
527
	if (!inode_write_congested(inode))
L
Linus Torvalds 已提交
528
		return 1;
529
	if (inode_to_bdi(inode) == current->backing_dev_info)
L
Linus Torvalds 已提交
530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548
		return 1;
	return 0;
}

/*
 * We detected a synchronous write error writing a page out.  Probably
 * -ENOSPC.  We need to propagate that into the address_space for a subsequent
 * fsync(), msync() or close().
 *
 * The tricky part is that after writepage we cannot touch the mapping: nothing
 * prevents it from being freed up.  But we have a ref on the page and once
 * that page is locked, the mapping is pinned.
 *
 * We're allowed to run sleeping lock_page() here because we know the caller has
 * __GFP_FS.
 */
static void handle_write_error(struct address_space *mapping,
				struct page *page, int error)
{
J
Jens Axboe 已提交
549
	lock_page(page);
550 551
	if (page_mapping(page) == mapping)
		mapping_set_error(mapping, error);
L
Linus Torvalds 已提交
552 553 554
	unlock_page(page);
}

555 556 557 558 559 560 561 562 563 564 565 566
/* possible outcome of pageout() */
typedef enum {
	/* failed to write page out, page is locked */
	PAGE_KEEP,
	/* move page to the active list, page is locked */
	PAGE_ACTIVATE,
	/* page has been sent to the disk successfully, page is unlocked */
	PAGE_SUCCESS,
	/* page is clean and locked */
	PAGE_CLEAN,
} pageout_t;

L
Linus Torvalds 已提交
567
/*
A
Andrew Morton 已提交
568 569
 * pageout is called by shrink_page_list() for each dirty page.
 * Calls ->writepage().
L
Linus Torvalds 已提交
570
 */
571
static pageout_t pageout(struct page *page, struct address_space *mapping,
572
			 struct scan_control *sc)
L
Linus Torvalds 已提交
573 574 575 576 577 578 579 580
{
	/*
	 * If the page is dirty, only perform writeback if that write
	 * will be non-blocking.  To prevent this allocation from being
	 * stalled by pagecache activity.  But note that there may be
	 * stalls if we need to run get_block().  We could test
	 * PagePrivate for that.
	 *
581
	 * If this process is currently in __generic_file_write_iter() against
L
Linus Torvalds 已提交
582 583 584 585 586 587 588 589 590 591 592 593 594 595 596
	 * this page's queue, we can perform writeback even if that
	 * will block.
	 *
	 * If the page is swapcache, write it back even if that would
	 * block, for some throttling. This happens by accident, because
	 * swap_backing_dev_info is bust: it doesn't reflect the
	 * congestion state of the swapdevs.  Easy to fix, if needed.
	 */
	if (!is_page_cache_freeable(page))
		return PAGE_KEEP;
	if (!mapping) {
		/*
		 * Some data journaling orphaned pages can have
		 * page->mapping == NULL while being dirty with clean buffers.
		 */
597
		if (page_has_private(page)) {
L
Linus Torvalds 已提交
598 599
			if (try_to_free_buffers(page)) {
				ClearPageDirty(page);
600
				pr_info("%s: orphaned page\n", __func__);
L
Linus Torvalds 已提交
601 602 603 604 605 606 607
				return PAGE_CLEAN;
			}
		}
		return PAGE_KEEP;
	}
	if (mapping->a_ops->writepage == NULL)
		return PAGE_ACTIVATE;
608
	if (!may_write_to_inode(mapping->host, sc))
L
Linus Torvalds 已提交
609 610 611 612 613 614 615
		return PAGE_KEEP;

	if (clear_page_dirty_for_io(page)) {
		int res;
		struct writeback_control wbc = {
			.sync_mode = WB_SYNC_NONE,
			.nr_to_write = SWAP_CLUSTER_MAX,
616 617
			.range_start = 0,
			.range_end = LLONG_MAX,
L
Linus Torvalds 已提交
618 619 620 621 622 623 624
			.for_reclaim = 1,
		};

		SetPageReclaim(page);
		res = mapping->a_ops->writepage(page, &wbc);
		if (res < 0)
			handle_write_error(mapping, page, res);
625
		if (res == AOP_WRITEPAGE_ACTIVATE) {
L
Linus Torvalds 已提交
626 627 628
			ClearPageReclaim(page);
			return PAGE_ACTIVATE;
		}
629

L
Linus Torvalds 已提交
630 631 632 633
		if (!PageWriteback(page)) {
			/* synchronous write or broken a_ops? */
			ClearPageReclaim(page);
		}
634
		trace_mm_vmscan_writepage(page);
635
		inc_node_page_state(page, NR_VMSCAN_WRITE);
L
Linus Torvalds 已提交
636 637 638 639 640 641
		return PAGE_SUCCESS;
	}

	return PAGE_CLEAN;
}

642
/*
N
Nick Piggin 已提交
643 644
 * Same as remove_mapping, but if the page is removed from the mapping, it
 * gets returned with a refcount of 0.
645
 */
646 647
static int __remove_mapping(struct address_space *mapping, struct page *page,
			    bool reclaimed)
648
{
649 650
	unsigned long flags;

651 652
	BUG_ON(!PageLocked(page));
	BUG_ON(mapping != page_mapping(page));
653

654
	spin_lock_irqsave(&mapping->tree_lock, flags);
655
	/*
N
Nick Piggin 已提交
656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674
	 * The non racy check for a busy page.
	 *
	 * Must be careful with the order of the tests. When someone has
	 * a ref to the page, it may be possible that they dirty it then
	 * drop the reference. So if PageDirty is tested before page_count
	 * here, then the following race may occur:
	 *
	 * get_user_pages(&page);
	 * [user mapping goes away]
	 * write_to(page);
	 *				!PageDirty(page)    [good]
	 * SetPageDirty(page);
	 * put_page(page);
	 *				!page_count(page)   [good, discard it]
	 *
	 * [oops, our write_to data is lost]
	 *
	 * Reversing the order of the tests ensures such a situation cannot
	 * escape unnoticed. The smp_rmb is needed to ensure the page->flags
675
	 * load is not satisfied before that of page->_refcount.
N
Nick Piggin 已提交
676 677 678
	 *
	 * Note that if SetPageDirty is always performed via set_page_dirty,
	 * and thus under tree_lock, then this ordering is not required.
679
	 */
680
	if (!page_ref_freeze(page, 2))
681
		goto cannot_free;
N
Nick Piggin 已提交
682 683
	/* note: atomic_cmpxchg in page_freeze_refs provides the smp_rmb */
	if (unlikely(PageDirty(page))) {
684
		page_ref_unfreeze(page, 2);
685
		goto cannot_free;
N
Nick Piggin 已提交
686
	}
687 688 689

	if (PageSwapCache(page)) {
		swp_entry_t swap = { .val = page_private(page) };
690
		mem_cgroup_swapout(page, swap);
691
		__delete_from_swap_cache(page);
692
		spin_unlock_irqrestore(&mapping->tree_lock, flags);
693
		swapcache_free(swap);
N
Nick Piggin 已提交
694
	} else {
695
		void (*freepage)(struct page *);
696
		void *shadow = NULL;
697 698

		freepage = mapping->a_ops->freepage;
699 700 701 702 703 704 705 706 707
		/*
		 * Remember a shadow entry for reclaimed file cache in
		 * order to detect refaults, thus thrashing, later on.
		 *
		 * But don't store shadows in an address space that is
		 * already exiting.  This is not just an optizimation,
		 * inode reclaim needs to empty out the radix tree or
		 * the nodes are lost.  Don't plant shadows behind its
		 * back.
708 709 710 711 712 713
		 *
		 * We also don't store shadows for DAX mappings because the
		 * only page cache pages found in these are zero pages
		 * covering holes, and because we don't want to mix DAX
		 * exceptional entries and shadow exceptional entries in the
		 * same page_tree.
714 715
		 */
		if (reclaimed && page_is_file_cache(page) &&
716
		    !mapping_exiting(mapping) && !dax_mapping(mapping))
717
			shadow = workingset_eviction(mapping, page);
J
Johannes Weiner 已提交
718
		__delete_from_page_cache(page, shadow);
719
		spin_unlock_irqrestore(&mapping->tree_lock, flags);
720 721 722

		if (freepage != NULL)
			freepage(page);
723 724 725 726 727
	}

	return 1;

cannot_free:
728
	spin_unlock_irqrestore(&mapping->tree_lock, flags);
729 730 731
	return 0;
}

N
Nick Piggin 已提交
732 733 734 735 736 737 738 739
/*
 * Attempt to detach a locked page from its ->mapping.  If it is dirty or if
 * someone else has a ref on the page, abort and return 0.  If it was
 * successfully detached, return 1.  Assumes the caller has a single ref on
 * this page.
 */
int remove_mapping(struct address_space *mapping, struct page *page)
{
740
	if (__remove_mapping(mapping, page, false)) {
N
Nick Piggin 已提交
741 742 743 744 745
		/*
		 * Unfreezing the refcount with 1 rather than 2 effectively
		 * drops the pagecache ref for us without requiring another
		 * atomic operation.
		 */
746
		page_ref_unfreeze(page, 1);
N
Nick Piggin 已提交
747 748 749 750 751
		return 1;
	}
	return 0;
}

L
Lee Schermerhorn 已提交
752 753 754 755 756 757 758 759 760 761 762
/**
 * putback_lru_page - put previously isolated page onto appropriate LRU list
 * @page: page to be put back to appropriate lru list
 *
 * Add previously isolated @page to appropriate LRU list.
 * Page may still be unevictable for other reasons.
 *
 * lru_lock must not be held, interrupts must be enabled.
 */
void putback_lru_page(struct page *page)
{
763
	bool is_unevictable;
764
	int was_unevictable = PageUnevictable(page);
L
Lee Schermerhorn 已提交
765

766
	VM_BUG_ON_PAGE(PageLRU(page), page);
L
Lee Schermerhorn 已提交
767 768 769 770

redo:
	ClearPageUnevictable(page);

771
	if (page_evictable(page)) {
L
Lee Schermerhorn 已提交
772 773 774 775 776 777
		/*
		 * For evictable pages, we can use the cache.
		 * In event of a race, worst case is we end up with an
		 * unevictable page on [in]active list.
		 * We know how to handle that.
		 */
778
		is_unevictable = false;
779
		lru_cache_add(page);
L
Lee Schermerhorn 已提交
780 781 782 783 784
	} else {
		/*
		 * Put unevictable pages directly on zone's unevictable
		 * list.
		 */
785
		is_unevictable = true;
L
Lee Schermerhorn 已提交
786
		add_page_to_unevictable_list(page);
787
		/*
788 789 790
		 * When racing with an mlock or AS_UNEVICTABLE clearing
		 * (page is unlocked) make sure that if the other thread
		 * does not observe our setting of PG_lru and fails
791
		 * isolation/check_move_unevictable_pages,
792
		 * we see PG_mlocked/AS_UNEVICTABLE cleared below and move
793 794
		 * the page back to the evictable list.
		 *
795
		 * The other side is TestClearPageMlocked() or shmem_lock().
796 797
		 */
		smp_mb();
L
Lee Schermerhorn 已提交
798 799 800 801 802 803 804
	}

	/*
	 * page's status can change while we move it among lru. If an evictable
	 * page is on unevictable list, it never be freed. To avoid that,
	 * check after we added it to the list, again.
	 */
805
	if (is_unevictable && page_evictable(page)) {
L
Lee Schermerhorn 已提交
806 807 808 809 810 811 812 813 814 815
		if (!isolate_lru_page(page)) {
			put_page(page);
			goto redo;
		}
		/* This means someone else dropped this page from LRU
		 * So, it will be freed or putback to LRU again. There is
		 * nothing to do here.
		 */
	}

816
	if (was_unevictable && !is_unevictable)
817
		count_vm_event(UNEVICTABLE_PGRESCUED);
818
	else if (!was_unevictable && is_unevictable)
819 820
		count_vm_event(UNEVICTABLE_PGCULLED);

L
Lee Schermerhorn 已提交
821 822 823
	put_page(page);		/* drop ref from isolate */
}

824 825 826
enum page_references {
	PAGEREF_RECLAIM,
	PAGEREF_RECLAIM_CLEAN,
827
	PAGEREF_KEEP,
828 829 830 831 832 833
	PAGEREF_ACTIVATE,
};

static enum page_references page_check_references(struct page *page,
						  struct scan_control *sc)
{
834
	int referenced_ptes, referenced_page;
835 836
	unsigned long vm_flags;

837 838
	referenced_ptes = page_referenced(page, 1, sc->target_mem_cgroup,
					  &vm_flags);
839
	referenced_page = TestClearPageReferenced(page);
840 841 842 843 844 845 846 847

	/*
	 * Mlock lost the isolation race with us.  Let try_to_unmap()
	 * move the page to the unevictable list.
	 */
	if (vm_flags & VM_LOCKED)
		return PAGEREF_RECLAIM;

848
	if (referenced_ptes) {
849
		if (PageSwapBacked(page))
850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866
			return PAGEREF_ACTIVATE;
		/*
		 * All mapped pages start out with page table
		 * references from the instantiating fault, so we need
		 * to look twice if a mapped file page is used more
		 * than once.
		 *
		 * Mark it and spare it for another trip around the
		 * inactive list.  Another page table reference will
		 * lead to its activation.
		 *
		 * Note: the mark is set for activated pages as well
		 * so that recently deactivated but used pages are
		 * quickly recovered.
		 */
		SetPageReferenced(page);

867
		if (referenced_page || referenced_ptes > 1)
868 869
			return PAGEREF_ACTIVATE;

870 871 872 873 874 875
		/*
		 * Activate file-backed executable pages after first usage.
		 */
		if (vm_flags & VM_EXEC)
			return PAGEREF_ACTIVATE;

876 877
		return PAGEREF_KEEP;
	}
878 879

	/* Reclaim if clean, defer dirty pages to writeback */
880
	if (referenced_page && !PageSwapBacked(page))
881 882 883
		return PAGEREF_RECLAIM_CLEAN;

	return PAGEREF_RECLAIM;
884 885
}

886 887 888 889
/* Check if a page is dirty or under writeback */
static void page_check_dirty_writeback(struct page *page,
				       bool *dirty, bool *writeback)
{
890 891
	struct address_space *mapping;

892 893 894 895 896 897 898 899 900 901 902 903 904
	/*
	 * Anonymous pages are not handled by flushers and must be written
	 * from reclaim context. Do not stall reclaim based on them
	 */
	if (!page_is_file_cache(page)) {
		*dirty = false;
		*writeback = false;
		return;
	}

	/* By default assume that the page flags are accurate */
	*dirty = PageDirty(page);
	*writeback = PageWriteback(page);
905 906 907 908 909 910 911 912

	/* Verify dirty/writeback state if the filesystem supports it */
	if (!page_has_private(page))
		return;

	mapping = page_mapping(page);
	if (mapping && mapping->a_ops->is_dirty_writeback)
		mapping->a_ops->is_dirty_writeback(page, dirty, writeback);
913 914
}

915 916 917 918 919 920
struct reclaim_stat {
	unsigned nr_dirty;
	unsigned nr_unqueued_dirty;
	unsigned nr_congested;
	unsigned nr_writeback;
	unsigned nr_immediate;
921 922 923
	unsigned nr_activate;
	unsigned nr_ref_keep;
	unsigned nr_unmap_fail;
924 925
};

L
Linus Torvalds 已提交
926
/*
A
Andrew Morton 已提交
927
 * shrink_page_list() returns the number of reclaimed pages
L
Linus Torvalds 已提交
928
 */
A
Andrew Morton 已提交
929
static unsigned long shrink_page_list(struct list_head *page_list,
M
Mel Gorman 已提交
930
				      struct pglist_data *pgdat,
931
				      struct scan_control *sc,
932
				      enum ttu_flags ttu_flags,
933
				      struct reclaim_stat *stat,
934
				      bool force_reclaim)
L
Linus Torvalds 已提交
935 936
{
	LIST_HEAD(ret_pages);
937
	LIST_HEAD(free_pages);
L
Linus Torvalds 已提交
938
	int pgactivate = 0;
939 940 941 942 943 944
	unsigned nr_unqueued_dirty = 0;
	unsigned nr_dirty = 0;
	unsigned nr_congested = 0;
	unsigned nr_reclaimed = 0;
	unsigned nr_writeback = 0;
	unsigned nr_immediate = 0;
945 946
	unsigned nr_ref_keep = 0;
	unsigned nr_unmap_fail = 0;
L
Linus Torvalds 已提交
947 948 949 950 951 952 953

	cond_resched();

	while (!list_empty(page_list)) {
		struct address_space *mapping;
		struct page *page;
		int may_enter_fs;
954
		enum page_references references = PAGEREF_RECLAIM_CLEAN;
955
		bool dirty, writeback;
M
Minchan Kim 已提交
956 957
		bool lazyfree = false;
		int ret = SWAP_SUCCESS;
L
Linus Torvalds 已提交
958 959 960 961 962 963

		cond_resched();

		page = lru_to_page(page_list);
		list_del(&page->lru);

N
Nick Piggin 已提交
964
		if (!trylock_page(page))
L
Linus Torvalds 已提交
965 966
			goto keep;

967
		VM_BUG_ON_PAGE(PageActive(page), page);
L
Linus Torvalds 已提交
968 969

		sc->nr_scanned++;
970

971
		if (unlikely(!page_evictable(page)))
N
Nick Piggin 已提交
972
			goto cull_mlocked;
L
Lee Schermerhorn 已提交
973

974
		if (!sc->may_unmap && page_mapped(page))
975 976
			goto keep_locked;

L
Linus Torvalds 已提交
977 978 979 980
		/* Double the slab pressure for mapped and swapcache pages */
		if (page_mapped(page) || PageSwapCache(page))
			sc->nr_scanned++;

981 982 983
		may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
			(PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));

984 985 986 987 988 989 990 991 992 993 994 995 996
		/*
		 * The number of dirty pages determines if a zone is marked
		 * reclaim_congested which affects wait_iff_congested. kswapd
		 * will stall and start writing pages if the tail of the LRU
		 * is all dirty unqueued pages.
		 */
		page_check_dirty_writeback(page, &dirty, &writeback);
		if (dirty || writeback)
			nr_dirty++;

		if (dirty && !writeback)
			nr_unqueued_dirty++;

997 998 999 1000 1001 1002
		/*
		 * Treat this page as congested if the underlying BDI is or if
		 * pages are cycling through the LRU so quickly that the
		 * pages marked for immediate reclaim are making it to the
		 * end of the LRU a second time.
		 */
1003
		mapping = page_mapping(page);
1004
		if (((dirty || writeback) && mapping &&
1005
		     inode_write_congested(mapping->host)) ||
1006
		    (writeback && PageReclaim(page)))
1007 1008
			nr_congested++;

1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019
		/*
		 * If a page at the tail of the LRU is under writeback, there
		 * are three cases to consider.
		 *
		 * 1) If reclaim is encountering an excessive number of pages
		 *    under writeback and this page is both under writeback and
		 *    PageReclaim then it indicates that pages are being queued
		 *    for IO but are being recycled through the LRU before the
		 *    IO can complete. Waiting on the page itself risks an
		 *    indefinite stall if it is impossible to writeback the
		 *    page due to IO error or disconnected storage so instead
1020 1021
		 *    note that the LRU is being scanned too quickly and the
		 *    caller can stall after page list has been processed.
1022
		 *
1023
		 * 2) Global or new memcg reclaim encounters a page that is
1024 1025 1026
		 *    not marked for immediate reclaim, or the caller does not
		 *    have __GFP_FS (or __GFP_IO if it's simply going to swap,
		 *    not to fs). In this case mark the page for immediate
1027
		 *    reclaim and continue scanning.
1028
		 *
1029 1030
		 *    Require may_enter_fs because we would wait on fs, which
		 *    may not have submitted IO yet. And the loop driver might
1031 1032 1033 1034 1035
		 *    enter reclaim, and deadlock if it waits on a page for
		 *    which it is needed to do the write (loop masks off
		 *    __GFP_IO|__GFP_FS for this reason); but more thought
		 *    would probably show more reasons.
		 *
1036
		 * 3) Legacy memcg encounters a page that is already marked
1037 1038 1039 1040 1041
		 *    PageReclaim. memcg does not have any dirty pages
		 *    throttling so we could easily OOM just because too many
		 *    pages are in writeback and there is nothing else to
		 *    reclaim. Wait for the writeback to complete.
		 */
1042
		if (PageWriteback(page)) {
1043 1044 1045
			/* Case 1 above */
			if (current_is_kswapd() &&
			    PageReclaim(page) &&
M
Mel Gorman 已提交
1046
			    test_bit(PGDAT_WRITEBACK, &pgdat->flags)) {
1047 1048
				nr_immediate++;
				goto keep_locked;
1049 1050

			/* Case 2 above */
1051
			} else if (sane_reclaim(sc) ||
1052
			    !PageReclaim(page) || !may_enter_fs) {
1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064
				/*
				 * This is slightly racy - end_page_writeback()
				 * might have just cleared PageReclaim, then
				 * setting PageReclaim here end up interpreted
				 * as PageReadahead - but that does not matter
				 * enough to care.  What we do want is for this
				 * page to have PageReclaim set next time memcg
				 * reclaim reaches the tests above, so it will
				 * then wait_on_page_writeback() to avoid OOM;
				 * and it's also appropriate in global reclaim.
				 */
				SetPageReclaim(page);
1065
				nr_writeback++;
1066
				goto keep_locked;
1067 1068 1069

			/* Case 3 above */
			} else {
1070
				unlock_page(page);
1071
				wait_on_page_writeback(page);
1072 1073 1074
				/* then go back and try same page again */
				list_add_tail(&page->lru, page_list);
				continue;
1075
			}
1076
		}
L
Linus Torvalds 已提交
1077

1078 1079 1080
		if (!force_reclaim)
			references = page_check_references(page, sc);

1081 1082
		switch (references) {
		case PAGEREF_ACTIVATE:
L
Linus Torvalds 已提交
1083
			goto activate_locked;
1084
		case PAGEREF_KEEP:
1085
			nr_ref_keep++;
1086
			goto keep_locked;
1087 1088 1089 1090
		case PAGEREF_RECLAIM:
		case PAGEREF_RECLAIM_CLEAN:
			; /* try to reclaim the page below */
		}
L
Linus Torvalds 已提交
1091 1092 1093 1094 1095

		/*
		 * Anonymous process memory has backing store?
		 * Try to allocate it some swap space here.
		 */
N
Nick Piggin 已提交
1096
		if (PageAnon(page) && !PageSwapCache(page)) {
1097 1098
			if (!(sc->gfp_mask & __GFP_IO))
				goto keep_locked;
1099
			if (!add_to_swap(page, page_list))
L
Linus Torvalds 已提交
1100
				goto activate_locked;
M
Minchan Kim 已提交
1101
			lazyfree = true;
1102
			may_enter_fs = 1;
L
Linus Torvalds 已提交
1103

1104 1105
			/* Adding to swap updated mapping */
			mapping = page_mapping(page);
1106 1107 1108 1109
		} else if (unlikely(PageTransHuge(page))) {
			/* Split file THP */
			if (split_huge_page_to_list(page, page_list))
				goto keep_locked;
1110
		}
L
Linus Torvalds 已提交
1111

1112 1113
		VM_BUG_ON_PAGE(PageTransHuge(page), page);

L
Linus Torvalds 已提交
1114 1115 1116 1117 1118
		/*
		 * The page is mapped into the page tables of one or more
		 * processes. Try to unmap it here.
		 */
		if (page_mapped(page) && mapping) {
M
Minchan Kim 已提交
1119 1120 1121
			switch (ret = try_to_unmap(page, lazyfree ?
				(ttu_flags | TTU_BATCH_FLUSH | TTU_LZFREE) :
				(ttu_flags | TTU_BATCH_FLUSH))) {
L
Linus Torvalds 已提交
1122
			case SWAP_FAIL:
1123
				nr_unmap_fail++;
L
Linus Torvalds 已提交
1124 1125 1126
				goto activate_locked;
			case SWAP_AGAIN:
				goto keep_locked;
N
Nick Piggin 已提交
1127 1128
			case SWAP_MLOCK:
				goto cull_mlocked;
M
Minchan Kim 已提交
1129 1130
			case SWAP_LZFREE:
				goto lazyfree;
L
Linus Torvalds 已提交
1131 1132 1133 1134 1135 1136
			case SWAP_SUCCESS:
				; /* try to free the page below */
			}
		}

		if (PageDirty(page)) {
1137 1138
			/*
			 * Only kswapd can writeback filesystem pages to
1139 1140
			 * avoid risk of stack overflow but only writeback
			 * if many dirty pages have been encountered.
1141
			 */
1142
			if (page_is_file_cache(page) &&
1143
					(!current_is_kswapd() ||
M
Mel Gorman 已提交
1144
					 !test_bit(PGDAT_DIRTY, &pgdat->flags))) {
1145 1146 1147 1148 1149 1150
				/*
				 * Immediately reclaim when written back.
				 * Similar in principal to deactivate_page()
				 * except we already have the page isolated
				 * and know it's dirty
				 */
1151
				inc_node_page_state(page, NR_VMSCAN_IMMEDIATE);
1152 1153
				SetPageReclaim(page);

1154 1155 1156
				goto keep_locked;
			}

1157
			if (references == PAGEREF_RECLAIM_CLEAN)
L
Linus Torvalds 已提交
1158
				goto keep_locked;
1159
			if (!may_enter_fs)
L
Linus Torvalds 已提交
1160
				goto keep_locked;
1161
			if (!sc->may_writepage)
L
Linus Torvalds 已提交
1162 1163
				goto keep_locked;

1164 1165 1166 1167 1168 1169
			/*
			 * Page is dirty. Flush the TLB if a writable entry
			 * potentially exists to avoid CPU writes after IO
			 * starts and then write it out here.
			 */
			try_to_unmap_flush_dirty();
1170
			switch (pageout(page, mapping, sc)) {
L
Linus Torvalds 已提交
1171 1172 1173 1174 1175
			case PAGE_KEEP:
				goto keep_locked;
			case PAGE_ACTIVATE:
				goto activate_locked;
			case PAGE_SUCCESS:
1176
				if (PageWriteback(page))
1177
					goto keep;
1178
				if (PageDirty(page))
L
Linus Torvalds 已提交
1179
					goto keep;
1180

L
Linus Torvalds 已提交
1181 1182 1183 1184
				/*
				 * A synchronous write - probably a ramdisk.  Go
				 * ahead and try to reclaim the page.
				 */
N
Nick Piggin 已提交
1185
				if (!trylock_page(page))
L
Linus Torvalds 已提交
1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204
					goto keep;
				if (PageDirty(page) || PageWriteback(page))
					goto keep_locked;
				mapping = page_mapping(page);
			case PAGE_CLEAN:
				; /* try to free the page below */
			}
		}

		/*
		 * If the page has buffers, try to free the buffer mappings
		 * associated with this page. If we succeed we try to free
		 * the page as well.
		 *
		 * We do this even if the page is PageDirty().
		 * try_to_release_page() does not perform I/O, but it is
		 * possible for a page to have PageDirty set, but it is actually
		 * clean (all its buffers are clean).  This happens if the
		 * buffers were written out directly, with submit_bh(). ext3
L
Lee Schermerhorn 已提交
1205
		 * will do this, as well as the blockdev mapping.
L
Linus Torvalds 已提交
1206 1207 1208 1209 1210 1211 1212 1213 1214 1215
		 * try_to_release_page() will discover that cleanness and will
		 * drop the buffers and mark the page clean - it can be freed.
		 *
		 * Rarely, pages can have buffers and no ->mapping.  These are
		 * the pages which were not successfully invalidated in
		 * truncate_complete_page().  We try to drop those buffers here
		 * and if that worked, and the page is no longer mapped into
		 * process address space (page_count == 1) it can be freed.
		 * Otherwise, leave the page on the LRU so it is swappable.
		 */
1216
		if (page_has_private(page)) {
L
Linus Torvalds 已提交
1217 1218
			if (!try_to_release_page(page, sc->gfp_mask))
				goto activate_locked;
N
Nick Piggin 已提交
1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234
			if (!mapping && page_count(page) == 1) {
				unlock_page(page);
				if (put_page_testzero(page))
					goto free_it;
				else {
					/*
					 * rare race with speculative reference.
					 * the speculative reference will free
					 * this page shortly, so we may
					 * increment nr_reclaimed here (and
					 * leave it off the LRU).
					 */
					nr_reclaimed++;
					continue;
				}
			}
L
Linus Torvalds 已提交
1235 1236
		}

M
Minchan Kim 已提交
1237
lazyfree:
1238
		if (!mapping || !__remove_mapping(mapping, page, true))
1239
			goto keep_locked;
L
Linus Torvalds 已提交
1240

N
Nick Piggin 已提交
1241 1242 1243 1244 1245 1246 1247
		/*
		 * At this point, we have no other references and there is
		 * no way to pick any more up (removed from LRU, removed
		 * from pagecache). Can use non-atomic bitops now (and
		 * we obviously don't have to worry about waking up a process
		 * waiting on the page lock, because there are no references.
		 */
1248
		__ClearPageLocked(page);
N
Nick Piggin 已提交
1249
free_it:
M
Minchan Kim 已提交
1250 1251 1252
		if (ret == SWAP_LZFREE)
			count_vm_event(PGLAZYFREED);

1253
		nr_reclaimed++;
1254 1255 1256 1257 1258 1259

		/*
		 * Is there need to periodically free_page_list? It would
		 * appear not as the counts should be low
		 */
		list_add(&page->lru, &free_pages);
L
Linus Torvalds 已提交
1260 1261
		continue;

N
Nick Piggin 已提交
1262
cull_mlocked:
1263 1264
		if (PageSwapCache(page))
			try_to_free_swap(page);
N
Nick Piggin 已提交
1265
		unlock_page(page);
1266
		list_add(&page->lru, &ret_pages);
N
Nick Piggin 已提交
1267 1268
		continue;

L
Linus Torvalds 已提交
1269
activate_locked:
1270
		/* Not a candidate for swapping, so reclaim swap space. */
1271
		if (PageSwapCache(page) && mem_cgroup_swap_full(page))
1272
			try_to_free_swap(page);
1273
		VM_BUG_ON_PAGE(PageActive(page), page);
L
Linus Torvalds 已提交
1274 1275 1276 1277 1278 1279
		SetPageActive(page);
		pgactivate++;
keep_locked:
		unlock_page(page);
keep:
		list_add(&page->lru, &ret_pages);
1280
		VM_BUG_ON_PAGE(PageLRU(page) || PageUnevictable(page), page);
L
Linus Torvalds 已提交
1281
	}
1282

1283
	mem_cgroup_uncharge_list(&free_pages);
1284
	try_to_unmap_flush();
1285
	free_hot_cold_page_list(&free_pages, true);
1286

L
Linus Torvalds 已提交
1287
	list_splice(&ret_pages, page_list);
1288
	count_vm_events(PGACTIVATE, pgactivate);
1289

1290 1291 1292 1293 1294 1295
	if (stat) {
		stat->nr_dirty = nr_dirty;
		stat->nr_congested = nr_congested;
		stat->nr_unqueued_dirty = nr_unqueued_dirty;
		stat->nr_writeback = nr_writeback;
		stat->nr_immediate = nr_immediate;
1296 1297 1298
		stat->nr_activate = pgactivate;
		stat->nr_ref_keep = nr_ref_keep;
		stat->nr_unmap_fail = nr_unmap_fail;
1299
	}
1300
	return nr_reclaimed;
L
Linus Torvalds 已提交
1301 1302
}

1303 1304 1305 1306 1307 1308 1309 1310
unsigned long reclaim_clean_pages_from_list(struct zone *zone,
					    struct list_head *page_list)
{
	struct scan_control sc = {
		.gfp_mask = GFP_KERNEL,
		.priority = DEF_PRIORITY,
		.may_unmap = 1,
	};
1311
	unsigned long ret;
1312 1313 1314 1315
	struct page *page, *next;
	LIST_HEAD(clean_pages);

	list_for_each_entry_safe(page, next, page_list, lru) {
1316
		if (page_is_file_cache(page) && !PageDirty(page) &&
1317
		    !__PageMovable(page)) {
1318 1319 1320 1321 1322
			ClearPageActive(page);
			list_move(&page->lru, &clean_pages);
		}
	}

M
Mel Gorman 已提交
1323
	ret = shrink_page_list(&clean_pages, zone->zone_pgdat, &sc,
1324
			TTU_UNMAP|TTU_IGNORE_ACCESS, NULL, true);
1325
	list_splice(&clean_pages, page_list);
M
Mel Gorman 已提交
1326
	mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE, -ret);
1327 1328 1329
	return ret;
}

A
Andy Whitcroft 已提交
1330 1331 1332 1333 1334 1335 1336 1337 1338 1339
/*
 * Attempt to remove the specified page from its LRU.  Only take this page
 * if it is of the appropriate PageActive status.  Pages which are being
 * freed elsewhere are also ignored.
 *
 * page:	page to consider
 * mode:	one of the LRU isolation modes defined above
 *
 * returns 0 on success, -ve errno on failure.
 */
1340
int __isolate_lru_page(struct page *page, isolate_mode_t mode)
A
Andy Whitcroft 已提交
1341 1342 1343 1344 1345 1346 1347
{
	int ret = -EINVAL;

	/* Only take pages on the LRU. */
	if (!PageLRU(page))
		return ret;

M
Minchan Kim 已提交
1348 1349
	/* Compaction should not handle unevictable pages but CMA can do so */
	if (PageUnevictable(page) && !(mode & ISOLATE_UNEVICTABLE))
L
Lee Schermerhorn 已提交
1350 1351
		return ret;

A
Andy Whitcroft 已提交
1352
	ret = -EBUSY;
K
KAMEZAWA Hiroyuki 已提交
1353

1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386
	/*
	 * To minimise LRU disruption, the caller can indicate that it only
	 * wants to isolate pages it will be able to operate on without
	 * blocking - clean pages for the most part.
	 *
	 * ISOLATE_CLEAN means that only clean pages should be isolated. This
	 * is used by reclaim when it is cannot write to backing storage
	 *
	 * ISOLATE_ASYNC_MIGRATE is used to indicate that it only wants to pages
	 * that it is possible to migrate without blocking
	 */
	if (mode & (ISOLATE_CLEAN|ISOLATE_ASYNC_MIGRATE)) {
		/* All the caller can do on PageWriteback is block */
		if (PageWriteback(page))
			return ret;

		if (PageDirty(page)) {
			struct address_space *mapping;

			/* ISOLATE_CLEAN means only clean pages */
			if (mode & ISOLATE_CLEAN)
				return ret;

			/*
			 * Only pages without mappings or that have a
			 * ->migratepage callback are possible to migrate
			 * without blocking
			 */
			mapping = page_mapping(page);
			if (mapping && !mapping->a_ops->migratepage)
				return ret;
		}
	}
1387

1388 1389 1390
	if ((mode & ISOLATE_UNMAPPED) && page_mapped(page))
		return ret;

A
Andy Whitcroft 已提交
1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403
	if (likely(get_page_unless_zero(page))) {
		/*
		 * Be careful not to clear PageLRU until after we're
		 * sure the page is not being freed elsewhere -- the
		 * page release code relies on it.
		 */
		ClearPageLRU(page);
		ret = 0;
	}

	return ret;
}

1404 1405 1406 1407 1408 1409

/*
 * Update LRU sizes after isolating pages. The LRU size updates must
 * be complete before mem_cgroup_update_lru_size due to a santity check.
 */
static __always_inline void update_lru_sizes(struct lruvec *lruvec,
1410
			enum lru_list lru, unsigned long *nr_zone_taken)
1411 1412 1413 1414 1415 1416 1417 1418 1419
{
	int zid;

	for (zid = 0; zid < MAX_NR_ZONES; zid++) {
		if (!nr_zone_taken[zid])
			continue;

		__update_lru_size(lruvec, lru, zid, -nr_zone_taken[zid]);
#ifdef CONFIG_MEMCG
1420
		mem_cgroup_update_lru_size(lruvec, lru, zid, -nr_zone_taken[zid]);
1421
#endif
1422 1423
	}

1424 1425
}

L
Linus Torvalds 已提交
1426
/*
1427
 * zone_lru_lock is heavily contended.  Some of the functions that
L
Linus Torvalds 已提交
1428 1429 1430 1431 1432 1433 1434 1435 1436
 * shrink the lists perform better by taking out a batch of pages
 * and working on them outside the LRU lock.
 *
 * For pagecache intensive workloads, this function is the hottest
 * spot in the kernel (apart from copy_*_user functions).
 *
 * Appropriate locks must be held before calling this function.
 *
 * @nr_to_scan:	The number of pages to look through on the list.
1437
 * @lruvec:	The LRU vector to pull pages from.
L
Linus Torvalds 已提交
1438
 * @dst:	The temp list to put pages on to.
H
Hugh Dickins 已提交
1439
 * @nr_scanned:	The number of pages that were scanned.
1440
 * @sc:		The scan_control struct for this reclaim session
A
Andy Whitcroft 已提交
1441
 * @mode:	One of the LRU isolation modes
1442
 * @lru:	LRU list id for isolating
L
Linus Torvalds 已提交
1443 1444 1445
 *
 * returns how many pages were moved onto *@dst.
 */
1446
static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
1447
		struct lruvec *lruvec, struct list_head *dst,
1448
		unsigned long *nr_scanned, struct scan_control *sc,
1449
		isolate_mode_t mode, enum lru_list lru)
L
Linus Torvalds 已提交
1450
{
H
Hugh Dickins 已提交
1451
	struct list_head *src = &lruvec->lists[lru];
1452
	unsigned long nr_taken = 0;
M
Mel Gorman 已提交
1453
	unsigned long nr_zone_taken[MAX_NR_ZONES] = { 0 };
1454
	unsigned long nr_skipped[MAX_NR_ZONES] = { 0, };
1455
	unsigned long skipped = 0, total_skipped = 0;
M
Mel Gorman 已提交
1456
	unsigned long scan, nr_pages;
1457
	LIST_HEAD(pages_skipped);
L
Linus Torvalds 已提交
1458

1459
	for (scan = 0; scan < nr_to_scan && nr_taken < nr_to_scan &&
1460
					!list_empty(src);) {
A
Andy Whitcroft 已提交
1461 1462
		struct page *page;

L
Linus Torvalds 已提交
1463 1464 1465
		page = lru_to_page(src);
		prefetchw_prev_lru_page(page, src, flags);

1466
		VM_BUG_ON_PAGE(!PageLRU(page), page);
N
Nick Piggin 已提交
1467

1468 1469
		if (page_zonenum(page) > sc->reclaim_idx) {
			list_move(&page->lru, &pages_skipped);
1470
			nr_skipped[page_zonenum(page)]++;
1471 1472 1473
			continue;
		}

1474 1475 1476 1477 1478 1479
		/*
		 * Account for scanned and skipped separetly to avoid the pgdat
		 * being prematurely marked unreclaimable by pgdat_reclaimable.
		 */
		scan++;

1480
		switch (__isolate_lru_page(page, mode)) {
A
Andy Whitcroft 已提交
1481
		case 0:
M
Mel Gorman 已提交
1482 1483 1484
			nr_pages = hpage_nr_pages(page);
			nr_taken += nr_pages;
			nr_zone_taken[page_zonenum(page)] += nr_pages;
A
Andy Whitcroft 已提交
1485 1486 1487 1488 1489 1490 1491
			list_move(&page->lru, dst);
			break;

		case -EBUSY:
			/* else it is being freed elsewhere */
			list_move(&page->lru, src);
			continue;
1492

A
Andy Whitcroft 已提交
1493 1494 1495
		default:
			BUG();
		}
L
Linus Torvalds 已提交
1496 1497
	}

1498 1499 1500 1501 1502 1503 1504
	/*
	 * Splice any skipped pages to the start of the LRU list. Note that
	 * this disrupts the LRU order when reclaiming for lower zones but
	 * we cannot splice to the tail. If we did then the SWAP_CLUSTER_MAX
	 * scanning would soon rescan the same pages to skip and put the
	 * system at risk of premature OOM.
	 */
1505 1506 1507 1508 1509 1510 1511 1512
	if (!list_empty(&pages_skipped)) {
		int zid;

		for (zid = 0; zid < MAX_NR_ZONES; zid++) {
			if (!nr_skipped[zid])
				continue;

			__count_zid_vm_events(PGSCAN_SKIP, zid, nr_skipped[zid]);
1513
			skipped += nr_skipped[zid];
1514
		}
1515 1516 1517 1518 1519 1520

		/*
		 * Account skipped pages as a partial scan as the pgdat may be
		 * close to unreclaimable. If the LRU list is empty, account
		 * skipped pages as a full scan.
		 */
1521
		total_skipped = list_empty(src) ? skipped : skipped >> 2;
1522 1523

		list_splice(&pages_skipped, src);
1524
	}
1525 1526
	*nr_scanned = scan + total_skipped;
	trace_mm_vmscan_lru_isolate(sc->reclaim_idx, sc->order, nr_to_scan,
1527
				    scan, skipped, nr_taken, mode, lru);
1528
	update_lru_sizes(lruvec, lru, nr_zone_taken);
L
Linus Torvalds 已提交
1529 1530 1531
	return nr_taken;
}

1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542
/**
 * isolate_lru_page - tries to isolate a page from its LRU list
 * @page: page to isolate from its LRU list
 *
 * Isolates a @page from an LRU list, clears PageLRU and adjusts the
 * vmstat statistic corresponding to whatever LRU list the page was on.
 *
 * Returns 0 if the page was removed from an LRU list.
 * Returns -EBUSY if the page was not on an LRU list.
 *
 * The returned page will have PageLRU() cleared.  If it was found on
L
Lee Schermerhorn 已提交
1543 1544 1545
 * the active list, it will have PageActive set.  If it was found on
 * the unevictable list, it will have the PageUnevictable bit set. That flag
 * may need to be cleared by the caller before letting the page go.
1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560
 *
 * The vmstat statistic corresponding to the list on which the page was
 * found will be decremented.
 *
 * Restrictions:
 * (1) Must be called with an elevated refcount on the page. This is a
 *     fundamentnal difference from isolate_lru_pages (which is called
 *     without a stable reference).
 * (2) the lru_lock must not be held.
 * (3) interrupts must be enabled.
 */
int isolate_lru_page(struct page *page)
{
	int ret = -EBUSY;

1561
	VM_BUG_ON_PAGE(!page_count(page), page);
1562
	WARN_RATELIMIT(PageTail(page), "trying to isolate tail page");
1563

1564 1565
	if (PageLRU(page)) {
		struct zone *zone = page_zone(page);
1566
		struct lruvec *lruvec;
1567

1568
		spin_lock_irq(zone_lru_lock(zone));
M
Mel Gorman 已提交
1569
		lruvec = mem_cgroup_page_lruvec(page, zone->zone_pgdat);
1570
		if (PageLRU(page)) {
L
Lee Schermerhorn 已提交
1571
			int lru = page_lru(page);
1572
			get_page(page);
1573
			ClearPageLRU(page);
1574 1575
			del_page_from_lru_list(page, lruvec, lru);
			ret = 0;
1576
		}
1577
		spin_unlock_irq(zone_lru_lock(zone));
1578 1579 1580 1581
	}
	return ret;
}

1582
/*
F
Fengguang Wu 已提交
1583 1584 1585 1586 1587
 * A direct reclaimer may isolate SWAP_CLUSTER_MAX pages from the LRU list and
 * then get resheduled. When there are massive number of tasks doing page
 * allocation, such sleeping direct reclaimers may keep piling up on each CPU,
 * the LRU list will go small and be scanned faster than necessary, leading to
 * unnecessary swapping, thrashing and OOM.
1588
 */
M
Mel Gorman 已提交
1589
static int too_many_isolated(struct pglist_data *pgdat, int file,
1590 1591 1592 1593 1594 1595 1596
		struct scan_control *sc)
{
	unsigned long inactive, isolated;

	if (current_is_kswapd())
		return 0;

1597
	if (!sane_reclaim(sc))
1598 1599 1600
		return 0;

	if (file) {
M
Mel Gorman 已提交
1601 1602
		inactive = node_page_state(pgdat, NR_INACTIVE_FILE);
		isolated = node_page_state(pgdat, NR_ISOLATED_FILE);
1603
	} else {
M
Mel Gorman 已提交
1604 1605
		inactive = node_page_state(pgdat, NR_INACTIVE_ANON);
		isolated = node_page_state(pgdat, NR_ISOLATED_ANON);
1606 1607
	}

1608 1609 1610 1611 1612
	/*
	 * GFP_NOIO/GFP_NOFS callers are allowed to isolate more pages, so they
	 * won't get blocked by normal direct-reclaimers, forming a circular
	 * deadlock.
	 */
1613
	if ((sc->gfp_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
1614 1615
		inactive >>= 3;

1616 1617 1618
	return isolated > inactive;
}

1619
static noinline_for_stack void
H
Hugh Dickins 已提交
1620
putback_inactive_pages(struct lruvec *lruvec, struct list_head *page_list)
1621
{
1622
	struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
M
Mel Gorman 已提交
1623
	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
1624
	LIST_HEAD(pages_to_free);
1625 1626 1627 1628 1629

	/*
	 * Put back any unfreeable pages.
	 */
	while (!list_empty(page_list)) {
1630
		struct page *page = lru_to_page(page_list);
1631
		int lru;
1632

1633
		VM_BUG_ON_PAGE(PageLRU(page), page);
1634
		list_del(&page->lru);
1635
		if (unlikely(!page_evictable(page))) {
M
Mel Gorman 已提交
1636
			spin_unlock_irq(&pgdat->lru_lock);
1637
			putback_lru_page(page);
M
Mel Gorman 已提交
1638
			spin_lock_irq(&pgdat->lru_lock);
1639 1640
			continue;
		}
1641

M
Mel Gorman 已提交
1642
		lruvec = mem_cgroup_page_lruvec(page, pgdat);
1643

1644
		SetPageLRU(page);
1645
		lru = page_lru(page);
1646 1647
		add_page_to_lru_list(page, lruvec, lru);

1648 1649
		if (is_active_lru(lru)) {
			int file = is_file_lru(lru);
1650 1651
			int numpages = hpage_nr_pages(page);
			reclaim_stat->recent_rotated[file] += numpages;
1652
		}
1653 1654 1655
		if (put_page_testzero(page)) {
			__ClearPageLRU(page);
			__ClearPageActive(page);
1656
			del_page_from_lru_list(page, lruvec, lru);
1657 1658

			if (unlikely(PageCompound(page))) {
M
Mel Gorman 已提交
1659
				spin_unlock_irq(&pgdat->lru_lock);
1660
				mem_cgroup_uncharge(page);
1661
				(*get_compound_page_dtor(page))(page);
M
Mel Gorman 已提交
1662
				spin_lock_irq(&pgdat->lru_lock);
1663 1664
			} else
				list_add(&page->lru, &pages_to_free);
1665 1666 1667
		}
	}

1668 1669 1670 1671
	/*
	 * To save our caller's stack, now use input list for pages to free.
	 */
	list_splice(&pages_to_free, page_list);
1672 1673
}

1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686
/*
 * If a kernel thread (such as nfsd for loop-back mounts) services
 * a backing device by writing to the page cache it sets PF_LESS_THROTTLE.
 * In that case we should only throttle if the backing device it is
 * writing to is congested.  In other cases it is safe to throttle.
 */
static int current_may_throttle(void)
{
	return !(current->flags & PF_LESS_THROTTLE) ||
		current->backing_dev_info == NULL ||
		bdi_write_congested(current->backing_dev_info);
}

1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699
static bool inactive_reclaimable_pages(struct lruvec *lruvec,
				struct scan_control *sc, enum lru_list lru)
{
	int zid;
	struct zone *zone;
	int file = is_file_lru(lru);
	struct pglist_data *pgdat = lruvec_pgdat(lruvec);

	if (!global_reclaim(sc))
		return true;

	for (zid = sc->reclaim_idx; zid >= 0; zid--) {
		zone = &pgdat->node_zones[zid];
1700
		if (!managed_zone(zone))
1701 1702 1703 1704 1705 1706 1707 1708 1709 1710
			continue;

		if (zone_page_state_snapshot(zone, NR_ZONE_LRU_BASE +
				LRU_FILE * file) >= SWAP_CLUSTER_MAX)
			return true;
	}

	return false;
}

L
Linus Torvalds 已提交
1711
/*
1712
 * shrink_inactive_list() is a helper for shrink_node().  It returns the number
A
Andrew Morton 已提交
1713
 * of reclaimed pages
L
Linus Torvalds 已提交
1714
 */
1715
static noinline_for_stack unsigned long
1716
shrink_inactive_list(unsigned long nr_to_scan, struct lruvec *lruvec,
1717
		     struct scan_control *sc, enum lru_list lru)
L
Linus Torvalds 已提交
1718 1719
{
	LIST_HEAD(page_list);
1720
	unsigned long nr_scanned;
1721
	unsigned long nr_reclaimed = 0;
1722
	unsigned long nr_taken;
1723
	struct reclaim_stat stat = {};
1724
	isolate_mode_t isolate_mode = 0;
1725
	int file = is_file_lru(lru);
M
Mel Gorman 已提交
1726
	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
1727
	struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1728

1729 1730 1731
	if (!inactive_reclaimable_pages(lruvec, sc, lru))
		return 0;

M
Mel Gorman 已提交
1732
	while (unlikely(too_many_isolated(pgdat, file, sc))) {
1733
		congestion_wait(BLK_RW_ASYNC, HZ/10);
1734 1735 1736 1737 1738 1739

		/* We are about to die and free our memory. Return now. */
		if (fatal_signal_pending(current))
			return SWAP_CLUSTER_MAX;
	}

L
Linus Torvalds 已提交
1740
	lru_add_drain();
1741 1742

	if (!sc->may_unmap)
1743
		isolate_mode |= ISOLATE_UNMAPPED;
1744
	if (!sc->may_writepage)
1745
		isolate_mode |= ISOLATE_CLEAN;
1746

M
Mel Gorman 已提交
1747
	spin_lock_irq(&pgdat->lru_lock);
1748

1749 1750
	nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &page_list,
				     &nr_scanned, sc, isolate_mode, lru);
1751

M
Mel Gorman 已提交
1752
	__mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken);
1753
	reclaim_stat->recent_scanned[file] += nr_taken;
1754

1755
	if (global_reclaim(sc)) {
M
Mel Gorman 已提交
1756
		__mod_node_page_state(pgdat, NR_PAGES_SCANNED, nr_scanned);
1757
		if (current_is_kswapd())
M
Mel Gorman 已提交
1758
			__count_vm_events(PGSCAN_KSWAPD, nr_scanned);
1759
		else
M
Mel Gorman 已提交
1760
			__count_vm_events(PGSCAN_DIRECT, nr_scanned);
1761
	}
M
Mel Gorman 已提交
1762
	spin_unlock_irq(&pgdat->lru_lock);
1763

1764
	if (nr_taken == 0)
1765
		return 0;
A
Andy Whitcroft 已提交
1766

M
Mel Gorman 已提交
1767
	nr_reclaimed = shrink_page_list(&page_list, pgdat, sc, TTU_UNMAP,
1768
				&stat, false);
1769

M
Mel Gorman 已提交
1770
	spin_lock_irq(&pgdat->lru_lock);
1771

Y
Ying Han 已提交
1772 1773
	if (global_reclaim(sc)) {
		if (current_is_kswapd())
M
Mel Gorman 已提交
1774
			__count_vm_events(PGSTEAL_KSWAPD, nr_reclaimed);
Y
Ying Han 已提交
1775
		else
M
Mel Gorman 已提交
1776
			__count_vm_events(PGSTEAL_DIRECT, nr_reclaimed);
Y
Ying Han 已提交
1777
	}
N
Nick Piggin 已提交
1778

1779
	putback_inactive_pages(lruvec, &page_list);
1780

M
Mel Gorman 已提交
1781
	__mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken);
1782

M
Mel Gorman 已提交
1783
	spin_unlock_irq(&pgdat->lru_lock);
1784

1785
	mem_cgroup_uncharge_list(&page_list);
1786
	free_hot_cold_page_list(&page_list, true);
1787

1788 1789 1790 1791 1792 1793 1794 1795 1796 1797
	/*
	 * If reclaim is isolating dirty pages under writeback, it implies
	 * that the long-lived page allocation rate is exceeding the page
	 * laundering rate. Either the global limits are not being effective
	 * at throttling processes due to the page distribution throughout
	 * zones or there is heavy usage of a slow backing device. The
	 * only option is to throttle from reclaim context which is not ideal
	 * as there is no guarantee the dirtying process is throttled in the
	 * same way balance_dirty_pages() manages.
	 *
1798 1799 1800
	 * Once a zone is flagged ZONE_WRITEBACK, kswapd will count the number
	 * of pages under pages flagged for immediate reclaim and stall if any
	 * are encountered in the nr_immediate check below.
1801
	 */
1802
	if (stat.nr_writeback && stat.nr_writeback == nr_taken)
M
Mel Gorman 已提交
1803
		set_bit(PGDAT_WRITEBACK, &pgdat->flags);
1804

1805
	/*
1806 1807
	 * Legacy memcg will stall in page writeback so avoid forcibly
	 * stalling here.
1808
	 */
1809
	if (sane_reclaim(sc)) {
1810 1811 1812 1813
		/*
		 * Tag a zone as congested if all the dirty pages scanned were
		 * backed by a congested BDI and wait_iff_congested will stall.
		 */
1814
		if (stat.nr_dirty && stat.nr_dirty == stat.nr_congested)
M
Mel Gorman 已提交
1815
			set_bit(PGDAT_CONGESTED, &pgdat->flags);
1816

1817 1818 1819
		/*
		 * If dirty pages are scanned that are not queued for IO, it
		 * implies that flushers are not keeping up. In this case, flag
M
Mel Gorman 已提交
1820
		 * the pgdat PGDAT_DIRTY and kswapd will start writing pages from
J
Johannes Weiner 已提交
1821
		 * reclaim context.
1822
		 */
1823
		if (stat.nr_unqueued_dirty == nr_taken)
M
Mel Gorman 已提交
1824
			set_bit(PGDAT_DIRTY, &pgdat->flags);
1825 1826

		/*
1827 1828 1829
		 * If kswapd scans pages marked marked for immediate
		 * reclaim and under writeback (nr_immediate), it implies
		 * that pages are cycling through the LRU faster than
1830 1831
		 * they are written so also forcibly stall.
		 */
1832
		if (stat.nr_immediate && current_may_throttle())
1833
			congestion_wait(BLK_RW_ASYNC, HZ/10);
1834
	}
1835

1836 1837 1838 1839 1840
	/*
	 * Stall direct reclaim for IO completions if underlying BDIs or zone
	 * is congested. Allow kswapd to continue until it starts encountering
	 * unqueued dirty pages or cycling through the LRU too quickly.
	 */
1841 1842
	if (!sc->hibernation_mode && !current_is_kswapd() &&
	    current_may_throttle())
M
Mel Gorman 已提交
1843
		wait_iff_congested(pgdat, BLK_RW_ASYNC, HZ/10);
1844

M
Mel Gorman 已提交
1845 1846
	trace_mm_vmscan_lru_shrink_inactive(pgdat->node_id,
			nr_scanned, nr_reclaimed,
1847 1848 1849 1850
			stat.nr_dirty,  stat.nr_writeback,
			stat.nr_congested, stat.nr_immediate,
			stat.nr_activate, stat.nr_ref_keep,
			stat.nr_unmap_fail,
1851
			sc->priority, file);
1852
	return nr_reclaimed;
L
Linus Torvalds 已提交
1853 1854 1855 1856 1857 1858 1859 1860 1861
}

/*
 * This moves pages from the active list to the inactive list.
 *
 * We move them the other way if the page is referenced by one or more
 * processes, from rmap.
 *
 * If the pages are mostly unmapped, the processing is fast and it is
1862
 * appropriate to hold zone_lru_lock across the whole operation.  But if
L
Linus Torvalds 已提交
1863
 * the pages are mapped, the processing is slow (page_referenced()) so we
1864
 * should drop zone_lru_lock around each page.  It's impossible to balance
L
Linus Torvalds 已提交
1865 1866 1867 1868
 * this, so instead we remove the pages from the LRU while processing them.
 * It is safe to rely on PG_active against the non-LRU pages in here because
 * nobody will play with that bit on a non-LRU page.
 *
1869
 * The downside is that we have to touch page->_refcount against each page.
L
Linus Torvalds 已提交
1870
 * But we had to alter page->flags anyway.
1871 1872
 *
 * Returns the number of pages moved to the given lru.
L
Linus Torvalds 已提交
1873
 */
1874

1875
static unsigned move_active_pages_to_lru(struct lruvec *lruvec,
1876
				     struct list_head *list,
1877
				     struct list_head *pages_to_free,
1878 1879
				     enum lru_list lru)
{
M
Mel Gorman 已提交
1880
	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
1881 1882
	unsigned long pgmoved = 0;
	struct page *page;
1883
	int nr_pages;
1884
	int nr_moved = 0;
1885 1886 1887

	while (!list_empty(list)) {
		page = lru_to_page(list);
M
Mel Gorman 已提交
1888
		lruvec = mem_cgroup_page_lruvec(page, pgdat);
1889

1890
		VM_BUG_ON_PAGE(PageLRU(page), page);
1891 1892
		SetPageLRU(page);

1893
		nr_pages = hpage_nr_pages(page);
M
Mel Gorman 已提交
1894
		update_lru_size(lruvec, lru, page_zonenum(page), nr_pages);
1895
		list_move(&page->lru, &lruvec->lists[lru]);
1896
		pgmoved += nr_pages;
1897

1898 1899 1900
		if (put_page_testzero(page)) {
			__ClearPageLRU(page);
			__ClearPageActive(page);
1901
			del_page_from_lru_list(page, lruvec, lru);
1902 1903

			if (unlikely(PageCompound(page))) {
M
Mel Gorman 已提交
1904
				spin_unlock_irq(&pgdat->lru_lock);
1905
				mem_cgroup_uncharge(page);
1906
				(*get_compound_page_dtor(page))(page);
M
Mel Gorman 已提交
1907
				spin_lock_irq(&pgdat->lru_lock);
1908 1909
			} else
				list_add(&page->lru, pages_to_free);
1910 1911
		} else {
			nr_moved += nr_pages;
1912 1913
		}
	}
1914

1915 1916
	if (!is_active_lru(lru))
		__count_vm_events(PGDEACTIVATE, pgmoved);
1917 1918

	return nr_moved;
1919
}
1920

H
Hugh Dickins 已提交
1921
static void shrink_active_list(unsigned long nr_to_scan,
1922
			       struct lruvec *lruvec,
1923
			       struct scan_control *sc,
1924
			       enum lru_list lru)
L
Linus Torvalds 已提交
1925
{
1926
	unsigned long nr_taken;
H
Hugh Dickins 已提交
1927
	unsigned long nr_scanned;
1928
	unsigned long vm_flags;
L
Linus Torvalds 已提交
1929
	LIST_HEAD(l_hold);	/* The pages which were snipped off */
1930
	LIST_HEAD(l_active);
1931
	LIST_HEAD(l_inactive);
L
Linus Torvalds 已提交
1932
	struct page *page;
1933
	struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1934 1935
	unsigned nr_deactivate, nr_activate;
	unsigned nr_rotated = 0;
1936
	isolate_mode_t isolate_mode = 0;
1937
	int file = is_file_lru(lru);
M
Mel Gorman 已提交
1938
	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
L
Linus Torvalds 已提交
1939 1940

	lru_add_drain();
1941 1942

	if (!sc->may_unmap)
1943
		isolate_mode |= ISOLATE_UNMAPPED;
1944
	if (!sc->may_writepage)
1945
		isolate_mode |= ISOLATE_CLEAN;
1946

M
Mel Gorman 已提交
1947
	spin_lock_irq(&pgdat->lru_lock);
1948

1949 1950
	nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &l_hold,
				     &nr_scanned, sc, isolate_mode, lru);
1951

M
Mel Gorman 已提交
1952
	__mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken);
1953
	reclaim_stat->recent_scanned[file] += nr_taken;
1954

1955
	if (global_reclaim(sc))
M
Mel Gorman 已提交
1956 1957
		__mod_node_page_state(pgdat, NR_PAGES_SCANNED, nr_scanned);
	__count_vm_events(PGREFILL, nr_scanned);
1958

M
Mel Gorman 已提交
1959
	spin_unlock_irq(&pgdat->lru_lock);
L
Linus Torvalds 已提交
1960 1961 1962 1963 1964

	while (!list_empty(&l_hold)) {
		cond_resched();
		page = lru_to_page(&l_hold);
		list_del(&page->lru);
1965

1966
		if (unlikely(!page_evictable(page))) {
L
Lee Schermerhorn 已提交
1967 1968 1969 1970
			putback_lru_page(page);
			continue;
		}

1971 1972 1973 1974 1975 1976 1977 1978
		if (unlikely(buffer_heads_over_limit)) {
			if (page_has_private(page) && trylock_page(page)) {
				if (page_has_private(page))
					try_to_release_page(page, 0);
				unlock_page(page);
			}
		}

1979 1980
		if (page_referenced(page, 0, sc->target_mem_cgroup,
				    &vm_flags)) {
1981
			nr_rotated += hpage_nr_pages(page);
1982 1983 1984 1985 1986 1987 1988 1989 1990
			/*
			 * Identify referenced, file-backed active pages and
			 * give them one more trip around the active list. So
			 * that executable code get better chances to stay in
			 * memory under moderate memory pressure.  Anon pages
			 * are not likely to be evicted by use-once streaming
			 * IO, plus JVM can create lots of anon VM_EXEC pages,
			 * so we ignore them here.
			 */
1991
			if ((vm_flags & VM_EXEC) && page_is_file_cache(page)) {
1992 1993 1994 1995
				list_add(&page->lru, &l_active);
				continue;
			}
		}
1996

1997
		ClearPageActive(page);	/* we are de-activating */
L
Linus Torvalds 已提交
1998 1999 2000
		list_add(&page->lru, &l_inactive);
	}

2001
	/*
2002
	 * Move pages back to the lru list.
2003
	 */
M
Mel Gorman 已提交
2004
	spin_lock_irq(&pgdat->lru_lock);
2005
	/*
2006 2007 2008
	 * Count referenced pages from currently used mappings as rotated,
	 * even though only some of them are actually re-activated.  This
	 * helps balance scan pressure between file and anonymous pages in
2009
	 * get_scan_count.
2010
	 */
2011
	reclaim_stat->recent_rotated[file] += nr_rotated;
2012

2013 2014
	nr_activate = move_active_pages_to_lru(lruvec, &l_active, &l_hold, lru);
	nr_deactivate = move_active_pages_to_lru(lruvec, &l_inactive, &l_hold, lru - LRU_ACTIVE);
M
Mel Gorman 已提交
2015 2016
	__mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken);
	spin_unlock_irq(&pgdat->lru_lock);
2017

2018
	mem_cgroup_uncharge_list(&l_hold);
2019
	free_hot_cold_page_list(&l_hold, true);
2020 2021
	trace_mm_vmscan_lru_shrink_active(pgdat->node_id, nr_taken, nr_activate,
			nr_deactivate, nr_rotated, sc->priority, file);
L
Linus Torvalds 已提交
2022 2023
}

2024 2025 2026
/*
 * The inactive anon list should be small enough that the VM never has
 * to do too much work.
2027
 *
2028 2029 2030
 * The inactive file list should be small enough to leave most memory
 * to the established workingset on the scan-resistant active list,
 * but large enough to avoid thrashing the aggregate readahead window.
2031
 *
2032 2033
 * Both inactive lists should also be large enough that each inactive
 * page has a chance to be referenced again before it is reclaimed.
2034
 *
2035 2036 2037
 * The inactive_ratio is the target ratio of ACTIVE to INACTIVE pages
 * on this LRU, maintained by the pageout code. A zone->inactive_ratio
 * of 3 means 3:1 or 25% of the pages are kept on the inactive list.
2038
 *
2039 2040 2041 2042 2043 2044 2045 2046 2047 2048
 * total     target    max
 * memory    ratio     inactive
 * -------------------------------------
 *   10MB       1         5MB
 *  100MB       1        50MB
 *    1GB       3       250MB
 *   10GB      10       0.9GB
 *  100GB      31         3GB
 *    1TB     101        10GB
 *   10TB     320        32GB
2049
 */
2050
static bool inactive_list_is_low(struct lruvec *lruvec, bool file,
2051
						struct scan_control *sc, bool trace)
2052
{
2053
	unsigned long inactive_ratio;
2054 2055
	unsigned long total_inactive, inactive;
	unsigned long total_active, active;
2056
	unsigned long gb;
2057 2058
	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
	int zid;
2059

2060 2061 2062 2063 2064 2065
	/*
	 * If we don't have swap space, anonymous page deactivation
	 * is pointless.
	 */
	if (!file && !total_swap_pages)
		return false;
2066

2067 2068
	total_inactive = inactive = lruvec_lru_size(lruvec, file * LRU_FILE);
	total_active = active = lruvec_lru_size(lruvec, file * LRU_FILE + LRU_ACTIVE);
2069

2070 2071 2072 2073 2074 2075 2076 2077 2078
	/*
	 * For zone-constrained allocations, it is necessary to check if
	 * deactivations are required for lowmem to be reclaimed. This
	 * calculates the inactive/active pages available in eligible zones.
	 */
	for (zid = sc->reclaim_idx + 1; zid < MAX_NR_ZONES; zid++) {
		struct zone *zone = &pgdat->node_zones[zid];
		unsigned long inactive_zone, active_zone;

2079
		if (!managed_zone(zone))
2080 2081
			continue;

2082 2083
		inactive_zone = lruvec_zone_lru_size(lruvec, file * LRU_FILE, zid);
		active_zone = lruvec_zone_lru_size(lruvec, (file * LRU_FILE) + LRU_ACTIVE, zid);
2084 2085 2086 2087 2088

		inactive -= min(inactive, inactive_zone);
		active -= min(active, active_zone);
	}

2089 2090 2091
	gb = (inactive + active) >> (30 - PAGE_SHIFT);
	if (gb)
		inactive_ratio = int_sqrt(10 * gb);
2092
	else
2093 2094
		inactive_ratio = 1;

2095 2096 2097 2098 2099
	if (trace)
		trace_mm_vmscan_inactive_list_is_low(pgdat->node_id,
				sc->reclaim_idx,
				total_inactive, inactive,
				total_active, active, inactive_ratio, file);
2100
	return inactive * inactive_ratio < active;
2101 2102
}

2103
static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
2104
				 struct lruvec *lruvec, struct scan_control *sc)
2105
{
2106
	if (is_active_lru(lru)) {
2107
		if (inactive_list_is_low(lruvec, is_file_lru(lru), sc, true))
2108
			shrink_active_list(nr_to_scan, lruvec, sc, lru);
2109 2110 2111
		return 0;
	}

2112
	return shrink_inactive_list(nr_to_scan, lruvec, sc, lru);
2113 2114
}

2115 2116 2117 2118 2119 2120 2121
enum scan_balance {
	SCAN_EQUAL,
	SCAN_FRACT,
	SCAN_ANON,
	SCAN_FILE,
};

2122 2123 2124 2125 2126 2127
/*
 * Determine how aggressively the anon and file LRU lists should be
 * scanned.  The relative value of each set of LRU lists is determined
 * by looking at the fraction of the pages scanned we did rotate back
 * onto the active list instead of evict.
 *
W
Wanpeng Li 已提交
2128 2129
 * nr[0] = anon inactive pages to scan; nr[1] = anon active pages to scan
 * nr[2] = file inactive pages to scan; nr[3] = file active pages to scan
2130
 */
2131
static void get_scan_count(struct lruvec *lruvec, struct mem_cgroup *memcg,
2132 2133
			   struct scan_control *sc, unsigned long *nr,
			   unsigned long *lru_pages)
2134
{
2135
	int swappiness = mem_cgroup_swappiness(memcg);
2136 2137 2138
	struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
	u64 fraction[2];
	u64 denominator = 0;	/* gcc */
M
Mel Gorman 已提交
2139
	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
2140
	unsigned long anon_prio, file_prio;
2141
	enum scan_balance scan_balance;
2142
	unsigned long anon, file;
2143
	bool force_scan = false;
2144
	unsigned long ap, fp;
H
Hugh Dickins 已提交
2145
	enum lru_list lru;
2146 2147
	bool some_scanned;
	int pass;
2148

2149 2150 2151 2152 2153 2154 2155 2156 2157 2158
	/*
	 * If the zone or memcg is small, nr[l] can be 0.  This
	 * results in no scanning on this priority and a potential
	 * priority drop.  Global direct reclaim can go to the next
	 * zone and tends to have no problems. Global kswapd is for
	 * zone balancing and it needs to scan a minimum amount. When
	 * reclaiming for a memcg, a priority drop can cause high
	 * latencies, so it's better to scan a minimum amount there as
	 * well.
	 */
2159
	if (current_is_kswapd()) {
M
Mel Gorman 已提交
2160
		if (!pgdat_reclaimable(pgdat))
2161
			force_scan = true;
2162
		if (!mem_cgroup_online(memcg))
2163 2164
			force_scan = true;
	}
2165
	if (!global_reclaim(sc))
2166
		force_scan = true;
2167 2168

	/* If we have no swap space, do not bother scanning anon pages. */
2169
	if (!sc->may_swap || mem_cgroup_get_nr_swap_pages(memcg) <= 0) {
2170
		scan_balance = SCAN_FILE;
2171 2172
		goto out;
	}
2173

2174 2175 2176 2177 2178 2179 2180
	/*
	 * Global reclaim will swap to prevent OOM even with no
	 * swappiness, but memcg users want to use this knob to
	 * disable swapping for individual groups completely when
	 * using the memory controller's swap limit feature would be
	 * too expensive.
	 */
2181
	if (!global_reclaim(sc) && !swappiness) {
2182
		scan_balance = SCAN_FILE;
2183 2184 2185 2186 2187 2188 2189 2190
		goto out;
	}

	/*
	 * Do not apply any pressure balancing cleverness when the
	 * system is close to OOM, scan both anon and file equally
	 * (unless the swappiness setting disagrees with swapping).
	 */
2191
	if (!sc->priority && swappiness) {
2192
		scan_balance = SCAN_EQUAL;
2193 2194 2195
		goto out;
	}

2196 2197 2198 2199 2200 2201 2202 2203 2204 2205
	/*
	 * Prevent the reclaimer from falling into the cache trap: as
	 * cache pages start out inactive, every cache fault will tip
	 * the scan balance towards the file LRU.  And as the file LRU
	 * shrinks, so does the window for rotation from references.
	 * This means we have a runaway feedback loop where a tiny
	 * thrashing file LRU becomes infinitely more attractive than
	 * anon pages.  Try to detect this based on file LRU size.
	 */
	if (global_reclaim(sc)) {
M
Mel Gorman 已提交
2206 2207 2208 2209
		unsigned long pgdatfile;
		unsigned long pgdatfree;
		int z;
		unsigned long total_high_wmark = 0;
2210

M
Mel Gorman 已提交
2211 2212 2213 2214 2215 2216
		pgdatfree = sum_zone_node_page_state(pgdat->node_id, NR_FREE_PAGES);
		pgdatfile = node_page_state(pgdat, NR_ACTIVE_FILE) +
			   node_page_state(pgdat, NR_INACTIVE_FILE);

		for (z = 0; z < MAX_NR_ZONES; z++) {
			struct zone *zone = &pgdat->node_zones[z];
2217
			if (!managed_zone(zone))
M
Mel Gorman 已提交
2218 2219 2220 2221
				continue;

			total_high_wmark += high_wmark_pages(zone);
		}
2222

M
Mel Gorman 已提交
2223
		if (unlikely(pgdatfile + pgdatfree <= total_high_wmark)) {
2224 2225 2226 2227 2228
			scan_balance = SCAN_ANON;
			goto out;
		}
	}

2229
	/*
2230 2231 2232 2233 2234 2235 2236
	 * If there is enough inactive page cache, i.e. if the size of the
	 * inactive list is greater than that of the active list *and* the
	 * inactive list actually has some pages to scan on this priority, we
	 * do not reclaim anything from the anonymous working set right now.
	 * Without the second condition we could end up never scanning an
	 * lruvec even if it has plenty of old anonymous pages unless the
	 * system is under heavy pressure.
2237
	 */
2238
	if (!inactive_list_is_low(lruvec, true, sc, false) &&
2239
	    lruvec_lru_size(lruvec, LRU_INACTIVE_FILE) >> sc->priority) {
2240
		scan_balance = SCAN_FILE;
2241 2242 2243
		goto out;
	}

2244 2245
	scan_balance = SCAN_FRACT;

2246 2247 2248 2249
	/*
	 * With swappiness at 100, anonymous and file have the same priority.
	 * This scanning priority is essentially the inverse of IO cost.
	 */
2250
	anon_prio = swappiness;
H
Hugh Dickins 已提交
2251
	file_prio = 200 - anon_prio;
2252

2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263
	/*
	 * OK, so we have swap space and a fair amount of page cache
	 * pages.  We use the recently rotated / recently scanned
	 * ratios to determine how valuable each cache is.
	 *
	 * Because workloads change over time (and to avoid overflow)
	 * we keep these statistics as a floating average, which ends
	 * up weighing recent references more than old ones.
	 *
	 * anon in [0], file in [1]
	 */
2264

2265 2266 2267 2268
	anon  = lruvec_lru_size(lruvec, LRU_ACTIVE_ANON) +
		lruvec_lru_size(lruvec, LRU_INACTIVE_ANON);
	file  = lruvec_lru_size(lruvec, LRU_ACTIVE_FILE) +
		lruvec_lru_size(lruvec, LRU_INACTIVE_FILE);
2269

M
Mel Gorman 已提交
2270
	spin_lock_irq(&pgdat->lru_lock);
2271 2272 2273
	if (unlikely(reclaim_stat->recent_scanned[0] > anon / 4)) {
		reclaim_stat->recent_scanned[0] /= 2;
		reclaim_stat->recent_rotated[0] /= 2;
2274 2275
	}

2276 2277 2278
	if (unlikely(reclaim_stat->recent_scanned[1] > file / 4)) {
		reclaim_stat->recent_scanned[1] /= 2;
		reclaim_stat->recent_rotated[1] /= 2;
2279 2280 2281
	}

	/*
2282 2283 2284
	 * The amount of pressure on anon vs file pages is inversely
	 * proportional to the fraction of recently scanned pages on
	 * each list that were recently referenced and in active use.
2285
	 */
2286
	ap = anon_prio * (reclaim_stat->recent_scanned[0] + 1);
2287
	ap /= reclaim_stat->recent_rotated[0] + 1;
2288

2289
	fp = file_prio * (reclaim_stat->recent_scanned[1] + 1);
2290
	fp /= reclaim_stat->recent_rotated[1] + 1;
M
Mel Gorman 已提交
2291
	spin_unlock_irq(&pgdat->lru_lock);
2292

2293 2294 2295 2296
	fraction[0] = ap;
	fraction[1] = fp;
	denominator = ap + fp + 1;
out:
2297 2298 2299
	some_scanned = false;
	/* Only use force_scan on second pass. */
	for (pass = 0; !some_scanned && pass < 2; pass++) {
2300
		*lru_pages = 0;
2301 2302 2303 2304
		for_each_evictable_lru(lru) {
			int file = is_file_lru(lru);
			unsigned long size;
			unsigned long scan;
2305

2306
			size = lruvec_lru_size(lruvec, lru);
2307
			scan = size >> sc->priority;
2308

2309 2310
			if (!scan && pass && force_scan)
				scan = min(size, SWAP_CLUSTER_MAX);
2311

2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326
			switch (scan_balance) {
			case SCAN_EQUAL:
				/* Scan lists relative to size */
				break;
			case SCAN_FRACT:
				/*
				 * Scan types proportional to swappiness and
				 * their relative recent reclaim efficiency.
				 */
				scan = div64_u64(scan * fraction[file],
							denominator);
				break;
			case SCAN_FILE:
			case SCAN_ANON:
				/* Scan one type exclusively */
2327 2328
				if ((scan_balance == SCAN_FILE) != file) {
					size = 0;
2329
					scan = 0;
2330
				}
2331 2332 2333 2334 2335
				break;
			default:
				/* Look ma, no brain */
				BUG();
			}
2336 2337

			*lru_pages += size;
2338
			nr[lru] = scan;
2339

2340
			/*
2341 2342
			 * Skip the second pass and don't force_scan,
			 * if we found something to scan.
2343
			 */
2344
			some_scanned |= !!scan;
2345
		}
2346
	}
2347
}
2348

2349
/*
2350
 * This is a basic per-node page freer.  Used by both kswapd and direct reclaim.
2351
 */
2352
static void shrink_node_memcg(struct pglist_data *pgdat, struct mem_cgroup *memcg,
2353
			      struct scan_control *sc, unsigned long *lru_pages)
2354
{
2355
	struct lruvec *lruvec = mem_cgroup_lruvec(pgdat, memcg);
2356
	unsigned long nr[NR_LRU_LISTS];
2357
	unsigned long targets[NR_LRU_LISTS];
2358 2359 2360 2361 2362
	unsigned long nr_to_scan;
	enum lru_list lru;
	unsigned long nr_reclaimed = 0;
	unsigned long nr_to_reclaim = sc->nr_to_reclaim;
	struct blk_plug plug;
2363
	bool scan_adjusted;
2364

2365
	get_scan_count(lruvec, memcg, sc, nr, lru_pages);
2366

2367 2368 2369
	/* Record the original scan target for proportional adjustments later */
	memcpy(targets, nr, sizeof(nr));

2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383
	/*
	 * Global reclaiming within direct reclaim at DEF_PRIORITY is a normal
	 * event that can occur when there is little memory pressure e.g.
	 * multiple streaming readers/writers. Hence, we do not abort scanning
	 * when the requested number of pages are reclaimed when scanning at
	 * DEF_PRIORITY on the assumption that the fact we are direct
	 * reclaiming implies that kswapd is not keeping up and it is best to
	 * do a batch of work at once. For memcg reclaim one check is made to
	 * abort proportional reclaim if either the file or anon lru has already
	 * dropped to zero at the first pass.
	 */
	scan_adjusted = (global_reclaim(sc) && !current_is_kswapd() &&
			 sc->priority == DEF_PRIORITY);

2384 2385 2386
	blk_start_plug(&plug);
	while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
					nr[LRU_INACTIVE_FILE]) {
2387 2388 2389
		unsigned long nr_anon, nr_file, percentage;
		unsigned long nr_scanned;

2390 2391 2392 2393 2394 2395 2396 2397 2398
		for_each_evictable_lru(lru) {
			if (nr[lru]) {
				nr_to_scan = min(nr[lru], SWAP_CLUSTER_MAX);
				nr[lru] -= nr_to_scan;

				nr_reclaimed += shrink_list(lru, nr_to_scan,
							    lruvec, sc);
			}
		}
2399

2400 2401
		cond_resched();

2402 2403 2404 2405 2406
		if (nr_reclaimed < nr_to_reclaim || scan_adjusted)
			continue;

		/*
		 * For kswapd and memcg, reclaim at least the number of pages
2407
		 * requested. Ensure that the anon and file LRUs are scanned
2408 2409 2410 2411 2412 2413 2414
		 * proportionally what was requested by get_scan_count(). We
		 * stop reclaiming one LRU and reduce the amount scanning
		 * proportional to the original scan target.
		 */
		nr_file = nr[LRU_INACTIVE_FILE] + nr[LRU_ACTIVE_FILE];
		nr_anon = nr[LRU_INACTIVE_ANON] + nr[LRU_ACTIVE_ANON];

2415 2416 2417 2418 2419 2420 2421 2422 2423
		/*
		 * It's just vindictive to attack the larger once the smaller
		 * has gone to zero.  And given the way we stop scanning the
		 * smaller below, this makes sure that we only make one nudge
		 * towards proportionality once we've got nr_to_reclaim.
		 */
		if (!nr_file || !nr_anon)
			break;

2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454
		if (nr_file > nr_anon) {
			unsigned long scan_target = targets[LRU_INACTIVE_ANON] +
						targets[LRU_ACTIVE_ANON] + 1;
			lru = LRU_BASE;
			percentage = nr_anon * 100 / scan_target;
		} else {
			unsigned long scan_target = targets[LRU_INACTIVE_FILE] +
						targets[LRU_ACTIVE_FILE] + 1;
			lru = LRU_FILE;
			percentage = nr_file * 100 / scan_target;
		}

		/* Stop scanning the smaller of the LRU */
		nr[lru] = 0;
		nr[lru + LRU_ACTIVE] = 0;

		/*
		 * Recalculate the other LRU scan count based on its original
		 * scan target and the percentage scanning already complete
		 */
		lru = (lru == LRU_FILE) ? LRU_BASE : LRU_FILE;
		nr_scanned = targets[lru] - nr[lru];
		nr[lru] = targets[lru] * (100 - percentage) / 100;
		nr[lru] -= min(nr[lru], nr_scanned);

		lru += LRU_ACTIVE;
		nr_scanned = targets[lru] - nr[lru];
		nr[lru] = targets[lru] * (100 - percentage) / 100;
		nr[lru] -= min(nr[lru], nr_scanned);

		scan_adjusted = true;
2455 2456 2457 2458 2459 2460 2461 2462
	}
	blk_finish_plug(&plug);
	sc->nr_reclaimed += nr_reclaimed;

	/*
	 * Even if we did not try to evict anon pages at all, we want to
	 * rebalance the anon lru active/inactive ratio.
	 */
2463
	if (inactive_list_is_low(lruvec, false, sc, true))
2464 2465 2466 2467
		shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
				   sc, LRU_ACTIVE_ANON);
}

M
Mel Gorman 已提交
2468
/* Use reclaim/compaction for costly allocs or under memory pressure */
2469
static bool in_reclaim_compaction(struct scan_control *sc)
M
Mel Gorman 已提交
2470
{
2471
	if (IS_ENABLED(CONFIG_COMPACTION) && sc->order &&
M
Mel Gorman 已提交
2472
			(sc->order > PAGE_ALLOC_COSTLY_ORDER ||
2473
			 sc->priority < DEF_PRIORITY - 2))
M
Mel Gorman 已提交
2474 2475 2476 2477 2478
		return true;

	return false;
}

2479
/*
M
Mel Gorman 已提交
2480 2481 2482 2483 2484
 * Reclaim/compaction is used for high-order allocation requests. It reclaims
 * order-0 pages before compacting the zone. should_continue_reclaim() returns
 * true if more pages should be reclaimed such that when the page allocator
 * calls try_to_compact_zone() that it will have enough free pages to succeed.
 * It will give up earlier than that if there is difficulty reclaiming pages.
2485
 */
2486
static inline bool should_continue_reclaim(struct pglist_data *pgdat,
2487 2488 2489 2490 2491 2492
					unsigned long nr_reclaimed,
					unsigned long nr_scanned,
					struct scan_control *sc)
{
	unsigned long pages_for_compaction;
	unsigned long inactive_lru_pages;
2493
	int z;
2494 2495

	/* If not in reclaim/compaction mode, stop */
2496
	if (!in_reclaim_compaction(sc))
2497 2498
		return false;

2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520
	/* Consider stopping depending on scan and reclaim activity */
	if (sc->gfp_mask & __GFP_REPEAT) {
		/*
		 * For __GFP_REPEAT allocations, stop reclaiming if the
		 * full LRU list has been scanned and we are still failing
		 * to reclaim pages. This full LRU scan is potentially
		 * expensive but a __GFP_REPEAT caller really wants to succeed
		 */
		if (!nr_reclaimed && !nr_scanned)
			return false;
	} else {
		/*
		 * For non-__GFP_REPEAT allocations which can presumably
		 * fail without consequence, stop if we failed to reclaim
		 * any pages from the last SWAP_CLUSTER_MAX number of
		 * pages that were scanned. This will return to the
		 * caller faster at the risk reclaim/compaction and
		 * the resulting allocation attempt fails
		 */
		if (!nr_reclaimed)
			return false;
	}
2521 2522 2523 2524 2525

	/*
	 * If we have not reclaimed enough pages for compaction and the
	 * inactive lists are large enough, continue reclaiming
	 */
2526
	pages_for_compaction = compact_gap(sc->order);
2527
	inactive_lru_pages = node_page_state(pgdat, NR_INACTIVE_FILE);
2528
	if (get_nr_swap_pages() > 0)
2529
		inactive_lru_pages += node_page_state(pgdat, NR_INACTIVE_ANON);
2530 2531 2532 2533 2534
	if (sc->nr_reclaimed < pages_for_compaction &&
			inactive_lru_pages > pages_for_compaction)
		return true;

	/* If compaction would go ahead or the allocation would succeed, stop */
2535 2536
	for (z = 0; z <= sc->reclaim_idx; z++) {
		struct zone *zone = &pgdat->node_zones[z];
2537
		if (!managed_zone(zone))
2538 2539 2540
			continue;

		switch (compaction_suitable(zone, sc->order, 0, sc->reclaim_idx)) {
2541
		case COMPACT_SUCCESS:
2542 2543 2544 2545 2546 2547
		case COMPACT_CONTINUE:
			return false;
		default:
			/* check next zone */
			;
		}
2548
	}
2549
	return true;
2550 2551
}

2552
static bool shrink_node(pg_data_t *pgdat, struct scan_control *sc)
L
Linus Torvalds 已提交
2553
{
2554
	struct reclaim_state *reclaim_state = current->reclaim_state;
2555
	unsigned long nr_reclaimed, nr_scanned;
2556
	bool reclaimable = false;
L
Linus Torvalds 已提交
2557

2558 2559 2560
	do {
		struct mem_cgroup *root = sc->target_mem_cgroup;
		struct mem_cgroup_reclaim_cookie reclaim = {
2561
			.pgdat = pgdat,
2562 2563
			.priority = sc->priority,
		};
2564
		unsigned long node_lru_pages = 0;
2565
		struct mem_cgroup *memcg;
2566

2567 2568
		nr_reclaimed = sc->nr_reclaimed;
		nr_scanned = sc->nr_scanned;
L
Linus Torvalds 已提交
2569

2570 2571
		memcg = mem_cgroup_iter(root, NULL, &reclaim);
		do {
2572
			unsigned long lru_pages;
2573
			unsigned long reclaimed;
2574
			unsigned long scanned;
2575

2576 2577 2578 2579 2580 2581
			if (mem_cgroup_low(root, memcg)) {
				if (!sc->may_thrash)
					continue;
				mem_cgroup_events(memcg, MEMCG_LOW, 1);
			}

2582
			reclaimed = sc->nr_reclaimed;
2583
			scanned = sc->nr_scanned;
2584

2585 2586
			shrink_node_memcg(pgdat, memcg, sc, &lru_pages);
			node_lru_pages += lru_pages;
2587

2588
			if (memcg)
2589
				shrink_slab(sc->gfp_mask, pgdat->node_id,
2590 2591 2592
					    memcg, sc->nr_scanned - scanned,
					    lru_pages);

2593 2594 2595 2596 2597
			/* Record the group's reclaim efficiency */
			vmpressure(sc->gfp_mask, memcg, false,
				   sc->nr_scanned - scanned,
				   sc->nr_reclaimed - reclaimed);

2598
			/*
2599 2600
			 * Direct reclaim and kswapd have to scan all memory
			 * cgroups to fulfill the overall scan target for the
2601
			 * node.
2602 2603 2604 2605 2606
			 *
			 * Limit reclaim, on the other hand, only cares about
			 * nr_to_reclaim pages to be reclaimed and it will
			 * retry with decreasing priority if one round over the
			 * whole hierarchy is not sufficient.
2607
			 */
2608 2609
			if (!global_reclaim(sc) &&
					sc->nr_reclaimed >= sc->nr_to_reclaim) {
2610 2611 2612
				mem_cgroup_iter_break(root, memcg);
				break;
			}
2613
		} while ((memcg = mem_cgroup_iter(root, memcg, &reclaim)));
2614

2615 2616 2617 2618
		/*
		 * Shrink the slab caches in the same proportion that
		 * the eligible LRU pages were scanned.
		 */
2619
		if (global_reclaim(sc))
2620
			shrink_slab(sc->gfp_mask, pgdat->node_id, NULL,
2621
				    sc->nr_scanned - nr_scanned,
2622
				    node_lru_pages);
2623 2624 2625 2626

		if (reclaim_state) {
			sc->nr_reclaimed += reclaim_state->reclaimed_slab;
			reclaim_state->reclaimed_slab = 0;
2627 2628
		}

2629 2630
		/* Record the subtree's reclaim efficiency */
		vmpressure(sc->gfp_mask, sc->target_mem_cgroup, true,
2631 2632 2633
			   sc->nr_scanned - nr_scanned,
			   sc->nr_reclaimed - nr_reclaimed);

2634 2635 2636
		if (sc->nr_reclaimed - nr_reclaimed)
			reclaimable = true;

2637
	} while (should_continue_reclaim(pgdat, sc->nr_reclaimed - nr_reclaimed,
2638
					 sc->nr_scanned - nr_scanned, sc));
2639 2640

	return reclaimable;
2641 2642
}

2643
/*
2644 2645 2646
 * Returns true if compaction should go ahead for a costly-order request, or
 * the allocation would already succeed without compaction. Return false if we
 * should reclaim first.
2647
 */
2648
static inline bool compaction_ready(struct zone *zone, struct scan_control *sc)
2649
{
M
Mel Gorman 已提交
2650
	unsigned long watermark;
2651
	enum compact_result suitable;
2652

2653 2654 2655 2656 2657 2658 2659
	suitable = compaction_suitable(zone, sc->order, 0, sc->reclaim_idx);
	if (suitable == COMPACT_SUCCESS)
		/* Allocation should succeed already. Don't reclaim. */
		return true;
	if (suitable == COMPACT_SKIPPED)
		/* Compaction cannot yet proceed. Do reclaim. */
		return false;
2660

2661
	/*
2662 2663 2664 2665 2666 2667 2668
	 * Compaction is already possible, but it takes time to run and there
	 * are potentially other callers using the pages just freed. So proceed
	 * with reclaim to make a buffer of free pages available to give
	 * compaction a reasonable chance of completing and allocating the page.
	 * Note that we won't actually reclaim the whole buffer in one attempt
	 * as the target watermark in should_continue_reclaim() is lower. But if
	 * we are already above the high+gap watermark, don't reclaim at all.
2669
	 */
2670
	watermark = high_wmark_pages(zone) + compact_gap(sc->order);
2671

2672
	return zone_watermark_ok_safe(zone, 0, watermark, sc->reclaim_idx);
2673 2674
}

L
Linus Torvalds 已提交
2675 2676 2677 2678 2679 2680 2681 2682
/*
 * This is the direct reclaim path, for page-allocating processes.  We only
 * try to reclaim pages from zones which will satisfy the caller's allocation
 * request.
 *
 * If a zone is deemed to be full of pinned pages then just give it a light
 * scan then give up on it.
 */
M
Michal Hocko 已提交
2683
static void shrink_zones(struct zonelist *zonelist, struct scan_control *sc)
L
Linus Torvalds 已提交
2684
{
2685
	struct zoneref *z;
2686
	struct zone *zone;
2687 2688
	unsigned long nr_soft_reclaimed;
	unsigned long nr_soft_scanned;
2689
	gfp_t orig_mask;
2690
	pg_data_t *last_pgdat = NULL;
2691

2692 2693 2694 2695 2696
	/*
	 * If the number of buffer_heads in the machine exceeds the maximum
	 * allowed level, force direct reclaim to scan the highmem zone as
	 * highmem pages could be pinning lowmem pages storing buffer_heads
	 */
2697
	orig_mask = sc->gfp_mask;
2698
	if (buffer_heads_over_limit) {
2699
		sc->gfp_mask |= __GFP_HIGHMEM;
2700
		sc->reclaim_idx = gfp_zone(sc->gfp_mask);
2701
	}
2702

2703
	for_each_zone_zonelist_nodemask(zone, z, zonelist,
2704
					sc->reclaim_idx, sc->nodemask) {
2705 2706 2707 2708
		/*
		 * Take care memory controller reclaiming has small influence
		 * to global LRU.
		 */
2709
		if (global_reclaim(sc)) {
2710 2711
			if (!cpuset_zone_allowed(zone,
						 GFP_KERNEL | __GFP_HARDWALL))
2712
				continue;
2713

2714
			if (sc->priority != DEF_PRIORITY &&
M
Mel Gorman 已提交
2715
			    !pgdat_reclaimable(zone->zone_pgdat))
2716
				continue;	/* Let kswapd poll it */
2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728

			/*
			 * If we already have plenty of memory free for
			 * compaction in this zone, don't free any more.
			 * Even though compaction is invoked for any
			 * non-zero order, only frequent costly order
			 * reclamation is disruptive enough to become a
			 * noticeable problem, like transparent huge
			 * page allocations.
			 */
			if (IS_ENABLED(CONFIG_COMPACTION) &&
			    sc->order > PAGE_ALLOC_COSTLY_ORDER &&
2729
			    compaction_ready(zone, sc)) {
2730 2731
				sc->compaction_ready = true;
				continue;
2732
			}
2733

2734 2735 2736 2737 2738 2739 2740 2741 2742
			/*
			 * Shrink each node in the zonelist once. If the
			 * zonelist is ordered by zone (not the default) then a
			 * node may be shrunk multiple times but in that case
			 * the user prefers lower zones being preserved.
			 */
			if (zone->zone_pgdat == last_pgdat)
				continue;

2743 2744 2745 2746 2747 2748 2749
			/*
			 * This steals pages from memory cgroups over softlimit
			 * and returns the number of reclaimed pages and
			 * scanned pages. This works for global memory pressure
			 * and balancing, not for a memcg's limit.
			 */
			nr_soft_scanned = 0;
2750
			nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone->zone_pgdat,
2751 2752 2753 2754
						sc->order, sc->gfp_mask,
						&nr_soft_scanned);
			sc->nr_reclaimed += nr_soft_reclaimed;
			sc->nr_scanned += nr_soft_scanned;
2755
			/* need some check for avoid more shrink_zone() */
2756
		}
2757

2758 2759 2760 2761
		/* See comment about same check for global reclaim above */
		if (zone->zone_pgdat == last_pgdat)
			continue;
		last_pgdat = zone->zone_pgdat;
2762
		shrink_node(zone->zone_pgdat, sc);
L
Linus Torvalds 已提交
2763
	}
2764

2765 2766 2767 2768 2769
	/*
	 * Restore to original mask to avoid the impact on the caller if we
	 * promoted it to __GFP_HIGHMEM.
	 */
	sc->gfp_mask = orig_mask;
L
Linus Torvalds 已提交
2770
}
2771

L
Linus Torvalds 已提交
2772 2773 2774 2775 2776 2777 2778 2779
/*
 * This is the main entry point to direct page reclaim.
 *
 * If a full scan of the inactive list fails to free enough memory then we
 * are "out of memory" and something needs to be killed.
 *
 * If the caller is !__GFP_FS then the probability of a failure is reasonably
 * high - the zone may be full of dirty or under-writeback pages, which this
2780 2781 2782 2783
 * caller can't do much about.  We kick the writeback threads and take explicit
 * naps in the hope that some of these pages can be written.  But if the
 * allocating task holds filesystem locks which prevent writeout this might not
 * work, and the allocation attempt will fail.
2784 2785 2786
 *
 * returns:	0, if no pages reclaimed
 * 		else, the number of pages reclaimed
L
Linus Torvalds 已提交
2787
 */
2788
static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
2789
					  struct scan_control *sc)
L
Linus Torvalds 已提交
2790
{
2791
	int initial_priority = sc->priority;
2792
	unsigned long total_scanned = 0;
2793
	unsigned long writeback_threshold;
2794
retry:
2795 2796
	delayacct_freepages_start();

2797
	if (global_reclaim(sc))
2798
		__count_zid_vm_events(ALLOCSTALL, sc->reclaim_idx, 1);
L
Linus Torvalds 已提交
2799

2800
	do {
2801 2802
		vmpressure_prio(sc->gfp_mask, sc->target_mem_cgroup,
				sc->priority);
2803
		sc->nr_scanned = 0;
M
Michal Hocko 已提交
2804
		shrink_zones(zonelist, sc);
2805

2806
		total_scanned += sc->nr_scanned;
2807
		if (sc->nr_reclaimed >= sc->nr_to_reclaim)
2808 2809 2810 2811
			break;

		if (sc->compaction_ready)
			break;
L
Linus Torvalds 已提交
2812

2813 2814 2815 2816 2817 2818 2819
		/*
		 * If we're getting trouble reclaiming, start doing
		 * writepage even in laptop mode.
		 */
		if (sc->priority < DEF_PRIORITY - 2)
			sc->may_writepage = 1;

L
Linus Torvalds 已提交
2820 2821 2822 2823 2824 2825 2826
		/*
		 * Try to write back as many pages as we just scanned.  This
		 * tends to cause slow streaming writers to write data to the
		 * disk smoothly, at the dirtying rate, which is nice.   But
		 * that's undesirable in laptop mode, where we *want* lumpy
		 * writeout.  So in laptop mode, write out the whole world.
		 */
2827 2828
		writeback_threshold = sc->nr_to_reclaim + sc->nr_to_reclaim / 2;
		if (total_scanned > writeback_threshold) {
2829 2830
			wakeup_flusher_threads(laptop_mode ? 0 : total_scanned,
						WB_REASON_TRY_TO_FREE_PAGES);
2831
			sc->may_writepage = 1;
L
Linus Torvalds 已提交
2832
		}
2833
	} while (--sc->priority >= 0);
2834

2835 2836
	delayacct_freepages_end();

2837 2838 2839
	if (sc->nr_reclaimed)
		return sc->nr_reclaimed;

2840
	/* Aborted reclaim to try compaction? don't OOM, then */
2841
	if (sc->compaction_ready)
2842 2843
		return 1;

2844 2845 2846 2847 2848 2849 2850
	/* Untapped cgroup reserves?  Don't OOM, retry. */
	if (!sc->may_thrash) {
		sc->priority = initial_priority;
		sc->may_thrash = 1;
		goto retry;
	}

2851
	return 0;
L
Linus Torvalds 已提交
2852 2853
}

2854 2855 2856 2857 2858 2859 2860 2861 2862 2863
static bool pfmemalloc_watermark_ok(pg_data_t *pgdat)
{
	struct zone *zone;
	unsigned long pfmemalloc_reserve = 0;
	unsigned long free_pages = 0;
	int i;
	bool wmark_ok;

	for (i = 0; i <= ZONE_NORMAL; i++) {
		zone = &pgdat->node_zones[i];
2864
		if (!managed_zone(zone) ||
M
Mel Gorman 已提交
2865
		    pgdat_reclaimable_pages(pgdat) == 0)
2866 2867
			continue;

2868 2869 2870 2871
		pfmemalloc_reserve += min_wmark_pages(zone);
		free_pages += zone_page_state(zone, NR_FREE_PAGES);
	}

2872 2873 2874 2875
	/* If there are no reserves (unexpected config) then do not throttle */
	if (!pfmemalloc_reserve)
		return true;

2876 2877 2878 2879
	wmark_ok = free_pages > pfmemalloc_reserve / 2;

	/* kswapd must be awake if processes are being throttled */
	if (!wmark_ok && waitqueue_active(&pgdat->kswapd_wait)) {
2880
		pgdat->kswapd_classzone_idx = min(pgdat->kswapd_classzone_idx,
2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891
						(enum zone_type)ZONE_NORMAL);
		wake_up_interruptible(&pgdat->kswapd_wait);
	}

	return wmark_ok;
}

/*
 * Throttle direct reclaimers if backing storage is backed by the network
 * and the PFMEMALLOC reserve for the preferred node is getting dangerously
 * depleted. kswapd will continue to make progress and wake the processes
2892 2893 2894 2895
 * when the low watermark is reached.
 *
 * Returns true if a fatal signal was delivered during throttling. If this
 * happens, the page allocator should not consider triggering the OOM killer.
2896
 */
2897
static bool throttle_direct_reclaim(gfp_t gfp_mask, struct zonelist *zonelist,
2898 2899
					nodemask_t *nodemask)
{
2900
	struct zoneref *z;
2901
	struct zone *zone;
2902
	pg_data_t *pgdat = NULL;
2903 2904 2905 2906 2907 2908 2909 2910 2911

	/*
	 * Kernel threads should not be throttled as they may be indirectly
	 * responsible for cleaning pages necessary for reclaim to make forward
	 * progress. kjournald for example may enter direct reclaim while
	 * committing a transaction where throttling it could forcing other
	 * processes to block on log_wait_commit().
	 */
	if (current->flags & PF_KTHREAD)
2912 2913 2914 2915 2916 2917 2918 2919
		goto out;

	/*
	 * If a fatal signal is pending, this process should not throttle.
	 * It should return quickly so it can exit and free its memory
	 */
	if (fatal_signal_pending(current))
		goto out;
2920

2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935
	/*
	 * Check if the pfmemalloc reserves are ok by finding the first node
	 * with a usable ZONE_NORMAL or lower zone. The expectation is that
	 * GFP_KERNEL will be required for allocating network buffers when
	 * swapping over the network so ZONE_HIGHMEM is unusable.
	 *
	 * Throttling is based on the first usable node and throttled processes
	 * wait on a queue until kswapd makes progress and wakes them. There
	 * is an affinity then between processes waking up and where reclaim
	 * progress has been made assuming the process wakes on the same node.
	 * More importantly, processes running on remote nodes will not compete
	 * for remote pfmemalloc reserves and processes on different nodes
	 * should make reasonable progress.
	 */
	for_each_zone_zonelist_nodemask(zone, z, zonelist,
2936
					gfp_zone(gfp_mask), nodemask) {
2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948
		if (zone_idx(zone) > ZONE_NORMAL)
			continue;

		/* Throttle based on the first usable node */
		pgdat = zone->zone_pgdat;
		if (pfmemalloc_watermark_ok(pgdat))
			goto out;
		break;
	}

	/* If no zone was usable by the allocation flags then do not throttle */
	if (!pgdat)
2949
		goto out;
2950

2951 2952 2953
	/* Account for the throttling */
	count_vm_event(PGSCAN_DIRECT_THROTTLE);

2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964
	/*
	 * If the caller cannot enter the filesystem, it's possible that it
	 * is due to the caller holding an FS lock or performing a journal
	 * transaction in the case of a filesystem like ext[3|4]. In this case,
	 * it is not safe to block on pfmemalloc_wait as kswapd could be
	 * blocked waiting on the same lock. Instead, throttle for up to a
	 * second before continuing.
	 */
	if (!(gfp_mask & __GFP_FS)) {
		wait_event_interruptible_timeout(pgdat->pfmemalloc_wait,
			pfmemalloc_watermark_ok(pgdat), HZ);
2965 2966

		goto check_pending;
2967 2968 2969 2970 2971
	}

	/* Throttle until kswapd wakes the process */
	wait_event_killable(zone->zone_pgdat->pfmemalloc_wait,
		pfmemalloc_watermark_ok(pgdat));
2972 2973 2974 2975 2976 2977 2978

check_pending:
	if (fatal_signal_pending(current))
		return true;

out:
	return false;
2979 2980
}

2981
unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
2982
				gfp_t gfp_mask, nodemask_t *nodemask)
2983
{
2984
	unsigned long nr_reclaimed;
2985
	struct scan_control sc = {
2986
		.nr_to_reclaim = SWAP_CLUSTER_MAX,
2987
		.gfp_mask = (gfp_mask = memalloc_noio_flags(gfp_mask)),
2988
		.reclaim_idx = gfp_zone(gfp_mask),
2989 2990 2991
		.order = order,
		.nodemask = nodemask,
		.priority = DEF_PRIORITY,
2992
		.may_writepage = !laptop_mode,
2993
		.may_unmap = 1,
2994
		.may_swap = 1,
2995 2996
	};

2997
	/*
2998 2999 3000
	 * Do not enter reclaim if fatal signal was delivered while throttled.
	 * 1 is returned so that the page allocator does not OOM kill at this
	 * point.
3001
	 */
3002
	if (throttle_direct_reclaim(gfp_mask, zonelist, nodemask))
3003 3004
		return 1;

3005 3006
	trace_mm_vmscan_direct_reclaim_begin(order,
				sc.may_writepage,
3007 3008
				gfp_mask,
				sc.reclaim_idx);
3009

3010
	nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
3011 3012 3013 3014

	trace_mm_vmscan_direct_reclaim_end(nr_reclaimed);

	return nr_reclaimed;
3015 3016
}

A
Andrew Morton 已提交
3017
#ifdef CONFIG_MEMCG
3018

3019
unsigned long mem_cgroup_shrink_node(struct mem_cgroup *memcg,
3020
						gfp_t gfp_mask, bool noswap,
3021
						pg_data_t *pgdat,
3022
						unsigned long *nr_scanned)
3023 3024
{
	struct scan_control sc = {
3025
		.nr_to_reclaim = SWAP_CLUSTER_MAX,
3026
		.target_mem_cgroup = memcg,
3027 3028
		.may_writepage = !laptop_mode,
		.may_unmap = 1,
3029
		.reclaim_idx = MAX_NR_ZONES - 1,
3030 3031
		.may_swap = !noswap,
	};
3032
	unsigned long lru_pages;
3033

3034 3035
	sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
			(GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
3036

3037
	trace_mm_vmscan_memcg_softlimit_reclaim_begin(sc.order,
3038
						      sc.may_writepage,
3039 3040
						      sc.gfp_mask,
						      sc.reclaim_idx);
3041

3042 3043 3044
	/*
	 * NOTE: Although we can get the priority field, using it
	 * here is not a good idea, since it limits the pages we can scan.
3045
	 * if we don't reclaim here, the shrink_node from balance_pgdat
3046 3047 3048
	 * will pick up pages from other mem cgroup's as well. We hack
	 * the priority and make it zero.
	 */
3049
	shrink_node_memcg(pgdat, memcg, &sc, &lru_pages);
3050 3051 3052

	trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed);

3053
	*nr_scanned = sc.nr_scanned;
3054 3055 3056
	return sc.nr_reclaimed;
}

3057
unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg,
3058
					   unsigned long nr_pages,
K
KOSAKI Motohiro 已提交
3059
					   gfp_t gfp_mask,
3060
					   bool may_swap)
3061
{
3062
	struct zonelist *zonelist;
3063
	unsigned long nr_reclaimed;
3064
	int nid;
3065
	struct scan_control sc = {
3066
		.nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
3067 3068
		.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
				(GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK),
3069
		.reclaim_idx = MAX_NR_ZONES - 1,
3070 3071 3072 3073
		.target_mem_cgroup = memcg,
		.priority = DEF_PRIORITY,
		.may_writepage = !laptop_mode,
		.may_unmap = 1,
3074
		.may_swap = may_swap,
3075
	};
3076

3077 3078 3079 3080 3081
	/*
	 * Unlike direct reclaim via alloc_pages(), memcg's reclaim doesn't
	 * take care of from where we get pages. So the node where we start the
	 * scan does not need to be the current node.
	 */
3082
	nid = mem_cgroup_select_victim_node(memcg);
3083

3084
	zonelist = &NODE_DATA(nid)->node_zonelists[ZONELIST_FALLBACK];
3085 3086 3087

	trace_mm_vmscan_memcg_reclaim_begin(0,
					    sc.may_writepage,
3088 3089
					    sc.gfp_mask,
					    sc.reclaim_idx);
3090

3091
	current->flags |= PF_MEMALLOC;
3092
	nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
3093
	current->flags &= ~PF_MEMALLOC;
3094 3095 3096 3097

	trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed);

	return nr_reclaimed;
3098 3099 3100
}
#endif

3101
static void age_active_anon(struct pglist_data *pgdat,
3102
				struct scan_control *sc)
3103
{
3104
	struct mem_cgroup *memcg;
3105

3106 3107 3108 3109 3110
	if (!total_swap_pages)
		return;

	memcg = mem_cgroup_iter(NULL, NULL, NULL);
	do {
3111
		struct lruvec *lruvec = mem_cgroup_lruvec(pgdat, memcg);
3112

3113
		if (inactive_list_is_low(lruvec, false, sc, true))
3114
			shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
3115
					   sc, LRU_ACTIVE_ANON);
3116 3117 3118

		memcg = mem_cgroup_iter(NULL, memcg, NULL);
	} while (memcg);
3119 3120
}

M
Mel Gorman 已提交
3121
static bool zone_balanced(struct zone *zone, int order, int classzone_idx)
3122
{
M
Mel Gorman 已提交
3123
	unsigned long mark = high_wmark_pages(zone);
3124

3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135
	if (!zone_watermark_ok_safe(zone, order, mark, classzone_idx))
		return false;

	/*
	 * If any eligible zone is balanced then the node is not considered
	 * to be congested or dirty
	 */
	clear_bit(PGDAT_CONGESTED, &zone->zone_pgdat->flags);
	clear_bit(PGDAT_DIRTY, &zone->zone_pgdat->flags);

	return true;
3136 3137
}

3138 3139 3140 3141 3142 3143
/*
 * Prepare kswapd for sleeping. This verifies that there are no processes
 * waiting in throttle_direct_reclaim() and that watermarks have been met.
 *
 * Returns true if kswapd is ready to sleep
 */
3144
static bool prepare_kswapd_sleep(pg_data_t *pgdat, int order, int classzone_idx)
3145
{
3146 3147
	int i;

3148
	/*
3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159
	 * The throttled processes are normally woken up in balance_pgdat() as
	 * soon as pfmemalloc_watermark_ok() is true. But there is a potential
	 * race between when kswapd checks the watermarks and a process gets
	 * throttled. There is also a potential race if processes get
	 * throttled, kswapd wakes, a large process exits thereby balancing the
	 * zones, which causes kswapd to exit balance_pgdat() before reaching
	 * the wake up checks. If kswapd is going to sleep, no process should
	 * be sleeping on pfmemalloc_wait, so wake them now if necessary. If
	 * the wake up is premature, processes will wake kswapd and get
	 * throttled again. The difference from wake ups in balance_pgdat() is
	 * that here we are under prepare_to_wait().
3160
	 */
3161 3162
	if (waitqueue_active(&pgdat->pfmemalloc_wait))
		wake_up_all(&pgdat->pfmemalloc_wait);
3163

3164 3165 3166
	for (i = 0; i <= classzone_idx; i++) {
		struct zone *zone = pgdat->node_zones + i;

3167
		if (!managed_zone(zone))
3168 3169
			continue;

3170 3171
		if (!zone_balanced(zone, order, classzone_idx))
			return false;
3172 3173
	}

3174
	return true;
3175 3176
}

3177
/*
3178 3179
 * kswapd shrinks a node of pages that are at or below the highest usable
 * zone that is currently unbalanced.
3180 3181
 *
 * Returns true if kswapd scanned at least the requested number of pages to
3182 3183
 * reclaim or if the lack of progress was due to pages under writeback.
 * This is used to determine if the scanning priority needs to be raised.
3184
 */
3185
static bool kswapd_shrink_node(pg_data_t *pgdat,
3186
			       struct scan_control *sc)
3187
{
3188 3189
	struct zone *zone;
	int z;
3190

3191 3192
	/* Reclaim a number of pages proportional to the number of zones */
	sc->nr_to_reclaim = 0;
3193
	for (z = 0; z <= sc->reclaim_idx; z++) {
3194
		zone = pgdat->node_zones + z;
3195
		if (!managed_zone(zone))
3196
			continue;
3197

3198 3199
		sc->nr_to_reclaim += max(high_wmark_pages(zone), SWAP_CLUSTER_MAX);
	}
3200 3201

	/*
3202 3203
	 * Historically care was taken to put equal pressure on all zones but
	 * now pressure is applied based on node LRU order.
3204
	 */
3205
	shrink_node(pgdat, sc);
3206

3207
	/*
3208 3209 3210 3211 3212
	 * Fragmentation may mean that the system cannot be rebalanced for
	 * high-order allocations. If twice the allocation size has been
	 * reclaimed then recheck watermarks only at order-0 to prevent
	 * excessive reclaim. Assume that a process requested a high-order
	 * can direct reclaim/compact.
3213
	 */
3214
	if (sc->order && sc->nr_reclaimed >= compact_gap(sc->order))
3215
		sc->order = 0;
3216

3217
	return sc->nr_scanned >= sc->nr_to_reclaim;
3218 3219
}

L
Linus Torvalds 已提交
3220
/*
3221 3222 3223
 * For kswapd, balance_pgdat() will reclaim pages across a node from zones
 * that are eligible for use by the caller until at least one zone is
 * balanced.
L
Linus Torvalds 已提交
3224
 *
3225
 * Returns the order kswapd finished reclaiming at.
L
Linus Torvalds 已提交
3226 3227
 *
 * kswapd scans the zones in the highmem->normal->dma direction.  It skips
3228
 * zones which have free_pages > high_wmark_pages(zone), but once a zone is
3229 3230 3231
 * found to have free_pages <= high_wmark_pages(zone), any page is that zone
 * or lower is eligible for reclaim until at least one usable zone is
 * balanced.
L
Linus Torvalds 已提交
3232
 */
3233
static int balance_pgdat(pg_data_t *pgdat, int order, int classzone_idx)
L
Linus Torvalds 已提交
3234 3235
{
	int i;
3236 3237
	unsigned long nr_soft_reclaimed;
	unsigned long nr_soft_scanned;
3238
	struct zone *zone;
3239 3240
	struct scan_control sc = {
		.gfp_mask = GFP_KERNEL,
3241
		.order = order,
3242
		.priority = DEF_PRIORITY,
3243
		.may_writepage = !laptop_mode,
3244
		.may_unmap = 1,
3245
		.may_swap = 1,
3246
	};
3247
	count_vm_event(PAGEOUTRUN);
L
Linus Torvalds 已提交
3248

3249
	do {
3250 3251 3252
		bool raise_priority = true;

		sc.nr_reclaimed = 0;
3253
		sc.reclaim_idx = classzone_idx;
L
Linus Torvalds 已提交
3254

3255
		/*
3256 3257 3258 3259 3260 3261 3262 3263
		 * If the number of buffer_heads exceeds the maximum allowed
		 * then consider reclaiming from all zones. This has a dual
		 * purpose -- on 64-bit systems it is expected that
		 * buffer_heads are stripped during active rotation. On 32-bit
		 * systems, highmem pages can pin lowmem memory and shrinking
		 * buffers can relieve lowmem pressure. Reclaim may still not
		 * go ahead if all eligible zones for the original allocation
		 * request are balanced to avoid excessive reclaim from kswapd.
3264 3265 3266 3267
		 */
		if (buffer_heads_over_limit) {
			for (i = MAX_NR_ZONES - 1; i >= 0; i--) {
				zone = pgdat->node_zones + i;
3268
				if (!managed_zone(zone))
3269
					continue;
3270

3271
				sc.reclaim_idx = i;
A
Andrew Morton 已提交
3272
				break;
L
Linus Torvalds 已提交
3273 3274
			}
		}
3275

3276 3277 3278 3279 3280 3281
		/*
		 * Only reclaim if there are no eligible zones. Check from
		 * high to low zone as allocations prefer higher zones.
		 * Scanning from low to high zone would allow congestion to be
		 * cleared during a very small window when a small low
		 * zone was balanced even under extreme pressure when the
3282 3283 3284
		 * overall node may be congested. Note that sc.reclaim_idx
		 * is not used as buffer_heads_over_limit may have adjusted
		 * it.
3285
		 */
3286
		for (i = classzone_idx; i >= 0; i--) {
3287
			zone = pgdat->node_zones + i;
3288
			if (!managed_zone(zone))
3289 3290
				continue;

3291
			if (zone_balanced(zone, sc.order, classzone_idx))
3292 3293
				goto out;
		}
A
Andrew Morton 已提交
3294

3295 3296 3297 3298 3299 3300
		/*
		 * Do some background aging of the anon list, to give
		 * pages a chance to be referenced before reclaiming. All
		 * pages are rotated regardless of classzone as this is
		 * about consistent aging.
		 */
3301
		age_active_anon(pgdat, &sc);
3302

3303 3304 3305 3306
		/*
		 * If we're getting trouble reclaiming, start doing writepage
		 * even in laptop mode.
		 */
3307
		if (sc.priority < DEF_PRIORITY - 2 || !pgdat_reclaimable(pgdat))
3308 3309
			sc.may_writepage = 1;

3310 3311 3312
		/* Call soft limit reclaim before calling shrink_node. */
		sc.nr_scanned = 0;
		nr_soft_scanned = 0;
3313
		nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(pgdat, sc.order,
3314 3315 3316
						sc.gfp_mask, &nr_soft_scanned);
		sc.nr_reclaimed += nr_soft_reclaimed;

L
Linus Torvalds 已提交
3317
		/*
3318 3319 3320
		 * There should be no need to raise the scanning priority if
		 * enough pages are already being scanned that that high
		 * watermark would be met at 100% efficiency.
L
Linus Torvalds 已提交
3321
		 */
3322
		if (kswapd_shrink_node(pgdat, &sc))
3323
			raise_priority = false;
3324 3325 3326 3327 3328 3329 3330 3331

		/*
		 * If the low watermark is met there is no need for processes
		 * to be throttled on pfmemalloc_wait as they should not be
		 * able to safely make forward progress. Wake them
		 */
		if (waitqueue_active(&pgdat->pfmemalloc_wait) &&
				pfmemalloc_watermark_ok(pgdat))
3332
			wake_up_all(&pgdat->pfmemalloc_wait);
3333

3334 3335 3336
		/* Check if kswapd should be suspending */
		if (try_to_freeze() || kthread_should_stop())
			break;
3337

3338
		/*
3339 3340
		 * Raise priority if scanning rate is too low or there was no
		 * progress in reclaiming pages
3341
		 */
3342 3343
		if (raise_priority || !sc.nr_reclaimed)
			sc.priority--;
3344
	} while (sc.priority >= 1);
L
Linus Torvalds 已提交
3345

3346
out:
3347
	/*
3348 3349 3350 3351
	 * Return the order kswapd stopped reclaiming at as
	 * prepare_kswapd_sleep() takes it into account. If another caller
	 * entered the allocator slow path while kswapd was awake, order will
	 * remain at the higher level.
3352
	 */
3353
	return sc.order;
L
Linus Torvalds 已提交
3354 3355
}

3356 3357
static void kswapd_try_to_sleep(pg_data_t *pgdat, int alloc_order, int reclaim_order,
				unsigned int classzone_idx)
3358 3359 3360 3361 3362 3363 3364 3365 3366 3367
{
	long remaining = 0;
	DEFINE_WAIT(wait);

	if (freezing(current) || kthread_should_stop())
		return;

	prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);

	/* Try to sleep for a short interval */
3368
	if (prepare_kswapd_sleep(pgdat, reclaim_order, classzone_idx)) {
3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380
		/*
		 * Compaction records what page blocks it recently failed to
		 * isolate pages from and skips them in the future scanning.
		 * When kswapd is going to sleep, it is reasonable to assume
		 * that pages and compaction may succeed so reset the cache.
		 */
		reset_isolation_suitable(pgdat);

		/*
		 * We have freed the memory, now we should compact it to make
		 * allocation of the requested order possible.
		 */
3381
		wakeup_kcompactd(pgdat, alloc_order, classzone_idx);
3382

3383
		remaining = schedule_timeout(HZ/10);
3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394

		/*
		 * If woken prematurely then reset kswapd_classzone_idx and
		 * order. The values will either be from a wakeup request or
		 * the previous request that slept prematurely.
		 */
		if (remaining) {
			pgdat->kswapd_classzone_idx = max(pgdat->kswapd_classzone_idx, classzone_idx);
			pgdat->kswapd_order = max(pgdat->kswapd_order, reclaim_order);
		}

3395 3396 3397 3398 3399 3400 3401 3402
		finish_wait(&pgdat->kswapd_wait, &wait);
		prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
	}

	/*
	 * After a short sleep, check if it was a premature sleep. If not, then
	 * go fully to sleep until explicitly woken up.
	 */
3403 3404
	if (!remaining &&
	    prepare_kswapd_sleep(pgdat, reclaim_order, classzone_idx)) {
3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415
		trace_mm_vmscan_kswapd_sleep(pgdat->node_id);

		/*
		 * vmstat counters are not perfectly accurate and the estimated
		 * value for counters such as NR_FREE_PAGES can deviate from the
		 * true value by nr_online_cpus * threshold. To avoid the zone
		 * watermarks being breached while under pressure, we reduce the
		 * per-cpu vmstat threshold while kswapd is awake and restore
		 * them before going back to sleep.
		 */
		set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold);
3416 3417 3418 3419

		if (!kthread_should_stop())
			schedule();

3420 3421 3422 3423 3424 3425 3426 3427 3428 3429
		set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold);
	} else {
		if (remaining)
			count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
		else
			count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
	}
	finish_wait(&pgdat->kswapd_wait, &wait);
}

L
Linus Torvalds 已提交
3430 3431
/*
 * The background pageout daemon, started as a kernel thread
3432
 * from the init process.
L
Linus Torvalds 已提交
3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444
 *
 * This basically trickles out pages so that we have _some_
 * free memory available even if there is no other activity
 * that frees anything up. This is needed for things like routing
 * etc, where we otherwise might have all activity going on in
 * asynchronous contexts that cannot page things out.
 *
 * If there are applications that are active memory-allocators
 * (most normal use), this basically shouldn't matter.
 */
static int kswapd(void *p)
{
3445
	unsigned int alloc_order, reclaim_order, classzone_idx;
L
Linus Torvalds 已提交
3446 3447
	pg_data_t *pgdat = (pg_data_t*)p;
	struct task_struct *tsk = current;
3448

L
Linus Torvalds 已提交
3449 3450 3451
	struct reclaim_state reclaim_state = {
		.reclaimed_slab = 0,
	};
3452
	const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
L
Linus Torvalds 已提交
3453

3454 3455
	lockdep_set_current_reclaim_state(GFP_KERNEL);

R
Rusty Russell 已提交
3456
	if (!cpumask_empty(cpumask))
3457
		set_cpus_allowed_ptr(tsk, cpumask);
L
Linus Torvalds 已提交
3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471
	current->reclaim_state = &reclaim_state;

	/*
	 * Tell the memory management that we're a "memory allocator",
	 * and that if we need more memory we should get access to it
	 * regardless (see "__alloc_pages()"). "kswapd" should
	 * never get caught in the normal page freeing logic.
	 *
	 * (Kswapd normally doesn't need memory anyway, but sometimes
	 * you need a small amount of memory in order to be able to
	 * page out something else, and this flag essentially protects
	 * us from recursively trying to free more memory as we're
	 * trying to free the first piece of memory in the first place).
	 */
3472
	tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
3473
	set_freezable();
L
Linus Torvalds 已提交
3474

3475 3476
	pgdat->kswapd_order = alloc_order = reclaim_order = 0;
	pgdat->kswapd_classzone_idx = classzone_idx = 0;
L
Linus Torvalds 已提交
3477
	for ( ; ; ) {
3478
		bool ret;
3479

3480 3481 3482
kswapd_try_sleep:
		kswapd_try_to_sleep(pgdat, alloc_order, reclaim_order,
					classzone_idx);
3483

3484 3485 3486 3487 3488
		/* Read the new order and classzone_idx */
		alloc_order = reclaim_order = pgdat->kswapd_order;
		classzone_idx = pgdat->kswapd_classzone_idx;
		pgdat->kswapd_order = 0;
		pgdat->kswapd_classzone_idx = 0;
L
Linus Torvalds 已提交
3489

3490 3491 3492 3493 3494 3495 3496 3497
		ret = try_to_freeze();
		if (kthread_should_stop())
			break;

		/*
		 * We can speed up thawing tasks if we don't call balance_pgdat
		 * after returning from the refrigerator
		 */
3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508
		if (ret)
			continue;

		/*
		 * Reclaim begins at the requested order but if a high-order
		 * reclaim fails then kswapd falls back to reclaiming for
		 * order-0. If that happens, kswapd will consider sleeping
		 * for the order it finished reclaiming at (reclaim_order)
		 * but kcompactd is woken to compact for the original
		 * request (alloc_order).
		 */
3509 3510
		trace_mm_vmscan_kswapd_wake(pgdat->node_id, classzone_idx,
						alloc_order);
3511 3512 3513
		reclaim_order = balance_pgdat(pgdat, alloc_order, classzone_idx);
		if (reclaim_order < alloc_order)
			goto kswapd_try_sleep;
3514

3515 3516
		alloc_order = reclaim_order = pgdat->kswapd_order;
		classzone_idx = pgdat->kswapd_classzone_idx;
L
Linus Torvalds 已提交
3517
	}
3518

3519
	tsk->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD);
3520
	current->reclaim_state = NULL;
3521 3522
	lockdep_clear_current_reclaim_state();

L
Linus Torvalds 已提交
3523 3524 3525 3526 3527 3528
	return 0;
}

/*
 * A zone is low on free memory, so wake its kswapd task to service it.
 */
3529
void wakeup_kswapd(struct zone *zone, int order, enum zone_type classzone_idx)
L
Linus Torvalds 已提交
3530 3531
{
	pg_data_t *pgdat;
3532
	int z;
L
Linus Torvalds 已提交
3533

3534
	if (!managed_zone(zone))
L
Linus Torvalds 已提交
3535 3536
		return;

3537
	if (!cpuset_zone_allowed(zone, GFP_KERNEL | __GFP_HARDWALL))
L
Linus Torvalds 已提交
3538
		return;
3539
	pgdat = zone->zone_pgdat;
3540 3541
	pgdat->kswapd_classzone_idx = max(pgdat->kswapd_classzone_idx, classzone_idx);
	pgdat->kswapd_order = max(pgdat->kswapd_order, order);
3542
	if (!waitqueue_active(&pgdat->kswapd_wait))
L
Linus Torvalds 已提交
3543
		return;
3544 3545 3546 3547

	/* Only wake kswapd if all zones are unbalanced */
	for (z = 0; z <= classzone_idx; z++) {
		zone = pgdat->node_zones + z;
3548
		if (!managed_zone(zone))
3549 3550 3551 3552 3553
			continue;

		if (zone_balanced(zone, order, classzone_idx))
			return;
	}
3554 3555

	trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, zone_idx(zone), order);
3556
	wake_up_interruptible(&pgdat->kswapd_wait);
L
Linus Torvalds 已提交
3557 3558
}

3559
#ifdef CONFIG_HIBERNATION
L
Linus Torvalds 已提交
3560
/*
3561
 * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
3562 3563 3564 3565 3566
 * freed pages.
 *
 * Rather than trying to age LRUs the aim is to preserve the overall
 * LRU order by reclaiming preferentially
 * inactive > active > active referenced > active mapped
L
Linus Torvalds 已提交
3567
 */
3568
unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
L
Linus Torvalds 已提交
3569
{
3570 3571
	struct reclaim_state reclaim_state;
	struct scan_control sc = {
3572
		.nr_to_reclaim = nr_to_reclaim,
3573
		.gfp_mask = GFP_HIGHUSER_MOVABLE,
3574
		.reclaim_idx = MAX_NR_ZONES - 1,
3575
		.priority = DEF_PRIORITY,
3576
		.may_writepage = 1,
3577 3578
		.may_unmap = 1,
		.may_swap = 1,
3579
		.hibernation_mode = 1,
L
Linus Torvalds 已提交
3580
	};
3581
	struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
3582 3583
	struct task_struct *p = current;
	unsigned long nr_reclaimed;
L
Linus Torvalds 已提交
3584

3585 3586 3587 3588
	p->flags |= PF_MEMALLOC;
	lockdep_set_current_reclaim_state(sc.gfp_mask);
	reclaim_state.reclaimed_slab = 0;
	p->reclaim_state = &reclaim_state;
3589

3590
	nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
3591

3592 3593 3594
	p->reclaim_state = NULL;
	lockdep_clear_current_reclaim_state();
	p->flags &= ~PF_MEMALLOC;
3595

3596
	return nr_reclaimed;
L
Linus Torvalds 已提交
3597
}
3598
#endif /* CONFIG_HIBERNATION */
L
Linus Torvalds 已提交
3599 3600 3601 3602 3603

/* It's optimal to keep kswapds on the same CPUs as their memory, but
   not required for correctness.  So if the last cpu in a node goes
   away, we get changed to run anywhere: as the first one comes back,
   restore their cpu bindings. */
3604
static int kswapd_cpu_online(unsigned int cpu)
L
Linus Torvalds 已提交
3605
{
3606
	int nid;
L
Linus Torvalds 已提交
3607

3608 3609 3610
	for_each_node_state(nid, N_MEMORY) {
		pg_data_t *pgdat = NODE_DATA(nid);
		const struct cpumask *mask;
3611

3612
		mask = cpumask_of_node(pgdat->node_id);
3613

3614 3615 3616
		if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
			/* One of our CPUs online: restore mask */
			set_cpus_allowed_ptr(pgdat->kswapd, mask);
L
Linus Torvalds 已提交
3617
	}
3618
	return 0;
L
Linus Torvalds 已提交
3619 3620
}

3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636
/*
 * This kswapd start function will be called by init and node-hot-add.
 * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
 */
int kswapd_run(int nid)
{
	pg_data_t *pgdat = NODE_DATA(nid);
	int ret = 0;

	if (pgdat->kswapd)
		return 0;

	pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
	if (IS_ERR(pgdat->kswapd)) {
		/* failure at boot is fatal */
		BUG_ON(system_state == SYSTEM_BOOTING);
3637 3638
		pr_err("Failed to start kswapd on node %d\n", nid);
		ret = PTR_ERR(pgdat->kswapd);
3639
		pgdat->kswapd = NULL;
3640 3641 3642 3643
	}
	return ret;
}

3644
/*
3645
 * Called by memory hotplug when all memory in a node is offlined.  Caller must
3646
 * hold mem_hotplug_begin/end().
3647 3648 3649 3650 3651
 */
void kswapd_stop(int nid)
{
	struct task_struct *kswapd = NODE_DATA(nid)->kswapd;

3652
	if (kswapd) {
3653
		kthread_stop(kswapd);
3654 3655
		NODE_DATA(nid)->kswapd = NULL;
	}
3656 3657
}

L
Linus Torvalds 已提交
3658 3659
static int __init kswapd_init(void)
{
3660
	int nid, ret;
3661

L
Linus Torvalds 已提交
3662
	swap_setup();
3663
	for_each_node_state(nid, N_MEMORY)
3664
 		kswapd_run(nid);
3665 3666 3667 3668
	ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN,
					"mm/vmscan:online", kswapd_cpu_online,
					NULL);
	WARN_ON(ret < 0);
L
Linus Torvalds 已提交
3669 3670 3671 3672
	return 0;
}

module_init(kswapd_init)
3673 3674 3675

#ifdef CONFIG_NUMA
/*
3676
 * Node reclaim mode
3677
 *
3678
 * If non-zero call node_reclaim when the number of free pages falls below
3679 3680
 * the watermarks.
 */
3681
int node_reclaim_mode __read_mostly;
3682

3683
#define RECLAIM_OFF 0
3684
#define RECLAIM_ZONE (1<<0)	/* Run shrink_inactive_list on the zone */
3685
#define RECLAIM_WRITE (1<<1)	/* Writeout pages during reclaim */
3686
#define RECLAIM_UNMAP (1<<2)	/* Unmap pages during reclaim */
3687

3688
/*
3689
 * Priority for NODE_RECLAIM. This determines the fraction of pages
3690 3691 3692
 * of a node considered for each zone_reclaim. 4 scans 1/16th of
 * a zone.
 */
3693
#define NODE_RECLAIM_PRIORITY 4
3694

3695
/*
3696
 * Percentage of pages in a zone that must be unmapped for node_reclaim to
3697 3698 3699 3700
 * occur.
 */
int sysctl_min_unmapped_ratio = 1;

3701 3702 3703 3704 3705 3706
/*
 * If the number of slab pages in a zone grows beyond this percentage then
 * slab reclaim needs to occur.
 */
int sysctl_min_slab_ratio = 5;

3707
static inline unsigned long node_unmapped_file_pages(struct pglist_data *pgdat)
3708
{
3709 3710 3711
	unsigned long file_mapped = node_page_state(pgdat, NR_FILE_MAPPED);
	unsigned long file_lru = node_page_state(pgdat, NR_INACTIVE_FILE) +
		node_page_state(pgdat, NR_ACTIVE_FILE);
3712 3713 3714 3715 3716 3717 3718 3719 3720 3721

	/*
	 * It's possible for there to be more file mapped pages than
	 * accounted for by the pages on the file LRU lists because
	 * tmpfs pages accounted for as ANON can also be FILE_MAPPED
	 */
	return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
}

/* Work out how many page cache pages we can reclaim in this reclaim_mode */
3722
static unsigned long node_pagecache_reclaimable(struct pglist_data *pgdat)
3723
{
3724 3725
	unsigned long nr_pagecache_reclaimable;
	unsigned long delta = 0;
3726 3727

	/*
3728
	 * If RECLAIM_UNMAP is set, then all file pages are considered
3729
	 * potentially reclaimable. Otherwise, we have to worry about
3730
	 * pages like swapcache and node_unmapped_file_pages() provides
3731 3732
	 * a better estimate
	 */
3733 3734
	if (node_reclaim_mode & RECLAIM_UNMAP)
		nr_pagecache_reclaimable = node_page_state(pgdat, NR_FILE_PAGES);
3735
	else
3736
		nr_pagecache_reclaimable = node_unmapped_file_pages(pgdat);
3737 3738

	/* If we can't clean pages, remove dirty pages from consideration */
3739 3740
	if (!(node_reclaim_mode & RECLAIM_WRITE))
		delta += node_page_state(pgdat, NR_FILE_DIRTY);
3741 3742 3743 3744 3745 3746 3747 3748

	/* Watch for any possible underflows due to delta */
	if (unlikely(delta > nr_pagecache_reclaimable))
		delta = nr_pagecache_reclaimable;

	return nr_pagecache_reclaimable - delta;
}

3749
/*
3750
 * Try to free up some pages from this node through reclaim.
3751
 */
3752
static int __node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order)
3753
{
3754
	/* Minimum pages needed in order to stay on node */
3755
	const unsigned long nr_pages = 1 << order;
3756 3757
	struct task_struct *p = current;
	struct reclaim_state reclaim_state;
3758
	int classzone_idx = gfp_zone(gfp_mask);
3759
	struct scan_control sc = {
3760
		.nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
3761
		.gfp_mask = (gfp_mask = memalloc_noio_flags(gfp_mask)),
3762
		.order = order,
3763 3764 3765
		.priority = NODE_RECLAIM_PRIORITY,
		.may_writepage = !!(node_reclaim_mode & RECLAIM_WRITE),
		.may_unmap = !!(node_reclaim_mode & RECLAIM_UNMAP),
3766
		.may_swap = 1,
3767
		.reclaim_idx = classzone_idx,
3768
	};
3769 3770

	cond_resched();
3771
	/*
3772
	 * We need to be able to allocate from the reserves for RECLAIM_UNMAP
3773
	 * and we also need to be able to write out pages for RECLAIM_WRITE
3774
	 * and RECLAIM_UNMAP.
3775 3776
	 */
	p->flags |= PF_MEMALLOC | PF_SWAPWRITE;
3777
	lockdep_set_current_reclaim_state(gfp_mask);
3778 3779
	reclaim_state.reclaimed_slab = 0;
	p->reclaim_state = &reclaim_state;
3780

3781
	if (node_pagecache_reclaimable(pgdat) > pgdat->min_unmapped_pages) {
3782 3783 3784 3785 3786
		/*
		 * Free memory by calling shrink zone with increasing
		 * priorities until we have enough memory freed.
		 */
		do {
3787
			shrink_node(pgdat, &sc);
3788
		} while (sc.nr_reclaimed < nr_pages && --sc.priority >= 0);
3789
	}
3790

3791
	p->reclaim_state = NULL;
3792
	current->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE);
3793
	lockdep_clear_current_reclaim_state();
3794
	return sc.nr_reclaimed >= nr_pages;
3795
}
3796

3797
int node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order)
3798
{
3799
	int ret;
3800 3801

	/*
3802
	 * Node reclaim reclaims unmapped file backed pages and
3803
	 * slab pages if we are over the defined limits.
3804
	 *
3805 3806
	 * A small portion of unmapped file backed pages is needed for
	 * file I/O otherwise pages read by file I/O will be immediately
3807 3808
	 * thrown out if the node is overallocated. So we do not reclaim
	 * if less than a specified percentage of the node is used by
3809
	 * unmapped file backed pages.
3810
	 */
3811 3812 3813
	if (node_pagecache_reclaimable(pgdat) <= pgdat->min_unmapped_pages &&
	    sum_zone_node_page_state(pgdat->node_id, NR_SLAB_RECLAIMABLE) <= pgdat->min_slab_pages)
		return NODE_RECLAIM_FULL;
3814

3815 3816
	if (!pgdat_reclaimable(pgdat))
		return NODE_RECLAIM_FULL;
3817

3818
	/*
3819
	 * Do not scan if the allocation should not be delayed.
3820
	 */
3821
	if (!gfpflags_allow_blocking(gfp_mask) || (current->flags & PF_MEMALLOC))
3822
		return NODE_RECLAIM_NOSCAN;
3823 3824

	/*
3825
	 * Only run node reclaim on the local node or on nodes that do not
3826 3827 3828 3829
	 * have associated processors. This will favor the local processor
	 * over remote processors and spread off node memory allocations
	 * as wide as possible.
	 */
3830 3831
	if (node_state(pgdat->node_id, N_CPU) && pgdat->node_id != numa_node_id())
		return NODE_RECLAIM_NOSCAN;
3832

3833 3834
	if (test_and_set_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags))
		return NODE_RECLAIM_NOSCAN;
3835

3836 3837
	ret = __node_reclaim(pgdat, gfp_mask, order);
	clear_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags);
3838

3839 3840 3841
	if (!ret)
		count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);

3842
	return ret;
3843
}
3844
#endif
L
Lee Schermerhorn 已提交
3845 3846 3847 3848 3849 3850

/*
 * page_evictable - test whether a page is evictable
 * @page: the page to test
 *
 * Test whether page is evictable--i.e., should be placed on active/inactive
3851
 * lists vs unevictable list.
L
Lee Schermerhorn 已提交
3852 3853
 *
 * Reasons page might not be evictable:
3854
 * (1) page's mapping marked unevictable
N
Nick Piggin 已提交
3855
 * (2) page is part of an mlocked VMA
3856
 *
L
Lee Schermerhorn 已提交
3857
 */
3858
int page_evictable(struct page *page)
L
Lee Schermerhorn 已提交
3859
{
3860
	return !mapping_unevictable(page_mapping(page)) && !PageMlocked(page);
L
Lee Schermerhorn 已提交
3861
}
3862

3863
#ifdef CONFIG_SHMEM
3864
/**
3865 3866 3867
 * check_move_unevictable_pages - check pages for evictability and move to appropriate zone lru list
 * @pages:	array of pages to check
 * @nr_pages:	number of pages to check
3868
 *
3869
 * Checks pages for evictability and moves them to the appropriate lru list.
3870 3871
 *
 * This function is only used for SysV IPC SHM_UNLOCK.
3872
 */
3873
void check_move_unevictable_pages(struct page **pages, int nr_pages)
3874
{
3875
	struct lruvec *lruvec;
3876
	struct pglist_data *pgdat = NULL;
3877 3878 3879
	int pgscanned = 0;
	int pgrescued = 0;
	int i;
3880

3881 3882
	for (i = 0; i < nr_pages; i++) {
		struct page *page = pages[i];
3883
		struct pglist_data *pagepgdat = page_pgdat(page);
3884

3885
		pgscanned++;
3886 3887 3888 3889 3890
		if (pagepgdat != pgdat) {
			if (pgdat)
				spin_unlock_irq(&pgdat->lru_lock);
			pgdat = pagepgdat;
			spin_lock_irq(&pgdat->lru_lock);
3891
		}
3892
		lruvec = mem_cgroup_page_lruvec(page, pgdat);
3893

3894 3895
		if (!PageLRU(page) || !PageUnevictable(page))
			continue;
3896

3897
		if (page_evictable(page)) {
3898 3899
			enum lru_list lru = page_lru_base_type(page);

3900
			VM_BUG_ON_PAGE(PageActive(page), page);
3901
			ClearPageUnevictable(page);
3902 3903
			del_page_from_lru_list(page, lruvec, LRU_UNEVICTABLE);
			add_page_to_lru_list(page, lruvec, lru);
3904
			pgrescued++;
3905
		}
3906
	}
3907

3908
	if (pgdat) {
3909 3910
		__count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued);
		__count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
3911
		spin_unlock_irq(&pgdat->lru_lock);
3912 3913
	}
}
3914
#endif /* CONFIG_SHMEM */